1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "jfr/support/jfrIntrinsics.hpp"
  47 #include "logging/log.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/access.inline.hpp"
  52 #include "oops/objArrayOop.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/compilationPolicy.hpp"
  58 #include "runtime/fieldDescriptor.inline.hpp"
  59 #include "runtime/frame.inline.hpp"
  60 #include "runtime/interfaceSupport.inline.hpp"
  61 #include "runtime/javaCalls.hpp"
  62 #include "runtime/sharedRuntime.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/vframe.inline.hpp"
  65 #include "runtime/vframeArray.hpp"
  66 #include "runtime/vm_version.hpp"
  67 #include "utilities/copy.hpp"
  68 #include "utilities/events.hpp"
  69 
  70 
  71 // Implementation of StubAssembler
  72 
  73 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  74   _name = name;
  75   _must_gc_arguments = false;
  76   _frame_size = no_frame_size;
  77   _num_rt_args = 0;
  78   _stub_id = stub_id;
  79 }
  80 
  81 
  82 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  83   _name = name;
  84   _must_gc_arguments = must_gc_arguments;
  85 }
  86 
  87 
  88 void StubAssembler::set_frame_size(int size) {
  89   if (_frame_size == no_frame_size) {
  90     _frame_size = size;
  91   }
  92   assert(_frame_size == size, "can't change the frame size");
  93 }
  94 
  95 
  96 void StubAssembler::set_num_rt_args(int args) {
  97   if (_num_rt_args == 0) {
  98     _num_rt_args = args;
  99   }
 100   assert(_num_rt_args == args, "can't change the number of args");
 101 }
 102 
 103 // Implementation of Runtime1
 104 
 105 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 106 const char *Runtime1::_blob_names[] = {
 107   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 108 };
 109 
 110 #ifndef PRODUCT
 111 // statistics
 112 int Runtime1::_generic_arraycopy_cnt = 0;
 113 int Runtime1::_generic_arraycopystub_cnt = 0;
 114 int Runtime1::_arraycopy_slowcase_cnt = 0;
 115 int Runtime1::_arraycopy_checkcast_cnt = 0;
 116 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 117 int Runtime1::_new_type_array_slowcase_cnt = 0;
 118 int Runtime1::_new_object_array_slowcase_cnt = 0;
 119 int Runtime1::_new_instance_slowcase_cnt = 0;
 120 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 121 int Runtime1::_monitorenter_slowcase_cnt = 0;
 122 int Runtime1::_monitorexit_slowcase_cnt = 0;
 123 int Runtime1::_patch_code_slowcase_cnt = 0;
 124 int Runtime1::_throw_range_check_exception_count = 0;
 125 int Runtime1::_throw_index_exception_count = 0;
 126 int Runtime1::_throw_div0_exception_count = 0;
 127 int Runtime1::_throw_null_pointer_exception_count = 0;
 128 int Runtime1::_throw_class_cast_exception_count = 0;
 129 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 130 int Runtime1::_throw_illegal_monitor_state_exception_count = 0;
 131 int Runtime1::_throw_array_store_exception_count = 0;
 132 int Runtime1::_throw_count = 0;
 133 
 134 static int _byte_arraycopy_stub_cnt = 0;
 135 static int _short_arraycopy_stub_cnt = 0;
 136 static int _int_arraycopy_stub_cnt = 0;
 137 static int _long_arraycopy_stub_cnt = 0;
 138 static int _oop_arraycopy_stub_cnt = 0;
 139 
 140 address Runtime1::arraycopy_count_address(BasicType type) {
 141   switch (type) {
 142   case T_BOOLEAN:
 143   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 144   case T_CHAR:
 145   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 146   case T_FLOAT:
 147   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 148   case T_DOUBLE:
 149   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 150   case T_ARRAY:
 151   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 152   default:
 153     ShouldNotReachHere();
 154     return NULL;
 155   }
 156 }
 157 
 158 
 159 #endif
 160 
 161 // Simple helper to see if the caller of a runtime stub which
 162 // entered the VM has been deoptimized
 163 
 164 static bool caller_is_deopted() {
 165   JavaThread* thread = JavaThread::current();
 166   RegisterMap reg_map(thread, false);
 167   frame runtime_frame = thread->last_frame();
 168   frame caller_frame = runtime_frame.sender(&reg_map);
 169   assert(caller_frame.is_compiled_frame(), "must be compiled");
 170   return caller_frame.is_deoptimized_frame();
 171 }
 172 
 173 // Stress deoptimization
 174 static void deopt_caller() {
 175   if ( !caller_is_deopted()) {
 176     JavaThread* thread = JavaThread::current();
 177     RegisterMap reg_map(thread, false);
 178     frame runtime_frame = thread->last_frame();
 179     frame caller_frame = runtime_frame.sender(&reg_map);
 180     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 181     assert(caller_is_deopted(), "Must be deoptimized");
 182   }
 183 }
 184 
 185 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 186  private:
 187   Runtime1::StubID _id;
 188  public:
 189   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
 190   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 191     return Runtime1::generate_code_for(_id, sasm);
 192   }
 193 };
 194 
 195 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 196   ResourceMark rm;
 197   // create code buffer for code storage
 198   CodeBuffer code(buffer_blob);
 199 
 200   OopMapSet* oop_maps;
 201   int frame_size;
 202   bool must_gc_arguments;
 203 
 204   Compilation::setup_code_buffer(&code, 0);
 205 
 206   // create assembler for code generation
 207   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
 208   // generate code for runtime stub
 209   oop_maps = cl->generate_code(sasm);
 210   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 211          "if stub has an oop map it must have a valid frame size");
 212   assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap");
 213 
 214   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 215   sasm->align(BytesPerWord);
 216   // make sure all code is in code buffer
 217   sasm->flush();
 218 
 219   frame_size = sasm->frame_size();
 220   must_gc_arguments = sasm->must_gc_arguments();
 221   // create blob - distinguish a few special cases
 222   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 223                                                  &code,
 224                                                  CodeOffsets::frame_never_safe,
 225                                                  frame_size,
 226                                                  oop_maps,
 227                                                  must_gc_arguments);
 228   assert(blob != NULL, "blob must exist");
 229   return blob;
 230 }
 231 
 232 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 233   assert(0 <= id && id < number_of_ids, "illegal stub id");
 234   bool expect_oop_map = true;
 235 #ifdef ASSERT
 236   // Make sure that stubs that need oopmaps have them
 237   switch (id) {
 238     // These stubs don't need to have an oopmap
 239   case dtrace_object_alloc_id:
 240   case slow_subtype_check_id:
 241   case fpu2long_stub_id:
 242   case unwind_exception_id:
 243   case counter_overflow_id:
 244 #if defined(SPARC) || defined(PPC32)
 245   case handle_exception_nofpu_id:  // Unused on sparc
 246 #endif
 247     expect_oop_map = false;
 248     break;
 249   default:
 250     break;
 251   }
 252 #endif
 253   StubIDStubAssemblerCodeGenClosure cl(id);
 254   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 255   // install blob
 256   _blobs[id] = blob;
 257 }
 258 
 259 void Runtime1::initialize(BufferBlob* blob) {
 260   // platform-dependent initialization
 261   initialize_pd();
 262   // generate stubs
 263   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 264   // printing
 265 #ifndef PRODUCT
 266   if (PrintSimpleStubs) {
 267     ResourceMark rm;
 268     for (int id = 0; id < number_of_ids; id++) {
 269       _blobs[id]->print();
 270       if (_blobs[id]->oop_maps() != NULL) {
 271         _blobs[id]->oop_maps()->print();
 272       }
 273     }
 274   }
 275 #endif
 276   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 277   bs->generate_c1_runtime_stubs(blob);
 278 }
 279 
 280 CodeBlob* Runtime1::blob_for(StubID id) {
 281   assert(0 <= id && id < number_of_ids, "illegal stub id");
 282   return _blobs[id];
 283 }
 284 
 285 
 286 const char* Runtime1::name_for(StubID id) {
 287   assert(0 <= id && id < number_of_ids, "illegal stub id");
 288   return _blob_names[id];
 289 }
 290 
 291 const char* Runtime1::name_for_address(address entry) {
 292   for (int id = 0; id < number_of_ids; id++) {
 293     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 294   }
 295 
 296 #define FUNCTION_CASE(a, f) \
 297   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 298 
 299   FUNCTION_CASE(entry, os::javaTimeMillis);
 300   FUNCTION_CASE(entry, os::javaTimeNanos);
 301   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 302   FUNCTION_CASE(entry, SharedRuntime::d2f);
 303   FUNCTION_CASE(entry, SharedRuntime::d2i);
 304   FUNCTION_CASE(entry, SharedRuntime::d2l);
 305   FUNCTION_CASE(entry, SharedRuntime::dcos);
 306   FUNCTION_CASE(entry, SharedRuntime::dexp);
 307   FUNCTION_CASE(entry, SharedRuntime::dlog);
 308   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 309   FUNCTION_CASE(entry, SharedRuntime::dpow);
 310   FUNCTION_CASE(entry, SharedRuntime::drem);
 311   FUNCTION_CASE(entry, SharedRuntime::dsin);
 312   FUNCTION_CASE(entry, SharedRuntime::dtan);
 313   FUNCTION_CASE(entry, SharedRuntime::f2i);
 314   FUNCTION_CASE(entry, SharedRuntime::f2l);
 315   FUNCTION_CASE(entry, SharedRuntime::frem);
 316   FUNCTION_CASE(entry, SharedRuntime::l2d);
 317   FUNCTION_CASE(entry, SharedRuntime::l2f);
 318   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 319   FUNCTION_CASE(entry, SharedRuntime::lmul);
 320   FUNCTION_CASE(entry, SharedRuntime::lrem);
 321   FUNCTION_CASE(entry, SharedRuntime::lrem);
 322   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 323   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 324   FUNCTION_CASE(entry, is_instance_of);
 325   FUNCTION_CASE(entry, trace_block_entry);
 326 #ifdef JFR_HAVE_INTRINSICS
 327   FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
 328 #endif
 329   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 330   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 331   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 332   FUNCTION_CASE(entry, StubRoutines::dexp());
 333   FUNCTION_CASE(entry, StubRoutines::dlog());
 334   FUNCTION_CASE(entry, StubRoutines::dlog10());
 335   FUNCTION_CASE(entry, StubRoutines::dpow());
 336   FUNCTION_CASE(entry, StubRoutines::dsin());
 337   FUNCTION_CASE(entry, StubRoutines::dcos());
 338   FUNCTION_CASE(entry, StubRoutines::dtan());
 339 
 340 #undef FUNCTION_CASE
 341 
 342   // Soft float adds more runtime names.
 343   return pd_name_for_address(entry);
 344 }
 345 
 346 
 347 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 348   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 349 
 350   assert(klass->is_klass(), "not a class");
 351   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 352   InstanceKlass* h = InstanceKlass::cast(klass);
 353   h->check_valid_for_instantiation(true, CHECK);
 354   // make sure klass is initialized
 355   h->initialize(CHECK);
 356   // allocate instance and return via TLS
 357   oop obj = h->allocate_instance(CHECK);
 358   thread->set_vm_result(obj);
 359 JRT_END
 360 
 361 
 362 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 363   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 364   // Note: no handle for klass needed since they are not used
 365   //       anymore after new_typeArray() and no GC can happen before.
 366   //       (This may have to change if this code changes!)
 367   assert(klass->is_klass(), "not a class");
 368   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 369   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 370   thread->set_vm_result(obj);
 371   // This is pretty rare but this runtime patch is stressful to deoptimization
 372   // if we deoptimize here so force a deopt to stress the path.
 373   if (DeoptimizeALot) {
 374     deopt_caller();
 375   }
 376 
 377 JRT_END
 378 
 379 
 380 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 381   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 382 
 383   // Note: no handle for klass needed since they are not used
 384   //       anymore after new_objArray() and no GC can happen before.
 385   //       (This may have to change if this code changes!)
 386   assert(array_klass->is_klass(), "not a class");
 387   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 388   Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass();
 389   if (elem_klass->is_value()) {
 390     arrayOop obj = oopFactory::new_valueArray(elem_klass, length, CHECK);
 391     thread->set_vm_result(obj);
 392   } else {
 393     objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 394     thread->set_vm_result(obj);
 395   }
 396   // This is pretty rare but this runtime patch is stressful to deoptimization
 397   // if we deoptimize here so force a deopt to stress the path.
 398   if (DeoptimizeALot) {
 399     deopt_caller();
 400   }
 401 JRT_END
 402 
 403 
 404 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 405   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 406 
 407   assert(klass->is_klass(), "not a class");
 408   assert(rank >= 1, "rank must be nonzero");
 409   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 410   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 411   thread->set_vm_result(obj);
 412 JRT_END
 413 
 414 
 415 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 416   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 417 JRT_END
 418 
 419 
 420 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 421   ResourceMark rm(thread);
 422   const char* klass_name = obj->klass()->external_name();
 423   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 424 JRT_END
 425 
 426 
 427 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 428 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 429 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 430 // a constant.
 431 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 432   nmethod* osr_nm = NULL;
 433   methodHandle method(THREAD, m);
 434 
 435   RegisterMap map(THREAD, false);
 436   frame fr =  THREAD->last_frame().sender(&map);
 437   nmethod* nm = (nmethod*) fr.cb();
 438   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 439   methodHandle enclosing_method(THREAD, nm->method());
 440 
 441   CompLevel level = (CompLevel)nm->comp_level();
 442   int bci = InvocationEntryBci;
 443   if (branch_bci != InvocationEntryBci) {
 444     // Compute destination bci
 445     address pc = method()->code_base() + branch_bci;
 446     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 447     int offset = 0;
 448     switch (branch) {
 449       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 450       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 451       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 452       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 453       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 454       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 455       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 456         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 457         break;
 458       case Bytecodes::_goto_w:
 459         offset = Bytes::get_Java_u4(pc + 1);
 460         break;
 461       default: ;
 462     }
 463     bci = branch_bci + offset;
 464   }
 465   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 466   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 467   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 468   return osr_nm;
 469 }
 470 
 471 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 472   nmethod* osr_nm;
 473   JRT_BLOCK
 474     osr_nm = counter_overflow_helper(thread, bci, method);
 475     if (osr_nm != NULL) {
 476       RegisterMap map(thread, false);
 477       frame fr =  thread->last_frame().sender(&map);
 478       Deoptimization::deoptimize_frame(thread, fr.id());
 479     }
 480   JRT_BLOCK_END
 481   return NULL;
 482 JRT_END
 483 
 484 extern void vm_exit(int code);
 485 
 486 // Enter this method from compiled code handler below. This is where we transition
 487 // to VM mode. This is done as a helper routine so that the method called directly
 488 // from compiled code does not have to transition to VM. This allows the entry
 489 // method to see if the nmethod that we have just looked up a handler for has
 490 // been deoptimized while we were in the vm. This simplifies the assembly code
 491 // cpu directories.
 492 //
 493 // We are entering here from exception stub (via the entry method below)
 494 // If there is a compiled exception handler in this method, we will continue there;
 495 // otherwise we will unwind the stack and continue at the caller of top frame method
 496 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 497 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 498 // check to see if the handler we are going to return is now in a nmethod that has
 499 // been deoptimized. If that is the case we return the deopt blob
 500 // unpack_with_exception entry instead. This makes life for the exception blob easier
 501 // because making that same check and diverting is painful from assembly language.
 502 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 503   // Reset method handle flag.
 504   thread->set_is_method_handle_return(false);
 505 
 506   Handle exception(thread, ex);
 507   nm = CodeCache::find_nmethod(pc);
 508   assert(nm != NULL, "this is not an nmethod");
 509   // Adjust the pc as needed/
 510   if (nm->is_deopt_pc(pc)) {
 511     RegisterMap map(thread, false);
 512     frame exception_frame = thread->last_frame().sender(&map);
 513     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 514     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 515     pc = exception_frame.pc();
 516   }
 517 #ifdef ASSERT
 518   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 519   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 520   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 521     if (ExitVMOnVerifyError) vm_exit(-1);
 522     ShouldNotReachHere();
 523   }
 524 #endif
 525 
 526   // Check the stack guard pages and reenable them if necessary and there is
 527   // enough space on the stack to do so.  Use fast exceptions only if the guard
 528   // pages are enabled.
 529   bool guard_pages_enabled = thread->stack_guards_enabled();
 530   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 531 
 532   if (JvmtiExport::can_post_on_exceptions()) {
 533     // To ensure correct notification of exception catches and throws
 534     // we have to deoptimize here.  If we attempted to notify the
 535     // catches and throws during this exception lookup it's possible
 536     // we could deoptimize on the way out of the VM and end back in
 537     // the interpreter at the throw site.  This would result in double
 538     // notifications since the interpreter would also notify about
 539     // these same catches and throws as it unwound the frame.
 540 
 541     RegisterMap reg_map(thread);
 542     frame stub_frame = thread->last_frame();
 543     frame caller_frame = stub_frame.sender(&reg_map);
 544 
 545     // We don't really want to deoptimize the nmethod itself since we
 546     // can actually continue in the exception handler ourselves but I
 547     // don't see an easy way to have the desired effect.
 548     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 549     assert(caller_is_deopted(), "Must be deoptimized");
 550 
 551     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 552   }
 553 
 554   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 555   if (guard_pages_enabled) {
 556     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 557     if (fast_continuation != NULL) {
 558       // Set flag if return address is a method handle call site.
 559       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 560       return fast_continuation;
 561     }
 562   }
 563 
 564   // If the stack guard pages are enabled, check whether there is a handler in
 565   // the current method.  Otherwise (guard pages disabled), force an unwind and
 566   // skip the exception cache update (i.e., just leave continuation==NULL).
 567   address continuation = NULL;
 568   if (guard_pages_enabled) {
 569 
 570     // New exception handling mechanism can support inlined methods
 571     // with exception handlers since the mappings are from PC to PC
 572 
 573     // debugging support
 574     // tracing
 575     if (log_is_enabled(Info, exceptions)) {
 576       ResourceMark rm;
 577       stringStream tempst;
 578       assert(nm->method() != NULL, "Unexpected NULL method()");
 579       tempst.print("compiled method <%s>\n"
 580                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 581                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 582       Exceptions::log_exception(exception, tempst);
 583     }
 584     // for AbortVMOnException flag
 585     Exceptions::debug_check_abort(exception);
 586 
 587     // Clear out the exception oop and pc since looking up an
 588     // exception handler can cause class loading, which might throw an
 589     // exception and those fields are expected to be clear during
 590     // normal bytecode execution.
 591     thread->clear_exception_oop_and_pc();
 592 
 593     bool recursive_exception = false;
 594     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 595     // If an exception was thrown during exception dispatch, the exception oop may have changed
 596     thread->set_exception_oop(exception());
 597     thread->set_exception_pc(pc);
 598 
 599     // the exception cache is used only by non-implicit exceptions
 600     // Update the exception cache only when there didn't happen
 601     // another exception during the computation of the compiled
 602     // exception handler. Checking for exception oop equality is not
 603     // sufficient because some exceptions are pre-allocated and reused.
 604     if (continuation != NULL && !recursive_exception) {
 605       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 606     }
 607   }
 608 
 609   thread->set_vm_result(exception());
 610   // Set flag if return address is a method handle call site.
 611   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 612 
 613   if (log_is_enabled(Info, exceptions)) {
 614     ResourceMark rm;
 615     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 616                          " for exception thrown at PC " PTR_FORMAT,
 617                          p2i(thread), p2i(continuation), p2i(pc));
 618   }
 619 
 620   return continuation;
 621 JRT_END
 622 
 623 // Enter this method from compiled code only if there is a Java exception handler
 624 // in the method handling the exception.
 625 // We are entering here from exception stub. We don't do a normal VM transition here.
 626 // We do it in a helper. This is so we can check to see if the nmethod we have just
 627 // searched for an exception handler has been deoptimized in the meantime.
 628 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 629   oop exception = thread->exception_oop();
 630   address pc = thread->exception_pc();
 631   // Still in Java mode
 632   DEBUG_ONLY(ResetNoHandleMark rnhm);
 633   nmethod* nm = NULL;
 634   address continuation = NULL;
 635   {
 636     // Enter VM mode by calling the helper
 637     ResetNoHandleMark rnhm;
 638     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 639   }
 640   // Back in JAVA, use no oops DON'T safepoint
 641 
 642   // Now check to see if the nmethod we were called from is now deoptimized.
 643   // If so we must return to the deopt blob and deoptimize the nmethod
 644   if (nm != NULL && caller_is_deopted()) {
 645     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 646   }
 647 
 648   assert(continuation != NULL, "no handler found");
 649   return continuation;
 650 }
 651 
 652 
 653 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index, arrayOopDesc* a))
 654   NOT_PRODUCT(_throw_range_check_exception_count++;)
 655   const int len = 35;
 656   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 657   char message[2 * jintAsStringSize + len];
 658   sprintf(message, "Index %d out of bounds for length %d", index, a->length());
 659   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 660 JRT_END
 661 
 662 
 663 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 664   NOT_PRODUCT(_throw_index_exception_count++;)
 665   char message[16];
 666   sprintf(message, "%d", index);
 667   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 668 JRT_END
 669 
 670 
 671 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 672   NOT_PRODUCT(_throw_div0_exception_count++;)
 673   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 674 JRT_END
 675 
 676 
 677 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 678   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 679   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 680 JRT_END
 681 
 682 
 683 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 684   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 685   ResourceMark rm(thread);
 686   char* message = SharedRuntime::generate_class_cast_message(
 687     thread, object->klass());
 688   SharedRuntime::throw_and_post_jvmti_exception(
 689     thread, vmSymbols::java_lang_ClassCastException(), message);
 690 JRT_END
 691 
 692 
 693 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 694   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 695   ResourceMark rm(thread);
 696   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 697 JRT_END
 698 
 699 
 700 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* thread))
 701   NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;)
 702   ResourceMark rm(thread);
 703   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IllegalMonitorStateException());
 704 JRT_END
 705 
 706 
 707 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 708   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 709   if (PrintBiasedLockingStatistics) {
 710     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 711   }
 712   Handle h_obj(thread, obj);
 713   if (UseBiasedLocking) {
 714     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 715     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 716   } else {
 717     if (UseFastLocking) {
 718       // When using fast locking, the compiled code has already tried the fast case
 719       assert(obj == lock->obj(), "must match");
 720       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 721     } else {
 722       lock->set_obj(obj);
 723       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 724     }
 725   }
 726 JRT_END
 727 
 728 
 729 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 730   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 731   assert(thread == JavaThread::current(), "threads must correspond");
 732   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 733   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 734   EXCEPTION_MARK;
 735 
 736   oop obj = lock->obj();
 737   assert(oopDesc::is_oop(obj), "must be NULL or an object");
 738   if (UseFastLocking) {
 739     // When using fast locking, the compiled code has already tried the fast case
 740     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 741   } else {
 742     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 743   }
 744 JRT_END
 745 
 746 // Cf. OptoRuntime::deoptimize_caller_frame
 747 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 748   // Called from within the owner thread, so no need for safepoint
 749   RegisterMap reg_map(thread, false);
 750   frame stub_frame = thread->last_frame();
 751   assert(stub_frame.is_runtime_frame(), "Sanity check");
 752   frame caller_frame = stub_frame.sender(&reg_map);
 753   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 754   assert(nm != NULL, "Sanity check");
 755   methodHandle method(thread, nm->method());
 756   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 757   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 758   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 759 
 760   if (action == Deoptimization::Action_make_not_entrant) {
 761     if (nm->make_not_entrant()) {
 762       if (reason == Deoptimization::Reason_tenured) {
 763         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 764         if (trap_mdo != NULL) {
 765           trap_mdo->inc_tenure_traps();
 766         }
 767       }
 768     }
 769   }
 770 
 771   // Deoptimize the caller frame.
 772   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 773   // Return to the now deoptimized frame.
 774 JRT_END
 775 
 776 
 777 #ifndef DEOPTIMIZE_WHEN_PATCHING
 778 
 779 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 780   Bytecode_field field_access(caller, bci);
 781   // This can be static or non-static field access
 782   Bytecodes::Code code       = field_access.code();
 783 
 784   // We must load class, initialize class and resolve the field
 785   fieldDescriptor result; // initialize class if needed
 786   constantPoolHandle constants(THREAD, caller->constants());
 787   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 788   return result.field_holder();
 789 }
 790 
 791 
 792 //
 793 // This routine patches sites where a class wasn't loaded or
 794 // initialized at the time the code was generated.  It handles
 795 // references to classes, fields and forcing of initialization.  Most
 796 // of the cases are straightforward and involving simply forcing
 797 // resolution of a class, rewriting the instruction stream with the
 798 // needed constant and replacing the call in this function with the
 799 // patched code.  The case for static field is more complicated since
 800 // the thread which is in the process of initializing a class can
 801 // access it's static fields but other threads can't so the code
 802 // either has to deoptimize when this case is detected or execute a
 803 // check that the current thread is the initializing thread.  The
 804 // current
 805 //
 806 // Patches basically look like this:
 807 //
 808 //
 809 // patch_site: jmp patch stub     ;; will be patched
 810 // continue:   ...
 811 //             ...
 812 //             ...
 813 //             ...
 814 //
 815 // They have a stub which looks like this:
 816 //
 817 //             ;; patch body
 818 //             movl <const>, reg           (for class constants)
 819 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 820 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 821 //             <being_init offset> <bytes to copy> <bytes to skip>
 822 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 823 //             jmp patch_site
 824 //
 825 //
 826 // A normal patch is done by rewriting the patch body, usually a move,
 827 // and then copying it into place over top of the jmp instruction
 828 // being careful to flush caches and doing it in an MP-safe way.  The
 829 // constants following the patch body are used to find various pieces
 830 // of the patch relative to the call site for Runtime1::patch_code.
 831 // The case for getstatic and putstatic is more complicated because
 832 // getstatic and putstatic have special semantics when executing while
 833 // the class is being initialized.  getstatic/putstatic on a class
 834 // which is being_initialized may be executed by the initializing
 835 // thread but other threads have to block when they execute it.  This
 836 // is accomplished in compiled code by executing a test of the current
 837 // thread against the initializing thread of the class.  It's emitted
 838 // as boilerplate in their stub which allows the patched code to be
 839 // executed before it's copied back into the main body of the nmethod.
 840 //
 841 // being_init: get_thread(<tmp reg>
 842 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 843 //             jne patch_stub
 844 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 845 //             movl reg, [reg1 + <const>]  (for field offsets)
 846 //             jmp continue
 847 //             <being_init offset> <bytes to copy> <bytes to skip>
 848 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 849 //             jmp patch_site
 850 //
 851 // If the class is being initialized the patch body is rewritten and
 852 // the patch site is rewritten to jump to being_init, instead of
 853 // patch_stub.  Whenever this code is executed it checks the current
 854 // thread against the intializing thread so other threads will enter
 855 // the runtime and end up blocked waiting the class to finish
 856 // initializing inside the calls to resolve_field below.  The
 857 // initializing class will continue on it's way.  Once the class is
 858 // fully_initialized, the intializing_thread of the class becomes
 859 // NULL, so the next thread to execute this code will fail the test,
 860 // call into patch_code and complete the patching process by copying
 861 // the patch body back into the main part of the nmethod and resume
 862 // executing.
 863 
 864 // NB:
 865 //
 866 // Patchable instruction sequences inherently exhibit race conditions,
 867 // where thread A is patching an instruction at the same time thread B
 868 // is executing it.  The algorithms we use ensure that any observation
 869 // that B can make on any intermediate states during A's patching will
 870 // always end up with a correct outcome.  This is easiest if there are
 871 // few or no intermediate states.  (Some inline caches have two
 872 // related instructions that must be patched in tandem.  For those,
 873 // intermediate states seem to be unavoidable, but we will get the
 874 // right answer from all possible observation orders.)
 875 //
 876 // When patching the entry instruction at the head of a method, or a
 877 // linkable call instruction inside of a method, we try very hard to
 878 // use a patch sequence which executes as a single memory transaction.
 879 // This means, in practice, that when thread A patches an instruction,
 880 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 881 // instruction or is contained in it.  We believe that memory hardware
 882 // will never break up such a word write, if it is naturally aligned
 883 // for the word being written.  We also know that some CPUs work very
 884 // hard to create atomic updates even of naturally unaligned words,
 885 // but we don't want to bet the farm on this always working.
 886 //
 887 // Therefore, if there is any chance of a race condition, we try to
 888 // patch only naturally aligned words, as single, full-word writes.
 889 
 890 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 891   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 892 
 893   ResourceMark rm(thread);
 894   RegisterMap reg_map(thread, false);
 895   frame runtime_frame = thread->last_frame();
 896   frame caller_frame = runtime_frame.sender(&reg_map);
 897 
 898   // last java frame on stack
 899   vframeStream vfst(thread, true);
 900   assert(!vfst.at_end(), "Java frame must exist");
 901 
 902   methodHandle caller_method(THREAD, vfst.method());
 903   // Note that caller_method->code() may not be same as caller_code because of OSR's
 904   // Note also that in the presence of inlining it is not guaranteed
 905   // that caller_method() == caller_code->method()
 906 
 907   int bci = vfst.bci();
 908   Bytecodes::Code code = caller_method()->java_code_at(bci);
 909 
 910   // this is used by assertions in the access_field_patching_id
 911   BasicType patch_field_type = T_ILLEGAL;
 912   bool deoptimize_for_volatile = false;
 913   bool deoptimize_for_atomic = false;
 914   int patch_field_offset = -1;
 915   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 916   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 917   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 918   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 919   bool load_klass_or_mirror_patch_id =
 920     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 921 
 922   if (stub_id == Runtime1::access_field_patching_id) {
 923 
 924     Bytecode_field field_access(caller_method, bci);
 925     fieldDescriptor result; // initialize class if needed
 926     Bytecodes::Code code = field_access.code();
 927     constantPoolHandle constants(THREAD, caller_method->constants());
 928     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 929     patch_field_offset = result.offset();
 930 
 931     // If we're patching a field which is volatile then at compile it
 932     // must not have been know to be volatile, so the generated code
 933     // isn't correct for a volatile reference.  The nmethod has to be
 934     // deoptimized so that the code can be regenerated correctly.
 935     // This check is only needed for access_field_patching since this
 936     // is the path for patching field offsets.  load_klass is only
 937     // used for patching references to oops which don't need special
 938     // handling in the volatile case.
 939 
 940     deoptimize_for_volatile = result.access_flags().is_volatile();
 941 
 942     // If we are patching a field which should be atomic, then
 943     // the generated code is not correct either, force deoptimizing.
 944     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 945     // break access atomicity only for them.
 946 
 947     // Strictly speaking, the deoptimization on 64-bit platforms
 948     // is unnecessary, and T_LONG stores on 32-bit platforms need
 949     // to be handled by special patching code when AlwaysAtomicAccesses
 950     // becomes product feature. At this point, we are still going
 951     // for the deoptimization for consistency against volatile
 952     // accesses.
 953 
 954     patch_field_type = result.field_type();
 955     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 956 
 957   } else if (load_klass_or_mirror_patch_id) {
 958     Klass* k = NULL;
 959     switch (code) {
 960       case Bytecodes::_putstatic:
 961       case Bytecodes::_getstatic:
 962         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 963           init_klass = klass;
 964           mirror = Handle(THREAD, klass->java_mirror());
 965         }
 966         break;
 967       case Bytecodes::_new:
 968         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 969           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 970         }
 971         break;
 972       case Bytecodes::_defaultvalue:
 973         { Bytecode_defaultvalue bdefaultvalue(caller_method(), caller_method->bcp_from(bci));
 974           k = caller_method->constants()->klass_at(bdefaultvalue.index(), CHECK);
 975         }
 976         break;
 977       case Bytecodes::_multianewarray:
 978         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 979           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 980         }
 981         break;
 982       case Bytecodes::_instanceof:
 983         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 984           k = caller_method->constants()->klass_at(io.index(), CHECK);
 985         }
 986         break;
 987       case Bytecodes::_checkcast:
 988         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 989           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 990         }
 991         break;
 992       case Bytecodes::_anewarray:
 993         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 994           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 995           k = ek->array_klass(CHECK);
 996         }
 997         break;
 998       case Bytecodes::_ldc:
 999       case Bytecodes::_ldc_w:
1000         {
1001           Bytecode_loadconstant cc(caller_method, bci);
1002           oop m = cc.resolve_constant(CHECK);
1003           mirror = Handle(THREAD, m);
1004         }
1005         break;
1006       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1007     }
1008     load_klass = k;
1009   } else if (stub_id == load_appendix_patching_id) {
1010     Bytecode_invoke bytecode(caller_method, bci);
1011     Bytecodes::Code bc = bytecode.invoke_code();
1012 
1013     CallInfo info;
1014     constantPoolHandle pool(thread, caller_method->constants());
1015     int index = bytecode.index();
1016     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1017     switch (bc) {
1018       case Bytecodes::_invokehandle: {
1019         int cache_index = ConstantPool::decode_cpcache_index(index, true);
1020         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
1021         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
1022         cpce->set_method_handle(pool, info);
1023         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1024         break;
1025       }
1026       case Bytecodes::_invokedynamic: {
1027         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
1028         cpce->set_dynamic_call(pool, info);
1029         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1030         break;
1031       }
1032       default: fatal("unexpected bytecode for load_appendix_patching_id");
1033     }
1034   } else {
1035     ShouldNotReachHere();
1036   }
1037 
1038   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1039     // At compile time we assumed the field wasn't volatile/atomic but after
1040     // loading it turns out it was volatile/atomic so we have to throw the
1041     // compiled code out and let it be regenerated.
1042     if (TracePatching) {
1043       if (deoptimize_for_volatile) {
1044         tty->print_cr("Deoptimizing for patching volatile field reference");
1045       }
1046       if (deoptimize_for_atomic) {
1047         tty->print_cr("Deoptimizing for patching atomic field reference");
1048       }
1049     }
1050 
1051     // It's possible the nmethod was invalidated in the last
1052     // safepoint, but if it's still alive then make it not_entrant.
1053     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1054     if (nm != NULL) {
1055       nm->make_not_entrant();
1056     }
1057 
1058     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1059 
1060     // Return to the now deoptimized frame.
1061   }
1062 
1063   // Now copy code back
1064 
1065   {
1066     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1067     //
1068     // Deoptimization may have happened while we waited for the lock.
1069     // In that case we don't bother to do any patching we just return
1070     // and let the deopt happen
1071     if (!caller_is_deopted()) {
1072       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1073       address instr_pc = jump->jump_destination();
1074       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1075       if (ni->is_jump() ) {
1076         // the jump has not been patched yet
1077         // The jump destination is slow case and therefore not part of the stubs
1078         // (stubs are only for StaticCalls)
1079 
1080         // format of buffer
1081         //    ....
1082         //    instr byte 0     <-- copy_buff
1083         //    instr byte 1
1084         //    ..
1085         //    instr byte n-1
1086         //      n
1087         //    ....             <-- call destination
1088 
1089         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1090         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1091         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1092         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1093         address copy_buff = stub_location - *byte_skip - *byte_count;
1094         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1095         if (TracePatching) {
1096           ttyLocker ttyl;
1097           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1098                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1099           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1100           assert(caller_code != NULL, "nmethod not found");
1101 
1102           // NOTE we use pc() not original_pc() because we already know they are
1103           // identical otherwise we'd have never entered this block of code
1104 
1105           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1106           assert(map != NULL, "null check");
1107           map->print();
1108           tty->cr();
1109 
1110           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1111         }
1112         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1113         bool do_patch = true;
1114         if (stub_id == Runtime1::access_field_patching_id) {
1115           // The offset may not be correct if the class was not loaded at code generation time.
1116           // Set it now.
1117           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1118           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1119           assert(patch_field_offset >= 0, "illegal offset");
1120           n_move->add_offset_in_bytes(patch_field_offset);
1121         } else if (load_klass_or_mirror_patch_id) {
1122           // If a getstatic or putstatic is referencing a klass which
1123           // isn't fully initialized, the patch body isn't copied into
1124           // place until initialization is complete.  In this case the
1125           // patch site is setup so that any threads besides the
1126           // initializing thread are forced to come into the VM and
1127           // block.
1128           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1129                      InstanceKlass::cast(init_klass)->is_initialized();
1130           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1131           if (jump->jump_destination() == being_initialized_entry) {
1132             assert(do_patch == true, "initialization must be complete at this point");
1133           } else {
1134             // patch the instruction <move reg, klass>
1135             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1136 
1137             assert(n_copy->data() == 0 ||
1138                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1139                    "illegal init value");
1140             if (stub_id == Runtime1::load_klass_patching_id) {
1141               assert(load_klass != NULL, "klass not set");
1142               n_copy->set_data((intx) (load_klass));
1143             } else {
1144               assert(mirror() != NULL, "klass not set");
1145               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1146               n_copy->set_data(cast_from_oop<intx>(mirror()));
1147             }
1148 
1149             if (TracePatching) {
1150               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1151             }
1152           }
1153         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1154           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1155           assert(n_copy->data() == 0 ||
1156                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1157                  "illegal init value");
1158           n_copy->set_data(cast_from_oop<intx>(appendix()));
1159 
1160           if (TracePatching) {
1161             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1162           }
1163         } else {
1164           ShouldNotReachHere();
1165         }
1166 
1167 #if defined(SPARC) || defined(PPC32)
1168         if (load_klass_or_mirror_patch_id ||
1169             stub_id == Runtime1::load_appendix_patching_id) {
1170           // Update the location in the nmethod with the proper
1171           // metadata.  When the code was generated, a NULL was stuffed
1172           // in the metadata table and that table needs to be update to
1173           // have the right value.  On intel the value is kept
1174           // directly in the instruction instead of in the metadata
1175           // table, so set_data above effectively updated the value.
1176           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1177           assert(nm != NULL, "invalid nmethod_pc");
1178           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1179           bool found = false;
1180           while (mds.next() && !found) {
1181             if (mds.type() == relocInfo::oop_type) {
1182               assert(stub_id == Runtime1::load_mirror_patching_id ||
1183                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1184               oop_Relocation* r = mds.oop_reloc();
1185               oop* oop_adr = r->oop_addr();
1186               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1187               r->fix_oop_relocation();
1188               found = true;
1189             } else if (mds.type() == relocInfo::metadata_type) {
1190               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1191               metadata_Relocation* r = mds.metadata_reloc();
1192               Metadata** metadata_adr = r->metadata_addr();
1193               *metadata_adr = load_klass;
1194               r->fix_metadata_relocation();
1195               found = true;
1196             }
1197           }
1198           assert(found, "the metadata must exist!");
1199         }
1200 #endif
1201         if (do_patch) {
1202           // replace instructions
1203           // first replace the tail, then the call
1204 #ifdef ARM
1205           if((load_klass_or_mirror_patch_id ||
1206               stub_id == Runtime1::load_appendix_patching_id) &&
1207               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1208             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1209             address addr = NULL;
1210             assert(nm != NULL, "invalid nmethod_pc");
1211             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1212             while (mds.next()) {
1213               if (mds.type() == relocInfo::oop_type) {
1214                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1215                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1216                 oop_Relocation* r = mds.oop_reloc();
1217                 addr = (address)r->oop_addr();
1218                 break;
1219               } else if (mds.type() == relocInfo::metadata_type) {
1220                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1221                 metadata_Relocation* r = mds.metadata_reloc();
1222                 addr = (address)r->metadata_addr();
1223                 break;
1224               }
1225             }
1226             assert(addr != NULL, "metadata relocation must exist");
1227             copy_buff -= *byte_count;
1228             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1229             n_copy2->set_pc_relative_offset(addr, instr_pc);
1230           }
1231 #endif
1232 
1233           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1234             address ptr = copy_buff + i;
1235             int a_byte = (*ptr) & 0xFF;
1236             address dst = instr_pc + i;
1237             *(unsigned char*)dst = (unsigned char) a_byte;
1238           }
1239           ICache::invalidate_range(instr_pc, *byte_count);
1240           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1241 
1242           if (load_klass_or_mirror_patch_id ||
1243               stub_id == Runtime1::load_appendix_patching_id) {
1244             relocInfo::relocType rtype =
1245               (stub_id == Runtime1::load_klass_patching_id) ?
1246                                    relocInfo::metadata_type :
1247                                    relocInfo::oop_type;
1248             // update relocInfo to metadata
1249             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1250             assert(nm != NULL, "invalid nmethod_pc");
1251 
1252             // The old patch site is now a move instruction so update
1253             // the reloc info so that it will get updated during
1254             // future GCs.
1255             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1256             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1257                                                      relocInfo::none, rtype);
1258 #ifdef SPARC
1259             // Sparc takes two relocations for an metadata so update the second one.
1260             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1261             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1262             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1263                                                      relocInfo::none, rtype);
1264 #endif
1265 #ifdef PPC32
1266           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1267             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1268             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1269                                                      relocInfo::none, rtype);
1270           }
1271 #endif
1272           }
1273 
1274         } else {
1275           ICache::invalidate_range(copy_buff, *byte_count);
1276           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1277         }
1278       }
1279     }
1280   }
1281 
1282   // If we are patching in a non-perm oop, make sure the nmethod
1283   // is on the right list.
1284   if (ScavengeRootsInCode) {
1285     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1286     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1287     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1288 
1289     // Since we've patched some oops in the nmethod,
1290     // (re)register it with the heap.
1291     Universe::heap()->register_nmethod(nm);
1292   }
1293 JRT_END
1294 
1295 #else // DEOPTIMIZE_WHEN_PATCHING
1296 
1297 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1298   RegisterMap reg_map(thread, false);
1299 
1300   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1301   if (TracePatching) {
1302     tty->print_cr("Deoptimizing because patch is needed");
1303   }
1304 
1305   frame runtime_frame = thread->last_frame();
1306   frame caller_frame = runtime_frame.sender(&reg_map);
1307 
1308   // It's possible the nmethod was invalidated in the last
1309   // safepoint, but if it's still alive then make it not_entrant.
1310   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1311   if (nm != NULL) {
1312     nm->make_not_entrant();
1313   }
1314 
1315   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1316 
1317   // Return to the now deoptimized frame.
1318 JRT_END
1319 
1320 #endif // DEOPTIMIZE_WHEN_PATCHING
1321 
1322 //
1323 // Entry point for compiled code. We want to patch a nmethod.
1324 // We don't do a normal VM transition here because we want to
1325 // know after the patching is complete and any safepoint(s) are taken
1326 // if the calling nmethod was deoptimized. We do this by calling a
1327 // helper method which does the normal VM transition and when it
1328 // completes we can check for deoptimization. This simplifies the
1329 // assembly code in the cpu directories.
1330 //
1331 int Runtime1::move_klass_patching(JavaThread* thread) {
1332 //
1333 // NOTE: we are still in Java
1334 //
1335   Thread* THREAD = thread;
1336   debug_only(NoHandleMark nhm;)
1337   {
1338     // Enter VM mode
1339 
1340     ResetNoHandleMark rnhm;
1341     patch_code(thread, load_klass_patching_id);
1342   }
1343   // Back in JAVA, use no oops DON'T safepoint
1344 
1345   // Return true if calling code is deoptimized
1346 
1347   return caller_is_deopted();
1348 }
1349 
1350 int Runtime1::move_mirror_patching(JavaThread* thread) {
1351 //
1352 // NOTE: we are still in Java
1353 //
1354   Thread* THREAD = thread;
1355   debug_only(NoHandleMark nhm;)
1356   {
1357     // Enter VM mode
1358 
1359     ResetNoHandleMark rnhm;
1360     patch_code(thread, load_mirror_patching_id);
1361   }
1362   // Back in JAVA, use no oops DON'T safepoint
1363 
1364   // Return true if calling code is deoptimized
1365 
1366   return caller_is_deopted();
1367 }
1368 
1369 int Runtime1::move_appendix_patching(JavaThread* thread) {
1370 //
1371 // NOTE: we are still in Java
1372 //
1373   Thread* THREAD = thread;
1374   debug_only(NoHandleMark nhm;)
1375   {
1376     // Enter VM mode
1377 
1378     ResetNoHandleMark rnhm;
1379     patch_code(thread, load_appendix_patching_id);
1380   }
1381   // Back in JAVA, use no oops DON'T safepoint
1382 
1383   // Return true if calling code is deoptimized
1384 
1385   return caller_is_deopted();
1386 }
1387 //
1388 // Entry point for compiled code. We want to patch a nmethod.
1389 // We don't do a normal VM transition here because we want to
1390 // know after the patching is complete and any safepoint(s) are taken
1391 // if the calling nmethod was deoptimized. We do this by calling a
1392 // helper method which does the normal VM transition and when it
1393 // completes we can check for deoptimization. This simplifies the
1394 // assembly code in the cpu directories.
1395 //
1396 
1397 int Runtime1::access_field_patching(JavaThread* thread) {
1398 //
1399 // NOTE: we are still in Java
1400 //
1401   Thread* THREAD = thread;
1402   debug_only(NoHandleMark nhm;)
1403   {
1404     // Enter VM mode
1405 
1406     ResetNoHandleMark rnhm;
1407     patch_code(thread, access_field_patching_id);
1408   }
1409   // Back in JAVA, use no oops DON'T safepoint
1410 
1411   // Return true if calling code is deoptimized
1412 
1413   return caller_is_deopted();
1414 JRT_END
1415 
1416 
1417 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1418   // for now we just print out the block id
1419   tty->print("%d ", block_id);
1420 JRT_END
1421 
1422 
1423 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1424   // had to return int instead of bool, otherwise there may be a mismatch
1425   // between the C calling convention and the Java one.
1426   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1427   // JVM takes the whole %eax as the return value, which may misinterpret
1428   // the return value as a boolean true.
1429 
1430   assert(mirror != NULL, "should null-check on mirror before calling");
1431   Klass* k = java_lang_Class::as_Klass(mirror);
1432   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1433 JRT_END
1434 
1435 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1436   ResourceMark rm;
1437 
1438   assert(!TieredCompilation, "incompatible with tiered compilation");
1439 
1440   RegisterMap reg_map(thread, false);
1441   frame runtime_frame = thread->last_frame();
1442   frame caller_frame = runtime_frame.sender(&reg_map);
1443 
1444   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1445   assert (nm != NULL, "no more nmethod?");
1446   nm->make_not_entrant();
1447 
1448   methodHandle m(nm->method());
1449   MethodData* mdo = m->method_data();
1450 
1451   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1452     // Build an MDO.  Ignore errors like OutOfMemory;
1453     // that simply means we won't have an MDO to update.
1454     Method::build_interpreter_method_data(m, THREAD);
1455     if (HAS_PENDING_EXCEPTION) {
1456       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1457       CLEAR_PENDING_EXCEPTION;
1458     }
1459     mdo = m->method_data();
1460   }
1461 
1462   if (mdo != NULL) {
1463     mdo->inc_trap_count(Deoptimization::Reason_none);
1464   }
1465 
1466   if (TracePredicateFailedTraps) {
1467     stringStream ss1, ss2;
1468     vframeStream vfst(thread);
1469     methodHandle inlinee = methodHandle(vfst.method());
1470     inlinee->print_short_name(&ss1);
1471     m->print_short_name(&ss2);
1472     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1473   }
1474 
1475 
1476   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1477 
1478 JRT_END
1479 
1480 #ifndef PRODUCT
1481 void Runtime1::print_statistics() {
1482   tty->print_cr("C1 Runtime statistics:");
1483   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1484   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1485   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1486   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1487   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1488   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1489   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1490   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1491   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1492   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1493   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1494   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1495   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1496   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1497   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1498 
1499   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1500   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1501   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1502   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1503   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1504   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1505   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1506 
1507   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1508   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1509   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1510   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1511   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1512   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1513   tty->print_cr(" _throw_illegal_monitor_state_exception_count:  %d:", _throw_illegal_monitor_state_exception_count);
1514   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1515   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1516 
1517   SharedRuntime::print_ic_miss_histogram();
1518   tty->cr();
1519 }
1520 #endif // PRODUCT