1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableBarrierSet.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/frame.inline.hpp"
  41 #include "runtime/safepointMechanism.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 
  45 
  46 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  47 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  48 // fast versions of NegF/NegD and AbsF/AbsD.
  49 
  50 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  51 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  52   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  53   // of 128-bits operands for SSE instructions.
  54   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  55   // Store the value to a 128-bits operand.
  56   operand[0] = lo;
  57   operand[1] = hi;
  58   return operand;
  59 }
  60 
  61 // Buffer for 128-bits masks used by SSE instructions.
  62 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  63 
  64 // Static initialization during VM startup.
  65 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  66 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  67 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  68 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  69 
  70 
  71 NEEDS_CLEANUP // remove this definitions ?
  72 const Register IC_Klass    = rax;   // where the IC klass is cached
  73 const Register SYNC_header = rax;   // synchronization header
  74 const Register SHIFT_count = rcx;   // where count for shift operations must be
  75 
  76 #define __ _masm->
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2) {
  83   if (tmp1 == preserve) {
  84     assert_different_registers(tmp1, tmp2, extra);
  85     tmp1 = extra;
  86   } else if (tmp2 == preserve) {
  87     assert_different_registers(tmp1, tmp2, extra);
  88     tmp2 = extra;
  89   }
  90   assert_different_registers(preserve, tmp1, tmp2);
  91 }
  92 
  93 
  94 
  95 static void select_different_registers(Register preserve,
  96                                        Register extra,
  97                                        Register &tmp1,
  98                                        Register &tmp2,
  99                                        Register &tmp3) {
 100   if (tmp1 == preserve) {
 101     assert_different_registers(tmp1, tmp2, tmp3, extra);
 102     tmp1 = extra;
 103   } else if (tmp2 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp2 = extra;
 106   } else if (tmp3 == preserve) {
 107     assert_different_registers(tmp1, tmp2, tmp3, extra);
 108     tmp3 = extra;
 109   }
 110   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 111 }
 112 
 113 
 114 
 115 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 116   if (opr->is_constant()) {
 117     LIR_Const* constant = opr->as_constant_ptr();
 118     switch (constant->type()) {
 119       case T_INT: {
 120         return true;
 121       }
 122 
 123       default:
 124         return false;
 125     }
 126   }
 127   return false;
 128 }
 129 
 130 
 131 LIR_Opr LIR_Assembler::receiverOpr() {
 132   return FrameMap::receiver_opr;
 133 }
 134 
 135 LIR_Opr LIR_Assembler::osrBufferPointer() {
 136   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 137 }
 138 
 139 //--------------fpu register translations-----------------------
 140 
 141 
 142 address LIR_Assembler::float_constant(float f) {
 143   address const_addr = __ float_constant(f);
 144   if (const_addr == NULL) {
 145     bailout("const section overflow");
 146     return __ code()->consts()->start();
 147   } else {
 148     return const_addr;
 149   }
 150 }
 151 
 152 
 153 address LIR_Assembler::double_constant(double d) {
 154   address const_addr = __ double_constant(d);
 155   if (const_addr == NULL) {
 156     bailout("const section overflow");
 157     return __ code()->consts()->start();
 158   } else {
 159     return const_addr;
 160   }
 161 }
 162 
 163 
 164 void LIR_Assembler::set_24bit_FPU() {
 165   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 166 }
 167 
 168 void LIR_Assembler::reset_FPU() {
 169   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 170 }
 171 
 172 void LIR_Assembler::fpop() {
 173   __ fpop();
 174 }
 175 
 176 void LIR_Assembler::fxch(int i) {
 177   __ fxch(i);
 178 }
 179 
 180 void LIR_Assembler::fld(int i) {
 181   __ fld_s(i);
 182 }
 183 
 184 void LIR_Assembler::ffree(int i) {
 185   __ ffree(i);
 186 }
 187 
 188 void LIR_Assembler::breakpoint() {
 189   __ int3();
 190 }
 191 
 192 void LIR_Assembler::push(LIR_Opr opr) {
 193   if (opr->is_single_cpu()) {
 194     __ push_reg(opr->as_register());
 195   } else if (opr->is_double_cpu()) {
 196     NOT_LP64(__ push_reg(opr->as_register_hi()));
 197     __ push_reg(opr->as_register_lo());
 198   } else if (opr->is_stack()) {
 199     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 200   } else if (opr->is_constant()) {
 201     LIR_Const* const_opr = opr->as_constant_ptr();
 202     if (const_opr->type() == T_OBJECT || const_opr->type() == T_VALUETYPE) {
 203       __ push_oop(const_opr->as_jobject());
 204     } else if (const_opr->type() == T_INT) {
 205       __ push_jint(const_opr->as_jint());
 206     } else {
 207       ShouldNotReachHere();
 208     }
 209 
 210   } else {
 211     ShouldNotReachHere();
 212   }
 213 }
 214 
 215 void LIR_Assembler::pop(LIR_Opr opr) {
 216   if (opr->is_single_cpu()) {
 217     __ pop_reg(opr->as_register());
 218   } else {
 219     ShouldNotReachHere();
 220   }
 221 }
 222 
 223 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 224   return addr->base()->is_illegal() && addr->index()->is_illegal();
 225 }
 226 
 227 //-------------------------------------------
 228 
 229 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 230   return as_Address(addr, rscratch1);
 231 }
 232 
 233 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 234   if (addr->base()->is_illegal()) {
 235     assert(addr->index()->is_illegal(), "must be illegal too");
 236     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 237     if (! __ reachable(laddr)) {
 238       __ movptr(tmp, laddr.addr());
 239       Address res(tmp, 0);
 240       return res;
 241     } else {
 242       return __ as_Address(laddr);
 243     }
 244   }
 245 
 246   Register base = addr->base()->as_pointer_register();
 247 
 248   if (addr->index()->is_illegal()) {
 249     return Address( base, addr->disp());
 250   } else if (addr->index()->is_cpu_register()) {
 251     Register index = addr->index()->as_pointer_register();
 252     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 253   } else if (addr->index()->is_constant()) {
 254     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 255     assert(Assembler::is_simm32(addr_offset), "must be");
 256 
 257     return Address(base, addr_offset);
 258   } else {
 259     Unimplemented();
 260     return Address();
 261   }
 262 }
 263 
 264 
 265 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 266   Address base = as_Address(addr);
 267   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 268 }
 269 
 270 
 271 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 272   return as_Address(addr);
 273 }
 274 
 275 
 276 void LIR_Assembler::osr_entry() {
 277   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 278   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 279   ValueStack* entry_state = osr_entry->state();
 280   int number_of_locks = entry_state->locks_size();
 281 
 282   // we jump here if osr happens with the interpreter
 283   // state set up to continue at the beginning of the
 284   // loop that triggered osr - in particular, we have
 285   // the following registers setup:
 286   //
 287   // rcx: osr buffer
 288   //
 289 
 290   // build frame
 291   ciMethod* m = compilation()->method();
 292   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 293 
 294   // OSR buffer is
 295   //
 296   // locals[nlocals-1..0]
 297   // monitors[0..number_of_locks]
 298   //
 299   // locals is a direct copy of the interpreter frame so in the osr buffer
 300   // so first slot in the local array is the last local from the interpreter
 301   // and last slot is local[0] (receiver) from the interpreter
 302   //
 303   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 304   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 305   // in the interpreter frame (the method lock if a sync method)
 306 
 307   // Initialize monitors in the compiled activation.
 308   //   rcx: pointer to osr buffer
 309   //
 310   // All other registers are dead at this point and the locals will be
 311   // copied into place by code emitted in the IR.
 312 
 313   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 314   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 315     int monitor_offset = BytesPerWord * method()->max_locals() +
 316       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 317     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 318     // the OSR buffer using 2 word entries: first the lock and then
 319     // the oop.
 320     for (int i = 0; i < number_of_locks; i++) {
 321       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 322 #ifdef ASSERT
 323       // verify the interpreter's monitor has a non-null object
 324       {
 325         Label L;
 326         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 327         __ jcc(Assembler::notZero, L);
 328         __ stop("locked object is NULL");
 329         __ bind(L);
 330       }
 331 #endif
 332       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 333       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 334       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 335       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 336     }
 337   }
 338 }
 339 
 340 
 341 // inline cache check; done before the frame is built.
 342 int LIR_Assembler::check_icache() {
 343   Register receiver = FrameMap::receiver_opr->as_register();
 344   Register ic_klass = IC_Klass;
 345   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 346   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 347   if (!do_post_padding) {
 348     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 349     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 350   }
 351   int offset = __ offset();
 352   __ inline_cache_check(receiver, IC_Klass);
 353   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 354   if (do_post_padding) {
 355     // force alignment after the cache check.
 356     // It's been verified to be aligned if !VerifyOops
 357     __ align(CodeEntryAlignment);
 358   }
 359   return offset;
 360 }
 361 
 362 
 363 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 364   jobject o = NULL;
 365   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 366   __ movoop(reg, o);
 367   patching_epilog(patch, lir_patch_normal, reg, info);
 368 }
 369 
 370 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 371   Metadata* o = NULL;
 372   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 373   __ mov_metadata(reg, o);
 374   patching_epilog(patch, lir_patch_normal, reg, info);
 375 }
 376 
 377 // This specifies the rsp decrement needed to build the frame
 378 int LIR_Assembler::initial_frame_size_in_bytes() const {
 379   // if rounding, must let FrameMap know!
 380 
 381   // The frame_map records size in slots (32bit word)
 382 
 383   // subtract two words to account for return address and link
 384   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 385 }
 386 
 387 
 388 int LIR_Assembler::emit_exception_handler() {
 389   // if the last instruction is a call (typically to do a throw which
 390   // is coming at the end after block reordering) the return address
 391   // must still point into the code area in order to avoid assertion
 392   // failures when searching for the corresponding bci => add a nop
 393   // (was bug 5/14/1999 - gri)
 394   __ nop();
 395 
 396   // generate code for exception handler
 397   address handler_base = __ start_a_stub(exception_handler_size());
 398   if (handler_base == NULL) {
 399     // not enough space left for the handler
 400     bailout("exception handler overflow");
 401     return -1;
 402   }
 403 
 404   int offset = code_offset();
 405 
 406   // the exception oop and pc are in rax, and rdx
 407   // no other registers need to be preserved, so invalidate them
 408   __ invalidate_registers(false, true, true, false, true, true);
 409 
 410   // check that there is really an exception
 411   __ verify_not_null_oop(rax);
 412 
 413   // search an exception handler (rax: exception oop, rdx: throwing pc)
 414   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 415   __ should_not_reach_here();
 416   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 417   __ end_a_stub();
 418 
 419   return offset;
 420 }
 421 
 422 
 423 // Emit the code to remove the frame from the stack in the exception
 424 // unwind path.
 425 int LIR_Assembler::emit_unwind_handler() {
 426 #ifndef PRODUCT
 427   if (CommentedAssembly) {
 428     _masm->block_comment("Unwind handler");
 429   }
 430 #endif
 431 
 432   int offset = code_offset();
 433 
 434   // Fetch the exception from TLS and clear out exception related thread state
 435   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 436   NOT_LP64(__ get_thread(rsi));
 437   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 438   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 439   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 440 
 441   __ bind(_unwind_handler_entry);
 442   __ verify_not_null_oop(rax);
 443   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 444     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 445   }
 446 
 447   // Preform needed unlocking
 448   MonitorExitStub* stub = NULL;
 449   if (method()->is_synchronized()) {
 450     monitor_address(0, FrameMap::rax_opr);
 451     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 452     __ unlock_object(rdi, rsi, rax, *stub->entry());
 453     __ bind(*stub->continuation());
 454   }
 455 
 456   if (compilation()->env()->dtrace_method_probes()) {
 457 #ifdef _LP64
 458     __ mov(rdi, r15_thread);
 459     __ mov_metadata(rsi, method()->constant_encoding());
 460 #else
 461     __ get_thread(rax);
 462     __ movptr(Address(rsp, 0), rax);
 463     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 464 #endif
 465     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 466   }
 467 
 468   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 469     __ mov(rax, rbx);  // Restore the exception
 470   }
 471 
 472   // remove the activation and dispatch to the unwind handler
 473   __ remove_frame(initial_frame_size_in_bytes());
 474   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 475 
 476   // Emit the slow path assembly
 477   if (stub != NULL) {
 478     stub->emit_code(this);
 479   }
 480 
 481   return offset;
 482 }
 483 
 484 
 485 int LIR_Assembler::emit_deopt_handler() {
 486   // if the last instruction is a call (typically to do a throw which
 487   // is coming at the end after block reordering) the return address
 488   // must still point into the code area in order to avoid assertion
 489   // failures when searching for the corresponding bci => add a nop
 490   // (was bug 5/14/1999 - gri)
 491   __ nop();
 492 
 493   // generate code for exception handler
 494   address handler_base = __ start_a_stub(deopt_handler_size());
 495   if (handler_base == NULL) {
 496     // not enough space left for the handler
 497     bailout("deopt handler overflow");
 498     return -1;
 499   }
 500 
 501   int offset = code_offset();
 502   InternalAddress here(__ pc());
 503 
 504   __ pushptr(here.addr());
 505   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 506   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 507   __ end_a_stub();
 508 
 509   return offset;
 510 }
 511 
 512 
 513 void LIR_Assembler::return_op(LIR_Opr result) {
 514   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 515   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 516     assert(result->fpu() == 0, "result must already be on TOS");
 517   }
 518 
 519   // Pop the stack before the safepoint code
 520   __ remove_frame(initial_frame_size_in_bytes());
 521 
 522   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 523     __ reserved_stack_check();
 524   }
 525 
 526   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 527 
 528   // Note: we do not need to round double result; float result has the right precision
 529   // the poll sets the condition code, but no data registers
 530 
 531   if (SafepointMechanism::uses_thread_local_poll()) {
 532 #ifdef _LP64
 533     const Register poll_addr = rscratch1;
 534     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 535 #else
 536     const Register poll_addr = rbx;
 537     assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
 538     __ get_thread(poll_addr);
 539     __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
 540 #endif
 541     __ relocate(relocInfo::poll_return_type);
 542     __ testl(rax, Address(poll_addr, 0));
 543   } else {
 544     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 545 
 546     if (Assembler::is_polling_page_far()) {
 547       __ lea(rscratch1, polling_page);
 548       __ relocate(relocInfo::poll_return_type);
 549       __ testl(rax, Address(rscratch1, 0));
 550     } else {
 551       __ testl(rax, polling_page);
 552     }
 553   }
 554   __ ret(0);
 555 }
 556 
 557 
 558 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 559   guarantee(info != NULL, "Shouldn't be NULL");
 560   int offset = __ offset();
 561   if (SafepointMechanism::uses_thread_local_poll()) {
 562 #ifdef _LP64
 563     const Register poll_addr = rscratch1;
 564     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 565 #else
 566     assert(tmp->is_cpu_register(), "needed");
 567     const Register poll_addr = tmp->as_register();
 568     __ get_thread(poll_addr);
 569     __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
 570 #endif
 571     add_debug_info_for_branch(info);
 572     __ relocate(relocInfo::poll_type);
 573     address pre_pc = __ pc();
 574     __ testl(rax, Address(poll_addr, 0));
 575     address post_pc = __ pc();
 576     guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 577   } else {
 578     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 579     if (Assembler::is_polling_page_far()) {
 580       __ lea(rscratch1, polling_page);
 581       offset = __ offset();
 582       add_debug_info_for_branch(info);
 583       __ relocate(relocInfo::poll_type);
 584       __ testl(rax, Address(rscratch1, 0));
 585     } else {
 586       add_debug_info_for_branch(info);
 587       __ testl(rax, polling_page);
 588     }
 589   }
 590   return offset;
 591 }
 592 
 593 
 594 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 595   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 596 }
 597 
 598 void LIR_Assembler::swap_reg(Register a, Register b) {
 599   __ xchgptr(a, b);
 600 }
 601 
 602 
 603 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 604   assert(src->is_constant(), "should not call otherwise");
 605   assert(dest->is_register(), "should not call otherwise");
 606   LIR_Const* c = src->as_constant_ptr();
 607 
 608   switch (c->type()) {
 609     case T_INT: {
 610       assert(patch_code == lir_patch_none, "no patching handled here");
 611       __ movl(dest->as_register(), c->as_jint());
 612       break;
 613     }
 614 
 615     case T_ADDRESS: {
 616       assert(patch_code == lir_patch_none, "no patching handled here");
 617       __ movptr(dest->as_register(), c->as_jint());
 618       break;
 619     }
 620 
 621     case T_LONG: {
 622       assert(patch_code == lir_patch_none, "no patching handled here");
 623 #ifdef _LP64
 624       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 625 #else
 626       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 627       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 628 #endif // _LP64
 629       break;
 630     }
 631 
 632     case T_VALUETYPE: // Fall through
 633     case T_OBJECT: {
 634       if (patch_code != lir_patch_none) {
 635         jobject2reg_with_patching(dest->as_register(), info);
 636       } else {
 637         __ movoop(dest->as_register(), c->as_jobject());
 638       }
 639       break;
 640     }
 641 
 642     case T_METADATA: {
 643       if (patch_code != lir_patch_none) {
 644         klass2reg_with_patching(dest->as_register(), info);
 645       } else {
 646         __ mov_metadata(dest->as_register(), c->as_metadata());
 647       }
 648       break;
 649     }
 650 
 651     case T_FLOAT: {
 652       if (dest->is_single_xmm()) {
 653         if (LP64_ONLY(UseAVX < 2 &&) c->is_zero_float()) {
 654           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 655         } else {
 656           __ movflt(dest->as_xmm_float_reg(),
 657                    InternalAddress(float_constant(c->as_jfloat())));
 658         }
 659       } else {
 660         assert(dest->is_single_fpu(), "must be");
 661         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 662         if (c->is_zero_float()) {
 663           __ fldz();
 664         } else if (c->is_one_float()) {
 665           __ fld1();
 666         } else {
 667           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 668         }
 669       }
 670       break;
 671     }
 672 
 673     case T_DOUBLE: {
 674       if (dest->is_double_xmm()) {
 675         if (LP64_ONLY(UseAVX < 2 &&) c->is_zero_double()) {
 676           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 677         } else {
 678           __ movdbl(dest->as_xmm_double_reg(),
 679                     InternalAddress(double_constant(c->as_jdouble())));
 680         }
 681       } else {
 682         assert(dest->is_double_fpu(), "must be");
 683         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 684         if (c->is_zero_double()) {
 685           __ fldz();
 686         } else if (c->is_one_double()) {
 687           __ fld1();
 688         } else {
 689           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 690         }
 691       }
 692       break;
 693     }
 694 
 695     default:
 696       ShouldNotReachHere();
 697   }
 698 }
 699 
 700 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 701   assert(src->is_constant(), "should not call otherwise");
 702   assert(dest->is_stack(), "should not call otherwise");
 703   LIR_Const* c = src->as_constant_ptr();
 704 
 705   switch (c->type()) {
 706     case T_INT:  // fall through
 707     case T_FLOAT:
 708       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 709       break;
 710 
 711     case T_ADDRESS:
 712       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 713       break;
 714 
 715     case T_VALUETYPE: // Fall through
 716     case T_OBJECT:
 717       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 718       break;
 719 
 720     case T_LONG:  // fall through
 721     case T_DOUBLE:
 722 #ifdef _LP64
 723       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 724                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 725 #else
 726       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 727                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 728       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 729                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 730 #endif // _LP64
 731       break;
 732 
 733     default:
 734       ShouldNotReachHere();
 735   }
 736 }
 737 
 738 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 739   assert(src->is_constant(), "should not call otherwise");
 740   assert(dest->is_address(), "should not call otherwise");
 741   LIR_Const* c = src->as_constant_ptr();
 742   LIR_Address* addr = dest->as_address_ptr();
 743 
 744   int null_check_here = code_offset();
 745   switch (type) {
 746     case T_INT:    // fall through
 747     case T_FLOAT:
 748       __ movl(as_Address(addr), c->as_jint_bits());
 749       break;
 750 
 751     case T_ADDRESS:
 752       __ movptr(as_Address(addr), c->as_jint_bits());
 753       break;
 754 
 755     case T_VALUETYPE: // fall through
 756     case T_OBJECT:  // fall through
 757     case T_ARRAY:
 758       if (c->as_jobject() == NULL) {
 759         if (UseCompressedOops && !wide) {
 760           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 761         } else {
 762 #ifdef _LP64
 763           __ xorptr(rscratch1, rscratch1);
 764           null_check_here = code_offset();
 765           __ movptr(as_Address(addr), rscratch1);
 766 #else
 767           __ movptr(as_Address(addr), NULL_WORD);
 768 #endif
 769         }
 770       } else {
 771         if (is_literal_address(addr)) {
 772           ShouldNotReachHere();
 773           __ movoop(as_Address(addr, noreg), c->as_jobject());
 774         } else {
 775 #ifdef _LP64
 776           __ movoop(rscratch1, c->as_jobject());
 777           if (UseCompressedOops && !wide) {
 778             __ encode_heap_oop(rscratch1);
 779             null_check_here = code_offset();
 780             __ movl(as_Address_lo(addr), rscratch1);
 781           } else {
 782             null_check_here = code_offset();
 783             __ movptr(as_Address_lo(addr), rscratch1);
 784           }
 785 #else
 786           __ movoop(as_Address(addr), c->as_jobject());
 787 #endif
 788         }
 789       }
 790       break;
 791 
 792     case T_LONG:    // fall through
 793     case T_DOUBLE:
 794 #ifdef _LP64
 795       if (is_literal_address(addr)) {
 796         ShouldNotReachHere();
 797         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 798       } else {
 799         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 800         null_check_here = code_offset();
 801         __ movptr(as_Address_lo(addr), r10);
 802       }
 803 #else
 804       // Always reachable in 32bit so this doesn't produce useless move literal
 805       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 806       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 807 #endif // _LP64
 808       break;
 809 
 810     case T_BOOLEAN: // fall through
 811     case T_BYTE:
 812       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 813       break;
 814 
 815     case T_CHAR:    // fall through
 816     case T_SHORT:
 817       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 818       break;
 819 
 820     default:
 821       ShouldNotReachHere();
 822   };
 823 
 824   if (info != NULL) {
 825     add_debug_info_for_null_check(null_check_here, info);
 826   }
 827 }
 828 
 829 
 830 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 831   assert(src->is_register(), "should not call otherwise");
 832   assert(dest->is_register(), "should not call otherwise");
 833 
 834   // move between cpu-registers
 835   if (dest->is_single_cpu()) {
 836 #ifdef _LP64
 837     if (src->type() == T_LONG) {
 838       // Can do LONG -> OBJECT
 839       move_regs(src->as_register_lo(), dest->as_register());
 840       return;
 841     }
 842 #endif
 843     assert(src->is_single_cpu(), "must match");
 844     if (src->type() == T_OBJECT || src->type() == T_VALUETYPE) {
 845       __ verify_oop(src->as_register());
 846     }
 847     move_regs(src->as_register(), dest->as_register());
 848 
 849   } else if (dest->is_double_cpu()) {
 850 #ifdef _LP64
 851     if (src->type() == T_OBJECT || src->type() == T_ARRAY || src->type() == T_VALUETYPE) {
 852       // Surprising to me but we can see move of a long to t_object
 853       __ verify_oop(src->as_register());
 854       move_regs(src->as_register(), dest->as_register_lo());
 855       return;
 856     }
 857 #endif
 858     assert(src->is_double_cpu(), "must match");
 859     Register f_lo = src->as_register_lo();
 860     Register f_hi = src->as_register_hi();
 861     Register t_lo = dest->as_register_lo();
 862     Register t_hi = dest->as_register_hi();
 863 #ifdef _LP64
 864     assert(f_hi == f_lo, "must be same");
 865     assert(t_hi == t_lo, "must be same");
 866     move_regs(f_lo, t_lo);
 867 #else
 868     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 869 
 870 
 871     if (f_lo == t_hi && f_hi == t_lo) {
 872       swap_reg(f_lo, f_hi);
 873     } else if (f_hi == t_lo) {
 874       assert(f_lo != t_hi, "overwriting register");
 875       move_regs(f_hi, t_hi);
 876       move_regs(f_lo, t_lo);
 877     } else {
 878       assert(f_hi != t_lo, "overwriting register");
 879       move_regs(f_lo, t_lo);
 880       move_regs(f_hi, t_hi);
 881     }
 882 #endif // LP64
 883 
 884     // special moves from fpu-register to xmm-register
 885     // necessary for method results
 886   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 887     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 888     __ fld_s(Address(rsp, 0));
 889   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 890     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 891     __ fld_d(Address(rsp, 0));
 892   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 893     __ fstp_s(Address(rsp, 0));
 894     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 895   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 896     __ fstp_d(Address(rsp, 0));
 897     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 898 
 899     // move between xmm-registers
 900   } else if (dest->is_single_xmm()) {
 901     assert(src->is_single_xmm(), "must match");
 902     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 903   } else if (dest->is_double_xmm()) {
 904     assert(src->is_double_xmm(), "must match");
 905     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 906 
 907     // move between fpu-registers (no instruction necessary because of fpu-stack)
 908   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 909     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 910     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 911   } else {
 912     ShouldNotReachHere();
 913   }
 914 }
 915 
 916 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 917   assert(src->is_register(), "should not call otherwise");
 918   assert(dest->is_stack(), "should not call otherwise");
 919 
 920   if (src->is_single_cpu()) {
 921     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 922     if (type == T_OBJECT || type == T_ARRAY || type == T_VALUETYPE) {
 923       __ verify_oop(src->as_register());
 924       __ movptr (dst, src->as_register());
 925     } else if (type == T_METADATA) {
 926       __ movptr (dst, src->as_register());
 927     } else {
 928       __ movl (dst, src->as_register());
 929     }
 930 
 931   } else if (src->is_double_cpu()) {
 932     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 933     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 934     __ movptr (dstLO, src->as_register_lo());
 935     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 936 
 937   } else if (src->is_single_xmm()) {
 938     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 939     __ movflt(dst_addr, src->as_xmm_float_reg());
 940 
 941   } else if (src->is_double_xmm()) {
 942     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 943     __ movdbl(dst_addr, src->as_xmm_double_reg());
 944 
 945   } else if (src->is_single_fpu()) {
 946     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 947     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 948     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 949     else                   __ fst_s  (dst_addr);
 950 
 951   } else if (src->is_double_fpu()) {
 952     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 953     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 954     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 955     else                   __ fst_d  (dst_addr);
 956 
 957   } else {
 958     ShouldNotReachHere();
 959   }
 960 }
 961 
 962 
 963 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 964   LIR_Address* to_addr = dest->as_address_ptr();
 965   PatchingStub* patch = NULL;
 966   Register compressed_src = rscratch1;
 967 
 968   if (type == T_ARRAY || type == T_OBJECT || type == T_VALUETYPE) {
 969     __ verify_oop(src->as_register());
 970 #ifdef _LP64
 971     if (UseCompressedOops && !wide) {
 972       __ movptr(compressed_src, src->as_register());
 973       __ encode_heap_oop(compressed_src);
 974       if (patch_code != lir_patch_none) {
 975         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 976       }
 977     }
 978 #endif
 979   }
 980 
 981   if (patch_code != lir_patch_none) {
 982     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 983     Address toa = as_Address(to_addr);
 984     assert(toa.disp() != 0, "must have");
 985   }
 986 
 987   int null_check_here = code_offset();
 988   switch (type) {
 989     case T_FLOAT: {
 990       if (src->is_single_xmm()) {
 991         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 992       } else {
 993         assert(src->is_single_fpu(), "must be");
 994         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 995         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 996         else                    __ fst_s (as_Address(to_addr));
 997       }
 998       break;
 999     }
1000 
1001     case T_DOUBLE: {
1002       if (src->is_double_xmm()) {
1003         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1004       } else {
1005         assert(src->is_double_fpu(), "must be");
1006         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1007         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1008         else                    __ fst_d (as_Address(to_addr));
1009       }
1010       break;
1011     }
1012 
1013     case T_VALUETYPE: // fall through
1014     case T_ARRAY:   // fall through
1015     case T_OBJECT:  // fall through
1016       if (UseCompressedOops && !wide) {
1017         __ movl(as_Address(to_addr), compressed_src);
1018       } else {
1019         __ movptr(as_Address(to_addr), src->as_register());
1020       }
1021       break;
1022     case T_METADATA:
1023       // We get here to store a method pointer to the stack to pass to
1024       // a dtrace runtime call. This can't work on 64 bit with
1025       // compressed klass ptrs: T_METADATA can be a compressed klass
1026       // ptr or a 64 bit method pointer.
1027       LP64_ONLY(ShouldNotReachHere());
1028       __ movptr(as_Address(to_addr), src->as_register());
1029       break;
1030     case T_ADDRESS:
1031       __ movptr(as_Address(to_addr), src->as_register());
1032       break;
1033     case T_INT:
1034       __ movl(as_Address(to_addr), src->as_register());
1035       break;
1036 
1037     case T_LONG: {
1038       Register from_lo = src->as_register_lo();
1039       Register from_hi = src->as_register_hi();
1040 #ifdef _LP64
1041       __ movptr(as_Address_lo(to_addr), from_lo);
1042 #else
1043       Register base = to_addr->base()->as_register();
1044       Register index = noreg;
1045       if (to_addr->index()->is_register()) {
1046         index = to_addr->index()->as_register();
1047       }
1048       if (base == from_lo || index == from_lo) {
1049         assert(base != from_hi, "can't be");
1050         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1051         __ movl(as_Address_hi(to_addr), from_hi);
1052         if (patch != NULL) {
1053           patching_epilog(patch, lir_patch_high, base, info);
1054           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1055           patch_code = lir_patch_low;
1056         }
1057         __ movl(as_Address_lo(to_addr), from_lo);
1058       } else {
1059         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1060         __ movl(as_Address_lo(to_addr), from_lo);
1061         if (patch != NULL) {
1062           patching_epilog(patch, lir_patch_low, base, info);
1063           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1064           patch_code = lir_patch_high;
1065         }
1066         __ movl(as_Address_hi(to_addr), from_hi);
1067       }
1068 #endif // _LP64
1069       break;
1070     }
1071 
1072     case T_BYTE:    // fall through
1073     case T_BOOLEAN: {
1074       Register src_reg = src->as_register();
1075       Address dst_addr = as_Address(to_addr);
1076       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1077       __ movb(dst_addr, src_reg);
1078       break;
1079     }
1080 
1081     case T_CHAR:    // fall through
1082     case T_SHORT:
1083       __ movw(as_Address(to_addr), src->as_register());
1084       break;
1085 
1086     default:
1087       ShouldNotReachHere();
1088   }
1089   if (info != NULL) {
1090     add_debug_info_for_null_check(null_check_here, info);
1091   }
1092 
1093   if (patch_code != lir_patch_none) {
1094     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1095   }
1096 }
1097 
1098 
1099 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1100   assert(src->is_stack(), "should not call otherwise");
1101   assert(dest->is_register(), "should not call otherwise");
1102 
1103   if (dest->is_single_cpu()) {
1104     if (type == T_ARRAY || type == T_OBJECT || type == T_VALUETYPE) {
1105       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1106       __ verify_oop(dest->as_register());
1107     } else if (type == T_METADATA) {
1108       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1109     } else {
1110       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1111     }
1112 
1113   } else if (dest->is_double_cpu()) {
1114     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1115     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1116     __ movptr(dest->as_register_lo(), src_addr_LO);
1117     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1118 
1119   } else if (dest->is_single_xmm()) {
1120     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1121     __ movflt(dest->as_xmm_float_reg(), src_addr);
1122 
1123   } else if (dest->is_double_xmm()) {
1124     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1125     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1126 
1127   } else if (dest->is_single_fpu()) {
1128     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1129     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1130     __ fld_s(src_addr);
1131 
1132   } else if (dest->is_double_fpu()) {
1133     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1134     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1135     __ fld_d(src_addr);
1136 
1137   } else {
1138     ShouldNotReachHere();
1139   }
1140 }
1141 
1142 
1143 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1144   if (src->is_single_stack()) {
1145     if (type == T_OBJECT || type == T_ARRAY || type == T_VALUETYPE) {
1146       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1147       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1148     } else {
1149 #ifndef _LP64
1150       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1151       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1152 #else
1153       //no pushl on 64bits
1154       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1155       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1156 #endif
1157     }
1158 
1159   } else if (src->is_double_stack()) {
1160 #ifdef _LP64
1161     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1162     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1163 #else
1164     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1165     // push and pop the part at src + wordSize, adding wordSize for the previous push
1166     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1167     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1168     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1169 #endif // _LP64
1170 
1171   } else {
1172     ShouldNotReachHere();
1173   }
1174 }
1175 
1176 
1177 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1178   assert(src->is_address(), "should not call otherwise");
1179   assert(dest->is_register(), "should not call otherwise");
1180 
1181   LIR_Address* addr = src->as_address_ptr();
1182   Address from_addr = as_Address(addr);
1183 
1184   if (addr->base()->type() == T_OBJECT || addr->base()->type() == T_VALUETYPE) {
1185     __ verify_oop(addr->base()->as_pointer_register());
1186   }
1187 
1188   switch (type) {
1189     case T_BOOLEAN: // fall through
1190     case T_BYTE:    // fall through
1191     case T_CHAR:    // fall through
1192     case T_SHORT:
1193       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1194         // on pre P6 processors we may get partial register stalls
1195         // so blow away the value of to_rinfo before loading a
1196         // partial word into it.  Do it here so that it precedes
1197         // the potential patch point below.
1198         __ xorptr(dest->as_register(), dest->as_register());
1199       }
1200       break;
1201    default:
1202      break;
1203   }
1204 
1205   PatchingStub* patch = NULL;
1206   if (patch_code != lir_patch_none) {
1207     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1208     assert(from_addr.disp() != 0, "must have");
1209   }
1210   if (info != NULL) {
1211     add_debug_info_for_null_check_here(info);
1212   }
1213 
1214   switch (type) {
1215     case T_FLOAT: {
1216       if (dest->is_single_xmm()) {
1217         __ movflt(dest->as_xmm_float_reg(), from_addr);
1218       } else {
1219         assert(dest->is_single_fpu(), "must be");
1220         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1221         __ fld_s(from_addr);
1222       }
1223       break;
1224     }
1225 
1226     case T_DOUBLE: {
1227       if (dest->is_double_xmm()) {
1228         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1229       } else {
1230         assert(dest->is_double_fpu(), "must be");
1231         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1232         __ fld_d(from_addr);
1233       }
1234       break;
1235     }
1236 
1237     case T_VALUETYPE: // fall through
1238     case T_OBJECT:  // fall through
1239     case T_ARRAY:   // fall through
1240       if (UseCompressedOops && !wide) {
1241         __ movl(dest->as_register(), from_addr);
1242       } else {
1243         __ movptr(dest->as_register(), from_addr);
1244       }
1245       break;
1246 
1247     case T_ADDRESS:
1248       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1249         __ movl(dest->as_register(), from_addr);
1250       } else {
1251         __ movptr(dest->as_register(), from_addr);
1252       }
1253       break;
1254     case T_INT:
1255       __ movl(dest->as_register(), from_addr);
1256       break;
1257 
1258     case T_LONG: {
1259       Register to_lo = dest->as_register_lo();
1260       Register to_hi = dest->as_register_hi();
1261 #ifdef _LP64
1262       __ movptr(to_lo, as_Address_lo(addr));
1263 #else
1264       Register base = addr->base()->as_register();
1265       Register index = noreg;
1266       if (addr->index()->is_register()) {
1267         index = addr->index()->as_register();
1268       }
1269       if ((base == to_lo && index == to_hi) ||
1270           (base == to_hi && index == to_lo)) {
1271         // addresses with 2 registers are only formed as a result of
1272         // array access so this code will never have to deal with
1273         // patches or null checks.
1274         assert(info == NULL && patch == NULL, "must be");
1275         __ lea(to_hi, as_Address(addr));
1276         __ movl(to_lo, Address(to_hi, 0));
1277         __ movl(to_hi, Address(to_hi, BytesPerWord));
1278       } else if (base == to_lo || index == to_lo) {
1279         assert(base != to_hi, "can't be");
1280         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1281         __ movl(to_hi, as_Address_hi(addr));
1282         if (patch != NULL) {
1283           patching_epilog(patch, lir_patch_high, base, info);
1284           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1285           patch_code = lir_patch_low;
1286         }
1287         __ movl(to_lo, as_Address_lo(addr));
1288       } else {
1289         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1290         __ movl(to_lo, as_Address_lo(addr));
1291         if (patch != NULL) {
1292           patching_epilog(patch, lir_patch_low, base, info);
1293           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1294           patch_code = lir_patch_high;
1295         }
1296         __ movl(to_hi, as_Address_hi(addr));
1297       }
1298 #endif // _LP64
1299       break;
1300     }
1301 
1302     case T_BOOLEAN: // fall through
1303     case T_BYTE: {
1304       Register dest_reg = dest->as_register();
1305       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1306       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1307         __ movsbl(dest_reg, from_addr);
1308       } else {
1309         __ movb(dest_reg, from_addr);
1310         __ shll(dest_reg, 24);
1311         __ sarl(dest_reg, 24);
1312       }
1313       break;
1314     }
1315 
1316     case T_CHAR: {
1317       Register dest_reg = dest->as_register();
1318       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1319       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1320         __ movzwl(dest_reg, from_addr);
1321       } else {
1322         __ movw(dest_reg, from_addr);
1323       }
1324       break;
1325     }
1326 
1327     case T_SHORT: {
1328       Register dest_reg = dest->as_register();
1329       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1330         __ movswl(dest_reg, from_addr);
1331       } else {
1332         __ movw(dest_reg, from_addr);
1333         __ shll(dest_reg, 16);
1334         __ sarl(dest_reg, 16);
1335       }
1336       break;
1337     }
1338 
1339     default:
1340       ShouldNotReachHere();
1341   }
1342 
1343   if (patch != NULL) {
1344     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1345   }
1346 
1347   if (type == T_ARRAY || type == T_OBJECT || type == T_VALUETYPE) {
1348 #ifdef _LP64
1349     if (UseCompressedOops && !wide) {
1350       __ decode_heap_oop(dest->as_register());
1351     }
1352 #endif
1353 
1354     // Load barrier has not yet been applied, so ZGC can't verify the oop here
1355     if (!UseZGC) {
1356       __ verify_oop(dest->as_register());
1357     }
1358   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1359 #ifdef _LP64
1360     if (UseCompressedClassPointers) {
1361       __ decode_klass_not_null(dest->as_register());
1362     }
1363 #endif
1364   }
1365 }
1366 
1367 
1368 NEEDS_CLEANUP; // This could be static?
1369 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1370   int elem_size = type2aelembytes(type);
1371   switch (elem_size) {
1372     case 1: return Address::times_1;
1373     case 2: return Address::times_2;
1374     case 4: return Address::times_4;
1375     case 8: return Address::times_8;
1376   }
1377   ShouldNotReachHere();
1378   return Address::no_scale;
1379 }
1380 
1381 
1382 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1383   switch (op->code()) {
1384     case lir_idiv:
1385     case lir_irem:
1386       arithmetic_idiv(op->code(),
1387                       op->in_opr1(),
1388                       op->in_opr2(),
1389                       op->in_opr3(),
1390                       op->result_opr(),
1391                       op->info());
1392       break;
1393     case lir_fmad:
1394       __ fmad(op->result_opr()->as_xmm_double_reg(),
1395               op->in_opr1()->as_xmm_double_reg(),
1396               op->in_opr2()->as_xmm_double_reg(),
1397               op->in_opr3()->as_xmm_double_reg());
1398       break;
1399     case lir_fmaf:
1400       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1401               op->in_opr1()->as_xmm_float_reg(),
1402               op->in_opr2()->as_xmm_float_reg(),
1403               op->in_opr3()->as_xmm_float_reg());
1404       break;
1405     default:      ShouldNotReachHere(); break;
1406   }
1407 }
1408 
1409 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1410 #ifdef ASSERT
1411   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1412   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1413   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1414 #endif
1415 
1416   if (op->cond() == lir_cond_always) {
1417     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1418     __ jmp (*(op->label()));
1419   } else {
1420     Assembler::Condition acond = Assembler::zero;
1421     if (op->code() == lir_cond_float_branch) {
1422       assert(op->ublock() != NULL, "must have unordered successor");
1423       __ jcc(Assembler::parity, *(op->ublock()->label()));
1424       switch(op->cond()) {
1425         case lir_cond_equal:        acond = Assembler::equal;      break;
1426         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1427         case lir_cond_less:         acond = Assembler::below;      break;
1428         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1429         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1430         case lir_cond_greater:      acond = Assembler::above;      break;
1431         default:                         ShouldNotReachHere();
1432       }
1433     } else {
1434       switch (op->cond()) {
1435         case lir_cond_equal:        acond = Assembler::equal;       break;
1436         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1437         case lir_cond_less:         acond = Assembler::less;        break;
1438         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1439         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1440         case lir_cond_greater:      acond = Assembler::greater;     break;
1441         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1442         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1443         default:                         ShouldNotReachHere();
1444       }
1445     }
1446     __ jcc(acond,*(op->label()));
1447   }
1448 }
1449 
1450 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1451   LIR_Opr src  = op->in_opr();
1452   LIR_Opr dest = op->result_opr();
1453 
1454   switch (op->bytecode()) {
1455     case Bytecodes::_i2l:
1456 #ifdef _LP64
1457       __ movl2ptr(dest->as_register_lo(), src->as_register());
1458 #else
1459       move_regs(src->as_register(), dest->as_register_lo());
1460       move_regs(src->as_register(), dest->as_register_hi());
1461       __ sarl(dest->as_register_hi(), 31);
1462 #endif // LP64
1463       break;
1464 
1465     case Bytecodes::_l2i:
1466 #ifdef _LP64
1467       __ movl(dest->as_register(), src->as_register_lo());
1468 #else
1469       move_regs(src->as_register_lo(), dest->as_register());
1470 #endif
1471       break;
1472 
1473     case Bytecodes::_i2b:
1474       move_regs(src->as_register(), dest->as_register());
1475       __ sign_extend_byte(dest->as_register());
1476       break;
1477 
1478     case Bytecodes::_i2c:
1479       move_regs(src->as_register(), dest->as_register());
1480       __ andl(dest->as_register(), 0xFFFF);
1481       break;
1482 
1483     case Bytecodes::_i2s:
1484       move_regs(src->as_register(), dest->as_register());
1485       __ sign_extend_short(dest->as_register());
1486       break;
1487 
1488 
1489     case Bytecodes::_f2d:
1490     case Bytecodes::_d2f:
1491       if (dest->is_single_xmm()) {
1492         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1493       } else if (dest->is_double_xmm()) {
1494         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1495       } else {
1496         assert(src->fpu() == dest->fpu(), "register must be equal");
1497         // do nothing (float result is rounded later through spilling)
1498       }
1499       break;
1500 
1501     case Bytecodes::_i2f:
1502     case Bytecodes::_i2d:
1503       if (dest->is_single_xmm()) {
1504         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1505       } else if (dest->is_double_xmm()) {
1506         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1507       } else {
1508         assert(dest->fpu() == 0, "result must be on TOS");
1509         __ movl(Address(rsp, 0), src->as_register());
1510         __ fild_s(Address(rsp, 0));
1511       }
1512       break;
1513 
1514     case Bytecodes::_f2i:
1515     case Bytecodes::_d2i:
1516       if (src->is_single_xmm()) {
1517         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1518       } else if (src->is_double_xmm()) {
1519         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1520       } else {
1521         assert(src->fpu() == 0, "input must be on TOS");
1522         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1523         __ fist_s(Address(rsp, 0));
1524         __ movl(dest->as_register(), Address(rsp, 0));
1525         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1526       }
1527 
1528       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1529       assert(op->stub() != NULL, "stub required");
1530       __ cmpl(dest->as_register(), 0x80000000);
1531       __ jcc(Assembler::equal, *op->stub()->entry());
1532       __ bind(*op->stub()->continuation());
1533       break;
1534 
1535     case Bytecodes::_l2f:
1536     case Bytecodes::_l2d:
1537       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1538       assert(dest->fpu() == 0, "result must be on TOS");
1539 
1540       __ movptr(Address(rsp, 0),            src->as_register_lo());
1541       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1542       __ fild_d(Address(rsp, 0));
1543       // float result is rounded later through spilling
1544       break;
1545 
1546     case Bytecodes::_f2l:
1547     case Bytecodes::_d2l:
1548       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1549       assert(src->fpu() == 0, "input must be on TOS");
1550       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1551 
1552       // instruction sequence too long to inline it here
1553       {
1554         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1555       }
1556       break;
1557 
1558     default: ShouldNotReachHere();
1559   }
1560 }
1561 
1562 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1563   if (op->init_check()) {
1564     add_debug_info_for_null_check_here(op->stub()->info());
1565     __ cmpb(Address(op->klass()->as_register(),
1566                     InstanceKlass::init_state_offset()),
1567                     InstanceKlass::fully_initialized);
1568     __ jcc(Assembler::notEqual, *op->stub()->entry());
1569   }
1570   __ allocate_object(op->obj()->as_register(),
1571                      op->tmp1()->as_register(),
1572                      op->tmp2()->as_register(),
1573                      op->header_size(),
1574                      op->object_size(),
1575                      op->klass()->as_register(),
1576                      *op->stub()->entry());
1577   __ bind(*op->stub()->continuation());
1578 }
1579 
1580 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1581   Register len =  op->len()->as_register();
1582   LP64_ONLY( __ movslq(len, len); )
1583 
1584   if (UseSlowPath || op->type() == T_VALUETYPE ||
1585       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1586       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1587     __ jmp(*op->stub()->entry());
1588   } else {
1589     Register tmp1 = op->tmp1()->as_register();
1590     Register tmp2 = op->tmp2()->as_register();
1591     Register tmp3 = op->tmp3()->as_register();
1592     if (len == tmp1) {
1593       tmp1 = tmp3;
1594     } else if (len == tmp2) {
1595       tmp2 = tmp3;
1596     } else if (len == tmp3) {
1597       // everything is ok
1598     } else {
1599       __ mov(tmp3, len);
1600     }
1601     __ allocate_array(op->obj()->as_register(),
1602                       len,
1603                       tmp1,
1604                       tmp2,
1605                       arrayOopDesc::header_size(op->type()),
1606                       array_element_size(op->type()),
1607                       op->klass()->as_register(),
1608                       *op->stub()->entry());
1609   }
1610   __ bind(*op->stub()->continuation());
1611 }
1612 
1613 void LIR_Assembler::type_profile_helper(Register mdo,
1614                                         ciMethodData *md, ciProfileData *data,
1615                                         Register recv, Label* update_done) {
1616   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1617     Label next_test;
1618     // See if the receiver is receiver[n].
1619     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1620     __ jccb(Assembler::notEqual, next_test);
1621     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1622     __ addptr(data_addr, DataLayout::counter_increment);
1623     __ jmp(*update_done);
1624     __ bind(next_test);
1625   }
1626 
1627   // Didn't find receiver; find next empty slot and fill it in
1628   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1629     Label next_test;
1630     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1631     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1632     __ jccb(Assembler::notEqual, next_test);
1633     __ movptr(recv_addr, recv);
1634     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1635     __ jmp(*update_done);
1636     __ bind(next_test);
1637   }
1638 }
1639 
1640 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1641   // we always need a stub for the failure case.
1642   CodeStub* stub = op->stub();
1643   Register obj = op->object()->as_register();
1644   Register k_RInfo = op->tmp1()->as_register();
1645   Register klass_RInfo = op->tmp2()->as_register();
1646   Register dst = op->result_opr()->as_register();
1647   ciKlass* k = op->klass();
1648   Register Rtmp1 = noreg;
1649 
1650   // check if it needs to be profiled
1651   ciMethodData* md = NULL;
1652   ciProfileData* data = NULL;
1653 
1654   if (op->should_profile()) {
1655     ciMethod* method = op->profiled_method();
1656     assert(method != NULL, "Should have method");
1657     int bci = op->profiled_bci();
1658     md = method->method_data_or_null();
1659     assert(md != NULL, "Sanity");
1660     data = md->bci_to_data(bci);
1661     assert(data != NULL,                "need data for type check");
1662     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1663   }
1664   Label profile_cast_success, profile_cast_failure;
1665   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1666   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1667 
1668   if (obj == k_RInfo) {
1669     k_RInfo = dst;
1670   } else if (obj == klass_RInfo) {
1671     klass_RInfo = dst;
1672   }
1673   if (k->is_loaded() && !UseCompressedClassPointers) {
1674     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1675   } else {
1676     Rtmp1 = op->tmp3()->as_register();
1677     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1678   }
1679 
1680   assert_different_registers(obj, k_RInfo, klass_RInfo);
1681 
1682   __ cmpptr(obj, (int32_t)NULL_WORD);
1683   if (op->should_profile()) {
1684     Label not_null;
1685     __ jccb(Assembler::notEqual, not_null);
1686     // Object is null; update MDO and exit
1687     Register mdo  = klass_RInfo;
1688     __ mov_metadata(mdo, md->constant_encoding());
1689     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1690     int header_bits = BitData::null_seen_byte_constant();
1691     __ orb(data_addr, header_bits);
1692     __ jmp(*obj_is_null);
1693     __ bind(not_null);
1694   } else {
1695     __ jcc(Assembler::equal, *obj_is_null);
1696   }
1697 
1698   if (!k->is_loaded()) {
1699     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1700   } else {
1701 #ifdef _LP64
1702     __ mov_metadata(k_RInfo, k->constant_encoding());
1703 #endif // _LP64
1704   }
1705   __ verify_oop(obj);
1706 
1707   if (op->fast_check()) {
1708     // get object class
1709     // not a safepoint as obj null check happens earlier
1710 #ifdef _LP64
1711     if (UseCompressedClassPointers) {
1712       __ load_klass(Rtmp1, obj);
1713       __ cmpptr(k_RInfo, Rtmp1);
1714     } else {
1715       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1716     }
1717 #else
1718     if (k->is_loaded()) {
1719       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1720     } else {
1721       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1722     }
1723 #endif
1724     __ jcc(Assembler::notEqual, *failure_target);
1725     // successful cast, fall through to profile or jump
1726   } else {
1727     // get object class
1728     // not a safepoint as obj null check happens earlier
1729     __ load_klass(klass_RInfo, obj);
1730     if (k->is_loaded()) {
1731       // See if we get an immediate positive hit
1732 #ifdef _LP64
1733       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1734 #else
1735       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1736 #endif // _LP64
1737       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1738         __ jcc(Assembler::notEqual, *failure_target);
1739         // successful cast, fall through to profile or jump
1740       } else {
1741         // See if we get an immediate positive hit
1742         __ jcc(Assembler::equal, *success_target);
1743         // check for self
1744 #ifdef _LP64
1745         __ cmpptr(klass_RInfo, k_RInfo);
1746 #else
1747         __ cmpklass(klass_RInfo, k->constant_encoding());
1748 #endif // _LP64
1749         __ jcc(Assembler::equal, *success_target);
1750 
1751         __ push(klass_RInfo);
1752 #ifdef _LP64
1753         __ push(k_RInfo);
1754 #else
1755         __ pushklass(k->constant_encoding());
1756 #endif // _LP64
1757         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1758         __ pop(klass_RInfo);
1759         __ pop(klass_RInfo);
1760         // result is a boolean
1761         __ cmpl(klass_RInfo, 0);
1762         __ jcc(Assembler::equal, *failure_target);
1763         // successful cast, fall through to profile or jump
1764       }
1765     } else {
1766       // perform the fast part of the checking logic
1767       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1768       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1769       __ push(klass_RInfo);
1770       __ push(k_RInfo);
1771       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1772       __ pop(klass_RInfo);
1773       __ pop(k_RInfo);
1774       // result is a boolean
1775       __ cmpl(k_RInfo, 0);
1776       __ jcc(Assembler::equal, *failure_target);
1777       // successful cast, fall through to profile or jump
1778     }
1779   }
1780   if (op->should_profile()) {
1781     Register mdo  = klass_RInfo, recv = k_RInfo;
1782     __ bind(profile_cast_success);
1783     __ mov_metadata(mdo, md->constant_encoding());
1784     __ load_klass(recv, obj);
1785     type_profile_helper(mdo, md, data, recv, success);
1786     __ jmp(*success);
1787 
1788     __ bind(profile_cast_failure);
1789     __ mov_metadata(mdo, md->constant_encoding());
1790     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1791     __ subptr(counter_addr, DataLayout::counter_increment);
1792     __ jmp(*failure);
1793   }
1794   __ jmp(*success);
1795 }
1796 
1797 
1798 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1799   LIR_Code code = op->code();
1800   if (code == lir_store_check) {
1801     Register value = op->object()->as_register();
1802     Register array = op->array()->as_register();
1803     Register k_RInfo = op->tmp1()->as_register();
1804     Register klass_RInfo = op->tmp2()->as_register();
1805     Register Rtmp1 = op->tmp3()->as_register();
1806 
1807     CodeStub* stub = op->stub();
1808 
1809     // check if it needs to be profiled
1810     ciMethodData* md = NULL;
1811     ciProfileData* data = NULL;
1812 
1813     if (op->should_profile()) {
1814       ciMethod* method = op->profiled_method();
1815       assert(method != NULL, "Should have method");
1816       int bci = op->profiled_bci();
1817       md = method->method_data_or_null();
1818       assert(md != NULL, "Sanity");
1819       data = md->bci_to_data(bci);
1820       assert(data != NULL,                "need data for type check");
1821       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1822     }
1823     Label profile_cast_success, profile_cast_failure, done;
1824     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1825     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1826 
1827     __ cmpptr(value, (int32_t)NULL_WORD);
1828     if (op->should_profile()) {
1829       Label not_null;
1830       __ jccb(Assembler::notEqual, not_null);
1831       // Object is null; update MDO and exit
1832       Register mdo  = klass_RInfo;
1833       __ mov_metadata(mdo, md->constant_encoding());
1834       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1835       int header_bits = BitData::null_seen_byte_constant();
1836       __ orb(data_addr, header_bits);
1837       __ jmp(done);
1838       __ bind(not_null);
1839     } else {
1840       __ jcc(Assembler::equal, done);
1841     }
1842 
1843     add_debug_info_for_null_check_here(op->info_for_exception());
1844     __ load_klass(k_RInfo, array);
1845     __ load_klass(klass_RInfo, value);
1846 
1847     // get instance klass (it's already uncompressed)
1848     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1849     // perform the fast part of the checking logic
1850     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1851     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1852     __ push(klass_RInfo);
1853     __ push(k_RInfo);
1854     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1855     __ pop(klass_RInfo);
1856     __ pop(k_RInfo);
1857     // result is a boolean
1858     __ cmpl(k_RInfo, 0);
1859     __ jcc(Assembler::equal, *failure_target);
1860     // fall through to the success case
1861 
1862     if (op->should_profile()) {
1863       Register mdo  = klass_RInfo, recv = k_RInfo;
1864       __ bind(profile_cast_success);
1865       __ mov_metadata(mdo, md->constant_encoding());
1866       __ load_klass(recv, value);
1867       type_profile_helper(mdo, md, data, recv, &done);
1868       __ jmpb(done);
1869 
1870       __ bind(profile_cast_failure);
1871       __ mov_metadata(mdo, md->constant_encoding());
1872       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1873       __ subptr(counter_addr, DataLayout::counter_increment);
1874       __ jmp(*stub->entry());
1875     }
1876 
1877     __ bind(done);
1878   } else
1879     if (code == lir_checkcast) {
1880       Register obj = op->object()->as_register();
1881       Register dst = op->result_opr()->as_register();
1882       Label success;
1883       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1884       __ bind(success);
1885       if (dst != obj) {
1886         __ mov(dst, obj);
1887       }
1888     } else
1889       if (code == lir_instanceof) {
1890         Register obj = op->object()->as_register();
1891         Register dst = op->result_opr()->as_register();
1892         Label success, failure, done;
1893         emit_typecheck_helper(op, &success, &failure, &failure);
1894         __ bind(failure);
1895         __ xorptr(dst, dst);
1896         __ jmpb(done);
1897         __ bind(success);
1898         __ movptr(dst, 1);
1899         __ bind(done);
1900       } else {
1901         ShouldNotReachHere();
1902       }
1903 
1904 }
1905 
1906 
1907 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1908   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1909     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1910     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1911     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1912     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1913     Register addr = op->addr()->as_register();
1914     __ lock();
1915     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1916 
1917   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1918     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1919     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1920     Register newval = op->new_value()->as_register();
1921     Register cmpval = op->cmp_value()->as_register();
1922     assert(cmpval == rax, "wrong register");
1923     assert(newval != NULL, "new val must be register");
1924     assert(cmpval != newval, "cmp and new values must be in different registers");
1925     assert(cmpval != addr, "cmp and addr must be in different registers");
1926     assert(newval != addr, "new value and addr must be in different registers");
1927 
1928     if ( op->code() == lir_cas_obj) {
1929 #ifdef _LP64
1930       if (UseCompressedOops) {
1931         __ encode_heap_oop(cmpval);
1932         __ mov(rscratch1, newval);
1933         __ encode_heap_oop(rscratch1);
1934         __ lock();
1935         // cmpval (rax) is implicitly used by this instruction
1936         __ cmpxchgl(rscratch1, Address(addr, 0));
1937       } else
1938 #endif
1939       {
1940         __ lock();
1941         __ cmpxchgptr(newval, Address(addr, 0));
1942       }
1943     } else {
1944       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1945       __ lock();
1946       __ cmpxchgl(newval, Address(addr, 0));
1947     }
1948 #ifdef _LP64
1949   } else if (op->code() == lir_cas_long) {
1950     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1951     Register newval = op->new_value()->as_register_lo();
1952     Register cmpval = op->cmp_value()->as_register_lo();
1953     assert(cmpval == rax, "wrong register");
1954     assert(newval != NULL, "new val must be register");
1955     assert(cmpval != newval, "cmp and new values must be in different registers");
1956     assert(cmpval != addr, "cmp and addr must be in different registers");
1957     assert(newval != addr, "new value and addr must be in different registers");
1958     __ lock();
1959     __ cmpxchgq(newval, Address(addr, 0));
1960 #endif // _LP64
1961   } else {
1962     Unimplemented();
1963   }
1964 }
1965 
1966 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1967   Assembler::Condition acond, ncond;
1968   switch (condition) {
1969     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1970     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1971     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1972     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1973     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1974     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1975     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1976     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1977     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
1978                                 ShouldNotReachHere();
1979   }
1980 
1981   if (opr1->is_cpu_register()) {
1982     reg2reg(opr1, result);
1983   } else if (opr1->is_stack()) {
1984     stack2reg(opr1, result, result->type());
1985   } else if (opr1->is_constant()) {
1986     const2reg(opr1, result, lir_patch_none, NULL);
1987   } else {
1988     ShouldNotReachHere();
1989   }
1990 
1991   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1992     // optimized version that does not require a branch
1993     if (opr2->is_single_cpu()) {
1994       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1995       __ cmov(ncond, result->as_register(), opr2->as_register());
1996     } else if (opr2->is_double_cpu()) {
1997       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1998       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1999       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2000       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2001     } else if (opr2->is_single_stack()) {
2002       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2003     } else if (opr2->is_double_stack()) {
2004       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2005       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2006     } else {
2007       ShouldNotReachHere();
2008     }
2009 
2010   } else {
2011     Label skip;
2012     __ jcc (acond, skip);
2013     if (opr2->is_cpu_register()) {
2014       reg2reg(opr2, result);
2015     } else if (opr2->is_stack()) {
2016       stack2reg(opr2, result, result->type());
2017     } else if (opr2->is_constant()) {
2018       const2reg(opr2, result, lir_patch_none, NULL);
2019     } else {
2020       ShouldNotReachHere();
2021     }
2022     __ bind(skip);
2023   }
2024 }
2025 
2026 
2027 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2028   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2029 
2030   if (left->is_single_cpu()) {
2031     assert(left == dest, "left and dest must be equal");
2032     Register lreg = left->as_register();
2033 
2034     if (right->is_single_cpu()) {
2035       // cpu register - cpu register
2036       Register rreg = right->as_register();
2037       switch (code) {
2038         case lir_add: __ addl (lreg, rreg); break;
2039         case lir_sub: __ subl (lreg, rreg); break;
2040         case lir_mul: __ imull(lreg, rreg); break;
2041         default:      ShouldNotReachHere();
2042       }
2043 
2044     } else if (right->is_stack()) {
2045       // cpu register - stack
2046       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2047       switch (code) {
2048         case lir_add: __ addl(lreg, raddr); break;
2049         case lir_sub: __ subl(lreg, raddr); break;
2050         default:      ShouldNotReachHere();
2051       }
2052 
2053     } else if (right->is_constant()) {
2054       // cpu register - constant
2055       jint c = right->as_constant_ptr()->as_jint();
2056       switch (code) {
2057         case lir_add: {
2058           __ incrementl(lreg, c);
2059           break;
2060         }
2061         case lir_sub: {
2062           __ decrementl(lreg, c);
2063           break;
2064         }
2065         default: ShouldNotReachHere();
2066       }
2067 
2068     } else {
2069       ShouldNotReachHere();
2070     }
2071 
2072   } else if (left->is_double_cpu()) {
2073     assert(left == dest, "left and dest must be equal");
2074     Register lreg_lo = left->as_register_lo();
2075     Register lreg_hi = left->as_register_hi();
2076 
2077     if (right->is_double_cpu()) {
2078       // cpu register - cpu register
2079       Register rreg_lo = right->as_register_lo();
2080       Register rreg_hi = right->as_register_hi();
2081       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2082       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2083       switch (code) {
2084         case lir_add:
2085           __ addptr(lreg_lo, rreg_lo);
2086           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2087           break;
2088         case lir_sub:
2089           __ subptr(lreg_lo, rreg_lo);
2090           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2091           break;
2092         case lir_mul:
2093 #ifdef _LP64
2094           __ imulq(lreg_lo, rreg_lo);
2095 #else
2096           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2097           __ imull(lreg_hi, rreg_lo);
2098           __ imull(rreg_hi, lreg_lo);
2099           __ addl (rreg_hi, lreg_hi);
2100           __ mull (rreg_lo);
2101           __ addl (lreg_hi, rreg_hi);
2102 #endif // _LP64
2103           break;
2104         default:
2105           ShouldNotReachHere();
2106       }
2107 
2108     } else if (right->is_constant()) {
2109       // cpu register - constant
2110 #ifdef _LP64
2111       jlong c = right->as_constant_ptr()->as_jlong_bits();
2112       __ movptr(r10, (intptr_t) c);
2113       switch (code) {
2114         case lir_add:
2115           __ addptr(lreg_lo, r10);
2116           break;
2117         case lir_sub:
2118           __ subptr(lreg_lo, r10);
2119           break;
2120         default:
2121           ShouldNotReachHere();
2122       }
2123 #else
2124       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2125       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2126       switch (code) {
2127         case lir_add:
2128           __ addptr(lreg_lo, c_lo);
2129           __ adcl(lreg_hi, c_hi);
2130           break;
2131         case lir_sub:
2132           __ subptr(lreg_lo, c_lo);
2133           __ sbbl(lreg_hi, c_hi);
2134           break;
2135         default:
2136           ShouldNotReachHere();
2137       }
2138 #endif // _LP64
2139 
2140     } else {
2141       ShouldNotReachHere();
2142     }
2143 
2144   } else if (left->is_single_xmm()) {
2145     assert(left == dest, "left and dest must be equal");
2146     XMMRegister lreg = left->as_xmm_float_reg();
2147 
2148     if (right->is_single_xmm()) {
2149       XMMRegister rreg = right->as_xmm_float_reg();
2150       switch (code) {
2151         case lir_add: __ addss(lreg, rreg);  break;
2152         case lir_sub: __ subss(lreg, rreg);  break;
2153         case lir_mul_strictfp: // fall through
2154         case lir_mul: __ mulss(lreg, rreg);  break;
2155         case lir_div_strictfp: // fall through
2156         case lir_div: __ divss(lreg, rreg);  break;
2157         default: ShouldNotReachHere();
2158       }
2159     } else {
2160       Address raddr;
2161       if (right->is_single_stack()) {
2162         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2163       } else if (right->is_constant()) {
2164         // hack for now
2165         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2166       } else {
2167         ShouldNotReachHere();
2168       }
2169       switch (code) {
2170         case lir_add: __ addss(lreg, raddr);  break;
2171         case lir_sub: __ subss(lreg, raddr);  break;
2172         case lir_mul_strictfp: // fall through
2173         case lir_mul: __ mulss(lreg, raddr);  break;
2174         case lir_div_strictfp: // fall through
2175         case lir_div: __ divss(lreg, raddr);  break;
2176         default: ShouldNotReachHere();
2177       }
2178     }
2179 
2180   } else if (left->is_double_xmm()) {
2181     assert(left == dest, "left and dest must be equal");
2182 
2183     XMMRegister lreg = left->as_xmm_double_reg();
2184     if (right->is_double_xmm()) {
2185       XMMRegister rreg = right->as_xmm_double_reg();
2186       switch (code) {
2187         case lir_add: __ addsd(lreg, rreg);  break;
2188         case lir_sub: __ subsd(lreg, rreg);  break;
2189         case lir_mul_strictfp: // fall through
2190         case lir_mul: __ mulsd(lreg, rreg);  break;
2191         case lir_div_strictfp: // fall through
2192         case lir_div: __ divsd(lreg, rreg);  break;
2193         default: ShouldNotReachHere();
2194       }
2195     } else {
2196       Address raddr;
2197       if (right->is_double_stack()) {
2198         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2199       } else if (right->is_constant()) {
2200         // hack for now
2201         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2202       } else {
2203         ShouldNotReachHere();
2204       }
2205       switch (code) {
2206         case lir_add: __ addsd(lreg, raddr);  break;
2207         case lir_sub: __ subsd(lreg, raddr);  break;
2208         case lir_mul_strictfp: // fall through
2209         case lir_mul: __ mulsd(lreg, raddr);  break;
2210         case lir_div_strictfp: // fall through
2211         case lir_div: __ divsd(lreg, raddr);  break;
2212         default: ShouldNotReachHere();
2213       }
2214     }
2215 
2216   } else if (left->is_single_fpu()) {
2217     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2218 
2219     if (right->is_single_fpu()) {
2220       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2221 
2222     } else {
2223       assert(left->fpu_regnr() == 0, "left must be on TOS");
2224       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2225 
2226       Address raddr;
2227       if (right->is_single_stack()) {
2228         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2229       } else if (right->is_constant()) {
2230         address const_addr = float_constant(right->as_jfloat());
2231         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2232         // hack for now
2233         raddr = __ as_Address(InternalAddress(const_addr));
2234       } else {
2235         ShouldNotReachHere();
2236       }
2237 
2238       switch (code) {
2239         case lir_add: __ fadd_s(raddr); break;
2240         case lir_sub: __ fsub_s(raddr); break;
2241         case lir_mul_strictfp: // fall through
2242         case lir_mul: __ fmul_s(raddr); break;
2243         case lir_div_strictfp: // fall through
2244         case lir_div: __ fdiv_s(raddr); break;
2245         default:      ShouldNotReachHere();
2246       }
2247     }
2248 
2249   } else if (left->is_double_fpu()) {
2250     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2251 
2252     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2253       // Double values require special handling for strictfp mul/div on x86
2254       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2255       __ fmulp(left->fpu_regnrLo() + 1);
2256     }
2257 
2258     if (right->is_double_fpu()) {
2259       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2260 
2261     } else {
2262       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2263       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2264 
2265       Address raddr;
2266       if (right->is_double_stack()) {
2267         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2268       } else if (right->is_constant()) {
2269         // hack for now
2270         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2271       } else {
2272         ShouldNotReachHere();
2273       }
2274 
2275       switch (code) {
2276         case lir_add: __ fadd_d(raddr); break;
2277         case lir_sub: __ fsub_d(raddr); break;
2278         case lir_mul_strictfp: // fall through
2279         case lir_mul: __ fmul_d(raddr); break;
2280         case lir_div_strictfp: // fall through
2281         case lir_div: __ fdiv_d(raddr); break;
2282         default: ShouldNotReachHere();
2283       }
2284     }
2285 
2286     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2287       // Double values require special handling for strictfp mul/div on x86
2288       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2289       __ fmulp(dest->fpu_regnrLo() + 1);
2290     }
2291 
2292   } else if (left->is_single_stack() || left->is_address()) {
2293     assert(left == dest, "left and dest must be equal");
2294 
2295     Address laddr;
2296     if (left->is_single_stack()) {
2297       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2298     } else if (left->is_address()) {
2299       laddr = as_Address(left->as_address_ptr());
2300     } else {
2301       ShouldNotReachHere();
2302     }
2303 
2304     if (right->is_single_cpu()) {
2305       Register rreg = right->as_register();
2306       switch (code) {
2307         case lir_add: __ addl(laddr, rreg); break;
2308         case lir_sub: __ subl(laddr, rreg); break;
2309         default:      ShouldNotReachHere();
2310       }
2311     } else if (right->is_constant()) {
2312       jint c = right->as_constant_ptr()->as_jint();
2313       switch (code) {
2314         case lir_add: {
2315           __ incrementl(laddr, c);
2316           break;
2317         }
2318         case lir_sub: {
2319           __ decrementl(laddr, c);
2320           break;
2321         }
2322         default: ShouldNotReachHere();
2323       }
2324     } else {
2325       ShouldNotReachHere();
2326     }
2327 
2328   } else {
2329     ShouldNotReachHere();
2330   }
2331 }
2332 
2333 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2334   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2335   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2336   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2337 
2338   bool left_is_tos = (left_index == 0);
2339   bool dest_is_tos = (dest_index == 0);
2340   int non_tos_index = (left_is_tos ? right_index : left_index);
2341 
2342   switch (code) {
2343     case lir_add:
2344       if (pop_fpu_stack)       __ faddp(non_tos_index);
2345       else if (dest_is_tos)    __ fadd (non_tos_index);
2346       else                     __ fadda(non_tos_index);
2347       break;
2348 
2349     case lir_sub:
2350       if (left_is_tos) {
2351         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2352         else if (dest_is_tos)  __ fsub  (non_tos_index);
2353         else                   __ fsubra(non_tos_index);
2354       } else {
2355         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2356         else if (dest_is_tos)  __ fsubr (non_tos_index);
2357         else                   __ fsuba (non_tos_index);
2358       }
2359       break;
2360 
2361     case lir_mul_strictfp: // fall through
2362     case lir_mul:
2363       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2364       else if (dest_is_tos)    __ fmul (non_tos_index);
2365       else                     __ fmula(non_tos_index);
2366       break;
2367 
2368     case lir_div_strictfp: // fall through
2369     case lir_div:
2370       if (left_is_tos) {
2371         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2372         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2373         else                   __ fdivra(non_tos_index);
2374       } else {
2375         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2376         else if (dest_is_tos)  __ fdivr (non_tos_index);
2377         else                   __ fdiva (non_tos_index);
2378       }
2379       break;
2380 
2381     case lir_rem:
2382       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2383       __ fremr(noreg);
2384       break;
2385 
2386     default:
2387       ShouldNotReachHere();
2388   }
2389 }
2390 
2391 
2392 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2393   if (value->is_double_xmm()) {
2394     switch(code) {
2395       case lir_abs :
2396         {
2397 #ifdef _LP64
2398           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2399             assert(tmp->is_valid(), "need temporary");
2400             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2401           } else
2402 #endif
2403           {
2404             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2405               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2406             }
2407             assert(!tmp->is_valid(), "do not need temporary");
2408             __ andpd(dest->as_xmm_double_reg(),
2409                      ExternalAddress((address)double_signmask_pool));
2410           }
2411         }
2412         break;
2413 
2414       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2415       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2416       default      : ShouldNotReachHere();
2417     }
2418 
2419   } else if (value->is_double_fpu()) {
2420     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2421     switch(code) {
2422       case lir_abs   : __ fabs() ; break;
2423       case lir_sqrt  : __ fsqrt(); break;
2424       default      : ShouldNotReachHere();
2425     }
2426   } else {
2427     Unimplemented();
2428   }
2429 }
2430 
2431 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2432   // assert(left->destroys_register(), "check");
2433   if (left->is_single_cpu()) {
2434     Register reg = left->as_register();
2435     if (right->is_constant()) {
2436       int val = right->as_constant_ptr()->as_jint();
2437       switch (code) {
2438         case lir_logic_and: __ andl (reg, val); break;
2439         case lir_logic_or:  __ orl  (reg, val); break;
2440         case lir_logic_xor: __ xorl (reg, val); break;
2441         default: ShouldNotReachHere();
2442       }
2443     } else if (right->is_stack()) {
2444       // added support for stack operands
2445       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2446       switch (code) {
2447         case lir_logic_and: __ andl (reg, raddr); break;
2448         case lir_logic_or:  __ orl  (reg, raddr); break;
2449         case lir_logic_xor: __ xorl (reg, raddr); break;
2450         default: ShouldNotReachHere();
2451       }
2452     } else {
2453       Register rright = right->as_register();
2454       switch (code) {
2455         case lir_logic_and: __ andptr (reg, rright); break;
2456         case lir_logic_or : __ orptr  (reg, rright); break;
2457         case lir_logic_xor: __ xorptr (reg, rright); break;
2458         default: ShouldNotReachHere();
2459       }
2460     }
2461     move_regs(reg, dst->as_register());
2462   } else {
2463     Register l_lo = left->as_register_lo();
2464     Register l_hi = left->as_register_hi();
2465     if (right->is_constant()) {
2466 #ifdef _LP64
2467       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2468       switch (code) {
2469         case lir_logic_and:
2470           __ andq(l_lo, rscratch1);
2471           break;
2472         case lir_logic_or:
2473           __ orq(l_lo, rscratch1);
2474           break;
2475         case lir_logic_xor:
2476           __ xorq(l_lo, rscratch1);
2477           break;
2478         default: ShouldNotReachHere();
2479       }
2480 #else
2481       int r_lo = right->as_constant_ptr()->as_jint_lo();
2482       int r_hi = right->as_constant_ptr()->as_jint_hi();
2483       switch (code) {
2484         case lir_logic_and:
2485           __ andl(l_lo, r_lo);
2486           __ andl(l_hi, r_hi);
2487           break;
2488         case lir_logic_or:
2489           __ orl(l_lo, r_lo);
2490           __ orl(l_hi, r_hi);
2491           break;
2492         case lir_logic_xor:
2493           __ xorl(l_lo, r_lo);
2494           __ xorl(l_hi, r_hi);
2495           break;
2496         default: ShouldNotReachHere();
2497       }
2498 #endif // _LP64
2499     } else {
2500 #ifdef _LP64
2501       Register r_lo;
2502       if (right->type() == T_OBJECT || right->type() == T_ARRAY || right->type() == T_VALUETYPE) {
2503         r_lo = right->as_register();
2504       } else {
2505         r_lo = right->as_register_lo();
2506       }
2507 #else
2508       Register r_lo = right->as_register_lo();
2509       Register r_hi = right->as_register_hi();
2510       assert(l_lo != r_hi, "overwriting registers");
2511 #endif
2512       switch (code) {
2513         case lir_logic_and:
2514           __ andptr(l_lo, r_lo);
2515           NOT_LP64(__ andptr(l_hi, r_hi);)
2516           break;
2517         case lir_logic_or:
2518           __ orptr(l_lo, r_lo);
2519           NOT_LP64(__ orptr(l_hi, r_hi);)
2520           break;
2521         case lir_logic_xor:
2522           __ xorptr(l_lo, r_lo);
2523           NOT_LP64(__ xorptr(l_hi, r_hi);)
2524           break;
2525         default: ShouldNotReachHere();
2526       }
2527     }
2528 
2529     Register dst_lo = dst->as_register_lo();
2530     Register dst_hi = dst->as_register_hi();
2531 
2532 #ifdef _LP64
2533     move_regs(l_lo, dst_lo);
2534 #else
2535     if (dst_lo == l_hi) {
2536       assert(dst_hi != l_lo, "overwriting registers");
2537       move_regs(l_hi, dst_hi);
2538       move_regs(l_lo, dst_lo);
2539     } else {
2540       assert(dst_lo != l_hi, "overwriting registers");
2541       move_regs(l_lo, dst_lo);
2542       move_regs(l_hi, dst_hi);
2543     }
2544 #endif // _LP64
2545   }
2546 }
2547 
2548 
2549 // we assume that rax, and rdx can be overwritten
2550 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2551 
2552   assert(left->is_single_cpu(),   "left must be register");
2553   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2554   assert(result->is_single_cpu(), "result must be register");
2555 
2556   //  assert(left->destroys_register(), "check");
2557   //  assert(right->destroys_register(), "check");
2558 
2559   Register lreg = left->as_register();
2560   Register dreg = result->as_register();
2561 
2562   if (right->is_constant()) {
2563     jint divisor = right->as_constant_ptr()->as_jint();
2564     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2565     if (code == lir_idiv) {
2566       assert(lreg == rax, "must be rax,");
2567       assert(temp->as_register() == rdx, "tmp register must be rdx");
2568       __ cdql(); // sign extend into rdx:rax
2569       if (divisor == 2) {
2570         __ subl(lreg, rdx);
2571       } else {
2572         __ andl(rdx, divisor - 1);
2573         __ addl(lreg, rdx);
2574       }
2575       __ sarl(lreg, log2_jint(divisor));
2576       move_regs(lreg, dreg);
2577     } else if (code == lir_irem) {
2578       Label done;
2579       __ mov(dreg, lreg);
2580       __ andl(dreg, 0x80000000 | (divisor - 1));
2581       __ jcc(Assembler::positive, done);
2582       __ decrement(dreg);
2583       __ orl(dreg, ~(divisor - 1));
2584       __ increment(dreg);
2585       __ bind(done);
2586     } else {
2587       ShouldNotReachHere();
2588     }
2589   } else {
2590     Register rreg = right->as_register();
2591     assert(lreg == rax, "left register must be rax,");
2592     assert(rreg != rdx, "right register must not be rdx");
2593     assert(temp->as_register() == rdx, "tmp register must be rdx");
2594 
2595     move_regs(lreg, rax);
2596 
2597     int idivl_offset = __ corrected_idivl(rreg);
2598     if (ImplicitDiv0Checks) {
2599       add_debug_info_for_div0(idivl_offset, info);
2600     }
2601     if (code == lir_irem) {
2602       move_regs(rdx, dreg); // result is in rdx
2603     } else {
2604       move_regs(rax, dreg);
2605     }
2606   }
2607 }
2608 
2609 
2610 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2611   if (opr1->is_single_cpu()) {
2612     Register reg1 = opr1->as_register();
2613     if (opr2->is_single_cpu()) {
2614       // cpu register - cpu register
2615       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY || opr1->type() == T_VALUETYPE) {
2616         __ cmpoop(reg1, opr2->as_register());
2617       } else {
2618         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_VALUETYPE, "cmp int, oop?");
2619         __ cmpl(reg1, opr2->as_register());
2620       }
2621     } else if (opr2->is_stack()) {
2622       // cpu register - stack
2623       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY || opr1->type() == T_VALUETYPE) {
2624         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2625       } else {
2626         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2627       }
2628     } else if (opr2->is_constant()) {
2629       // cpu register - constant
2630       LIR_Const* c = opr2->as_constant_ptr();
2631       if (c->type() == T_INT) {
2632         __ cmpl(reg1, c->as_jint());
2633       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY || c->type() == T_VALUETYPE) {
2634         // In 64bit oops are single register
2635         jobject o = c->as_jobject();
2636         if (o == NULL) {
2637           __ cmpptr(reg1, (int32_t)NULL_WORD);
2638         } else {
2639           __ cmpoop(reg1, o);
2640         }
2641       } else {
2642         fatal("unexpected type: %s", basictype_to_str(c->type()));
2643       }
2644       // cpu register - address
2645     } else if (opr2->is_address()) {
2646       if (op->info() != NULL) {
2647         add_debug_info_for_null_check_here(op->info());
2648       }
2649       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2650     } else {
2651       ShouldNotReachHere();
2652     }
2653 
2654   } else if(opr1->is_double_cpu()) {
2655     Register xlo = opr1->as_register_lo();
2656     Register xhi = opr1->as_register_hi();
2657     if (opr2->is_double_cpu()) {
2658 #ifdef _LP64
2659       __ cmpptr(xlo, opr2->as_register_lo());
2660 #else
2661       // cpu register - cpu register
2662       Register ylo = opr2->as_register_lo();
2663       Register yhi = opr2->as_register_hi();
2664       __ subl(xlo, ylo);
2665       __ sbbl(xhi, yhi);
2666       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2667         __ orl(xhi, xlo);
2668       }
2669 #endif // _LP64
2670     } else if (opr2->is_constant()) {
2671       // cpu register - constant 0
2672       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2673 #ifdef _LP64
2674       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2675 #else
2676       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2677       __ orl(xhi, xlo);
2678 #endif // _LP64
2679     } else {
2680       ShouldNotReachHere();
2681     }
2682 
2683   } else if (opr1->is_single_xmm()) {
2684     XMMRegister reg1 = opr1->as_xmm_float_reg();
2685     if (opr2->is_single_xmm()) {
2686       // xmm register - xmm register
2687       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2688     } else if (opr2->is_stack()) {
2689       // xmm register - stack
2690       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2691     } else if (opr2->is_constant()) {
2692       // xmm register - constant
2693       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2694     } else if (opr2->is_address()) {
2695       // xmm register - address
2696       if (op->info() != NULL) {
2697         add_debug_info_for_null_check_here(op->info());
2698       }
2699       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2700     } else {
2701       ShouldNotReachHere();
2702     }
2703 
2704   } else if (opr1->is_double_xmm()) {
2705     XMMRegister reg1 = opr1->as_xmm_double_reg();
2706     if (opr2->is_double_xmm()) {
2707       // xmm register - xmm register
2708       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2709     } else if (opr2->is_stack()) {
2710       // xmm register - stack
2711       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2712     } else if (opr2->is_constant()) {
2713       // xmm register - constant
2714       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2715     } else if (opr2->is_address()) {
2716       // xmm register - address
2717       if (op->info() != NULL) {
2718         add_debug_info_for_null_check_here(op->info());
2719       }
2720       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2721     } else {
2722       ShouldNotReachHere();
2723     }
2724 
2725   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2726     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2727     assert(opr2->is_fpu_register(), "both must be registers");
2728     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2729 
2730   } else if (opr1->is_address() && opr2->is_constant()) {
2731     LIR_Const* c = opr2->as_constant_ptr();
2732 #ifdef _LP64
2733     if (c->type() == T_OBJECT || c->type() == T_ARRAY || c->type() == T_VALUETYPE) {
2734       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2735       __ movoop(rscratch1, c->as_jobject());
2736     }
2737 #endif // LP64
2738     if (op->info() != NULL) {
2739       add_debug_info_for_null_check_here(op->info());
2740     }
2741     // special case: address - constant
2742     LIR_Address* addr = opr1->as_address_ptr();
2743     if (c->type() == T_INT) {
2744       __ cmpl(as_Address(addr), c->as_jint());
2745     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY || c->type() == T_VALUETYPE) {
2746 #ifdef _LP64
2747       // %%% Make this explode if addr isn't reachable until we figure out a
2748       // better strategy by giving noreg as the temp for as_Address
2749       __ cmpoop(rscratch1, as_Address(addr, noreg));
2750 #else
2751       __ cmpoop(as_Address(addr), c->as_jobject());
2752 #endif // _LP64
2753     } else {
2754       ShouldNotReachHere();
2755     }
2756 
2757   } else {
2758     ShouldNotReachHere();
2759   }
2760 }
2761 
2762 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2763   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2764     if (left->is_single_xmm()) {
2765       assert(right->is_single_xmm(), "must match");
2766       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2767     } else if (left->is_double_xmm()) {
2768       assert(right->is_double_xmm(), "must match");
2769       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2770 
2771     } else {
2772       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2773       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2774 
2775       assert(left->fpu() == 0, "left must be on TOS");
2776       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2777                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2778     }
2779   } else {
2780     assert(code == lir_cmp_l2i, "check");
2781 #ifdef _LP64
2782     Label done;
2783     Register dest = dst->as_register();
2784     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2785     __ movl(dest, -1);
2786     __ jccb(Assembler::less, done);
2787     __ set_byte_if_not_zero(dest);
2788     __ movzbl(dest, dest);
2789     __ bind(done);
2790 #else
2791     __ lcmp2int(left->as_register_hi(),
2792                 left->as_register_lo(),
2793                 right->as_register_hi(),
2794                 right->as_register_lo());
2795     move_regs(left->as_register_hi(), dst->as_register());
2796 #endif // _LP64
2797   }
2798 }
2799 
2800 
2801 void LIR_Assembler::align_call(LIR_Code code) {
2802   // make sure that the displacement word of the call ends up word aligned
2803   int offset = __ offset();
2804   switch (code) {
2805   case lir_static_call:
2806   case lir_optvirtual_call:
2807   case lir_dynamic_call:
2808     offset += NativeCall::displacement_offset;
2809     break;
2810   case lir_icvirtual_call:
2811     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2812     break;
2813   case lir_virtual_call:  // currently, sparc-specific for niagara
2814   default: ShouldNotReachHere();
2815   }
2816   __ align(BytesPerWord, offset);
2817 }
2818 
2819 
2820 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2821   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2822          "must be aligned");
2823   __ call(AddressLiteral(op->addr(), rtype));
2824   add_call_info(code_offset(), op->info());
2825 }
2826 
2827 
2828 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2829   __ ic_call(op->addr());
2830   add_call_info(code_offset(), op->info());
2831   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2832          "must be aligned");
2833 }
2834 
2835 
2836 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2837 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2838   ShouldNotReachHere();
2839 }
2840 
2841 
2842 void LIR_Assembler::emit_static_call_stub() {
2843   address call_pc = __ pc();
2844   address stub = __ start_a_stub(call_stub_size());
2845   if (stub == NULL) {
2846     bailout("static call stub overflow");
2847     return;
2848   }
2849 
2850   int start = __ offset();
2851 
2852   // make sure that the displacement word of the call ends up word aligned
2853   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2854   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2855   __ mov_metadata(rbx, (Metadata*)NULL);
2856   // must be set to -1 at code generation time
2857   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2858   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2859   __ jump(RuntimeAddress(__ pc()));
2860 
2861   if (UseAOT) {
2862     // Trampoline to aot code
2863     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2864 #ifdef _LP64
2865     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2866 #else
2867     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2868 #endif
2869     __ jmp(rax);
2870   }
2871   assert(__ offset() - start <= call_stub_size(), "stub too big");
2872   __ end_a_stub();
2873 }
2874 
2875 
2876 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2877   assert(exceptionOop->as_register() == rax, "must match");
2878   assert(exceptionPC->as_register() == rdx, "must match");
2879 
2880   // exception object is not added to oop map by LinearScan
2881   // (LinearScan assumes that no oops are in fixed registers)
2882   info->add_register_oop(exceptionOop);
2883   Runtime1::StubID unwind_id;
2884 
2885   // get current pc information
2886   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2887   int pc_for_athrow_offset = __ offset();
2888   InternalAddress pc_for_athrow(__ pc());
2889   __ lea(exceptionPC->as_register(), pc_for_athrow);
2890   add_call_info(pc_for_athrow_offset, info); // for exception handler
2891 
2892   __ verify_not_null_oop(rax);
2893   // search an exception handler (rax: exception oop, rdx: throwing pc)
2894   if (compilation()->has_fpu_code()) {
2895     unwind_id = Runtime1::handle_exception_id;
2896   } else {
2897     unwind_id = Runtime1::handle_exception_nofpu_id;
2898   }
2899   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2900 
2901   // enough room for two byte trap
2902   __ nop();
2903 }
2904 
2905 
2906 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2907   assert(exceptionOop->as_register() == rax, "must match");
2908 
2909   __ jmp(_unwind_handler_entry);
2910 }
2911 
2912 
2913 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2914 
2915   // optimized version for linear scan:
2916   // * count must be already in ECX (guaranteed by LinearScan)
2917   // * left and dest must be equal
2918   // * tmp must be unused
2919   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2920   assert(left == dest, "left and dest must be equal");
2921   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2922 
2923   if (left->is_single_cpu()) {
2924     Register value = left->as_register();
2925     assert(value != SHIFT_count, "left cannot be ECX");
2926 
2927     switch (code) {
2928       case lir_shl:  __ shll(value); break;
2929       case lir_shr:  __ sarl(value); break;
2930       case lir_ushr: __ shrl(value); break;
2931       default: ShouldNotReachHere();
2932     }
2933   } else if (left->is_double_cpu()) {
2934     Register lo = left->as_register_lo();
2935     Register hi = left->as_register_hi();
2936     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2937 #ifdef _LP64
2938     switch (code) {
2939       case lir_shl:  __ shlptr(lo);        break;
2940       case lir_shr:  __ sarptr(lo);        break;
2941       case lir_ushr: __ shrptr(lo);        break;
2942       default: ShouldNotReachHere();
2943     }
2944 #else
2945 
2946     switch (code) {
2947       case lir_shl:  __ lshl(hi, lo);        break;
2948       case lir_shr:  __ lshr(hi, lo, true);  break;
2949       case lir_ushr: __ lshr(hi, lo, false); break;
2950       default: ShouldNotReachHere();
2951     }
2952 #endif // LP64
2953   } else {
2954     ShouldNotReachHere();
2955   }
2956 }
2957 
2958 
2959 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2960   if (dest->is_single_cpu()) {
2961     // first move left into dest so that left is not destroyed by the shift
2962     Register value = dest->as_register();
2963     count = count & 0x1F; // Java spec
2964 
2965     move_regs(left->as_register(), value);
2966     switch (code) {
2967       case lir_shl:  __ shll(value, count); break;
2968       case lir_shr:  __ sarl(value, count); break;
2969       case lir_ushr: __ shrl(value, count); break;
2970       default: ShouldNotReachHere();
2971     }
2972   } else if (dest->is_double_cpu()) {
2973 #ifndef _LP64
2974     Unimplemented();
2975 #else
2976     // first move left into dest so that left is not destroyed by the shift
2977     Register value = dest->as_register_lo();
2978     count = count & 0x1F; // Java spec
2979 
2980     move_regs(left->as_register_lo(), value);
2981     switch (code) {
2982       case lir_shl:  __ shlptr(value, count); break;
2983       case lir_shr:  __ sarptr(value, count); break;
2984       case lir_ushr: __ shrptr(value, count); break;
2985       default: ShouldNotReachHere();
2986     }
2987 #endif // _LP64
2988   } else {
2989     ShouldNotReachHere();
2990   }
2991 }
2992 
2993 
2994 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2995   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2996   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2997   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2998   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2999 }
3000 
3001 
3002 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3003   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3004   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3005   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3006   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3007 }
3008 
3009 
3010 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3011   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3012   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3013   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3014   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3015 }
3016 
3017 
3018 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3019   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3020   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3021   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3022   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3023 }
3024 
3025 
3026 // This code replaces a call to arraycopy; no exception may
3027 // be thrown in this code, they must be thrown in the System.arraycopy
3028 // activation frame; we could save some checks if this would not be the case
3029 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3030   ciArrayKlass* default_type = op->expected_type();
3031   Register src = op->src()->as_register();
3032   Register dst = op->dst()->as_register();
3033   Register src_pos = op->src_pos()->as_register();
3034   Register dst_pos = op->dst_pos()->as_register();
3035   Register length  = op->length()->as_register();
3036   Register tmp = op->tmp()->as_register();
3037 
3038   __ resolve(ACCESS_READ, src);
3039   __ resolve(ACCESS_WRITE, dst);
3040 
3041   CodeStub* stub = op->stub();
3042   int flags = op->flags();
3043   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3044   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3045 
3046   // if we don't know anything, just go through the generic arraycopy
3047   if (default_type == NULL) {
3048     // save outgoing arguments on stack in case call to System.arraycopy is needed
3049     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3050     // for interpreter calling conventions. Now we have to do it in new style conventions.
3051     // For the moment until C1 gets the new register allocator I just force all the
3052     // args to the right place (except the register args) and then on the back side
3053     // reload the register args properly if we go slow path. Yuck
3054 
3055     // These are proper for the calling convention
3056     store_parameter(length, 2);
3057     store_parameter(dst_pos, 1);
3058     store_parameter(dst, 0);
3059 
3060     // these are just temporary placements until we need to reload
3061     store_parameter(src_pos, 3);
3062     store_parameter(src, 4);
3063     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3064 
3065     address copyfunc_addr = StubRoutines::generic_arraycopy();
3066     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
3067 
3068     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3069 #ifdef _LP64
3070     // The arguments are in java calling convention so we can trivially shift them to C
3071     // convention
3072     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3073     __ mov(c_rarg0, j_rarg0);
3074     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3075     __ mov(c_rarg1, j_rarg1);
3076     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3077     __ mov(c_rarg2, j_rarg2);
3078     assert_different_registers(c_rarg3, j_rarg4);
3079     __ mov(c_rarg3, j_rarg3);
3080 #ifdef _WIN64
3081     // Allocate abi space for args but be sure to keep stack aligned
3082     __ subptr(rsp, 6*wordSize);
3083     store_parameter(j_rarg4, 4);
3084 #ifndef PRODUCT
3085     if (PrintC1Statistics) {
3086       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3087     }
3088 #endif
3089     __ call(RuntimeAddress(copyfunc_addr));
3090     __ addptr(rsp, 6*wordSize);
3091 #else
3092     __ mov(c_rarg4, j_rarg4);
3093 #ifndef PRODUCT
3094     if (PrintC1Statistics) {
3095       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3096     }
3097 #endif
3098     __ call(RuntimeAddress(copyfunc_addr));
3099 #endif // _WIN64
3100 #else
3101     __ push(length);
3102     __ push(dst_pos);
3103     __ push(dst);
3104     __ push(src_pos);
3105     __ push(src);
3106 
3107 #ifndef PRODUCT
3108     if (PrintC1Statistics) {
3109       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3110     }
3111 #endif
3112     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3113 
3114 #endif // _LP64
3115 
3116     __ cmpl(rax, 0);
3117     __ jcc(Assembler::equal, *stub->continuation());
3118 
3119     __ mov(tmp, rax);
3120     __ xorl(tmp, -1);
3121 
3122     // Reload values from the stack so they are where the stub
3123     // expects them.
3124     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3125     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3126     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3127     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3128     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3129 
3130     __ subl(length, tmp);
3131     __ addl(src_pos, tmp);
3132     __ addl(dst_pos, tmp);
3133     __ jmp(*stub->entry());
3134 
3135     __ bind(*stub->continuation());
3136     return;
3137   }
3138 
3139   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3140 
3141   int elem_size = type2aelembytes(basic_type);
3142   Address::ScaleFactor scale;
3143 
3144   switch (elem_size) {
3145     case 1 :
3146       scale = Address::times_1;
3147       break;
3148     case 2 :
3149       scale = Address::times_2;
3150       break;
3151     case 4 :
3152       scale = Address::times_4;
3153       break;
3154     case 8 :
3155       scale = Address::times_8;
3156       break;
3157     default:
3158       scale = Address::no_scale;
3159       ShouldNotReachHere();
3160   }
3161 
3162   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3163   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3164   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3165   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3166 
3167   // length and pos's are all sign extended at this point on 64bit
3168 
3169   // test for NULL
3170   if (flags & LIR_OpArrayCopy::src_null_check) {
3171     __ testptr(src, src);
3172     __ jcc(Assembler::zero, *stub->entry());
3173   }
3174   if (flags & LIR_OpArrayCopy::dst_null_check) {
3175     __ testptr(dst, dst);
3176     __ jcc(Assembler::zero, *stub->entry());
3177   }
3178 
3179   // If the compiler was not able to prove that exact type of the source or the destination
3180   // of the arraycopy is an array type, check at runtime if the source or the destination is
3181   // an instance type.
3182   if (flags & LIR_OpArrayCopy::type_check) {
3183     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3184       __ load_klass(tmp, dst);
3185       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3186       __ jcc(Assembler::greaterEqual, *stub->entry());
3187     }
3188 
3189     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3190       __ load_klass(tmp, src);
3191       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3192       __ jcc(Assembler::greaterEqual, *stub->entry());
3193     }
3194   }
3195 
3196   // check if negative
3197   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3198     __ testl(src_pos, src_pos);
3199     __ jcc(Assembler::less, *stub->entry());
3200   }
3201   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3202     __ testl(dst_pos, dst_pos);
3203     __ jcc(Assembler::less, *stub->entry());
3204   }
3205 
3206   if (flags & LIR_OpArrayCopy::src_range_check) {
3207     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3208     __ cmpl(tmp, src_length_addr);
3209     __ jcc(Assembler::above, *stub->entry());
3210   }
3211   if (flags & LIR_OpArrayCopy::dst_range_check) {
3212     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3213     __ cmpl(tmp, dst_length_addr);
3214     __ jcc(Assembler::above, *stub->entry());
3215   }
3216 
3217   if (flags & LIR_OpArrayCopy::length_positive_check) {
3218     __ testl(length, length);
3219     __ jcc(Assembler::less, *stub->entry());
3220   }
3221 
3222 #ifdef _LP64
3223   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3224   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3225 #endif
3226 
3227   if (flags & LIR_OpArrayCopy::type_check) {
3228     // We don't know the array types are compatible
3229     if (basic_type != T_OBJECT) {
3230       // Simple test for basic type arrays
3231       if (UseCompressedClassPointers) {
3232         __ movl(tmp, src_klass_addr);
3233         __ cmpl(tmp, dst_klass_addr);
3234       } else {
3235         __ movptr(tmp, src_klass_addr);
3236         __ cmpptr(tmp, dst_klass_addr);
3237       }
3238       __ jcc(Assembler::notEqual, *stub->entry());
3239     } else {
3240       // For object arrays, if src is a sub class of dst then we can
3241       // safely do the copy.
3242       Label cont, slow;
3243 
3244       __ push(src);
3245       __ push(dst);
3246 
3247       __ load_klass(src, src);
3248       __ load_klass(dst, dst);
3249 
3250       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3251 
3252       __ push(src);
3253       __ push(dst);
3254       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3255       __ pop(dst);
3256       __ pop(src);
3257 
3258       __ cmpl(src, 0);
3259       __ jcc(Assembler::notEqual, cont);
3260 
3261       __ bind(slow);
3262       __ pop(dst);
3263       __ pop(src);
3264 
3265       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3266       if (copyfunc_addr != NULL) { // use stub if available
3267         // src is not a sub class of dst so we have to do a
3268         // per-element check.
3269 
3270         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3271         if ((flags & mask) != mask) {
3272           // Check that at least both of them object arrays.
3273           assert(flags & mask, "one of the two should be known to be an object array");
3274 
3275           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3276             __ load_klass(tmp, src);
3277           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3278             __ load_klass(tmp, dst);
3279           }
3280           int lh_offset = in_bytes(Klass::layout_helper_offset());
3281           Address klass_lh_addr(tmp, lh_offset);
3282           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3283           __ cmpl(klass_lh_addr, objArray_lh);
3284           __ jcc(Assembler::notEqual, *stub->entry());
3285         }
3286 
3287        // Spill because stubs can use any register they like and it's
3288        // easier to restore just those that we care about.
3289        store_parameter(dst, 0);
3290        store_parameter(dst_pos, 1);
3291        store_parameter(length, 2);
3292        store_parameter(src_pos, 3);
3293        store_parameter(src, 4);
3294 
3295 #ifndef _LP64
3296         __ movptr(tmp, dst_klass_addr);
3297         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3298         __ push(tmp);
3299         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3300         __ push(tmp);
3301         __ push(length);
3302         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3303         __ push(tmp);
3304         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3305         __ push(tmp);
3306 
3307         __ call_VM_leaf(copyfunc_addr, 5);
3308 #else
3309         __ movl2ptr(length, length); //higher 32bits must be null
3310 
3311         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3312         assert_different_registers(c_rarg0, dst, dst_pos, length);
3313         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3314         assert_different_registers(c_rarg1, dst, length);
3315 
3316         __ mov(c_rarg2, length);
3317         assert_different_registers(c_rarg2, dst);
3318 
3319 #ifdef _WIN64
3320         // Allocate abi space for args but be sure to keep stack aligned
3321         __ subptr(rsp, 6*wordSize);
3322         __ load_klass(c_rarg3, dst);
3323         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3324         store_parameter(c_rarg3, 4);
3325         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3326         __ call(RuntimeAddress(copyfunc_addr));
3327         __ addptr(rsp, 6*wordSize);
3328 #else
3329         __ load_klass(c_rarg4, dst);
3330         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3331         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3332         __ call(RuntimeAddress(copyfunc_addr));
3333 #endif
3334 
3335 #endif
3336 
3337 #ifndef PRODUCT
3338         if (PrintC1Statistics) {
3339           Label failed;
3340           __ testl(rax, rax);
3341           __ jcc(Assembler::notZero, failed);
3342           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3343           __ bind(failed);
3344         }
3345 #endif
3346 
3347         __ testl(rax, rax);
3348         __ jcc(Assembler::zero, *stub->continuation());
3349 
3350 #ifndef PRODUCT
3351         if (PrintC1Statistics) {
3352           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3353         }
3354 #endif
3355 
3356         __ mov(tmp, rax);
3357 
3358         __ xorl(tmp, -1);
3359 
3360         // Restore previously spilled arguments
3361         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3362         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3363         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3364         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3365         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3366 
3367 
3368         __ subl(length, tmp);
3369         __ addl(src_pos, tmp);
3370         __ addl(dst_pos, tmp);
3371       }
3372 
3373       __ jmp(*stub->entry());
3374 
3375       __ bind(cont);
3376       __ pop(dst);
3377       __ pop(src);
3378     }
3379   }
3380 
3381 #ifdef ASSERT
3382   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3383     // Sanity check the known type with the incoming class.  For the
3384     // primitive case the types must match exactly with src.klass and
3385     // dst.klass each exactly matching the default type.  For the
3386     // object array case, if no type check is needed then either the
3387     // dst type is exactly the expected type and the src type is a
3388     // subtype which we can't check or src is the same array as dst
3389     // but not necessarily exactly of type default_type.
3390     Label known_ok, halt;
3391     __ mov_metadata(tmp, default_type->constant_encoding());
3392 #ifdef _LP64
3393     if (UseCompressedClassPointers) {
3394       __ encode_klass_not_null(tmp);
3395     }
3396 #endif
3397 
3398     if (basic_type != T_OBJECT) {
3399 
3400       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3401       else                   __ cmpptr(tmp, dst_klass_addr);
3402       __ jcc(Assembler::notEqual, halt);
3403       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3404       else                   __ cmpptr(tmp, src_klass_addr);
3405       __ jcc(Assembler::equal, known_ok);
3406     } else {
3407       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3408       else                   __ cmpptr(tmp, dst_klass_addr);
3409       __ jcc(Assembler::equal, known_ok);
3410       __ cmpptr(src, dst);
3411       __ jcc(Assembler::equal, known_ok);
3412     }
3413     __ bind(halt);
3414     __ stop("incorrect type information in arraycopy");
3415     __ bind(known_ok);
3416   }
3417 #endif
3418 
3419 #ifndef PRODUCT
3420   if (PrintC1Statistics) {
3421     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3422   }
3423 #endif
3424 
3425 #ifdef _LP64
3426   assert_different_registers(c_rarg0, dst, dst_pos, length);
3427   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3428   assert_different_registers(c_rarg1, length);
3429   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3430   __ mov(c_rarg2, length);
3431 
3432 #else
3433   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3434   store_parameter(tmp, 0);
3435   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3436   store_parameter(tmp, 1);
3437   store_parameter(length, 2);
3438 #endif // _LP64
3439 
3440   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3441   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3442   const char *name;
3443   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3444   __ call_VM_leaf(entry, 0);
3445 
3446   __ bind(*stub->continuation());
3447 }
3448 
3449 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3450   assert(op->crc()->is_single_cpu(),  "crc must be register");
3451   assert(op->val()->is_single_cpu(),  "byte value must be register");
3452   assert(op->result_opr()->is_single_cpu(), "result must be register");
3453   Register crc = op->crc()->as_register();
3454   Register val = op->val()->as_register();
3455   Register res = op->result_opr()->as_register();
3456 
3457   assert_different_registers(val, crc, res);
3458 
3459   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3460   __ notl(crc); // ~crc
3461   __ update_byte_crc32(crc, val, res);
3462   __ notl(crc); // ~crc
3463   __ mov(res, crc);
3464 }
3465 
3466 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3467   Register obj = op->obj_opr()->as_register();  // may not be an oop
3468   Register hdr = op->hdr_opr()->as_register();
3469   Register lock = op->lock_opr()->as_register();
3470   if (!UseFastLocking) {
3471     __ jmp(*op->stub()->entry());
3472   } else if (op->code() == lir_lock) {
3473     Register scratch = noreg;
3474     if (UseBiasedLocking) {
3475       scratch = op->scratch_opr()->as_register();
3476     }
3477     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3478     __ resolve(ACCESS_READ | ACCESS_WRITE, obj);
3479     // add debug info for NullPointerException only if one is possible
3480     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3481     if (op->info() != NULL) {
3482       add_debug_info_for_null_check(null_check_offset, op->info());
3483     }
3484     // done
3485   } else if (op->code() == lir_unlock) {
3486     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3487     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3488   } else {
3489     Unimplemented();
3490   }
3491   __ bind(*op->stub()->continuation());
3492 }
3493 
3494 
3495 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3496   ciMethod* method = op->profiled_method();
3497   int bci          = op->profiled_bci();
3498   ciMethod* callee = op->profiled_callee();
3499 
3500   // Update counter for all call types
3501   ciMethodData* md = method->method_data_or_null();
3502   assert(md != NULL, "Sanity");
3503   ciProfileData* data = md->bci_to_data(bci);
3504   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3505   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3506   Register mdo  = op->mdo()->as_register();
3507   __ mov_metadata(mdo, md->constant_encoding());
3508   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3509   // Perform additional virtual call profiling for invokevirtual and
3510   // invokeinterface bytecodes
3511   if (op->should_profile_receiver_type()) {
3512     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3513     Register recv = op->recv()->as_register();
3514     assert_different_registers(mdo, recv);
3515     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3516     ciKlass* known_klass = op->known_holder();
3517     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3518       // We know the type that will be seen at this call site; we can
3519       // statically update the MethodData* rather than needing to do
3520       // dynamic tests on the receiver type
3521 
3522       // NOTE: we should probably put a lock around this search to
3523       // avoid collisions by concurrent compilations
3524       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3525       uint i;
3526       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3527         ciKlass* receiver = vc_data->receiver(i);
3528         if (known_klass->equals(receiver)) {
3529           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3530           __ addptr(data_addr, DataLayout::counter_increment);
3531           return;
3532         }
3533       }
3534 
3535       // Receiver type not found in profile data; select an empty slot
3536 
3537       // Note that this is less efficient than it should be because it
3538       // always does a write to the receiver part of the
3539       // VirtualCallData rather than just the first time
3540       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3541         ciKlass* receiver = vc_data->receiver(i);
3542         if (receiver == NULL) {
3543           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3544           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3545           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3546           __ addptr(data_addr, DataLayout::counter_increment);
3547           return;
3548         }
3549       }
3550     } else {
3551       __ load_klass(recv, recv);
3552       Label update_done;
3553       type_profile_helper(mdo, md, data, recv, &update_done);
3554       // Receiver did not match any saved receiver and there is no empty row for it.
3555       // Increment total counter to indicate polymorphic case.
3556       __ addptr(counter_addr, DataLayout::counter_increment);
3557 
3558       __ bind(update_done);
3559     }
3560   } else {
3561     // Static call
3562     __ addptr(counter_addr, DataLayout::counter_increment);
3563   }
3564 }
3565 
3566 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3567   Register obj = op->obj()->as_register();
3568   Register tmp = op->tmp()->as_pointer_register();
3569   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3570   ciKlass* exact_klass = op->exact_klass();
3571   intptr_t current_klass = op->current_klass();
3572   bool not_null = op->not_null();
3573   bool no_conflict = op->no_conflict();
3574 
3575   Label update, next, none;
3576 
3577   bool do_null = !not_null;
3578   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3579   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3580 
3581   assert(do_null || do_update, "why are we here?");
3582   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3583 
3584   __ verify_oop(obj);
3585 
3586   if (tmp != obj) {
3587     __ mov(tmp, obj);
3588   }
3589   if (do_null) {
3590     __ testptr(tmp, tmp);
3591     __ jccb(Assembler::notZero, update);
3592     if (!TypeEntries::was_null_seen(current_klass)) {
3593       __ orptr(mdo_addr, TypeEntries::null_seen);
3594     }
3595     if (do_update) {
3596 #ifndef ASSERT
3597       __ jmpb(next);
3598     }
3599 #else
3600       __ jmp(next);
3601     }
3602   } else {
3603     __ testptr(tmp, tmp);
3604     __ jcc(Assembler::notZero, update);
3605     __ stop("unexpect null obj");
3606 #endif
3607   }
3608 
3609   __ bind(update);
3610 
3611   if (do_update) {
3612 #ifdef ASSERT
3613     if (exact_klass != NULL) {
3614       Label ok;
3615       __ load_klass(tmp, tmp);
3616       __ push(tmp);
3617       __ mov_metadata(tmp, exact_klass->constant_encoding());
3618       __ cmpptr(tmp, Address(rsp, 0));
3619       __ jcc(Assembler::equal, ok);
3620       __ stop("exact klass and actual klass differ");
3621       __ bind(ok);
3622       __ pop(tmp);
3623     }
3624 #endif
3625     if (!no_conflict) {
3626       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3627         if (exact_klass != NULL) {
3628           __ mov_metadata(tmp, exact_klass->constant_encoding());
3629         } else {
3630           __ load_klass(tmp, tmp);
3631         }
3632 
3633         __ xorptr(tmp, mdo_addr);
3634         __ testptr(tmp, TypeEntries::type_klass_mask);
3635         // klass seen before, nothing to do. The unknown bit may have been
3636         // set already but no need to check.
3637         __ jccb(Assembler::zero, next);
3638 
3639         __ testptr(tmp, TypeEntries::type_unknown);
3640         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3641 
3642         if (TypeEntries::is_type_none(current_klass)) {
3643           __ cmpptr(mdo_addr, 0);
3644           __ jccb(Assembler::equal, none);
3645           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3646           __ jccb(Assembler::equal, none);
3647           // There is a chance that the checks above (re-reading profiling
3648           // data from memory) fail if another thread has just set the
3649           // profiling to this obj's klass
3650           __ xorptr(tmp, mdo_addr);
3651           __ testptr(tmp, TypeEntries::type_klass_mask);
3652           __ jccb(Assembler::zero, next);
3653         }
3654       } else {
3655         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3656                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3657 
3658         __ movptr(tmp, mdo_addr);
3659         __ testptr(tmp, TypeEntries::type_unknown);
3660         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3661       }
3662 
3663       // different than before. Cannot keep accurate profile.
3664       __ orptr(mdo_addr, TypeEntries::type_unknown);
3665 
3666       if (TypeEntries::is_type_none(current_klass)) {
3667         __ jmpb(next);
3668 
3669         __ bind(none);
3670         // first time here. Set profile type.
3671         __ movptr(mdo_addr, tmp);
3672       }
3673     } else {
3674       // There's a single possible klass at this profile point
3675       assert(exact_klass != NULL, "should be");
3676       if (TypeEntries::is_type_none(current_klass)) {
3677         __ mov_metadata(tmp, exact_klass->constant_encoding());
3678         __ xorptr(tmp, mdo_addr);
3679         __ testptr(tmp, TypeEntries::type_klass_mask);
3680 #ifdef ASSERT
3681         __ jcc(Assembler::zero, next);
3682 
3683         {
3684           Label ok;
3685           __ push(tmp);
3686           __ cmpptr(mdo_addr, 0);
3687           __ jcc(Assembler::equal, ok);
3688           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3689           __ jcc(Assembler::equal, ok);
3690           // may have been set by another thread
3691           __ mov_metadata(tmp, exact_klass->constant_encoding());
3692           __ xorptr(tmp, mdo_addr);
3693           __ testptr(tmp, TypeEntries::type_mask);
3694           __ jcc(Assembler::zero, ok);
3695 
3696           __ stop("unexpected profiling mismatch");
3697           __ bind(ok);
3698           __ pop(tmp);
3699         }
3700 #else
3701         __ jccb(Assembler::zero, next);
3702 #endif
3703         // first time here. Set profile type.
3704         __ movptr(mdo_addr, tmp);
3705       } else {
3706         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3707                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3708 
3709         __ movptr(tmp, mdo_addr);
3710         __ testptr(tmp, TypeEntries::type_unknown);
3711         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3712 
3713         __ orptr(mdo_addr, TypeEntries::type_unknown);
3714       }
3715     }
3716 
3717     __ bind(next);
3718   }
3719 }
3720 
3721 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3722   Unimplemented();
3723 }
3724 
3725 
3726 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3727   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3728 }
3729 
3730 
3731 void LIR_Assembler::align_backward_branch_target() {
3732   __ align(BytesPerWord);
3733 }
3734 
3735 
3736 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3737   if (left->is_single_cpu()) {
3738     __ negl(left->as_register());
3739     move_regs(left->as_register(), dest->as_register());
3740 
3741   } else if (left->is_double_cpu()) {
3742     Register lo = left->as_register_lo();
3743 #ifdef _LP64
3744     Register dst = dest->as_register_lo();
3745     __ movptr(dst, lo);
3746     __ negptr(dst);
3747 #else
3748     Register hi = left->as_register_hi();
3749     __ lneg(hi, lo);
3750     if (dest->as_register_lo() == hi) {
3751       assert(dest->as_register_hi() != lo, "destroying register");
3752       move_regs(hi, dest->as_register_hi());
3753       move_regs(lo, dest->as_register_lo());
3754     } else {
3755       move_regs(lo, dest->as_register_lo());
3756       move_regs(hi, dest->as_register_hi());
3757     }
3758 #endif // _LP64
3759 
3760   } else if (dest->is_single_xmm()) {
3761 #ifdef _LP64
3762     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3763       assert(tmp->is_valid(), "need temporary");
3764       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3765       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3766     }
3767     else
3768 #endif
3769     {
3770       assert(!tmp->is_valid(), "do not need temporary");
3771       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3772         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3773       }
3774       __ xorps(dest->as_xmm_float_reg(),
3775                ExternalAddress((address)float_signflip_pool));
3776     }
3777   } else if (dest->is_double_xmm()) {
3778 #ifdef _LP64
3779     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3780       assert(tmp->is_valid(), "need temporary");
3781       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3782       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3783     }
3784     else
3785 #endif
3786     {
3787       assert(!tmp->is_valid(), "do not need temporary");
3788       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3789         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3790       }
3791       __ xorpd(dest->as_xmm_double_reg(),
3792                ExternalAddress((address)double_signflip_pool));
3793     }
3794   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3795     assert(left->fpu() == 0, "arg must be on TOS");
3796     assert(dest->fpu() == 0, "dest must be TOS");
3797     __ fchs();
3798 
3799   } else {
3800     ShouldNotReachHere();
3801   }
3802 }
3803 
3804 
3805 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3806   assert(src->is_address(), "must be an address");
3807   assert(dest->is_register(), "must be a register");
3808 
3809   PatchingStub* patch = NULL;
3810   if (patch_code != lir_patch_none) {
3811     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3812   }
3813 
3814   Register reg = dest->as_pointer_register();
3815   LIR_Address* addr = src->as_address_ptr();
3816   __ lea(reg, as_Address(addr));
3817 
3818   if (patch != NULL) {
3819     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3820   }
3821 }
3822 
3823 
3824 
3825 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3826   assert(!tmp->is_valid(), "don't need temporary");
3827   __ call(RuntimeAddress(dest));
3828   if (info != NULL) {
3829     add_call_info_here(info);
3830   }
3831 }
3832 
3833 
3834 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3835   assert(type == T_LONG, "only for volatile long fields");
3836 
3837   if (info != NULL) {
3838     add_debug_info_for_null_check_here(info);
3839   }
3840 
3841   if (src->is_double_xmm()) {
3842     if (dest->is_double_cpu()) {
3843 #ifdef _LP64
3844       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3845 #else
3846       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3847       __ psrlq(src->as_xmm_double_reg(), 32);
3848       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3849 #endif // _LP64
3850     } else if (dest->is_double_stack()) {
3851       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3852     } else if (dest->is_address()) {
3853       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3854     } else {
3855       ShouldNotReachHere();
3856     }
3857 
3858   } else if (dest->is_double_xmm()) {
3859     if (src->is_double_stack()) {
3860       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3861     } else if (src->is_address()) {
3862       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3863     } else {
3864       ShouldNotReachHere();
3865     }
3866 
3867   } else if (src->is_double_fpu()) {
3868     assert(src->fpu_regnrLo() == 0, "must be TOS");
3869     if (dest->is_double_stack()) {
3870       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3871     } else if (dest->is_address()) {
3872       __ fistp_d(as_Address(dest->as_address_ptr()));
3873     } else {
3874       ShouldNotReachHere();
3875     }
3876 
3877   } else if (dest->is_double_fpu()) {
3878     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3879     if (src->is_double_stack()) {
3880       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3881     } else if (src->is_address()) {
3882       __ fild_d(as_Address(src->as_address_ptr()));
3883     } else {
3884       ShouldNotReachHere();
3885     }
3886   } else {
3887     ShouldNotReachHere();
3888   }
3889 }
3890 
3891 #ifdef ASSERT
3892 // emit run-time assertion
3893 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3894   assert(op->code() == lir_assert, "must be");
3895 
3896   if (op->in_opr1()->is_valid()) {
3897     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3898     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3899   } else {
3900     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3901     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3902   }
3903 
3904   Label ok;
3905   if (op->condition() != lir_cond_always) {
3906     Assembler::Condition acond = Assembler::zero;
3907     switch (op->condition()) {
3908       case lir_cond_equal:        acond = Assembler::equal;       break;
3909       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3910       case lir_cond_less:         acond = Assembler::less;        break;
3911       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3912       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3913       case lir_cond_greater:      acond = Assembler::greater;     break;
3914       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3915       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3916       default:                    ShouldNotReachHere();
3917     }
3918     __ jcc(acond, ok);
3919   }
3920   if (op->halt()) {
3921     const char* str = __ code_string(op->msg());
3922     __ stop(str);
3923   } else {
3924     breakpoint();
3925   }
3926   __ bind(ok);
3927 }
3928 #endif
3929 
3930 void LIR_Assembler::membar() {
3931   // QQQ sparc TSO uses this,
3932   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3933 }
3934 
3935 void LIR_Assembler::membar_acquire() {
3936   // No x86 machines currently require load fences
3937 }
3938 
3939 void LIR_Assembler::membar_release() {
3940   // No x86 machines currently require store fences
3941 }
3942 
3943 void LIR_Assembler::membar_loadload() {
3944   // no-op
3945   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3946 }
3947 
3948 void LIR_Assembler::membar_storestore() {
3949   // no-op
3950   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3951 }
3952 
3953 void LIR_Assembler::membar_loadstore() {
3954   // no-op
3955   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3956 }
3957 
3958 void LIR_Assembler::membar_storeload() {
3959   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3960 }
3961 
3962 void LIR_Assembler::on_spin_wait() {
3963   __ pause ();
3964 }
3965 
3966 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3967   assert(result_reg->is_register(), "check");
3968 #ifdef _LP64
3969   // __ get_thread(result_reg->as_register_lo());
3970   __ mov(result_reg->as_register(), r15_thread);
3971 #else
3972   __ get_thread(result_reg->as_register());
3973 #endif // _LP64
3974 }
3975 
3976 
3977 void LIR_Assembler::peephole(LIR_List*) {
3978   // do nothing for now
3979 }
3980 
3981 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3982   assert(data == dest, "xchg/xadd uses only 2 operands");
3983 
3984   if (data->type() == T_INT) {
3985     if (code == lir_xadd) {
3986       __ lock();
3987       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3988     } else {
3989       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
3990     }
3991   } else if (data->is_oop()) {
3992     assert (code == lir_xchg, "xadd for oops");
3993     Register obj = data->as_register();
3994 #ifdef _LP64
3995     if (UseCompressedOops) {
3996       __ encode_heap_oop(obj);
3997       __ xchgl(obj, as_Address(src->as_address_ptr()));
3998       __ decode_heap_oop(obj);
3999     } else {
4000       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4001     }
4002 #else
4003     __ xchgl(obj, as_Address(src->as_address_ptr()));
4004 #endif
4005   } else if (data->type() == T_LONG) {
4006 #ifdef _LP64
4007     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4008     if (code == lir_xadd) {
4009       __ lock();
4010       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4011     } else {
4012       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4013     }
4014 #else
4015     ShouldNotReachHere();
4016 #endif
4017   } else {
4018     ShouldNotReachHere();
4019   }
4020 }
4021 
4022 #undef __