1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset(int max_vregs) {
  59   // Initialize array sizes
  60   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _virtual_operands.trunc_to(0);
  62   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _other_operands.trunc_to(0);
  64   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _vreg_table.trunc_to(0);
  66 }
  67 
  68 
  69 
  70 //--------------------------------------------------------------
  71 // PhiResolver
  72 
  73 // Resolves cycles:
  74 //
  75 //  r1 := r2  becomes  temp := r1
  76 //  r2 := r1           r1 := r2
  77 //                     r2 := temp
  78 // and orders moves:
  79 //
  80 //  r2 := r3  becomes  r1 := r2
  81 //  r1 := r2           r2 := r3
  82 
  83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  84  : _gen(gen)
  85  , _state(gen->resolver_state())
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset(max_vregs);
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == NULL, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != NULL) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = NULL;
 154       move(NULL, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, NULL);
 175     assert(node == NULL || node->operand() == opr, "");
 176     if (node == NULL) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 213   }
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {
 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {
 239       _result = LIR_OprFact::value_type(value()->type());
 240     }
 241   } else if (type == T_BYTE || type == T_BOOLEAN) {
 242     load_byte_item();
 243   } else {
 244     load_item();
 245   }
 246 }
 247 
 248 void LIRItem::load_item_force(LIR_Opr reg) {
 249   LIR_Opr r = result();
 250   if (r != reg) {
 251 #if !defined(ARM) && !defined(E500V2)
 252     if (r->type() != reg->type()) {
 253       // moves between different types need an intervening spill slot
 254       r = _gen->force_to_spill(r, reg->type());
 255     }
 256 #endif
 257     __ move(r, reg);
 258     _result = reg;
 259   }
 260 }
 261 
 262 ciObject* LIRItem::get_jobject_constant() const {
 263   ObjectType* oc = type()->as_ObjectType();
 264   if (oc) {
 265     return oc->constant_value();
 266   }
 267   return NULL;
 268 }
 269 
 270 
 271 jint LIRItem::get_jint_constant() const {
 272   assert(is_constant() && value() != NULL, "");
 273   assert(type()->as_IntConstant() != NULL, "type check");
 274   return type()->as_IntConstant()->value();
 275 }
 276 
 277 
 278 jint LIRItem::get_address_constant() const {
 279   assert(is_constant() && value() != NULL, "");
 280   assert(type()->as_AddressConstant() != NULL, "type check");
 281   return type()->as_AddressConstant()->value();
 282 }
 283 
 284 
 285 jfloat LIRItem::get_jfloat_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_FloatConstant() != NULL, "type check");
 288   return type()->as_FloatConstant()->value();
 289 }
 290 
 291 
 292 jdouble LIRItem::get_jdouble_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_DoubleConstant() != NULL, "type check");
 295   return type()->as_DoubleConstant()->value();
 296 }
 297 
 298 
 299 jlong LIRItem::get_jlong_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_LongConstant() != NULL, "type check");
 302   return type()->as_LongConstant()->value();
 303 }
 304 
 305 
 306 
 307 //--------------------------------------------------------------
 308 
 309 
 310 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 311 #ifndef PRODUCT
 312   if (PrintIRWithLIR) {
 313     block->print();
 314   }
 315 #endif
 316 
 317   // set up the list of LIR instructions
 318   assert(block->lir() == NULL, "LIR list already computed for this block");
 319   _lir = new LIR_List(compilation(), block);
 320   block->set_lir(_lir);
 321 
 322   __ branch_destination(block->label());
 323 
 324   if (LIRTraceExecution &&
 325       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 326       !block->is_set(BlockBegin::exception_entry_flag)) {
 327     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 328     trace_block_entry(block);
 329   }
 330 }
 331 
 332 
 333 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 334 #ifndef PRODUCT
 335   if (PrintIRWithLIR) {
 336     tty->cr();
 337   }
 338 #endif
 339 
 340   // LIR_Opr for unpinned constants shouldn't be referenced by other
 341   // blocks so clear them out after processing the block.
 342   for (int i = 0; i < _unpinned_constants.length(); i++) {
 343     _unpinned_constants.at(i)->clear_operand();
 344   }
 345   _unpinned_constants.trunc_to(0);
 346 
 347   // clear our any registers for other local constants
 348   _constants.trunc_to(0);
 349   _reg_for_constants.trunc_to(0);
 350 }
 351 
 352 
 353 void LIRGenerator::block_do(BlockBegin* block) {
 354   CHECK_BAILOUT();
 355 
 356   block_do_prolog(block);
 357   set_block(block);
 358 
 359   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 360     if (instr->is_pinned()) do_root(instr);
 361   }
 362 
 363   set_block(NULL);
 364   block_do_epilog(block);
 365 }
 366 
 367 
 368 //-------------------------LIRGenerator-----------------------------
 369 
 370 // This is where the tree-walk starts; instr must be root;
 371 void LIRGenerator::do_root(Value instr) {
 372   CHECK_BAILOUT();
 373 
 374   InstructionMark im(compilation(), instr);
 375 
 376   assert(instr->is_pinned(), "use only with roots");
 377   assert(instr->subst() == instr, "shouldn't have missed substitution");
 378 
 379   instr->visit(this);
 380 
 381   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 382          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 383 }
 384 
 385 
 386 // This is called for each node in tree; the walk stops if a root is reached
 387 void LIRGenerator::walk(Value instr) {
 388   InstructionMark im(compilation(), instr);
 389   //stop walk when encounter a root
 390   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 391     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 392   } else {
 393     assert(instr->subst() == instr, "shouldn't have missed substitution");
 394     instr->visit(this);
 395     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 396   }
 397 }
 398 
 399 
 400 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 401   assert(state != NULL, "state must be defined");
 402 
 403 #ifndef PRODUCT
 404   state->verify();
 405 #endif
 406 
 407   ValueStack* s = state;
 408   for_each_state(s) {
 409     if (s->kind() == ValueStack::EmptyExceptionState) {
 410       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 411       continue;
 412     }
 413 
 414     int index;
 415     Value value;
 416     for_each_stack_value(s, index, value) {
 417       assert(value->subst() == value, "missed substitution");
 418       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 419         walk(value);
 420         assert(value->operand()->is_valid(), "must be evaluated now");
 421       }
 422     }
 423 
 424     int bci = s->bci();
 425     IRScope* scope = s->scope();
 426     ciMethod* method = scope->method();
 427 
 428     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 429     if (bci == SynchronizationEntryBCI) {
 430       if (x->as_ExceptionObject() || x->as_Throw()) {
 431         // all locals are dead on exit from the synthetic unlocker
 432         liveness.clear();
 433       } else {
 434         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 435       }
 436     }
 437     if (!liveness.is_valid()) {
 438       // Degenerate or breakpointed method.
 439       bailout("Degenerate or breakpointed method");
 440     } else {
 441       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 442       for_each_local_value(s, index, value) {
 443         assert(value->subst() == value, "missed substition");
 444         if (liveness.at(index) && !value->type()->is_illegal()) {
 445           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 446             walk(value);
 447             assert(value->operand()->is_valid(), "must be evaluated now");
 448           }
 449         } else {
 450           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 451           s->invalidate_local(index);
 452         }
 453       }
 454     }
 455   }
 456 
 457   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 458 }
 459 
 460 
 461 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 462   return state_for(x, x->exception_state());
 463 }
 464 
 465 
 466 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 467   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 468    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 469    * the class. */
 470   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           jint c = right->as_jint();
 545           if (c > 0 && is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602 
 603   if (TwoOperandLIRForm && value != result_op
 604       // Only 32bit right shifts require two operand form on S390.
 605       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 647                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 648   if (!GenerateSynchronizationCode) return;
 649   // for slow path, use debug info for state after successful locking
 650   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 651   __ load_stack_address_monitor(monitor_no, lock);
 652   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 653   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 658   if (!GenerateSynchronizationCode) return;
 659   // setup registers
 660   LIR_Opr hdr = lock;
 661   lock = new_hdr;
 662   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 663   __ load_stack_address_monitor(monitor_no, lock);
 664   __ unlock_object(hdr, object, lock, scratch, slow_path);
 665 }
 666 
 667 #ifndef PRODUCT
 668 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 669   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 670     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 671   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 672     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 673   }
 674 }
 675 #endif
 676 
 677 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 678   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 679   // If klass is not loaded we do not know if the klass has finalizers:
 680   if (UseFastNewInstance && klass->is_loaded()
 681       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 682 
 683     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 684 
 685     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 686 
 687     assert(klass->is_loaded(), "must be loaded");
 688     // allocate space for instance
 689     assert(klass->size_helper() >= 0, "illegal instance size");
 690     const int instance_size = align_object_size(klass->size_helper());
 691     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 692                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 693   } else {
 694     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 695     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 696     __ branch_destination(slow_path->continuation());
 697   }
 698 }
 699 
 700 
 701 static bool is_constant_zero(Instruction* inst) {
 702   IntConstant* c = inst->type()->as_IntConstant();
 703   if (c) {
 704     return (c->value() == 0);
 705   }
 706   return false;
 707 }
 708 
 709 
 710 static bool positive_constant(Instruction* inst) {
 711   IntConstant* c = inst->type()->as_IntConstant();
 712   if (c) {
 713     return (c->value() >= 0);
 714   }
 715   return false;
 716 }
 717 
 718 
 719 static ciArrayKlass* as_array_klass(ciType* type) {
 720   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 721     return (ciArrayKlass*)type;
 722   } else {
 723     return NULL;
 724   }
 725 }
 726 
 727 static ciType* phi_declared_type(Phi* phi) {
 728   ciType* t = phi->operand_at(0)->declared_type();
 729   if (t == NULL) {
 730     return NULL;
 731   }
 732   for(int i = 1; i < phi->operand_count(); i++) {
 733     if (t != phi->operand_at(i)->declared_type()) {
 734       return NULL;
 735     }
 736   }
 737   return t;
 738 }
 739 
 740 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 741   Instruction* src     = x->argument_at(0);
 742   Instruction* src_pos = x->argument_at(1);
 743   Instruction* dst     = x->argument_at(2);
 744   Instruction* dst_pos = x->argument_at(3);
 745   Instruction* length  = x->argument_at(4);
 746 
 747   // first try to identify the likely type of the arrays involved
 748   ciArrayKlass* expected_type = NULL;
 749   bool is_exact = false, src_objarray = false, dst_objarray = false;
 750   {
 751     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 752     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 753     Phi* phi;
 754     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 755       src_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 758     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 759     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 760       dst_declared_type = as_array_klass(phi_declared_type(phi));
 761     }
 762 
 763     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 764       // the types exactly match so the type is fully known
 765       is_exact = true;
 766       expected_type = src_exact_type;
 767     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 768       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 769       ciArrayKlass* src_type = NULL;
 770       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 771         src_type = (ciArrayKlass*) src_exact_type;
 772       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_declared_type;
 774       }
 775       if (src_type != NULL) {
 776         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 777           is_exact = true;
 778           expected_type = dst_type;
 779         }
 780       }
 781     }
 782     // at least pass along a good guess
 783     if (expected_type == NULL) expected_type = dst_exact_type;
 784     if (expected_type == NULL) expected_type = src_declared_type;
 785     if (expected_type == NULL) expected_type = dst_declared_type;
 786 
 787     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 788     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 789   }
 790 
 791   // if a probable array type has been identified, figure out if any
 792   // of the required checks for a fast case can be elided.
 793   int flags = LIR_OpArrayCopy::all_flags;
 794 
 795   if (!src_objarray)
 796     flags &= ~LIR_OpArrayCopy::src_objarray;
 797   if (!dst_objarray)
 798     flags &= ~LIR_OpArrayCopy::dst_objarray;
 799 
 800   if (!x->arg_needs_null_check(0))
 801     flags &= ~LIR_OpArrayCopy::src_null_check;
 802   if (!x->arg_needs_null_check(2))
 803     flags &= ~LIR_OpArrayCopy::dst_null_check;
 804 
 805 
 806   if (expected_type != NULL) {
 807     Value length_limit = NULL;
 808 
 809     IfOp* ifop = length->as_IfOp();
 810     if (ifop != NULL) {
 811       // look for expressions like min(v, a.length) which ends up as
 812       //   x > y ? y : x  or  x >= y ? y : x
 813       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 814           ifop->x() == ifop->fval() &&
 815           ifop->y() == ifop->tval()) {
 816         length_limit = ifop->y();
 817       }
 818     }
 819 
 820     // try to skip null checks and range checks
 821     NewArray* src_array = src->as_NewArray();
 822     if (src_array != NULL) {
 823       flags &= ~LIR_OpArrayCopy::src_null_check;
 824       if (length_limit != NULL &&
 825           src_array->length() == length_limit &&
 826           is_constant_zero(src_pos)) {
 827         flags &= ~LIR_OpArrayCopy::src_range_check;
 828       }
 829     }
 830 
 831     NewArray* dst_array = dst->as_NewArray();
 832     if (dst_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::dst_null_check;
 834       if (length_limit != NULL &&
 835           dst_array->length() == length_limit &&
 836           is_constant_zero(dst_pos)) {
 837         flags &= ~LIR_OpArrayCopy::dst_range_check;
 838       }
 839     }
 840 
 841     // check from incoming constant values
 842     if (positive_constant(src_pos))
 843       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 844     if (positive_constant(dst_pos))
 845       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 846     if (positive_constant(length))
 847       flags &= ~LIR_OpArrayCopy::length_positive_check;
 848 
 849     // see if the range check can be elided, which might also imply
 850     // that src or dst is non-null.
 851     ArrayLength* al = length->as_ArrayLength();
 852     if (al != NULL) {
 853       if (al->array() == src) {
 854         // it's the length of the source array
 855         flags &= ~LIR_OpArrayCopy::length_positive_check;
 856         flags &= ~LIR_OpArrayCopy::src_null_check;
 857         if (is_constant_zero(src_pos))
 858           flags &= ~LIR_OpArrayCopy::src_range_check;
 859       }
 860       if (al->array() == dst) {
 861         // it's the length of the destination array
 862         flags &= ~LIR_OpArrayCopy::length_positive_check;
 863         flags &= ~LIR_OpArrayCopy::dst_null_check;
 864         if (is_constant_zero(dst_pos))
 865           flags &= ~LIR_OpArrayCopy::dst_range_check;
 866       }
 867     }
 868     if (is_exact) {
 869       flags &= ~LIR_OpArrayCopy::type_check;
 870     }
 871   }
 872 
 873   IntConstant* src_int = src_pos->type()->as_IntConstant();
 874   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 875   if (src_int && dst_int) {
 876     int s_offs = src_int->value();
 877     int d_offs = dst_int->value();
 878     if (src_int->value() >= dst_int->value()) {
 879       flags &= ~LIR_OpArrayCopy::overlapping;
 880     }
 881     if (expected_type != NULL) {
 882       BasicType t = expected_type->element_type()->basic_type();
 883       int element_size = type2aelembytes(t);
 884       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 885           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 886         flags &= ~LIR_OpArrayCopy::unaligned;
 887       }
 888     }
 889   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 890     // src and dest positions are the same, or dst is zero so assume
 891     // nonoverlapping copy.
 892     flags &= ~LIR_OpArrayCopy::overlapping;
 893   }
 894 
 895   if (src == dst) {
 896     // moving within a single array so no type checks are needed
 897     if (flags & LIR_OpArrayCopy::type_check) {
 898       flags &= ~LIR_OpArrayCopy::type_check;
 899     }
 900   }
 901   *flagsp = flags;
 902   *expected_typep = (ciArrayKlass*)expected_type;
 903 }
 904 
 905 
 906 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 907   assert(opr->is_register(), "why spill if item is not register?");
 908 
 909   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 910     LIR_Opr result = new_register(T_FLOAT);
 911     set_vreg_flag(result, must_start_in_memory);
 912     assert(opr->is_register(), "only a register can be spilled");
 913     assert(opr->value_type()->is_float(), "rounding only for floats available");
 914     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 915     return result;
 916   }
 917   return opr;
 918 }
 919 
 920 
 921 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 922   assert(type2size[t] == type2size[value->type()],
 923          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_METADATA);
 958     __ metadata2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     Phi* cur_phi = cur_val->as_Phi();
1000     if (cur_phi != NULL && cur_phi->is_illegal()) {
1001       // Phi and local would need to get invalidated
1002       // (which is unexpected for Linear Scan).
1003       // But this case is very rare so we simply bail out.
1004       bailout("propagation of illegal phi");
1005       return;
1006     }
1007     LIR_Opr operand = cur_val->operand();
1008     if (operand->is_illegal()) {
1009       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1010              "these can be produced lazily");
1011       operand = operand_for_instruction(cur_val);
1012     }
1013     resolver->move(operand, operand_for_instruction(phi));
1014   }
1015 }
1016 
1017 
1018 // Moves all stack values into their PHI position
1019 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1020   BlockBegin* bb = block();
1021   if (bb->number_of_sux() == 1) {
1022     BlockBegin* sux = bb->sux_at(0);
1023     assert(sux->number_of_preds() > 0, "invalid CFG");
1024 
1025     // a block with only one predecessor never has phi functions
1026     if (sux->number_of_preds() > 1) {
1027       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1028       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1029 
1030       ValueStack* sux_state = sux->state();
1031       Value sux_value;
1032       int index;
1033 
1034       assert(cur_state->scope() == sux_state->scope(), "not matching");
1035       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1036       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1037 
1038       for_each_stack_value(sux_state, index, sux_value) {
1039         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1040       }
1041 
1042       for_each_local_value(sux_state, index, sux_value) {
1043         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1044       }
1045 
1046       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1047     }
1048   }
1049 }
1050 
1051 
1052 LIR_Opr LIRGenerator::new_register(BasicType type) {
1053   int vreg = _virtual_register_number;
1054   // add a little fudge factor for the bailout, since the bailout is
1055   // only checked periodically.  This gives a few extra registers to
1056   // hand out before we really run out, which helps us keep from
1057   // tripping over assertions.
1058   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1059     bailout("out of virtual registers");
1060     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1061       // wrap it around
1062       _virtual_register_number = LIR_OprDesc::vreg_base;
1063     }
1064   }
1065   _virtual_register_number += 1;
1066   return LIR_OprFact::virtual_register(vreg, type);
1067 }
1068 
1069 
1070 // Try to lock using register in hint
1071 LIR_Opr LIRGenerator::rlock(Value instr) {
1072   return new_register(instr->type());
1073 }
1074 
1075 
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x) {
1078   LIR_Opr reg = rlock(x);
1079   set_result(x, reg);
1080   return reg;
1081 }
1082 
1083 
1084 // does an rlock and sets result
1085 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1086   LIR_Opr reg;
1087   switch (type) {
1088   case T_BYTE:
1089   case T_BOOLEAN:
1090     reg = rlock_byte(type);
1091     break;
1092   default:
1093     reg = rlock(x);
1094     break;
1095   }
1096 
1097   set_result(x, reg);
1098   return reg;
1099 }
1100 
1101 
1102 //---------------------------------------------------------------------
1103 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1104   ObjectType* oc = value->type()->as_ObjectType();
1105   if (oc) {
1106     return oc->constant_value();
1107   }
1108   return NULL;
1109 }
1110 
1111 
1112 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1113   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1114   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1115 
1116   // no moves are created for phi functions at the begin of exception
1117   // handlers, so assign operands manually here
1118   for_each_phi_fun(block(), phi,
1119                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1120 
1121   LIR_Opr thread_reg = getThreadPointer();
1122   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1123                exceptionOopOpr());
1124   __ move_wide(LIR_OprFact::oopConst(NULL),
1125                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1126   __ move_wide(LIR_OprFact::oopConst(NULL),
1127                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1128 
1129   LIR_Opr result = new_register(T_OBJECT);
1130   __ move(exceptionOopOpr(), result);
1131   set_result(x, result);
1132 }
1133 
1134 
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139 //                        visitor functions
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 
1145 void LIRGenerator::do_Phi(Phi* x) {
1146   // phi functions are never visited directly
1147   ShouldNotReachHere();
1148 }
1149 
1150 
1151 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1152 void LIRGenerator::do_Constant(Constant* x) {
1153   if (x->state_before() != NULL) {
1154     // Any constant with a ValueStack requires patching so emit the patch here
1155     LIR_Opr reg = rlock_result(x);
1156     CodeEmitInfo* info = state_for(x, x->state_before());
1157     __ oop2reg_patch(NULL, reg, info);
1158   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1159     if (!x->is_pinned()) {
1160       // unpinned constants are handled specially so that they can be
1161       // put into registers when they are used multiple times within a
1162       // block.  After the block completes their operand will be
1163       // cleared so that other blocks can't refer to that register.
1164       set_result(x, load_constant(x));
1165     } else {
1166       LIR_Opr res = x->operand();
1167       if (!res->is_valid()) {
1168         res = LIR_OprFact::value_type(x->type());
1169       }
1170       if (res->is_constant()) {
1171         LIR_Opr reg = rlock_result(x);
1172         __ move(res, reg);
1173       } else {
1174         set_result(x, res);
1175       }
1176     }
1177   } else {
1178     set_result(x, LIR_OprFact::value_type(x->type()));
1179   }
1180 }
1181 
1182 
1183 void LIRGenerator::do_Local(Local* x) {
1184   // operand_for_instruction has the side effect of setting the result
1185   // so there's no need to do it here.
1186   operand_for_instruction(x);
1187 }
1188 
1189 
1190 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1191   Unimplemented();
1192 }
1193 
1194 
1195 void LIRGenerator::do_Return(Return* x) {
1196   if (compilation()->env()->dtrace_method_probes()) {
1197     BasicTypeList signature;
1198     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1199     signature.append(T_METADATA); // Method*
1200     LIR_OprList* args = new LIR_OprList();
1201     args->append(getThreadPointer());
1202     LIR_Opr meth = new_register(T_METADATA);
1203     __ metadata2reg(method()->constant_encoding(), meth);
1204     args->append(meth);
1205     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1206   }
1207 
1208   if (x->type()->is_void()) {
1209     __ return_op(LIR_OprFact::illegalOpr);
1210   } else {
1211     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1212     LIRItem result(x->result(), this);
1213 
1214     result.load_item_force(reg);
1215     __ return_op(result.result());
1216   }
1217   set_no_result(x);
1218 }
1219 
1220 // Examble: ref.get()
1221 // Combination of LoadField and g1 pre-write barrier
1222 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1223 
1224   const int referent_offset = java_lang_ref_Reference::referent_offset;
1225   guarantee(referent_offset > 0, "referent offset not initialized");
1226 
1227   assert(x->number_of_arguments() == 1, "wrong type");
1228 
1229   LIRItem reference(x->argument_at(0), this);
1230   reference.load_item();
1231 
1232   // need to perform the null check on the reference objecy
1233   CodeEmitInfo* info = NULL;
1234   if (x->needs_null_check()) {
1235     info = state_for(x);
1236   }
1237 
1238   LIR_Opr result = rlock_result(x, T_OBJECT);
1239   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1240                  reference, LIR_OprFact::intConst(referent_offset), result);
1241 }
1242 
1243 // Example: clazz.isInstance(object)
1244 void LIRGenerator::do_isInstance(Intrinsic* x) {
1245   assert(x->number_of_arguments() == 2, "wrong type");
1246 
1247   // TODO could try to substitute this node with an equivalent InstanceOf
1248   // if clazz is known to be a constant Class. This will pick up newly found
1249   // constants after HIR construction. I'll leave this to a future change.
1250 
1251   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1252   // could follow the aastore example in a future change.
1253 
1254   LIRItem clazz(x->argument_at(0), this);
1255   LIRItem object(x->argument_at(1), this);
1256   clazz.load_item();
1257   object.load_item();
1258   LIR_Opr result = rlock_result(x);
1259 
1260   // need to perform null check on clazz
1261   if (x->needs_null_check()) {
1262     CodeEmitInfo* info = state_for(x);
1263     __ null_check(clazz.result(), info);
1264   }
1265 
1266   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1267                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1268                                      x->type(),
1269                                      NULL); // NULL CodeEmitInfo results in a leaf call
1270   __ move(call_result, result);
1271 }
1272 
1273 // Example: object.getClass ()
1274 void LIRGenerator::do_getClass(Intrinsic* x) {
1275   assert(x->number_of_arguments() == 1, "wrong type");
1276 
1277   LIRItem rcvr(x->argument_at(0), this);
1278   rcvr.load_item();
1279   LIR_Opr temp = new_register(T_METADATA);
1280   LIR_Opr result = rlock_result(x);
1281 
1282   // need to perform the null check on the rcvr
1283   CodeEmitInfo* info = NULL;
1284   if (x->needs_null_check()) {
1285     info = state_for(x);
1286   }
1287 
1288   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1289   // meaning of these two is mixed up (see JDK-8026837).
1290   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1291   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1292   // mirror = ((OopHandle)mirror)->resolve();
1293   access_load(IN_NATIVE, T_OBJECT,
1294               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1295 }
1296 
1297 // java.lang.Class::isPrimitive()
1298 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1299   assert(x->number_of_arguments() == 1, "wrong type");
1300 
1301   LIRItem rcvr(x->argument_at(0), this);
1302   rcvr.load_item();
1303   LIR_Opr temp = new_register(T_METADATA);
1304   LIR_Opr result = rlock_result(x);
1305 
1306   CodeEmitInfo* info = NULL;
1307   if (x->needs_null_check()) {
1308     info = state_for(x);
1309   }
1310 
1311   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1312   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1313   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1314 }
1315 
1316 
1317 // Example: Thread.currentThread()
1318 void LIRGenerator::do_currentThread(Intrinsic* x) {
1319   assert(x->number_of_arguments() == 0, "wrong type");
1320   LIR_Opr reg = rlock_result(x);
1321   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1322 }
1323 
1324 
1325 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1326   assert(x->number_of_arguments() == 1, "wrong type");
1327   LIRItem receiver(x->argument_at(0), this);
1328 
1329   receiver.load_item();
1330   BasicTypeList signature;
1331   signature.append(T_OBJECT); // receiver
1332   LIR_OprList* args = new LIR_OprList();
1333   args->append(receiver.result());
1334   CodeEmitInfo* info = state_for(x, x->state());
1335   call_runtime(&signature, args,
1336                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1337                voidType, info);
1338 
1339   set_no_result(x);
1340 }
1341 
1342 
1343 //------------------------local access--------------------------------------
1344 
1345 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1346   if (x->operand()->is_illegal()) {
1347     Constant* c = x->as_Constant();
1348     if (c != NULL) {
1349       x->set_operand(LIR_OprFact::value_type(c->type()));
1350     } else {
1351       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1352       // allocate a virtual register for this local or phi
1353       x->set_operand(rlock(x));
1354       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1355     }
1356   }
1357   return x->operand();
1358 }
1359 
1360 
1361 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1362   if (opr->is_virtual()) {
1363     return instruction_for_vreg(opr->vreg_number());
1364   }
1365   return NULL;
1366 }
1367 
1368 
1369 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1370   if (reg_num < _instruction_for_operand.length()) {
1371     return _instruction_for_operand.at(reg_num);
1372   }
1373   return NULL;
1374 }
1375 
1376 
1377 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1378   if (_vreg_flags.size_in_bits() == 0) {
1379     BitMap2D temp(100, num_vreg_flags);
1380     _vreg_flags = temp;
1381   }
1382   _vreg_flags.at_put_grow(vreg_num, f, true);
1383 }
1384 
1385 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1386   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1387     return false;
1388   }
1389   return _vreg_flags.at(vreg_num, f);
1390 }
1391 
1392 
1393 // Block local constant handling.  This code is useful for keeping
1394 // unpinned constants and constants which aren't exposed in the IR in
1395 // registers.  Unpinned Constant instructions have their operands
1396 // cleared when the block is finished so that other blocks can't end
1397 // up referring to their registers.
1398 
1399 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1400   assert(!x->is_pinned(), "only for unpinned constants");
1401   _unpinned_constants.append(x);
1402   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1403 }
1404 
1405 
1406 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1407   BasicType t = c->type();
1408   for (int i = 0; i < _constants.length(); i++) {
1409     LIR_Const* other = _constants.at(i);
1410     if (t == other->type()) {
1411       switch (t) {
1412       case T_INT:
1413       case T_FLOAT:
1414         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1415         break;
1416       case T_LONG:
1417       case T_DOUBLE:
1418         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1419         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1420         break;
1421       case T_OBJECT:
1422         if (c->as_jobject() != other->as_jobject()) continue;
1423         break;
1424       default:
1425         break;
1426       }
1427       return _reg_for_constants.at(i);
1428     }
1429   }
1430 
1431   LIR_Opr result = new_register(t);
1432   __ move((LIR_Opr)c, result);
1433   _constants.append(c);
1434   _reg_for_constants.append(result);
1435   return result;
1436 }
1437 
1438 //------------------------field access--------------------------------------
1439 
1440 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1441   assert(x->number_of_arguments() == 4, "wrong type");
1442   LIRItem obj   (x->argument_at(0), this);  // object
1443   LIRItem offset(x->argument_at(1), this);  // offset of field
1444   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1445   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1446   assert(obj.type()->tag() == objectTag, "invalid type");
1447 
1448   // In 64bit the type can be long, sparc doesn't have this assert
1449   // assert(offset.type()->tag() == intTag, "invalid type");
1450 
1451   assert(cmp.type()->tag() == type->tag(), "invalid type");
1452   assert(val.type()->tag() == type->tag(), "invalid type");
1453 
1454   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1455                                             obj, offset, cmp, val);
1456   set_result(x, result);
1457 }
1458 
1459 // Comment copied form templateTable_i486.cpp
1460 // ----------------------------------------------------------------------------
1461 // Volatile variables demand their effects be made known to all CPU's in
1462 // order.  Store buffers on most chips allow reads & writes to reorder; the
1463 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1464 // memory barrier (i.e., it's not sufficient that the interpreter does not
1465 // reorder volatile references, the hardware also must not reorder them).
1466 //
1467 // According to the new Java Memory Model (JMM):
1468 // (1) All volatiles are serialized wrt to each other.
1469 // ALSO reads & writes act as aquire & release, so:
1470 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1471 // the read float up to before the read.  It's OK for non-volatile memory refs
1472 // that happen before the volatile read to float down below it.
1473 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1474 // that happen BEFORE the write float down to after the write.  It's OK for
1475 // non-volatile memory refs that happen after the volatile write to float up
1476 // before it.
1477 //
1478 // We only put in barriers around volatile refs (they are expensive), not
1479 // _between_ memory refs (that would require us to track the flavor of the
1480 // previous memory refs).  Requirements (2) and (3) require some barriers
1481 // before volatile stores and after volatile loads.  These nearly cover
1482 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1483 // case is placed after volatile-stores although it could just as well go
1484 // before volatile-loads.
1485 
1486 
1487 void LIRGenerator::do_StoreField(StoreField* x) {
1488   bool needs_patching = x->needs_patching();
1489   bool is_volatile = x->field()->is_volatile();
1490   BasicType field_type = x->field_type();
1491 
1492   CodeEmitInfo* info = NULL;
1493   if (needs_patching) {
1494     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1495     info = state_for(x, x->state_before());
1496   } else if (x->needs_null_check()) {
1497     NullCheck* nc = x->explicit_null_check();
1498     if (nc == NULL) {
1499       info = state_for(x);
1500     } else {
1501       info = state_for(nc);
1502     }
1503   }
1504 
1505   LIRItem object(x->obj(), this);
1506   LIRItem value(x->value(),  this);
1507 
1508   object.load_item();
1509 
1510   if (is_volatile || needs_patching) {
1511     // load item if field is volatile (fewer special cases for volatiles)
1512     // load item if field not initialized
1513     // load item if field not constant
1514     // because of code patching we cannot inline constants
1515     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1516       value.load_byte_item();
1517     } else  {
1518       value.load_item();
1519     }
1520   } else {
1521     value.load_for_store(field_type);
1522   }
1523 
1524   set_no_result(x);
1525 
1526 #ifndef PRODUCT
1527   if (PrintNotLoaded && needs_patching) {
1528     tty->print_cr("   ###class not loaded at store_%s bci %d",
1529                   x->is_static() ?  "static" : "field", x->printable_bci());
1530   }
1531 #endif
1532 
1533   if (x->needs_null_check() &&
1534       (needs_patching ||
1535        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1536     if (needs_patching && field_type == T_VALUETYPE) {
1537       // We are storing a "Q" field, but the holder class is not yet loaded.
1538       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1539                                           Deoptimization::Reason_unloaded,
1540                                           Deoptimization::Action_make_not_entrant);
1541       __ branch(lir_cond_always, T_ILLEGAL, stub);
1542     } else {
1543       // Emit an explicit null check because the offset is too large.
1544       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1545       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1546       __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1547     }
1548   }
1549 
1550   DecoratorSet decorators = IN_HEAP;
1551   if (is_volatile) {
1552     decorators |= MO_SEQ_CST;
1553   }
1554   if (needs_patching) {
1555     decorators |= C1_NEEDS_PATCHING;
1556   }
1557 
1558   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1559                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1560 }
1561 
1562 // FIXME -- I can't find any other way to pass an address to access_load_at().
1563 class TempResolvedAddress: public Instruction {
1564  public:
1565   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1566     set_operand(addr);
1567   }
1568   virtual void input_values_do(ValueVisitor*) {}
1569   virtual void visit(InstructionVisitor* v)   {}
1570   virtual const char* name() const  { return "TempResolvedAddress"; }
1571 };
1572 
1573 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1574   // Find the starting address of the source (inside the array)
1575   ciType* array_type = array.value()->declared_type();
1576   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1577   assert(value_array_klass->is_loaded(), "must be");
1578 
1579   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1580   int array_header_size = value_array_klass->array_header_in_bytes();
1581   int shift = value_array_klass->log2_element_size();
1582 
1583 #ifndef _LP64
1584   LIR_Opr index_op = new_register(T_INT);
1585   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1586   // the top (shift+1) bits of index_op must be zero, or
1587   // else throw ArrayIndexOutOfBoundsException
1588   if (index.result()->is_constant()) {
1589     jint const_index = index.result()->as_jint();
1590     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1591   } else {
1592     __ shift_left(index_op, shift, index.result());
1593   }
1594 #else
1595   LIR_Opr index_op = new_register(T_LONG);
1596   if (index.result()->is_constant()) {
1597     jint const_index = index.result()->as_jint();
1598     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1599   } else {
1600     __ convert(Bytecodes::_i2l, index.result(), index_op);
1601     // Need to shift manually, as LIR_Address can scale only up to 3.
1602     __ shift_left(index_op, shift, index_op);
1603   }
1604 #endif
1605 
1606   LIR_Opr elm_op = new_pointer_register();
1607   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1608   __ leal(LIR_OprFact::address(elm_address), elm_op);
1609 
1610   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1611     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1612     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1613     int obj_offset = inner_field->offset();
1614     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1615 
1616     BasicType field_type = inner_field->type()->basic_type();
1617     switch (field_type) {
1618     case T_BYTE:
1619     case T_BOOLEAN:
1620     case T_SHORT:
1621     case T_CHAR:
1622      field_type = T_INT;
1623       break;
1624     default:
1625       break;
1626     }
1627 
1628     LIR_Opr temp = new_register(field_type);
1629     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1630     LIRItem elm_item(elm_resolved_addr, this);
1631 
1632     DecoratorSet decorators = IN_HEAP;
1633     if (is_load) {
1634       access_load_at(decorators, field_type,
1635                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1636                      NULL, NULL);
1637       access_store_at(decorators, field_type,
1638                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1639                       NULL, NULL);
1640     } else {
1641     access_load_at(decorators, field_type,
1642                    obj_item, LIR_OprFact::intConst(obj_offset), temp,
1643                    NULL, NULL);
1644     access_store_at(decorators, field_type,
1645                     elm_item, LIR_OprFact::intConst(elm_offset), temp,
1646                     NULL, NULL);
1647     }
1648   }
1649 }
1650 
1651 void LIRGenerator::check_flattened_array(LIRItem& array, CodeStub* slow_path) {
1652   LIR_Opr array_klass_reg = new_register(T_METADATA);
1653 
1654   __ move(new LIR_Address(array.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), array_klass_reg);
1655   LIR_Opr layout = new_register(T_INT);
1656   __ move(new LIR_Address(array_klass_reg, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1657   __ shift_right(layout, Klass::_lh_array_tag_shift, layout);
1658   __ cmp(lir_cond_equal, layout, LIR_OprFact::intConst(Klass::_lh_array_tag_vt_value));
1659   __ branch(lir_cond_equal, T_ILLEGAL, slow_path);


1660 }
1661 
1662 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1663   assert(x->is_pinned(),"");
1664   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1665   bool needs_range_check = x->compute_needs_range_check();
1666   bool use_length = x->length() != NULL;
1667   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
1668   bool needs_store_check = obj_store && !is_loaded_flattened_array &&
1669                                         (x->value()->as_Constant() == NULL ||
1670                                          !get_jobject_constant(x->value())->is_null_object() ||
1671                                          x->should_profile());
1672 
1673   LIRItem array(x->array(), this);
1674   LIRItem index(x->index(), this);
1675   LIRItem value(x->value(), this);
1676   LIRItem length(this);
1677 
1678   array.load_item();
1679   index.load_nonconstant();
1680 
1681   if (use_length && needs_range_check) {
1682     length.set_instruction(x->length());
1683     length.load_item();

1684   }
1685 
1686   if (needs_store_check || x->check_boolean()
1687       || is_loaded_flattened_array || x->array()->maybe_flattened_array()) {
1688     value.load_item();
1689   } else {
1690     value.load_for_store(x->elt_type());
1691   }
1692 
1693   set_no_result(x);
1694 
1695   // the CodeEmitInfo must be duplicated for each different
1696   // LIR-instruction because spilling can occur anywhere between two
1697   // instructions and so the debug information must be different
1698   CodeEmitInfo* range_check_info = state_for(x);
1699   CodeEmitInfo* null_check_info = NULL;
1700   if (x->needs_null_check()) {
1701     null_check_info = new CodeEmitInfo(range_check_info);
1702   }
1703 
1704   if (GenerateRangeChecks && needs_range_check) {
1705     if (use_length) {
1706       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1707       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1708     } else {
1709       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1710       // range_check also does the null check
1711       null_check_info = NULL;
1712     }
1713   }
1714 
1715   if (GenerateArrayStoreCheck && needs_store_check) {
1716     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1717     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1718   }
1719 
1720   if (is_loaded_flattened_array) {

1721     index.load_item();
1722     access_flattened_array(false, array, index, value);

1723   } else {
1724     StoreFlattenedArrayStub* slow_path = NULL;
1725 
1726     if (x->array()->maybe_flattened_array()) {
1727       // Check if we indeed have a flattened array
1728       index.load_item();
1729       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x));
1730       check_flattened_array(array, slow_path);
1731     }
1732 
1733     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1734     if (x->check_boolean()) {
1735       decorators |= C1_MASK_BOOLEAN;
1736     }
1737 
1738     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1739                     NULL, null_check_info);
1740     if (slow_path != NULL) {
1741       __ branch_destination(slow_path->continuation());
1742     }
1743   }
1744 }
1745 
1746 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1747                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1748                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1749   decorators |= ACCESS_READ;
1750   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1751   if (access.is_raw()) {
1752     _barrier_set->BarrierSetC1::load_at(access, result);
1753   } else {
1754     _barrier_set->load_at(access, result);
1755   }
1756 }
1757 
1758 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1759                                LIR_Opr addr, LIR_Opr result) {
1760   decorators |= ACCESS_READ;
1761   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1762   access.set_resolved_addr(addr);
1763   if (access.is_raw()) {
1764     _barrier_set->BarrierSetC1::load(access, result);
1765   } else {
1766     _barrier_set->load(access, result);
1767   }
1768 }
1769 
1770 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1771                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1772                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1773   decorators |= ACCESS_WRITE;
1774   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1775   if (access.is_raw()) {
1776     _barrier_set->BarrierSetC1::store_at(access, value);
1777   } else {
1778     _barrier_set->store_at(access, value);
1779   }
1780 }
1781 
1782 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1783                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1784   decorators |= ACCESS_READ;
1785   decorators |= ACCESS_WRITE;
1786   // Atomic operations are SEQ_CST by default
1787   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1788   LIRAccess access(this, decorators, base, offset, type);
1789   if (access.is_raw()) {
1790     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1791   } else {
1792     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1793   }
1794 }
1795 
1796 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1797                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1798   decorators |= ACCESS_READ;
1799   decorators |= ACCESS_WRITE;
1800   // Atomic operations are SEQ_CST by default
1801   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1802   LIRAccess access(this, decorators, base, offset, type);
1803   if (access.is_raw()) {
1804     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1805   } else {
1806     return _barrier_set->atomic_xchg_at(access, value);
1807   }
1808 }
1809 
1810 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1811                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1812   decorators |= ACCESS_READ;
1813   decorators |= ACCESS_WRITE;
1814   // Atomic operations are SEQ_CST by default
1815   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1816   LIRAccess access(this, decorators, base, offset, type);
1817   if (access.is_raw()) {
1818     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1819   } else {
1820     return _barrier_set->atomic_add_at(access, value);
1821   }
1822 }
1823 
1824 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1825   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1826   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1827     decorators |= ACCESS_READ | ACCESS_WRITE;
1828   }
1829 
1830   return _barrier_set->resolve(this, decorators, obj);
1831 }
1832 
1833 void LIRGenerator::do_LoadField(LoadField* x) {
1834   bool needs_patching = x->needs_patching();
1835   bool is_volatile = x->field()->is_volatile();
1836   BasicType field_type = x->field_type();
1837 
1838   CodeEmitInfo* info = NULL;
1839   if (needs_patching) {
1840     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1841     info = state_for(x, x->state_before());
1842   } else if (x->needs_null_check()) {
1843     NullCheck* nc = x->explicit_null_check();
1844     if (nc == NULL) {
1845       info = state_for(x);
1846     } else {
1847       info = state_for(nc);
1848     }
1849   }
1850 
1851   LIRItem object(x->obj(), this);
1852 
1853   object.load_item();
1854 
1855 #ifndef PRODUCT
1856   if (PrintNotLoaded && needs_patching) {
1857     tty->print_cr("   ###class not loaded at load_%s bci %d",
1858                   x->is_static() ?  "static" : "field", x->printable_bci());
1859   }
1860 #endif
1861 
1862   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1863   if (x->needs_null_check() &&
1864       (needs_patching ||
1865        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1866        stress_deopt)) {
1867     if (needs_patching && field_type == T_VALUETYPE) {
1868       // We are loading a "Q" field, but the holder class is not yet loaded.
1869       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1870                                           Deoptimization::Reason_unloaded,
1871                                           Deoptimization::Action_make_not_entrant);
1872       __ branch(lir_cond_always, T_ILLEGAL, stub);
1873     } else {
1874       LIR_Opr obj = object.result();
1875       if (stress_deopt) {
1876         obj = new_register(T_OBJECT);
1877         __ move(LIR_OprFact::oopConst(NULL), obj);
1878       }
1879       // Emit an explicit null check because the offset is too large.
1880       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1881       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1882       __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1883     }
1884   } else if (x->value_klass() != NULL && x->default_value() == NULL) {
1885     assert(x->is_static() && !x->value_klass()->is_loaded(), "must be");
1886     assert(needs_patching, "must be");
1887     // The value klass was not loaded so we don't know what its default value should be
1888     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1889                                         Deoptimization::Reason_unloaded,
1890                                         Deoptimization::Action_make_not_entrant);
1891     __ branch(lir_cond_always, T_ILLEGAL, stub);
1892   }
1893 
1894   DecoratorSet decorators = IN_HEAP;
1895   if (is_volatile) {
1896     decorators |= MO_SEQ_CST;
1897   }
1898   if (needs_patching) {
1899     decorators |= C1_NEEDS_PATCHING;
1900   }
1901 
1902   LIR_Opr result = rlock_result(x, field_type);
1903   access_load_at(decorators, field_type,
1904                  object, LIR_OprFact::intConst(x->offset()), result,
1905                  info ? new CodeEmitInfo(info) : NULL, info);
1906 
1907   if (x->value_klass() != NULL && x->default_value() != NULL) {
1908     LabelObj* L_end = new LabelObj();
1909     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
1910     __ branch(lir_cond_notEqual, T_OBJECT, L_end->label());
1911 
1912     LIRItem default_value(x->default_value(), this);
1913     default_value.load_item();
1914     __ move(default_value.result(), result);
1915 
1916     __ branch_destination(L_end->label());
1917   }
1918 }
1919 
1920 
1921 //------------------------java.nio.Buffer.checkIndex------------------------
1922 
1923 // int java.nio.Buffer.checkIndex(int)
1924 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1925   // NOTE: by the time we are in checkIndex() we are guaranteed that
1926   // the buffer is non-null (because checkIndex is package-private and
1927   // only called from within other methods in the buffer).
1928   assert(x->number_of_arguments() == 2, "wrong type");
1929   LIRItem buf  (x->argument_at(0), this);
1930   LIRItem index(x->argument_at(1), this);
1931   buf.load_item();
1932   index.load_item();
1933 
1934   LIR_Opr result = rlock_result(x);
1935   if (GenerateRangeChecks) {
1936     CodeEmitInfo* info = state_for(x);
1937     CodeStub* stub = new RangeCheckStub(info, index.result());
1938     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
1939     if (index.result()->is_constant()) {
1940       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1941       __ branch(lir_cond_belowEqual, T_INT, stub);
1942     } else {
1943       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
1944                   java_nio_Buffer::limit_offset(), T_INT, info);
1945       __ branch(lir_cond_aboveEqual, T_INT, stub);
1946     }
1947     __ move(index.result(), result);
1948   } else {
1949     // Just load the index into the result register
1950     __ move(index.result(), result);
1951   }
1952 }
1953 
1954 
1955 //------------------------array access--------------------------------------
1956 
1957 
1958 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1959   LIRItem array(x->array(), this);
1960   array.load_item();
1961   LIR_Opr reg = rlock_result(x);
1962 
1963   CodeEmitInfo* info = NULL;
1964   if (x->needs_null_check()) {
1965     NullCheck* nc = x->explicit_null_check();
1966     if (nc == NULL) {
1967       info = state_for(x);
1968     } else {
1969       info = state_for(nc);
1970     }
1971     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1972       LIR_Opr obj = new_register(T_OBJECT);
1973       __ move(LIR_OprFact::oopConst(NULL), obj);
1974       __ null_check(obj, new CodeEmitInfo(info));
1975     }
1976   }
1977   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1978 }
1979 
1980 
1981 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1982   bool use_length = x->length() != NULL;
1983   LIRItem array(x->array(), this);
1984   LIRItem index(x->index(), this);
1985   LIRItem length(this);
1986   bool needs_range_check = x->compute_needs_range_check();
1987 
1988   if (use_length && needs_range_check) {
1989     length.set_instruction(x->length());
1990     length.load_item();
1991   }
1992 
1993   array.load_item();
1994   if (index.is_constant() && can_inline_as_constant(x->index())
1995       && !x->array()->maybe_flattened_array()) {
1996     // let it be a constant
1997     index.dont_load_item();
1998   } else {
1999     index.load_item();
2000   }
2001 
2002   CodeEmitInfo* range_check_info = state_for(x);
2003   CodeEmitInfo* null_check_info = NULL;
2004   if (x->needs_null_check()) {
2005     NullCheck* nc = x->explicit_null_check();
2006     if (nc != NULL) {
2007       null_check_info = state_for(nc);
2008     } else {
2009       null_check_info = range_check_info;
2010     }
2011     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2012       LIR_Opr obj = new_register(T_OBJECT);
2013       __ move(LIR_OprFact::oopConst(NULL), obj);
2014       __ null_check(obj, new CodeEmitInfo(null_check_info));
2015     }
2016   }
2017 
2018   if (GenerateRangeChecks && needs_range_check) {
2019     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2020       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
2021     } else if (use_length) {
2022       // TODO: use a (modified) version of array_range_check that does not require a
2023       //       constant length to be loaded to a register
2024       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2025       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
2026     } else {
2027       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2028       // The range check performs the null check, so clear it out for the load
2029       null_check_info = NULL;
2030     }
2031   }
2032 
2033   if (x->array()->is_loaded_flattened_array()) {
2034     // Find the destination address (of the NewValueTypeInstance)
2035     LIR_Opr obj = x->vt()->operand();
2036     LIRItem obj_item(x->vt(), this);
2037 
2038     access_flattened_array(true, array, index, obj_item);
2039     set_no_result(x);
2040   } else {
2041     LIR_Opr result = rlock_result(x, x->elt_type());
2042     LoadFlattenedArrayStub* slow_path = NULL;
2043 
2044     if (x->array()->maybe_flattened_array()) {
2045       // Check if we indeed have a flattened array
2046       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x));
2047       check_flattened_array(array, slow_path);







2048     }
2049 
2050     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2051     access_load_at(decorators, x->elt_type(),
2052                    array, index.result(), result,
2053                    NULL, null_check_info);
2054 
2055     if (slow_path != NULL) {
2056       __ branch_destination(slow_path->continuation());
2057     }
2058   }
2059 }
2060 
2061 
2062 void LIRGenerator::do_NullCheck(NullCheck* x) {
2063   if (x->can_trap()) {
2064     LIRItem value(x->obj(), this);
2065     value.load_item();
2066     CodeEmitInfo* info = state_for(x);
2067     __ null_check(value.result(), info);
2068   }
2069 }
2070 
2071 
2072 void LIRGenerator::do_TypeCast(TypeCast* x) {
2073   LIRItem value(x->obj(), this);
2074   value.load_item();
2075   // the result is the same as from the node we are casting
2076   set_result(x, value.result());
2077 }
2078 
2079 
2080 void LIRGenerator::do_Throw(Throw* x) {
2081   LIRItem exception(x->exception(), this);
2082   exception.load_item();
2083   set_no_result(x);
2084   LIR_Opr exception_opr = exception.result();
2085   CodeEmitInfo* info = state_for(x, x->state());
2086 
2087 #ifndef PRODUCT
2088   if (PrintC1Statistics) {
2089     increment_counter(Runtime1::throw_count_address(), T_INT);
2090   }
2091 #endif
2092 
2093   // check if the instruction has an xhandler in any of the nested scopes
2094   bool unwind = false;
2095   if (info->exception_handlers()->length() == 0) {
2096     // this throw is not inside an xhandler
2097     unwind = true;
2098   } else {
2099     // get some idea of the throw type
2100     bool type_is_exact = true;
2101     ciType* throw_type = x->exception()->exact_type();
2102     if (throw_type == NULL) {
2103       type_is_exact = false;
2104       throw_type = x->exception()->declared_type();
2105     }
2106     if (throw_type != NULL && throw_type->is_instance_klass()) {
2107       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2108       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2109     }
2110   }
2111 
2112   // do null check before moving exception oop into fixed register
2113   // to avoid a fixed interval with an oop during the null check.
2114   // Use a copy of the CodeEmitInfo because debug information is
2115   // different for null_check and throw.
2116   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2117     // if the exception object wasn't created using new then it might be null.
2118     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2119   }
2120 
2121   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2122     // we need to go through the exception lookup path to get JVMTI
2123     // notification done
2124     unwind = false;
2125   }
2126 
2127   // move exception oop into fixed register
2128   __ move(exception_opr, exceptionOopOpr());
2129 
2130   if (unwind) {
2131     __ unwind_exception(exceptionOopOpr());
2132   } else {
2133     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2134   }
2135 }
2136 
2137 
2138 void LIRGenerator::do_RoundFP(RoundFP* x) {
2139   LIRItem input(x->input(), this);
2140   input.load_item();
2141   LIR_Opr input_opr = input.result();
2142   assert(input_opr->is_register(), "why round if value is not in a register?");
2143   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2144   if (input_opr->is_single_fpu()) {
2145     set_result(x, round_item(input_opr)); // This code path not currently taken
2146   } else {
2147     LIR_Opr result = new_register(T_DOUBLE);
2148     set_vreg_flag(result, must_start_in_memory);
2149     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2150     set_result(x, result);
2151   }
2152 }
2153 
2154 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2155 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2156 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2157   LIRItem base(x->base(), this);
2158   LIRItem idx(this);
2159 
2160   base.load_item();
2161   if (x->has_index()) {
2162     idx.set_instruction(x->index());
2163     idx.load_nonconstant();
2164   }
2165 
2166   LIR_Opr reg = rlock_result(x, x->basic_type());
2167 
2168   int   log2_scale = 0;
2169   if (x->has_index()) {
2170     log2_scale = x->log2_scale();
2171   }
2172 
2173   assert(!x->has_index() || idx.value() == x->index(), "should match");
2174 
2175   LIR_Opr base_op = base.result();
2176   LIR_Opr index_op = idx.result();
2177 #ifndef _LP64
2178   if (base_op->type() == T_LONG) {
2179     base_op = new_register(T_INT);
2180     __ convert(Bytecodes::_l2i, base.result(), base_op);
2181   }
2182   if (x->has_index()) {
2183     if (index_op->type() == T_LONG) {
2184       LIR_Opr long_index_op = index_op;
2185       if (index_op->is_constant()) {
2186         long_index_op = new_register(T_LONG);
2187         __ move(index_op, long_index_op);
2188       }
2189       index_op = new_register(T_INT);
2190       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2191     } else {
2192       assert(x->index()->type()->tag() == intTag, "must be");
2193     }
2194   }
2195   // At this point base and index should be all ints.
2196   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2197   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2198 #else
2199   if (x->has_index()) {
2200     if (index_op->type() == T_INT) {
2201       if (!index_op->is_constant()) {
2202         index_op = new_register(T_LONG);
2203         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2204       }
2205     } else {
2206       assert(index_op->type() == T_LONG, "must be");
2207       if (index_op->is_constant()) {
2208         index_op = new_register(T_LONG);
2209         __ move(idx.result(), index_op);
2210       }
2211     }
2212   }
2213   // At this point base is a long non-constant
2214   // Index is a long register or a int constant.
2215   // We allow the constant to stay an int because that would allow us a more compact encoding by
2216   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2217   // move it into a register first.
2218   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2219   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2220                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2221 #endif
2222 
2223   BasicType dst_type = x->basic_type();
2224 
2225   LIR_Address* addr;
2226   if (index_op->is_constant()) {
2227     assert(log2_scale == 0, "must not have a scale");
2228     assert(index_op->type() == T_INT, "only int constants supported");
2229     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2230   } else {
2231 #ifdef X86
2232     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2233 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2234     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2235 #else
2236     if (index_op->is_illegal() || log2_scale == 0) {
2237       addr = new LIR_Address(base_op, index_op, dst_type);
2238     } else {
2239       LIR_Opr tmp = new_pointer_register();
2240       __ shift_left(index_op, log2_scale, tmp);
2241       addr = new LIR_Address(base_op, tmp, dst_type);
2242     }
2243 #endif
2244   }
2245 
2246   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2247     __ unaligned_move(addr, reg);
2248   } else {
2249     if (dst_type == T_OBJECT && x->is_wide()) {
2250       __ move_wide(addr, reg);
2251     } else {
2252       __ move(addr, reg);
2253     }
2254   }
2255 }
2256 
2257 
2258 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2259   int  log2_scale = 0;
2260   BasicType type = x->basic_type();
2261 
2262   if (x->has_index()) {
2263     log2_scale = x->log2_scale();
2264   }
2265 
2266   LIRItem base(x->base(), this);
2267   LIRItem value(x->value(), this);
2268   LIRItem idx(this);
2269 
2270   base.load_item();
2271   if (x->has_index()) {
2272     idx.set_instruction(x->index());
2273     idx.load_item();
2274   }
2275 
2276   if (type == T_BYTE || type == T_BOOLEAN) {
2277     value.load_byte_item();
2278   } else {
2279     value.load_item();
2280   }
2281 
2282   set_no_result(x);
2283 
2284   LIR_Opr base_op = base.result();
2285   LIR_Opr index_op = idx.result();
2286 
2287 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2288   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2289 #else
2290 #ifndef _LP64
2291   if (base_op->type() == T_LONG) {
2292     base_op = new_register(T_INT);
2293     __ convert(Bytecodes::_l2i, base.result(), base_op);
2294   }
2295   if (x->has_index()) {
2296     if (index_op->type() == T_LONG) {
2297       index_op = new_register(T_INT);
2298       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2299     }
2300   }
2301   // At this point base and index should be all ints and not constants
2302   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2303   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2304 #else
2305   if (x->has_index()) {
2306     if (index_op->type() == T_INT) {
2307       index_op = new_register(T_LONG);
2308       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2309     }
2310   }
2311   // At this point base and index are long and non-constant
2312   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2313   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2314 #endif
2315 
2316   if (log2_scale != 0) {
2317     // temporary fix (platform dependent code without shift on Intel would be better)
2318     // TODO: ARM also allows embedded shift in the address
2319     LIR_Opr tmp = new_pointer_register();
2320     if (TwoOperandLIRForm) {
2321       __ move(index_op, tmp);
2322       index_op = tmp;
2323     }
2324     __ shift_left(index_op, log2_scale, tmp);
2325     if (!TwoOperandLIRForm) {
2326       index_op = tmp;
2327     }
2328   }
2329 
2330   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2331 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2332   __ move(value.result(), addr);
2333 }
2334 
2335 
2336 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2337   BasicType type = x->basic_type();
2338   LIRItem src(x->object(), this);
2339   LIRItem off(x->offset(), this);
2340 
2341   off.load_item();
2342   src.load_item();
2343 
2344   DecoratorSet decorators = IN_HEAP;
2345 
2346   if (x->is_volatile()) {
2347     decorators |= MO_SEQ_CST;
2348   }
2349   if (type == T_BOOLEAN) {
2350     decorators |= C1_MASK_BOOLEAN;
2351   }
2352   if (type == T_ARRAY || type == T_OBJECT) {
2353     decorators |= ON_UNKNOWN_OOP_REF;
2354   }
2355 
2356   LIR_Opr result = rlock_result(x, type);
2357   access_load_at(decorators, type,
2358                  src, off.result(), result);
2359 }
2360 
2361 
2362 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2363   BasicType type = x->basic_type();
2364   LIRItem src(x->object(), this);
2365   LIRItem off(x->offset(), this);
2366   LIRItem data(x->value(), this);
2367 
2368   src.load_item();
2369   if (type == T_BOOLEAN || type == T_BYTE) {
2370     data.load_byte_item();
2371   } else {
2372     data.load_item();
2373   }
2374   off.load_item();
2375 
2376   set_no_result(x);
2377 
2378   DecoratorSet decorators = IN_HEAP;
2379   if (type == T_ARRAY || type == T_OBJECT) {
2380     decorators |= ON_UNKNOWN_OOP_REF;
2381   }
2382   if (x->is_volatile()) {
2383     decorators |= MO_SEQ_CST;
2384   }
2385   access_store_at(decorators, type, src, off.result(), data.result());
2386 }
2387 
2388 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2389   BasicType type = x->basic_type();
2390   LIRItem src(x->object(), this);
2391   LIRItem off(x->offset(), this);
2392   LIRItem value(x->value(), this);
2393 
2394   DecoratorSet decorators = IN_HEAP | MO_SEQ_CST;
2395 
2396   if (type == T_ARRAY || type == T_OBJECT) {
2397     decorators |= ON_UNKNOWN_OOP_REF;
2398   }
2399 
2400   LIR_Opr result;
2401   if (x->is_add()) {
2402     result = access_atomic_add_at(decorators, type, src, off, value);
2403   } else {
2404     result = access_atomic_xchg_at(decorators, type, src, off, value);
2405   }
2406   set_result(x, result);
2407 }
2408 
2409 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2410   int lng = x->length();
2411 
2412   for (int i = 0; i < lng; i++) {
2413     SwitchRange* one_range = x->at(i);
2414     int low_key = one_range->low_key();
2415     int high_key = one_range->high_key();
2416     BlockBegin* dest = one_range->sux();
2417     if (low_key == high_key) {
2418       __ cmp(lir_cond_equal, value, low_key);
2419       __ branch(lir_cond_equal, T_INT, dest);
2420     } else if (high_key - low_key == 1) {
2421       __ cmp(lir_cond_equal, value, low_key);
2422       __ branch(lir_cond_equal, T_INT, dest);
2423       __ cmp(lir_cond_equal, value, high_key);
2424       __ branch(lir_cond_equal, T_INT, dest);
2425     } else {
2426       LabelObj* L = new LabelObj();
2427       __ cmp(lir_cond_less, value, low_key);
2428       __ branch(lir_cond_less, T_INT, L->label());
2429       __ cmp(lir_cond_lessEqual, value, high_key);
2430       __ branch(lir_cond_lessEqual, T_INT, dest);
2431       __ branch_destination(L->label());
2432     }
2433   }
2434   __ jump(default_sux);
2435 }
2436 
2437 
2438 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2439   SwitchRangeList* res = new SwitchRangeList();
2440   int len = x->length();
2441   if (len > 0) {
2442     BlockBegin* sux = x->sux_at(0);
2443     int key = x->lo_key();
2444     BlockBegin* default_sux = x->default_sux();
2445     SwitchRange* range = new SwitchRange(key, sux);
2446     for (int i = 0; i < len; i++, key++) {
2447       BlockBegin* new_sux = x->sux_at(i);
2448       if (sux == new_sux) {
2449         // still in same range
2450         range->set_high_key(key);
2451       } else {
2452         // skip tests which explicitly dispatch to the default
2453         if (sux != default_sux) {
2454           res->append(range);
2455         }
2456         range = new SwitchRange(key, new_sux);
2457       }
2458       sux = new_sux;
2459     }
2460     if (res->length() == 0 || res->last() != range)  res->append(range);
2461   }
2462   return res;
2463 }
2464 
2465 
2466 // we expect the keys to be sorted by increasing value
2467 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2468   SwitchRangeList* res = new SwitchRangeList();
2469   int len = x->length();
2470   if (len > 0) {
2471     BlockBegin* default_sux = x->default_sux();
2472     int key = x->key_at(0);
2473     BlockBegin* sux = x->sux_at(0);
2474     SwitchRange* range = new SwitchRange(key, sux);
2475     for (int i = 1; i < len; i++) {
2476       int new_key = x->key_at(i);
2477       BlockBegin* new_sux = x->sux_at(i);
2478       if (key+1 == new_key && sux == new_sux) {
2479         // still in same range
2480         range->set_high_key(new_key);
2481       } else {
2482         // skip tests which explicitly dispatch to the default
2483         if (range->sux() != default_sux) {
2484           res->append(range);
2485         }
2486         range = new SwitchRange(new_key, new_sux);
2487       }
2488       key = new_key;
2489       sux = new_sux;
2490     }
2491     if (res->length() == 0 || res->last() != range)  res->append(range);
2492   }
2493   return res;
2494 }
2495 
2496 
2497 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2498   LIRItem tag(x->tag(), this);
2499   tag.load_item();
2500   set_no_result(x);
2501 
2502   if (x->is_safepoint()) {
2503     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2504   }
2505 
2506   // move values into phi locations
2507   move_to_phi(x->state());
2508 
2509   int lo_key = x->lo_key();
2510   int len = x->length();
2511   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2512   LIR_Opr value = tag.result();
2513 
2514   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2515     ciMethod* method = x->state()->scope()->method();
2516     ciMethodData* md = method->method_data_or_null();
2517     assert(md != NULL, "Sanity");
2518     ciProfileData* data = md->bci_to_data(x->state()->bci());
2519     assert(data != NULL, "must have profiling data");
2520     assert(data->is_MultiBranchData(), "bad profile data?");
2521     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2522     LIR_Opr md_reg = new_register(T_METADATA);
2523     __ metadata2reg(md->constant_encoding(), md_reg);
2524     LIR_Opr data_offset_reg = new_pointer_register();
2525     LIR_Opr tmp_reg = new_pointer_register();
2526 
2527     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2528     for (int i = 0; i < len; i++) {
2529       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2530       __ cmp(lir_cond_equal, value, i + lo_key);
2531       __ move(data_offset_reg, tmp_reg);
2532       __ cmove(lir_cond_equal,
2533                LIR_OprFact::intptrConst(count_offset),
2534                tmp_reg,
2535                data_offset_reg, T_INT);
2536     }
2537 
2538     LIR_Opr data_reg = new_pointer_register();
2539     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2540     __ move(data_addr, data_reg);
2541     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2542     __ move(data_reg, data_addr);
2543   }
2544 
2545   if (UseTableRanges) {
2546     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2547   } else {
2548     for (int i = 0; i < len; i++) {
2549       __ cmp(lir_cond_equal, value, i + lo_key);
2550       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2551     }
2552     __ jump(x->default_sux());
2553   }
2554 }
2555 
2556 
2557 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2558   LIRItem tag(x->tag(), this);
2559   tag.load_item();
2560   set_no_result(x);
2561 
2562   if (x->is_safepoint()) {
2563     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2564   }
2565 
2566   // move values into phi locations
2567   move_to_phi(x->state());
2568 
2569   LIR_Opr value = tag.result();
2570   int len = x->length();
2571 
2572   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2573     ciMethod* method = x->state()->scope()->method();
2574     ciMethodData* md = method->method_data_or_null();
2575     assert(md != NULL, "Sanity");
2576     ciProfileData* data = md->bci_to_data(x->state()->bci());
2577     assert(data != NULL, "must have profiling data");
2578     assert(data->is_MultiBranchData(), "bad profile data?");
2579     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2580     LIR_Opr md_reg = new_register(T_METADATA);
2581     __ metadata2reg(md->constant_encoding(), md_reg);
2582     LIR_Opr data_offset_reg = new_pointer_register();
2583     LIR_Opr tmp_reg = new_pointer_register();
2584 
2585     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2586     for (int i = 0; i < len; i++) {
2587       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2588       __ cmp(lir_cond_equal, value, x->key_at(i));
2589       __ move(data_offset_reg, tmp_reg);
2590       __ cmove(lir_cond_equal,
2591                LIR_OprFact::intptrConst(count_offset),
2592                tmp_reg,
2593                data_offset_reg, T_INT);
2594     }
2595 
2596     LIR_Opr data_reg = new_pointer_register();
2597     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2598     __ move(data_addr, data_reg);
2599     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2600     __ move(data_reg, data_addr);
2601   }
2602 
2603   if (UseTableRanges) {
2604     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2605   } else {
2606     int len = x->length();
2607     for (int i = 0; i < len; i++) {
2608       __ cmp(lir_cond_equal, value, x->key_at(i));
2609       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2610     }
2611     __ jump(x->default_sux());
2612   }
2613 }
2614 
2615 
2616 void LIRGenerator::do_Goto(Goto* x) {
2617   set_no_result(x);
2618 
2619   if (block()->next()->as_OsrEntry()) {
2620     // need to free up storage used for OSR entry point
2621     LIR_Opr osrBuffer = block()->next()->operand();
2622     BasicTypeList signature;
2623     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2624     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2625     __ move(osrBuffer, cc->args()->at(0));
2626     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2627                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2628   }
2629 
2630   if (x->is_safepoint()) {
2631     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2632 
2633     // increment backedge counter if needed
2634     CodeEmitInfo* info = state_for(x, state);
2635     increment_backedge_counter(info, x->profiled_bci());
2636     CodeEmitInfo* safepoint_info = state_for(x, state);
2637     __ safepoint(safepoint_poll_register(), safepoint_info);
2638   }
2639 
2640   // Gotos can be folded Ifs, handle this case.
2641   if (x->should_profile()) {
2642     ciMethod* method = x->profiled_method();
2643     assert(method != NULL, "method should be set if branch is profiled");
2644     ciMethodData* md = method->method_data_or_null();
2645     assert(md != NULL, "Sanity");
2646     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2647     assert(data != NULL, "must have profiling data");
2648     int offset;
2649     if (x->direction() == Goto::taken) {
2650       assert(data->is_BranchData(), "need BranchData for two-way branches");
2651       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2652     } else if (x->direction() == Goto::not_taken) {
2653       assert(data->is_BranchData(), "need BranchData for two-way branches");
2654       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2655     } else {
2656       assert(data->is_JumpData(), "need JumpData for branches");
2657       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2658     }
2659     LIR_Opr md_reg = new_register(T_METADATA);
2660     __ metadata2reg(md->constant_encoding(), md_reg);
2661 
2662     increment_counter(new LIR_Address(md_reg, offset,
2663                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2664   }
2665 
2666   // emit phi-instruction move after safepoint since this simplifies
2667   // describing the state as the safepoint.
2668   move_to_phi(x->state());
2669 
2670   __ jump(x->default_sux());
2671 }
2672 
2673 /**
2674  * Emit profiling code if needed for arguments, parameters, return value types
2675  *
2676  * @param md                    MDO the code will update at runtime
2677  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2678  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2679  * @param profiled_k            current profile
2680  * @param obj                   IR node for the object to be profiled
2681  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2682  *                              Set once we find an update to make and use for next ones.
2683  * @param not_null              true if we know obj cannot be null
2684  * @param signature_at_call_k   signature at call for obj
2685  * @param callee_signature_k    signature of callee for obj
2686  *                              at call and callee signatures differ at method handle call
2687  * @return                      the only klass we know will ever be seen at this profile point
2688  */
2689 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2690                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2691                                     ciKlass* callee_signature_k) {
2692   ciKlass* result = NULL;
2693   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2694   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2695   // known not to be null or null bit already set and already set to
2696   // unknown: nothing we can do to improve profiling
2697   if (!do_null && !do_update) {
2698     return result;
2699   }
2700 
2701   ciKlass* exact_klass = NULL;
2702   Compilation* comp = Compilation::current();
2703   if (do_update) {
2704     // try to find exact type, using CHA if possible, so that loading
2705     // the klass from the object can be avoided
2706     ciType* type = obj->exact_type();
2707     if (type == NULL) {
2708       type = obj->declared_type();
2709       type = comp->cha_exact_type(type);
2710     }
2711     assert(type == NULL || type->is_klass(), "type should be class");
2712     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2713 
2714     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2715   }
2716 
2717   if (!do_null && !do_update) {
2718     return result;
2719   }
2720 
2721   ciKlass* exact_signature_k = NULL;
2722   if (do_update) {
2723     // Is the type from the signature exact (the only one possible)?
2724     exact_signature_k = signature_at_call_k->exact_klass();
2725     if (exact_signature_k == NULL) {
2726       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2727     } else {
2728       result = exact_signature_k;
2729       // Known statically. No need to emit any code: prevent
2730       // LIR_Assembler::emit_profile_type() from emitting useless code
2731       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2732     }
2733     // exact_klass and exact_signature_k can be both non NULL but
2734     // different if exact_klass is loaded after the ciObject for
2735     // exact_signature_k is created.
2736     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2737       // sometimes the type of the signature is better than the best type
2738       // the compiler has
2739       exact_klass = exact_signature_k;
2740     }
2741     if (callee_signature_k != NULL &&
2742         callee_signature_k != signature_at_call_k) {
2743       ciKlass* improved_klass = callee_signature_k->exact_klass();
2744       if (improved_klass == NULL) {
2745         improved_klass = comp->cha_exact_type(callee_signature_k);
2746       }
2747       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2748         exact_klass = exact_signature_k;
2749       }
2750     }
2751     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2752   }
2753 
2754   if (!do_null && !do_update) {
2755     return result;
2756   }
2757 
2758   if (mdp == LIR_OprFact::illegalOpr) {
2759     mdp = new_register(T_METADATA);
2760     __ metadata2reg(md->constant_encoding(), mdp);
2761     if (md_base_offset != 0) {
2762       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2763       mdp = new_pointer_register();
2764       __ leal(LIR_OprFact::address(base_type_address), mdp);
2765     }
2766   }
2767   LIRItem value(obj, this);
2768   value.load_item();
2769   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2770                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2771   return result;
2772 }
2773 
2774 // profile parameters on entry to the root of the compilation
2775 void LIRGenerator::profile_parameters(Base* x) {
2776   if (compilation()->profile_parameters()) {
2777     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2778     ciMethodData* md = scope()->method()->method_data_or_null();
2779     assert(md != NULL, "Sanity");
2780 
2781     if (md->parameters_type_data() != NULL) {
2782       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2783       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2784       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2785       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2786         LIR_Opr src = args->at(i);
2787         assert(!src->is_illegal(), "check");
2788         BasicType t = src->type();
2789         if (t == T_OBJECT || t == T_ARRAY) {
2790           intptr_t profiled_k = parameters->type(j);
2791           Local* local = x->state()->local_at(java_index)->as_Local();
2792           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2793                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2794                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2795           // If the profile is known statically set it once for all and do not emit any code
2796           if (exact != NULL) {
2797             md->set_parameter_type(j, exact);
2798           }
2799           j++;
2800         }
2801         java_index += type2size[t];
2802       }
2803     }
2804   }
2805 }
2806 
2807 void LIRGenerator::do_Base(Base* x) {
2808   __ std_entry(LIR_OprFact::illegalOpr);
2809   // Emit moves from physical registers / stack slots to virtual registers
2810   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2811   IRScope* irScope = compilation()->hir()->top_scope();
2812   int java_index = 0;
2813   for (int i = 0; i < args->length(); i++) {
2814     LIR_Opr src = args->at(i);
2815     assert(!src->is_illegal(), "check");
2816     BasicType t = src->type();
2817 
2818     // Types which are smaller than int are passed as int, so
2819     // correct the type which passed.
2820     switch (t) {
2821     case T_BYTE:
2822     case T_BOOLEAN:
2823     case T_SHORT:
2824     case T_CHAR:
2825       t = T_INT;
2826       break;
2827     default:
2828       break;
2829     }
2830 
2831     LIR_Opr dest = new_register(t);
2832     __ move(src, dest);
2833 
2834     // Assign new location to Local instruction for this local
2835     Local* local = x->state()->local_at(java_index)->as_Local();
2836     assert(local != NULL, "Locals for incoming arguments must have been created");
2837 #ifndef __SOFTFP__
2838     // The java calling convention passes double as long and float as int.
2839     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2840 #endif // __SOFTFP__
2841     local->set_operand(dest);
2842     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2843     java_index += type2size[t];
2844   }
2845 
2846   if (compilation()->env()->dtrace_method_probes()) {
2847     BasicTypeList signature;
2848     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2849     signature.append(T_METADATA); // Method*
2850     LIR_OprList* args = new LIR_OprList();
2851     args->append(getThreadPointer());
2852     LIR_Opr meth = new_register(T_METADATA);
2853     __ metadata2reg(method()->constant_encoding(), meth);
2854     args->append(meth);
2855     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2856   }
2857 
2858   if (method()->is_synchronized()) {
2859     LIR_Opr obj;
2860     if (method()->is_static()) {
2861       obj = new_register(T_OBJECT);
2862       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2863     } else {
2864       Local* receiver = x->state()->local_at(0)->as_Local();
2865       assert(receiver != NULL, "must already exist");
2866       obj = receiver->operand();
2867     }
2868     assert(obj->is_valid(), "must be valid");
2869 
2870     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2871       LIR_Opr lock = syncLockOpr();
2872       __ load_stack_address_monitor(0, lock);
2873 
2874       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2875       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2876 
2877       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2878       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2879     }
2880   }
2881   if (compilation()->age_code()) {
2882     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2883     decrement_age(info);
2884   }
2885   // increment invocation counters if needed
2886   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2887     profile_parameters(x);
2888     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2889     increment_invocation_counter(info);
2890   }
2891 
2892   // all blocks with a successor must end with an unconditional jump
2893   // to the successor even if they are consecutive
2894   __ jump(x->default_sux());
2895 }
2896 
2897 
2898 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2899   // construct our frame and model the production of incoming pointer
2900   // to the OSR buffer.
2901   __ osr_entry(LIR_Assembler::osrBufferPointer());
2902   LIR_Opr result = rlock_result(x);
2903   __ move(LIR_Assembler::osrBufferPointer(), result);
2904 }
2905 
2906 
2907 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2908   assert(args->length() == arg_list->length(),
2909          "args=%d, arg_list=%d", args->length(), arg_list->length());
2910   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2911     LIRItem* param = args->at(i);
2912     LIR_Opr loc = arg_list->at(i);
2913     if (loc->is_register()) {
2914       param->load_item_force(loc);
2915     } else {
2916       LIR_Address* addr = loc->as_address_ptr();
2917       param->load_for_store(addr->type());
2918       assert(addr->type() != T_VALUETYPE, "not supported yet");
2919       if (addr->type() == T_OBJECT) {
2920         __ move_wide(param->result(), addr);
2921       } else
2922         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2923           __ unaligned_move(param->result(), addr);
2924         } else {
2925           __ move(param->result(), addr);
2926         }
2927     }
2928   }
2929 
2930   if (x->has_receiver()) {
2931     LIRItem* receiver = args->at(0);
2932     LIR_Opr loc = arg_list->at(0);
2933     if (loc->is_register()) {
2934       receiver->load_item_force(loc);
2935     } else {
2936       assert(loc->is_address(), "just checking");
2937       receiver->load_for_store(T_OBJECT);
2938       __ move_wide(receiver->result(), loc->as_address_ptr());
2939     }
2940   }
2941 }
2942 
2943 
2944 // Visits all arguments, returns appropriate items without loading them
2945 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2946   LIRItemList* argument_items = new LIRItemList();
2947   if (x->has_receiver()) {
2948     LIRItem* receiver = new LIRItem(x->receiver(), this);
2949     argument_items->append(receiver);
2950   }
2951   for (int i = 0; i < x->number_of_arguments(); i++) {
2952     LIRItem* param = new LIRItem(x->argument_at(i), this);
2953     argument_items->append(param);
2954   }
2955   return argument_items;
2956 }
2957 
2958 
2959 // The invoke with receiver has following phases:
2960 //   a) traverse and load/lock receiver;
2961 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2962 //   c) push receiver on stack
2963 //   d) load each of the items and push on stack
2964 //   e) unlock receiver
2965 //   f) move receiver into receiver-register %o0
2966 //   g) lock result registers and emit call operation
2967 //
2968 // Before issuing a call, we must spill-save all values on stack
2969 // that are in caller-save register. "spill-save" moves those registers
2970 // either in a free callee-save register or spills them if no free
2971 // callee save register is available.
2972 //
2973 // The problem is where to invoke spill-save.
2974 // - if invoked between e) and f), we may lock callee save
2975 //   register in "spill-save" that destroys the receiver register
2976 //   before f) is executed
2977 // - if we rearrange f) to be earlier (by loading %o0) it
2978 //   may destroy a value on the stack that is currently in %o0
2979 //   and is waiting to be spilled
2980 // - if we keep the receiver locked while doing spill-save,
2981 //   we cannot spill it as it is spill-locked
2982 //
2983 void LIRGenerator::do_Invoke(Invoke* x) {
2984   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2985 
2986   LIR_OprList* arg_list = cc->args();
2987   LIRItemList* args = invoke_visit_arguments(x);
2988   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2989 
2990   // setup result register
2991   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2992   if (x->type() != voidType) {
2993     result_register = result_register_for(x->type());
2994   }
2995 
2996   CodeEmitInfo* info = state_for(x, x->state());
2997 
2998   invoke_load_arguments(x, args, arg_list);
2999 
3000   if (x->has_receiver()) {
3001     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3002     receiver = args->at(0)->result();
3003   }
3004 
3005   // emit invoke code
3006   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3007 
3008   // JSR 292
3009   // Preserve the SP over MethodHandle call sites, if needed.
3010   ciMethod* target = x->target();
3011   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3012                                   target->is_method_handle_intrinsic() ||
3013                                   target->is_compiled_lambda_form());
3014   if (is_method_handle_invoke) {
3015     info->set_is_method_handle_invoke(true);
3016     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3017         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3018     }
3019   }
3020 
3021   switch (x->code()) {
3022     case Bytecodes::_invokestatic:
3023       __ call_static(target, result_register,
3024                      SharedRuntime::get_resolve_static_call_stub(),
3025                      arg_list, info);
3026       break;
3027     case Bytecodes::_invokespecial:
3028     case Bytecodes::_invokevirtual:
3029     case Bytecodes::_invokeinterface:
3030       // for loaded and final (method or class) target we still produce an inline cache,
3031       // in order to be able to call mixed mode
3032       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3033         __ call_opt_virtual(target, receiver, result_register,
3034                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3035                             arg_list, info);
3036       } else if (x->vtable_index() < 0) {
3037         __ call_icvirtual(target, receiver, result_register,
3038                           SharedRuntime::get_resolve_virtual_call_stub(),
3039                           arg_list, info);
3040       } else {
3041         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3042         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3043         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3044       }
3045       break;
3046     case Bytecodes::_invokedynamic: {
3047       __ call_dynamic(target, receiver, result_register,
3048                       SharedRuntime::get_resolve_static_call_stub(),
3049                       arg_list, info);
3050       break;
3051     }
3052     default:
3053       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3054       break;
3055   }
3056 
3057   // JSR 292
3058   // Restore the SP after MethodHandle call sites, if needed.
3059   if (is_method_handle_invoke
3060       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3061     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3062   }
3063 
3064   if (x->type()->is_float() || x->type()->is_double()) {
3065     // Force rounding of results from non-strictfp when in strictfp
3066     // scope (or when we don't know the strictness of the callee, to
3067     // be safe.)
3068     if (method()->is_strict()) {
3069       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3070         result_register = round_item(result_register);
3071       }
3072     }
3073   }
3074 
3075   if (result_register->is_valid()) {
3076     LIR_Opr result = rlock_result(x);
3077     __ move(result_register, result);
3078   }
3079 }
3080 
3081 
3082 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3083   assert(x->number_of_arguments() == 1, "wrong type");
3084   LIRItem value       (x->argument_at(0), this);
3085   LIR_Opr reg = rlock_result(x);
3086   value.load_item();
3087   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3088   __ move(tmp, reg);
3089 }
3090 
3091 
3092 
3093 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3094 void LIRGenerator::do_IfOp(IfOp* x) {
3095 #ifdef ASSERT
3096   {
3097     ValueTag xtag = x->x()->type()->tag();
3098     ValueTag ttag = x->tval()->type()->tag();
3099     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3100     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3101     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3102   }
3103 #endif
3104 
3105   LIRItem left(x->x(), this);
3106   LIRItem right(x->y(), this);
3107   left.load_item();
3108   if (can_inline_as_constant(right.value())) {
3109     right.dont_load_item();
3110   } else {
3111     right.load_item();
3112   }
3113 
3114   LIRItem t_val(x->tval(), this);
3115   LIRItem f_val(x->fval(), this);
3116   t_val.dont_load_item();
3117   f_val.dont_load_item();
3118   LIR_Opr reg = rlock_result(x);
3119 
3120   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3121   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3122 }
3123 
3124 #ifdef JFR_HAVE_INTRINSICS
3125 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3126   CodeEmitInfo* info = state_for(x);
3127   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3128 
3129   assert(info != NULL, "must have info");
3130   LIRItem arg(x->argument_at(0), this);
3131 
3132   arg.load_item();
3133   LIR_Opr klass = new_register(T_METADATA);
3134   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3135   LIR_Opr id = new_register(T_LONG);
3136   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3137   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3138 
3139   __ move(trace_id_addr, id);
3140   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3141   __ store(id, trace_id_addr);
3142 
3143 #ifdef TRACE_ID_META_BITS
3144   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3145 #endif
3146 #ifdef TRACE_ID_SHIFT
3147   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3148 #endif
3149 
3150   __ move(id, rlock_result(x));
3151 }
3152 
3153 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3154   LabelObj* L_end = new LabelObj();
3155 
3156   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3157                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3158                                            T_OBJECT);
3159   LIR_Opr result = rlock_result(x);
3160   __ move_wide(jobj_addr, result);
3161   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3162   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3163 
3164   LIR_Opr jobj = new_register(T_OBJECT);
3165   __ move(result, jobj);
3166   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3167 
3168   __ branch_destination(L_end->label());
3169 }
3170 
3171 #endif
3172 
3173 
3174 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3175   assert(x->number_of_arguments() == 0, "wrong type");
3176   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3177   BasicTypeList signature;
3178   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3179   LIR_Opr reg = result_register_for(x->type());
3180   __ call_runtime_leaf(routine, getThreadTemp(),
3181                        reg, new LIR_OprList());
3182   LIR_Opr result = rlock_result(x);
3183   __ move(reg, result);
3184 }
3185 
3186 
3187 
3188 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3189   switch (x->id()) {
3190   case vmIntrinsics::_intBitsToFloat      :
3191   case vmIntrinsics::_doubleToRawLongBits :
3192   case vmIntrinsics::_longBitsToDouble    :
3193   case vmIntrinsics::_floatToRawIntBits   : {
3194     do_FPIntrinsics(x);
3195     break;
3196   }
3197 
3198 #ifdef JFR_HAVE_INTRINSICS
3199   case vmIntrinsics::_getClassId:
3200     do_ClassIDIntrinsic(x);
3201     break;
3202   case vmIntrinsics::_getEventWriter:
3203     do_getEventWriter(x);
3204     break;
3205   case vmIntrinsics::_counterTime:
3206     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3207     break;
3208 #endif
3209 
3210   case vmIntrinsics::_currentTimeMillis:
3211     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3212     break;
3213 
3214   case vmIntrinsics::_nanoTime:
3215     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3216     break;
3217 
3218   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3219   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3220   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3221   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3222   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3223 
3224   case vmIntrinsics::_dlog:           // fall through
3225   case vmIntrinsics::_dlog10:         // fall through
3226   case vmIntrinsics::_dabs:           // fall through
3227   case vmIntrinsics::_dsqrt:          // fall through
3228   case vmIntrinsics::_dtan:           // fall through
3229   case vmIntrinsics::_dsin :          // fall through
3230   case vmIntrinsics::_dcos :          // fall through
3231   case vmIntrinsics::_dexp :          // fall through
3232   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3233   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3234 
3235   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3236   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3237 
3238   // java.nio.Buffer.checkIndex
3239   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3240 
3241   case vmIntrinsics::_compareAndSetReference:
3242     do_CompareAndSwap(x, objectType);
3243     break;
3244   case vmIntrinsics::_compareAndSetInt:
3245     do_CompareAndSwap(x, intType);
3246     break;
3247   case vmIntrinsics::_compareAndSetLong:
3248     do_CompareAndSwap(x, longType);
3249     break;
3250 
3251   case vmIntrinsics::_loadFence :
3252     __ membar_acquire();
3253     break;
3254   case vmIntrinsics::_storeFence:
3255     __ membar_release();
3256     break;
3257   case vmIntrinsics::_fullFence :
3258     __ membar();
3259     break;
3260   case vmIntrinsics::_onSpinWait:
3261     __ on_spin_wait();
3262     break;
3263   case vmIntrinsics::_Reference_get:
3264     do_Reference_get(x);
3265     break;
3266 
3267   case vmIntrinsics::_updateCRC32:
3268   case vmIntrinsics::_updateBytesCRC32:
3269   case vmIntrinsics::_updateByteBufferCRC32:
3270     do_update_CRC32(x);
3271     break;
3272 
3273   case vmIntrinsics::_updateBytesCRC32C:
3274   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3275     do_update_CRC32C(x);
3276     break;
3277 
3278   case vmIntrinsics::_vectorizedMismatch:
3279     do_vectorizedMismatch(x);
3280     break;
3281 
3282   default: ShouldNotReachHere(); break;
3283   }
3284 }
3285 
3286 void LIRGenerator::profile_arguments(ProfileCall* x) {
3287   if (compilation()->profile_arguments()) {
3288     int bci = x->bci_of_invoke();
3289     ciMethodData* md = x->method()->method_data_or_null();
3290     assert(md != NULL, "Sanity");
3291     ciProfileData* data = md->bci_to_data(bci);
3292     if (data != NULL) {
3293       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3294           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3295         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3296         int base_offset = md->byte_offset_of_slot(data, extra);
3297         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3298         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3299 
3300         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3301         int start = 0;
3302         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3303         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3304           // first argument is not profiled at call (method handle invoke)
3305           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3306           start = 1;
3307         }
3308         ciSignature* callee_signature = x->callee()->signature();
3309         // method handle call to virtual method
3310         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3311         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3312 
3313         bool ignored_will_link;
3314         ciSignature* signature_at_call = NULL;
3315         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3316         ciSignatureStream signature_at_call_stream(signature_at_call);
3317 
3318         // if called through method handle invoke, some arguments may have been popped
3319         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3320           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3321           ciKlass* exact = profile_type(md, base_offset, off,
3322               args->type(i), x->profiled_arg_at(i+start), mdp,
3323               !x->arg_needs_null_check(i+start),
3324               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3325           if (exact != NULL) {
3326             md->set_argument_type(bci, i, exact);
3327           }
3328         }
3329       } else {
3330 #ifdef ASSERT
3331         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3332         int n = x->nb_profiled_args();
3333         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3334             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3335             "only at JSR292 bytecodes");
3336 #endif
3337       }
3338     }
3339   }
3340 }
3341 
3342 // profile parameters on entry to an inlined method
3343 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3344   if (compilation()->profile_parameters() && x->inlined()) {
3345     ciMethodData* md = x->callee()->method_data_or_null();
3346     if (md != NULL) {
3347       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3348       if (parameters_type_data != NULL) {
3349         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3350         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3351         bool has_receiver = !x->callee()->is_static();
3352         ciSignature* sig = x->callee()->signature();
3353         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3354         int i = 0; // to iterate on the Instructions
3355         Value arg = x->recv();
3356         bool not_null = false;
3357         int bci = x->bci_of_invoke();
3358         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3359         // The first parameter is the receiver so that's what we start
3360         // with if it exists. One exception is method handle call to
3361         // virtual method: the receiver is in the args list
3362         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3363           i = 1;
3364           arg = x->profiled_arg_at(0);
3365           not_null = !x->arg_needs_null_check(0);
3366         }
3367         int k = 0; // to iterate on the profile data
3368         for (;;) {
3369           intptr_t profiled_k = parameters->type(k);
3370           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3371                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3372                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3373           // If the profile is known statically set it once for all and do not emit any code
3374           if (exact != NULL) {
3375             md->set_parameter_type(k, exact);
3376           }
3377           k++;
3378           if (k >= parameters_type_data->number_of_parameters()) {
3379 #ifdef ASSERT
3380             int extra = 0;
3381             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3382                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3383                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3384               extra += 1;
3385             }
3386             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3387 #endif
3388             break;
3389           }
3390           arg = x->profiled_arg_at(i);
3391           not_null = !x->arg_needs_null_check(i);
3392           i++;
3393         }
3394       }
3395     }
3396   }
3397 }
3398 
3399 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3400   // Need recv in a temporary register so it interferes with the other temporaries
3401   LIR_Opr recv = LIR_OprFact::illegalOpr;
3402   LIR_Opr mdo = new_register(T_METADATA);
3403   // tmp is used to hold the counters on SPARC
3404   LIR_Opr tmp = new_pointer_register();
3405 
3406   if (x->nb_profiled_args() > 0) {
3407     profile_arguments(x);
3408   }
3409 
3410   // profile parameters on inlined method entry including receiver
3411   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3412     profile_parameters_at_call(x);
3413   }
3414 
3415   if (x->recv() != NULL) {
3416     LIRItem value(x->recv(), this);
3417     value.load_item();
3418     recv = new_register(T_OBJECT);
3419     __ move(value.result(), recv);
3420   }
3421   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3422 }
3423 
3424 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3425   int bci = x->bci_of_invoke();
3426   ciMethodData* md = x->method()->method_data_or_null();
3427   assert(md != NULL, "Sanity");
3428   ciProfileData* data = md->bci_to_data(bci);
3429   if (data != NULL) {
3430     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3431     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3432     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3433 
3434     bool ignored_will_link;
3435     ciSignature* signature_at_call = NULL;
3436     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3437 
3438     // The offset within the MDO of the entry to update may be too large
3439     // to be used in load/store instructions on some platforms. So have
3440     // profile_type() compute the address of the profile in a register.
3441     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3442         ret->type(), x->ret(), mdp,
3443         !x->needs_null_check(),
3444         signature_at_call->return_type()->as_klass(),
3445         x->callee()->signature()->return_type()->as_klass());
3446     if (exact != NULL) {
3447       md->set_return_type(bci, exact);
3448     }
3449   }
3450 }
3451 
3452 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3453   // We can safely ignore accessors here, since c2 will inline them anyway,
3454   // accessors are also always mature.
3455   if (!x->inlinee()->is_accessor()) {
3456     CodeEmitInfo* info = state_for(x, x->state(), true);
3457     // Notify the runtime very infrequently only to take care of counter overflows
3458     int freq_log = Tier23InlineeNotifyFreqLog;
3459     double scale;
3460     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3461       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3462     }
3463     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3464   }
3465 }
3466 
3467 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3468   if (compilation()->count_backedges()) {
3469     __ cmp(cond, left, right);
3470     LIR_Opr step = new_register(T_INT);
3471     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3472     LIR_Opr zero = LIR_OprFact::intConst(0);
3473     __ cmove(cond,
3474         (left_bci < bci) ? plus_one : zero,
3475         (right_bci < bci) ? plus_one : zero,
3476         step, left->type());
3477     increment_backedge_counter(info, step, bci);
3478   }
3479 }
3480 
3481 
3482 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3483   int freq_log = 0;
3484   int level = compilation()->env()->comp_level();
3485   if (level == CompLevel_limited_profile) {
3486     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3487   } else if (level == CompLevel_full_profile) {
3488     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3489   } else {
3490     ShouldNotReachHere();
3491   }
3492   // Increment the appropriate invocation/backedge counter and notify the runtime.
3493   double scale;
3494   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3495     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3496   }
3497   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3498 }
3499 
3500 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3501   ciMethod* method = info->scope()->method();
3502   MethodCounters* mc_adr = method->ensure_method_counters();
3503   if (mc_adr != NULL) {
3504     LIR_Opr mc = new_pointer_register();
3505     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3506     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3507     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3508     LIR_Opr result = new_register(T_INT);
3509     __ load(counter, result);
3510     __ sub(result, LIR_OprFact::intConst(1), result);
3511     __ store(result, counter);
3512     // DeoptimizeStub will reexecute from the current state in code info.
3513     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3514                                          Deoptimization::Action_make_not_entrant);
3515     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3516     __ branch(lir_cond_lessEqual, T_INT, deopt);
3517   }
3518 }
3519 
3520 
3521 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3522                                                 ciMethod *method, LIR_Opr step, int frequency,
3523                                                 int bci, bool backedge, bool notify) {
3524   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3525   int level = _compilation->env()->comp_level();
3526   assert(level > CompLevel_simple, "Shouldn't be here");
3527 
3528   int offset = -1;
3529   LIR_Opr counter_holder = NULL;
3530   if (level == CompLevel_limited_profile) {
3531     MethodCounters* counters_adr = method->ensure_method_counters();
3532     if (counters_adr == NULL) {
3533       bailout("method counters allocation failed");
3534       return;
3535     }
3536     counter_holder = new_pointer_register();
3537     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3538     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3539                                  MethodCounters::invocation_counter_offset());
3540   } else if (level == CompLevel_full_profile) {
3541     counter_holder = new_register(T_METADATA);
3542     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3543                                  MethodData::invocation_counter_offset());
3544     ciMethodData* md = method->method_data_or_null();
3545     assert(md != NULL, "Sanity");
3546     __ metadata2reg(md->constant_encoding(), counter_holder);
3547   } else {
3548     ShouldNotReachHere();
3549   }
3550   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3551   LIR_Opr result = new_register(T_INT);
3552   __ load(counter, result);
3553   __ add(result, step, result);
3554   __ store(result, counter);
3555   if (notify && (!backedge || UseOnStackReplacement)) {
3556     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3557     // The bci for info can point to cmp for if's we want the if bci
3558     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3559     int freq = frequency << InvocationCounter::count_shift;
3560     if (freq == 0) {
3561       if (!step->is_constant()) {
3562         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3563         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3564       } else {
3565         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3566       }
3567     } else {
3568       LIR_Opr mask = load_immediate(freq, T_INT);
3569       if (!step->is_constant()) {
3570         // If step is 0, make sure the overflow check below always fails
3571         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3572         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3573       }
3574       __ logical_and(result, mask, result);
3575       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3576       __ branch(lir_cond_equal, T_INT, overflow);
3577     }
3578     __ branch_destination(overflow->continuation());
3579   }
3580 }
3581 
3582 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3583   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3584   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3585 
3586   if (x->pass_thread()) {
3587     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3588     args->append(getThreadPointer());
3589   }
3590 
3591   for (int i = 0; i < x->number_of_arguments(); i++) {
3592     Value a = x->argument_at(i);
3593     LIRItem* item = new LIRItem(a, this);
3594     item->load_item();
3595     args->append(item->result());
3596     signature->append(as_BasicType(a->type()));
3597   }
3598 
3599   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3600   if (x->type() == voidType) {
3601     set_no_result(x);
3602   } else {
3603     __ move(result, rlock_result(x));
3604   }
3605 }
3606 
3607 #ifdef ASSERT
3608 void LIRGenerator::do_Assert(Assert *x) {
3609   ValueTag tag = x->x()->type()->tag();
3610   If::Condition cond = x->cond();
3611 
3612   LIRItem xitem(x->x(), this);
3613   LIRItem yitem(x->y(), this);
3614   LIRItem* xin = &xitem;
3615   LIRItem* yin = &yitem;
3616 
3617   assert(tag == intTag, "Only integer assertions are valid!");
3618 
3619   xin->load_item();
3620   yin->dont_load_item();
3621 
3622   set_no_result(x);
3623 
3624   LIR_Opr left = xin->result();
3625   LIR_Opr right = yin->result();
3626 
3627   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3628 }
3629 #endif
3630 
3631 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3632 
3633 
3634   Instruction *a = x->x();
3635   Instruction *b = x->y();
3636   if (!a || StressRangeCheckElimination) {
3637     assert(!b || StressRangeCheckElimination, "B must also be null");
3638 
3639     CodeEmitInfo *info = state_for(x, x->state());
3640     CodeStub* stub = new PredicateFailedStub(info);
3641 
3642     __ jump(stub);
3643   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3644     int a_int = a->type()->as_IntConstant()->value();
3645     int b_int = b->type()->as_IntConstant()->value();
3646 
3647     bool ok = false;
3648 
3649     switch(x->cond()) {
3650       case Instruction::eql: ok = (a_int == b_int); break;
3651       case Instruction::neq: ok = (a_int != b_int); break;
3652       case Instruction::lss: ok = (a_int < b_int); break;
3653       case Instruction::leq: ok = (a_int <= b_int); break;
3654       case Instruction::gtr: ok = (a_int > b_int); break;
3655       case Instruction::geq: ok = (a_int >= b_int); break;
3656       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3657       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3658       default: ShouldNotReachHere();
3659     }
3660 
3661     if (ok) {
3662 
3663       CodeEmitInfo *info = state_for(x, x->state());
3664       CodeStub* stub = new PredicateFailedStub(info);
3665 
3666       __ jump(stub);
3667     }
3668   } else {
3669 
3670     ValueTag tag = x->x()->type()->tag();
3671     If::Condition cond = x->cond();
3672     LIRItem xitem(x->x(), this);
3673     LIRItem yitem(x->y(), this);
3674     LIRItem* xin = &xitem;
3675     LIRItem* yin = &yitem;
3676 
3677     assert(tag == intTag, "Only integer deoptimizations are valid!");
3678 
3679     xin->load_item();
3680     yin->dont_load_item();
3681     set_no_result(x);
3682 
3683     LIR_Opr left = xin->result();
3684     LIR_Opr right = yin->result();
3685 
3686     CodeEmitInfo *info = state_for(x, x->state());
3687     CodeStub* stub = new PredicateFailedStub(info);
3688 
3689     __ cmp(lir_cond(cond), left, right);
3690     __ branch(lir_cond(cond), right->type(), stub);
3691   }
3692 }
3693 
3694 
3695 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3696   LIRItemList args(1);
3697   LIRItem value(arg1, this);
3698   args.append(&value);
3699   BasicTypeList signature;
3700   signature.append(as_BasicType(arg1->type()));
3701 
3702   return call_runtime(&signature, &args, entry, result_type, info);
3703 }
3704 
3705 
3706 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3707   LIRItemList args(2);
3708   LIRItem value1(arg1, this);
3709   LIRItem value2(arg2, this);
3710   args.append(&value1);
3711   args.append(&value2);
3712   BasicTypeList signature;
3713   signature.append(as_BasicType(arg1->type()));
3714   signature.append(as_BasicType(arg2->type()));
3715 
3716   return call_runtime(&signature, &args, entry, result_type, info);
3717 }
3718 
3719 
3720 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3721                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3722   // get a result register
3723   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3724   LIR_Opr result = LIR_OprFact::illegalOpr;
3725   if (result_type->tag() != voidTag) {
3726     result = new_register(result_type);
3727     phys_reg = result_register_for(result_type);
3728   }
3729 
3730   // move the arguments into the correct location
3731   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3732   assert(cc->length() == args->length(), "argument mismatch");
3733   for (int i = 0; i < args->length(); i++) {
3734     LIR_Opr arg = args->at(i);
3735     LIR_Opr loc = cc->at(i);
3736     if (loc->is_register()) {
3737       __ move(arg, loc);
3738     } else {
3739       LIR_Address* addr = loc->as_address_ptr();
3740 //           if (!can_store_as_constant(arg)) {
3741 //             LIR_Opr tmp = new_register(arg->type());
3742 //             __ move(arg, tmp);
3743 //             arg = tmp;
3744 //           }
3745       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3746         __ unaligned_move(arg, addr);
3747       } else {
3748         __ move(arg, addr);
3749       }
3750     }
3751   }
3752 
3753   if (info) {
3754     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3755   } else {
3756     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3757   }
3758   if (result->is_valid()) {
3759     __ move(phys_reg, result);
3760   }
3761   return result;
3762 }
3763 
3764 
3765 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3766                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3767   // get a result register
3768   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3769   LIR_Opr result = LIR_OprFact::illegalOpr;
3770   if (result_type->tag() != voidTag) {
3771     result = new_register(result_type);
3772     phys_reg = result_register_for(result_type);
3773   }
3774 
3775   // move the arguments into the correct location
3776   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3777 
3778   assert(cc->length() == args->length(), "argument mismatch");
3779   for (int i = 0; i < args->length(); i++) {
3780     LIRItem* arg = args->at(i);
3781     LIR_Opr loc = cc->at(i);
3782     if (loc->is_register()) {
3783       arg->load_item_force(loc);
3784     } else {
3785       LIR_Address* addr = loc->as_address_ptr();
3786       arg->load_for_store(addr->type());
3787       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3788         __ unaligned_move(arg->result(), addr);
3789       } else {
3790         __ move(arg->result(), addr);
3791       }
3792     }
3793   }
3794 
3795   if (info) {
3796     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3797   } else {
3798     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3799   }
3800   if (result->is_valid()) {
3801     __ move(phys_reg, result);
3802   }
3803   return result;
3804 }
3805 
3806 void LIRGenerator::do_MemBar(MemBar* x) {
3807   LIR_Code code = x->code();
3808   switch(code) {
3809   case lir_membar_acquire   : __ membar_acquire(); break;
3810   case lir_membar_release   : __ membar_release(); break;
3811   case lir_membar           : __ membar(); break;
3812   case lir_membar_loadload  : __ membar_loadload(); break;
3813   case lir_membar_storestore: __ membar_storestore(); break;
3814   case lir_membar_loadstore : __ membar_loadstore(); break;
3815   case lir_membar_storeload : __ membar_storeload(); break;
3816   default                   : ShouldNotReachHere(); break;
3817   }
3818 }
3819 
3820 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3821   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3822   if (TwoOperandLIRForm) {
3823     __ move(value, value_fixed);
3824     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3825   } else {
3826     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3827   }
3828   LIR_Opr klass = new_register(T_METADATA);
3829   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3830   null_check_info = NULL;
3831   LIR_Opr layout = new_register(T_INT);
3832   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3833   int diffbit = Klass::layout_helper_boolean_diffbit();
3834   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3835   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3836   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3837   value = value_fixed;
3838   return value;
3839 }
3840 
3841 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3842   if (x->check_boolean()) {
3843     value = mask_boolean(array, value, null_check_info);
3844   }
3845   return value;
3846 }
--- EOF ---