1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset(int max_vregs) {
  59   // Initialize array sizes
  60   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _virtual_operands.trunc_to(0);
  62   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _other_operands.trunc_to(0);
  64   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _vreg_table.trunc_to(0);
  66 }
  67 
  68 
  69 
  70 //--------------------------------------------------------------
  71 // PhiResolver
  72 
  73 // Resolves cycles:
  74 //
  75 //  r1 := r2  becomes  temp := r1
  76 //  r2 := r1           r1 := r2
  77 //                     r2 := temp
  78 // and orders moves:
  79 //
  80 //  r2 := r3  becomes  r1 := r2
  81 //  r1 := r2           r2 := r3
  82 
  83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  84  : _gen(gen)
  85  , _state(gen->resolver_state())
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset(max_vregs);
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == NULL, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != NULL) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = NULL;
 154       move(NULL, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, NULL);
 175     assert(node == NULL || node->operand() == opr, "");
 176     if (node == NULL) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 213   }
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {
 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {
 239       _result = LIR_OprFact::value_type(value()->type());
 240     }
 241   } else if (type == T_BYTE || type == T_BOOLEAN) {
 242     load_byte_item();
 243   } else {
 244     load_item();
 245   }
 246 }
 247 
 248 void LIRItem::load_item_force(LIR_Opr reg) {
 249   LIR_Opr r = result();
 250   if (r != reg) {
 251 #if !defined(ARM) && !defined(E500V2)
 252     if (r->type() != reg->type()) {
 253       // moves between different types need an intervening spill slot
 254       r = _gen->force_to_spill(r, reg->type());
 255     }
 256 #endif
 257     __ move(r, reg);
 258     _result = reg;
 259   }
 260 }
 261 
 262 ciObject* LIRItem::get_jobject_constant() const {
 263   ObjectType* oc = type()->as_ObjectType();
 264   if (oc) {
 265     return oc->constant_value();
 266   }
 267   return NULL;
 268 }
 269 
 270 
 271 jint LIRItem::get_jint_constant() const {
 272   assert(is_constant() && value() != NULL, "");
 273   assert(type()->as_IntConstant() != NULL, "type check");
 274   return type()->as_IntConstant()->value();
 275 }
 276 
 277 
 278 jint LIRItem::get_address_constant() const {
 279   assert(is_constant() && value() != NULL, "");
 280   assert(type()->as_AddressConstant() != NULL, "type check");
 281   return type()->as_AddressConstant()->value();
 282 }
 283 
 284 
 285 jfloat LIRItem::get_jfloat_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_FloatConstant() != NULL, "type check");
 288   return type()->as_FloatConstant()->value();
 289 }
 290 
 291 
 292 jdouble LIRItem::get_jdouble_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_DoubleConstant() != NULL, "type check");
 295   return type()->as_DoubleConstant()->value();
 296 }
 297 
 298 
 299 jlong LIRItem::get_jlong_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_LongConstant() != NULL, "type check");
 302   return type()->as_LongConstant()->value();
 303 }
 304 
 305 
 306 
 307 //--------------------------------------------------------------
 308 
 309 
 310 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 311 #ifndef PRODUCT
 312   if (PrintIRWithLIR) {
 313     block->print();
 314   }
 315 #endif
 316 
 317   // set up the list of LIR instructions
 318   assert(block->lir() == NULL, "LIR list already computed for this block");
 319   _lir = new LIR_List(compilation(), block);
 320   block->set_lir(_lir);
 321 
 322   __ branch_destination(block->label());
 323 
 324   if (LIRTraceExecution &&
 325       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 326       !block->is_set(BlockBegin::exception_entry_flag)) {
 327     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 328     trace_block_entry(block);
 329   }
 330 }
 331 
 332 
 333 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 334 #ifndef PRODUCT
 335   if (PrintIRWithLIR) {
 336     tty->cr();
 337   }
 338 #endif
 339 
 340   // LIR_Opr for unpinned constants shouldn't be referenced by other
 341   // blocks so clear them out after processing the block.
 342   for (int i = 0; i < _unpinned_constants.length(); i++) {
 343     _unpinned_constants.at(i)->clear_operand();
 344   }
 345   _unpinned_constants.trunc_to(0);
 346 
 347   // clear our any registers for other local constants
 348   _constants.trunc_to(0);
 349   _reg_for_constants.trunc_to(0);
 350 }
 351 
 352 
 353 void LIRGenerator::block_do(BlockBegin* block) {
 354   CHECK_BAILOUT();
 355 
 356   block_do_prolog(block);
 357   set_block(block);
 358 
 359   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 360     if (instr->is_pinned()) do_root(instr);
 361   }
 362 
 363   set_block(NULL);
 364   block_do_epilog(block);
 365 }
 366 
 367 
 368 //-------------------------LIRGenerator-----------------------------
 369 
 370 // This is where the tree-walk starts; instr must be root;
 371 void LIRGenerator::do_root(Value instr) {
 372   CHECK_BAILOUT();
 373 
 374   InstructionMark im(compilation(), instr);
 375 
 376   assert(instr->is_pinned(), "use only with roots");
 377   assert(instr->subst() == instr, "shouldn't have missed substitution");
 378 
 379   instr->visit(this);
 380 
 381   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 382          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 383 }
 384 
 385 
 386 // This is called for each node in tree; the walk stops if a root is reached
 387 void LIRGenerator::walk(Value instr) {
 388   InstructionMark im(compilation(), instr);
 389   //stop walk when encounter a root
 390   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 391     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 392   } else {
 393     assert(instr->subst() == instr, "shouldn't have missed substitution");
 394     instr->visit(this);
 395     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 396   }
 397 }
 398 
 399 
 400 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 401   assert(state != NULL, "state must be defined");
 402 
 403 #ifndef PRODUCT
 404   state->verify();
 405 #endif
 406 
 407   ValueStack* s = state;
 408   for_each_state(s) {
 409     if (s->kind() == ValueStack::EmptyExceptionState) {
 410       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 411       continue;
 412     }
 413 
 414     int index;
 415     Value value;
 416     for_each_stack_value(s, index, value) {
 417       assert(value->subst() == value, "missed substitution");
 418       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 419         walk(value);
 420         assert(value->operand()->is_valid(), "must be evaluated now");
 421       }
 422     }
 423 
 424     int bci = s->bci();
 425     IRScope* scope = s->scope();
 426     ciMethod* method = scope->method();
 427 
 428     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 429     if (bci == SynchronizationEntryBCI) {
 430       if (x->as_ExceptionObject() || x->as_Throw()) {
 431         // all locals are dead on exit from the synthetic unlocker
 432         liveness.clear();
 433       } else {
 434         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 435       }
 436     }
 437     if (!liveness.is_valid()) {
 438       // Degenerate or breakpointed method.
 439       bailout("Degenerate or breakpointed method");
 440     } else {
 441       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 442       for_each_local_value(s, index, value) {
 443         assert(value->subst() == value, "missed substition");
 444         if (liveness.at(index) && !value->type()->is_illegal()) {
 445           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 446             walk(value);
 447             assert(value->operand()->is_valid(), "must be evaluated now");
 448           }
 449         } else {
 450           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 451           s->invalidate_local(index);
 452         }
 453       }
 454     }
 455   }
 456 
 457   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 458 }
 459 
 460 
 461 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 462   return state_for(x, x->exception_state());
 463 }
 464 
 465 
 466 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 467   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 468    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 469    * the class. */
 470   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           jint c = right->as_jint();
 545           if (c > 0 && is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602 
 603   if (TwoOperandLIRForm && value != result_op
 604       // Only 32bit right shifts require two operand form on S390.
 605       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 647   if (!GenerateSynchronizationCode) return;
 648   // for slow path, use debug info for state after successful locking
 649   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 650   __ load_stack_address_monitor(monitor_no, lock);
 651   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 652   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 653 }
 654 
 655 
 656 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 657   if (!GenerateSynchronizationCode) return;
 658   // setup registers
 659   LIR_Opr hdr = lock;
 660   lock = new_hdr;
 661   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 662   __ load_stack_address_monitor(monitor_no, lock);
 663   __ unlock_object(hdr, object, lock, scratch, slow_path);
 664 }
 665 
 666 #ifndef PRODUCT
 667 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 668   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 669     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 670   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 671     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 672   }
 673 }
 674 #endif
 675 
 676 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 677   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 678   // If klass is not loaded we do not know if the klass has finalizers:
 679   if (UseFastNewInstance && klass->is_loaded()
 680       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 681 
 682     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 683 
 684     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 685 
 686     assert(klass->is_loaded(), "must be loaded");
 687     // allocate space for instance
 688     assert(klass->size_helper() >= 0, "illegal instance size");
 689     const int instance_size = align_object_size(klass->size_helper());
 690     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 691                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 692   } else {
 693     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 694     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 695     __ branch_destination(slow_path->continuation());
 696   }
 697 }
 698 
 699 
 700 static bool is_constant_zero(Instruction* inst) {
 701   IntConstant* c = inst->type()->as_IntConstant();
 702   if (c) {
 703     return (c->value() == 0);
 704   }
 705   return false;
 706 }
 707 
 708 
 709 static bool positive_constant(Instruction* inst) {
 710   IntConstant* c = inst->type()->as_IntConstant();
 711   if (c) {
 712     return (c->value() >= 0);
 713   }
 714   return false;
 715 }
 716 
 717 
 718 static ciArrayKlass* as_array_klass(ciType* type) {
 719   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 720     return (ciArrayKlass*)type;
 721   } else {
 722     return NULL;
 723   }
 724 }
 725 
 726 static ciType* phi_declared_type(Phi* phi) {
 727   ciType* t = phi->operand_at(0)->declared_type();
 728   if (t == NULL) {
 729     return NULL;
 730   }
 731   for(int i = 1; i < phi->operand_count(); i++) {
 732     if (t != phi->operand_at(i)->declared_type()) {
 733       return NULL;
 734     }
 735   }
 736   return t;
 737 }
 738 
 739 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 740   Instruction* src     = x->argument_at(0);
 741   Instruction* src_pos = x->argument_at(1);
 742   Instruction* dst     = x->argument_at(2);
 743   Instruction* dst_pos = x->argument_at(3);
 744   Instruction* length  = x->argument_at(4);
 745 
 746   // first try to identify the likely type of the arrays involved
 747   ciArrayKlass* expected_type = NULL;
 748   bool is_exact = false, src_objarray = false, dst_objarray = false;
 749   {
 750     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 751     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 752     Phi* phi;
 753     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 754       src_declared_type = as_array_klass(phi_declared_type(phi));
 755     }
 756     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 757     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 758     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 759       dst_declared_type = as_array_klass(phi_declared_type(phi));
 760     }
 761 
 762     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 763       // the types exactly match so the type is fully known
 764       is_exact = true;
 765       expected_type = src_exact_type;
 766     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 767       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 768       ciArrayKlass* src_type = NULL;
 769       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 770         src_type = (ciArrayKlass*) src_exact_type;
 771       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 772         src_type = (ciArrayKlass*) src_declared_type;
 773       }
 774       if (src_type != NULL) {
 775         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 776           is_exact = true;
 777           expected_type = dst_type;
 778         }
 779       }
 780     }
 781     // at least pass along a good guess
 782     if (expected_type == NULL) expected_type = dst_exact_type;
 783     if (expected_type == NULL) expected_type = src_declared_type;
 784     if (expected_type == NULL) expected_type = dst_declared_type;
 785 
 786     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 787     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 788   }
 789 
 790   // if a probable array type has been identified, figure out if any
 791   // of the required checks for a fast case can be elided.
 792   int flags = LIR_OpArrayCopy::all_flags;
 793 
 794   if (!src_objarray)
 795     flags &= ~LIR_OpArrayCopy::src_objarray;
 796   if (!dst_objarray)
 797     flags &= ~LIR_OpArrayCopy::dst_objarray;
 798 
 799   if (!x->arg_needs_null_check(0))
 800     flags &= ~LIR_OpArrayCopy::src_null_check;
 801   if (!x->arg_needs_null_check(2))
 802     flags &= ~LIR_OpArrayCopy::dst_null_check;
 803 
 804 
 805   if (expected_type != NULL) {
 806     Value length_limit = NULL;
 807 
 808     IfOp* ifop = length->as_IfOp();
 809     if (ifop != NULL) {
 810       // look for expressions like min(v, a.length) which ends up as
 811       //   x > y ? y : x  or  x >= y ? y : x
 812       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 813           ifop->x() == ifop->fval() &&
 814           ifop->y() == ifop->tval()) {
 815         length_limit = ifop->y();
 816       }
 817     }
 818 
 819     // try to skip null checks and range checks
 820     NewArray* src_array = src->as_NewArray();
 821     if (src_array != NULL) {
 822       flags &= ~LIR_OpArrayCopy::src_null_check;
 823       if (length_limit != NULL &&
 824           src_array->length() == length_limit &&
 825           is_constant_zero(src_pos)) {
 826         flags &= ~LIR_OpArrayCopy::src_range_check;
 827       }
 828     }
 829 
 830     NewArray* dst_array = dst->as_NewArray();
 831     if (dst_array != NULL) {
 832       flags &= ~LIR_OpArrayCopy::dst_null_check;
 833       if (length_limit != NULL &&
 834           dst_array->length() == length_limit &&
 835           is_constant_zero(dst_pos)) {
 836         flags &= ~LIR_OpArrayCopy::dst_range_check;
 837       }
 838     }
 839 
 840     // check from incoming constant values
 841     if (positive_constant(src_pos))
 842       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 843     if (positive_constant(dst_pos))
 844       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 845     if (positive_constant(length))
 846       flags &= ~LIR_OpArrayCopy::length_positive_check;
 847 
 848     // see if the range check can be elided, which might also imply
 849     // that src or dst is non-null.
 850     ArrayLength* al = length->as_ArrayLength();
 851     if (al != NULL) {
 852       if (al->array() == src) {
 853         // it's the length of the source array
 854         flags &= ~LIR_OpArrayCopy::length_positive_check;
 855         flags &= ~LIR_OpArrayCopy::src_null_check;
 856         if (is_constant_zero(src_pos))
 857           flags &= ~LIR_OpArrayCopy::src_range_check;
 858       }
 859       if (al->array() == dst) {
 860         // it's the length of the destination array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::dst_null_check;
 863         if (is_constant_zero(dst_pos))
 864           flags &= ~LIR_OpArrayCopy::dst_range_check;
 865       }
 866     }
 867     if (is_exact) {
 868       flags &= ~LIR_OpArrayCopy::type_check;
 869     }
 870   }
 871 
 872   IntConstant* src_int = src_pos->type()->as_IntConstant();
 873   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 874   if (src_int && dst_int) {
 875     int s_offs = src_int->value();
 876     int d_offs = dst_int->value();
 877     if (src_int->value() >= dst_int->value()) {
 878       flags &= ~LIR_OpArrayCopy::overlapping;
 879     }
 880     if (expected_type != NULL) {
 881       BasicType t = expected_type->element_type()->basic_type();
 882       int element_size = type2aelembytes(t);
 883       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 884           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 885         flags &= ~LIR_OpArrayCopy::unaligned;
 886       }
 887     }
 888   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 889     // src and dest positions are the same, or dst is zero so assume
 890     // nonoverlapping copy.
 891     flags &= ~LIR_OpArrayCopy::overlapping;
 892   }
 893 
 894   if (src == dst) {
 895     // moving within a single array so no type checks are needed
 896     if (flags & LIR_OpArrayCopy::type_check) {
 897       flags &= ~LIR_OpArrayCopy::type_check;
 898     }
 899   }
 900   *flagsp = flags;
 901   *expected_typep = (ciArrayKlass*)expected_type;
 902 }
 903 
 904 
 905 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 906   assert(opr->is_register(), "why spill if item is not register?");
 907 
 908   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 909     LIR_Opr result = new_register(T_FLOAT);
 910     set_vreg_flag(result, must_start_in_memory);
 911     assert(opr->is_register(), "only a register can be spilled");
 912     assert(opr->value_type()->is_float(), "rounding only for floats available");
 913     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 914     return result;
 915   }
 916   return opr;
 917 }
 918 
 919 
 920 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 921   assert(type2size[t] == type2size[value->type()],
 922          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 923   if (!value->is_register()) {
 924     // force into a register
 925     LIR_Opr r = new_register(value->type());
 926     __ move(value, r);
 927     value = r;
 928   }
 929 
 930   // create a spill location
 931   LIR_Opr tmp = new_register(t);
 932   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 933 
 934   // move from register to spill
 935   __ move(value, tmp);
 936   return tmp;
 937 }
 938 
 939 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 940   if (if_instr->should_profile()) {
 941     ciMethod* method = if_instr->profiled_method();
 942     assert(method != NULL, "method should be set if branch is profiled");
 943     ciMethodData* md = method->method_data_or_null();
 944     assert(md != NULL, "Sanity");
 945     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 946     assert(data != NULL, "must have profiling data");
 947     assert(data->is_BranchData(), "need BranchData for two-way branches");
 948     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 949     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 950     if (if_instr->is_swapped()) {
 951       int t = taken_count_offset;
 952       taken_count_offset = not_taken_count_offset;
 953       not_taken_count_offset = t;
 954     }
 955 
 956     LIR_Opr md_reg = new_register(T_METADATA);
 957     __ metadata2reg(md->constant_encoding(), md_reg);
 958 
 959     LIR_Opr data_offset_reg = new_pointer_register();
 960     __ cmove(lir_cond(cond),
 961              LIR_OprFact::intptrConst(taken_count_offset),
 962              LIR_OprFact::intptrConst(not_taken_count_offset),
 963              data_offset_reg, as_BasicType(if_instr->x()->type()));
 964 
 965     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 966     LIR_Opr data_reg = new_pointer_register();
 967     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 968     __ move(data_addr, data_reg);
 969     // Use leal instead of add to avoid destroying condition codes on x86
 970     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 971     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 972     __ move(data_reg, data_addr);
 973   }
 974 }
 975 
 976 // Phi technique:
 977 // This is about passing live values from one basic block to the other.
 978 // In code generated with Java it is rather rare that more than one
 979 // value is on the stack from one basic block to the other.
 980 // We optimize our technique for efficient passing of one value
 981 // (of type long, int, double..) but it can be extended.
 982 // When entering or leaving a basic block, all registers and all spill
 983 // slots are release and empty. We use the released registers
 984 // and spill slots to pass the live values from one block
 985 // to the other. The topmost value, i.e., the value on TOS of expression
 986 // stack is passed in registers. All other values are stored in spilling
 987 // area. Every Phi has an index which designates its spill slot
 988 // At exit of a basic block, we fill the register(s) and spill slots.
 989 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 990 // and locks necessary registers and spilling slots.
 991 
 992 
 993 // move current value to referenced phi function
 994 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 995   Phi* phi = sux_val->as_Phi();
 996   // cur_val can be null without phi being null in conjunction with inlining
 997   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 998     Phi* cur_phi = cur_val->as_Phi();
 999     if (cur_phi != NULL && cur_phi->is_illegal()) {
1000       // Phi and local would need to get invalidated
1001       // (which is unexpected for Linear Scan).
1002       // But this case is very rare so we simply bail out.
1003       bailout("propagation of illegal phi");
1004       return;
1005     }
1006     LIR_Opr operand = cur_val->operand();
1007     if (operand->is_illegal()) {
1008       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1009              "these can be produced lazily");
1010       operand = operand_for_instruction(cur_val);
1011     }
1012     resolver->move(operand, operand_for_instruction(phi));
1013   }
1014 }
1015 
1016 
1017 // Moves all stack values into their PHI position
1018 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1019   BlockBegin* bb = block();
1020   if (bb->number_of_sux() == 1) {
1021     BlockBegin* sux = bb->sux_at(0);
1022     assert(sux->number_of_preds() > 0, "invalid CFG");
1023 
1024     // a block with only one predecessor never has phi functions
1025     if (sux->number_of_preds() > 1) {
1026       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1027       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1028 
1029       ValueStack* sux_state = sux->state();
1030       Value sux_value;
1031       int index;
1032 
1033       assert(cur_state->scope() == sux_state->scope(), "not matching");
1034       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1035       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1036 
1037       for_each_stack_value(sux_state, index, sux_value) {
1038         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1039       }
1040 
1041       for_each_local_value(sux_state, index, sux_value) {
1042         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1043       }
1044 
1045       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1046     }
1047   }
1048 }
1049 
1050 
1051 LIR_Opr LIRGenerator::new_register(BasicType type) {
1052   int vreg = _virtual_register_number;
1053   // add a little fudge factor for the bailout, since the bailout is
1054   // only checked periodically.  This gives a few extra registers to
1055   // hand out before we really run out, which helps us keep from
1056   // tripping over assertions.
1057   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1058     bailout("out of virtual registers");
1059     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1060       // wrap it around
1061       _virtual_register_number = LIR_OprDesc::vreg_base;
1062     }
1063   }
1064   _virtual_register_number += 1;
1065   return LIR_OprFact::virtual_register(vreg, type);
1066 }
1067 
1068 
1069 // Try to lock using register in hint
1070 LIR_Opr LIRGenerator::rlock(Value instr) {
1071   return new_register(instr->type());
1072 }
1073 
1074 
1075 // does an rlock and sets result
1076 LIR_Opr LIRGenerator::rlock_result(Value x) {
1077   LIR_Opr reg = rlock(x);
1078   set_result(x, reg);
1079   return reg;
1080 }
1081 
1082 
1083 // does an rlock and sets result
1084 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1085   LIR_Opr reg;
1086   switch (type) {
1087   case T_BYTE:
1088   case T_BOOLEAN:
1089     reg = rlock_byte(type);
1090     break;
1091   default:
1092     reg = rlock(x);
1093     break;
1094   }
1095 
1096   set_result(x, reg);
1097   return reg;
1098 }
1099 
1100 
1101 //---------------------------------------------------------------------
1102 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1103   ObjectType* oc = value->type()->as_ObjectType();
1104   if (oc) {
1105     return oc->constant_value();
1106   }
1107   return NULL;
1108 }
1109 
1110 
1111 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1112   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1113   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1114 
1115   // no moves are created for phi functions at the begin of exception
1116   // handlers, so assign operands manually here
1117   for_each_phi_fun(block(), phi,
1118                    operand_for_instruction(phi));
1119 
1120   LIR_Opr thread_reg = getThreadPointer();
1121   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1122                exceptionOopOpr());
1123   __ move_wide(LIR_OprFact::oopConst(NULL),
1124                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1125   __ move_wide(LIR_OprFact::oopConst(NULL),
1126                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1127 
1128   LIR_Opr result = new_register(T_OBJECT);
1129   __ move(exceptionOopOpr(), result);
1130   set_result(x, result);
1131 }
1132 
1133 
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //                        visitor functions
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 
1144 void LIRGenerator::do_Phi(Phi* x) {
1145   // phi functions are never visited directly
1146   ShouldNotReachHere();
1147 }
1148 
1149 
1150 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1151 void LIRGenerator::do_Constant(Constant* x) {
1152   if (x->state_before() != NULL) {
1153     // Any constant with a ValueStack requires patching so emit the patch here
1154     LIR_Opr reg = rlock_result(x);
1155     CodeEmitInfo* info = state_for(x, x->state_before());
1156     __ oop2reg_patch(NULL, reg, info);
1157   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1158     if (!x->is_pinned()) {
1159       // unpinned constants are handled specially so that they can be
1160       // put into registers when they are used multiple times within a
1161       // block.  After the block completes their operand will be
1162       // cleared so that other blocks can't refer to that register.
1163       set_result(x, load_constant(x));
1164     } else {
1165       LIR_Opr res = x->operand();
1166       if (!res->is_valid()) {
1167         res = LIR_OprFact::value_type(x->type());
1168       }
1169       if (res->is_constant()) {
1170         LIR_Opr reg = rlock_result(x);
1171         __ move(res, reg);
1172       } else {
1173         set_result(x, res);
1174       }
1175     }
1176   } else {
1177     set_result(x, LIR_OprFact::value_type(x->type()));
1178   }
1179 }
1180 
1181 
1182 void LIRGenerator::do_Local(Local* x) {
1183   // operand_for_instruction has the side effect of setting the result
1184   // so there's no need to do it here.
1185   operand_for_instruction(x);
1186 }
1187 
1188 
1189 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1190   Unimplemented();
1191 }
1192 
1193 
1194 void LIRGenerator::do_Return(Return* x) {
1195   if (compilation()->env()->dtrace_method_probes()) {
1196     BasicTypeList signature;
1197     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1198     signature.append(T_METADATA); // Method*
1199     LIR_OprList* args = new LIR_OprList();
1200     args->append(getThreadPointer());
1201     LIR_Opr meth = new_register(T_METADATA);
1202     __ metadata2reg(method()->constant_encoding(), meth);
1203     args->append(meth);
1204     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1205   }
1206 
1207   if (x->type()->is_void()) {
1208     __ return_op(LIR_OprFact::illegalOpr);
1209   } else {
1210     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1211     LIRItem result(x->result(), this);
1212 
1213     result.load_item_force(reg);
1214     __ return_op(result.result());
1215   }
1216   set_no_result(x);
1217 }
1218 
1219 // Examble: ref.get()
1220 // Combination of LoadField and g1 pre-write barrier
1221 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1222 
1223   const int referent_offset = java_lang_ref_Reference::referent_offset;
1224   guarantee(referent_offset > 0, "referent offset not initialized");
1225 
1226   assert(x->number_of_arguments() == 1, "wrong type");
1227 
1228   LIRItem reference(x->argument_at(0), this);
1229   reference.load_item();
1230 
1231   // need to perform the null check on the reference objecy
1232   CodeEmitInfo* info = NULL;
1233   if (x->needs_null_check()) {
1234     info = state_for(x);
1235   }
1236 
1237   LIR_Opr result = rlock_result(x, T_OBJECT);
1238   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1239                  reference, LIR_OprFact::intConst(referent_offset), result);
1240 }
1241 
1242 // Example: clazz.isInstance(object)
1243 void LIRGenerator::do_isInstance(Intrinsic* x) {
1244   assert(x->number_of_arguments() == 2, "wrong type");
1245 
1246   // TODO could try to substitute this node with an equivalent InstanceOf
1247   // if clazz is known to be a constant Class. This will pick up newly found
1248   // constants after HIR construction. I'll leave this to a future change.
1249 
1250   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1251   // could follow the aastore example in a future change.
1252 
1253   LIRItem clazz(x->argument_at(0), this);
1254   LIRItem object(x->argument_at(1), this);
1255   clazz.load_item();
1256   object.load_item();
1257   LIR_Opr result = rlock_result(x);
1258 
1259   // need to perform null check on clazz
1260   if (x->needs_null_check()) {
1261     CodeEmitInfo* info = state_for(x);
1262     __ null_check(clazz.result(), info);
1263   }
1264 
1265   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1266                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1267                                      x->type(),
1268                                      NULL); // NULL CodeEmitInfo results in a leaf call
1269   __ move(call_result, result);
1270 }
1271 
1272 // Example: object.getClass ()
1273 void LIRGenerator::do_getClass(Intrinsic* x) {
1274   assert(x->number_of_arguments() == 1, "wrong type");
1275 
1276   LIRItem rcvr(x->argument_at(0), this);
1277   rcvr.load_item();
1278   LIR_Opr temp = new_register(T_METADATA);
1279   LIR_Opr result = rlock_result(x);
1280 
1281   // need to perform the null check on the rcvr
1282   CodeEmitInfo* info = NULL;
1283   if (x->needs_null_check()) {
1284     info = state_for(x);
1285   }
1286 
1287   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1288   // meaning of these two is mixed up (see JDK-8026837).
1289   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1290   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1291   // mirror = ((OopHandle)mirror)->resolve();
1292   access_load(IN_NATIVE, T_OBJECT,
1293               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1294 }
1295 
1296 // java.lang.Class::isPrimitive()
1297 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1298   assert(x->number_of_arguments() == 1, "wrong type");
1299 
1300   LIRItem rcvr(x->argument_at(0), this);
1301   rcvr.load_item();
1302   LIR_Opr temp = new_register(T_METADATA);
1303   LIR_Opr result = rlock_result(x);
1304 
1305   CodeEmitInfo* info = NULL;
1306   if (x->needs_null_check()) {
1307     info = state_for(x);
1308   }
1309 
1310   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1311   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1312   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1313 }
1314 
1315 
1316 // Example: Thread.currentThread()
1317 void LIRGenerator::do_currentThread(Intrinsic* x) {
1318   assert(x->number_of_arguments() == 0, "wrong type");
1319   LIR_Opr reg = rlock_result(x);
1320   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1321 }
1322 
1323 
1324 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1325   assert(x->number_of_arguments() == 1, "wrong type");
1326   LIRItem receiver(x->argument_at(0), this);
1327 
1328   receiver.load_item();
1329   BasicTypeList signature;
1330   signature.append(T_OBJECT); // receiver
1331   LIR_OprList* args = new LIR_OprList();
1332   args->append(receiver.result());
1333   CodeEmitInfo* info = state_for(x, x->state());
1334   call_runtime(&signature, args,
1335                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1336                voidType, info);
1337 
1338   set_no_result(x);
1339 }
1340 
1341 
1342 //------------------------local access--------------------------------------
1343 
1344 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1345   if (x->operand()->is_illegal()) {
1346     Constant* c = x->as_Constant();
1347     if (c != NULL) {
1348       x->set_operand(LIR_OprFact::value_type(c->type()));
1349     } else {
1350       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1351       // allocate a virtual register for this local or phi
1352       x->set_operand(rlock(x));
1353       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1354     }
1355   }
1356   return x->operand();
1357 }
1358 
1359 
1360 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1361   if (opr->is_virtual()) {
1362     return instruction_for_vreg(opr->vreg_number());
1363   }
1364   return NULL;
1365 }
1366 
1367 
1368 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1369   if (reg_num < _instruction_for_operand.length()) {
1370     return _instruction_for_operand.at(reg_num);
1371   }
1372   return NULL;
1373 }
1374 
1375 
1376 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1377   if (_vreg_flags.size_in_bits() == 0) {
1378     BitMap2D temp(100, num_vreg_flags);
1379     _vreg_flags = temp;
1380   }
1381   _vreg_flags.at_put_grow(vreg_num, f, true);
1382 }
1383 
1384 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1385   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1386     return false;
1387   }
1388   return _vreg_flags.at(vreg_num, f);
1389 }
1390 
1391 
1392 // Block local constant handling.  This code is useful for keeping
1393 // unpinned constants and constants which aren't exposed in the IR in
1394 // registers.  Unpinned Constant instructions have their operands
1395 // cleared when the block is finished so that other blocks can't end
1396 // up referring to their registers.
1397 
1398 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1399   assert(!x->is_pinned(), "only for unpinned constants");
1400   _unpinned_constants.append(x);
1401   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1402 }
1403 
1404 
1405 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1406   BasicType t = c->type();
1407   for (int i = 0; i < _constants.length(); i++) {
1408     LIR_Const* other = _constants.at(i);
1409     if (t == other->type()) {
1410       switch (t) {
1411       case T_INT:
1412       case T_FLOAT:
1413         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1414         break;
1415       case T_LONG:
1416       case T_DOUBLE:
1417         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1418         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1419         break;
1420       case T_OBJECT:
1421         if (c->as_jobject() != other->as_jobject()) continue;
1422         break;
1423       default:
1424         break;
1425       }
1426       return _reg_for_constants.at(i);
1427     }
1428   }
1429 
1430   LIR_Opr result = new_register(t);
1431   __ move((LIR_Opr)c, result);
1432   _constants.append(c);
1433   _reg_for_constants.append(result);
1434   return result;
1435 }
1436 
1437 //------------------------field access--------------------------------------
1438 
1439 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1440   assert(x->number_of_arguments() == 4, "wrong type");
1441   LIRItem obj   (x->argument_at(0), this);  // object
1442   LIRItem offset(x->argument_at(1), this);  // offset of field
1443   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1444   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1445   assert(obj.type()->tag() == objectTag, "invalid type");
1446 
1447   // In 64bit the type can be long, sparc doesn't have this assert
1448   // assert(offset.type()->tag() == intTag, "invalid type");
1449 
1450   assert(cmp.type()->tag() == type->tag(), "invalid type");
1451   assert(val.type()->tag() == type->tag(), "invalid type");
1452 
1453   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1454                                             obj, offset, cmp, val);
1455   set_result(x, result);
1456 }
1457 
1458 // Comment copied form templateTable_i486.cpp
1459 // ----------------------------------------------------------------------------
1460 // Volatile variables demand their effects be made known to all CPU's in
1461 // order.  Store buffers on most chips allow reads & writes to reorder; the
1462 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1463 // memory barrier (i.e., it's not sufficient that the interpreter does not
1464 // reorder volatile references, the hardware also must not reorder them).
1465 //
1466 // According to the new Java Memory Model (JMM):
1467 // (1) All volatiles are serialized wrt to each other.
1468 // ALSO reads & writes act as aquire & release, so:
1469 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1470 // the read float up to before the read.  It's OK for non-volatile memory refs
1471 // that happen before the volatile read to float down below it.
1472 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1473 // that happen BEFORE the write float down to after the write.  It's OK for
1474 // non-volatile memory refs that happen after the volatile write to float up
1475 // before it.
1476 //
1477 // We only put in barriers around volatile refs (they are expensive), not
1478 // _between_ memory refs (that would require us to track the flavor of the
1479 // previous memory refs).  Requirements (2) and (3) require some barriers
1480 // before volatile stores and after volatile loads.  These nearly cover
1481 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1482 // case is placed after volatile-stores although it could just as well go
1483 // before volatile-loads.
1484 
1485 
1486 void LIRGenerator::do_StoreField(StoreField* x) {
1487   bool needs_patching = x->needs_patching();
1488   bool is_volatile = x->field()->is_volatile();
1489   BasicType field_type = x->field_type();
1490 
1491   CodeEmitInfo* info = NULL;
1492   if (needs_patching) {
1493     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1494     info = state_for(x, x->state_before());
1495   } else if (x->needs_null_check()) {
1496     NullCheck* nc = x->explicit_null_check();
1497     if (nc == NULL) {
1498       info = state_for(x);
1499     } else {
1500       info = state_for(nc);
1501     }
1502   }
1503 
1504   LIRItem object(x->obj(), this);
1505   LIRItem value(x->value(),  this);
1506 
1507   object.load_item();
1508 
1509   if (is_volatile || needs_patching) {
1510     // load item if field is volatile (fewer special cases for volatiles)
1511     // load item if field not initialized
1512     // load item if field not constant
1513     // because of code patching we cannot inline constants
1514     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1515       value.load_byte_item();
1516     } else  {
1517       value.load_item();
1518     }
1519   } else {
1520     value.load_for_store(field_type);
1521   }
1522 
1523   set_no_result(x);
1524 
1525 #ifndef PRODUCT
1526   if (PrintNotLoaded && needs_patching) {
1527     tty->print_cr("   ###class not loaded at store_%s bci %d",
1528                   x->is_static() ?  "static" : "field", x->printable_bci());
1529   }
1530 #endif
1531 
1532   if (x->needs_null_check() &&
1533       (needs_patching ||
1534        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1535     // Emit an explicit null check because the offset is too large.
1536     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1537     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1538     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1539   }
1540 
1541   DecoratorSet decorators = IN_HEAP;
1542   if (is_volatile) {
1543     decorators |= MO_SEQ_CST;
1544   }
1545   if (needs_patching) {
1546     decorators |= C1_NEEDS_PATCHING;
1547   }
1548 
1549   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1550                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1551 }
1552 
1553 // FIXME -- I can't find any other way to pass an address to access_load_at().
1554 class TempResolvedAddress: public Instruction {
1555  public:
1556   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1557     set_operand(addr);
1558   }
1559   virtual void input_values_do(ValueVisitor*) {}
1560   virtual void visit(InstructionVisitor* v)   {}
1561   virtual const char* name() const  { return "TempResolvedAddress"; }
1562 };
1563 
1564 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1565   // Find the starting address of the source (inside the array)
1566   ciType* array_type = array.value()->declared_type();
1567   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1568   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1569   int array_header_size = value_array_klass->array_header_in_bytes();
1570   int shift = value_array_klass->log2_element_size();
1571 
1572 #ifndef _LP64
1573   LIR_Opr index_op = new_register(T_INT);
1574   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1575   // the top (shift+1) bits of index_op must be zero, or
1576   // else throw ArrayIndexOutOfBoundsException
1577   if (index.result()->is_constant()) {
1578     jint const_index = index.result()->as_jint();
1579     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1580   } else {
1581     __ shift_left(index_op, shift, index.result());
1582   }
1583 #else
1584   LIR_Opr index_op = new_register(T_LONG);
1585   if (index.result()->is_constant()) {
1586     jint const_index = index.result()->as_jint();
1587     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1588   } else {
1589     __ convert(Bytecodes::_i2l, index.result(), index_op);
1590     // Need to shift manually, as LIR_Address can scale only up to 3.
1591     __ shift_left(index_op, shift, index_op);
1592   }
1593 #endif
1594 
1595   LIR_Opr elm_op = new_pointer_register();
1596   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1597   __ leal(LIR_OprFact::address(elm_address), elm_op);
1598 
1599   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1600     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1601     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1602     int obj_offset = inner_field->offset();
1603     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1604 
1605     BasicType field_type = inner_field->type()->basic_type();
1606     switch (field_type) {
1607     case T_BYTE:
1608     case T_BOOLEAN:
1609     case T_SHORT:
1610     case T_CHAR:
1611      field_type = T_INT;
1612       break;
1613     default:
1614       break;
1615     }
1616 
1617     LIR_Opr temp = new_register(field_type);
1618     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1619     LIRItem elm_item(elm_resolved_addr, this);
1620 
1621     DecoratorSet decorators = IN_HEAP;
1622     if (is_load) {
1623       access_load_at(decorators, field_type,
1624                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1625                      NULL, NULL);
1626       access_store_at(decorators, field_type,
1627                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1628                       NULL, NULL);
1629     } else {
1630     access_load_at(decorators, field_type,
1631                    obj_item, LIR_OprFact::intConst(obj_offset), temp,
1632                    NULL, NULL);
1633     access_store_at(decorators, field_type,
1634                     elm_item, LIR_OprFact::intConst(elm_offset), temp,
1635                     NULL, NULL);
1636     }
1637   }
1638 }
1639 
1640 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1641   assert(x->is_pinned(),"");
1642   bool is_flattened = x->array()->is_flattened_array();
1643   bool needs_range_check = x->compute_needs_range_check();
1644   bool use_length = x->length() != NULL;
1645   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
1646   bool needs_store_check = obj_store && !is_flattened &&
1647                                         (x->value()->as_Constant() == NULL ||
1648                                          !get_jobject_constant(x->value())->is_null_object() ||
1649                                          x->should_profile());
1650 
1651   LIRItem array(x->array(), this);
1652   LIRItem index(x->index(), this);
1653   LIRItem value(x->value(), this);
1654   LIRItem length(this);
1655 
1656   array.load_item();
1657   index.load_nonconstant();
1658 
1659   if (use_length && needs_range_check) {
1660     length.set_instruction(x->length());
1661     length.load_item();
1662 
1663   }
1664 
1665   if (needs_store_check || x->check_boolean() || is_flattened) {
1666     value.load_item();
1667   } else {
1668     value.load_for_store(x->elt_type());
1669   }
1670 
1671   set_no_result(x);
1672 
1673   // the CodeEmitInfo must be duplicated for each different
1674   // LIR-instruction because spilling can occur anywhere between two
1675   // instructions and so the debug information must be different
1676   CodeEmitInfo* range_check_info = state_for(x);
1677   CodeEmitInfo* null_check_info = NULL;
1678   if (x->needs_null_check()) {
1679     null_check_info = new CodeEmitInfo(range_check_info);
1680   }
1681 
1682   if (GenerateRangeChecks && needs_range_check) {
1683     if (use_length) {
1684       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1685       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1686     } else {
1687       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1688       // range_check also does the null check
1689       null_check_info = NULL;
1690     }
1691   }
1692 
1693   if (GenerateArrayStoreCheck && needs_store_check) {
1694     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1695     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1696   }
1697 
1698   if (is_flattened) {
1699     index.load_item();
1700     access_flattened_array(false, array, index, value);
1701   } else {
1702     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1703     if (x->check_boolean()) {
1704       decorators |= C1_MASK_BOOLEAN;
1705     }
1706 
1707     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1708                     NULL, null_check_info);
1709   }
1710 }
1711 
1712 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1713                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1714                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1715   decorators |= ACCESS_READ;
1716   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1717   if (access.is_raw()) {
1718     _barrier_set->BarrierSetC1::load_at(access, result);
1719   } else {
1720     _barrier_set->load_at(access, result);
1721   }
1722 }
1723 
1724 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1725                                LIR_Opr addr, LIR_Opr result) {
1726   decorators |= ACCESS_READ;
1727   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1728   access.set_resolved_addr(addr);
1729   if (access.is_raw()) {
1730     _barrier_set->BarrierSetC1::load(access, result);
1731   } else {
1732     _barrier_set->load(access, result);
1733   }
1734 }
1735 
1736 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1737                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1738                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1739   decorators |= ACCESS_WRITE;
1740   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1741   if (access.is_raw()) {
1742     _barrier_set->BarrierSetC1::store_at(access, value);
1743   } else {
1744     _barrier_set->store_at(access, value);
1745   }
1746 }
1747 
1748 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1749                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1750   decorators |= ACCESS_READ;
1751   decorators |= ACCESS_WRITE;
1752   // Atomic operations are SEQ_CST by default
1753   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1754   LIRAccess access(this, decorators, base, offset, type);
1755   if (access.is_raw()) {
1756     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1757   } else {
1758     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1759   }
1760 }
1761 
1762 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1763                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1764   decorators |= ACCESS_READ;
1765   decorators |= ACCESS_WRITE;
1766   // Atomic operations are SEQ_CST by default
1767   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1768   LIRAccess access(this, decorators, base, offset, type);
1769   if (access.is_raw()) {
1770     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1771   } else {
1772     return _barrier_set->atomic_xchg_at(access, value);
1773   }
1774 }
1775 
1776 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1777                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1778   decorators |= ACCESS_READ;
1779   decorators |= ACCESS_WRITE;
1780   // Atomic operations are SEQ_CST by default
1781   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1782   LIRAccess access(this, decorators, base, offset, type);
1783   if (access.is_raw()) {
1784     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1785   } else {
1786     return _barrier_set->atomic_add_at(access, value);
1787   }
1788 }
1789 
1790 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1791   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1792   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1793     decorators |= ACCESS_READ | ACCESS_WRITE;
1794   }
1795 
1796   return _barrier_set->resolve(this, decorators, obj);
1797 }
1798 
1799 void LIRGenerator::do_LoadField(LoadField* x) {
1800   bool needs_patching = x->needs_patching();
1801   bool is_volatile = x->field()->is_volatile();
1802   BasicType field_type = x->field_type();
1803 
1804   CodeEmitInfo* info = NULL;
1805   if (needs_patching) {
1806     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1807     info = state_for(x, x->state_before());
1808   } else if (x->needs_null_check()) {
1809     NullCheck* nc = x->explicit_null_check();
1810     if (nc == NULL) {
1811       info = state_for(x);
1812     } else {
1813       info = state_for(nc);
1814     }
1815   }
1816 
1817   LIRItem object(x->obj(), this);
1818 
1819   object.load_item();
1820 
1821 #ifndef PRODUCT
1822   if (PrintNotLoaded && needs_patching) {
1823     tty->print_cr("   ###class not loaded at load_%s bci %d",
1824                   x->is_static() ?  "static" : "field", x->printable_bci());
1825   }
1826 #endif
1827 
1828   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1829   if (x->needs_null_check() &&
1830       (needs_patching ||
1831        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1832        stress_deopt)) {
1833     LIR_Opr obj = object.result();
1834     if (stress_deopt) {
1835       obj = new_register(T_OBJECT);
1836       __ move(LIR_OprFact::oopConst(NULL), obj);
1837     }
1838     // Emit an explicit null check because the offset is too large.
1839     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1840     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1841     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1842   }
1843 
1844   DecoratorSet decorators = IN_HEAP;
1845   if (is_volatile) {
1846     decorators |= MO_SEQ_CST;
1847   }
1848   if (needs_patching) {
1849     decorators |= C1_NEEDS_PATCHING;
1850   }
1851 
1852   LIR_Opr result = rlock_result(x, field_type);
1853   access_load_at(decorators, field_type,
1854                  object, LIR_OprFact::intConst(x->offset()), result,
1855                  info ? new CodeEmitInfo(info) : NULL, info);
1856 }
1857 
1858 
1859 //------------------------java.nio.Buffer.checkIndex------------------------
1860 
1861 // int java.nio.Buffer.checkIndex(int)
1862 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1863   // NOTE: by the time we are in checkIndex() we are guaranteed that
1864   // the buffer is non-null (because checkIndex is package-private and
1865   // only called from within other methods in the buffer).
1866   assert(x->number_of_arguments() == 2, "wrong type");
1867   LIRItem buf  (x->argument_at(0), this);
1868   LIRItem index(x->argument_at(1), this);
1869   buf.load_item();
1870   index.load_item();
1871 
1872   LIR_Opr result = rlock_result(x);
1873   if (GenerateRangeChecks) {
1874     CodeEmitInfo* info = state_for(x);
1875     CodeStub* stub = new RangeCheckStub(info, index.result());
1876     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
1877     if (index.result()->is_constant()) {
1878       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1879       __ branch(lir_cond_belowEqual, T_INT, stub);
1880     } else {
1881       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
1882                   java_nio_Buffer::limit_offset(), T_INT, info);
1883       __ branch(lir_cond_aboveEqual, T_INT, stub);
1884     }
1885     __ move(index.result(), result);
1886   } else {
1887     // Just load the index into the result register
1888     __ move(index.result(), result);
1889   }
1890 }
1891 
1892 
1893 //------------------------array access--------------------------------------
1894 
1895 
1896 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1897   LIRItem array(x->array(), this);
1898   array.load_item();
1899   LIR_Opr reg = rlock_result(x);
1900 
1901   CodeEmitInfo* info = NULL;
1902   if (x->needs_null_check()) {
1903     NullCheck* nc = x->explicit_null_check();
1904     if (nc == NULL) {
1905       info = state_for(x);
1906     } else {
1907       info = state_for(nc);
1908     }
1909     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1910       LIR_Opr obj = new_register(T_OBJECT);
1911       __ move(LIR_OprFact::oopConst(NULL), obj);
1912       __ null_check(obj, new CodeEmitInfo(info));
1913     }
1914   }
1915   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1916 }
1917 
1918 
1919 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1920   bool use_length = x->length() != NULL;
1921   LIRItem array(x->array(), this);
1922   LIRItem index(x->index(), this);
1923   LIRItem length(this);
1924   bool needs_range_check = x->compute_needs_range_check();
1925 
1926   if (use_length && needs_range_check) {
1927     length.set_instruction(x->length());
1928     length.load_item();
1929   }
1930 
1931   array.load_item();
1932   if (index.is_constant() && can_inline_as_constant(x->index())) {
1933     // let it be a constant
1934     index.dont_load_item();
1935   } else {
1936     index.load_item();
1937   }
1938 
1939   CodeEmitInfo* range_check_info = state_for(x);
1940   CodeEmitInfo* null_check_info = NULL;
1941   if (x->needs_null_check()) {
1942     NullCheck* nc = x->explicit_null_check();
1943     if (nc != NULL) {
1944       null_check_info = state_for(nc);
1945     } else {
1946       null_check_info = range_check_info;
1947     }
1948     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1949       LIR_Opr obj = new_register(T_OBJECT);
1950       __ move(LIR_OprFact::oopConst(NULL), obj);
1951       __ null_check(obj, new CodeEmitInfo(null_check_info));
1952     }
1953   }
1954 
1955   if (GenerateRangeChecks && needs_range_check) {
1956     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1957       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
1958     } else if (use_length) {
1959       // TODO: use a (modified) version of array_range_check that does not require a
1960       //       constant length to be loaded to a register
1961       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1962       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1963     } else {
1964       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1965       // The range check performs the null check, so clear it out for the load
1966       null_check_info = NULL;
1967     }
1968   }
1969 
1970   if (x->array()->is_flattened_array()) {
1971     // Find the destination address (of the NewValueTypeInstance)
1972     LIR_Opr obj = x->vt()->operand();
1973     LIRItem obj_item(x->vt(), this);
1974 
1975     access_flattened_array(true, array, index, obj_item);
1976     set_no_result(x);
1977   } else {
1978     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1979     LIR_Opr result = rlock_result(x, x->elt_type());
1980     access_load_at(decorators, x->elt_type(),
1981                    array, index.result(), result,
1982                    NULL, null_check_info);
1983   }
1984 }
1985 
1986 
1987 void LIRGenerator::do_NullCheck(NullCheck* x) {
1988   if (x->can_trap()) {
1989     LIRItem value(x->obj(), this);
1990     value.load_item();
1991     CodeEmitInfo* info = state_for(x);
1992     __ null_check(value.result(), info);
1993   }
1994 }
1995 
1996 
1997 void LIRGenerator::do_TypeCast(TypeCast* x) {
1998   LIRItem value(x->obj(), this);
1999   value.load_item();
2000   // the result is the same as from the node we are casting
2001   set_result(x, value.result());
2002 }
2003 
2004 
2005 void LIRGenerator::do_Throw(Throw* x) {
2006   LIRItem exception(x->exception(), this);
2007   exception.load_item();
2008   set_no_result(x);
2009   LIR_Opr exception_opr = exception.result();
2010   CodeEmitInfo* info = state_for(x, x->state());
2011 
2012 #ifndef PRODUCT
2013   if (PrintC1Statistics) {
2014     increment_counter(Runtime1::throw_count_address(), T_INT);
2015   }
2016 #endif
2017 
2018   // check if the instruction has an xhandler in any of the nested scopes
2019   bool unwind = false;
2020   if (info->exception_handlers()->length() == 0) {
2021     // this throw is not inside an xhandler
2022     unwind = true;
2023   } else {
2024     // get some idea of the throw type
2025     bool type_is_exact = true;
2026     ciType* throw_type = x->exception()->exact_type();
2027     if (throw_type == NULL) {
2028       type_is_exact = false;
2029       throw_type = x->exception()->declared_type();
2030     }
2031     if (throw_type != NULL && throw_type->is_instance_klass()) {
2032       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2033       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2034     }
2035   }
2036 
2037   // do null check before moving exception oop into fixed register
2038   // to avoid a fixed interval with an oop during the null check.
2039   // Use a copy of the CodeEmitInfo because debug information is
2040   // different for null_check and throw.
2041   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2042     // if the exception object wasn't created using new then it might be null.
2043     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2044   }
2045 
2046   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2047     // we need to go through the exception lookup path to get JVMTI
2048     // notification done
2049     unwind = false;
2050   }
2051 
2052   // move exception oop into fixed register
2053   __ move(exception_opr, exceptionOopOpr());
2054 
2055   if (unwind) {
2056     __ unwind_exception(exceptionOopOpr());
2057   } else {
2058     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2059   }
2060 }
2061 
2062 
2063 void LIRGenerator::do_RoundFP(RoundFP* x) {
2064   LIRItem input(x->input(), this);
2065   input.load_item();
2066   LIR_Opr input_opr = input.result();
2067   assert(input_opr->is_register(), "why round if value is not in a register?");
2068   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2069   if (input_opr->is_single_fpu()) {
2070     set_result(x, round_item(input_opr)); // This code path not currently taken
2071   } else {
2072     LIR_Opr result = new_register(T_DOUBLE);
2073     set_vreg_flag(result, must_start_in_memory);
2074     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2075     set_result(x, result);
2076   }
2077 }
2078 
2079 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2080 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2081 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2082   LIRItem base(x->base(), this);
2083   LIRItem idx(this);
2084 
2085   base.load_item();
2086   if (x->has_index()) {
2087     idx.set_instruction(x->index());
2088     idx.load_nonconstant();
2089   }
2090 
2091   LIR_Opr reg = rlock_result(x, x->basic_type());
2092 
2093   int   log2_scale = 0;
2094   if (x->has_index()) {
2095     log2_scale = x->log2_scale();
2096   }
2097 
2098   assert(!x->has_index() || idx.value() == x->index(), "should match");
2099 
2100   LIR_Opr base_op = base.result();
2101   LIR_Opr index_op = idx.result();
2102 #ifndef _LP64
2103   if (base_op->type() == T_LONG) {
2104     base_op = new_register(T_INT);
2105     __ convert(Bytecodes::_l2i, base.result(), base_op);
2106   }
2107   if (x->has_index()) {
2108     if (index_op->type() == T_LONG) {
2109       LIR_Opr long_index_op = index_op;
2110       if (index_op->is_constant()) {
2111         long_index_op = new_register(T_LONG);
2112         __ move(index_op, long_index_op);
2113       }
2114       index_op = new_register(T_INT);
2115       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2116     } else {
2117       assert(x->index()->type()->tag() == intTag, "must be");
2118     }
2119   }
2120   // At this point base and index should be all ints.
2121   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2122   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2123 #else
2124   if (x->has_index()) {
2125     if (index_op->type() == T_INT) {
2126       if (!index_op->is_constant()) {
2127         index_op = new_register(T_LONG);
2128         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2129       }
2130     } else {
2131       assert(index_op->type() == T_LONG, "must be");
2132       if (index_op->is_constant()) {
2133         index_op = new_register(T_LONG);
2134         __ move(idx.result(), index_op);
2135       }
2136     }
2137   }
2138   // At this point base is a long non-constant
2139   // Index is a long register or a int constant.
2140   // We allow the constant to stay an int because that would allow us a more compact encoding by
2141   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2142   // move it into a register first.
2143   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2144   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2145                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2146 #endif
2147 
2148   BasicType dst_type = x->basic_type();
2149 
2150   LIR_Address* addr;
2151   if (index_op->is_constant()) {
2152     assert(log2_scale == 0, "must not have a scale");
2153     assert(index_op->type() == T_INT, "only int constants supported");
2154     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2155   } else {
2156 #ifdef X86
2157     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2158 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2159     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2160 #else
2161     if (index_op->is_illegal() || log2_scale == 0) {
2162       addr = new LIR_Address(base_op, index_op, dst_type);
2163     } else {
2164       LIR_Opr tmp = new_pointer_register();
2165       __ shift_left(index_op, log2_scale, tmp);
2166       addr = new LIR_Address(base_op, tmp, dst_type);
2167     }
2168 #endif
2169   }
2170 
2171   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2172     __ unaligned_move(addr, reg);
2173   } else {
2174     if (dst_type == T_OBJECT && x->is_wide()) {
2175       __ move_wide(addr, reg);
2176     } else {
2177       __ move(addr, reg);
2178     }
2179   }
2180 }
2181 
2182 
2183 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2184   int  log2_scale = 0;
2185   BasicType type = x->basic_type();
2186 
2187   if (x->has_index()) {
2188     log2_scale = x->log2_scale();
2189   }
2190 
2191   LIRItem base(x->base(), this);
2192   LIRItem value(x->value(), this);
2193   LIRItem idx(this);
2194 
2195   base.load_item();
2196   if (x->has_index()) {
2197     idx.set_instruction(x->index());
2198     idx.load_item();
2199   }
2200 
2201   if (type == T_BYTE || type == T_BOOLEAN) {
2202     value.load_byte_item();
2203   } else {
2204     value.load_item();
2205   }
2206 
2207   set_no_result(x);
2208 
2209   LIR_Opr base_op = base.result();
2210   LIR_Opr index_op = idx.result();
2211 
2212 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2213   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2214 #else
2215 #ifndef _LP64
2216   if (base_op->type() == T_LONG) {
2217     base_op = new_register(T_INT);
2218     __ convert(Bytecodes::_l2i, base.result(), base_op);
2219   }
2220   if (x->has_index()) {
2221     if (index_op->type() == T_LONG) {
2222       index_op = new_register(T_INT);
2223       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2224     }
2225   }
2226   // At this point base and index should be all ints and not constants
2227   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2228   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2229 #else
2230   if (x->has_index()) {
2231     if (index_op->type() == T_INT) {
2232       index_op = new_register(T_LONG);
2233       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2234     }
2235   }
2236   // At this point base and index are long and non-constant
2237   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2238   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2239 #endif
2240 
2241   if (log2_scale != 0) {
2242     // temporary fix (platform dependent code without shift on Intel would be better)
2243     // TODO: ARM also allows embedded shift in the address
2244     LIR_Opr tmp = new_pointer_register();
2245     if (TwoOperandLIRForm) {
2246       __ move(index_op, tmp);
2247       index_op = tmp;
2248     }
2249     __ shift_left(index_op, log2_scale, tmp);
2250     if (!TwoOperandLIRForm) {
2251       index_op = tmp;
2252     }
2253   }
2254 
2255   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2256 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2257   __ move(value.result(), addr);
2258 }
2259 
2260 
2261 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2262   BasicType type = x->basic_type();
2263   LIRItem src(x->object(), this);
2264   LIRItem off(x->offset(), this);
2265 
2266   off.load_item();
2267   src.load_item();
2268 
2269   DecoratorSet decorators = IN_HEAP;
2270 
2271   if (x->is_volatile()) {
2272     decorators |= MO_SEQ_CST;
2273   }
2274   if (type == T_BOOLEAN) {
2275     decorators |= C1_MASK_BOOLEAN;
2276   }
2277   if (type == T_ARRAY || type == T_OBJECT) {
2278     decorators |= ON_UNKNOWN_OOP_REF;
2279   }
2280 
2281   LIR_Opr result = rlock_result(x, type);
2282   access_load_at(decorators, type,
2283                  src, off.result(), result);
2284 }
2285 
2286 
2287 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2288   BasicType type = x->basic_type();
2289   LIRItem src(x->object(), this);
2290   LIRItem off(x->offset(), this);
2291   LIRItem data(x->value(), this);
2292 
2293   src.load_item();
2294   if (type == T_BOOLEAN || type == T_BYTE) {
2295     data.load_byte_item();
2296   } else {
2297     data.load_item();
2298   }
2299   off.load_item();
2300 
2301   set_no_result(x);
2302 
2303   DecoratorSet decorators = IN_HEAP;
2304   if (type == T_ARRAY || type == T_OBJECT) {
2305     decorators |= ON_UNKNOWN_OOP_REF;
2306   }
2307   if (x->is_volatile()) {
2308     decorators |= MO_SEQ_CST;
2309   }
2310   access_store_at(decorators, type, src, off.result(), data.result());
2311 }
2312 
2313 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2314   BasicType type = x->basic_type();
2315   LIRItem src(x->object(), this);
2316   LIRItem off(x->offset(), this);
2317   LIRItem value(x->value(), this);
2318 
2319   DecoratorSet decorators = IN_HEAP | MO_SEQ_CST;
2320 
2321   if (type == T_ARRAY || type == T_OBJECT) {
2322     decorators |= ON_UNKNOWN_OOP_REF;
2323   }
2324 
2325   LIR_Opr result;
2326   if (x->is_add()) {
2327     result = access_atomic_add_at(decorators, type, src, off, value);
2328   } else {
2329     result = access_atomic_xchg_at(decorators, type, src, off, value);
2330   }
2331   set_result(x, result);
2332 }
2333 
2334 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2335   int lng = x->length();
2336 
2337   for (int i = 0; i < lng; i++) {
2338     SwitchRange* one_range = x->at(i);
2339     int low_key = one_range->low_key();
2340     int high_key = one_range->high_key();
2341     BlockBegin* dest = one_range->sux();
2342     if (low_key == high_key) {
2343       __ cmp(lir_cond_equal, value, low_key);
2344       __ branch(lir_cond_equal, T_INT, dest);
2345     } else if (high_key - low_key == 1) {
2346       __ cmp(lir_cond_equal, value, low_key);
2347       __ branch(lir_cond_equal, T_INT, dest);
2348       __ cmp(lir_cond_equal, value, high_key);
2349       __ branch(lir_cond_equal, T_INT, dest);
2350     } else {
2351       LabelObj* L = new LabelObj();
2352       __ cmp(lir_cond_less, value, low_key);
2353       __ branch(lir_cond_less, T_INT, L->label());
2354       __ cmp(lir_cond_lessEqual, value, high_key);
2355       __ branch(lir_cond_lessEqual, T_INT, dest);
2356       __ branch_destination(L->label());
2357     }
2358   }
2359   __ jump(default_sux);
2360 }
2361 
2362 
2363 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2364   SwitchRangeList* res = new SwitchRangeList();
2365   int len = x->length();
2366   if (len > 0) {
2367     BlockBegin* sux = x->sux_at(0);
2368     int key = x->lo_key();
2369     BlockBegin* default_sux = x->default_sux();
2370     SwitchRange* range = new SwitchRange(key, sux);
2371     for (int i = 0; i < len; i++, key++) {
2372       BlockBegin* new_sux = x->sux_at(i);
2373       if (sux == new_sux) {
2374         // still in same range
2375         range->set_high_key(key);
2376       } else {
2377         // skip tests which explicitly dispatch to the default
2378         if (sux != default_sux) {
2379           res->append(range);
2380         }
2381         range = new SwitchRange(key, new_sux);
2382       }
2383       sux = new_sux;
2384     }
2385     if (res->length() == 0 || res->last() != range)  res->append(range);
2386   }
2387   return res;
2388 }
2389 
2390 
2391 // we expect the keys to be sorted by increasing value
2392 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2393   SwitchRangeList* res = new SwitchRangeList();
2394   int len = x->length();
2395   if (len > 0) {
2396     BlockBegin* default_sux = x->default_sux();
2397     int key = x->key_at(0);
2398     BlockBegin* sux = x->sux_at(0);
2399     SwitchRange* range = new SwitchRange(key, sux);
2400     for (int i = 1; i < len; i++) {
2401       int new_key = x->key_at(i);
2402       BlockBegin* new_sux = x->sux_at(i);
2403       if (key+1 == new_key && sux == new_sux) {
2404         // still in same range
2405         range->set_high_key(new_key);
2406       } else {
2407         // skip tests which explicitly dispatch to the default
2408         if (range->sux() != default_sux) {
2409           res->append(range);
2410         }
2411         range = new SwitchRange(new_key, new_sux);
2412       }
2413       key = new_key;
2414       sux = new_sux;
2415     }
2416     if (res->length() == 0 || res->last() != range)  res->append(range);
2417   }
2418   return res;
2419 }
2420 
2421 
2422 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2423   LIRItem tag(x->tag(), this);
2424   tag.load_item();
2425   set_no_result(x);
2426 
2427   if (x->is_safepoint()) {
2428     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2429   }
2430 
2431   // move values into phi locations
2432   move_to_phi(x->state());
2433 
2434   int lo_key = x->lo_key();
2435   int len = x->length();
2436   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2437   LIR_Opr value = tag.result();
2438 
2439   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2440     ciMethod* method = x->state()->scope()->method();
2441     ciMethodData* md = method->method_data_or_null();
2442     assert(md != NULL, "Sanity");
2443     ciProfileData* data = md->bci_to_data(x->state()->bci());
2444     assert(data != NULL, "must have profiling data");
2445     assert(data->is_MultiBranchData(), "bad profile data?");
2446     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2447     LIR_Opr md_reg = new_register(T_METADATA);
2448     __ metadata2reg(md->constant_encoding(), md_reg);
2449     LIR_Opr data_offset_reg = new_pointer_register();
2450     LIR_Opr tmp_reg = new_pointer_register();
2451 
2452     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2453     for (int i = 0; i < len; i++) {
2454       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2455       __ cmp(lir_cond_equal, value, i + lo_key);
2456       __ move(data_offset_reg, tmp_reg);
2457       __ cmove(lir_cond_equal,
2458                LIR_OprFact::intptrConst(count_offset),
2459                tmp_reg,
2460                data_offset_reg, T_INT);
2461     }
2462 
2463     LIR_Opr data_reg = new_pointer_register();
2464     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2465     __ move(data_addr, data_reg);
2466     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2467     __ move(data_reg, data_addr);
2468   }
2469 
2470   if (UseTableRanges) {
2471     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2472   } else {
2473     for (int i = 0; i < len; i++) {
2474       __ cmp(lir_cond_equal, value, i + lo_key);
2475       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2476     }
2477     __ jump(x->default_sux());
2478   }
2479 }
2480 
2481 
2482 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2483   LIRItem tag(x->tag(), this);
2484   tag.load_item();
2485   set_no_result(x);
2486 
2487   if (x->is_safepoint()) {
2488     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2489   }
2490 
2491   // move values into phi locations
2492   move_to_phi(x->state());
2493 
2494   LIR_Opr value = tag.result();
2495   int len = x->length();
2496 
2497   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2498     ciMethod* method = x->state()->scope()->method();
2499     ciMethodData* md = method->method_data_or_null();
2500     assert(md != NULL, "Sanity");
2501     ciProfileData* data = md->bci_to_data(x->state()->bci());
2502     assert(data != NULL, "must have profiling data");
2503     assert(data->is_MultiBranchData(), "bad profile data?");
2504     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2505     LIR_Opr md_reg = new_register(T_METADATA);
2506     __ metadata2reg(md->constant_encoding(), md_reg);
2507     LIR_Opr data_offset_reg = new_pointer_register();
2508     LIR_Opr tmp_reg = new_pointer_register();
2509 
2510     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2511     for (int i = 0; i < len; i++) {
2512       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2513       __ cmp(lir_cond_equal, value, x->key_at(i));
2514       __ move(data_offset_reg, tmp_reg);
2515       __ cmove(lir_cond_equal,
2516                LIR_OprFact::intptrConst(count_offset),
2517                tmp_reg,
2518                data_offset_reg, T_INT);
2519     }
2520 
2521     LIR_Opr data_reg = new_pointer_register();
2522     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2523     __ move(data_addr, data_reg);
2524     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2525     __ move(data_reg, data_addr);
2526   }
2527 
2528   if (UseTableRanges) {
2529     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2530   } else {
2531     int len = x->length();
2532     for (int i = 0; i < len; i++) {
2533       __ cmp(lir_cond_equal, value, x->key_at(i));
2534       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2535     }
2536     __ jump(x->default_sux());
2537   }
2538 }
2539 
2540 
2541 void LIRGenerator::do_Goto(Goto* x) {
2542   set_no_result(x);
2543 
2544   if (block()->next()->as_OsrEntry()) {
2545     // need to free up storage used for OSR entry point
2546     LIR_Opr osrBuffer = block()->next()->operand();
2547     BasicTypeList signature;
2548     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2549     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2550     __ move(osrBuffer, cc->args()->at(0));
2551     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2552                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2553   }
2554 
2555   if (x->is_safepoint()) {
2556     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2557 
2558     // increment backedge counter if needed
2559     CodeEmitInfo* info = state_for(x, state);
2560     increment_backedge_counter(info, x->profiled_bci());
2561     CodeEmitInfo* safepoint_info = state_for(x, state);
2562     __ safepoint(safepoint_poll_register(), safepoint_info);
2563   }
2564 
2565   // Gotos can be folded Ifs, handle this case.
2566   if (x->should_profile()) {
2567     ciMethod* method = x->profiled_method();
2568     assert(method != NULL, "method should be set if branch is profiled");
2569     ciMethodData* md = method->method_data_or_null();
2570     assert(md != NULL, "Sanity");
2571     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2572     assert(data != NULL, "must have profiling data");
2573     int offset;
2574     if (x->direction() == Goto::taken) {
2575       assert(data->is_BranchData(), "need BranchData for two-way branches");
2576       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2577     } else if (x->direction() == Goto::not_taken) {
2578       assert(data->is_BranchData(), "need BranchData for two-way branches");
2579       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2580     } else {
2581       assert(data->is_JumpData(), "need JumpData for branches");
2582       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2583     }
2584     LIR_Opr md_reg = new_register(T_METADATA);
2585     __ metadata2reg(md->constant_encoding(), md_reg);
2586 
2587     increment_counter(new LIR_Address(md_reg, offset,
2588                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2589   }
2590 
2591   // emit phi-instruction move after safepoint since this simplifies
2592   // describing the state as the safepoint.
2593   move_to_phi(x->state());
2594 
2595   __ jump(x->default_sux());
2596 }
2597 
2598 /**
2599  * Emit profiling code if needed for arguments, parameters, return value types
2600  *
2601  * @param md                    MDO the code will update at runtime
2602  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2603  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2604  * @param profiled_k            current profile
2605  * @param obj                   IR node for the object to be profiled
2606  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2607  *                              Set once we find an update to make and use for next ones.
2608  * @param not_null              true if we know obj cannot be null
2609  * @param signature_at_call_k   signature at call for obj
2610  * @param callee_signature_k    signature of callee for obj
2611  *                              at call and callee signatures differ at method handle call
2612  * @return                      the only klass we know will ever be seen at this profile point
2613  */
2614 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2615                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2616                                     ciKlass* callee_signature_k) {
2617   ciKlass* result = NULL;
2618   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2619   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2620   // known not to be null or null bit already set and already set to
2621   // unknown: nothing we can do to improve profiling
2622   if (!do_null && !do_update) {
2623     return result;
2624   }
2625 
2626   ciKlass* exact_klass = NULL;
2627   Compilation* comp = Compilation::current();
2628   if (do_update) {
2629     // try to find exact type, using CHA if possible, so that loading
2630     // the klass from the object can be avoided
2631     ciType* type = obj->exact_type();
2632     if (type == NULL) {
2633       type = obj->declared_type();
2634       type = comp->cha_exact_type(type);
2635     }
2636     assert(type == NULL || type->is_klass(), "type should be class");
2637     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2638 
2639     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2640   }
2641 
2642   if (!do_null && !do_update) {
2643     return result;
2644   }
2645 
2646   ciKlass* exact_signature_k = NULL;
2647   if (do_update) {
2648     // Is the type from the signature exact (the only one possible)?
2649     exact_signature_k = signature_at_call_k->exact_klass();
2650     if (exact_signature_k == NULL) {
2651       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2652     } else {
2653       result = exact_signature_k;
2654       // Known statically. No need to emit any code: prevent
2655       // LIR_Assembler::emit_profile_type() from emitting useless code
2656       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2657     }
2658     // exact_klass and exact_signature_k can be both non NULL but
2659     // different if exact_klass is loaded after the ciObject for
2660     // exact_signature_k is created.
2661     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2662       // sometimes the type of the signature is better than the best type
2663       // the compiler has
2664       exact_klass = exact_signature_k;
2665     }
2666     if (callee_signature_k != NULL &&
2667         callee_signature_k != signature_at_call_k) {
2668       ciKlass* improved_klass = callee_signature_k->exact_klass();
2669       if (improved_klass == NULL) {
2670         improved_klass = comp->cha_exact_type(callee_signature_k);
2671       }
2672       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2673         exact_klass = exact_signature_k;
2674       }
2675     }
2676     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2677   }
2678 
2679   if (!do_null && !do_update) {
2680     return result;
2681   }
2682 
2683   if (mdp == LIR_OprFact::illegalOpr) {
2684     mdp = new_register(T_METADATA);
2685     __ metadata2reg(md->constant_encoding(), mdp);
2686     if (md_base_offset != 0) {
2687       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2688       mdp = new_pointer_register();
2689       __ leal(LIR_OprFact::address(base_type_address), mdp);
2690     }
2691   }
2692   LIRItem value(obj, this);
2693   value.load_item();
2694   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2695                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2696   return result;
2697 }
2698 
2699 // profile parameters on entry to the root of the compilation
2700 void LIRGenerator::profile_parameters(Base* x) {
2701   if (compilation()->profile_parameters()) {
2702     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2703     ciMethodData* md = scope()->method()->method_data_or_null();
2704     assert(md != NULL, "Sanity");
2705 
2706     if (md->parameters_type_data() != NULL) {
2707       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2708       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2709       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2710       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2711         LIR_Opr src = args->at(i);
2712         assert(!src->is_illegal(), "check");
2713         BasicType t = src->type();
2714         if (t == T_OBJECT || t == T_ARRAY) {
2715           intptr_t profiled_k = parameters->type(j);
2716           Local* local = x->state()->local_at(java_index)->as_Local();
2717           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2718                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2719                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2720           // If the profile is known statically set it once for all and do not emit any code
2721           if (exact != NULL) {
2722             md->set_parameter_type(j, exact);
2723           }
2724           j++;
2725         }
2726         java_index += type2size[t];
2727       }
2728     }
2729   }
2730 }
2731 
2732 void LIRGenerator::do_Base(Base* x) {
2733   __ std_entry(LIR_OprFact::illegalOpr);
2734   // Emit moves from physical registers / stack slots to virtual registers
2735   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2736   IRScope* irScope = compilation()->hir()->top_scope();
2737   int java_index = 0;
2738   for (int i = 0; i < args->length(); i++) {
2739     LIR_Opr src = args->at(i);
2740     assert(!src->is_illegal(), "check");
2741     BasicType t = src->type();
2742 
2743     // Types which are smaller than int are passed as int, so
2744     // correct the type which passed.
2745     switch (t) {
2746     case T_BYTE:
2747     case T_BOOLEAN:
2748     case T_SHORT:
2749     case T_CHAR:
2750       t = T_INT;
2751       break;
2752     default:
2753       break;
2754     }
2755 
2756     LIR_Opr dest = new_register(t);
2757     __ move(src, dest);
2758 
2759     // Assign new location to Local instruction for this local
2760     Local* local = x->state()->local_at(java_index)->as_Local();
2761     assert(local != NULL, "Locals for incoming arguments must have been created");
2762 #ifndef __SOFTFP__
2763     // The java calling convention passes double as long and float as int.
2764     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2765 #endif // __SOFTFP__
2766     local->set_operand(dest);
2767     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2768     java_index += type2size[t];
2769   }
2770 
2771   if (compilation()->env()->dtrace_method_probes()) {
2772     BasicTypeList signature;
2773     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2774     signature.append(T_METADATA); // Method*
2775     LIR_OprList* args = new LIR_OprList();
2776     args->append(getThreadPointer());
2777     LIR_Opr meth = new_register(T_METADATA);
2778     __ metadata2reg(method()->constant_encoding(), meth);
2779     args->append(meth);
2780     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2781   }
2782 
2783   if (method()->is_synchronized()) {
2784     LIR_Opr obj;
2785     if (method()->is_static()) {
2786       obj = new_register(T_OBJECT);
2787       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2788     } else {
2789       Local* receiver = x->state()->local_at(0)->as_Local();
2790       assert(receiver != NULL, "must already exist");
2791       obj = receiver->operand();
2792     }
2793     assert(obj->is_valid(), "must be valid");
2794 
2795     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2796       LIR_Opr lock = syncLockOpr();
2797       __ load_stack_address_monitor(0, lock);
2798 
2799       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2800       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2801 
2802       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2803       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2804     }
2805   }
2806   if (compilation()->age_code()) {
2807     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2808     decrement_age(info);
2809   }
2810   // increment invocation counters if needed
2811   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2812     profile_parameters(x);
2813     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2814     increment_invocation_counter(info);
2815   }
2816 
2817   // all blocks with a successor must end with an unconditional jump
2818   // to the successor even if they are consecutive
2819   __ jump(x->default_sux());
2820 }
2821 
2822 
2823 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2824   // construct our frame and model the production of incoming pointer
2825   // to the OSR buffer.
2826   __ osr_entry(LIR_Assembler::osrBufferPointer());
2827   LIR_Opr result = rlock_result(x);
2828   __ move(LIR_Assembler::osrBufferPointer(), result);
2829 }
2830 
2831 
2832 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2833   assert(args->length() == arg_list->length(),
2834          "args=%d, arg_list=%d", args->length(), arg_list->length());
2835   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2836     LIRItem* param = args->at(i);
2837     LIR_Opr loc = arg_list->at(i);
2838     if (loc->is_register()) {
2839       param->load_item_force(loc);
2840     } else {
2841       LIR_Address* addr = loc->as_address_ptr();
2842       param->load_for_store(addr->type());
2843       assert(addr->type() != T_VALUETYPE, "not supported yet");
2844       if (addr->type() == T_OBJECT) {
2845         __ move_wide(param->result(), addr);
2846       } else
2847         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2848           __ unaligned_move(param->result(), addr);
2849         } else {
2850           __ move(param->result(), addr);
2851         }
2852     }
2853   }
2854 
2855   if (x->has_receiver()) {
2856     LIRItem* receiver = args->at(0);
2857     LIR_Opr loc = arg_list->at(0);
2858     if (loc->is_register()) {
2859       receiver->load_item_force(loc);
2860     } else {
2861       assert(loc->is_address(), "just checking");
2862       receiver->load_for_store(T_OBJECT);
2863       __ move_wide(receiver->result(), loc->as_address_ptr());
2864     }
2865   }
2866 }
2867 
2868 
2869 // Visits all arguments, returns appropriate items without loading them
2870 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2871   LIRItemList* argument_items = new LIRItemList();
2872   if (x->has_receiver()) {
2873     LIRItem* receiver = new LIRItem(x->receiver(), this);
2874     argument_items->append(receiver);
2875   }
2876   for (int i = 0; i < x->number_of_arguments(); i++) {
2877     LIRItem* param = new LIRItem(x->argument_at(i), this);
2878     argument_items->append(param);
2879   }
2880   return argument_items;
2881 }
2882 
2883 
2884 // The invoke with receiver has following phases:
2885 //   a) traverse and load/lock receiver;
2886 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2887 //   c) push receiver on stack
2888 //   d) load each of the items and push on stack
2889 //   e) unlock receiver
2890 //   f) move receiver into receiver-register %o0
2891 //   g) lock result registers and emit call operation
2892 //
2893 // Before issuing a call, we must spill-save all values on stack
2894 // that are in caller-save register. "spill-save" moves those registers
2895 // either in a free callee-save register or spills them if no free
2896 // callee save register is available.
2897 //
2898 // The problem is where to invoke spill-save.
2899 // - if invoked between e) and f), we may lock callee save
2900 //   register in "spill-save" that destroys the receiver register
2901 //   before f) is executed
2902 // - if we rearrange f) to be earlier (by loading %o0) it
2903 //   may destroy a value on the stack that is currently in %o0
2904 //   and is waiting to be spilled
2905 // - if we keep the receiver locked while doing spill-save,
2906 //   we cannot spill it as it is spill-locked
2907 //
2908 void LIRGenerator::do_Invoke(Invoke* x) {
2909   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2910 
2911   LIR_OprList* arg_list = cc->args();
2912   LIRItemList* args = invoke_visit_arguments(x);
2913   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2914 
2915   // setup result register
2916   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2917   if (x->type() != voidType) {
2918     result_register = result_register_for(x->type());
2919   }
2920 
2921   CodeEmitInfo* info = state_for(x, x->state());
2922 
2923   invoke_load_arguments(x, args, arg_list);
2924 
2925   if (x->has_receiver()) {
2926     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2927     receiver = args->at(0)->result();
2928   }
2929 
2930   // emit invoke code
2931   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2932 
2933   // JSR 292
2934   // Preserve the SP over MethodHandle call sites, if needed.
2935   ciMethod* target = x->target();
2936   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2937                                   target->is_method_handle_intrinsic() ||
2938                                   target->is_compiled_lambda_form());
2939   if (is_method_handle_invoke) {
2940     info->set_is_method_handle_invoke(true);
2941     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2942         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2943     }
2944   }
2945 
2946   switch (x->code()) {
2947     case Bytecodes::_invokestatic:
2948       __ call_static(target, result_register,
2949                      SharedRuntime::get_resolve_static_call_stub(),
2950                      arg_list, info);
2951       break;
2952     case Bytecodes::_invokespecial:
2953     case Bytecodes::_invokevirtual:
2954     case Bytecodes::_invokeinterface:
2955       // for loaded and final (method or class) target we still produce an inline cache,
2956       // in order to be able to call mixed mode
2957       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2958         __ call_opt_virtual(target, receiver, result_register,
2959                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2960                             arg_list, info);
2961       } else if (x->vtable_index() < 0) {
2962         __ call_icvirtual(target, receiver, result_register,
2963                           SharedRuntime::get_resolve_virtual_call_stub(),
2964                           arg_list, info);
2965       } else {
2966         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
2967         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
2968         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2969       }
2970       break;
2971     case Bytecodes::_invokedynamic: {
2972       __ call_dynamic(target, receiver, result_register,
2973                       SharedRuntime::get_resolve_static_call_stub(),
2974                       arg_list, info);
2975       break;
2976     }
2977     default:
2978       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2979       break;
2980   }
2981 
2982   // JSR 292
2983   // Restore the SP after MethodHandle call sites, if needed.
2984   if (is_method_handle_invoke
2985       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2986     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2987   }
2988 
2989   if (x->type()->is_float() || x->type()->is_double()) {
2990     // Force rounding of results from non-strictfp when in strictfp
2991     // scope (or when we don't know the strictness of the callee, to
2992     // be safe.)
2993     if (method()->is_strict()) {
2994       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2995         result_register = round_item(result_register);
2996       }
2997     }
2998   }
2999 
3000   if (result_register->is_valid()) {
3001     LIR_Opr result = rlock_result(x);
3002     __ move(result_register, result);
3003   }
3004 }
3005 
3006 
3007 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3008   assert(x->number_of_arguments() == 1, "wrong type");
3009   LIRItem value       (x->argument_at(0), this);
3010   LIR_Opr reg = rlock_result(x);
3011   value.load_item();
3012   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3013   __ move(tmp, reg);
3014 }
3015 
3016 
3017 
3018 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3019 void LIRGenerator::do_IfOp(IfOp* x) {
3020 #ifdef ASSERT
3021   {
3022     ValueTag xtag = x->x()->type()->tag();
3023     ValueTag ttag = x->tval()->type()->tag();
3024     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3025     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3026     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3027   }
3028 #endif
3029 
3030   LIRItem left(x->x(), this);
3031   LIRItem right(x->y(), this);
3032   left.load_item();
3033   if (can_inline_as_constant(right.value())) {
3034     right.dont_load_item();
3035   } else {
3036     right.load_item();
3037   }
3038 
3039   LIRItem t_val(x->tval(), this);
3040   LIRItem f_val(x->fval(), this);
3041   t_val.dont_load_item();
3042   f_val.dont_load_item();
3043   LIR_Opr reg = rlock_result(x);
3044 
3045   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3046   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3047 }
3048 
3049 #ifdef JFR_HAVE_INTRINSICS
3050 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3051   CodeEmitInfo* info = state_for(x);
3052   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3053 
3054   assert(info != NULL, "must have info");
3055   LIRItem arg(x->argument_at(0), this);
3056 
3057   arg.load_item();
3058   LIR_Opr klass = new_register(T_METADATA);
3059   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3060   LIR_Opr id = new_register(T_LONG);
3061   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3062   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3063 
3064   __ move(trace_id_addr, id);
3065   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3066   __ store(id, trace_id_addr);
3067 
3068 #ifdef TRACE_ID_META_BITS
3069   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3070 #endif
3071 #ifdef TRACE_ID_SHIFT
3072   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3073 #endif
3074 
3075   __ move(id, rlock_result(x));
3076 }
3077 
3078 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3079   LabelObj* L_end = new LabelObj();
3080 
3081   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3082                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3083                                            T_OBJECT);
3084   LIR_Opr result = rlock_result(x);
3085   __ move_wide(jobj_addr, result);
3086   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3087   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3088 
3089   LIR_Opr jobj = new_register(T_OBJECT);
3090   __ move(result, jobj);
3091   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3092 
3093   __ branch_destination(L_end->label());
3094 }
3095 
3096 #endif
3097 
3098 
3099 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3100   assert(x->number_of_arguments() == 0, "wrong type");
3101   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3102   BasicTypeList signature;
3103   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3104   LIR_Opr reg = result_register_for(x->type());
3105   __ call_runtime_leaf(routine, getThreadTemp(),
3106                        reg, new LIR_OprList());
3107   LIR_Opr result = rlock_result(x);
3108   __ move(reg, result);
3109 }
3110 
3111 
3112 
3113 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3114   switch (x->id()) {
3115   case vmIntrinsics::_intBitsToFloat      :
3116   case vmIntrinsics::_doubleToRawLongBits :
3117   case vmIntrinsics::_longBitsToDouble    :
3118   case vmIntrinsics::_floatToRawIntBits   : {
3119     do_FPIntrinsics(x);
3120     break;
3121   }
3122 
3123 #ifdef JFR_HAVE_INTRINSICS
3124   case vmIntrinsics::_getClassId:
3125     do_ClassIDIntrinsic(x);
3126     break;
3127   case vmIntrinsics::_getEventWriter:
3128     do_getEventWriter(x);
3129     break;
3130   case vmIntrinsics::_counterTime:
3131     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3132     break;
3133 #endif
3134 
3135   case vmIntrinsics::_currentTimeMillis:
3136     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3137     break;
3138 
3139   case vmIntrinsics::_nanoTime:
3140     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3141     break;
3142 
3143   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3144   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3145   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3146   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3147   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3148 
3149   case vmIntrinsics::_dlog:           // fall through
3150   case vmIntrinsics::_dlog10:         // fall through
3151   case vmIntrinsics::_dabs:           // fall through
3152   case vmIntrinsics::_dsqrt:          // fall through
3153   case vmIntrinsics::_dtan:           // fall through
3154   case vmIntrinsics::_dsin :          // fall through
3155   case vmIntrinsics::_dcos :          // fall through
3156   case vmIntrinsics::_dexp :          // fall through
3157   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3158   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3159 
3160   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3161   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3162 
3163   // java.nio.Buffer.checkIndex
3164   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3165 
3166   case vmIntrinsics::_compareAndSetObject:
3167     do_CompareAndSwap(x, objectType);
3168     break;
3169   case vmIntrinsics::_compareAndSetInt:
3170     do_CompareAndSwap(x, intType);
3171     break;
3172   case vmIntrinsics::_compareAndSetLong:
3173     do_CompareAndSwap(x, longType);
3174     break;
3175 
3176   case vmIntrinsics::_loadFence :
3177     if (os::is_MP()) __ membar_acquire();
3178     break;
3179   case vmIntrinsics::_storeFence:
3180     if (os::is_MP()) __ membar_release();
3181     break;
3182   case vmIntrinsics::_fullFence :
3183     if (os::is_MP()) __ membar();
3184     break;
3185   case vmIntrinsics::_onSpinWait:
3186     __ on_spin_wait();
3187     break;
3188   case vmIntrinsics::_Reference_get:
3189     do_Reference_get(x);
3190     break;
3191 
3192   case vmIntrinsics::_updateCRC32:
3193   case vmIntrinsics::_updateBytesCRC32:
3194   case vmIntrinsics::_updateByteBufferCRC32:
3195     do_update_CRC32(x);
3196     break;
3197 
3198   case vmIntrinsics::_updateBytesCRC32C:
3199   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3200     do_update_CRC32C(x);
3201     break;
3202 
3203   case vmIntrinsics::_vectorizedMismatch:
3204     do_vectorizedMismatch(x);
3205     break;
3206 
3207   default: ShouldNotReachHere(); break;
3208   }
3209 }
3210 
3211 void LIRGenerator::profile_arguments(ProfileCall* x) {
3212   if (compilation()->profile_arguments()) {
3213     int bci = x->bci_of_invoke();
3214     ciMethodData* md = x->method()->method_data_or_null();
3215     assert(md != NULL, "Sanity");
3216     ciProfileData* data = md->bci_to_data(bci);
3217     if (data != NULL) {
3218       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3219           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3220         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3221         int base_offset = md->byte_offset_of_slot(data, extra);
3222         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3223         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3224 
3225         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3226         int start = 0;
3227         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3228         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3229           // first argument is not profiled at call (method handle invoke)
3230           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3231           start = 1;
3232         }
3233         ciSignature* callee_signature = x->callee()->signature();
3234         // method handle call to virtual method
3235         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3236         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3237 
3238         bool ignored_will_link;
3239         ciSignature* signature_at_call = NULL;
3240         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3241         ciSignatureStream signature_at_call_stream(signature_at_call);
3242 
3243         // if called through method handle invoke, some arguments may have been popped
3244         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3245           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3246           ciKlass* exact = profile_type(md, base_offset, off,
3247               args->type(i), x->profiled_arg_at(i+start), mdp,
3248               !x->arg_needs_null_check(i+start),
3249               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3250           if (exact != NULL) {
3251             md->set_argument_type(bci, i, exact);
3252           }
3253         }
3254       } else {
3255 #ifdef ASSERT
3256         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3257         int n = x->nb_profiled_args();
3258         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3259             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3260             "only at JSR292 bytecodes");
3261 #endif
3262       }
3263     }
3264   }
3265 }
3266 
3267 // profile parameters on entry to an inlined method
3268 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3269   if (compilation()->profile_parameters() && x->inlined()) {
3270     ciMethodData* md = x->callee()->method_data_or_null();
3271     if (md != NULL) {
3272       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3273       if (parameters_type_data != NULL) {
3274         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3275         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3276         bool has_receiver = !x->callee()->is_static();
3277         ciSignature* sig = x->callee()->signature();
3278         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3279         int i = 0; // to iterate on the Instructions
3280         Value arg = x->recv();
3281         bool not_null = false;
3282         int bci = x->bci_of_invoke();
3283         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3284         // The first parameter is the receiver so that's what we start
3285         // with if it exists. One exception is method handle call to
3286         // virtual method: the receiver is in the args list
3287         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3288           i = 1;
3289           arg = x->profiled_arg_at(0);
3290           not_null = !x->arg_needs_null_check(0);
3291         }
3292         int k = 0; // to iterate on the profile data
3293         for (;;) {
3294           intptr_t profiled_k = parameters->type(k);
3295           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3296                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3297                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3298           // If the profile is known statically set it once for all and do not emit any code
3299           if (exact != NULL) {
3300             md->set_parameter_type(k, exact);
3301           }
3302           k++;
3303           if (k >= parameters_type_data->number_of_parameters()) {
3304 #ifdef ASSERT
3305             int extra = 0;
3306             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3307                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3308                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3309               extra += 1;
3310             }
3311             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3312 #endif
3313             break;
3314           }
3315           arg = x->profiled_arg_at(i);
3316           not_null = !x->arg_needs_null_check(i);
3317           i++;
3318         }
3319       }
3320     }
3321   }
3322 }
3323 
3324 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3325   // Need recv in a temporary register so it interferes with the other temporaries
3326   LIR_Opr recv = LIR_OprFact::illegalOpr;
3327   LIR_Opr mdo = new_register(T_METADATA);
3328   // tmp is used to hold the counters on SPARC
3329   LIR_Opr tmp = new_pointer_register();
3330 
3331   if (x->nb_profiled_args() > 0) {
3332     profile_arguments(x);
3333   }
3334 
3335   // profile parameters on inlined method entry including receiver
3336   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3337     profile_parameters_at_call(x);
3338   }
3339 
3340   if (x->recv() != NULL) {
3341     LIRItem value(x->recv(), this);
3342     value.load_item();
3343     recv = new_register(T_OBJECT);
3344     __ move(value.result(), recv);
3345   }
3346   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3347 }
3348 
3349 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3350   int bci = x->bci_of_invoke();
3351   ciMethodData* md = x->method()->method_data_or_null();
3352   assert(md != NULL, "Sanity");
3353   ciProfileData* data = md->bci_to_data(bci);
3354   if (data != NULL) {
3355     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3356     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3357     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3358 
3359     bool ignored_will_link;
3360     ciSignature* signature_at_call = NULL;
3361     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3362 
3363     // The offset within the MDO of the entry to update may be too large
3364     // to be used in load/store instructions on some platforms. So have
3365     // profile_type() compute the address of the profile in a register.
3366     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3367         ret->type(), x->ret(), mdp,
3368         !x->needs_null_check(),
3369         signature_at_call->return_type()->as_klass(),
3370         x->callee()->signature()->return_type()->as_klass());
3371     if (exact != NULL) {
3372       md->set_return_type(bci, exact);
3373     }
3374   }
3375 }
3376 
3377 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3378   // We can safely ignore accessors here, since c2 will inline them anyway,
3379   // accessors are also always mature.
3380   if (!x->inlinee()->is_accessor()) {
3381     CodeEmitInfo* info = state_for(x, x->state(), true);
3382     // Notify the runtime very infrequently only to take care of counter overflows
3383     int freq_log = Tier23InlineeNotifyFreqLog;
3384     double scale;
3385     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3386       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3387     }
3388     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3389   }
3390 }
3391 
3392 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3393   if (compilation()->count_backedges()) {
3394     __ cmp(cond, left, right);
3395     LIR_Opr step = new_register(T_INT);
3396     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3397     LIR_Opr zero = LIR_OprFact::intConst(0);
3398     __ cmove(cond,
3399         (left_bci < bci) ? plus_one : zero,
3400         (right_bci < bci) ? plus_one : zero,
3401         step, left->type());
3402     increment_backedge_counter(info, step, bci);
3403   }
3404 }
3405 
3406 
3407 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3408   int freq_log = 0;
3409   int level = compilation()->env()->comp_level();
3410   if (level == CompLevel_limited_profile) {
3411     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3412   } else if (level == CompLevel_full_profile) {
3413     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3414   } else {
3415     ShouldNotReachHere();
3416   }
3417   // Increment the appropriate invocation/backedge counter and notify the runtime.
3418   double scale;
3419   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3420     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3421   }
3422   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3423 }
3424 
3425 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3426   ciMethod* method = info->scope()->method();
3427   MethodCounters* mc_adr = method->ensure_method_counters();
3428   if (mc_adr != NULL) {
3429     LIR_Opr mc = new_pointer_register();
3430     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3431     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3432     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3433     LIR_Opr result = new_register(T_INT);
3434     __ load(counter, result);
3435     __ sub(result, LIR_OprFact::intConst(1), result);
3436     __ store(result, counter);
3437     // DeoptimizeStub will reexecute from the current state in code info.
3438     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3439                                          Deoptimization::Action_make_not_entrant);
3440     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3441     __ branch(lir_cond_lessEqual, T_INT, deopt);
3442   }
3443 }
3444 
3445 
3446 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3447                                                 ciMethod *method, LIR_Opr step, int frequency,
3448                                                 int bci, bool backedge, bool notify) {
3449   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3450   int level = _compilation->env()->comp_level();
3451   assert(level > CompLevel_simple, "Shouldn't be here");
3452 
3453   int offset = -1;
3454   LIR_Opr counter_holder = NULL;
3455   if (level == CompLevel_limited_profile) {
3456     MethodCounters* counters_adr = method->ensure_method_counters();
3457     if (counters_adr == NULL) {
3458       bailout("method counters allocation failed");
3459       return;
3460     }
3461     counter_holder = new_pointer_register();
3462     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3463     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3464                                  MethodCounters::invocation_counter_offset());
3465   } else if (level == CompLevel_full_profile) {
3466     counter_holder = new_register(T_METADATA);
3467     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3468                                  MethodData::invocation_counter_offset());
3469     ciMethodData* md = method->method_data_or_null();
3470     assert(md != NULL, "Sanity");
3471     __ metadata2reg(md->constant_encoding(), counter_holder);
3472   } else {
3473     ShouldNotReachHere();
3474   }
3475   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3476   LIR_Opr result = new_register(T_INT);
3477   __ load(counter, result);
3478   __ add(result, step, result);
3479   __ store(result, counter);
3480   if (notify && (!backedge || UseOnStackReplacement)) {
3481     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3482     // The bci for info can point to cmp for if's we want the if bci
3483     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3484     int freq = frequency << InvocationCounter::count_shift;
3485     if (freq == 0) {
3486       if (!step->is_constant()) {
3487         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3488         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3489       } else {
3490         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3491       }
3492     } else {
3493       LIR_Opr mask = load_immediate(freq, T_INT);
3494       if (!step->is_constant()) {
3495         // If step is 0, make sure the overflow check below always fails
3496         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3497         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3498       }
3499       __ logical_and(result, mask, result);
3500       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3501       __ branch(lir_cond_equal, T_INT, overflow);
3502     }
3503     __ branch_destination(overflow->continuation());
3504   }
3505 }
3506 
3507 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3508   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3509   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3510 
3511   if (x->pass_thread()) {
3512     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3513     args->append(getThreadPointer());
3514   }
3515 
3516   for (int i = 0; i < x->number_of_arguments(); i++) {
3517     Value a = x->argument_at(i);
3518     LIRItem* item = new LIRItem(a, this);
3519     item->load_item();
3520     args->append(item->result());
3521     signature->append(as_BasicType(a->type()));
3522   }
3523 
3524   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3525   if (x->type() == voidType) {
3526     set_no_result(x);
3527   } else {
3528     __ move(result, rlock_result(x));
3529   }
3530 }
3531 
3532 #ifdef ASSERT
3533 void LIRGenerator::do_Assert(Assert *x) {
3534   ValueTag tag = x->x()->type()->tag();
3535   If::Condition cond = x->cond();
3536 
3537   LIRItem xitem(x->x(), this);
3538   LIRItem yitem(x->y(), this);
3539   LIRItem* xin = &xitem;
3540   LIRItem* yin = &yitem;
3541 
3542   assert(tag == intTag, "Only integer assertions are valid!");
3543 
3544   xin->load_item();
3545   yin->dont_load_item();
3546 
3547   set_no_result(x);
3548 
3549   LIR_Opr left = xin->result();
3550   LIR_Opr right = yin->result();
3551 
3552   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3553 }
3554 #endif
3555 
3556 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3557 
3558 
3559   Instruction *a = x->x();
3560   Instruction *b = x->y();
3561   if (!a || StressRangeCheckElimination) {
3562     assert(!b || StressRangeCheckElimination, "B must also be null");
3563 
3564     CodeEmitInfo *info = state_for(x, x->state());
3565     CodeStub* stub = new PredicateFailedStub(info);
3566 
3567     __ jump(stub);
3568   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3569     int a_int = a->type()->as_IntConstant()->value();
3570     int b_int = b->type()->as_IntConstant()->value();
3571 
3572     bool ok = false;
3573 
3574     switch(x->cond()) {
3575       case Instruction::eql: ok = (a_int == b_int); break;
3576       case Instruction::neq: ok = (a_int != b_int); break;
3577       case Instruction::lss: ok = (a_int < b_int); break;
3578       case Instruction::leq: ok = (a_int <= b_int); break;
3579       case Instruction::gtr: ok = (a_int > b_int); break;
3580       case Instruction::geq: ok = (a_int >= b_int); break;
3581       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3582       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3583       default: ShouldNotReachHere();
3584     }
3585 
3586     if (ok) {
3587 
3588       CodeEmitInfo *info = state_for(x, x->state());
3589       CodeStub* stub = new PredicateFailedStub(info);
3590 
3591       __ jump(stub);
3592     }
3593   } else {
3594 
3595     ValueTag tag = x->x()->type()->tag();
3596     If::Condition cond = x->cond();
3597     LIRItem xitem(x->x(), this);
3598     LIRItem yitem(x->y(), this);
3599     LIRItem* xin = &xitem;
3600     LIRItem* yin = &yitem;
3601 
3602     assert(tag == intTag, "Only integer deoptimizations are valid!");
3603 
3604     xin->load_item();
3605     yin->dont_load_item();
3606     set_no_result(x);
3607 
3608     LIR_Opr left = xin->result();
3609     LIR_Opr right = yin->result();
3610 
3611     CodeEmitInfo *info = state_for(x, x->state());
3612     CodeStub* stub = new PredicateFailedStub(info);
3613 
3614     __ cmp(lir_cond(cond), left, right);
3615     __ branch(lir_cond(cond), right->type(), stub);
3616   }
3617 }
3618 
3619 
3620 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3621   LIRItemList args(1);
3622   LIRItem value(arg1, this);
3623   args.append(&value);
3624   BasicTypeList signature;
3625   signature.append(as_BasicType(arg1->type()));
3626 
3627   return call_runtime(&signature, &args, entry, result_type, info);
3628 }
3629 
3630 
3631 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3632   LIRItemList args(2);
3633   LIRItem value1(arg1, this);
3634   LIRItem value2(arg2, this);
3635   args.append(&value1);
3636   args.append(&value2);
3637   BasicTypeList signature;
3638   signature.append(as_BasicType(arg1->type()));
3639   signature.append(as_BasicType(arg2->type()));
3640 
3641   return call_runtime(&signature, &args, entry, result_type, info);
3642 }
3643 
3644 
3645 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3646                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3647   // get a result register
3648   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3649   LIR_Opr result = LIR_OprFact::illegalOpr;
3650   if (result_type->tag() != voidTag) {
3651     result = new_register(result_type);
3652     phys_reg = result_register_for(result_type);
3653   }
3654 
3655   // move the arguments into the correct location
3656   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3657   assert(cc->length() == args->length(), "argument mismatch");
3658   for (int i = 0; i < args->length(); i++) {
3659     LIR_Opr arg = args->at(i);
3660     LIR_Opr loc = cc->at(i);
3661     if (loc->is_register()) {
3662       __ move(arg, loc);
3663     } else {
3664       LIR_Address* addr = loc->as_address_ptr();
3665 //           if (!can_store_as_constant(arg)) {
3666 //             LIR_Opr tmp = new_register(arg->type());
3667 //             __ move(arg, tmp);
3668 //             arg = tmp;
3669 //           }
3670       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3671         __ unaligned_move(arg, addr);
3672       } else {
3673         __ move(arg, addr);
3674       }
3675     }
3676   }
3677 
3678   if (info) {
3679     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3680   } else {
3681     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3682   }
3683   if (result->is_valid()) {
3684     __ move(phys_reg, result);
3685   }
3686   return result;
3687 }
3688 
3689 
3690 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3691                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3692   // get a result register
3693   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3694   LIR_Opr result = LIR_OprFact::illegalOpr;
3695   if (result_type->tag() != voidTag) {
3696     result = new_register(result_type);
3697     phys_reg = result_register_for(result_type);
3698   }
3699 
3700   // move the arguments into the correct location
3701   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3702 
3703   assert(cc->length() == args->length(), "argument mismatch");
3704   for (int i = 0; i < args->length(); i++) {
3705     LIRItem* arg = args->at(i);
3706     LIR_Opr loc = cc->at(i);
3707     if (loc->is_register()) {
3708       arg->load_item_force(loc);
3709     } else {
3710       LIR_Address* addr = loc->as_address_ptr();
3711       arg->load_for_store(addr->type());
3712       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3713         __ unaligned_move(arg->result(), addr);
3714       } else {
3715         __ move(arg->result(), addr);
3716       }
3717     }
3718   }
3719 
3720   if (info) {
3721     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3722   } else {
3723     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3724   }
3725   if (result->is_valid()) {
3726     __ move(phys_reg, result);
3727   }
3728   return result;
3729 }
3730 
3731 void LIRGenerator::do_MemBar(MemBar* x) {
3732   if (os::is_MP()) {
3733     LIR_Code code = x->code();
3734     switch(code) {
3735       case lir_membar_acquire   : __ membar_acquire(); break;
3736       case lir_membar_release   : __ membar_release(); break;
3737       case lir_membar           : __ membar(); break;
3738       case lir_membar_loadload  : __ membar_loadload(); break;
3739       case lir_membar_storestore: __ membar_storestore(); break;
3740       case lir_membar_loadstore : __ membar_loadstore(); break;
3741       case lir_membar_storeload : __ membar_storeload(); break;
3742       default                   : ShouldNotReachHere(); break;
3743     }
3744   }
3745 }
3746 
3747 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3748   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3749   if (TwoOperandLIRForm) {
3750     __ move(value, value_fixed);
3751     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3752   } else {
3753     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3754   }
3755   LIR_Opr klass = new_register(T_METADATA);
3756   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3757   null_check_info = NULL;
3758   LIR_Opr layout = new_register(T_INT);
3759   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3760   int diffbit = Klass::layout_helper_boolean_diffbit();
3761   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3762   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3763   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3764   value = value_fixed;
3765   return value;
3766 }
3767 
3768 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3769   if (x->check_boolean()) {
3770     value = mask_boolean(array, value, null_check_info);
3771   }
3772   return value;
3773 }