1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_IR.hpp"
  27 #include "c1/c1_Instruction.hpp"
  28 #include "c1/c1_InstructionPrinter.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciObjArrayKlass.hpp"
  31 #include "ci/ciTypeArrayKlass.hpp"
  32 #include "ci/ciValueArrayKlass.hpp"
  33 #include "ci/ciValueKlass.hpp"
  34 
  35 
  36 // Implementation of Instruction
  37 
  38 
  39 int Instruction::dominator_depth() {
  40   int result = -1;
  41   if (block()) {
  42     result = block()->dominator_depth();
  43   }
  44   assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
  45   return result;
  46 }
  47 
  48 Instruction::Condition Instruction::mirror(Condition cond) {
  49   switch (cond) {
  50     case eql: return eql;
  51     case neq: return neq;
  52     case lss: return gtr;
  53     case leq: return geq;
  54     case gtr: return lss;
  55     case geq: return leq;
  56     case aeq: return beq;
  57     case beq: return aeq;
  58   }
  59   ShouldNotReachHere();
  60   return eql;
  61 }
  62 
  63 
  64 Instruction::Condition Instruction::negate(Condition cond) {
  65   switch (cond) {
  66     case eql: return neq;
  67     case neq: return eql;
  68     case lss: return geq;
  69     case leq: return gtr;
  70     case gtr: return leq;
  71     case geq: return lss;
  72     case aeq: assert(false, "Above equal cannot be negated");
  73     case beq: assert(false, "Below equal cannot be negated");
  74   }
  75   ShouldNotReachHere();
  76   return eql;
  77 }
  78 
  79 void Instruction::update_exception_state(ValueStack* state) {
  80   if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
  81     assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind");
  82     _exception_state = state;
  83   } else {
  84     _exception_state = NULL;
  85   }
  86 }
  87 
  88 // Prev without need to have BlockBegin
  89 Instruction* Instruction::prev() {
  90   Instruction* p = NULL;
  91   Instruction* q = block();
  92   while (q != this) {
  93     assert(q != NULL, "this is not in the block's instruction list");
  94     p = q; q = q->next();
  95   }
  96   return p;
  97 }
  98 
  99 
 100 void Instruction::state_values_do(ValueVisitor* f) {
 101   if (state_before() != NULL) {
 102     state_before()->values_do(f);
 103   }
 104   if (exception_state() != NULL){
 105     exception_state()->values_do(f);
 106   }
 107 }
 108 
 109 ciType* Instruction::exact_type() const {
 110   ciType* t =  declared_type();
 111   if (t != NULL && t->is_klass()) {
 112     return t->as_klass()->exact_klass();
 113   }
 114   return NULL;
 115 }
 116 
 117 
 118 // FIXME -- make this obsolete. Use maybe_flattened_array() or check_flattened_array() instead.
 119 bool Instruction::is_flattened_array() const {
 120   if (ValueArrayFlatten) {
 121     ciType* type = declared_type();
 122     if (type != NULL && type->is_value_array_klass()) {
 123       ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass();
 124       if (!element_klass->is_loaded() || element_klass->flatten_array()) {
 125         // Assume that all unloaded value arrays are not flattenable. If they
 126         // turn out to be flattenable, we deoptimize on aaload/aastore.
 127         // ^^^^ uugh -- this is ugly!
 128         return true;
 129       }
 130     }
 131   }
 132 
 133   return false;
 134 }
 135 
 136 bool Instruction::is_loaded_flattened_array() const {
 137   if (ValueArrayFlatten) {
 138     ciType* type = declared_type();
 139     if (type != NULL && type->is_value_array_klass()) {
 140       ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass();
 141       if (element_klass->is_loaded() && element_klass->flatten_array()) {
 142         return true;
 143       }
 144     }
 145   }
 146 
 147   return false;
 148 }
 149 
 150 bool Instruction::maybe_flattened_array() const {
 151   if (ValueArrayFlatten) {
 152     ciType* type = declared_type();
 153     if (type != NULL) {
 154       if (type->is_value_array_klass()) {
 155         ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass();
 156         if (!element_klass->is_loaded() || element_klass->flatten_array()) {
 157           // For unloaded value arrays, we will add a runtime check for flat-ness.
 158           return true;
 159         }
 160       } else if (type->is_obj_array_klass()) {
 161         ciKlass* element_klass = type->as_obj_array_klass()->element_klass();
 162         if (element_klass->is_java_lang_Object()) {
 163           // Array covariance (ValueType[] <: Object[])
 164           // We will add a runtime check for flat-ness.
 165           return true;
 166         }
 167       }
 168     }
 169   }
 170 
 171   return false;
 172 }
 173 
 174 #ifndef PRODUCT
 175 void Instruction::check_state(ValueStack* state) {
 176   if (state != NULL) {
 177     state->verify();
 178   }
 179 }
 180 
 181 
 182 void Instruction::print() {
 183   InstructionPrinter ip;
 184   print(ip);
 185 }
 186 
 187 
 188 void Instruction::print_line() {
 189   InstructionPrinter ip;
 190   ip.print_line(this);
 191 }
 192 
 193 
 194 void Instruction::print(InstructionPrinter& ip) {
 195   ip.print_head();
 196   ip.print_line(this);
 197   tty->cr();
 198 }
 199 #endif // PRODUCT
 200 
 201 
 202 // perform constant and interval tests on index value
 203 bool AccessIndexed::compute_needs_range_check() {
 204   if (length()) {
 205     Constant* clength = length()->as_Constant();
 206     Constant* cindex = index()->as_Constant();
 207     if (clength && cindex) {
 208       IntConstant* l = clength->type()->as_IntConstant();
 209       IntConstant* i = cindex->type()->as_IntConstant();
 210       if (l && i && i->value() < l->value() && i->value() >= 0) {
 211         return false;
 212       }
 213     }
 214   }
 215 
 216   if (!this->check_flag(NeedsRangeCheckFlag)) {
 217     return false;
 218   }
 219 
 220   return true;
 221 }
 222 
 223 
 224 ciType* Constant::exact_type() const {
 225   if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
 226     return type()->as_ObjectType()->exact_type();
 227   }
 228   return NULL;
 229 }
 230 
 231 ciType* LoadIndexed::exact_type() const {
 232   ciType* array_type = array()->exact_type();
 233   if (array_type != NULL) {
 234     assert(array_type->is_array_klass(), "what else?");
 235     ciArrayKlass* ak = (ciArrayKlass*)array_type;
 236 
 237     if (ak->element_type()->is_instance_klass()) {
 238       ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
 239       if (ik->is_loaded() && ik->is_final()) {
 240         return ik;
 241       }
 242     }
 243   }
 244   return Instruction::exact_type();
 245 }
 246 
 247 
 248 ciType* LoadIndexed::declared_type() const {
 249   ciType* array_type = array()->declared_type();
 250   if (array_type == NULL || !array_type->is_loaded()) {
 251     return NULL;
 252   }
 253   assert(array_type->is_array_klass(), "what else?");
 254   ciArrayKlass* ak = (ciArrayKlass*)array_type;
 255   return ak->element_type();
 256 }
 257 
 258 
 259 ciType* LoadField::declared_type() const {
 260   return field()->type();
 261 }
 262 
 263 
 264 ciType* NewTypeArray::exact_type() const {
 265   return ciTypeArrayKlass::make(elt_type());
 266 }
 267 
 268 ciType* NewObjectArray::exact_type() const {
 269   ciKlass* element_klass = klass();
 270   if (element_klass->is_valuetype()) {
 271     return ciValueArrayKlass::make(element_klass);
 272   } else {
 273     return ciObjArrayKlass::make(element_klass);
 274   }
 275 }
 276 
 277 ciType* NewMultiArray::exact_type() const {
 278   return _klass;
 279 }
 280 
 281 ciType* NewArray::declared_type() const {
 282   return exact_type();
 283 }
 284 
 285 ciType* NewInstance::exact_type() const {
 286   return klass();
 287 }
 288 
 289 ciType* NewInstance::declared_type() const {
 290   return exact_type();
 291 }
 292 
 293 Value NewValueTypeInstance::depends_on() {
 294   if (_depends_on != this) {
 295     if (_depends_on->as_NewValueTypeInstance() != NULL) {
 296       return _depends_on->as_NewValueTypeInstance()->depends_on();
 297     }
 298   }
 299   return _depends_on;
 300 }
 301 
 302 ciType* NewValueTypeInstance::exact_type() const {
 303   return klass();
 304 }
 305 
 306 ciType* NewValueTypeInstance::declared_type() const {
 307   return exact_type();
 308 }
 309 
 310 ciType* CheckCast::declared_type() const {
 311   return klass();
 312 }
 313 
 314 // Implementation of ArithmeticOp
 315 
 316 bool ArithmeticOp::is_commutative() const {
 317   switch (op()) {
 318     case Bytecodes::_iadd: // fall through
 319     case Bytecodes::_ladd: // fall through
 320     case Bytecodes::_fadd: // fall through
 321     case Bytecodes::_dadd: // fall through
 322     case Bytecodes::_imul: // fall through
 323     case Bytecodes::_lmul: // fall through
 324     case Bytecodes::_fmul: // fall through
 325     case Bytecodes::_dmul: return true;
 326     default              : return false;
 327   }
 328 }
 329 
 330 
 331 bool ArithmeticOp::can_trap() const {
 332   switch (op()) {
 333     case Bytecodes::_idiv: // fall through
 334     case Bytecodes::_ldiv: // fall through
 335     case Bytecodes::_irem: // fall through
 336     case Bytecodes::_lrem: return true;
 337     default              : return false;
 338   }
 339 }
 340 
 341 
 342 // Implementation of LogicOp
 343 
 344 bool LogicOp::is_commutative() const {
 345 #ifdef ASSERT
 346   switch (op()) {
 347     case Bytecodes::_iand: // fall through
 348     case Bytecodes::_land: // fall through
 349     case Bytecodes::_ior : // fall through
 350     case Bytecodes::_lor : // fall through
 351     case Bytecodes::_ixor: // fall through
 352     case Bytecodes::_lxor: break;
 353     default              : ShouldNotReachHere(); break;
 354   }
 355 #endif
 356   // all LogicOps are commutative
 357   return true;
 358 }
 359 
 360 
 361 // Implementation of IfOp
 362 
 363 bool IfOp::is_commutative() const {
 364   return cond() == eql || cond() == neq;
 365 }
 366 
 367 
 368 // Implementation of StateSplit
 369 
 370 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
 371   NOT_PRODUCT(bool assigned = false;)
 372   for (int i = 0; i < list.length(); i++) {
 373     BlockBegin** b = list.adr_at(i);
 374     if (*b == old_block) {
 375       *b = new_block;
 376       NOT_PRODUCT(assigned = true;)
 377     }
 378   }
 379   assert(assigned == true, "should have assigned at least once");
 380 }
 381 
 382 
 383 IRScope* StateSplit::scope() const {
 384   return _state->scope();
 385 }
 386 
 387 
 388 void StateSplit::state_values_do(ValueVisitor* f) {
 389   Instruction::state_values_do(f);
 390   if (state() != NULL) state()->values_do(f);
 391 }
 392 
 393 
 394 void BlockBegin::state_values_do(ValueVisitor* f) {
 395   StateSplit::state_values_do(f);
 396 
 397   if (is_set(BlockBegin::exception_entry_flag)) {
 398     for (int i = 0; i < number_of_exception_states(); i++) {
 399       exception_state_at(i)->values_do(f);
 400     }
 401   }
 402 }
 403 
 404 
 405 // Implementation of Invoke
 406 
 407 
 408 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
 409                int vtable_index, ciMethod* target, ValueStack* state_before)
 410   : StateSplit(result_type, state_before)
 411   , _code(code)
 412   , _recv(recv)
 413   , _args(args)
 414   , _vtable_index(vtable_index)
 415   , _target(target)
 416 {
 417   set_flag(TargetIsLoadedFlag,   target->is_loaded());
 418   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
 419   set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
 420 
 421   assert(args != NULL, "args must exist");
 422 #ifdef ASSERT
 423   AssertValues assert_value;
 424   values_do(&assert_value);
 425 #endif
 426 
 427   // provide an initial guess of signature size.
 428   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
 429   if (has_receiver()) {
 430     _signature->append(as_BasicType(receiver()->type()));
 431   }
 432   for (int i = 0; i < number_of_arguments(); i++) {
 433     ValueType* t = argument_at(i)->type();
 434     BasicType bt = as_BasicType(t);
 435     _signature->append(bt);
 436   }
 437 }
 438 
 439 
 440 void Invoke::state_values_do(ValueVisitor* f) {
 441   StateSplit::state_values_do(f);
 442   if (state_before() != NULL) state_before()->values_do(f);
 443   if (state()        != NULL) state()->values_do(f);
 444 }
 445 
 446 ciType* Invoke::declared_type() const {
 447   ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci());
 448   ciType *t = declared_signature->return_type();
 449   assert(t->basic_type() != T_VOID, "need return value of void method?");
 450   return t;
 451 }
 452 
 453 // Implementation of Contant
 454 intx Constant::hash() const {
 455   if (state_before() == NULL) {
 456     switch (type()->tag()) {
 457     case intTag:
 458       return HASH2(name(), type()->as_IntConstant()->value());
 459     case addressTag:
 460       return HASH2(name(), type()->as_AddressConstant()->value());
 461     case longTag:
 462       {
 463         jlong temp = type()->as_LongConstant()->value();
 464         return HASH3(name(), high(temp), low(temp));
 465       }
 466     case floatTag:
 467       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
 468     case doubleTag:
 469       {
 470         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
 471         return HASH3(name(), high(temp), low(temp));
 472       }
 473     case objectTag:
 474       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
 475       return HASH2(name(), type()->as_ObjectType()->constant_value());
 476     case metaDataTag:
 477       assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
 478       return HASH2(name(), type()->as_MetadataType()->constant_value());
 479     default:
 480       ShouldNotReachHere();
 481     }
 482   }
 483   return 0;
 484 }
 485 
 486 bool Constant::is_equal(Value v) const {
 487   if (v->as_Constant() == NULL) return false;
 488 
 489   switch (type()->tag()) {
 490     case intTag:
 491       {
 492         IntConstant* t1 =    type()->as_IntConstant();
 493         IntConstant* t2 = v->type()->as_IntConstant();
 494         return (t1 != NULL && t2 != NULL &&
 495                 t1->value() == t2->value());
 496       }
 497     case longTag:
 498       {
 499         LongConstant* t1 =    type()->as_LongConstant();
 500         LongConstant* t2 = v->type()->as_LongConstant();
 501         return (t1 != NULL && t2 != NULL &&
 502                 t1->value() == t2->value());
 503       }
 504     case floatTag:
 505       {
 506         FloatConstant* t1 =    type()->as_FloatConstant();
 507         FloatConstant* t2 = v->type()->as_FloatConstant();
 508         return (t1 != NULL && t2 != NULL &&
 509                 jint_cast(t1->value()) == jint_cast(t2->value()));
 510       }
 511     case doubleTag:
 512       {
 513         DoubleConstant* t1 =    type()->as_DoubleConstant();
 514         DoubleConstant* t2 = v->type()->as_DoubleConstant();
 515         return (t1 != NULL && t2 != NULL &&
 516                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
 517       }
 518     case objectTag:
 519       {
 520         ObjectType* t1 =    type()->as_ObjectType();
 521         ObjectType* t2 = v->type()->as_ObjectType();
 522         return (t1 != NULL && t2 != NULL &&
 523                 t1->is_loaded() && t2->is_loaded() &&
 524                 t1->constant_value() == t2->constant_value());
 525       }
 526     case metaDataTag:
 527       {
 528         MetadataType* t1 =    type()->as_MetadataType();
 529         MetadataType* t2 = v->type()->as_MetadataType();
 530         return (t1 != NULL && t2 != NULL &&
 531                 t1->is_loaded() && t2->is_loaded() &&
 532                 t1->constant_value() == t2->constant_value());
 533       }
 534     default:
 535       return false;
 536   }
 537 }
 538 
 539 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
 540   Constant* rc = right->as_Constant();
 541   // other is not a constant
 542   if (rc == NULL) return not_comparable;
 543 
 544   ValueType* lt = type();
 545   ValueType* rt = rc->type();
 546   // different types
 547   if (lt->base() != rt->base()) return not_comparable;
 548   switch (lt->tag()) {
 549   case intTag: {
 550     int x = lt->as_IntConstant()->value();
 551     int y = rt->as_IntConstant()->value();
 552     switch (cond) {
 553     case If::eql: return x == y ? cond_true : cond_false;
 554     case If::neq: return x != y ? cond_true : cond_false;
 555     case If::lss: return x <  y ? cond_true : cond_false;
 556     case If::leq: return x <= y ? cond_true : cond_false;
 557     case If::gtr: return x >  y ? cond_true : cond_false;
 558     case If::geq: return x >= y ? cond_true : cond_false;
 559     default     : break;
 560     }
 561     break;
 562   }
 563   case longTag: {
 564     jlong x = lt->as_LongConstant()->value();
 565     jlong y = rt->as_LongConstant()->value();
 566     switch (cond) {
 567     case If::eql: return x == y ? cond_true : cond_false;
 568     case If::neq: return x != y ? cond_true : cond_false;
 569     case If::lss: return x <  y ? cond_true : cond_false;
 570     case If::leq: return x <= y ? cond_true : cond_false;
 571     case If::gtr: return x >  y ? cond_true : cond_false;
 572     case If::geq: return x >= y ? cond_true : cond_false;
 573     default     : break;
 574     }
 575     break;
 576   }
 577   case objectTag: {
 578     ciObject* xvalue = lt->as_ObjectType()->constant_value();
 579     ciObject* yvalue = rt->as_ObjectType()->constant_value();
 580     assert(xvalue != NULL && yvalue != NULL, "not constants");
 581     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 582       switch (cond) {
 583       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 584       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 585       default     : break;
 586       }
 587     }
 588     break;
 589   }
 590   case metaDataTag: {
 591     ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
 592     ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
 593     assert(xvalue != NULL && yvalue != NULL, "not constants");
 594     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 595       switch (cond) {
 596       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 597       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 598       default     : break;
 599       }
 600     }
 601     break;
 602   }
 603   default:
 604     break;
 605   }
 606   return not_comparable;
 607 }
 608 
 609 
 610 // Implementation of BlockBegin
 611 
 612 void BlockBegin::set_end(BlockEnd* end) {
 613   assert(end != NULL, "should not reset block end to NULL");
 614   if (end == _end) {
 615     return;
 616   }
 617   clear_end();
 618 
 619   // Set the new end
 620   _end = end;
 621 
 622   _successors.clear();
 623   // Now reset successors list based on BlockEnd
 624   for (int i = 0; i < end->number_of_sux(); i++) {
 625     BlockBegin* sux = end->sux_at(i);
 626     _successors.append(sux);
 627     sux->_predecessors.append(this);
 628   }
 629   _end->set_begin(this);
 630 }
 631 
 632 
 633 void BlockBegin::clear_end() {
 634   // Must make the predecessors/successors match up with the
 635   // BlockEnd's notion.
 636   if (_end != NULL) {
 637     // disconnect from the old end
 638     _end->set_begin(NULL);
 639 
 640     // disconnect this block from it's current successors
 641     for (int i = 0; i < _successors.length(); i++) {
 642       _successors.at(i)->remove_predecessor(this);
 643     }
 644     _end = NULL;
 645   }
 646 }
 647 
 648 
 649 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
 650   // disconnect any edges between from and to
 651 #ifndef PRODUCT
 652   if (PrintIR && Verbose) {
 653     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
 654   }
 655 #endif
 656   for (int s = 0; s < from->number_of_sux();) {
 657     BlockBegin* sux = from->sux_at(s);
 658     if (sux == to) {
 659       int index = sux->_predecessors.find(from);
 660       if (index >= 0) {
 661         sux->_predecessors.remove_at(index);
 662       }
 663       from->_successors.remove_at(s);
 664     } else {
 665       s++;
 666     }
 667   }
 668 }
 669 
 670 
 671 void BlockBegin::disconnect_from_graph() {
 672   // disconnect this block from all other blocks
 673   for (int p = 0; p < number_of_preds(); p++) {
 674     pred_at(p)->remove_successor(this);
 675   }
 676   for (int s = 0; s < number_of_sux(); s++) {
 677     sux_at(s)->remove_predecessor(this);
 678   }
 679 }
 680 
 681 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
 682   // modify predecessors before substituting successors
 683   for (int i = 0; i < number_of_sux(); i++) {
 684     if (sux_at(i) == old_sux) {
 685       // remove old predecessor before adding new predecessor
 686       // otherwise there is a dead predecessor in the list
 687       new_sux->remove_predecessor(old_sux);
 688       new_sux->add_predecessor(this);
 689     }
 690   }
 691   old_sux->remove_predecessor(this);
 692   end()->substitute_sux(old_sux, new_sux);
 693 }
 694 
 695 
 696 
 697 // In general it is not possible to calculate a value for the field "depth_first_number"
 698 // of the inserted block, without recomputing the values of the other blocks
 699 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
 700 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
 701   int bci = sux->bci();
 702   // critical edge splitting may introduce a goto after a if and array
 703   // bound check elimination may insert a predicate between the if and
 704   // goto. The bci of the goto can't be the one of the if otherwise
 705   // the state and bci are inconsistent and a deoptimization triggered
 706   // by the predicate would lead to incorrect execution/a crash.
 707   BlockBegin* new_sux = new BlockBegin(bci);
 708 
 709   // mark this block (special treatment when block order is computed)
 710   new_sux->set(critical_edge_split_flag);
 711 
 712   // This goto is not a safepoint.
 713   Goto* e = new Goto(sux, false);
 714   new_sux->set_next(e, bci);
 715   new_sux->set_end(e);
 716   // setup states
 717   ValueStack* s = end()->state();
 718   new_sux->set_state(s->copy(s->kind(), bci));
 719   e->set_state(s->copy(s->kind(), bci));
 720   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
 721   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
 722   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
 723 
 724   // link predecessor to new block
 725   end()->substitute_sux(sux, new_sux);
 726 
 727   // The ordering needs to be the same, so remove the link that the
 728   // set_end call above added and substitute the new_sux for this
 729   // block.
 730   sux->remove_predecessor(new_sux);
 731 
 732   // the successor could be the target of a switch so it might have
 733   // multiple copies of this predecessor, so substitute the new_sux
 734   // for the first and delete the rest.
 735   bool assigned = false;
 736   BlockList& list = sux->_predecessors;
 737   for (int i = 0; i < list.length(); i++) {
 738     BlockBegin** b = list.adr_at(i);
 739     if (*b == this) {
 740       if (assigned) {
 741         list.remove_at(i);
 742         // reprocess this index
 743         i--;
 744       } else {
 745         assigned = true;
 746         *b = new_sux;
 747       }
 748       // link the new block back to it's predecessors.
 749       new_sux->add_predecessor(this);
 750     }
 751   }
 752   assert(assigned == true, "should have assigned at least once");
 753   return new_sux;
 754 }
 755 
 756 
 757 void BlockBegin::remove_successor(BlockBegin* pred) {
 758   int idx;
 759   while ((idx = _successors.find(pred)) >= 0) {
 760     _successors.remove_at(idx);
 761   }
 762 }
 763 
 764 
 765 void BlockBegin::add_predecessor(BlockBegin* pred) {
 766   _predecessors.append(pred);
 767 }
 768 
 769 
 770 void BlockBegin::remove_predecessor(BlockBegin* pred) {
 771   int idx;
 772   while ((idx = _predecessors.find(pred)) >= 0) {
 773     _predecessors.remove_at(idx);
 774   }
 775 }
 776 
 777 
 778 void BlockBegin::add_exception_handler(BlockBegin* b) {
 779   assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
 780   // add only if not in the list already
 781   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
 782 }
 783 
 784 int BlockBegin::add_exception_state(ValueStack* state) {
 785   assert(is_set(exception_entry_flag), "only for xhandlers");
 786   if (_exception_states == NULL) {
 787     _exception_states = new ValueStackStack(4);
 788   }
 789   _exception_states->append(state);
 790   return _exception_states->length() - 1;
 791 }
 792 
 793 
 794 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
 795   if (!mark.at(block_id())) {
 796     mark.at_put(block_id(), true);
 797     closure->block_do(this);
 798     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
 799     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
 800     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
 801   }
 802 }
 803 
 804 
 805 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
 806   if (!mark.at(block_id())) {
 807     mark.at_put(block_id(), true);
 808     BlockEnd* e = end();
 809     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
 810     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
 811     closure->block_do(this);
 812   }
 813 }
 814 
 815 
 816 void BlockBegin::iterate_preorder(BlockClosure* closure) {
 817   int mark_len = number_of_blocks();
 818   boolArray mark(mark_len, mark_len, false);
 819   iterate_preorder(mark, closure);
 820 }
 821 
 822 
 823 void BlockBegin::iterate_postorder(BlockClosure* closure) {
 824   int mark_len = number_of_blocks();
 825   boolArray mark(mark_len, mark_len, false);
 826   iterate_postorder(mark, closure);
 827 }
 828 
 829 
 830 void BlockBegin::block_values_do(ValueVisitor* f) {
 831   for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
 832 }
 833 
 834 
 835 #ifndef PRODUCT
 836    #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
 837 #else
 838    #define TRACE_PHI(coce)
 839 #endif
 840 
 841 
 842 bool BlockBegin::try_merge(ValueStack* new_state) {
 843   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
 844 
 845   // local variables used for state iteration
 846   int index;
 847   Value new_value, existing_value;
 848 
 849   ValueStack* existing_state = state();
 850   if (existing_state == NULL) {
 851     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
 852 
 853     if (is_set(BlockBegin::was_visited_flag)) {
 854       // this actually happens for complicated jsr/ret structures
 855       return false; // BAILOUT in caller
 856     }
 857 
 858     // copy state because it is altered
 859     new_state = new_state->copy(ValueStack::BlockBeginState, bci());
 860 
 861     // Use method liveness to invalidate dead locals
 862     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
 863     if (liveness.is_valid()) {
 864       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
 865 
 866       for_each_local_value(new_state, index, new_value) {
 867         if (!liveness.at(index) || new_value->type()->is_illegal()) {
 868           new_state->invalidate_local(index);
 869           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
 870         }
 871       }
 872     }
 873 
 874     if (is_set(BlockBegin::parser_loop_header_flag)) {
 875       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
 876 
 877       for_each_stack_value(new_state, index, new_value) {
 878         new_state->setup_phi_for_stack(this, index, NULL, new_value);
 879         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
 880       }
 881 
 882       BitMap& requires_phi_function = new_state->scope()->requires_phi_function();
 883 
 884       for_each_local_value(new_state, index, new_value) {
 885         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
 886         if (requires_phi || !SelectivePhiFunctions) {
 887           new_state->setup_phi_for_local(this, index, NULL, new_value);
 888           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
 889         }
 890       }
 891     }
 892 
 893     // initialize state of block
 894     set_state(new_state);
 895 
 896   } else if (existing_state->is_same(new_state)) {
 897     TRACE_PHI(tty->print_cr("exisiting state found"));
 898 
 899     assert(existing_state->scope() == new_state->scope(), "not matching");
 900     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
 901     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
 902 
 903     if (is_set(BlockBegin::was_visited_flag)) {
 904       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
 905 
 906       if (!is_set(BlockBegin::parser_loop_header_flag)) {
 907         // this actually happens for complicated jsr/ret structures
 908         return false; // BAILOUT in caller
 909       }
 910 
 911       for_each_local_value(existing_state, index, existing_value) {
 912         Value new_value = new_state->local_at(index);
 913         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
 914           Phi* existing_phi = existing_value->as_Phi();
 915           if (existing_phi == NULL) {
 916             return false; // BAILOUT in caller
 917           }
 918           // Invalidate the phi function here. This case is very rare except for
 919           // JVMTI capability "can_access_local_variables".
 920           // In really rare cases we will bail out in LIRGenerator::move_to_phi.
 921           existing_phi->make_illegal();
 922           existing_state->invalidate_local(index);
 923           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 924         }
 925       }
 926 
 927 #ifdef ASSERT
 928       // check that all necessary phi functions are present
 929       for_each_stack_value(existing_state, index, existing_value) {
 930         assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
 931       }
 932       for_each_local_value(existing_state, index, existing_value) {
 933         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
 934       }
 935 #endif
 936 
 937     } else {
 938       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
 939 
 940       // create necessary phi functions for stack
 941       for_each_stack_value(existing_state, index, existing_value) {
 942         Value new_value = new_state->stack_at(index);
 943         Phi* existing_phi = existing_value->as_Phi();
 944 
 945         if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
 946           existing_state->setup_phi_for_stack(this, index, existing_value, new_value);
 947           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
 948         }
 949       }
 950 
 951       // create necessary phi functions for locals
 952       for_each_local_value(existing_state, index, existing_value) {
 953         Value new_value = new_state->local_at(index);
 954         Phi* existing_phi = existing_value->as_Phi();
 955 
 956         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
 957           existing_state->invalidate_local(index);
 958           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 959         } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
 960           existing_state->setup_phi_for_local(this, index, existing_value, new_value);
 961           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
 962         }
 963       }
 964     }
 965 
 966     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
 967 
 968   } else {
 969     assert(false, "stack or locks not matching (invalid bytecodes)");
 970     return false;
 971   }
 972 
 973   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
 974 
 975   return true;
 976 }
 977 
 978 
 979 #ifndef PRODUCT
 980 void BlockBegin::print_block() {
 981   InstructionPrinter ip;
 982   print_block(ip, false);
 983 }
 984 
 985 
 986 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
 987   ip.print_instr(this); tty->cr();
 988   ip.print_stack(this->state()); tty->cr();
 989   ip.print_inline_level(this);
 990   ip.print_head();
 991   for (Instruction* n = next(); n != NULL; n = n->next()) {
 992     if (!live_only || n->is_pinned() || n->use_count() > 0) {
 993       ip.print_line(n);
 994     }
 995   }
 996   tty->cr();
 997 }
 998 #endif // PRODUCT
 999 
1000 
1001 // Implementation of BlockList
1002 
1003 void BlockList::iterate_forward (BlockClosure* closure) {
1004   const int l = length();
1005   for (int i = 0; i < l; i++) closure->block_do(at(i));
1006 }
1007 
1008 
1009 void BlockList::iterate_backward(BlockClosure* closure) {
1010   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
1011 }
1012 
1013 
1014 void BlockList::blocks_do(void f(BlockBegin*)) {
1015   for (int i = length() - 1; i >= 0; i--) f(at(i));
1016 }
1017 
1018 
1019 void BlockList::values_do(ValueVisitor* f) {
1020   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
1021 }
1022 
1023 
1024 #ifndef PRODUCT
1025 void BlockList::print(bool cfg_only, bool live_only) {
1026   InstructionPrinter ip;
1027   for (int i = 0; i < length(); i++) {
1028     BlockBegin* block = at(i);
1029     if (cfg_only) {
1030       ip.print_instr(block); tty->cr();
1031     } else {
1032       block->print_block(ip, live_only);
1033     }
1034   }
1035 }
1036 #endif // PRODUCT
1037 
1038 
1039 // Implementation of BlockEnd
1040 
1041 void BlockEnd::set_begin(BlockBegin* begin) {
1042   BlockList* sux = NULL;
1043   if (begin != NULL) {
1044     sux = begin->successors();
1045   } else if (this->begin() != NULL) {
1046     // copy our sux list
1047     BlockList* sux = new BlockList(this->begin()->number_of_sux());
1048     for (int i = 0; i < this->begin()->number_of_sux(); i++) {
1049       sux->append(this->begin()->sux_at(i));
1050     }
1051   }
1052   _sux = sux;
1053 }
1054 
1055 
1056 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
1057   substitute(*_sux, old_sux, new_sux);
1058 }
1059 
1060 
1061 // Implementation of Phi
1062 
1063 // Normal phi functions take their operands from the last instruction of the
1064 // predecessor. Special handling is needed for xhanlder entries because there
1065 // the state of arbitrary instructions are needed.
1066 
1067 Value Phi::operand_at(int i) const {
1068   ValueStack* state;
1069   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1070     state = _block->exception_state_at(i);
1071   } else {
1072     state = _block->pred_at(i)->end()->state();
1073   }
1074   assert(state != NULL, "");
1075 
1076   if (is_local()) {
1077     return state->local_at(local_index());
1078   } else {
1079     return state->stack_at(stack_index());
1080   }
1081 }
1082 
1083 
1084 int Phi::operand_count() const {
1085   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1086     return _block->number_of_exception_states();
1087   } else {
1088     return _block->number_of_preds();
1089   }
1090 }
1091 
1092 #ifdef ASSERT
1093 // Constructor of Assert
1094 Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
1095   , _x(x)
1096   , _cond(cond)
1097   , _y(y)
1098 {
1099   set_flag(UnorderedIsTrueFlag, unordered_is_true);
1100   assert(x->type()->tag() == y->type()->tag(), "types must match");
1101   pin();
1102 
1103   stringStream strStream;
1104   Compilation::current()->method()->print_name(&strStream);
1105 
1106   stringStream strStream1;
1107   InstructionPrinter ip1(1, &strStream1);
1108   ip1.print_instr(x);
1109 
1110   stringStream strStream2;
1111   InstructionPrinter ip2(1, &strStream2);
1112   ip2.print_instr(y);
1113 
1114   stringStream ss;
1115   ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
1116 
1117   _message = ss.as_string();
1118 }
1119 #endif
1120 
1121 void RangeCheckPredicate::check_state() {
1122   assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
1123 }
1124 
1125 void ProfileInvoke::state_values_do(ValueVisitor* f) {
1126   if (state() != NULL) state()->values_do(f);
1127 }