1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/c1/barrierSetC1.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "interpreter/bytecode.hpp"
  45 #include "interpreter/interpreter.hpp"
  46 #include "jfr/support/jfrIntrinsics.hpp"
  47 #include "logging/log.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "oops/access.inline.hpp"
  52 #include "oops/objArrayOop.inline.hpp"
  53 #include "oops/objArrayKlass.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "oops/valueArrayKlass.hpp"
  56 #include "oops/valueArrayOop.inline.hpp"
  57 #include "runtime/atomic.hpp"
  58 #include "runtime/biasedLocking.hpp"
  59 #include "runtime/compilationPolicy.hpp"
  60 #include "runtime/fieldDescriptor.inline.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/interfaceSupport.inline.hpp"
  63 #include "runtime/javaCalls.hpp"
  64 #include "runtime/sharedRuntime.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.inline.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vm_version.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/events.hpp"
  71 
  72 
  73 // Implementation of StubAssembler
  74 
  75 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  76   _name = name;
  77   _must_gc_arguments = false;
  78   _frame_size = no_frame_size;
  79   _num_rt_args = 0;
  80   _stub_id = stub_id;
  81 }
  82 
  83 
  84 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  85   _name = name;
  86   _must_gc_arguments = must_gc_arguments;
  87 }
  88 
  89 
  90 void StubAssembler::set_frame_size(int size) {
  91   if (_frame_size == no_frame_size) {
  92     _frame_size = size;
  93   }
  94   assert(_frame_size == size, "can't change the frame size");
  95 }
  96 
  97 
  98 void StubAssembler::set_num_rt_args(int args) {
  99   if (_num_rt_args == 0) {
 100     _num_rt_args = args;
 101   }
 102   assert(_num_rt_args == args, "can't change the number of args");
 103 }
 104 
 105 // Implementation of Runtime1
 106 
 107 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 108 const char *Runtime1::_blob_names[] = {
 109   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 110 };
 111 
 112 #ifndef PRODUCT
 113 // statistics
 114 int Runtime1::_generic_arraycopy_cnt = 0;
 115 int Runtime1::_generic_arraycopystub_cnt = 0;
 116 int Runtime1::_arraycopy_slowcase_cnt = 0;
 117 int Runtime1::_arraycopy_checkcast_cnt = 0;
 118 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 119 int Runtime1::_new_type_array_slowcase_cnt = 0;
 120 int Runtime1::_new_object_array_slowcase_cnt = 0;
 121 int Runtime1::_new_instance_slowcase_cnt = 0;
 122 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 123 int Runtime1::_load_flattened_array_slowcase_cnt = 0;
 124 int Runtime1::_monitorenter_slowcase_cnt = 0;
 125 int Runtime1::_monitorexit_slowcase_cnt = 0;
 126 int Runtime1::_patch_code_slowcase_cnt = 0;
 127 int Runtime1::_throw_range_check_exception_count = 0;
 128 int Runtime1::_throw_index_exception_count = 0;
 129 int Runtime1::_throw_div0_exception_count = 0;
 130 int Runtime1::_throw_null_pointer_exception_count = 0;
 131 int Runtime1::_throw_class_cast_exception_count = 0;
 132 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 133 int Runtime1::_throw_illegal_monitor_state_exception_count = 0;
 134 int Runtime1::_throw_array_store_exception_count = 0;
 135 int Runtime1::_throw_count = 0;
 136 
 137 static int _byte_arraycopy_stub_cnt = 0;
 138 static int _short_arraycopy_stub_cnt = 0;
 139 static int _int_arraycopy_stub_cnt = 0;
 140 static int _long_arraycopy_stub_cnt = 0;
 141 static int _oop_arraycopy_stub_cnt = 0;
 142 
 143 address Runtime1::arraycopy_count_address(BasicType type) {
 144   switch (type) {
 145   case T_BOOLEAN:
 146   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 147   case T_CHAR:
 148   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 149   case T_FLOAT:
 150   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 151   case T_DOUBLE:
 152   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 153   case T_ARRAY:
 154   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 155   default:
 156     ShouldNotReachHere();
 157     return NULL;
 158   }
 159 }
 160 
 161 
 162 #endif
 163 
 164 // Simple helper to see if the caller of a runtime stub which
 165 // entered the VM has been deoptimized
 166 
 167 static bool caller_is_deopted() {
 168   JavaThread* thread = JavaThread::current();
 169   RegisterMap reg_map(thread, false);
 170   frame runtime_frame = thread->last_frame();
 171   frame caller_frame = runtime_frame.sender(&reg_map);
 172   assert(caller_frame.is_compiled_frame(), "must be compiled");
 173   return caller_frame.is_deoptimized_frame();
 174 }
 175 
 176 // Stress deoptimization
 177 static void deopt_caller() {
 178   if ( !caller_is_deopted()) {
 179     JavaThread* thread = JavaThread::current();
 180     RegisterMap reg_map(thread, false);
 181     frame runtime_frame = thread->last_frame();
 182     frame caller_frame = runtime_frame.sender(&reg_map);
 183     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 184     assert(caller_is_deopted(), "Must be deoptimized");
 185   }
 186 }
 187 
 188 class StubIDStubAssemblerCodeGenClosure: public StubAssemblerCodeGenClosure {
 189  private:
 190   Runtime1::StubID _id;
 191  public:
 192   StubIDStubAssemblerCodeGenClosure(Runtime1::StubID id) : _id(id) {}
 193   virtual OopMapSet* generate_code(StubAssembler* sasm) {
 194     return Runtime1::generate_code_for(_id, sasm);
 195   }
 196 };
 197 
 198 CodeBlob* Runtime1::generate_blob(BufferBlob* buffer_blob, int stub_id, const char* name, bool expect_oop_map, StubAssemblerCodeGenClosure* cl) {
 199   ResourceMark rm;
 200   // create code buffer for code storage
 201   CodeBuffer code(buffer_blob);
 202 
 203   OopMapSet* oop_maps;
 204   int frame_size;
 205   bool must_gc_arguments;
 206 
 207   Compilation::setup_code_buffer(&code, 0);
 208 
 209   // create assembler for code generation
 210   StubAssembler* sasm = new StubAssembler(&code, name, stub_id);
 211   // generate code for runtime stub
 212   oop_maps = cl->generate_code(sasm);
 213   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 214          "if stub has an oop map it must have a valid frame size");
 215   assert(!expect_oop_map || oop_maps != NULL, "must have an oopmap");
 216 
 217   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 218   sasm->align(BytesPerWord);
 219   // make sure all code is in code buffer
 220   sasm->flush();
 221 
 222   frame_size = sasm->frame_size();
 223   must_gc_arguments = sasm->must_gc_arguments();
 224   // create blob - distinguish a few special cases
 225   CodeBlob* blob = RuntimeStub::new_runtime_stub(name,
 226                                                  &code,
 227                                                  CodeOffsets::frame_never_safe,
 228                                                  frame_size,
 229                                                  oop_maps,
 230                                                  must_gc_arguments);
 231   assert(blob != NULL, "blob must exist");
 232   return blob;
 233 }
 234 
 235 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 236   assert(0 <= id && id < number_of_ids, "illegal stub id");
 237   bool expect_oop_map = true;
 238 #ifdef ASSERT
 239   // Make sure that stubs that need oopmaps have them
 240   switch (id) {
 241     // These stubs don't need to have an oopmap
 242   case dtrace_object_alloc_id:
 243   case slow_subtype_check_id:
 244   case fpu2long_stub_id:
 245   case unwind_exception_id:
 246   case counter_overflow_id:
 247 #if defined(SPARC) || defined(PPC32)
 248   case handle_exception_nofpu_id:  // Unused on sparc
 249 #endif
 250     expect_oop_map = false;
 251     break;
 252   default:
 253     break;
 254   }
 255 #endif
 256   StubIDStubAssemblerCodeGenClosure cl(id);
 257   CodeBlob* blob = generate_blob(buffer_blob, id, name_for(id), expect_oop_map, &cl);
 258   // install blob
 259   _blobs[id] = blob;
 260 }
 261 
 262 void Runtime1::initialize(BufferBlob* blob) {
 263   // platform-dependent initialization
 264   initialize_pd();
 265   // generate stubs
 266   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 267   // printing
 268 #ifndef PRODUCT
 269   if (PrintSimpleStubs) {
 270     ResourceMark rm;
 271     for (int id = 0; id < number_of_ids; id++) {
 272       _blobs[id]->print();
 273       if (_blobs[id]->oop_maps() != NULL) {
 274         _blobs[id]->oop_maps()->print();
 275       }
 276     }
 277   }
 278 #endif
 279   BarrierSetC1* bs = BarrierSet::barrier_set()->barrier_set_c1();
 280   bs->generate_c1_runtime_stubs(blob);
 281 }
 282 
 283 CodeBlob* Runtime1::blob_for(StubID id) {
 284   assert(0 <= id && id < number_of_ids, "illegal stub id");
 285   return _blobs[id];
 286 }
 287 
 288 
 289 const char* Runtime1::name_for(StubID id) {
 290   assert(0 <= id && id < number_of_ids, "illegal stub id");
 291   return _blob_names[id];
 292 }
 293 
 294 const char* Runtime1::name_for_address(address entry) {
 295   for (int id = 0; id < number_of_ids; id++) {
 296     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 297   }
 298 
 299 #define FUNCTION_CASE(a, f) \
 300   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 301 
 302   FUNCTION_CASE(entry, os::javaTimeMillis);
 303   FUNCTION_CASE(entry, os::javaTimeNanos);
 304   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 305   FUNCTION_CASE(entry, SharedRuntime::d2f);
 306   FUNCTION_CASE(entry, SharedRuntime::d2i);
 307   FUNCTION_CASE(entry, SharedRuntime::d2l);
 308   FUNCTION_CASE(entry, SharedRuntime::dcos);
 309   FUNCTION_CASE(entry, SharedRuntime::dexp);
 310   FUNCTION_CASE(entry, SharedRuntime::dlog);
 311   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 312   FUNCTION_CASE(entry, SharedRuntime::dpow);
 313   FUNCTION_CASE(entry, SharedRuntime::drem);
 314   FUNCTION_CASE(entry, SharedRuntime::dsin);
 315   FUNCTION_CASE(entry, SharedRuntime::dtan);
 316   FUNCTION_CASE(entry, SharedRuntime::f2i);
 317   FUNCTION_CASE(entry, SharedRuntime::f2l);
 318   FUNCTION_CASE(entry, SharedRuntime::frem);
 319   FUNCTION_CASE(entry, SharedRuntime::l2d);
 320   FUNCTION_CASE(entry, SharedRuntime::l2f);
 321   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 322   FUNCTION_CASE(entry, SharedRuntime::lmul);
 323   FUNCTION_CASE(entry, SharedRuntime::lrem);
 324   FUNCTION_CASE(entry, SharedRuntime::lrem);
 325   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 326   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 327   FUNCTION_CASE(entry, is_instance_of);
 328   FUNCTION_CASE(entry, trace_block_entry);
 329 #ifdef JFR_HAVE_INTRINSICS
 330   FUNCTION_CASE(entry, JFR_TIME_FUNCTION);
 331 #endif
 332   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 333   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 334   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 335   FUNCTION_CASE(entry, StubRoutines::dexp());
 336   FUNCTION_CASE(entry, StubRoutines::dlog());
 337   FUNCTION_CASE(entry, StubRoutines::dlog10());
 338   FUNCTION_CASE(entry, StubRoutines::dpow());
 339   FUNCTION_CASE(entry, StubRoutines::dsin());
 340   FUNCTION_CASE(entry, StubRoutines::dcos());
 341   FUNCTION_CASE(entry, StubRoutines::dtan());
 342 
 343 #undef FUNCTION_CASE
 344 
 345   // Soft float adds more runtime names.
 346   return pd_name_for_address(entry);
 347 }
 348 
 349 
 350 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 351   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 352 
 353   assert(klass->is_klass(), "not a class");
 354   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 355   InstanceKlass* h = InstanceKlass::cast(klass);
 356   h->check_valid_for_instantiation(true, CHECK);
 357   // make sure klass is initialized
 358   h->initialize(CHECK);
 359   // allocate instance and return via TLS
 360   oop obj = h->allocate_instance(CHECK);
 361   thread->set_vm_result(obj);
 362 JRT_END
 363 
 364 
 365 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 366   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 367   // Note: no handle for klass needed since they are not used
 368   //       anymore after new_typeArray() and no GC can happen before.
 369   //       (This may have to change if this code changes!)
 370   assert(klass->is_klass(), "not a class");
 371   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 372   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 373   thread->set_vm_result(obj);
 374   // This is pretty rare but this runtime patch is stressful to deoptimization
 375   // if we deoptimize here so force a deopt to stress the path.
 376   if (DeoptimizeALot) {
 377     deopt_caller();
 378   }
 379 
 380 JRT_END
 381 
 382 
 383 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 384   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 385 
 386   // Note: no handle for klass needed since they are not used
 387   //       anymore after new_objArray() and no GC can happen before.
 388   //       (This may have to change if this code changes!)
 389   assert(array_klass->is_klass(), "not a class");
 390   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 391   Klass* elem_klass = ArrayKlass::cast(array_klass)->element_klass();
 392   if (elem_klass->is_value()) {
 393     arrayOop obj = oopFactory::new_valueArray(elem_klass, length, CHECK);
 394     thread->set_vm_result(obj);
 395   } else {
 396     objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 397     thread->set_vm_result(obj);
 398   }
 399   // This is pretty rare but this runtime patch is stressful to deoptimization
 400   // if we deoptimize here so force a deopt to stress the path.
 401   if (DeoptimizeALot) {
 402     deopt_caller();
 403   }
 404 JRT_END
 405 
 406 
 407 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 408   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 409 
 410   assert(klass->is_klass(), "not a class");
 411   assert(rank >= 1, "rank must be nonzero");
 412   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 413   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 414   thread->set_vm_result(obj);
 415 JRT_END
 416 
 417 
 418 JRT_ENTRY(void, Runtime1::load_flattened_array(JavaThread* thread, valueArrayOopDesc* array, int index))
 419   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 420   Klass* klass = array->klass();
 421   assert(klass->is_valueArray_klass(), "expected value array oop");
 422   assert(array->length() > 0 && index < array->length(), "already checked");
 423 
 424   ValueArrayKlass* vaklass = ValueArrayKlass::cast(klass);
 425   ValueKlass* vklass = vaklass->element_klass();
 426 
 427   // We have a non-empty flattened array, so the element type must have been initialized.
 428   assert(vklass->is_initialized(), "must be");
 429   Handle holder(THREAD, vklass->klass_holder()); // keep the vklass alive
 430   oop obj = vklass->allocate_instance(CHECK);
 431 
 432   void* src = array->value_at_addr(index, vaklass->layout_helper());
 433   vklass->value_store(src, vklass->data_for_oop(obj),
 434                       vaklass->element_byte_size(), true, false);
 435   thread->set_vm_result(obj);
 436 JRT_END
 437 
 438 
 439 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 440   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 441 JRT_END
 442 
 443 
 444 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 445   ResourceMark rm(thread);
 446   const char* klass_name = obj->klass()->external_name();
 447   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 448 JRT_END
 449 
 450 
 451 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 452 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 453 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 454 // a constant.
 455 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 456   nmethod* osr_nm = NULL;
 457   methodHandle method(THREAD, m);
 458 
 459   RegisterMap map(THREAD, false);
 460   frame fr =  THREAD->last_frame().sender(&map);
 461   nmethod* nm = (nmethod*) fr.cb();
 462   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 463   methodHandle enclosing_method(THREAD, nm->method());
 464 
 465   CompLevel level = (CompLevel)nm->comp_level();
 466   int bci = InvocationEntryBci;
 467   if (branch_bci != InvocationEntryBci) {
 468     // Compute destination bci
 469     address pc = method()->code_base() + branch_bci;
 470     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 471     int offset = 0;
 472     switch (branch) {
 473       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 474       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 475       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 476       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 477       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 478       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 479       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 480         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 481         break;
 482       case Bytecodes::_goto_w:
 483         offset = Bytes::get_Java_u4(pc + 1);
 484         break;
 485       default: ;
 486     }
 487     bci = branch_bci + offset;
 488   }
 489   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 490   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 491   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 492   return osr_nm;
 493 }
 494 
 495 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 496   nmethod* osr_nm;
 497   JRT_BLOCK
 498     osr_nm = counter_overflow_helper(thread, bci, method);
 499     if (osr_nm != NULL) {
 500       RegisterMap map(thread, false);
 501       frame fr =  thread->last_frame().sender(&map);
 502       Deoptimization::deoptimize_frame(thread, fr.id());
 503     }
 504   JRT_BLOCK_END
 505   return NULL;
 506 JRT_END
 507 
 508 extern void vm_exit(int code);
 509 
 510 // Enter this method from compiled code handler below. This is where we transition
 511 // to VM mode. This is done as a helper routine so that the method called directly
 512 // from compiled code does not have to transition to VM. This allows the entry
 513 // method to see if the nmethod that we have just looked up a handler for has
 514 // been deoptimized while we were in the vm. This simplifies the assembly code
 515 // cpu directories.
 516 //
 517 // We are entering here from exception stub (via the entry method below)
 518 // If there is a compiled exception handler in this method, we will continue there;
 519 // otherwise we will unwind the stack and continue at the caller of top frame method
 520 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 521 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 522 // check to see if the handler we are going to return is now in a nmethod that has
 523 // been deoptimized. If that is the case we return the deopt blob
 524 // unpack_with_exception entry instead. This makes life for the exception blob easier
 525 // because making that same check and diverting is painful from assembly language.
 526 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 527   // Reset method handle flag.
 528   thread->set_is_method_handle_return(false);
 529 
 530   Handle exception(thread, ex);
 531   nm = CodeCache::find_nmethod(pc);
 532   assert(nm != NULL, "this is not an nmethod");
 533   // Adjust the pc as needed/
 534   if (nm->is_deopt_pc(pc)) {
 535     RegisterMap map(thread, false);
 536     frame exception_frame = thread->last_frame().sender(&map);
 537     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 538     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 539     pc = exception_frame.pc();
 540   }
 541 #ifdef ASSERT
 542   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 543   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 544   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 545     if (ExitVMOnVerifyError) vm_exit(-1);
 546     ShouldNotReachHere();
 547   }
 548 #endif
 549 
 550   // Check the stack guard pages and reenable them if necessary and there is
 551   // enough space on the stack to do so.  Use fast exceptions only if the guard
 552   // pages are enabled.
 553   bool guard_pages_enabled = thread->stack_guards_enabled();
 554   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 555 
 556   if (JvmtiExport::can_post_on_exceptions()) {
 557     // To ensure correct notification of exception catches and throws
 558     // we have to deoptimize here.  If we attempted to notify the
 559     // catches and throws during this exception lookup it's possible
 560     // we could deoptimize on the way out of the VM and end back in
 561     // the interpreter at the throw site.  This would result in double
 562     // notifications since the interpreter would also notify about
 563     // these same catches and throws as it unwound the frame.
 564 
 565     RegisterMap reg_map(thread);
 566     frame stub_frame = thread->last_frame();
 567     frame caller_frame = stub_frame.sender(&reg_map);
 568 
 569     // We don't really want to deoptimize the nmethod itself since we
 570     // can actually continue in the exception handler ourselves but I
 571     // don't see an easy way to have the desired effect.
 572     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 573     assert(caller_is_deopted(), "Must be deoptimized");
 574 
 575     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 576   }
 577 
 578   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 579   if (guard_pages_enabled) {
 580     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 581     if (fast_continuation != NULL) {
 582       // Set flag if return address is a method handle call site.
 583       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 584       return fast_continuation;
 585     }
 586   }
 587 
 588   // If the stack guard pages are enabled, check whether there is a handler in
 589   // the current method.  Otherwise (guard pages disabled), force an unwind and
 590   // skip the exception cache update (i.e., just leave continuation==NULL).
 591   address continuation = NULL;
 592   if (guard_pages_enabled) {
 593 
 594     // New exception handling mechanism can support inlined methods
 595     // with exception handlers since the mappings are from PC to PC
 596 
 597     // debugging support
 598     // tracing
 599     if (log_is_enabled(Info, exceptions)) {
 600       ResourceMark rm;
 601       stringStream tempst;
 602       assert(nm->method() != NULL, "Unexpected NULL method()");
 603       tempst.print("compiled method <%s>\n"
 604                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 605                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 606       Exceptions::log_exception(exception, tempst);
 607     }
 608     // for AbortVMOnException flag
 609     Exceptions::debug_check_abort(exception);
 610 
 611     // Clear out the exception oop and pc since looking up an
 612     // exception handler can cause class loading, which might throw an
 613     // exception and those fields are expected to be clear during
 614     // normal bytecode execution.
 615     thread->clear_exception_oop_and_pc();
 616 
 617     bool recursive_exception = false;
 618     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 619     // If an exception was thrown during exception dispatch, the exception oop may have changed
 620     thread->set_exception_oop(exception());
 621     thread->set_exception_pc(pc);
 622 
 623     // the exception cache is used only by non-implicit exceptions
 624     // Update the exception cache only when there didn't happen
 625     // another exception during the computation of the compiled
 626     // exception handler. Checking for exception oop equality is not
 627     // sufficient because some exceptions are pre-allocated and reused.
 628     if (continuation != NULL && !recursive_exception) {
 629       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 630     }
 631   }
 632 
 633   thread->set_vm_result(exception());
 634   // Set flag if return address is a method handle call site.
 635   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 636 
 637   if (log_is_enabled(Info, exceptions)) {
 638     ResourceMark rm;
 639     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 640                          " for exception thrown at PC " PTR_FORMAT,
 641                          p2i(thread), p2i(continuation), p2i(pc));
 642   }
 643 
 644   return continuation;
 645 JRT_END
 646 
 647 // Enter this method from compiled code only if there is a Java exception handler
 648 // in the method handling the exception.
 649 // We are entering here from exception stub. We don't do a normal VM transition here.
 650 // We do it in a helper. This is so we can check to see if the nmethod we have just
 651 // searched for an exception handler has been deoptimized in the meantime.
 652 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 653   oop exception = thread->exception_oop();
 654   address pc = thread->exception_pc();
 655   // Still in Java mode
 656   DEBUG_ONLY(ResetNoHandleMark rnhm);
 657   nmethod* nm = NULL;
 658   address continuation = NULL;
 659   {
 660     // Enter VM mode by calling the helper
 661     ResetNoHandleMark rnhm;
 662     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 663   }
 664   // Back in JAVA, use no oops DON'T safepoint
 665 
 666   // Now check to see if the nmethod we were called from is now deoptimized.
 667   // If so we must return to the deopt blob and deoptimize the nmethod
 668   if (nm != NULL && caller_is_deopted()) {
 669     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 670   }
 671 
 672   assert(continuation != NULL, "no handler found");
 673   return continuation;
 674 }
 675 
 676 
 677 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index, arrayOopDesc* a))
 678   NOT_PRODUCT(_throw_range_check_exception_count++;)
 679   const int len = 35;
 680   assert(len < strlen("Index %d out of bounds for length %d"), "Must allocate more space for message.");
 681   char message[2 * jintAsStringSize + len];
 682   sprintf(message, "Index %d out of bounds for length %d", index, a->length());
 683   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 684 JRT_END
 685 
 686 
 687 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 688   NOT_PRODUCT(_throw_index_exception_count++;)
 689   char message[16];
 690   sprintf(message, "%d", index);
 691   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 692 JRT_END
 693 
 694 
 695 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 696   NOT_PRODUCT(_throw_div0_exception_count++;)
 697   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 698 JRT_END
 699 
 700 
 701 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 702   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 703   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 704 JRT_END
 705 
 706 
 707 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 708   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 709   ResourceMark rm(thread);
 710   char* message = SharedRuntime::generate_class_cast_message(
 711     thread, object->klass());
 712   SharedRuntime::throw_and_post_jvmti_exception(
 713     thread, vmSymbols::java_lang_ClassCastException(), message);
 714 JRT_END
 715 
 716 
 717 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 718   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 719   ResourceMark rm(thread);
 720   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 721 JRT_END
 722 
 723 
 724 JRT_ENTRY(void, Runtime1::throw_illegal_monitor_state_exception(JavaThread* thread))
 725   NOT_PRODUCT(_throw_illegal_monitor_state_exception_count++;)
 726   ResourceMark rm(thread);
 727   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IllegalMonitorStateException());
 728 JRT_END
 729 
 730 
 731 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 732   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 733   if (PrintBiasedLockingStatistics) {
 734     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 735   }
 736   Handle h_obj(thread, obj);
 737   if (UseBiasedLocking) {
 738     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 739     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 740   } else {
 741     if (UseFastLocking) {
 742       // When using fast locking, the compiled code has already tried the fast case
 743       assert(obj == lock->obj(), "must match");
 744       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 745     } else {
 746       lock->set_obj(obj);
 747       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 748     }
 749   }
 750 JRT_END
 751 
 752 
 753 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 754   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 755   assert(thread == JavaThread::current(), "threads must correspond");
 756   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 757   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 758   EXCEPTION_MARK;
 759 
 760   oop obj = lock->obj();
 761   assert(oopDesc::is_oop(obj), "must be NULL or an object");
 762   if (UseFastLocking) {
 763     // When using fast locking, the compiled code has already tried the fast case
 764     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 765   } else {
 766     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 767   }
 768 JRT_END
 769 
 770 // Cf. OptoRuntime::deoptimize_caller_frame
 771 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 772   // Called from within the owner thread, so no need for safepoint
 773   RegisterMap reg_map(thread, false);
 774   frame stub_frame = thread->last_frame();
 775   assert(stub_frame.is_runtime_frame(), "Sanity check");
 776   frame caller_frame = stub_frame.sender(&reg_map);
 777   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 778   assert(nm != NULL, "Sanity check");
 779   methodHandle method(thread, nm->method());
 780   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 781   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 782   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 783 
 784   if (action == Deoptimization::Action_make_not_entrant) {
 785     if (nm->make_not_entrant()) {
 786       if (reason == Deoptimization::Reason_tenured) {
 787         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 788         if (trap_mdo != NULL) {
 789           trap_mdo->inc_tenure_traps();
 790         }
 791       }
 792     }
 793   }
 794 
 795   // Deoptimize the caller frame.
 796   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 797   // Return to the now deoptimized frame.
 798 JRT_END
 799 
 800 
 801 #ifndef DEOPTIMIZE_WHEN_PATCHING
 802 
 803 static Klass* resolve_field_return_klass(const methodHandle& caller, int bci, TRAPS) {
 804   Bytecode_field field_access(caller, bci);
 805   // This can be static or non-static field access
 806   Bytecodes::Code code       = field_access.code();
 807 
 808   // We must load class, initialize class and resolve the field
 809   fieldDescriptor result; // initialize class if needed
 810   constantPoolHandle constants(THREAD, caller->constants());
 811   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 812   return result.field_holder();
 813 }
 814 
 815 
 816 //
 817 // This routine patches sites where a class wasn't loaded or
 818 // initialized at the time the code was generated.  It handles
 819 // references to classes, fields and forcing of initialization.  Most
 820 // of the cases are straightforward and involving simply forcing
 821 // resolution of a class, rewriting the instruction stream with the
 822 // needed constant and replacing the call in this function with the
 823 // patched code.  The case for static field is more complicated since
 824 // the thread which is in the process of initializing a class can
 825 // access it's static fields but other threads can't so the code
 826 // either has to deoptimize when this case is detected or execute a
 827 // check that the current thread is the initializing thread.  The
 828 // current
 829 //
 830 // Patches basically look like this:
 831 //
 832 //
 833 // patch_site: jmp patch stub     ;; will be patched
 834 // continue:   ...
 835 //             ...
 836 //             ...
 837 //             ...
 838 //
 839 // They have a stub which looks like this:
 840 //
 841 //             ;; patch body
 842 //             movl <const>, reg           (for class constants)
 843 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 844 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 845 //             <being_init offset> <bytes to copy> <bytes to skip>
 846 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 847 //             jmp patch_site
 848 //
 849 //
 850 // A normal patch is done by rewriting the patch body, usually a move,
 851 // and then copying it into place over top of the jmp instruction
 852 // being careful to flush caches and doing it in an MP-safe way.  The
 853 // constants following the patch body are used to find various pieces
 854 // of the patch relative to the call site for Runtime1::patch_code.
 855 // The case for getstatic and putstatic is more complicated because
 856 // getstatic and putstatic have special semantics when executing while
 857 // the class is being initialized.  getstatic/putstatic on a class
 858 // which is being_initialized may be executed by the initializing
 859 // thread but other threads have to block when they execute it.  This
 860 // is accomplished in compiled code by executing a test of the current
 861 // thread against the initializing thread of the class.  It's emitted
 862 // as boilerplate in their stub which allows the patched code to be
 863 // executed before it's copied back into the main body of the nmethod.
 864 //
 865 // being_init: get_thread(<tmp reg>
 866 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 867 //             jne patch_stub
 868 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 869 //             movl reg, [reg1 + <const>]  (for field offsets)
 870 //             jmp continue
 871 //             <being_init offset> <bytes to copy> <bytes to skip>
 872 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 873 //             jmp patch_site
 874 //
 875 // If the class is being initialized the patch body is rewritten and
 876 // the patch site is rewritten to jump to being_init, instead of
 877 // patch_stub.  Whenever this code is executed it checks the current
 878 // thread against the intializing thread so other threads will enter
 879 // the runtime and end up blocked waiting the class to finish
 880 // initializing inside the calls to resolve_field below.  The
 881 // initializing class will continue on it's way.  Once the class is
 882 // fully_initialized, the intializing_thread of the class becomes
 883 // NULL, so the next thread to execute this code will fail the test,
 884 // call into patch_code and complete the patching process by copying
 885 // the patch body back into the main part of the nmethod and resume
 886 // executing.
 887 
 888 // NB:
 889 //
 890 // Patchable instruction sequences inherently exhibit race conditions,
 891 // where thread A is patching an instruction at the same time thread B
 892 // is executing it.  The algorithms we use ensure that any observation
 893 // that B can make on any intermediate states during A's patching will
 894 // always end up with a correct outcome.  This is easiest if there are
 895 // few or no intermediate states.  (Some inline caches have two
 896 // related instructions that must be patched in tandem.  For those,
 897 // intermediate states seem to be unavoidable, but we will get the
 898 // right answer from all possible observation orders.)
 899 //
 900 // When patching the entry instruction at the head of a method, or a
 901 // linkable call instruction inside of a method, we try very hard to
 902 // use a patch sequence which executes as a single memory transaction.
 903 // This means, in practice, that when thread A patches an instruction,
 904 // it should patch a 32-bit or 64-bit word that somehow overlaps the
 905 // instruction or is contained in it.  We believe that memory hardware
 906 // will never break up such a word write, if it is naturally aligned
 907 // for the word being written.  We also know that some CPUs work very
 908 // hard to create atomic updates even of naturally unaligned words,
 909 // but we don't want to bet the farm on this always working.
 910 //
 911 // Therefore, if there is any chance of a race condition, we try to
 912 // patch only naturally aligned words, as single, full-word writes.
 913 
 914 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 915   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 916 
 917   ResourceMark rm(thread);
 918   RegisterMap reg_map(thread, false);
 919   frame runtime_frame = thread->last_frame();
 920   frame caller_frame = runtime_frame.sender(&reg_map);
 921 
 922   // last java frame on stack
 923   vframeStream vfst(thread, true);
 924   assert(!vfst.at_end(), "Java frame must exist");
 925 
 926   methodHandle caller_method(THREAD, vfst.method());
 927   // Note that caller_method->code() may not be same as caller_code because of OSR's
 928   // Note also that in the presence of inlining it is not guaranteed
 929   // that caller_method() == caller_code->method()
 930 
 931   int bci = vfst.bci();
 932   Bytecodes::Code code = caller_method()->java_code_at(bci);
 933 
 934   // this is used by assertions in the access_field_patching_id
 935   BasicType patch_field_type = T_ILLEGAL;
 936   bool deoptimize_for_volatile = false;
 937   bool deoptimize_for_atomic = false;
 938   int patch_field_offset = -1;
 939   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 940   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 941   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 942   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 943   bool load_klass_or_mirror_patch_id =
 944     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 945 
 946   if (stub_id == Runtime1::access_field_patching_id) {
 947 
 948     Bytecode_field field_access(caller_method, bci);
 949     fieldDescriptor result; // initialize class if needed
 950     Bytecodes::Code code = field_access.code();
 951     constantPoolHandle constants(THREAD, caller_method->constants());
 952     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 953     patch_field_offset = result.offset();
 954 
 955     // If we're patching a field which is volatile then at compile it
 956     // must not have been know to be volatile, so the generated code
 957     // isn't correct for a volatile reference.  The nmethod has to be
 958     // deoptimized so that the code can be regenerated correctly.
 959     // This check is only needed for access_field_patching since this
 960     // is the path for patching field offsets.  load_klass is only
 961     // used for patching references to oops which don't need special
 962     // handling in the volatile case.
 963 
 964     deoptimize_for_volatile = result.access_flags().is_volatile();
 965 
 966     // If we are patching a field which should be atomic, then
 967     // the generated code is not correct either, force deoptimizing.
 968     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 969     // break access atomicity only for them.
 970 
 971     // Strictly speaking, the deoptimization on 64-bit platforms
 972     // is unnecessary, and T_LONG stores on 32-bit platforms need
 973     // to be handled by special patching code when AlwaysAtomicAccesses
 974     // becomes product feature. At this point, we are still going
 975     // for the deoptimization for consistency against volatile
 976     // accesses.
 977 
 978     patch_field_type = result.field_type();
 979     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 980 
 981   } else if (load_klass_or_mirror_patch_id) {
 982     Klass* k = NULL;
 983     switch (code) {
 984       case Bytecodes::_putstatic:
 985       case Bytecodes::_getstatic:
 986         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 987           init_klass = klass;
 988           mirror = Handle(THREAD, klass->java_mirror());
 989         }
 990         break;
 991       case Bytecodes::_new:
 992         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 993           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 994         }
 995         break;
 996       case Bytecodes::_defaultvalue:
 997         { Bytecode_defaultvalue bdefaultvalue(caller_method(), caller_method->bcp_from(bci));
 998           k = caller_method->constants()->klass_at(bdefaultvalue.index(), CHECK);
 999         }
1000         break;
1001       case Bytecodes::_multianewarray:
1002         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
1003           k = caller_method->constants()->klass_at(mna.index(), CHECK);
1004         }
1005         break;
1006       case Bytecodes::_instanceof:
1007         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
1008           k = caller_method->constants()->klass_at(io.index(), CHECK);
1009         }
1010         break;
1011       case Bytecodes::_checkcast:
1012         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
1013           k = caller_method->constants()->klass_at(cc.index(), CHECK);
1014         }
1015         break;
1016       case Bytecodes::_anewarray:
1017         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
1018           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
1019           k = ek->array_klass(CHECK);
1020         }
1021         break;
1022       case Bytecodes::_ldc:
1023       case Bytecodes::_ldc_w:
1024         {
1025           Bytecode_loadconstant cc(caller_method, bci);
1026           oop m = cc.resolve_constant(CHECK);
1027           mirror = Handle(THREAD, m);
1028         }
1029         break;
1030       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
1031     }
1032     load_klass = k;
1033   } else if (stub_id == load_appendix_patching_id) {
1034     Bytecode_invoke bytecode(caller_method, bci);
1035     Bytecodes::Code bc = bytecode.invoke_code();
1036 
1037     CallInfo info;
1038     constantPoolHandle pool(thread, caller_method->constants());
1039     int index = bytecode.index();
1040     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
1041     switch (bc) {
1042       case Bytecodes::_invokehandle: {
1043         int cache_index = ConstantPool::decode_cpcache_index(index, true);
1044         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
1045         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
1046         cpce->set_method_handle(pool, info);
1047         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1048         break;
1049       }
1050       case Bytecodes::_invokedynamic: {
1051         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
1052         cpce->set_dynamic_call(pool, info);
1053         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
1054         break;
1055       }
1056       default: fatal("unexpected bytecode for load_appendix_patching_id");
1057     }
1058   } else {
1059     ShouldNotReachHere();
1060   }
1061 
1062   if (deoptimize_for_volatile || deoptimize_for_atomic) {
1063     // At compile time we assumed the field wasn't volatile/atomic but after
1064     // loading it turns out it was volatile/atomic so we have to throw the
1065     // compiled code out and let it be regenerated.
1066     if (TracePatching) {
1067       if (deoptimize_for_volatile) {
1068         tty->print_cr("Deoptimizing for patching volatile field reference");
1069       }
1070       if (deoptimize_for_atomic) {
1071         tty->print_cr("Deoptimizing for patching atomic field reference");
1072       }
1073     }
1074 
1075     // It's possible the nmethod was invalidated in the last
1076     // safepoint, but if it's still alive then make it not_entrant.
1077     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1078     if (nm != NULL) {
1079       nm->make_not_entrant();
1080     }
1081 
1082     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1083 
1084     // Return to the now deoptimized frame.
1085   }
1086 
1087   // Now copy code back
1088 
1089   {
1090     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1091     //
1092     // Deoptimization may have happened while we waited for the lock.
1093     // In that case we don't bother to do any patching we just return
1094     // and let the deopt happen
1095     if (!caller_is_deopted()) {
1096       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1097       address instr_pc = jump->jump_destination();
1098       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1099       if (ni->is_jump() ) {
1100         // the jump has not been patched yet
1101         // The jump destination is slow case and therefore not part of the stubs
1102         // (stubs are only for StaticCalls)
1103 
1104         // format of buffer
1105         //    ....
1106         //    instr byte 0     <-- copy_buff
1107         //    instr byte 1
1108         //    ..
1109         //    instr byte n-1
1110         //      n
1111         //    ....             <-- call destination
1112 
1113         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1114         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1115         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1116         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1117         address copy_buff = stub_location - *byte_skip - *byte_count;
1118         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1119         if (TracePatching) {
1120           ttyLocker ttyl;
1121           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1122                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1123           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1124           assert(caller_code != NULL, "nmethod not found");
1125 
1126           // NOTE we use pc() not original_pc() because we already know they are
1127           // identical otherwise we'd have never entered this block of code
1128 
1129           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1130           assert(map != NULL, "null check");
1131           map->print();
1132           tty->cr();
1133 
1134           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1135         }
1136         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1137         bool do_patch = true;
1138         if (stub_id == Runtime1::access_field_patching_id) {
1139           // The offset may not be correct if the class was not loaded at code generation time.
1140           // Set it now.
1141           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1142           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1143           assert(patch_field_offset >= 0, "illegal offset");
1144           n_move->add_offset_in_bytes(patch_field_offset);
1145         } else if (load_klass_or_mirror_patch_id) {
1146           // If a getstatic or putstatic is referencing a klass which
1147           // isn't fully initialized, the patch body isn't copied into
1148           // place until initialization is complete.  In this case the
1149           // patch site is setup so that any threads besides the
1150           // initializing thread are forced to come into the VM and
1151           // block.
1152           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1153                      InstanceKlass::cast(init_klass)->is_initialized();
1154           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1155           if (jump->jump_destination() == being_initialized_entry) {
1156             assert(do_patch == true, "initialization must be complete at this point");
1157           } else {
1158             // patch the instruction <move reg, klass>
1159             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1160 
1161             assert(n_copy->data() == 0 ||
1162                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1163                    "illegal init value");
1164             if (stub_id == Runtime1::load_klass_patching_id) {
1165               assert(load_klass != NULL, "klass not set");
1166               n_copy->set_data((intx) (load_klass));
1167             } else {
1168               assert(mirror() != NULL, "klass not set");
1169               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1170               n_copy->set_data(cast_from_oop<intx>(mirror()));
1171             }
1172 
1173             if (TracePatching) {
1174               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1175             }
1176           }
1177         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1178           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1179           assert(n_copy->data() == 0 ||
1180                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1181                  "illegal init value");
1182           n_copy->set_data(cast_from_oop<intx>(appendix()));
1183 
1184           if (TracePatching) {
1185             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1186           }
1187         } else {
1188           ShouldNotReachHere();
1189         }
1190 
1191 #if defined(SPARC) || defined(PPC32)
1192         if (load_klass_or_mirror_patch_id ||
1193             stub_id == Runtime1::load_appendix_patching_id) {
1194           // Update the location in the nmethod with the proper
1195           // metadata.  When the code was generated, a NULL was stuffed
1196           // in the metadata table and that table needs to be update to
1197           // have the right value.  On intel the value is kept
1198           // directly in the instruction instead of in the metadata
1199           // table, so set_data above effectively updated the value.
1200           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1201           assert(nm != NULL, "invalid nmethod_pc");
1202           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1203           bool found = false;
1204           while (mds.next() && !found) {
1205             if (mds.type() == relocInfo::oop_type) {
1206               assert(stub_id == Runtime1::load_mirror_patching_id ||
1207                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1208               oop_Relocation* r = mds.oop_reloc();
1209               oop* oop_adr = r->oop_addr();
1210               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1211               r->fix_oop_relocation();
1212               found = true;
1213             } else if (mds.type() == relocInfo::metadata_type) {
1214               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1215               metadata_Relocation* r = mds.metadata_reloc();
1216               Metadata** metadata_adr = r->metadata_addr();
1217               *metadata_adr = load_klass;
1218               r->fix_metadata_relocation();
1219               found = true;
1220             }
1221           }
1222           assert(found, "the metadata must exist!");
1223         }
1224 #endif
1225         if (do_patch) {
1226           // replace instructions
1227           // first replace the tail, then the call
1228 #ifdef ARM
1229           if((load_klass_or_mirror_patch_id ||
1230               stub_id == Runtime1::load_appendix_patching_id) &&
1231               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1232             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1233             address addr = NULL;
1234             assert(nm != NULL, "invalid nmethod_pc");
1235             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1236             while (mds.next()) {
1237               if (mds.type() == relocInfo::oop_type) {
1238                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1239                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1240                 oop_Relocation* r = mds.oop_reloc();
1241                 addr = (address)r->oop_addr();
1242                 break;
1243               } else if (mds.type() == relocInfo::metadata_type) {
1244                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1245                 metadata_Relocation* r = mds.metadata_reloc();
1246                 addr = (address)r->metadata_addr();
1247                 break;
1248               }
1249             }
1250             assert(addr != NULL, "metadata relocation must exist");
1251             copy_buff -= *byte_count;
1252             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1253             n_copy2->set_pc_relative_offset(addr, instr_pc);
1254           }
1255 #endif
1256 
1257           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1258             address ptr = copy_buff + i;
1259             int a_byte = (*ptr) & 0xFF;
1260             address dst = instr_pc + i;
1261             *(unsigned char*)dst = (unsigned char) a_byte;
1262           }
1263           ICache::invalidate_range(instr_pc, *byte_count);
1264           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1265 
1266           if (load_klass_or_mirror_patch_id ||
1267               stub_id == Runtime1::load_appendix_patching_id) {
1268             relocInfo::relocType rtype =
1269               (stub_id == Runtime1::load_klass_patching_id) ?
1270                                    relocInfo::metadata_type :
1271                                    relocInfo::oop_type;
1272             // update relocInfo to metadata
1273             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1274             assert(nm != NULL, "invalid nmethod_pc");
1275 
1276             // The old patch site is now a move instruction so update
1277             // the reloc info so that it will get updated during
1278             // future GCs.
1279             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1280             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1281                                                      relocInfo::none, rtype);
1282 #ifdef SPARC
1283             // Sparc takes two relocations for an metadata so update the second one.
1284             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1285             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1286             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1287                                                      relocInfo::none, rtype);
1288 #endif
1289 #ifdef PPC32
1290           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1291             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1292             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1293                                                      relocInfo::none, rtype);
1294           }
1295 #endif
1296           }
1297 
1298         } else {
1299           ICache::invalidate_range(copy_buff, *byte_count);
1300           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1301         }
1302       }
1303     }
1304   }
1305 
1306   // If we are patching in a non-perm oop, make sure the nmethod
1307   // is on the right list.
1308   if (ScavengeRootsInCode) {
1309     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1310     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1311     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1312 
1313     // Since we've patched some oops in the nmethod,
1314     // (re)register it with the heap.
1315     Universe::heap()->register_nmethod(nm);
1316   }
1317 JRT_END
1318 
1319 #else // DEOPTIMIZE_WHEN_PATCHING
1320 
1321 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1322   RegisterMap reg_map(thread, false);
1323 
1324   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1325   if (TracePatching) {
1326     tty->print_cr("Deoptimizing because patch is needed");
1327   }
1328 
1329   frame runtime_frame = thread->last_frame();
1330   frame caller_frame = runtime_frame.sender(&reg_map);
1331 
1332   // It's possible the nmethod was invalidated in the last
1333   // safepoint, but if it's still alive then make it not_entrant.
1334   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1335   if (nm != NULL) {
1336     nm->make_not_entrant();
1337   }
1338 
1339   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1340 
1341   // Return to the now deoptimized frame.
1342 JRT_END
1343 
1344 #endif // DEOPTIMIZE_WHEN_PATCHING
1345 
1346 //
1347 // Entry point for compiled code. We want to patch a nmethod.
1348 // We don't do a normal VM transition here because we want to
1349 // know after the patching is complete and any safepoint(s) are taken
1350 // if the calling nmethod was deoptimized. We do this by calling a
1351 // helper method which does the normal VM transition and when it
1352 // completes we can check for deoptimization. This simplifies the
1353 // assembly code in the cpu directories.
1354 //
1355 int Runtime1::move_klass_patching(JavaThread* thread) {
1356 //
1357 // NOTE: we are still in Java
1358 //
1359   Thread* THREAD = thread;
1360   debug_only(NoHandleMark nhm;)
1361   {
1362     // Enter VM mode
1363 
1364     ResetNoHandleMark rnhm;
1365     patch_code(thread, load_klass_patching_id);
1366   }
1367   // Back in JAVA, use no oops DON'T safepoint
1368 
1369   // Return true if calling code is deoptimized
1370 
1371   return caller_is_deopted();
1372 }
1373 
1374 int Runtime1::move_mirror_patching(JavaThread* thread) {
1375 //
1376 // NOTE: we are still in Java
1377 //
1378   Thread* THREAD = thread;
1379   debug_only(NoHandleMark nhm;)
1380   {
1381     // Enter VM mode
1382 
1383     ResetNoHandleMark rnhm;
1384     patch_code(thread, load_mirror_patching_id);
1385   }
1386   // Back in JAVA, use no oops DON'T safepoint
1387 
1388   // Return true if calling code is deoptimized
1389 
1390   return caller_is_deopted();
1391 }
1392 
1393 int Runtime1::move_appendix_patching(JavaThread* thread) {
1394 //
1395 // NOTE: we are still in Java
1396 //
1397   Thread* THREAD = thread;
1398   debug_only(NoHandleMark nhm;)
1399   {
1400     // Enter VM mode
1401 
1402     ResetNoHandleMark rnhm;
1403     patch_code(thread, load_appendix_patching_id);
1404   }
1405   // Back in JAVA, use no oops DON'T safepoint
1406 
1407   // Return true if calling code is deoptimized
1408 
1409   return caller_is_deopted();
1410 }
1411 //
1412 // Entry point for compiled code. We want to patch a nmethod.
1413 // We don't do a normal VM transition here because we want to
1414 // know after the patching is complete and any safepoint(s) are taken
1415 // if the calling nmethod was deoptimized. We do this by calling a
1416 // helper method which does the normal VM transition and when it
1417 // completes we can check for deoptimization. This simplifies the
1418 // assembly code in the cpu directories.
1419 //
1420 
1421 int Runtime1::access_field_patching(JavaThread* thread) {
1422 //
1423 // NOTE: we are still in Java
1424 //
1425   Thread* THREAD = thread;
1426   debug_only(NoHandleMark nhm;)
1427   {
1428     // Enter VM mode
1429 
1430     ResetNoHandleMark rnhm;
1431     patch_code(thread, access_field_patching_id);
1432   }
1433   // Back in JAVA, use no oops DON'T safepoint
1434 
1435   // Return true if calling code is deoptimized
1436 
1437   return caller_is_deopted();
1438 JRT_END
1439 
1440 
1441 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1442   // for now we just print out the block id
1443   tty->print("%d ", block_id);
1444 JRT_END
1445 
1446 
1447 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1448   // had to return int instead of bool, otherwise there may be a mismatch
1449   // between the C calling convention and the Java one.
1450   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1451   // JVM takes the whole %eax as the return value, which may misinterpret
1452   // the return value as a boolean true.
1453 
1454   assert(mirror != NULL, "should null-check on mirror before calling");
1455   Klass* k = java_lang_Class::as_Klass(mirror);
1456   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1457 JRT_END
1458 
1459 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1460   ResourceMark rm;
1461 
1462   assert(!TieredCompilation, "incompatible with tiered compilation");
1463 
1464   RegisterMap reg_map(thread, false);
1465   frame runtime_frame = thread->last_frame();
1466   frame caller_frame = runtime_frame.sender(&reg_map);
1467 
1468   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1469   assert (nm != NULL, "no more nmethod?");
1470   nm->make_not_entrant();
1471 
1472   methodHandle m(nm->method());
1473   MethodData* mdo = m->method_data();
1474 
1475   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1476     // Build an MDO.  Ignore errors like OutOfMemory;
1477     // that simply means we won't have an MDO to update.
1478     Method::build_interpreter_method_data(m, THREAD);
1479     if (HAS_PENDING_EXCEPTION) {
1480       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1481       CLEAR_PENDING_EXCEPTION;
1482     }
1483     mdo = m->method_data();
1484   }
1485 
1486   if (mdo != NULL) {
1487     mdo->inc_trap_count(Deoptimization::Reason_none);
1488   }
1489 
1490   if (TracePredicateFailedTraps) {
1491     stringStream ss1, ss2;
1492     vframeStream vfst(thread);
1493     methodHandle inlinee = methodHandle(vfst.method());
1494     inlinee->print_short_name(&ss1);
1495     m->print_short_name(&ss2);
1496     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1497   }
1498 
1499 
1500   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1501 
1502 JRT_END
1503 
1504 #ifndef PRODUCT
1505 void Runtime1::print_statistics() {
1506   tty->print_cr("C1 Runtime statistics:");
1507   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1508   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1509   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1510   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1511   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1512   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1513   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1514   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1515   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1516   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1517   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1518   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_stub_cnt);
1519   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1520   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1521   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1522 
1523   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1524   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1525   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1526   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1527   tty->print_cr(" _load_flattened_array_slowcase_cnt:%d", _load_flattened_array_slowcase_cnt);
1528   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1529   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1530   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1531 
1532   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1533   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1534   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1535   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1536   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1537   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1538   tty->print_cr(" _throw_illegal_monitor_state_exception_count:  %d:", _throw_illegal_monitor_state_exception_count);
1539   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1540   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1541 
1542   SharedRuntime::print_ic_miss_histogram();
1543   tty->cr();
1544 }
1545 #endif // PRODUCT