1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_C1_C1_LIR_HPP
  26 #define SHARE_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 #include "utilities/globalDefinitions.hpp"
  32 
  33 class BlockBegin;
  34 class BlockList;
  35 class LIR_Assembler;
  36 class CodeEmitInfo;
  37 class CodeStub;
  38 class CodeStubList;
  39 class ArrayCopyStub;
  40 class LIR_Op;
  41 class ciType;
  42 class ValueType;
  43 class LIR_OpVisitState;
  44 class FpuStackSim;
  45 
  46 //---------------------------------------------------------------------
  47 //                 LIR Operands
  48 //  LIR_OprDesc
  49 //    LIR_OprPtr
  50 //      LIR_Const
  51 //      LIR_Address
  52 //---------------------------------------------------------------------
  53 class LIR_OprDesc;
  54 class LIR_OprPtr;
  55 class LIR_Const;
  56 class LIR_Address;
  57 class LIR_OprVisitor;
  58 
  59 
  60 typedef LIR_OprDesc* LIR_Opr;
  61 typedef int          RegNr;
  62 
  63 typedef GrowableArray<LIR_Opr> LIR_OprList;
  64 typedef GrowableArray<LIR_Op*> LIR_OpArray;
  65 typedef GrowableArray<LIR_Op*> LIR_OpList;
  66 
  67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  68 class LIR_OprPtr: public CompilationResourceObj {
  69  public:
  70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  72 
  73   virtual LIR_Const*  as_constant()              { return NULL; }
  74   virtual LIR_Address* as_address()              { return NULL; }
  75   virtual BasicType type() const                 = 0;
  76   virtual void print_value_on(outputStream* out) const = 0;
  77 };
  78 
  79 
  80 
  81 // LIR constants
  82 class LIR_Const: public LIR_OprPtr {
  83  private:
  84   JavaValue _value;
  85 
  86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  88   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  89 
  90  public:
  91   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  92   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  93   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  94   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  95   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  96   LIR_Const(void* p) {
  97 #ifdef _LP64
  98     assert(sizeof(jlong) >= sizeof(p), "too small");;
  99     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 100 #else
 101     assert(sizeof(jint) >= sizeof(p), "too small");;
 102     _value.set_type(T_INT);     _value.set_jint((jint)p);
 103 #endif
 104   }
 105   LIR_Const(Metadata* m) {
 106     _value.set_type(T_METADATA);
 107 #ifdef _LP64
 108     _value.set_jlong((jlong)m);
 109 #else
 110     _value.set_jint((jint)m);
 111 #endif // _LP64
 112   }
 113 
 114   virtual BasicType type()       const { return _value.get_type(); }
 115   virtual LIR_Const* as_constant()     { return this; }
 116 
 117   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 118   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 119   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 120   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 121   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 122   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 123   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 124 
 125 #ifdef _LP64
 126   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 127   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 128 #else
 129   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 130   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 131 #endif
 132 
 133 
 134   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 135   jint      as_jint_lo_bits() const    {
 136     if (type() == T_DOUBLE) {
 137       return low(jlong_cast(_value.get_jdouble()));
 138     } else {
 139       return as_jint_lo();
 140     }
 141   }
 142   jint      as_jint_hi_bits() const    {
 143     if (type() == T_DOUBLE) {
 144       return high(jlong_cast(_value.get_jdouble()));
 145     } else {
 146       return as_jint_hi();
 147     }
 148   }
 149   jlong      as_jlong_bits() const    {
 150     if (type() == T_DOUBLE) {
 151       return jlong_cast(_value.get_jdouble());
 152     } else {
 153       return as_jlong();
 154     }
 155   }
 156 
 157   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 158 
 159 
 160   bool is_zero_float() {
 161     jfloat f = as_jfloat();
 162     jfloat ok = 0.0f;
 163     return jint_cast(f) == jint_cast(ok);
 164   }
 165 
 166   bool is_one_float() {
 167     jfloat f = as_jfloat();
 168     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 169   }
 170 
 171   bool is_zero_double() {
 172     jdouble d = as_jdouble();
 173     jdouble ok = 0.0;
 174     return jlong_cast(d) == jlong_cast(ok);
 175   }
 176 
 177   bool is_one_double() {
 178     jdouble d = as_jdouble();
 179     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 180   }
 181 };
 182 
 183 
 184 //---------------------LIR Operand descriptor------------------------------------
 185 //
 186 // The class LIR_OprDesc represents a LIR instruction operand;
 187 // it can be a register (ALU/FPU), stack location or a constant;
 188 // Constants and addresses are represented as resource area allocated
 189 // structures (see above).
 190 // Registers and stack locations are inlined into the this pointer
 191 // (see value function).
 192 
 193 class LIR_OprDesc: public CompilationResourceObj {
 194  public:
 195   // value structure:
 196   //     data       opr-type opr-kind
 197   // +--------------+-------+-------+
 198   // [max...........|7 6 5 4|3 2 1 0]
 199   //                               ^
 200   //                         is_pointer bit
 201   //
 202   // lowest bit cleared, means it is a structure pointer
 203   // we need  4 bits to represent types
 204 
 205  private:
 206   friend class LIR_OprFact;
 207 
 208   // Conversion
 209   intptr_t value() const                         { return (intptr_t) this; }
 210 
 211   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 212     return (value() & mask) == masked_value;
 213   }
 214 
 215   enum OprKind {
 216       pointer_value      = 0
 217     , stack_value        = 1
 218     , cpu_register       = 3
 219     , fpu_register       = 5
 220     , illegal_value      = 7
 221   };
 222 
 223   enum OprBits {
 224       pointer_bits   = 1
 225     , kind_bits      = 3
 226     , type_bits      = 4
 227     , size_bits      = 2
 228     , destroys_bits  = 1
 229     , virtual_bits   = 1
 230     , is_xmm_bits    = 1
 231     , last_use_bits  = 1
 232     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 233     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 234                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 235     , data_bits      = BitsPerInt - non_data_bits
 236     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 237   };
 238 
 239   enum OprShift {
 240       kind_shift     = 0
 241     , type_shift     = kind_shift     + kind_bits
 242     , size_shift     = type_shift     + type_bits
 243     , destroys_shift = size_shift     + size_bits
 244     , last_use_shift = destroys_shift + destroys_bits
 245     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 246     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 247     , is_xmm_shift   = virtual_shift + virtual_bits
 248     , data_shift     = is_xmm_shift + is_xmm_bits
 249     , reg1_shift = data_shift
 250     , reg2_shift = data_shift + reg_bits
 251 
 252   };
 253 
 254   enum OprSize {
 255       single_size = 0 << size_shift
 256     , double_size = 1 << size_shift
 257   };
 258 
 259   enum OprMask {
 260       kind_mask      = right_n_bits(kind_bits)
 261     , type_mask      = right_n_bits(type_bits) << type_shift
 262     , size_mask      = right_n_bits(size_bits) << size_shift
 263     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 264     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 265     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 266     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 267     , pointer_mask   = right_n_bits(pointer_bits)
 268     , lower_reg_mask = right_n_bits(reg_bits)
 269     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 270   };
 271 
 272   uintptr_t data() const                         { return value() >> data_shift; }
 273   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 274   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 275   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 276   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 277 
 278   static char type_char(BasicType t);
 279 
 280  public:
 281   enum {
 282     vreg_base = ConcreteRegisterImpl::number_of_registers,
 283     vreg_max = (1 << data_bits) - 1
 284   };
 285 
 286   static inline LIR_Opr illegalOpr();
 287 
 288   enum OprType {
 289       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 290     , int_type      = 1 << type_shift
 291     , long_type     = 2 << type_shift
 292     , object_type   = 3 << type_shift
 293     , address_type  = 4 << type_shift
 294     , float_type    = 5 << type_shift
 295     , double_type   = 6 << type_shift
 296     , metadata_type = 7 << type_shift
 297   };
 298   friend OprType as_OprType(BasicType t);
 299   friend BasicType as_BasicType(OprType t);
 300 
 301   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 302   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 303 
 304   static OprSize size_for(BasicType t) {
 305     switch (t) {
 306       case T_LONG:
 307       case T_DOUBLE:
 308         return double_size;
 309         break;
 310 
 311       case T_FLOAT:
 312       case T_BOOLEAN:
 313       case T_CHAR:
 314       case T_BYTE:
 315       case T_SHORT:
 316       case T_INT:
 317       case T_ADDRESS:
 318       case T_OBJECT:
 319       case T_VALUETYPE:
 320       case T_ARRAY:
 321       case T_METADATA:
 322         return single_size;
 323         break;
 324 
 325       default:
 326         ShouldNotReachHere();
 327         return single_size;
 328       }
 329   }
 330 
 331 
 332   void validate_type() const PRODUCT_RETURN;
 333 
 334   BasicType type() const {
 335     if (is_pointer()) {
 336       return pointer()->type();
 337     }
 338     return as_BasicType(type_field());
 339   }
 340 
 341 
 342   ValueType* value_type() const                  { return as_ValueType(type()); }
 343 
 344   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 345 
 346   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 347   // checks whether types are same
 348   bool is_same_type(LIR_Opr opr) const     {
 349     assert(type_field() != unknown_type &&
 350            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 351     return type_field() == opr->type_field();
 352   }
 353   bool is_same_register(LIR_Opr opr) {
 354     return (is_register() && opr->is_register() &&
 355             kind_field() == opr->kind_field() &&
 356             (value() & no_type_mask) == (opr->value() & no_type_mask));
 357   }
 358 
 359   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 360   bool is_illegal() const      { return kind_field() == illegal_value; }
 361   bool is_valid() const        { return kind_field() != illegal_value; }
 362 
 363   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 364   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 365 
 366   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 367   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 368 
 369   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 370   bool is_oop() const;
 371 
 372   // semantic for fpu- and xmm-registers:
 373   // * is_float and is_double return true for xmm_registers
 374   //   (so is_single_fpu and is_single_xmm are true)
 375   // * So you must always check for is_???_xmm prior to is_???_fpu to
 376   //   distinguish between fpu- and xmm-registers
 377 
 378   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 379   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 380   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 381 
 382   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 383   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 384   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 385   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 386   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 387 
 388   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 389   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 390   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 391   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 392   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 393 
 394   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 395   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 396   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 397 
 398   // fast accessor functions for special bits that do not work for pointers
 399   // (in this functions, the check for is_pointer() is omitted)
 400   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 401   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 402   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 403   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 404   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 405 
 406   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 407   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 408   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 409   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 410 
 411 
 412   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 413   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 414   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 415   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 416   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 417   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 418   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 419   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 420   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 421   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 422   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 423   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 424 
 425   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 426   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 427   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 428 
 429   Register as_register()    const;
 430   Register as_register_lo() const;
 431   Register as_register_hi() const;
 432 
 433   Register as_pointer_register() {
 434 #ifdef _LP64
 435     if (is_double_cpu()) {
 436       assert(as_register_lo() == as_register_hi(), "should be a single register");
 437       return as_register_lo();
 438     }
 439 #endif
 440     return as_register();
 441   }
 442 
 443   FloatRegister as_float_reg   () const;
 444   FloatRegister as_double_reg  () const;
 445 #ifdef X86
 446   XMMRegister as_xmm_float_reg () const;
 447   XMMRegister as_xmm_double_reg() const;
 448   // for compatibility with RInfo
 449   int fpu() const { return lo_reg_half(); }
 450 #endif
 451 
 452   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 453   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 454   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 455   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 456   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 457 
 458   void print() const PRODUCT_RETURN;
 459   void print(outputStream* out) const PRODUCT_RETURN;
 460 };
 461 
 462 
 463 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 464   switch (type) {
 465   case T_INT:      return LIR_OprDesc::int_type;
 466   case T_LONG:     return LIR_OprDesc::long_type;
 467   case T_FLOAT:    return LIR_OprDesc::float_type;
 468   case T_DOUBLE:   return LIR_OprDesc::double_type;
 469   case T_OBJECT:
 470   case T_VALUETYPE:
 471   case T_ARRAY:    return LIR_OprDesc::object_type;
 472   case T_ADDRESS:  return LIR_OprDesc::address_type;
 473   case T_METADATA: return LIR_OprDesc::metadata_type;
 474   case T_ILLEGAL:  // fall through
 475   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 476   }
 477 }
 478 
 479 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 480   switch (t) {
 481   case LIR_OprDesc::int_type:     return T_INT;
 482   case LIR_OprDesc::long_type:    return T_LONG;
 483   case LIR_OprDesc::float_type:   return T_FLOAT;
 484   case LIR_OprDesc::double_type:  return T_DOUBLE;
 485   case LIR_OprDesc::object_type:  return T_OBJECT;
 486   case LIR_OprDesc::address_type: return T_ADDRESS;
 487   case LIR_OprDesc::metadata_type:return T_METADATA;
 488   case LIR_OprDesc::unknown_type: // fall through
 489   default: ShouldNotReachHere();  return T_ILLEGAL;
 490   }
 491 }
 492 
 493 
 494 // LIR_Address
 495 class LIR_Address: public LIR_OprPtr {
 496  friend class LIR_OpVisitState;
 497 
 498  public:
 499   // NOTE: currently these must be the log2 of the scale factor (and
 500   // must also be equivalent to the ScaleFactor enum in
 501   // assembler_i486.hpp)
 502   enum Scale {
 503     times_1  =  0,
 504     times_2  =  1,
 505     times_4  =  2,
 506     times_8  =  3
 507   };
 508 
 509  private:
 510   LIR_Opr   _base;
 511   LIR_Opr   _index;
 512   Scale     _scale;
 513   intx      _disp;
 514   BasicType _type;
 515 
 516  public:
 517   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 518        _base(base)
 519      , _index(index)
 520      , _scale(times_1)
 521      , _disp(0)
 522      , _type(type) { verify(); }
 523 
 524   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 525        _base(base)
 526      , _index(LIR_OprDesc::illegalOpr())
 527      , _scale(times_1)
 528      , _disp(disp)
 529      , _type(type) { verify(); }
 530 
 531   LIR_Address(LIR_Opr base, BasicType type):
 532        _base(base)
 533      , _index(LIR_OprDesc::illegalOpr())
 534      , _scale(times_1)
 535      , _disp(0)
 536      , _type(type) { verify(); }
 537 
 538   LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
 539        _base(base)
 540      , _index(index)
 541      , _scale(times_1)
 542      , _disp(disp)
 543      , _type(type) { verify(); }
 544 
 545   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 546        _base(base)
 547      , _index(index)
 548      , _scale(scale)
 549      , _disp(disp)
 550      , _type(type) { verify(); }
 551 
 552   LIR_Opr base()  const                          { return _base;  }
 553   LIR_Opr index() const                          { return _index; }
 554   Scale   scale() const                          { return _scale; }
 555   intx    disp()  const                          { return _disp;  }
 556 
 557   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 558 
 559   virtual LIR_Address* as_address()              { return this;   }
 560   virtual BasicType type() const                 { return _type; }
 561   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 562 
 563   void verify() const PRODUCT_RETURN;
 564 
 565   static Scale scale(BasicType type);
 566 };
 567 
 568 
 569 // operand factory
 570 class LIR_OprFact: public AllStatic {
 571  public:
 572 
 573   static LIR_Opr illegalOpr;
 574 
 575   static LIR_Opr single_cpu(int reg) {
 576     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 577                                LIR_OprDesc::int_type             |
 578                                LIR_OprDesc::cpu_register         |
 579                                LIR_OprDesc::single_size);
 580   }
 581   static LIR_Opr single_cpu_oop(int reg) {
 582     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 583                                LIR_OprDesc::object_type          |
 584                                LIR_OprDesc::cpu_register         |
 585                                LIR_OprDesc::single_size);
 586   }
 587   static LIR_Opr single_cpu_address(int reg) {
 588     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 589                                LIR_OprDesc::address_type         |
 590                                LIR_OprDesc::cpu_register         |
 591                                LIR_OprDesc::single_size);
 592   }
 593   static LIR_Opr single_cpu_metadata(int reg) {
 594     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 595                                LIR_OprDesc::metadata_type        |
 596                                LIR_OprDesc::cpu_register         |
 597                                LIR_OprDesc::single_size);
 598   }
 599   static LIR_Opr double_cpu(int reg1, int reg2) {
 600     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 601     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 602                                (reg2 << LIR_OprDesc::reg2_shift) |
 603                                LIR_OprDesc::long_type            |
 604                                LIR_OprDesc::cpu_register         |
 605                                LIR_OprDesc::double_size);
 606   }
 607 
 608   static LIR_Opr single_fpu(int reg) {
 609     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 610                                LIR_OprDesc::float_type           |
 611                                LIR_OprDesc::fpu_register         |
 612                                LIR_OprDesc::single_size);
 613   }
 614 
 615   // Platform dependant.
 616   static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
 617 
 618 #ifdef ARM32
 619   static LIR_Opr single_softfp(int reg) {
 620     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 621                                LIR_OprDesc::float_type           |
 622                                LIR_OprDesc::cpu_register         |
 623                                LIR_OprDesc::single_size);
 624   }
 625   static LIR_Opr double_softfp(int reg1, int reg2) {
 626     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 627                                (reg2 << LIR_OprDesc::reg2_shift) |
 628                                LIR_OprDesc::double_type          |
 629                                LIR_OprDesc::cpu_register         |
 630                                LIR_OprDesc::double_size);
 631   }
 632 #endif // ARM32
 633 
 634 #if defined(X86)
 635   static LIR_Opr single_xmm(int reg) {
 636     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 637                                LIR_OprDesc::float_type          |
 638                                LIR_OprDesc::fpu_register        |
 639                                LIR_OprDesc::single_size         |
 640                                LIR_OprDesc::is_xmm_mask);
 641   }
 642   static LIR_Opr double_xmm(int reg) {
 643     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 644                                (reg << LIR_OprDesc::reg2_shift) |
 645                                LIR_OprDesc::double_type         |
 646                                LIR_OprDesc::fpu_register        |
 647                                LIR_OprDesc::double_size         |
 648                                LIR_OprDesc::is_xmm_mask);
 649   }
 650 #endif // X86
 651 
 652   static LIR_Opr virtual_register(int index, BasicType type) {
 653     LIR_Opr res;
 654     switch (type) {
 655       case T_OBJECT: // fall through
 656       case T_VALUETYPE: // fall through
 657       case T_ARRAY:
 658         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 659                                             LIR_OprDesc::object_type  |
 660                                             LIR_OprDesc::cpu_register |
 661                                             LIR_OprDesc::single_size  |
 662                                             LIR_OprDesc::virtual_mask);
 663         break;
 664 
 665       case T_METADATA:
 666         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 667                                             LIR_OprDesc::metadata_type|
 668                                             LIR_OprDesc::cpu_register |
 669                                             LIR_OprDesc::single_size  |
 670                                             LIR_OprDesc::virtual_mask);
 671         break;
 672 
 673       case T_INT:
 674         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 675                                   LIR_OprDesc::int_type              |
 676                                   LIR_OprDesc::cpu_register          |
 677                                   LIR_OprDesc::single_size           |
 678                                   LIR_OprDesc::virtual_mask);
 679         break;
 680 
 681       case T_ADDRESS:
 682         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 683                                   LIR_OprDesc::address_type          |
 684                                   LIR_OprDesc::cpu_register          |
 685                                   LIR_OprDesc::single_size           |
 686                                   LIR_OprDesc::virtual_mask);
 687         break;
 688 
 689       case T_LONG:
 690         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 691                                   LIR_OprDesc::long_type             |
 692                                   LIR_OprDesc::cpu_register          |
 693                                   LIR_OprDesc::double_size           |
 694                                   LIR_OprDesc::virtual_mask);
 695         break;
 696 
 697 #ifdef __SOFTFP__
 698       case T_FLOAT:
 699         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 700                                   LIR_OprDesc::float_type  |
 701                                   LIR_OprDesc::cpu_register |
 702                                   LIR_OprDesc::single_size |
 703                                   LIR_OprDesc::virtual_mask);
 704         break;
 705       case T_DOUBLE:
 706         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 707                                   LIR_OprDesc::double_type |
 708                                   LIR_OprDesc::cpu_register |
 709                                   LIR_OprDesc::double_size |
 710                                   LIR_OprDesc::virtual_mask);
 711         break;
 712 #else // __SOFTFP__
 713       case T_FLOAT:
 714         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 715                                   LIR_OprDesc::float_type           |
 716                                   LIR_OprDesc::fpu_register         |
 717                                   LIR_OprDesc::single_size          |
 718                                   LIR_OprDesc::virtual_mask);
 719         break;
 720 
 721       case
 722         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 723                                             LIR_OprDesc::double_type           |
 724                                             LIR_OprDesc::fpu_register          |
 725                                             LIR_OprDesc::double_size           |
 726                                             LIR_OprDesc::virtual_mask);
 727         break;
 728 #endif // __SOFTFP__
 729       default:       ShouldNotReachHere(); res = illegalOpr;
 730     }
 731 
 732 #ifdef ASSERT
 733     res->validate_type();
 734     assert(res->vreg_number() == index, "conversion check");
 735     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 736     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 737 
 738     // old-style calculation; check if old and new method are equal
 739     LIR_OprDesc::OprType t = as_OprType(type);
 740 #ifdef __SOFTFP__
 741     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 742                                t |
 743                                LIR_OprDesc::cpu_register |
 744                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 745 #else // __SOFTFP__
 746     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 747                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 748                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 749     assert(res == old_res, "old and new method not equal");
 750 #endif // __SOFTFP__
 751 #endif // ASSERT
 752 
 753     return res;
 754   }
 755 
 756   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 757   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 758   // index 2.
 759   static LIR_Opr stack(int index, BasicType type) {
 760     LIR_Opr res;
 761     switch (type) {
 762       case T_VALUETYPE: // fall through
 763       case T_OBJECT: // fall through
 764       case T_ARRAY:
 765         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 766                                   LIR_OprDesc::object_type           |
 767                                   LIR_OprDesc::stack_value           |
 768                                   LIR_OprDesc::single_size);
 769         break;
 770 
 771       case T_METADATA:
 772         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 773                                   LIR_OprDesc::metadata_type         |
 774                                   LIR_OprDesc::stack_value           |
 775                                   LIR_OprDesc::single_size);
 776         break;
 777       case T_INT:
 778         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 779                                   LIR_OprDesc::int_type              |
 780                                   LIR_OprDesc::stack_value           |
 781                                   LIR_OprDesc::single_size);
 782         break;
 783 
 784       case T_ADDRESS:
 785         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 786                                   LIR_OprDesc::address_type          |
 787                                   LIR_OprDesc::stack_value           |
 788                                   LIR_OprDesc::single_size);
 789         break;
 790 
 791       case T_LONG:
 792         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 793                                   LIR_OprDesc::long_type             |
 794                                   LIR_OprDesc::stack_value           |
 795                                   LIR_OprDesc::double_size);
 796         break;
 797 
 798       case T_FLOAT:
 799         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 800                                   LIR_OprDesc::float_type            |
 801                                   LIR_OprDesc::stack_value           |
 802                                   LIR_OprDesc::single_size);
 803         break;
 804       case T_DOUBLE:
 805         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 806                                   LIR_OprDesc::double_type           |
 807                                   LIR_OprDesc::stack_value           |
 808                                   LIR_OprDesc::double_size);
 809         break;
 810 
 811       default:       ShouldNotReachHere(); res = illegalOpr;
 812     }
 813 
 814 #ifdef ASSERT
 815     assert(index >= 0, "index must be positive");
 816     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 817 
 818     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 819                                           LIR_OprDesc::stack_value           |
 820                                           as_OprType(type)                   |
 821                                           LIR_OprDesc::size_for(type));
 822     assert(res == old_res, "old and new method not equal");
 823 #endif
 824 
 825     return res;
 826   }
 827 
 828   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 829   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 830   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 831   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 832   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 833   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 834   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 835   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 836   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 837   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 838   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 839 
 840   static LIR_Opr value_type(ValueType* type);
 841   static LIR_Opr dummy_value_type(ValueType* type);
 842 };
 843 
 844 
 845 //-------------------------------------------------------------------------------
 846 //                   LIR Instructions
 847 //-------------------------------------------------------------------------------
 848 //
 849 // Note:
 850 //  - every instruction has a result operand
 851 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 852 //  - every instruction has a LIR_OpCode operand
 853 //  - LIR_OpN, means an instruction that has N input operands
 854 //
 855 // class hierarchy:
 856 //
 857 class  LIR_Op;
 858 class    LIR_Op0;
 859 class      LIR_OpLabel;
 860 class    LIR_Op1;
 861 class      LIR_OpBranch;
 862 class      LIR_OpConvert;
 863 class      LIR_OpAllocObj;
 864 class      LIR_OpRoundFP;
 865 class    LIR_Op2;
 866 class    LIR_OpDelay;
 867 class    LIR_Op3;
 868 class      LIR_OpAllocArray;
 869 class    LIR_OpCall;
 870 class      LIR_OpJavaCall;
 871 class      LIR_OpRTCall;
 872 class    LIR_OpArrayCopy;
 873 class    LIR_OpUpdateCRC32;
 874 class    LIR_OpLock;
 875 class    LIR_OpTypeCheck;
 876 class    LIR_OpFlattenedStoreCheck;
 877 class    LIR_OpCompareAndSwap;
 878 class    LIR_OpProfileCall;
 879 class    LIR_OpProfileType;
 880 #ifdef ASSERT
 881 class    LIR_OpAssert;
 882 #endif
 883 
 884 // LIR operation codes
 885 enum LIR_Code {
 886     lir_none
 887   , begin_op0
 888       , lir_word_align
 889       , lir_label
 890       , lir_nop
 891       , lir_backwardbranch_target
 892       , lir_std_entry
 893       , lir_osr_entry
 894       , lir_build_frame
 895       , lir_fpop_raw
 896       , lir_24bit_FPU
 897       , lir_reset_FPU
 898       , lir_breakpoint
 899       , lir_rtcall
 900       , lir_membar
 901       , lir_membar_acquire
 902       , lir_membar_release
 903       , lir_membar_loadload
 904       , lir_membar_storestore
 905       , lir_membar_loadstore
 906       , lir_membar_storeload
 907       , lir_get_thread
 908       , lir_on_spin_wait
 909   , end_op0
 910   , begin_op1
 911       , lir_fxch
 912       , lir_fld
 913       , lir_ffree
 914       , lir_push
 915       , lir_pop
 916       , lir_null_check
 917       , lir_return
 918       , lir_leal
 919       , lir_branch
 920       , lir_cond_float_branch
 921       , lir_move
 922       , lir_convert
 923       , lir_alloc_object
 924       , lir_monaddr
 925       , lir_roundfp
 926       , lir_safepoint
 927       , lir_pack64
 928       , lir_unpack64
 929       , lir_unwind
 930   , end_op1
 931   , begin_op2
 932       , lir_cmp
 933       , lir_cmp_l2i
 934       , lir_ucmp_fd2i
 935       , lir_cmp_fd2i
 936       , lir_cmove
 937       , lir_add
 938       , lir_sub
 939       , lir_mul
 940       , lir_mul_strictfp
 941       , lir_div
 942       , lir_div_strictfp
 943       , lir_rem
 944       , lir_sqrt
 945       , lir_abs
 946       , lir_neg
 947       , lir_tan
 948       , lir_log10
 949       , lir_logic_and
 950       , lir_logic_or
 951       , lir_logic_xor
 952       , lir_shl
 953       , lir_shr
 954       , lir_ushr
 955       , lir_alloc_array
 956       , lir_throw
 957       , lir_xadd
 958       , lir_xchg
 959   , end_op2
 960   , begin_op3
 961       , lir_idiv
 962       , lir_irem
 963       , lir_fmad
 964       , lir_fmaf
 965   , end_op3
 966   , begin_opJavaCall
 967       , lir_static_call
 968       , lir_optvirtual_call
 969       , lir_icvirtual_call
 970       , lir_virtual_call
 971       , lir_dynamic_call
 972   , end_opJavaCall
 973   , begin_opArrayCopy
 974       , lir_arraycopy
 975   , end_opArrayCopy
 976   , begin_opUpdateCRC32
 977       , lir_updatecrc32
 978   , end_opUpdateCRC32
 979   , begin_opLock
 980     , lir_lock
 981     , lir_unlock
 982   , end_opLock
 983   , begin_delay_slot
 984     , lir_delay_slot
 985   , end_delay_slot
 986   , begin_opTypeCheck
 987     , lir_instanceof
 988     , lir_checkcast
 989     , lir_store_check
 990   , end_opTypeCheck
 991   , begin_opFlattenedStoreCheck
 992     , lir_flattened_store_check
 993   , end_opFlattenedStoreCheck
 994   , begin_opCompareAndSwap
 995     , lir_cas_long
 996     , lir_cas_obj
 997     , lir_cas_int
 998   , end_opCompareAndSwap
 999   , begin_opMDOProfile
1000     , lir_profile_call
1001     , lir_profile_type
1002   , end_opMDOProfile
1003   , begin_opAssert
1004     , lir_assert
1005   , end_opAssert
1006 };
1007 
1008 
1009 enum LIR_Condition {
1010     lir_cond_equal
1011   , lir_cond_notEqual
1012   , lir_cond_less
1013   , lir_cond_lessEqual
1014   , lir_cond_greaterEqual
1015   , lir_cond_greater
1016   , lir_cond_belowEqual
1017   , lir_cond_aboveEqual
1018   , lir_cond_always
1019   , lir_cond_unknown = -1
1020 };
1021 
1022 
1023 enum LIR_PatchCode {
1024   lir_patch_none,
1025   lir_patch_low,
1026   lir_patch_high,
1027   lir_patch_normal
1028 };
1029 
1030 
1031 enum LIR_MoveKind {
1032   lir_move_normal,
1033   lir_move_volatile,
1034   lir_move_unaligned,
1035   lir_move_wide,
1036   lir_move_max_flag
1037 };
1038 
1039 
1040 // --------------------------------------------------
1041 // LIR_Op
1042 // --------------------------------------------------
1043 class LIR_Op: public CompilationResourceObj {
1044  friend class LIR_OpVisitState;
1045 
1046 #ifdef ASSERT
1047  private:
1048   const char *  _file;
1049   int           _line;
1050 #endif
1051 
1052  protected:
1053   LIR_Opr       _result;
1054   unsigned short _code;
1055   unsigned short _flags;
1056   CodeEmitInfo* _info;
1057   int           _id;     // value id for register allocation
1058   int           _fpu_pop_count;
1059   Instruction*  _source; // for debugging
1060 
1061   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1062 
1063  protected:
1064   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1065 
1066  public:
1067   LIR_Op()
1068     :
1069 #ifdef ASSERT
1070       _file(NULL)
1071     , _line(0),
1072 #endif
1073       _result(LIR_OprFact::illegalOpr)
1074     , _code(lir_none)
1075     , _flags(0)
1076     , _info(NULL)
1077     , _id(-1)
1078     , _fpu_pop_count(0)
1079     , _source(NULL) {}
1080 
1081   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1082     :
1083 #ifdef ASSERT
1084       _file(NULL)
1085     , _line(0),
1086 #endif
1087       _result(result)
1088     , _code(code)
1089     , _flags(0)
1090     , _info(info)
1091     , _id(-1)
1092     , _fpu_pop_count(0)
1093     , _source(NULL) {}
1094 
1095   CodeEmitInfo* info() const                  { return _info;   }
1096   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1097   LIR_Opr result_opr() const                  { return _result; }
1098   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1099 
1100 #ifdef ASSERT
1101   void set_file_and_line(const char * file, int line) {
1102     _file = file;
1103     _line = line;
1104   }
1105 #endif
1106 
1107   virtual const char * name() const PRODUCT_RETURN0;
1108   virtual void visit(LIR_OpVisitState* state);
1109 
1110   int id()             const                  { return _id;     }
1111   void set_id(int id)                         { _id = id; }
1112 
1113   // FPU stack simulation helpers -- only used on Intel
1114   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1115   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1116   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1117 
1118   Instruction* source() const                 { return _source; }
1119   void set_source(Instruction* ins)           { _source = ins; }
1120 
1121   virtual void emit_code(LIR_Assembler* masm) = 0;
1122   virtual void print_instr(outputStream* out) const   = 0;
1123   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1124 
1125   virtual bool is_patching() { return false; }
1126   virtual LIR_OpCall* as_OpCall() { return NULL; }
1127   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1128   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1129   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1130   virtual LIR_OpLock* as_OpLock() { return NULL; }
1131   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1132   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1133   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1134   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1135   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1136   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1137   virtual LIR_Op0* as_Op0() { return NULL; }
1138   virtual LIR_Op1* as_Op1() { return NULL; }
1139   virtual LIR_Op2* as_Op2() { return NULL; }
1140   virtual LIR_Op3* as_Op3() { return NULL; }
1141   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1142   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1143   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1144   virtual LIR_OpFlattenedStoreCheck* as_OpFlattenedStoreCheck() { return NULL; }
1145   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1146   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1147   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1148 #ifdef ASSERT
1149   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1150 #endif
1151 
1152   virtual void verify() const {}
1153 };
1154 
1155 // for calls
1156 class LIR_OpCall: public LIR_Op {
1157  friend class LIR_OpVisitState;
1158 
1159  protected:
1160   address      _addr;
1161   LIR_OprList* _arguments;
1162  protected:
1163   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1164              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1165     : LIR_Op(code, result, info)
1166     , _addr(addr)
1167     , _arguments(arguments) {}
1168 
1169  public:
1170   address addr() const                           { return _addr; }
1171   const LIR_OprList* arguments() const           { return _arguments; }
1172   virtual LIR_OpCall* as_OpCall()                { return this; }
1173 };
1174 
1175 
1176 // --------------------------------------------------
1177 // LIR_OpJavaCall
1178 // --------------------------------------------------
1179 class LIR_OpJavaCall: public LIR_OpCall {
1180  friend class LIR_OpVisitState;
1181 
1182  private:
1183   ciMethod* _method;
1184   LIR_Opr   _receiver;
1185   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1186 
1187  public:
1188   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1189                  LIR_Opr receiver, LIR_Opr result,
1190                  address addr, LIR_OprList* arguments,
1191                  CodeEmitInfo* info)
1192   : LIR_OpCall(code, addr, result, arguments, info)
1193   , _method(method)
1194   , _receiver(receiver)
1195   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1196   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1197 
1198   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1199                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1200                  LIR_OprList* arguments, CodeEmitInfo* info)
1201   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1202   , _method(method)
1203   , _receiver(receiver)
1204   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1205   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1206 
1207   LIR_Opr receiver() const                       { return _receiver; }
1208   ciMethod* method() const                       { return _method;   }
1209 
1210   // JSR 292 support.
1211   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1212   bool is_method_handle_invoke() const {
1213     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1214            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1215   }
1216 
1217   intptr_t vtable_offset() const {
1218     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1219     return (intptr_t) addr();
1220   }
1221 
1222   virtual void emit_code(LIR_Assembler* masm);
1223   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1224   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1225 };
1226 
1227 // --------------------------------------------------
1228 // LIR_OpLabel
1229 // --------------------------------------------------
1230 // Location where a branch can continue
1231 class LIR_OpLabel: public LIR_Op {
1232  friend class LIR_OpVisitState;
1233 
1234  private:
1235   Label* _label;
1236  public:
1237   LIR_OpLabel(Label* lbl)
1238    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1239    , _label(lbl)                                 {}
1240   Label* label() const                           { return _label; }
1241 
1242   virtual void emit_code(LIR_Assembler* masm);
1243   virtual LIR_OpLabel* as_OpLabel() { return this; }
1244   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1245 };
1246 
1247 // LIR_OpArrayCopy
1248 class LIR_OpArrayCopy: public LIR_Op {
1249  friend class LIR_OpVisitState;
1250 
1251  private:
1252   ArrayCopyStub*  _stub;
1253   LIR_Opr   _src;
1254   LIR_Opr   _src_pos;
1255   LIR_Opr   _dst;
1256   LIR_Opr   _dst_pos;
1257   LIR_Opr   _length;
1258   LIR_Opr   _tmp;
1259   ciArrayKlass* _expected_type;
1260   int       _flags;
1261 
1262 public:
1263   enum Flags {
1264     src_null_check         = 1 << 0,
1265     dst_null_check         = 1 << 1,
1266     src_pos_positive_check = 1 << 2,
1267     dst_pos_positive_check = 1 << 3,
1268     length_positive_check  = 1 << 4,
1269     src_range_check        = 1 << 5,
1270     dst_range_check        = 1 << 6,
1271     type_check             = 1 << 7,
1272     overlapping            = 1 << 8,
1273     unaligned              = 1 << 9,
1274     src_objarray           = 1 << 10,
1275     dst_objarray           = 1 << 11,
1276     all_flags              = (1 << 12) - 1
1277   };
1278 
1279   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1280                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1281 
1282   LIR_Opr src() const                            { return _src; }
1283   LIR_Opr src_pos() const                        { return _src_pos; }
1284   LIR_Opr dst() const                            { return _dst; }
1285   LIR_Opr dst_pos() const                        { return _dst_pos; }
1286   LIR_Opr length() const                         { return _length; }
1287   LIR_Opr tmp() const                            { return _tmp; }
1288   int flags() const                              { return _flags; }
1289   ciArrayKlass* expected_type() const            { return _expected_type; }
1290   ArrayCopyStub* stub() const                    { return _stub; }
1291 
1292   virtual void emit_code(LIR_Assembler* masm);
1293   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1294   void print_instr(outputStream* out) const PRODUCT_RETURN;
1295 };
1296 
1297 // LIR_OpUpdateCRC32
1298 class LIR_OpUpdateCRC32: public LIR_Op {
1299   friend class LIR_OpVisitState;
1300 
1301 private:
1302   LIR_Opr   _crc;
1303   LIR_Opr   _val;
1304 
1305 public:
1306 
1307   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1308 
1309   LIR_Opr crc() const                            { return _crc; }
1310   LIR_Opr val() const                            { return _val; }
1311 
1312   virtual void emit_code(LIR_Assembler* masm);
1313   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1314   void print_instr(outputStream* out) const PRODUCT_RETURN;
1315 };
1316 
1317 // --------------------------------------------------
1318 // LIR_Op0
1319 // --------------------------------------------------
1320 class LIR_Op0: public LIR_Op {
1321  friend class LIR_OpVisitState;
1322 
1323  public:
1324   LIR_Op0(LIR_Code code)
1325    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1326   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1327    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1328 
1329   virtual void emit_code(LIR_Assembler* masm);
1330   virtual LIR_Op0* as_Op0() { return this; }
1331   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1332 };
1333 
1334 
1335 // --------------------------------------------------
1336 // LIR_Op1
1337 // --------------------------------------------------
1338 
1339 class LIR_Op1: public LIR_Op {
1340  friend class LIR_OpVisitState;
1341 
1342  protected:
1343   LIR_Opr         _opr;   // input operand
1344   BasicType       _type;  // Operand types
1345   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1346 
1347   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1348 
1349   void set_kind(LIR_MoveKind kind) {
1350     assert(code() == lir_move, "must be");
1351     _flags = kind;
1352   }
1353 
1354  public:
1355   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1356     : LIR_Op(code, result, info)
1357     , _opr(opr)
1358     , _type(type)
1359     , _patch(patch)                    { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1360 
1361   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1362     : LIR_Op(code, result, info)
1363     , _opr(opr)
1364     , _type(type)
1365     , _patch(patch)                    {
1366     assert(code == lir_move, "must be");
1367     set_kind(kind);
1368   }
1369 
1370   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1371     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1372     , _opr(opr)
1373     , _type(T_ILLEGAL)
1374     , _patch(lir_patch_none)           { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1375 
1376   LIR_Opr in_opr()           const               { return _opr;   }
1377   LIR_PatchCode patch_code() const               { return _patch; }
1378   BasicType type()           const               { return _type;  }
1379 
1380   LIR_MoveKind move_kind() const {
1381     assert(code() == lir_move, "must be");
1382     return (LIR_MoveKind)_flags;
1383   }
1384 
1385   virtual bool is_patching() { return _patch != lir_patch_none; }
1386   virtual void emit_code(LIR_Assembler* masm);
1387   virtual LIR_Op1* as_Op1() { return this; }
1388   virtual const char * name() const PRODUCT_RETURN0;
1389 
1390   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1391 
1392   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1393   virtual void verify() const;
1394 };
1395 
1396 
1397 // for runtime calls
1398 class LIR_OpRTCall: public LIR_OpCall {
1399  friend class LIR_OpVisitState;
1400 
1401  private:
1402   LIR_Opr _tmp;
1403  public:
1404   LIR_OpRTCall(address addr, LIR_Opr tmp,
1405                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1406     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1407     , _tmp(tmp) {}
1408 
1409   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1410   virtual void emit_code(LIR_Assembler* masm);
1411   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1412 
1413   LIR_Opr tmp() const                            { return _tmp; }
1414 
1415   virtual void verify() const;
1416 };
1417 
1418 
1419 class LIR_OpBranch: public LIR_Op {
1420  friend class LIR_OpVisitState;
1421 
1422  private:
1423   LIR_Condition _cond;
1424   BasicType     _type;
1425   Label*        _label;
1426   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1427   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1428   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1429 
1430  public:
1431   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1432     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1433     , _cond(cond)
1434     , _type(type)
1435     , _label(lbl)
1436     , _block(NULL)
1437     , _ublock(NULL)
1438     , _stub(NULL) { }
1439 
1440   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1441   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1442 
1443   // for unordered comparisons
1444   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1445 
1446   LIR_Condition cond()        const              { return _cond;        }
1447   BasicType     type()        const              { return _type;        }
1448   Label*        label()       const              { return _label;       }
1449   BlockBegin*   block()       const              { return _block;       }
1450   BlockBegin*   ublock()      const              { return _ublock;      }
1451   CodeStub*     stub()        const              { return _stub;       }
1452 
1453   void          change_block(BlockBegin* b);
1454   void          change_ublock(BlockBegin* b);
1455   void          negate_cond();
1456 
1457   virtual void emit_code(LIR_Assembler* masm);
1458   virtual LIR_OpBranch* as_OpBranch() { return this; }
1459   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1460 };
1461 
1462 
1463 class ConversionStub;
1464 
1465 class LIR_OpConvert: public LIR_Op1 {
1466  friend class LIR_OpVisitState;
1467 
1468  private:
1469    Bytecodes::Code _bytecode;
1470    ConversionStub* _stub;
1471 
1472  public:
1473    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1474      : LIR_Op1(lir_convert, opr, result)
1475      , _bytecode(code)
1476      , _stub(stub)                               {}
1477 
1478   Bytecodes::Code bytecode() const               { return _bytecode; }
1479   ConversionStub* stub() const                   { return _stub; }
1480 
1481   virtual void emit_code(LIR_Assembler* masm);
1482   virtual LIR_OpConvert* as_OpConvert() { return this; }
1483   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1484 
1485   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1486 };
1487 
1488 
1489 // LIR_OpAllocObj
1490 class LIR_OpAllocObj : public LIR_Op1 {
1491  friend class LIR_OpVisitState;
1492 
1493  private:
1494   LIR_Opr _tmp1;
1495   LIR_Opr _tmp2;
1496   LIR_Opr _tmp3;
1497   LIR_Opr _tmp4;
1498   int     _hdr_size;
1499   int     _obj_size;
1500   CodeStub* _stub;
1501   bool    _init_check;
1502 
1503  public:
1504   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1505                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1506                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1507     : LIR_Op1(lir_alloc_object, klass, result)
1508     , _tmp1(t1)
1509     , _tmp2(t2)
1510     , _tmp3(t3)
1511     , _tmp4(t4)
1512     , _hdr_size(hdr_size)
1513     , _obj_size(obj_size)
1514     , _stub(stub)
1515     , _init_check(init_check)                    { }
1516 
1517   LIR_Opr klass()        const                   { return in_opr();     }
1518   LIR_Opr obj()          const                   { return result_opr(); }
1519   LIR_Opr tmp1()         const                   { return _tmp1;        }
1520   LIR_Opr tmp2()         const                   { return _tmp2;        }
1521   LIR_Opr tmp3()         const                   { return _tmp3;        }
1522   LIR_Opr tmp4()         const                   { return _tmp4;        }
1523   int     header_size()  const                   { return _hdr_size;    }
1524   int     object_size()  const                   { return _obj_size;    }
1525   bool    init_check()   const                   { return _init_check;  }
1526   CodeStub* stub()       const                   { return _stub;        }
1527 
1528   virtual void emit_code(LIR_Assembler* masm);
1529   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1530   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1531 };
1532 
1533 
1534 // LIR_OpRoundFP
1535 class LIR_OpRoundFP : public LIR_Op1 {
1536  friend class LIR_OpVisitState;
1537 
1538  private:
1539   LIR_Opr _tmp;
1540 
1541  public:
1542   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1543     : LIR_Op1(lir_roundfp, reg, result)
1544     , _tmp(stack_loc_temp) {}
1545 
1546   LIR_Opr tmp() const                            { return _tmp; }
1547   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1548   void print_instr(outputStream* out) const PRODUCT_RETURN;
1549 };
1550 
1551 // LIR_OpTypeCheck
1552 class LIR_OpTypeCheck: public LIR_Op {
1553  friend class LIR_OpVisitState;
1554 
1555  private:
1556   LIR_Opr       _object;
1557   LIR_Opr       _array;
1558   ciKlass*      _klass;
1559   LIR_Opr       _tmp1;
1560   LIR_Opr       _tmp2;
1561   LIR_Opr       _tmp3;
1562   bool          _fast_check;
1563   CodeEmitInfo* _info_for_patch;
1564   CodeEmitInfo* _info_for_exception;
1565   CodeStub*     _stub;
1566   ciMethod*     _profiled_method;
1567   int           _profiled_bci;
1568   bool          _should_profile;
1569   bool          _need_null_check;
1570 
1571 public:
1572   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1573                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1574                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, bool need_null_check = true);
1575   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1576                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1577 
1578   LIR_Opr object() const                         { return _object;         }
1579   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1580   LIR_Opr tmp1() const                           { return _tmp1;           }
1581   LIR_Opr tmp2() const                           { return _tmp2;           }
1582   LIR_Opr tmp3() const                           { return _tmp3;           }
1583   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1584   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1585   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1586   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1587   CodeStub* stub() const                         { return _stub;           }
1588 
1589   // MethodData* profiling
1590   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1591   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1592   void set_should_profile(bool b)                { _should_profile = b;       }
1593   ciMethod* profiled_method() const              { return _profiled_method;   }
1594   int       profiled_bci() const                 { return _profiled_bci;      }
1595   bool      should_profile() const               { return _should_profile;    }
1596   bool      need_null_check() const              { return _need_null_check;   }
1597   virtual bool is_patching() { return _info_for_patch != NULL; }
1598   virtual void emit_code(LIR_Assembler* masm);
1599   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1600   void print_instr(outputStream* out) const PRODUCT_RETURN;
1601 };
1602 
1603 // LIR_OpFlattenedStoreCheck
1604 class LIR_OpFlattenedStoreCheck: public LIR_Op {
1605  friend class LIR_OpVisitState;
1606 
1607  private:
1608   LIR_Opr       _object;
1609   ciKlass*      _element_klass;
1610   LIR_Opr       _tmp1;
1611   LIR_Opr       _tmp2;
1612   CodeEmitInfo* _info_for_exception;
1613   CodeStub*     _stub;
1614 
1615 public:
1616   LIR_OpFlattenedStoreCheck(LIR_Opr object, ciKlass* element_klass, LIR_Opr tmp1, LIR_Opr tmp2,
1617                             CodeEmitInfo* info_for_exception);
1618 
1619   LIR_Opr object() const                         { return _object;         }
1620   LIR_Opr tmp1() const                           { return _tmp1;           }
1621   LIR_Opr tmp2() const                           { return _tmp2;           }
1622   ciKlass* element_klass() const                 { return _element_klass;  }
1623   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1624   CodeStub* stub() const                         { return _stub;           }
1625 
1626   virtual void emit_code(LIR_Assembler* masm);
1627   virtual LIR_OpFlattenedStoreCheck* as_OpFlattenedStoreCheck() { return this; }
1628   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1629 };
1630 
1631 // LIR_Op2
1632 class LIR_Op2: public LIR_Op {
1633  friend class LIR_OpVisitState;
1634 
1635   int  _fpu_stack_size; // for sin/cos implementation on Intel
1636 
1637  protected:
1638   LIR_Opr   _opr1;
1639   LIR_Opr   _opr2;
1640   BasicType _type;
1641   LIR_Opr   _tmp1;
1642   LIR_Opr   _tmp2;
1643   LIR_Opr   _tmp3;
1644   LIR_Opr   _tmp4;
1645   LIR_Opr   _tmp5;
1646   LIR_Condition _condition;
1647 
1648   void verify() const;
1649 
1650  public:
1651   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1652     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1653     , _fpu_stack_size(0)
1654     , _opr1(opr1)
1655     , _opr2(opr2)
1656     , _type(T_ILLEGAL)
1657     , _tmp1(LIR_OprFact::illegalOpr)
1658     , _tmp2(LIR_OprFact::illegalOpr)
1659     , _tmp3(LIR_OprFact::illegalOpr)
1660     , _tmp4(LIR_OprFact::illegalOpr)
1661     , _tmp5(LIR_OprFact::illegalOpr)
1662     , _condition(condition) {
1663     assert(code == lir_cmp || code == lir_assert, "code check");
1664   }
1665 
1666   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1667     : LIR_Op(code, result, NULL)
1668     , _fpu_stack_size(0)
1669     , _opr1(opr1)
1670     , _opr2(opr2)
1671     , _type(type)
1672     , _tmp1(LIR_OprFact::illegalOpr)
1673     , _tmp2(LIR_OprFact::illegalOpr)
1674     , _tmp3(LIR_OprFact::illegalOpr)
1675     , _tmp4(LIR_OprFact::illegalOpr)
1676     , _tmp5(LIR_OprFact::illegalOpr)
1677     , _condition(condition) {
1678     assert(code == lir_cmove, "code check");
1679     assert(type != T_ILLEGAL, "cmove should have type");
1680   }
1681 
1682   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1683           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1684     : LIR_Op(code, result, info)
1685     , _fpu_stack_size(0)
1686     , _opr1(opr1)
1687     , _opr2(opr2)
1688     , _type(type)
1689     , _tmp1(LIR_OprFact::illegalOpr)
1690     , _tmp2(LIR_OprFact::illegalOpr)
1691     , _tmp3(LIR_OprFact::illegalOpr)
1692     , _tmp4(LIR_OprFact::illegalOpr)
1693     , _tmp5(LIR_OprFact::illegalOpr)
1694     , _condition(lir_cond_unknown) {
1695     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1696   }
1697 
1698   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1699           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1700     : LIR_Op(code, result, NULL)
1701     , _fpu_stack_size(0)
1702     , _opr1(opr1)
1703     , _opr2(opr2)
1704     , _type(T_ILLEGAL)
1705     , _tmp1(tmp1)
1706     , _tmp2(tmp2)
1707     , _tmp3(tmp3)
1708     , _tmp4(tmp4)
1709     , _tmp5(tmp5)
1710     , _condition(lir_cond_unknown) {
1711     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1712   }
1713 
1714   LIR_Opr in_opr1() const                        { return _opr1; }
1715   LIR_Opr in_opr2() const                        { return _opr2; }
1716   BasicType type()  const                        { return _type; }
1717   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1718   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1719   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1720   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1721   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1722   LIR_Condition condition() const  {
1723     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1724   }
1725   void set_condition(LIR_Condition condition) {
1726     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1727   }
1728 
1729   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1730   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1731 
1732   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1733   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1734 
1735   virtual void emit_code(LIR_Assembler* masm);
1736   virtual LIR_Op2* as_Op2() { return this; }
1737   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1738 };
1739 
1740 class LIR_OpAllocArray : public LIR_Op {
1741  friend class LIR_OpVisitState;
1742 
1743  private:
1744   LIR_Opr   _klass;
1745   LIR_Opr   _len;
1746   LIR_Opr   _tmp1;
1747   LIR_Opr   _tmp2;
1748   LIR_Opr   _tmp3;
1749   LIR_Opr   _tmp4;
1750   BasicType _type;
1751   CodeStub* _stub;
1752 
1753  public:
1754   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1755     : LIR_Op(lir_alloc_array, result, NULL)
1756     , _klass(klass)
1757     , _len(len)
1758     , _tmp1(t1)
1759     , _tmp2(t2)
1760     , _tmp3(t3)
1761     , _tmp4(t4)
1762     , _type(type)
1763     , _stub(stub) {}
1764 
1765   LIR_Opr   klass()   const                      { return _klass;       }
1766   LIR_Opr   len()     const                      { return _len;         }
1767   LIR_Opr   obj()     const                      { return result_opr(); }
1768   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1769   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1770   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1771   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1772   BasicType type()    const                      { return _type;        }
1773   CodeStub* stub()    const                      { return _stub;        }
1774 
1775   virtual void emit_code(LIR_Assembler* masm);
1776   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1777   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1778 };
1779 
1780 
1781 class LIR_Op3: public LIR_Op {
1782  friend class LIR_OpVisitState;
1783 
1784  private:
1785   LIR_Opr _opr1;
1786   LIR_Opr _opr2;
1787   LIR_Opr _opr3;
1788  public:
1789   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1790     : LIR_Op(code, result, info)
1791     , _opr1(opr1)
1792     , _opr2(opr2)
1793     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1794   LIR_Opr in_opr1() const                        { return _opr1; }
1795   LIR_Opr in_opr2() const                        { return _opr2; }
1796   LIR_Opr in_opr3() const                        { return _opr3; }
1797 
1798   virtual void emit_code(LIR_Assembler* masm);
1799   virtual LIR_Op3* as_Op3() { return this; }
1800   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1801 };
1802 
1803 
1804 //--------------------------------
1805 class LabelObj: public CompilationResourceObj {
1806  private:
1807   Label _label;
1808  public:
1809   LabelObj()                                     {}
1810   Label* label()                                 { return &_label; }
1811 };
1812 
1813 
1814 class LIR_OpLock: public LIR_Op {
1815  friend class LIR_OpVisitState;
1816 
1817  private:
1818   LIR_Opr _hdr;
1819   LIR_Opr _obj;
1820   LIR_Opr _lock;
1821   LIR_Opr _scratch;
1822   CodeStub* _stub;
1823   CodeStub* _throw_imse_stub;
1824  public:
1825   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_imse_stub=NULL)
1826     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1827     , _hdr(hdr)
1828     , _obj(obj)
1829     , _lock(lock)
1830     , _scratch(scratch)
1831     , _stub(stub)
1832     , _throw_imse_stub(throw_imse_stub)                    {}
1833 
1834   LIR_Opr hdr_opr() const                        { return _hdr; }
1835   LIR_Opr obj_opr() const                        { return _obj; }
1836   LIR_Opr lock_opr() const                       { return _lock; }
1837   LIR_Opr scratch_opr() const                    { return _scratch; }
1838   CodeStub* stub() const                         { return _stub; }
1839   CodeStub* throw_imse_stub() const              { return _throw_imse_stub; }
1840 
1841   virtual void emit_code(LIR_Assembler* masm);
1842   virtual LIR_OpLock* as_OpLock() { return this; }
1843   void print_instr(outputStream* out) const PRODUCT_RETURN;
1844 };
1845 
1846 
1847 class LIR_OpDelay: public LIR_Op {
1848  friend class LIR_OpVisitState;
1849 
1850  private:
1851   LIR_Op* _op;
1852 
1853  public:
1854   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1855     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1856     _op(op) {
1857     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1858   }
1859   virtual void emit_code(LIR_Assembler* masm);
1860   virtual LIR_OpDelay* as_OpDelay() { return this; }
1861   void print_instr(outputStream* out) const PRODUCT_RETURN;
1862   LIR_Op* delay_op() const { return _op; }
1863   CodeEmitInfo* call_info() const { return info(); }
1864 };
1865 
1866 #ifdef ASSERT
1867 // LIR_OpAssert
1868 class LIR_OpAssert : public LIR_Op2 {
1869  friend class LIR_OpVisitState;
1870 
1871  private:
1872   const char* _msg;
1873   bool        _halt;
1874 
1875  public:
1876   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1877     : LIR_Op2(lir_assert, condition, opr1, opr2)
1878     , _msg(msg)
1879     , _halt(halt) {
1880   }
1881 
1882   const char* msg() const                        { return _msg; }
1883   bool        halt() const                       { return _halt; }
1884 
1885   virtual void emit_code(LIR_Assembler* masm);
1886   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1887   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1888 };
1889 #endif
1890 
1891 // LIR_OpCompareAndSwap
1892 class LIR_OpCompareAndSwap : public LIR_Op {
1893  friend class LIR_OpVisitState;
1894 
1895  private:
1896   LIR_Opr _addr;
1897   LIR_Opr _cmp_value;
1898   LIR_Opr _new_value;
1899   LIR_Opr _tmp1;
1900   LIR_Opr _tmp2;
1901 
1902  public:
1903   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1904                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1905     : LIR_Op(code, result, NULL)  // no result, no info
1906     , _addr(addr)
1907     , _cmp_value(cmp_value)
1908     , _new_value(new_value)
1909     , _tmp1(t1)
1910     , _tmp2(t2)                                  { }
1911 
1912   LIR_Opr addr()        const                    { return _addr;  }
1913   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1914   LIR_Opr new_value()   const                    { return _new_value; }
1915   LIR_Opr tmp1()        const                    { return _tmp1;      }
1916   LIR_Opr tmp2()        const                    { return _tmp2;      }
1917 
1918   virtual void emit_code(LIR_Assembler* masm);
1919   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1920   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1921 };
1922 
1923 // LIR_OpProfileCall
1924 class LIR_OpProfileCall : public LIR_Op {
1925  friend class LIR_OpVisitState;
1926 
1927  private:
1928   ciMethod* _profiled_method;
1929   int       _profiled_bci;
1930   ciMethod* _profiled_callee;
1931   LIR_Opr   _mdo;
1932   LIR_Opr   _recv;
1933   LIR_Opr   _tmp1;
1934   ciKlass*  _known_holder;
1935 
1936  public:
1937   // Destroys recv
1938   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1939     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1940     , _profiled_method(profiled_method)
1941     , _profiled_bci(profiled_bci)
1942     , _profiled_callee(profiled_callee)
1943     , _mdo(mdo)
1944     , _recv(recv)
1945     , _tmp1(t1)
1946     , _known_holder(known_holder)                { }
1947 
1948   ciMethod* profiled_method() const              { return _profiled_method;  }
1949   int       profiled_bci()    const              { return _profiled_bci;     }
1950   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1951   LIR_Opr   mdo()             const              { return _mdo;              }
1952   LIR_Opr   recv()            const              { return _recv;             }
1953   LIR_Opr   tmp1()            const              { return _tmp1;             }
1954   ciKlass*  known_holder()    const              { return _known_holder;     }
1955 
1956   virtual void emit_code(LIR_Assembler* masm);
1957   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1958   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1959   bool should_profile_receiver_type() const {
1960     bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
1961     Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
1962     bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface;
1963     return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
1964   }
1965 };
1966 
1967 // LIR_OpProfileType
1968 class LIR_OpProfileType : public LIR_Op {
1969  friend class LIR_OpVisitState;
1970 
1971  private:
1972   LIR_Opr      _mdp;
1973   LIR_Opr      _obj;
1974   LIR_Opr      _tmp;
1975   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1976   intptr_t     _current_klass; // what the profiling currently reports
1977   bool         _not_null;      // true if we know statically that _obj cannot be null
1978   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1979                                // _exact_klass it the only possible type for this parameter in any context.
1980 
1981  public:
1982   // Destroys recv
1983   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1984     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1985     , _mdp(mdp)
1986     , _obj(obj)
1987     , _tmp(tmp)
1988     , _exact_klass(exact_klass)
1989     , _current_klass(current_klass)
1990     , _not_null(not_null)
1991     , _no_conflict(no_conflict) { }
1992 
1993   LIR_Opr      mdp()              const             { return _mdp;              }
1994   LIR_Opr      obj()              const             { return _obj;              }
1995   LIR_Opr      tmp()              const             { return _tmp;              }
1996   ciKlass*     exact_klass()      const             { return _exact_klass;      }
1997   intptr_t     current_klass()    const             { return _current_klass;    }
1998   bool         not_null()         const             { return _not_null;         }
1999   bool         no_conflict()      const             { return _no_conflict;      }
2000 
2001   virtual void emit_code(LIR_Assembler* masm);
2002   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
2003   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
2004 };
2005 
2006 class LIR_InsertionBuffer;
2007 
2008 //--------------------------------LIR_List---------------------------------------------------
2009 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
2010 // The LIR instructions are appended by the LIR_List class itself;
2011 //
2012 // Notes:
2013 // - all offsets are(should be) in bytes
2014 // - local positions are specified with an offset, with offset 0 being local 0
2015 
2016 class LIR_List: public CompilationResourceObj {
2017  private:
2018   LIR_OpList  _operations;
2019 
2020   Compilation*  _compilation;
2021 #ifndef PRODUCT
2022   BlockBegin*   _block;
2023 #endif
2024 #ifdef ASSERT
2025   const char *  _file;
2026   int           _line;
2027 #endif
2028 
2029  public:
2030   void append(LIR_Op* op) {
2031     if (op->source() == NULL)
2032       op->set_source(_compilation->current_instruction());
2033 #ifndef PRODUCT
2034     if (PrintIRWithLIR) {
2035       _compilation->maybe_print_current_instruction();
2036       op->print(); tty->cr();
2037     }
2038 #endif // PRODUCT
2039 
2040     _operations.append(op);
2041 
2042 #ifdef ASSERT
2043     op->verify();
2044     op->set_file_and_line(_file, _line);
2045     _file = NULL;
2046     _line = 0;
2047 #endif
2048   }
2049 
2050   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2051 
2052 #ifdef ASSERT
2053   void set_file_and_line(const char * file, int line);
2054 #endif
2055 
2056   //---------- accessors ---------------
2057   LIR_OpList* instructions_list()                { return &_operations; }
2058   int         length() const                     { return _operations.length(); }
2059   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2060 
2061   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2062 
2063   // insert LIR_Ops in buffer to right places in LIR_List
2064   void append(LIR_InsertionBuffer* buffer);
2065 
2066   //---------- mutators ---------------
2067   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2068   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2069   void remove_at(int i)                          { _operations.remove_at(i); }
2070 
2071   //---------- printing -------------
2072   void print_instructions() PRODUCT_RETURN;
2073 
2074 
2075   //---------- instructions -------------
2076   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2077                         address dest, LIR_OprList* arguments,
2078                         CodeEmitInfo* info) {
2079     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2080   }
2081   void call_static(ciMethod* method, LIR_Opr result,
2082                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2083     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2084   }
2085   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2086                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2087     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2088   }
2089   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2090                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2091     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2092   }
2093   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2094                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2095     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2096   }
2097 
2098   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2099   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2100   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2101   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2102   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2103   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2104   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2105   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2106   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2107 
2108   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2109   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2110 
2111   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2112   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2113 
2114   void on_spin_wait()                            { append(new LIR_Op0(lir_on_spin_wait)); }
2115 
2116   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2117 
2118   void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2119 
2120   // result is a stack location for old backend and vreg for UseLinearScan
2121   // stack_loc_temp is an illegal register for old backend
2122   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2123   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2124   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2125   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2126   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2127   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2128   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2129   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2130     if (UseCompressedOops) {
2131       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2132     } else {
2133       move(src, dst, info);
2134     }
2135   }
2136   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2137     if (UseCompressedOops) {
2138       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2139     } else {
2140       move(src, dst, info);
2141     }
2142   }
2143   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2144 
2145   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2146   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2147 
2148   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2149   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2150 
2151   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2152 
2153   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2154 
2155   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2156 
2157   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2158   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2159   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2160 
2161   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2162   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2163 
2164   void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2165   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2166     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2167   }
2168   void unwind_exception(LIR_Opr exceptionOop) {
2169     append(new LIR_Op1(lir_unwind, exceptionOop));
2170   }
2171 
2172   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2173   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2174 
2175   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2176     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2177   }
2178   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2179     cmp(condition, left, LIR_OprFact::intConst(right), info);
2180   }
2181 
2182   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2183   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2184 
2185   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2186     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2187   }
2188 
2189   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2190                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2191   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2192                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2193   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2194                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2195 
2196   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2197   void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr)              { append(new LIR_Op2(lir_neg, from, tmp, to)); }
2198   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2199   void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2200   void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2201   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2202   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2203 
2204   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2205   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2206   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2207   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2208   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2209   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2210   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2211 
2212   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2213   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2214 
2215   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2216 
2217   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2218   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2219   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2220   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2221   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2222 
2223   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2224   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2225   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2226   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2227 
2228   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2229   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2230 
2231   // jump is an unconditional branch
2232   void jump(BlockBegin* block) {
2233     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2234   }
2235   void jump(CodeStub* stub) {
2236     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2237   }
2238   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2239   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2240     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2241     append(new LIR_OpBranch(cond, type, block));
2242   }
2243   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2244     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2245     append(new LIR_OpBranch(cond, type, stub));
2246   }
2247   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2248     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2249     append(new LIR_OpBranch(cond, type, block, unordered));
2250   }
2251 
2252   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2253   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2254   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2255 
2256   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2257   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2258   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2259 
2260   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2261   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2262 
2263   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2264     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2265   }
2266 
2267   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2268                     LIR_OprList* arguments, CodeEmitInfo* info) {
2269     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2270   }
2271 
2272   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2273   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2274   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info, CodeStub* throw_imse_stub=NULL);
2275 
2276   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2277   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2278   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2279 
2280   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2281 
2282   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2283 
2284   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2285 
2286   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2287   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2288   void flattened_store_check(LIR_Opr object, ciKlass* element_klass, LIR_Opr tmp1, LIR_Opr tmp2, CodeEmitInfo* info_for_exception);
2289 
2290   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2291                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2292                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2293                   ciMethod* profiled_method, int profiled_bci, bool is_never_null);
2294   // MethodData* profiling
2295   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2296     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2297   }
2298   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2299     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2300   }
2301 
2302   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2303   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2304 #ifdef ASSERT
2305   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2306 #endif
2307 };
2308 
2309 void print_LIR(BlockList* blocks);
2310 
2311 class LIR_InsertionBuffer : public CompilationResourceObj {
2312  private:
2313   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2314 
2315   // list of insertion points. index and count are stored alternately:
2316   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2317   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2318   intStack    _index_and_count;
2319 
2320   // the LIR_Ops to be inserted
2321   LIR_OpList  _ops;
2322 
2323   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2324   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2325   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2326 
2327 #ifdef ASSERT
2328   void verify();
2329 #endif
2330  public:
2331   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2332 
2333   // must be called before using the insertion buffer
2334   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2335   bool initialized() const  { return _lir != NULL; }
2336   // called automatically when the buffer is appended to the LIR_List
2337   void finish()             { _lir = NULL; }
2338 
2339   // accessors
2340   LIR_List*  lir_list() const             { return _lir; }
2341   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2342   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2343   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2344 
2345   int number_of_ops() const               { return _ops.length(); }
2346   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2347 
2348   // append an instruction to the buffer
2349   void append(int index, LIR_Op* op);
2350 
2351   // instruction
2352   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2353 };
2354 
2355 
2356 //
2357 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2358 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2359 // information about the input, output and temporaries used by the
2360 // op to be recorded.  It also records whether the op has call semantics
2361 // and also records all the CodeEmitInfos used by this op.
2362 //
2363 
2364 
2365 class LIR_OpVisitState: public StackObj {
2366  public:
2367   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2368 
2369   enum {
2370     maxNumberOfOperands = 20,
2371     maxNumberOfInfos = 4
2372   };
2373 
2374  private:
2375   LIR_Op*          _op;
2376 
2377   // optimization: the operands and infos are not stored in a variable-length
2378   //               list, but in a fixed-size array to save time of size checks and resizing
2379   int              _oprs_len[numModes];
2380   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2381   int _info_len;
2382   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2383 
2384   bool             _has_call;
2385   bool             _has_slow_case;
2386 
2387 
2388   // only include register operands
2389   // addresses are decomposed to the base and index registers
2390   // constants and stack operands are ignored
2391   void append(LIR_Opr& opr, OprMode mode) {
2392     assert(opr->is_valid(), "should not call this otherwise");
2393     assert(mode >= 0 && mode < numModes, "bad mode");
2394 
2395     if (opr->is_register()) {
2396        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2397       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2398 
2399     } else if (opr->is_pointer()) {
2400       LIR_Address* address = opr->as_address_ptr();
2401       if (address != NULL) {
2402         // special handling for addresses: add base and index register of the address
2403         // both are always input operands or temp if we want to extend
2404         // their liveness!
2405         if (mode == outputMode) {
2406           mode = inputMode;
2407         }
2408         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2409         if (address->_base->is_valid()) {
2410           assert(address->_base->is_register(), "must be");
2411           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2412           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2413         }
2414         if (address->_index->is_valid()) {
2415           assert(address->_index->is_register(), "must be");
2416           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2417           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2418         }
2419 
2420       } else {
2421         assert(opr->is_constant(), "constant operands are not processed");
2422       }
2423     } else {
2424       assert(opr->is_stack(), "stack operands are not processed");
2425     }
2426   }
2427 
2428   void append(CodeEmitInfo* info) {
2429     assert(info != NULL, "should not call this otherwise");
2430     assert(_info_len < maxNumberOfInfos, "array overflow");
2431     _info_new[_info_len++] = info;
2432   }
2433 
2434  public:
2435   LIR_OpVisitState()         { reset(); }
2436 
2437   LIR_Op* op() const         { return _op; }
2438   void set_op(LIR_Op* op)    { reset(); _op = op; }
2439 
2440   bool has_call() const      { return _has_call; }
2441   bool has_slow_case() const { return _has_slow_case; }
2442 
2443   void reset() {
2444     _op = NULL;
2445     _has_call = false;
2446     _has_slow_case = false;
2447 
2448     _oprs_len[inputMode] = 0;
2449     _oprs_len[tempMode] = 0;
2450     _oprs_len[outputMode] = 0;
2451     _info_len = 0;
2452   }
2453 
2454 
2455   int opr_count(OprMode mode) const {
2456     assert(mode >= 0 && mode < numModes, "bad mode");
2457     return _oprs_len[mode];
2458   }
2459 
2460   LIR_Opr opr_at(OprMode mode, int index) const {
2461     assert(mode >= 0 && mode < numModes, "bad mode");
2462     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2463     return *_oprs_new[mode][index];
2464   }
2465 
2466   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2467     assert(mode >= 0 && mode < numModes, "bad mode");
2468     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2469     *_oprs_new[mode][index] = opr;
2470   }
2471 
2472   int info_count() const {
2473     return _info_len;
2474   }
2475 
2476   CodeEmitInfo* info_at(int index) const {
2477     assert(index < _info_len, "index out of bounds");
2478     return _info_new[index];
2479   }
2480 
2481   XHandlers* all_xhandler();
2482 
2483   // collects all register operands of the instruction
2484   void visit(LIR_Op* op);
2485 
2486 #ifdef ASSERT
2487   // check that an operation has no operands
2488   bool no_operands(LIR_Op* op);
2489 #endif
2490 
2491   // LIR_Op visitor functions use these to fill in the state
2492   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2493   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2494   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2495   void do_info(CodeEmitInfo* info)        { append(info); }
2496 
2497   void do_stub(CodeStub* stub);
2498   void do_call()                          { _has_call = true; }
2499   void do_slow_case()                     { _has_slow_case = true; }
2500   void do_slow_case(CodeEmitInfo* info) {
2501     _has_slow_case = true;
2502     append(info);
2503   }
2504 };
2505 
2506 
2507 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2508 
2509 #endif // SHARE_C1_C1_LIR_HPP