1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciCallSite.hpp"
  27 #include "ci/ciMethodHandle.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "interpreter/linkResolver.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/valuetypenode.hpp"
  42 #include "prims/nativeLookup.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 
  45 void trace_type_profile(Compile* C, ciMethod *method, int depth, int bci, ciMethod *prof_method, ciKlass *prof_klass, int site_count, int receiver_count) {
  46   if (TraceTypeProfile || C->print_inlining()) {
  47     outputStream* out = tty;
  48     if (!C->print_inlining()) {
  49       if (!PrintOpto && !PrintCompilation) {
  50         method->print_short_name();
  51         tty->cr();
  52       }
  53       CompileTask::print_inlining_tty(prof_method, depth, bci);
  54     } else {
  55       out = C->print_inlining_stream();
  56     }
  57     CompileTask::print_inline_indent(depth, out);
  58     out->print(" \\-> TypeProfile (%d/%d counts) = ", receiver_count, site_count);
  59     stringStream ss;
  60     prof_klass->name()->print_symbol_on(&ss);
  61     out->print("%s", ss.as_string());
  62     out->cr();
  63   }
  64 }
  65 
  66 CallGenerator* Compile::call_generator(ciMethod* callee, int vtable_index, bool call_does_dispatch,
  67                                        JVMState* jvms, bool allow_inline,
  68                                        float prof_factor, ciKlass* speculative_receiver_type,
  69                                        bool allow_intrinsics, bool delayed_forbidden) {
  70   ciMethod*       caller   = jvms->method();
  71   int             bci      = jvms->bci();
  72   Bytecodes::Code bytecode = caller->java_code_at_bci(bci);
  73   guarantee(callee != NULL, "failed method resolution");
  74 
  75   // Dtrace currently doesn't work unless all calls are vanilla
  76   if (env()->dtrace_method_probes()) {
  77     allow_inline = false;
  78   }
  79 
  80   // Note: When we get profiling during stage-1 compiles, we want to pull
  81   // from more specific profile data which pertains to this inlining.
  82   // Right now, ignore the information in jvms->caller(), and do method[bci].
  83   ciCallProfile profile = caller->call_profile_at_bci(bci);
  84 
  85   // See how many times this site has been invoked.
  86   int site_count = profile.count();
  87   int receiver_count = -1;
  88   if (call_does_dispatch && UseTypeProfile && profile.has_receiver(0)) {
  89     // Receivers in the profile structure are ordered by call counts
  90     // so that the most called (major) receiver is profile.receiver(0).
  91     receiver_count = profile.receiver_count(0);
  92   }
  93 
  94   CompileLog* log = this->log();
  95   if (log != NULL) {
  96     int rid = (receiver_count >= 0)? log->identify(profile.receiver(0)): -1;
  97     int r2id = (rid != -1 && profile.has_receiver(1))? log->identify(profile.receiver(1)):-1;
  98     log->begin_elem("call method='%d' count='%d' prof_factor='%f'",
  99                     log->identify(callee), site_count, prof_factor);
 100     if (call_does_dispatch)  log->print(" virtual='1'");
 101     if (allow_inline)     log->print(" inline='1'");
 102     if (receiver_count >= 0) {
 103       log->print(" receiver='%d' receiver_count='%d'", rid, receiver_count);
 104       if (profile.has_receiver(1)) {
 105         log->print(" receiver2='%d' receiver2_count='%d'", r2id, profile.receiver_count(1));
 106       }
 107     }
 108     if (callee->is_method_handle_intrinsic()) {
 109       log->print(" method_handle_intrinsic='1'");
 110     }
 111     log->end_elem();
 112   }
 113 
 114   // Special case the handling of certain common, profitable library
 115   // methods.  If these methods are replaced with specialized code,
 116   // then we return it as the inlined version of the call.
 117   // We do this before the strict f.p. check below because the
 118   // intrinsics handle strict f.p. correctly.
 119   CallGenerator* cg_intrinsic = NULL;
 120   if (allow_inline && allow_intrinsics) {
 121     CallGenerator* cg = find_intrinsic(callee, call_does_dispatch);
 122     if (cg != NULL) {
 123       if (cg->is_predicated()) {
 124         // Code without intrinsic but, hopefully, inlined.
 125         CallGenerator* inline_cg = this->call_generator(callee,
 126               vtable_index, call_does_dispatch, jvms, allow_inline, prof_factor, speculative_receiver_type, false);
 127         if (inline_cg != NULL) {
 128           cg = CallGenerator::for_predicated_intrinsic(cg, inline_cg);
 129         }
 130       }
 131 
 132       // If intrinsic does the virtual dispatch, we try to use the type profile
 133       // first, and hopefully inline it as the regular virtual call below.
 134       // We will retry the intrinsic if nothing had claimed it afterwards.
 135       if (cg->does_virtual_dispatch()) {
 136         cg_intrinsic = cg;
 137         cg = NULL;
 138       } else {
 139         return cg;
 140       }
 141     }
 142   }
 143 
 144   // Do method handle calls.
 145   // NOTE: This must happen before normal inlining logic below since
 146   // MethodHandle.invoke* are native methods which obviously don't
 147   // have bytecodes and so normal inlining fails.
 148   if (callee->is_method_handle_intrinsic()) {
 149     CallGenerator* cg = CallGenerator::for_method_handle_call(jvms, caller, callee, delayed_forbidden);
 150     assert(cg == NULL || !delayed_forbidden || !cg->is_late_inline() || cg->is_mh_late_inline(), "unexpected CallGenerator");
 151     return cg;
 152   }
 153 
 154   // Do not inline strict fp into non-strict code, or the reverse
 155   if (caller->is_strict() ^ callee->is_strict()) {
 156     allow_inline = false;
 157   }
 158 
 159   // Attempt to inline...
 160   if (allow_inline) {
 161     // The profile data is only partly attributable to this caller,
 162     // scale back the call site information.
 163     float past_uses = jvms->method()->scale_count(site_count, prof_factor);
 164     // This is the number of times we expect the call code to be used.
 165     float expected_uses = past_uses;
 166 
 167     // Try inlining a bytecoded method:
 168     if (!call_does_dispatch) {
 169       InlineTree* ilt = InlineTree::find_subtree_from_root(this->ilt(), jvms->caller(), jvms->method());
 170       WarmCallInfo scratch_ci;
 171       bool should_delay = false;
 172       WarmCallInfo* ci = ilt->ok_to_inline(callee, jvms, profile, &scratch_ci, should_delay);
 173       assert(ci != &scratch_ci, "do not let this pointer escape");
 174       bool allow_inline   = (ci != NULL && !ci->is_cold());
 175       bool require_inline = (allow_inline && ci->is_hot());
 176 
 177       if (allow_inline) {
 178         CallGenerator* cg = CallGenerator::for_inline(callee, expected_uses);
 179 
 180         if (require_inline && cg != NULL) {
 181           // Delay the inlining of this method to give us the
 182           // opportunity to perform some high level optimizations
 183           // first.
 184           if (should_delay_string_inlining(callee, jvms)) {
 185             assert(!delayed_forbidden, "strange");
 186             return CallGenerator::for_string_late_inline(callee, cg);
 187           } else if (should_delay_boxing_inlining(callee, jvms)) {
 188             assert(!delayed_forbidden, "strange");
 189             return CallGenerator::for_boxing_late_inline(callee, cg);
 190           } else if ((should_delay || AlwaysIncrementalInline) && !delayed_forbidden) {
 191             return CallGenerator::for_late_inline(callee, cg);
 192           }
 193         }
 194         if (cg == NULL || should_delay) {
 195           // Fall through.
 196         } else if (require_inline || !InlineWarmCalls) {
 197           return cg;
 198         } else {
 199           CallGenerator* cold_cg = call_generator(callee, vtable_index, call_does_dispatch, jvms, false, prof_factor);
 200           return CallGenerator::for_warm_call(ci, cold_cg, cg);
 201         }
 202       }
 203     }
 204 
 205     // Try using the type profile.
 206     if (call_does_dispatch && site_count > 0 && receiver_count > 0) {
 207       // The major receiver's count >= TypeProfileMajorReceiverPercent of site_count.
 208       bool have_major_receiver = (100.*profile.receiver_prob(0) >= (float)TypeProfileMajorReceiverPercent);
 209       ciMethod* receiver_method = NULL;
 210 
 211       int morphism = profile.morphism();
 212       if (speculative_receiver_type != NULL) {
 213         if (!too_many_traps(caller, bci, Deoptimization::Reason_speculate_class_check)) {
 214           // We have a speculative type, we should be able to resolve
 215           // the call. We do that before looking at the profiling at
 216           // this invoke because it may lead to bimorphic inlining which
 217           // a speculative type should help us avoid.
 218           receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 219                                                    speculative_receiver_type);
 220           if (receiver_method == NULL) {
 221             speculative_receiver_type = NULL;
 222           } else {
 223             morphism = 1;
 224           }
 225         } else {
 226           // speculation failed before. Use profiling at the call
 227           // (could allow bimorphic inlining for instance).
 228           speculative_receiver_type = NULL;
 229         }
 230       }
 231       if (receiver_method == NULL &&
 232           (have_major_receiver || morphism == 1 ||
 233            (morphism == 2 && UseBimorphicInlining))) {
 234         // receiver_method = profile.method();
 235         // Profiles do not suggest methods now.  Look it up in the major receiver.
 236         receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 237                                                       profile.receiver(0));
 238       }
 239       if (receiver_method != NULL) {
 240         // The single majority receiver sufficiently outweighs the minority.
 241         CallGenerator* hit_cg = this->call_generator(receiver_method,
 242               vtable_index, !call_does_dispatch, jvms, allow_inline, prof_factor);
 243         if (hit_cg != NULL) {
 244           // Look up second receiver.
 245           CallGenerator* next_hit_cg = NULL;
 246           ciMethod* next_receiver_method = NULL;
 247           if (morphism == 2 && UseBimorphicInlining) {
 248             next_receiver_method = callee->resolve_invoke(jvms->method()->holder(),
 249                                                                profile.receiver(1));
 250             if (next_receiver_method != NULL) {
 251               next_hit_cg = this->call_generator(next_receiver_method,
 252                                   vtable_index, !call_does_dispatch, jvms,
 253                                   allow_inline, prof_factor);
 254               if (next_hit_cg != NULL && !next_hit_cg->is_inline() &&
 255                   have_major_receiver && UseOnlyInlinedBimorphic) {
 256                   // Skip if we can't inline second receiver's method
 257                   next_hit_cg = NULL;
 258               }
 259             }
 260           }
 261           CallGenerator* miss_cg;
 262           Deoptimization::DeoptReason reason = morphism == 2 ?
 263             Deoptimization::Reason_bimorphic : Deoptimization::reason_class_check(speculative_receiver_type != NULL);
 264           if ((morphism == 1 || (morphism == 2 && next_hit_cg != NULL)) &&
 265               !too_many_traps(caller, bci, reason)
 266              ) {
 267             // Generate uncommon trap for class check failure path
 268             // in case of monomorphic or bimorphic virtual call site.
 269             miss_cg = CallGenerator::for_uncommon_trap(callee, reason,
 270                         Deoptimization::Action_maybe_recompile);
 271           } else {
 272             // Generate virtual call for class check failure path
 273             // in case of polymorphic virtual call site.
 274             miss_cg = CallGenerator::for_virtual_call(callee, vtable_index);
 275           }
 276           if (miss_cg != NULL) {
 277             if (next_hit_cg != NULL) {
 278               assert(speculative_receiver_type == NULL, "shouldn't end up here if we used speculation");
 279               trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), next_receiver_method, profile.receiver(1), site_count, profile.receiver_count(1));
 280               // We don't need to record dependency on a receiver here and below.
 281               // Whenever we inline, the dependency is added by Parse::Parse().
 282               miss_cg = CallGenerator::for_predicted_call(profile.receiver(1), miss_cg, next_hit_cg, PROB_MAX);
 283             }
 284             if (miss_cg != NULL) {
 285               trace_type_profile(C, jvms->method(), jvms->depth() - 1, jvms->bci(), receiver_method, profile.receiver(0), site_count, receiver_count);
 286               ciKlass* k = speculative_receiver_type != NULL ? speculative_receiver_type : profile.receiver(0);
 287               float hit_prob = speculative_receiver_type != NULL ? 1.0 : profile.receiver_prob(0);
 288               CallGenerator* cg = CallGenerator::for_predicted_call(k, miss_cg, hit_cg, hit_prob);
 289               if (cg != NULL)  return cg;
 290             }
 291           }
 292         }
 293       }
 294     }
 295   }
 296 
 297   // Nothing claimed the intrinsic, we go with straight-forward inlining
 298   // for already discovered intrinsic.
 299   if (allow_inline && allow_intrinsics && cg_intrinsic != NULL) {
 300     assert(cg_intrinsic->does_virtual_dispatch(), "sanity");
 301     return cg_intrinsic;
 302   }
 303 
 304   // There was no special inlining tactic, or it bailed out.
 305   // Use a more generic tactic, like a simple call.
 306   if (call_does_dispatch) {
 307     const char* msg = "virtual call";
 308     if (PrintInlining) print_inlining(callee, jvms->depth() - 1, jvms->bci(), msg);
 309     C->log_inline_failure(msg);
 310     return CallGenerator::for_virtual_call(callee, vtable_index);
 311   } else {
 312     // Class Hierarchy Analysis or Type Profile reveals a unique target,
 313     // or it is a static or special call.
 314     return CallGenerator::for_direct_call(callee, should_delay_inlining(callee, jvms));
 315   }
 316 }
 317 
 318 // Return true for methods that shouldn't be inlined early so that
 319 // they are easier to analyze and optimize as intrinsics.
 320 bool Compile::should_delay_string_inlining(ciMethod* call_method, JVMState* jvms) {
 321   if (has_stringbuilder()) {
 322 
 323     if ((call_method->holder() == C->env()->StringBuilder_klass() ||
 324          call_method->holder() == C->env()->StringBuffer_klass()) &&
 325         (jvms->method()->holder() == C->env()->StringBuilder_klass() ||
 326          jvms->method()->holder() == C->env()->StringBuffer_klass())) {
 327       // Delay SB calls only when called from non-SB code
 328       return false;
 329     }
 330 
 331     switch (call_method->intrinsic_id()) {
 332       case vmIntrinsics::_StringBuilder_void:
 333       case vmIntrinsics::_StringBuilder_int:
 334       case vmIntrinsics::_StringBuilder_String:
 335       case vmIntrinsics::_StringBuilder_append_char:
 336       case vmIntrinsics::_StringBuilder_append_int:
 337       case vmIntrinsics::_StringBuilder_append_String:
 338       case vmIntrinsics::_StringBuilder_toString:
 339       case vmIntrinsics::_StringBuffer_void:
 340       case vmIntrinsics::_StringBuffer_int:
 341       case vmIntrinsics::_StringBuffer_String:
 342       case vmIntrinsics::_StringBuffer_append_char:
 343       case vmIntrinsics::_StringBuffer_append_int:
 344       case vmIntrinsics::_StringBuffer_append_String:
 345       case vmIntrinsics::_StringBuffer_toString:
 346       case vmIntrinsics::_Integer_toString:
 347         return true;
 348 
 349       case vmIntrinsics::_String_String:
 350         {
 351           Node* receiver = jvms->map()->in(jvms->argoff() + 1);
 352           if (receiver->is_Proj() && receiver->in(0)->is_CallStaticJava()) {
 353             CallStaticJavaNode* csj = receiver->in(0)->as_CallStaticJava();
 354             ciMethod* m = csj->method();
 355             if (m != NULL &&
 356                 (m->intrinsic_id() == vmIntrinsics::_StringBuffer_toString ||
 357                  m->intrinsic_id() == vmIntrinsics::_StringBuilder_toString))
 358               // Delay String.<init>(new SB())
 359               return true;
 360           }
 361           return false;
 362         }
 363 
 364       default:
 365         return false;
 366     }
 367   }
 368   return false;
 369 }
 370 
 371 bool Compile::should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms) {
 372   if (eliminate_boxing() && call_method->is_boxing_method()) {
 373     set_has_boxed_value(true);
 374     return aggressive_unboxing();
 375   }
 376   return false;
 377 }
 378 
 379 // uncommon-trap call-sites where callee is unloaded, uninitialized or will not link
 380 bool Parse::can_not_compile_call_site(ciMethod *dest_method, ciInstanceKlass* klass) {
 381   // Additional inputs to consider...
 382   // bc      = bc()
 383   // caller  = method()
 384   // iter().get_method_holder_index()
 385   assert( dest_method->is_loaded(), "ciTypeFlow should not let us get here" );
 386   // Interface classes can be loaded & linked and never get around to
 387   // being initialized.  Uncommon-trap for not-initialized static or
 388   // v-calls.  Let interface calls happen.
 389   ciInstanceKlass* holder_klass = dest_method->holder();
 390   if (!holder_klass->is_being_initialized() &&
 391       !holder_klass->is_initialized() &&
 392       !holder_klass->is_interface()) {
 393     uncommon_trap(Deoptimization::Reason_uninitialized,
 394                   Deoptimization::Action_reinterpret,
 395                   holder_klass);
 396     return true;
 397   }
 398 
 399   assert(dest_method->is_loaded(), "dest_method: typeflow responsibility");
 400   return false;
 401 }
 402 
 403 #ifdef ASSERT
 404 static bool check_call_consistency(JVMState* jvms, CallGenerator* cg) {
 405   ciMethod* symbolic_info = jvms->method()->get_method_at_bci(jvms->bci());
 406   ciMethod* resolved_method = cg->method();
 407   if (!ciMethod::is_consistent_info(symbolic_info, resolved_method)) {
 408     tty->print_cr("JVMS:");
 409     jvms->dump();
 410     tty->print_cr("Bytecode info:");
 411     jvms->method()->get_method_at_bci(jvms->bci())->print(); tty->cr();
 412     tty->print_cr("Resolved method:");
 413     cg->method()->print(); tty->cr();
 414     return false;
 415   }
 416   return true;
 417 }
 418 #endif // ASSERT
 419 
 420 //------------------------------do_call----------------------------------------
 421 // Handle your basic call.  Inline if we can & want to, else just setup call.
 422 void Parse::do_call() {
 423   // It's likely we are going to add debug info soon.
 424   // Also, if we inline a guy who eventually needs debug info for this JVMS,
 425   // our contribution to it is cleaned up right here.
 426   kill_dead_locals();
 427 
 428   C->print_inlining_assert_ready();
 429 
 430   // Set frequently used booleans
 431   const bool is_virtual = bc() == Bytecodes::_invokevirtual;
 432   const bool is_virtual_or_interface = is_virtual || bc() == Bytecodes::_invokeinterface;
 433   const bool has_receiver = Bytecodes::has_receiver(bc());
 434 
 435   // Find target being called
 436   bool             will_link;
 437   ciSignature*     declared_signature = NULL;
 438   ciMethod*        orig_callee  = iter().get_method(will_link, &declared_signature);  // callee in the bytecode
 439   ciInstanceKlass* holder_klass = orig_callee->holder();
 440   ciKlass*         holder       = iter().get_declared_method_holder();
 441   ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder);
 442   assert(declared_signature != NULL, "cannot be null");
 443 
 444   // Bump max node limit for JSR292 users
 445   if (bc() == Bytecodes::_invokedynamic || orig_callee->is_method_handle_intrinsic()) {
 446     C->set_max_node_limit(3*MaxNodeLimit);
 447   }
 448 
 449   // uncommon-trap when callee is unloaded, uninitialized or will not link
 450   // bailout when too many arguments for register representation
 451   if (!will_link || can_not_compile_call_site(orig_callee, klass)) {
 452     if (PrintOpto && (Verbose || WizardMode)) {
 453       method()->print_name(); tty->print_cr(" can not compile call at bci %d to:", bci());
 454       orig_callee->print_name(); tty->cr();
 455     }
 456     return;
 457   }
 458   assert(holder_klass->is_loaded(), "");
 459   //assert((bc_callee->is_static() || is_invokedynamic) == !has_receiver , "must match bc");  // XXX invokehandle (cur_bc_raw)
 460   // Note: this takes into account invokeinterface of methods declared in java/lang/Object,
 461   // which should be invokevirtuals but according to the VM spec may be invokeinterfaces
 462   assert(holder_klass->is_interface() || holder_klass->super() == NULL || (bc() != Bytecodes::_invokeinterface), "must match bc");
 463   // Note:  In the absence of miranda methods, an abstract class K can perform
 464   // an invokevirtual directly on an interface method I.m if K implements I.
 465 
 466   // orig_callee is the resolved callee which's signature includes the
 467   // appendix argument.
 468   const int nargs = orig_callee->arg_size();
 469   const bool is_signature_polymorphic = MethodHandles::is_signature_polymorphic(orig_callee->intrinsic_id());
 470 
 471   // Push appendix argument (MethodType, CallSite, etc.), if one.
 472   if (iter().has_appendix()) {
 473     ciObject* appendix_arg = iter().get_appendix();
 474     const TypeOopPtr* appendix_arg_type = TypeOopPtr::make_from_constant(appendix_arg);
 475     Node* appendix_arg_node = _gvn.makecon(appendix_arg_type);
 476     push(appendix_arg_node);
 477   }
 478 
 479   // ---------------------
 480   // Does Class Hierarchy Analysis reveal only a single target of a v-call?
 481   // Then we may inline or make a static call, but become dependent on there being only 1 target.
 482   // Does the call-site type profile reveal only one receiver?
 483   // Then we may introduce a run-time check and inline on the path where it succeeds.
 484   // The other path may uncommon_trap, check for another receiver, or do a v-call.
 485 
 486   // Try to get the most accurate receiver type
 487   ciMethod* callee             = orig_callee;
 488   int       vtable_index       = Method::invalid_vtable_index;
 489   bool      call_does_dispatch = false;
 490 
 491   // Speculative type of the receiver if any
 492   ciKlass* speculative_receiver_type = NULL;
 493   if (is_virtual_or_interface) {
 494     Node* receiver_node             = stack(sp() - nargs);
 495     const TypeOopPtr* receiver_type = NULL;
 496     if (receiver_node->is_ValueType()) {
 497       receiver_type = TypeInstPtr::make(TypePtr::NotNull, _gvn.type(receiver_node)->is_valuetype()->value_klass());
 498     } else {
 499       receiver_type = _gvn.type(receiver_node)->isa_oopptr();
 500     }
 501     // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 502     // For arrays, klass below is Object. When vtable calls are used,
 503     // resolving the call with Object would allow an illegal call to
 504     // finalize() on an array. We use holder instead: illegal calls to
 505     // finalize() won't be compiled as vtable calls (IC call
 506     // resolution will catch the illegal call) and the few legal calls
 507     // on array types won't be either.
 508     callee = C->optimize_virtual_call(method(), bci(), klass, holder, orig_callee,
 509                                       receiver_type, is_virtual,
 510                                       call_does_dispatch, vtable_index);  // out-parameters
 511     speculative_receiver_type = receiver_type != NULL ? receiver_type->speculative_type() : NULL;
 512   }
 513 
 514   // invoke-super-special
 515   if (iter().cur_bc_raw() == Bytecodes::_invokespecial && !orig_callee->is_object_initializer()) {
 516     ciInstanceKlass* calling_klass = method()->holder();
 517     ciInstanceKlass* sender_klass =
 518         calling_klass->is_anonymous() ? calling_klass->host_klass() :
 519                                         calling_klass;
 520     if (sender_klass->is_interface()) {
 521       Node* receiver_node = stack(sp() - nargs);
 522       Node* cls_node = makecon(TypeKlassPtr::make(sender_klass));
 523       Node* bad_type_ctrl = NULL;
 524       Node* casted_receiver = gen_checkcast(receiver_node, cls_node, &bad_type_ctrl);
 525       if (bad_type_ctrl != NULL) {
 526         PreserveJVMState pjvms(this);
 527         set_control(bad_type_ctrl);
 528         uncommon_trap(Deoptimization::Reason_class_check,
 529                       Deoptimization::Action_none);
 530       }
 531       if (stopped()) {
 532         return; // MUST uncommon-trap?
 533       }
 534       set_stack(sp() - nargs, casted_receiver);
 535     }
 536   }
 537 
 538   // Note:  It's OK to try to inline a virtual call.
 539   // The call generator will not attempt to inline a polymorphic call
 540   // unless it knows how to optimize the receiver dispatch.
 541   bool try_inline = (C->do_inlining() || InlineAccessors);
 542 
 543   // ---------------------
 544   dec_sp(nargs);              // Temporarily pop args for JVM state of call
 545   JVMState* jvms = sync_jvms();
 546 
 547   // ---------------------
 548   // Decide call tactic.
 549   // This call checks with CHA, the interpreter profile, intrinsics table, etc.
 550   // It decides whether inlining is desirable or not.
 551   CallGenerator* cg = C->call_generator(callee, vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type);
 552 
 553   // NOTE:  Don't use orig_callee and callee after this point!  Use cg->method() instead.
 554   orig_callee = callee = NULL;
 555 
 556   // ---------------------
 557   // Round double arguments before call
 558   round_double_arguments(cg->method());
 559 
 560   // Feed profiling data for arguments to the type system so it can
 561   // propagate it as speculative types
 562   record_profiled_arguments_for_speculation(cg->method(), bc());
 563 
 564 #ifndef PRODUCT
 565   // bump global counters for calls
 566   count_compiled_calls(/*at_method_entry*/ false, cg->is_inline());
 567 
 568   // Record first part of parsing work for this call
 569   parse_histogram()->record_change();
 570 #endif // not PRODUCT
 571 
 572   assert(jvms == this->jvms(), "still operating on the right JVMS");
 573   assert(jvms_in_sync(),       "jvms must carry full info into CG");
 574 
 575   // save across call, for a subsequent cast_not_null.
 576   Node* receiver = has_receiver ? argument(0) : NULL;
 577 
 578   // The extra CheckCastPPs for speculative types mess with PhaseStringOpts
 579   if (receiver != NULL && !receiver->is_ValueType() && !call_does_dispatch && !cg->is_string_late_inline()) {
 580     // Feed profiling data for a single receiver to the type system so
 581     // it can propagate it as a speculative type
 582     receiver = record_profiled_receiver_for_speculation(receiver);
 583   }
 584 
 585   // Bump method data counters (We profile *before* the call is made
 586   // because exceptions don't return to the call site.)
 587   profile_call(receiver);
 588 
 589   JVMState* new_jvms = cg->generate(jvms);
 590   if (new_jvms == NULL) {
 591     // When inlining attempt fails (e.g., too many arguments),
 592     // it may contaminate the current compile state, making it
 593     // impossible to pull back and try again.  Once we call
 594     // cg->generate(), we are committed.  If it fails, the whole
 595     // compilation task is compromised.
 596     if (failing())  return;
 597 
 598     // This can happen if a library intrinsic is available, but refuses
 599     // the call site, perhaps because it did not match a pattern the
 600     // intrinsic was expecting to optimize. Should always be possible to
 601     // get a normal java call that may inline in that case
 602     cg = C->call_generator(cg->method(), vtable_index, call_does_dispatch, jvms, try_inline, prof_factor(), speculative_receiver_type, /* allow_intrinsics= */ false);
 603     new_jvms = cg->generate(jvms);
 604     if (new_jvms == NULL) {
 605       guarantee(failing(), "call failed to generate:  calls should work");
 606       return;
 607     }
 608   }
 609 
 610   if (cg->is_inline()) {
 611     // Accumulate has_loops estimate
 612     C->set_has_loops(C->has_loops() || cg->method()->has_loops());
 613     C->env()->notice_inlined_method(cg->method());
 614   }
 615 
 616   // Reset parser state from [new_]jvms, which now carries results of the call.
 617   // Return value (if any) is already pushed on the stack by the cg.
 618   add_exception_states_from(new_jvms);
 619   if (new_jvms->map()->control() == top()) {
 620     stop_and_kill_map();
 621   } else {
 622     assert(new_jvms->same_calls_as(jvms), "method/bci left unchanged");
 623     set_jvms(new_jvms);
 624   }
 625 
 626   assert(check_call_consistency(jvms, cg), "inconsistent info");
 627 
 628   if (!stopped()) {
 629     // This was some sort of virtual call, which did a null check for us.
 630     // Now we can assert receiver-not-null, on the normal return path.
 631     if (receiver != NULL && cg->is_virtual()) {
 632       Node* cast = cast_not_null(receiver);
 633       // %%% assert(receiver == cast, "should already have cast the receiver");
 634     }
 635 
 636     // Round double result after a call from strict to non-strict code
 637     round_double_result(cg->method());
 638 
 639     ciType* rtype = cg->method()->return_type();
 640     ciType* ctype = declared_signature->return_type();
 641 
 642     if (rtype->basic_type() == T_VALUETYPE) {
 643       Node* retnode = peek();
 644       if (!retnode->is_ValueType()) {
 645         pop();
 646         assert(!cg->is_inline(), "should have ValueTypeNode result");
 647         ciValueKlass* vk = _gvn.type(retnode)->value_klass();
 648         // We will deoptimize if the return value is null and then need to continue execution after the call
 649         ValueTypeNode* vt = ValueTypeNode::make_from_oop(this, retnode, vk, /* buffer_check */ false, /* null2default */ false, iter().next_bci());
 650         push_node(T_VALUETYPE, vt);
 651       }
 652     }
 653 
 654     if (Bytecodes::has_optional_appendix(iter().cur_bc_raw()) || is_signature_polymorphic) {
 655       // Be careful here with return types.
 656       if (ctype != rtype) {
 657         BasicType rt = rtype->basic_type();
 658         BasicType ct = ctype->basic_type();
 659         if (ct == T_VOID) {
 660           // It's OK for a method to return a value that is discarded.
 661           // The discarding does not require any special action from the caller.
 662           // The Java code knows this, at VerifyType.isNullConversion.
 663           pop_node(rt);  // whatever it was, pop it
 664         } else if (rt == T_INT || is_subword_type(rt)) {
 665           // Nothing.  These cases are handled in lambda form bytecode.
 666           assert(ct == T_INT || is_subword_type(ct), "must match: rt=%s, ct=%s", type2name(rt), type2name(ct));
 667         } else if (rt == T_OBJECT || rt == T_ARRAY) {
 668           assert(ct == T_OBJECT || ct == T_ARRAY || ct == T_VALUETYPE, "rt=%s, ct=%s", type2name(rt), type2name(ct));
 669           if (ctype->is_loaded()) {
 670             const TypeOopPtr* arg_type = TypeOopPtr::make_from_klass(rtype->as_klass());
 671             const Type*       sig_type = TypeOopPtr::make_from_klass(ctype->as_klass());
 672             if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 673               Node* retnode = pop();
 674               Node* cast_obj = _gvn.transform(new CheckCastPPNode(control(), retnode, sig_type));
 675               if (ct == T_VALUETYPE) {
 676                 // We will deoptimize if the return value is null and then need to continue execution after the call
 677                 cast_obj = ValueTypeNode::make_from_oop(this, cast_obj, ctype->as_value_klass(), /* buffer_check */ false, /* null2default */ false, iter().next_bci());
 678               }
 679               push(cast_obj);
 680             }
 681           }
 682         } else if (rt == T_VALUETYPE) {
 683           assert(ct == T_OBJECT, "object expected but got ct=%s", type2name(ct));
 684           ValueTypeNode* vt = pop()->as_ValueType();
 685           vt = vt->allocate(this)->as_ValueType();
 686           Node* vtptr = ValueTypePtrNode::make_from_value_type(_gvn, vt);
 687           push(vtptr);
 688         } else {
 689           assert(rt == ct, "unexpected mismatch: rt=%s, ct=%s", type2name(rt), type2name(ct));
 690           // push a zero; it's better than getting an oop/int mismatch
 691           pop_node(rt);
 692           Node* retnode = zerocon(ct);
 693           push_node(ct, retnode);
 694         }
 695         // Now that the value is well-behaved, continue with the call-site type.
 696         rtype = ctype;
 697       }
 698     } else {
 699       // Symbolic resolution enforces the types to be the same.
 700       // NOTE: We must relax the assert for unloaded types because two
 701       // different ciType instances of the same unloaded class type
 702       // can appear to be "loaded" by different loaders (depending on
 703       // the accessing class).
 704       assert(!rtype->is_loaded() || !ctype->is_loaded() || rtype == ctype,
 705              "mismatched return types: rtype=%s, ctype=%s", rtype->name(), ctype->name());
 706     }
 707 
 708     // If the return type of the method is not loaded, assert that the
 709     // value we got is a null.  Otherwise, we need to recompile.
 710     if (!rtype->is_loaded()) {
 711       if (PrintOpto && (Verbose || WizardMode)) {
 712         method()->print_name(); tty->print_cr(" asserting nullness of result at bci: %d", bci());
 713         cg->method()->print_name(); tty->cr();
 714       }
 715       if (C->log() != NULL) {
 716         C->log()->elem("assert_null reason='return' klass='%d'",
 717                        C->log()->identify(rtype));
 718       }
 719       // If there is going to be a trap, put it at the next bytecode:
 720       set_bci(iter().next_bci());
 721       null_assert(peek());
 722       set_bci(iter().cur_bci()); // put it back
 723     }
 724     BasicType ct = ctype->basic_type();
 725     if (ct == T_OBJECT || ct == T_ARRAY) {
 726       record_profiled_return_for_speculation();
 727     }
 728   }
 729 
 730   // Restart record of parsing work after possible inlining of call
 731 #ifndef PRODUCT
 732   parse_histogram()->set_initial_state(bc());
 733 #endif
 734 }
 735 
 736 //---------------------------catch_call_exceptions-----------------------------
 737 // Put a Catch and CatchProj nodes behind a just-created call.
 738 // Send their caught exceptions to the proper handler.
 739 // This may be used after a call to the rethrow VM stub,
 740 // when it is needed to process unloaded exception classes.
 741 void Parse::catch_call_exceptions(ciExceptionHandlerStream& handlers) {
 742   // Exceptions are delivered through this channel:
 743   Node* i_o = this->i_o();
 744 
 745   // Add a CatchNode.
 746   GrowableArray<int>* bcis = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, -1);
 747   GrowableArray<const Type*>* extypes = new (C->node_arena()) GrowableArray<const Type*>(C->node_arena(), 8, 0, NULL);
 748   GrowableArray<int>* saw_unloaded = new (C->node_arena()) GrowableArray<int>(C->node_arena(), 8, 0, 0);
 749 
 750   bool default_handler = false;
 751   for (; !handlers.is_done(); handlers.next()) {
 752     ciExceptionHandler* h        = handlers.handler();
 753     int                 h_bci    = h->handler_bci();
 754     ciInstanceKlass*    h_klass  = h->is_catch_all() ? env()->Throwable_klass() : h->catch_klass();
 755     // Do not introduce unloaded exception types into the graph:
 756     if (!h_klass->is_loaded()) {
 757       if (saw_unloaded->contains(h_bci)) {
 758         /* We've already seen an unloaded exception with h_bci,
 759            so don't duplicate. Duplication will cause the CatchNode to be
 760            unnecessarily large. See 4713716. */
 761         continue;
 762       } else {
 763         saw_unloaded->append(h_bci);
 764       }
 765     }
 766     const Type*         h_extype = TypeOopPtr::make_from_klass(h_klass);
 767     // (We use make_from_klass because it respects UseUniqueSubclasses.)
 768     h_extype = h_extype->join(TypeInstPtr::NOTNULL);
 769     assert(!h_extype->empty(), "sanity");
 770     // Note:  It's OK if the BCIs repeat themselves.
 771     bcis->append(h_bci);
 772     extypes->append(h_extype);
 773     if (h_bci == -1) {
 774       default_handler = true;
 775     }
 776   }
 777 
 778   if (!default_handler) {
 779     bcis->append(-1);
 780     extypes->append(TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr());
 781   }
 782 
 783   int len = bcis->length();
 784   CatchNode *cn = new CatchNode(control(), i_o, len+1);
 785   Node *catch_ = _gvn.transform(cn);
 786 
 787   // now branch with the exception state to each of the (potential)
 788   // handlers
 789   for(int i=0; i < len; i++) {
 790     // Setup JVM state to enter the handler.
 791     PreserveJVMState pjvms(this);
 792     // Locals are just copied from before the call.
 793     // Get control from the CatchNode.
 794     int handler_bci = bcis->at(i);
 795     Node* ctrl = _gvn.transform( new CatchProjNode(catch_, i+1,handler_bci));
 796     // This handler cannot happen?
 797     if (ctrl == top())  continue;
 798     set_control(ctrl);
 799 
 800     // Create exception oop
 801     const TypeInstPtr* extype = extypes->at(i)->is_instptr();
 802     Node *ex_oop = _gvn.transform(new CreateExNode(extypes->at(i), ctrl, i_o));
 803 
 804     // Handle unloaded exception classes.
 805     if (saw_unloaded->contains(handler_bci)) {
 806       // An unloaded exception type is coming here.  Do an uncommon trap.
 807 #ifndef PRODUCT
 808       // We do not expect the same handler bci to take both cold unloaded
 809       // and hot loaded exceptions.  But, watch for it.
 810       if ((Verbose || WizardMode) && extype->is_loaded()) {
 811         tty->print("Warning: Handler @%d takes mixed loaded/unloaded exceptions in ", bci());
 812         method()->print_name(); tty->cr();
 813       } else if (PrintOpto && (Verbose || WizardMode)) {
 814         tty->print("Bailing out on unloaded exception type ");
 815         extype->klass()->print_name();
 816         tty->print(" at bci:%d in ", bci());
 817         method()->print_name(); tty->cr();
 818       }
 819 #endif
 820       // Emit an uncommon trap instead of processing the block.
 821       set_bci(handler_bci);
 822       push_ex_oop(ex_oop);
 823       uncommon_trap(Deoptimization::Reason_unloaded,
 824                     Deoptimization::Action_reinterpret,
 825                     extype->klass(), "!loaded exception");
 826       set_bci(iter().cur_bci()); // put it back
 827       continue;
 828     }
 829 
 830     // go to the exception handler
 831     if (handler_bci < 0) {     // merge with corresponding rethrow node
 832       throw_to_exit(make_exception_state(ex_oop));
 833     } else {                      // Else jump to corresponding handle
 834       push_ex_oop(ex_oop);        // Clear stack and push just the oop.
 835       merge_exception(handler_bci);
 836     }
 837   }
 838 
 839   // The first CatchProj is for the normal return.
 840   // (Note:  If this is a call to rethrow_Java, this node goes dead.)
 841   set_control(_gvn.transform( new CatchProjNode(catch_, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci)));
 842 }
 843 
 844 
 845 //----------------------------catch_inline_exceptions--------------------------
 846 // Handle all exceptions thrown by an inlined method or individual bytecode.
 847 // Common case 1: we have no handler, so all exceptions merge right into
 848 // the rethrow case.
 849 // Case 2: we have some handlers, with loaded exception klasses that have
 850 // no subklasses.  We do a Deutsch-Shiffman style type-check on the incoming
 851 // exception oop and branch to the handler directly.
 852 // Case 3: We have some handlers with subklasses or are not loaded at
 853 // compile-time.  We have to call the runtime to resolve the exception.
 854 // So we insert a RethrowCall and all the logic that goes with it.
 855 void Parse::catch_inline_exceptions(SafePointNode* ex_map) {
 856   // Caller is responsible for saving away the map for normal control flow!
 857   assert(stopped(), "call set_map(NULL) first");
 858   assert(method()->has_exception_handlers(), "don't come here w/o work to do");
 859 
 860   Node* ex_node = saved_ex_oop(ex_map);
 861   if (ex_node == top()) {
 862     // No action needed.
 863     return;
 864   }
 865   const TypeInstPtr* ex_type = _gvn.type(ex_node)->isa_instptr();
 866   NOT_PRODUCT(if (ex_type==NULL) tty->print_cr("*** Exception not InstPtr"));
 867   if (ex_type == NULL)
 868     ex_type = TypeOopPtr::make_from_klass(env()->Throwable_klass())->is_instptr();
 869 
 870   // determine potential exception handlers
 871   ciExceptionHandlerStream handlers(method(), bci(),
 872                                     ex_type->klass()->as_instance_klass(),
 873                                     ex_type->klass_is_exact());
 874 
 875   // Start executing from the given throw state.  (Keep its stack, for now.)
 876   // Get the exception oop as known at compile time.
 877   ex_node = use_exception_state(ex_map);
 878 
 879   // Get the exception oop klass from its header
 880   Node* ex_klass_node = NULL;
 881   if (has_ex_handler() && !ex_type->klass_is_exact()) {
 882     Node* p = basic_plus_adr( ex_node, ex_node, oopDesc::klass_offset_in_bytes());
 883     ex_klass_node = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT));
 884 
 885     // Compute the exception klass a little more cleverly.
 886     // Obvious solution is to simple do a LoadKlass from the 'ex_node'.
 887     // However, if the ex_node is a PhiNode, I'm going to do a LoadKlass for
 888     // each arm of the Phi.  If I know something clever about the exceptions
 889     // I'm loading the class from, I can replace the LoadKlass with the
 890     // klass constant for the exception oop.
 891     if (ex_node->is_Phi()) {
 892       ex_klass_node = new PhiNode(ex_node->in(0), TypeKlassPtr::OBJECT);
 893       for (uint i = 1; i < ex_node->req(); i++) {
 894         Node* ex_in = ex_node->in(i);
 895         if (ex_in == top() || ex_in == NULL) {
 896           // This path was not taken.
 897           ex_klass_node->init_req(i, top());
 898           continue;
 899         }
 900         Node* p = basic_plus_adr(ex_in, ex_in, oopDesc::klass_offset_in_bytes());
 901         Node* k = _gvn.transform( LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT));
 902         ex_klass_node->init_req( i, k );
 903       }
 904       _gvn.set_type(ex_klass_node, TypeKlassPtr::OBJECT);
 905 
 906     }
 907   }
 908 
 909   // Scan the exception table for applicable handlers.
 910   // If none, we can call rethrow() and be done!
 911   // If precise (loaded with no subklasses), insert a D.S. style
 912   // pointer compare to the correct handler and loop back.
 913   // If imprecise, switch to the Rethrow VM-call style handling.
 914 
 915   int remaining = handlers.count_remaining();
 916 
 917   // iterate through all entries sequentially
 918   for (;!handlers.is_done(); handlers.next()) {
 919     ciExceptionHandler* handler = handlers.handler();
 920 
 921     if (handler->is_rethrow()) {
 922       // If we fell off the end of the table without finding an imprecise
 923       // exception klass (and without finding a generic handler) then we
 924       // know this exception is not handled in this method.  We just rethrow
 925       // the exception into the caller.
 926       throw_to_exit(make_exception_state(ex_node));
 927       return;
 928     }
 929 
 930     // exception handler bci range covers throw_bci => investigate further
 931     int handler_bci = handler->handler_bci();
 932 
 933     if (remaining == 1) {
 934       push_ex_oop(ex_node);        // Push exception oop for handler
 935       if (PrintOpto && WizardMode) {
 936         tty->print_cr("  Catching every inline exception bci:%d -> handler_bci:%d", bci(), handler_bci);
 937       }
 938       merge_exception(handler_bci); // jump to handler
 939       return;                   // No more handling to be done here!
 940     }
 941 
 942     // Get the handler's klass
 943     ciInstanceKlass* klass = handler->catch_klass();
 944 
 945     if (!klass->is_loaded()) {  // klass is not loaded?
 946       // fall through into catch_call_exceptions which will emit a
 947       // handler with an uncommon trap.
 948       break;
 949     }
 950 
 951     if (klass->is_interface())  // should not happen, but...
 952       break;                    // bail out
 953 
 954     // Check the type of the exception against the catch type
 955     const TypeKlassPtr *tk = TypeKlassPtr::make(klass);
 956     Node* con = _gvn.makecon(tk);
 957     Node* not_subtype_ctrl = gen_subtype_check(ex_klass_node, con);
 958     if (!stopped()) {
 959       PreserveJVMState pjvms(this);
 960       const TypeInstPtr* tinst = TypeOopPtr::make_from_klass_unique(klass)->cast_to_ptr_type(TypePtr::NotNull)->is_instptr();
 961       assert(klass->has_subklass() || tinst->klass_is_exact(), "lost exactness");
 962       Node* ex_oop = _gvn.transform(new CheckCastPPNode(control(), ex_node, tinst));
 963       push_ex_oop(ex_oop);      // Push exception oop for handler
 964       if (PrintOpto && WizardMode) {
 965         tty->print("  Catching inline exception bci:%d -> handler_bci:%d -- ", bci(), handler_bci);
 966         klass->print_name();
 967         tty->cr();
 968       }
 969       merge_exception(handler_bci);
 970     }
 971     set_control(not_subtype_ctrl);
 972 
 973     // Come here if exception does not match handler.
 974     // Carry on with more handler checks.
 975     --remaining;
 976   }
 977 
 978   assert(!stopped(), "you should return if you finish the chain");
 979 
 980   // Oops, need to call into the VM to resolve the klasses at runtime.
 981   // Note:  This call must not deoptimize, since it is not a real at this bci!
 982   kill_dead_locals();
 983 
 984   make_runtime_call(RC_NO_LEAF | RC_MUST_THROW,
 985                     OptoRuntime::rethrow_Type(),
 986                     OptoRuntime::rethrow_stub(),
 987                     NULL, NULL,
 988                     ex_node);
 989 
 990   // Rethrow is a pure call, no side effects, only a result.
 991   // The result cannot be allocated, so we use I_O
 992 
 993   // Catch exceptions from the rethrow
 994   catch_call_exceptions(handlers);
 995 }
 996 
 997 
 998 // (Note:  Moved add_debug_info into GraphKit::add_safepoint_edges.)
 999 
1000 
1001 #ifndef PRODUCT
1002 void Parse::count_compiled_calls(bool at_method_entry, bool is_inline) {
1003   if( CountCompiledCalls ) {
1004     if( at_method_entry ) {
1005       // bump invocation counter if top method (for statistics)
1006       if (CountCompiledCalls && depth() == 1) {
1007         const TypePtr* addr_type = TypeMetadataPtr::make(method());
1008         Node* adr1 = makecon(addr_type);
1009         Node* adr2 = basic_plus_adr(adr1, adr1, in_bytes(Method::compiled_invocation_counter_offset()));
1010         increment_counter(adr2);
1011       }
1012     } else if (is_inline) {
1013       switch (bc()) {
1014       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_inlined_calls_addr()); break;
1015       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_inlined_interface_calls_addr()); break;
1016       case Bytecodes::_invokestatic:
1017       case Bytecodes::_invokedynamic:
1018       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_inlined_static_calls_addr()); break;
1019       default: fatal("unexpected call bytecode");
1020       }
1021     } else {
1022       switch (bc()) {
1023       case Bytecodes::_invokevirtual:   increment_counter(SharedRuntime::nof_normal_calls_addr()); break;
1024       case Bytecodes::_invokeinterface: increment_counter(SharedRuntime::nof_interface_calls_addr()); break;
1025       case Bytecodes::_invokestatic:
1026       case Bytecodes::_invokedynamic:
1027       case Bytecodes::_invokespecial:   increment_counter(SharedRuntime::nof_static_calls_addr()); break;
1028       default: fatal("unexpected call bytecode");
1029       }
1030     }
1031   }
1032 }
1033 #endif //PRODUCT
1034 
1035 
1036 ciMethod* Compile::optimize_virtual_call(ciMethod* caller, int bci, ciInstanceKlass* klass,
1037                                          ciKlass* holder, ciMethod* callee,
1038                                          const TypeOopPtr* receiver_type, bool is_virtual,
1039                                          bool& call_does_dispatch, int& vtable_index,
1040                                          bool check_access) {
1041   // Set default values for out-parameters.
1042   call_does_dispatch = true;
1043   vtable_index       = Method::invalid_vtable_index;
1044 
1045   // Choose call strategy.
1046   ciMethod* optimized_virtual_method = optimize_inlining(caller, bci, klass, callee,
1047                                                          receiver_type, check_access);
1048 
1049   // Have the call been sufficiently improved such that it is no longer a virtual?
1050   if (optimized_virtual_method != NULL) {
1051     callee             = optimized_virtual_method;
1052     call_does_dispatch = false;
1053   } else if (!UseInlineCaches && is_virtual && callee->is_loaded()) {
1054     // We can make a vtable call at this site
1055     vtable_index = callee->resolve_vtable_index(caller->holder(), holder);
1056   }
1057   return callee;
1058 }
1059 
1060 // Identify possible target method and inlining style
1061 ciMethod* Compile::optimize_inlining(ciMethod* caller, int bci, ciInstanceKlass* klass,
1062                                      ciMethod* callee, const TypeOopPtr* receiver_type,
1063                                      bool check_access) {
1064   // only use for virtual or interface calls
1065 
1066   // If it is obviously final, do not bother to call find_monomorphic_target,
1067   // because the class hierarchy checks are not needed, and may fail due to
1068   // incompletely loaded classes.  Since we do our own class loading checks
1069   // in this module, we may confidently bind to any method.
1070   if (callee->can_be_statically_bound()) {
1071     return callee;
1072   }
1073 
1074   // Attempt to improve the receiver
1075   bool actual_receiver_is_exact = false;
1076   ciInstanceKlass* actual_receiver = klass;
1077   if (receiver_type != NULL) {
1078     // Array methods are all inherited from Object, and are monomorphic.
1079     // finalize() call on array is not allowed.
1080     if (receiver_type->isa_aryptr() &&
1081         callee->holder() == env()->Object_klass() &&
1082         callee->name() != ciSymbol::finalize_method_name()) {
1083       return callee;
1084     }
1085 
1086     // All other interesting cases are instance klasses.
1087     if (!receiver_type->isa_instptr()) {
1088       return NULL;
1089     }
1090 
1091     ciInstanceKlass *ikl = receiver_type->klass()->as_instance_klass();
1092     if (ikl->is_loaded() && ikl->is_initialized() && !ikl->is_interface() &&
1093         (ikl == actual_receiver || ikl->is_subtype_of(actual_receiver))) {
1094       // ikl is a same or better type than the original actual_receiver,
1095       // e.g. static receiver from bytecodes.
1096       actual_receiver = ikl;
1097       // Is the actual_receiver exact?
1098       actual_receiver_is_exact = receiver_type->klass_is_exact();
1099     }
1100   }
1101 
1102   ciInstanceKlass*   calling_klass = caller->holder();
1103   ciMethod* cha_monomorphic_target = callee->find_monomorphic_target(calling_klass, klass, actual_receiver, check_access);
1104   if (cha_monomorphic_target != NULL) {
1105     assert(!cha_monomorphic_target->is_abstract(), "");
1106     // Look at the method-receiver type.  Does it add "too much information"?
1107     ciKlass*    mr_klass = cha_monomorphic_target->holder();
1108     const Type* mr_type  = TypeInstPtr::make(TypePtr::BotPTR, mr_klass);
1109     if (receiver_type == NULL || !receiver_type->higher_equal(mr_type)) {
1110       // Calling this method would include an implicit cast to its holder.
1111       // %%% Not yet implemented.  Would throw minor asserts at present.
1112       // %%% The most common wins are already gained by +UseUniqueSubclasses.
1113       // To fix, put the higher_equal check at the call of this routine,
1114       // and add a CheckCastPP to the receiver.
1115       if (TraceDependencies) {
1116         tty->print_cr("found unique CHA method, but could not cast up");
1117         tty->print("  method  = ");
1118         cha_monomorphic_target->print();
1119         tty->cr();
1120       }
1121       if (log() != NULL) {
1122         log()->elem("missed_CHA_opportunity klass='%d' method='%d'",
1123                        log()->identify(klass),
1124                        log()->identify(cha_monomorphic_target));
1125       }
1126       cha_monomorphic_target = NULL;
1127     }
1128   }
1129   if (cha_monomorphic_target != NULL) {
1130     // Hardwiring a virtual.
1131     // If we inlined because CHA revealed only a single target method,
1132     // then we are dependent on that target method not getting overridden
1133     // by dynamic class loading.  Be sure to test the "static" receiver
1134     // dest_method here, as opposed to the actual receiver, which may
1135     // falsely lead us to believe that the receiver is final or private.
1136     dependencies()->assert_unique_concrete_method(actual_receiver, cha_monomorphic_target);
1137     return cha_monomorphic_target;
1138   }
1139 
1140   // If the type is exact, we can still bind the method w/o a vcall.
1141   // (This case comes after CHA so we can see how much extra work it does.)
1142   if (actual_receiver_is_exact) {
1143     // In case of evolution, there is a dependence on every inlined method, since each
1144     // such method can be changed when its class is redefined.
1145     ciMethod* exact_method = callee->resolve_invoke(calling_klass, actual_receiver);
1146     if (exact_method != NULL) {
1147       if (PrintOpto) {
1148         tty->print("  Calling method via exact type @%d --- ", bci);
1149         exact_method->print_name();
1150         tty->cr();
1151       }
1152       return exact_method;
1153     }
1154   }
1155 
1156   return NULL;
1157 }