1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset(int max_vregs) {
  59   // Initialize array sizes
  60   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _virtual_operands.trunc_to(0);
  62   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _other_operands.trunc_to(0);
  64   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _vreg_table.trunc_to(0);
  66 }
  67 
  68 
  69 
  70 //--------------------------------------------------------------
  71 // PhiResolver
  72 
  73 // Resolves cycles:
  74 //
  75 //  r1 := r2  becomes  temp := r1
  76 //  r2 := r1           r1 := r2
  77 //                     r2 := temp
  78 // and orders moves:
  79 //
  80 //  r2 := r3  becomes  r1 := r2
  81 //  r1 := r2           r2 := r3
  82 
  83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  84  : _gen(gen)
  85  , _state(gen->resolver_state())
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset(max_vregs);
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == NULL, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != NULL) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = NULL;
 154       move(NULL, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, NULL);
 175     assert(node == NULL || node->operand() == opr, "");
 176     if (node == NULL) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 213   }
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {
 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {
 239       _result = LIR_OprFact::value_type(value()->type());
 240     }
 241   } else if (type == T_BYTE || type == T_BOOLEAN) {
 242     load_byte_item();
 243   } else {
 244     load_item();
 245   }
 246 }
 247 
 248 void LIRItem::load_item_force(LIR_Opr reg) {
 249   LIR_Opr r = result();
 250   if (r != reg) {
 251 #if !defined(ARM) && !defined(E500V2)
 252     if (r->type() != reg->type()) {
 253       // moves between different types need an intervening spill slot
 254       r = _gen->force_to_spill(r, reg->type());
 255     }
 256 #endif
 257     __ move(r, reg);
 258     _result = reg;
 259   }
 260 }
 261 
 262 ciObject* LIRItem::get_jobject_constant() const {
 263   ObjectType* oc = type()->as_ObjectType();
 264   if (oc) {
 265     return oc->constant_value();
 266   }
 267   return NULL;
 268 }
 269 
 270 
 271 jint LIRItem::get_jint_constant() const {
 272   assert(is_constant() && value() != NULL, "");
 273   assert(type()->as_IntConstant() != NULL, "type check");
 274   return type()->as_IntConstant()->value();
 275 }
 276 
 277 
 278 jint LIRItem::get_address_constant() const {
 279   assert(is_constant() && value() != NULL, "");
 280   assert(type()->as_AddressConstant() != NULL, "type check");
 281   return type()->as_AddressConstant()->value();
 282 }
 283 
 284 
 285 jfloat LIRItem::get_jfloat_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_FloatConstant() != NULL, "type check");
 288   return type()->as_FloatConstant()->value();
 289 }
 290 
 291 
 292 jdouble LIRItem::get_jdouble_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_DoubleConstant() != NULL, "type check");
 295   return type()->as_DoubleConstant()->value();
 296 }
 297 
 298 
 299 jlong LIRItem::get_jlong_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_LongConstant() != NULL, "type check");
 302   return type()->as_LongConstant()->value();
 303 }
 304 
 305 
 306 
 307 //--------------------------------------------------------------
 308 
 309 
 310 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 311 #ifndef PRODUCT
 312   if (PrintIRWithLIR) {
 313     block->print();
 314   }
 315 #endif
 316 
 317   // set up the list of LIR instructions
 318   assert(block->lir() == NULL, "LIR list already computed for this block");
 319   _lir = new LIR_List(compilation(), block);
 320   block->set_lir(_lir);
 321 
 322   __ branch_destination(block->label());
 323 
 324   if (LIRTraceExecution &&
 325       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 326       !block->is_set(BlockBegin::exception_entry_flag)) {
 327     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 328     trace_block_entry(block);
 329   }
 330 }
 331 
 332 
 333 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 334 #ifndef PRODUCT
 335   if (PrintIRWithLIR) {
 336     tty->cr();
 337   }
 338 #endif
 339 
 340   // LIR_Opr for unpinned constants shouldn't be referenced by other
 341   // blocks so clear them out after processing the block.
 342   for (int i = 0; i < _unpinned_constants.length(); i++) {
 343     _unpinned_constants.at(i)->clear_operand();
 344   }
 345   _unpinned_constants.trunc_to(0);
 346 
 347   // clear our any registers for other local constants
 348   _constants.trunc_to(0);
 349   _reg_for_constants.trunc_to(0);
 350 }
 351 
 352 
 353 void LIRGenerator::block_do(BlockBegin* block) {
 354   CHECK_BAILOUT();
 355 
 356   block_do_prolog(block);
 357   set_block(block);
 358 
 359   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 360     if (instr->is_pinned()) do_root(instr);
 361   }
 362 
 363   set_block(NULL);
 364   block_do_epilog(block);
 365 }
 366 
 367 
 368 //-------------------------LIRGenerator-----------------------------
 369 
 370 // This is where the tree-walk starts; instr must be root;
 371 void LIRGenerator::do_root(Value instr) {
 372   CHECK_BAILOUT();
 373 
 374   InstructionMark im(compilation(), instr);
 375 
 376   assert(instr->is_pinned(), "use only with roots");
 377   assert(instr->subst() == instr, "shouldn't have missed substitution");
 378 
 379   instr->visit(this);
 380 
 381   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 382          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 383 }
 384 
 385 
 386 // This is called for each node in tree; the walk stops if a root is reached
 387 void LIRGenerator::walk(Value instr) {
 388   InstructionMark im(compilation(), instr);
 389   //stop walk when encounter a root
 390   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 391     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 392   } else {
 393     assert(instr->subst() == instr, "shouldn't have missed substitution");
 394     instr->visit(this);
 395     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 396   }
 397 }
 398 
 399 
 400 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 401   assert(state != NULL, "state must be defined");
 402 
 403 #ifndef PRODUCT
 404   state->verify();
 405 #endif
 406 
 407   ValueStack* s = state;
 408   for_each_state(s) {
 409     if (s->kind() == ValueStack::EmptyExceptionState) {
 410       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 411       continue;
 412     }
 413 
 414     int index;
 415     Value value;
 416     for_each_stack_value(s, index, value) {
 417       assert(value->subst() == value, "missed substitution");
 418       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 419         walk(value);
 420         assert(value->operand()->is_valid(), "must be evaluated now");
 421       }
 422     }
 423 
 424     int bci = s->bci();
 425     IRScope* scope = s->scope();
 426     ciMethod* method = scope->method();
 427 
 428     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 429     if (bci == SynchronizationEntryBCI) {
 430       if (x->as_ExceptionObject() || x->as_Throw()) {
 431         // all locals are dead on exit from the synthetic unlocker
 432         liveness.clear();
 433       } else {
 434         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 435       }
 436     }
 437     if (!liveness.is_valid()) {
 438       // Degenerate or breakpointed method.
 439       bailout("Degenerate or breakpointed method");
 440     } else {
 441       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 442       for_each_local_value(s, index, value) {
 443         assert(value->subst() == value, "missed substition");
 444         if (liveness.at(index) && !value->type()->is_illegal()) {
 445           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 446             walk(value);
 447             assert(value->operand()->is_valid(), "must be evaluated now");
 448           }
 449         } else {
 450           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 451           s->invalidate_local(index);
 452         }
 453       }
 454     }
 455   }
 456 
 457   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 458 }
 459 
 460 
 461 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 462   return state_for(x, x->exception_state());
 463 }
 464 
 465 
 466 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 467   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 468    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 469    * the class. */
 470   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           jint c = right->as_jint();
 545           if (c > 0 && is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602 
 603   if (TwoOperandLIRForm && value != result_op
 604       // Only 32bit right shifts require two operand form on S390.
 605       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 647                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 648   if (!GenerateSynchronizationCode) return;
 649   // for slow path, use debug info for state after successful locking
 650   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 651   __ load_stack_address_monitor(monitor_no, lock);
 652   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 653   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 658   if (!GenerateSynchronizationCode) return;
 659   // setup registers
 660   LIR_Opr hdr = lock;
 661   lock = new_hdr;
 662   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 663   __ load_stack_address_monitor(monitor_no, lock);
 664   __ unlock_object(hdr, object, lock, scratch, slow_path);
 665 }
 666 
 667 #ifndef PRODUCT
 668 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 669   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 670     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 671   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 672     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 673   }
 674 }
 675 #endif
 676 
 677 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 678   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 679   // If klass is not loaded we do not know if the klass has finalizers:
 680   if (UseFastNewInstance && klass->is_loaded()
 681       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 682 
 683     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 684 
 685     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 686 
 687     assert(klass->is_loaded(), "must be loaded");
 688     // allocate space for instance
 689     assert(klass->size_helper() >= 0, "illegal instance size");
 690     const int instance_size = align_object_size(klass->size_helper());
 691     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 692                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 693   } else {
 694     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 695     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 696     __ branch_destination(slow_path->continuation());
 697   }
 698 }
 699 
 700 
 701 static bool is_constant_zero(Instruction* inst) {
 702   IntConstant* c = inst->type()->as_IntConstant();
 703   if (c) {
 704     return (c->value() == 0);
 705   }
 706   return false;
 707 }
 708 
 709 
 710 static bool positive_constant(Instruction* inst) {
 711   IntConstant* c = inst->type()->as_IntConstant();
 712   if (c) {
 713     return (c->value() >= 0);
 714   }
 715   return false;
 716 }
 717 
 718 
 719 static ciArrayKlass* as_array_klass(ciType* type) {
 720   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 721     return (ciArrayKlass*)type;
 722   } else {
 723     return NULL;
 724   }
 725 }
 726 
 727 static ciType* phi_declared_type(Phi* phi) {
 728   ciType* t = phi->operand_at(0)->declared_type();
 729   if (t == NULL) {
 730     return NULL;
 731   }
 732   for(int i = 1; i < phi->operand_count(); i++) {
 733     if (t != phi->operand_at(i)->declared_type()) {
 734       return NULL;
 735     }
 736   }
 737   return t;
 738 }
 739 
 740 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 741   Instruction* src     = x->argument_at(0);
 742   Instruction* src_pos = x->argument_at(1);
 743   Instruction* dst     = x->argument_at(2);
 744   Instruction* dst_pos = x->argument_at(3);
 745   Instruction* length  = x->argument_at(4);
 746 
 747   // first try to identify the likely type of the arrays involved
 748   ciArrayKlass* expected_type = NULL;
 749   bool is_exact = false, src_objarray = false, dst_objarray = false;
 750   {
 751     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 752     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 753     Phi* phi;
 754     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 755       src_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 758     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 759     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 760       dst_declared_type = as_array_klass(phi_declared_type(phi));
 761     }
 762 
 763     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 764       // the types exactly match so the type is fully known
 765       is_exact = true;
 766       expected_type = src_exact_type;
 767     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 768       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 769       ciArrayKlass* src_type = NULL;
 770       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 771         src_type = (ciArrayKlass*) src_exact_type;
 772       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_declared_type;
 774       }
 775       if (src_type != NULL) {
 776         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 777           is_exact = true;
 778           expected_type = dst_type;
 779         }
 780       }
 781     }
 782     // at least pass along a good guess
 783     if (expected_type == NULL) expected_type = dst_exact_type;
 784     if (expected_type == NULL) expected_type = src_declared_type;
 785     if (expected_type == NULL) expected_type = dst_declared_type;
 786 
 787     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 788     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 789   }
 790 
 791   // if a probable array type has been identified, figure out if any
 792   // of the required checks for a fast case can be elided.
 793   int flags = LIR_OpArrayCopy::all_flags;
 794 
 795   if (!src_objarray)
 796     flags &= ~LIR_OpArrayCopy::src_objarray;
 797   if (!dst_objarray)
 798     flags &= ~LIR_OpArrayCopy::dst_objarray;
 799 
 800   if (!x->arg_needs_null_check(0))
 801     flags &= ~LIR_OpArrayCopy::src_null_check;
 802   if (!x->arg_needs_null_check(2))
 803     flags &= ~LIR_OpArrayCopy::dst_null_check;
 804 
 805 
 806   if (expected_type != NULL) {
 807     Value length_limit = NULL;
 808 
 809     IfOp* ifop = length->as_IfOp();
 810     if (ifop != NULL) {
 811       // look for expressions like min(v, a.length) which ends up as
 812       //   x > y ? y : x  or  x >= y ? y : x
 813       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 814           ifop->x() == ifop->fval() &&
 815           ifop->y() == ifop->tval()) {
 816         length_limit = ifop->y();
 817       }
 818     }
 819 
 820     // try to skip null checks and range checks
 821     NewArray* src_array = src->as_NewArray();
 822     if (src_array != NULL) {
 823       flags &= ~LIR_OpArrayCopy::src_null_check;
 824       if (length_limit != NULL &&
 825           src_array->length() == length_limit &&
 826           is_constant_zero(src_pos)) {
 827         flags &= ~LIR_OpArrayCopy::src_range_check;
 828       }
 829     }
 830 
 831     NewArray* dst_array = dst->as_NewArray();
 832     if (dst_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::dst_null_check;
 834       if (length_limit != NULL &&
 835           dst_array->length() == length_limit &&
 836           is_constant_zero(dst_pos)) {
 837         flags &= ~LIR_OpArrayCopy::dst_range_check;
 838       }
 839     }
 840 
 841     // check from incoming constant values
 842     if (positive_constant(src_pos))
 843       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 844     if (positive_constant(dst_pos))
 845       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 846     if (positive_constant(length))
 847       flags &= ~LIR_OpArrayCopy::length_positive_check;
 848 
 849     // see if the range check can be elided, which might also imply
 850     // that src or dst is non-null.
 851     ArrayLength* al = length->as_ArrayLength();
 852     if (al != NULL) {
 853       if (al->array() == src) {
 854         // it's the length of the source array
 855         flags &= ~LIR_OpArrayCopy::length_positive_check;
 856         flags &= ~LIR_OpArrayCopy::src_null_check;
 857         if (is_constant_zero(src_pos))
 858           flags &= ~LIR_OpArrayCopy::src_range_check;
 859       }
 860       if (al->array() == dst) {
 861         // it's the length of the destination array
 862         flags &= ~LIR_OpArrayCopy::length_positive_check;
 863         flags &= ~LIR_OpArrayCopy::dst_null_check;
 864         if (is_constant_zero(dst_pos))
 865           flags &= ~LIR_OpArrayCopy::dst_range_check;
 866       }
 867     }
 868     if (is_exact) {
 869       flags &= ~LIR_OpArrayCopy::type_check;
 870     }
 871   }
 872 
 873   IntConstant* src_int = src_pos->type()->as_IntConstant();
 874   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 875   if (src_int && dst_int) {
 876     int s_offs = src_int->value();
 877     int d_offs = dst_int->value();
 878     if (src_int->value() >= dst_int->value()) {
 879       flags &= ~LIR_OpArrayCopy::overlapping;
 880     }
 881     if (expected_type != NULL) {
 882       BasicType t = expected_type->element_type()->basic_type();
 883       int element_size = type2aelembytes(t);
 884       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 885           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 886         flags &= ~LIR_OpArrayCopy::unaligned;
 887       }
 888     }
 889   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 890     // src and dest positions are the same, or dst is zero so assume
 891     // nonoverlapping copy.
 892     flags &= ~LIR_OpArrayCopy::overlapping;
 893   }
 894 
 895   if (src == dst) {
 896     // moving within a single array so no type checks are needed
 897     if (flags & LIR_OpArrayCopy::type_check) {
 898       flags &= ~LIR_OpArrayCopy::type_check;
 899     }
 900   }
 901   *flagsp = flags;
 902   *expected_typep = (ciArrayKlass*)expected_type;
 903 }
 904 
 905 
 906 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 907   assert(opr->is_register(), "why spill if item is not register?");
 908 
 909   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 910     LIR_Opr result = new_register(T_FLOAT);
 911     set_vreg_flag(result, must_start_in_memory);
 912     assert(opr->is_register(), "only a register can be spilled");
 913     assert(opr->value_type()->is_float(), "rounding only for floats available");
 914     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 915     return result;
 916   }
 917   return opr;
 918 }
 919 
 920 
 921 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 922   assert(type2size[t] == type2size[value->type()],
 923          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_METADATA);
 958     __ metadata2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     Phi* cur_phi = cur_val->as_Phi();
1000     if (cur_phi != NULL && cur_phi->is_illegal()) {
1001       // Phi and local would need to get invalidated
1002       // (which is unexpected for Linear Scan).
1003       // But this case is very rare so we simply bail out.
1004       bailout("propagation of illegal phi");
1005       return;
1006     }
1007     LIR_Opr operand = cur_val->operand();
1008     if (operand->is_illegal()) {
1009       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1010              "these can be produced lazily");
1011       operand = operand_for_instruction(cur_val);
1012     }
1013     resolver->move(operand, operand_for_instruction(phi));
1014   }
1015 }
1016 
1017 
1018 // Moves all stack values into their PHI position
1019 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1020   BlockBegin* bb = block();
1021   if (bb->number_of_sux() == 1) {
1022     BlockBegin* sux = bb->sux_at(0);
1023     assert(sux->number_of_preds() > 0, "invalid CFG");
1024 
1025     // a block with only one predecessor never has phi functions
1026     if (sux->number_of_preds() > 1) {
1027       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1028       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1029 
1030       ValueStack* sux_state = sux->state();
1031       Value sux_value;
1032       int index;
1033 
1034       assert(cur_state->scope() == sux_state->scope(), "not matching");
1035       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1036       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1037 
1038       for_each_stack_value(sux_state, index, sux_value) {
1039         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1040       }
1041 
1042       for_each_local_value(sux_state, index, sux_value) {
1043         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1044       }
1045 
1046       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1047     }
1048   }
1049 }
1050 
1051 
1052 LIR_Opr LIRGenerator::new_register(BasicType type) {
1053   int vreg = _virtual_register_number;
1054   // add a little fudge factor for the bailout, since the bailout is
1055   // only checked periodically.  This gives a few extra registers to
1056   // hand out before we really run out, which helps us keep from
1057   // tripping over assertions.
1058   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1059     bailout("out of virtual registers");
1060     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1061       // wrap it around
1062       _virtual_register_number = LIR_OprDesc::vreg_base;
1063     }
1064   }
1065   _virtual_register_number += 1;
1066   return LIR_OprFact::virtual_register(vreg, type);
1067 }
1068 
1069 
1070 // Try to lock using register in hint
1071 LIR_Opr LIRGenerator::rlock(Value instr) {
1072   return new_register(instr->type());
1073 }
1074 
1075 
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x) {
1078   LIR_Opr reg = rlock(x);
1079   set_result(x, reg);
1080   return reg;
1081 }
1082 
1083 
1084 // does an rlock and sets result
1085 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1086   LIR_Opr reg;
1087   switch (type) {
1088   case T_BYTE:
1089   case T_BOOLEAN:
1090     reg = rlock_byte(type);
1091     break;
1092   default:
1093     reg = rlock(x);
1094     break;
1095   }
1096 
1097   set_result(x, reg);
1098   return reg;
1099 }
1100 
1101 
1102 //---------------------------------------------------------------------
1103 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1104   ObjectType* oc = value->type()->as_ObjectType();
1105   if (oc) {
1106     return oc->constant_value();
1107   }
1108   return NULL;
1109 }
1110 
1111 
1112 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1113   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1114   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1115 
1116   // no moves are created for phi functions at the begin of exception
1117   // handlers, so assign operands manually here
1118   for_each_phi_fun(block(), phi,
1119                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1120 
1121   LIR_Opr thread_reg = getThreadPointer();
1122   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1123                exceptionOopOpr());
1124   __ move_wide(LIR_OprFact::oopConst(NULL),
1125                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1126   __ move_wide(LIR_OprFact::oopConst(NULL),
1127                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1128 
1129   LIR_Opr result = new_register(T_OBJECT);
1130   __ move(exceptionOopOpr(), result);
1131   set_result(x, result);
1132 }
1133 
1134 
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139 //                        visitor functions
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 
1145 void LIRGenerator::do_Phi(Phi* x) {
1146   // phi functions are never visited directly
1147   ShouldNotReachHere();
1148 }
1149 
1150 
1151 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1152 void LIRGenerator::do_Constant(Constant* x) {
1153   if (x->state_before() != NULL) {
1154     // Any constant with a ValueStack requires patching so emit the patch here
1155     LIR_Opr reg = rlock_result(x);
1156     CodeEmitInfo* info = state_for(x, x->state_before());
1157     __ oop2reg_patch(NULL, reg, info);
1158   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1159     if (!x->is_pinned()) {
1160       // unpinned constants are handled specially so that they can be
1161       // put into registers when they are used multiple times within a
1162       // block.  After the block completes their operand will be
1163       // cleared so that other blocks can't refer to that register.
1164       set_result(x, load_constant(x));
1165     } else {
1166       LIR_Opr res = x->operand();
1167       if (!res->is_valid()) {
1168         res = LIR_OprFact::value_type(x->type());
1169       }
1170       if (res->is_constant()) {
1171         LIR_Opr reg = rlock_result(x);
1172         __ move(res, reg);
1173       } else {
1174         set_result(x, res);
1175       }
1176     }
1177   } else {
1178     set_result(x, LIR_OprFact::value_type(x->type()));
1179   }
1180 }
1181 
1182 
1183 void LIRGenerator::do_Local(Local* x) {
1184   // operand_for_instruction has the side effect of setting the result
1185   // so there's no need to do it here.
1186   operand_for_instruction(x);
1187 }
1188 
1189 
1190 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1191   Unimplemented();
1192 }
1193 
1194 
1195 void LIRGenerator::do_Return(Return* x) {
1196   if (compilation()->env()->dtrace_method_probes()) {
1197     BasicTypeList signature;
1198     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1199     signature.append(T_METADATA); // Method*
1200     LIR_OprList* args = new LIR_OprList();
1201     args->append(getThreadPointer());
1202     LIR_Opr meth = new_register(T_METADATA);
1203     __ metadata2reg(method()->constant_encoding(), meth);
1204     args->append(meth);
1205     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1206   }
1207 
1208   if (x->type()->is_void()) {
1209     __ return_op(LIR_OprFact::illegalOpr);
1210   } else {
1211     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1212     LIRItem result(x->result(), this);
1213 
1214     result.load_item_force(reg);
1215     __ return_op(result.result());
1216   }
1217   set_no_result(x);
1218 }
1219 
1220 // Examble: ref.get()
1221 // Combination of LoadField and g1 pre-write barrier
1222 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1223 
1224   const int referent_offset = java_lang_ref_Reference::referent_offset;
1225   guarantee(referent_offset > 0, "referent offset not initialized");
1226 
1227   assert(x->number_of_arguments() == 1, "wrong type");
1228 
1229   LIRItem reference(x->argument_at(0), this);
1230   reference.load_item();
1231 
1232   // need to perform the null check on the reference objecy
1233   CodeEmitInfo* info = NULL;
1234   if (x->needs_null_check()) {
1235     info = state_for(x);
1236   }
1237 
1238   LIR_Opr result = rlock_result(x, T_OBJECT);
1239   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1240                  reference, LIR_OprFact::intConst(referent_offset), result);
1241 }
1242 
1243 // Example: clazz.isInstance(object)
1244 void LIRGenerator::do_isInstance(Intrinsic* x) {
1245   assert(x->number_of_arguments() == 2, "wrong type");
1246 
1247   // TODO could try to substitute this node with an equivalent InstanceOf
1248   // if clazz is known to be a constant Class. This will pick up newly found
1249   // constants after HIR construction. I'll leave this to a future change.
1250 
1251   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1252   // could follow the aastore example in a future change.
1253 
1254   LIRItem clazz(x->argument_at(0), this);
1255   LIRItem object(x->argument_at(1), this);
1256   clazz.load_item();
1257   object.load_item();
1258   LIR_Opr result = rlock_result(x);
1259 
1260   // need to perform null check on clazz
1261   if (x->needs_null_check()) {
1262     CodeEmitInfo* info = state_for(x);
1263     __ null_check(clazz.result(), info);
1264   }
1265 
1266   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1267                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1268                                      x->type(),
1269                                      NULL); // NULL CodeEmitInfo results in a leaf call
1270   __ move(call_result, result);
1271 }
1272 
1273 // Example: object.getClass ()
1274 void LIRGenerator::do_getClass(Intrinsic* x) {
1275   assert(x->number_of_arguments() == 1, "wrong type");
1276 
1277   LIRItem rcvr(x->argument_at(0), this);
1278   rcvr.load_item();
1279   LIR_Opr temp = new_register(T_METADATA);
1280   LIR_Opr result = rlock_result(x);
1281 
1282   // need to perform the null check on the rcvr
1283   CodeEmitInfo* info = NULL;
1284   if (x->needs_null_check()) {
1285     info = state_for(x);
1286   }
1287 
1288   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1289   // meaning of these two is mixed up (see JDK-8026837).
1290   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1291   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1292   // mirror = ((OopHandle)mirror)->resolve();
1293   access_load(IN_NATIVE, T_OBJECT,
1294               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1295 }
1296 
1297 // java.lang.Class::isPrimitive()
1298 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1299   assert(x->number_of_arguments() == 1, "wrong type");
1300 
1301   LIRItem rcvr(x->argument_at(0), this);
1302   rcvr.load_item();
1303   LIR_Opr temp = new_register(T_METADATA);
1304   LIR_Opr result = rlock_result(x);
1305 
1306   CodeEmitInfo* info = NULL;
1307   if (x->needs_null_check()) {
1308     info = state_for(x);
1309   }
1310 
1311   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1312   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1313   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1314 }
1315 
1316 
1317 // Example: Thread.currentThread()
1318 void LIRGenerator::do_currentThread(Intrinsic* x) {
1319   assert(x->number_of_arguments() == 0, "wrong type");
1320   LIR_Opr reg = rlock_result(x);
1321   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1322 }
1323 
1324 
1325 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1326   assert(x->number_of_arguments() == 1, "wrong type");
1327   LIRItem receiver(x->argument_at(0), this);
1328 
1329   receiver.load_item();
1330   BasicTypeList signature;
1331   signature.append(T_OBJECT); // receiver
1332   LIR_OprList* args = new LIR_OprList();
1333   args->append(receiver.result());
1334   CodeEmitInfo* info = state_for(x, x->state());
1335   call_runtime(&signature, args,
1336                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1337                voidType, info);
1338 
1339   set_no_result(x);
1340 }
1341 
1342 
1343 //------------------------local access--------------------------------------
1344 
1345 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1346   if (x->operand()->is_illegal()) {
1347     Constant* c = x->as_Constant();
1348     if (c != NULL) {
1349       x->set_operand(LIR_OprFact::value_type(c->type()));
1350     } else {
1351       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1352       // allocate a virtual register for this local or phi
1353       x->set_operand(rlock(x));
1354       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1355     }
1356   }
1357   return x->operand();
1358 }
1359 
1360 
1361 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1362   if (opr->is_virtual()) {
1363     return instruction_for_vreg(opr->vreg_number());
1364   }
1365   return NULL;
1366 }
1367 
1368 
1369 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1370   if (reg_num < _instruction_for_operand.length()) {
1371     return _instruction_for_operand.at(reg_num);
1372   }
1373   return NULL;
1374 }
1375 
1376 
1377 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1378   if (_vreg_flags.size_in_bits() == 0) {
1379     BitMap2D temp(100, num_vreg_flags);
1380     _vreg_flags = temp;
1381   }
1382   _vreg_flags.at_put_grow(vreg_num, f, true);
1383 }
1384 
1385 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1386   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1387     return false;
1388   }
1389   return _vreg_flags.at(vreg_num, f);
1390 }
1391 
1392 
1393 // Block local constant handling.  This code is useful for keeping
1394 // unpinned constants and constants which aren't exposed in the IR in
1395 // registers.  Unpinned Constant instructions have their operands
1396 // cleared when the block is finished so that other blocks can't end
1397 // up referring to their registers.
1398 
1399 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1400   assert(!x->is_pinned(), "only for unpinned constants");
1401   _unpinned_constants.append(x);
1402   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1403 }
1404 
1405 
1406 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1407   BasicType t = c->type();
1408   for (int i = 0; i < _constants.length(); i++) {
1409     LIR_Const* other = _constants.at(i);
1410     if (t == other->type()) {
1411       switch (t) {
1412       case T_INT:
1413       case T_FLOAT:
1414         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1415         break;
1416       case T_LONG:
1417       case T_DOUBLE:
1418         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1419         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1420         break;
1421       case T_OBJECT:
1422         if (c->as_jobject() != other->as_jobject()) continue;
1423         break;
1424       default:
1425         break;
1426       }
1427       return _reg_for_constants.at(i);
1428     }
1429   }
1430 
1431   LIR_Opr result = new_register(t);
1432   __ move((LIR_Opr)c, result);
1433   _constants.append(c);
1434   _reg_for_constants.append(result);
1435   return result;
1436 }
1437 
1438 //------------------------field access--------------------------------------
1439 
1440 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1441   assert(x->number_of_arguments() == 4, "wrong type");
1442   LIRItem obj   (x->argument_at(0), this);  // object
1443   LIRItem offset(x->argument_at(1), this);  // offset of field
1444   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1445   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1446   assert(obj.type()->tag() == objectTag, "invalid type");
1447 
1448   // In 64bit the type can be long, sparc doesn't have this assert
1449   // assert(offset.type()->tag() == intTag, "invalid type");
1450 
1451   assert(cmp.type()->tag() == type->tag(), "invalid type");
1452   assert(val.type()->tag() == type->tag(), "invalid type");
1453 
1454   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1455                                             obj, offset, cmp, val);
1456   set_result(x, result);
1457 }
1458 
1459 // Comment copied form templateTable_i486.cpp
1460 // ----------------------------------------------------------------------------
1461 // Volatile variables demand their effects be made known to all CPU's in
1462 // order.  Store buffers on most chips allow reads & writes to reorder; the
1463 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1464 // memory barrier (i.e., it's not sufficient that the interpreter does not
1465 // reorder volatile references, the hardware also must not reorder them).
1466 //
1467 // According to the new Java Memory Model (JMM):
1468 // (1) All volatiles are serialized wrt to each other.
1469 // ALSO reads & writes act as aquire & release, so:
1470 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1471 // the read float up to before the read.  It's OK for non-volatile memory refs
1472 // that happen before the volatile read to float down below it.
1473 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1474 // that happen BEFORE the write float down to after the write.  It's OK for
1475 // non-volatile memory refs that happen after the volatile write to float up
1476 // before it.
1477 //
1478 // We only put in barriers around volatile refs (they are expensive), not
1479 // _between_ memory refs (that would require us to track the flavor of the
1480 // previous memory refs).  Requirements (2) and (3) require some barriers
1481 // before volatile stores and after volatile loads.  These nearly cover
1482 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1483 // case is placed after volatile-stores although it could just as well go
1484 // before volatile-loads.
1485 
1486 
1487 void LIRGenerator::do_StoreField(StoreField* x) {
1488   bool needs_patching = x->needs_patching();
1489   bool is_volatile = x->field()->is_volatile();
1490   BasicType field_type = x->field_type();
1491 
1492   CodeEmitInfo* info = NULL;
1493   if (needs_patching) {
1494     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1495     info = state_for(x, x->state_before());
1496   } else if (x->needs_null_check()) {
1497     NullCheck* nc = x->explicit_null_check();
1498     if (nc == NULL) {
1499       info = state_for(x);
1500     } else {
1501       info = state_for(nc);
1502     }
1503   }
1504 
1505   LIRItem object(x->obj(), this);
1506   LIRItem value(x->value(),  this);
1507 
1508   object.load_item();
1509 
1510   if (is_volatile || needs_patching) {
1511     // load item if field is volatile (fewer special cases for volatiles)
1512     // load item if field not initialized
1513     // load item if field not constant
1514     // because of code patching we cannot inline constants
1515     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1516       value.load_byte_item();
1517     } else  {
1518       value.load_item();
1519     }
1520   } else {
1521     value.load_for_store(field_type);
1522   }
1523 
1524   set_no_result(x);
1525 
1526 #ifndef PRODUCT
1527   if (PrintNotLoaded && needs_patching) {
1528     tty->print_cr("   ###class not loaded at store_%s bci %d",
1529                   x->is_static() ?  "static" : "field", x->printable_bci());
1530   }
1531 #endif
1532 
1533   if (x->needs_null_check() &&
1534       (needs_patching ||
1535        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1536     if (needs_patching && field_type == T_VALUETYPE) {
1537       // We are storing a "Q" field, but the holder class is not yet loaded.
1538       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1539                                           Deoptimization::Reason_unloaded,
1540                                           Deoptimization::Action_make_not_entrant);
1541       __ branch(lir_cond_always, T_ILLEGAL, stub);
1542     } else {
1543       // Emit an explicit null check because the offset is too large.
1544       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1545       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1546       __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1547     }
1548   }
1549 
1550   DecoratorSet decorators = IN_HEAP;
1551   if (is_volatile) {
1552     decorators |= MO_SEQ_CST;
1553   }
1554   if (needs_patching) {
1555     decorators |= C1_NEEDS_PATCHING;
1556   }
1557 
1558   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1559                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1560 }
1561 
1562 // FIXME -- I can't find any other way to pass an address to access_load_at().
1563 class TempResolvedAddress: public Instruction {
1564  public:
1565   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1566     set_operand(addr);
1567   }
1568   virtual void input_values_do(ValueVisitor*) {}
1569   virtual void visit(InstructionVisitor* v)   {}
1570   virtual const char* name() const  { return "TempResolvedAddress"; }
1571 };
1572 
1573 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1574   // Find the starting address of the source (inside the array)
1575   ciType* array_type = array.value()->declared_type();
1576   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1577   assert(value_array_klass->is_loaded(), "must be");
1578 
1579   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1580   int array_header_size = value_array_klass->array_header_in_bytes();
1581   int shift = value_array_klass->log2_element_size();
1582 
1583 #ifndef _LP64
1584   LIR_Opr index_op = new_register(T_INT);
1585   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1586   // the top (shift+1) bits of index_op must be zero, or
1587   // else throw ArrayIndexOutOfBoundsException
1588   if (index.result()->is_constant()) {
1589     jint const_index = index.result()->as_jint();
1590     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1591   } else {
1592     __ shift_left(index_op, shift, index.result());
1593   }
1594 #else
1595   LIR_Opr index_op = new_register(T_LONG);
1596   if (index.result()->is_constant()) {
1597     jint const_index = index.result()->as_jint();
1598     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1599   } else {
1600     __ convert(Bytecodes::_i2l, index.result(), index_op);
1601     // Need to shift manually, as LIR_Address can scale only up to 3.
1602     __ shift_left(index_op, shift, index_op);
1603   }
1604 #endif
1605 
1606   LIR_Opr elm_op = new_pointer_register();
1607   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1608   __ leal(LIR_OprFact::address(elm_address), elm_op);
1609 
1610   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1611     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1612     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1613     int obj_offset = inner_field->offset();
1614     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1615 
1616     BasicType field_type = inner_field->type()->basic_type();
1617     switch (field_type) {
1618     case T_BYTE:
1619     case T_BOOLEAN:
1620     case T_SHORT:
1621     case T_CHAR:
1622      field_type = T_INT;
1623       break;
1624     default:
1625       break;
1626     }
1627 
1628     LIR_Opr temp = new_register(field_type);
1629     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1630     LIRItem elm_item(elm_resolved_addr, this);
1631 
1632     DecoratorSet decorators = IN_HEAP;
1633     if (is_load) {
1634       access_load_at(decorators, field_type,
1635                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1636                      NULL, NULL);
1637       access_store_at(decorators, field_type,
1638                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1639                       NULL, NULL);
1640     } else {
1641     access_load_at(decorators, field_type,
1642                    obj_item, LIR_OprFact::intConst(obj_offset), temp,
1643                    NULL, NULL);
1644     access_store_at(decorators, field_type,
1645                     elm_item, LIR_OprFact::intConst(elm_offset), temp,
1646                     NULL, NULL);
1647     }
1648   }
1649 }
1650 
1651 void LIRGenerator::check_flattened_array(LIRItem& array, CodeStub* slow_path) {
1652   LIR_Opr array_klass_reg = new_register(T_METADATA);
1653 
1654   __ move(new LIR_Address(array.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), array_klass_reg);
1655   LIR_Opr layout = new_register(T_INT);
1656   __ move(new LIR_Address(array_klass_reg, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1657   __ shift_right(layout, Klass::_lh_array_tag_shift, layout);
1658   __ cmp(lir_cond_equal, layout, LIR_OprFact::intConst(Klass::_lh_array_tag_vt_value));
1659   __ branch(lir_cond_equal, T_ILLEGAL, slow_path);
1660 }
1661 
1662 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1663   assert(x->is_pinned(),"");
1664   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1665   bool needs_range_check = x->compute_needs_range_check();
1666   bool use_length = x->length() != NULL;
1667   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
1668   bool needs_store_check = obj_store && !is_loaded_flattened_array &&
1669                                         (x->value()->as_Constant() == NULL ||
1670                                          !get_jobject_constant(x->value())->is_null_object() ||
1671                                          x->should_profile());
1672 
1673   LIRItem array(x->array(), this);
1674   LIRItem index(x->index(), this);
1675   LIRItem value(x->value(), this);
1676   LIRItem length(this);
1677 
1678   array.load_item();
1679   index.load_nonconstant();
1680 
1681   if (use_length && needs_range_check) {
1682     length.set_instruction(x->length());
1683     length.load_item();
1684   }
1685 
1686   if (needs_store_check || x->check_boolean()
1687       || is_loaded_flattened_array || x->array()->maybe_flattened_array()) {
1688     value.load_item();
1689   } else {
1690     value.load_for_store(x->elt_type());
1691   }
1692 
1693   set_no_result(x);
1694 
1695   // the CodeEmitInfo must be duplicated for each different
1696   // LIR-instruction because spilling can occur anywhere between two
1697   // instructions and so the debug information must be different
1698   CodeEmitInfo* range_check_info = state_for(x);
1699   CodeEmitInfo* null_check_info = NULL;
1700   if (x->needs_null_check()) {
1701     null_check_info = new CodeEmitInfo(range_check_info);
1702   }
1703 
1704   if (GenerateRangeChecks && needs_range_check) {
1705     if (use_length) {
1706       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1707       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1708     } else {
1709       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1710       // range_check also does the null check
1711       null_check_info = NULL;
1712     }
1713   }
1714 
1715   if (GenerateArrayStoreCheck && needs_store_check) {
1716     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1717     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1718   }
1719 
1720   if (is_loaded_flattened_array) {
1721     if (!x->is_exact_flattened_array_store()) {
1722       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1723       ciKlass* element_klass = x->array()->declared_type()->as_value_array_klass()->element_klass();
1724       flattened_array_store_check(value.result(), element_klass, info);
1725     }
1726     access_flattened_array(false, array, index, value);
1727   } else {
1728     StoreFlattenedArrayStub* slow_path = NULL;
1729 
1730     if (x->array()->maybe_flattened_array()) {
1731       // Check if we indeed have a flattened array
1732       index.load_item();
1733       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x));
1734       check_flattened_array(array, slow_path);
1735     }
1736 
1737     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1738     if (x->check_boolean()) {
1739       decorators |= C1_MASK_BOOLEAN;
1740     }
1741 
1742     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1743                     NULL, null_check_info);
1744     if (slow_path != NULL) {
1745       __ branch_destination(slow_path->continuation());
1746     }
1747   }
1748 }
1749 
1750 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1751                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1752                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1753   decorators |= ACCESS_READ;
1754   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1755   if (access.is_raw()) {
1756     _barrier_set->BarrierSetC1::load_at(access, result);
1757   } else {
1758     _barrier_set->load_at(access, result);
1759   }
1760 }
1761 
1762 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1763                                LIR_Opr addr, LIR_Opr result) {
1764   decorators |= ACCESS_READ;
1765   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1766   access.set_resolved_addr(addr);
1767   if (access.is_raw()) {
1768     _barrier_set->BarrierSetC1::load(access, result);
1769   } else {
1770     _barrier_set->load(access, result);
1771   }
1772 }
1773 
1774 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1775                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1776                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1777   decorators |= ACCESS_WRITE;
1778   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1779   if (access.is_raw()) {
1780     _barrier_set->BarrierSetC1::store_at(access, value);
1781   } else {
1782     _barrier_set->store_at(access, value);
1783   }
1784 }
1785 
1786 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1787                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1788   decorators |= ACCESS_READ;
1789   decorators |= ACCESS_WRITE;
1790   // Atomic operations are SEQ_CST by default
1791   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1792   LIRAccess access(this, decorators, base, offset, type);
1793   if (access.is_raw()) {
1794     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1795   } else {
1796     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1797   }
1798 }
1799 
1800 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1801                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1802   decorators |= ACCESS_READ;
1803   decorators |= ACCESS_WRITE;
1804   // Atomic operations are SEQ_CST by default
1805   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1806   LIRAccess access(this, decorators, base, offset, type);
1807   if (access.is_raw()) {
1808     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1809   } else {
1810     return _barrier_set->atomic_xchg_at(access, value);
1811   }
1812 }
1813 
1814 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1815                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1816   decorators |= ACCESS_READ;
1817   decorators |= ACCESS_WRITE;
1818   // Atomic operations are SEQ_CST by default
1819   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1820   LIRAccess access(this, decorators, base, offset, type);
1821   if (access.is_raw()) {
1822     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1823   } else {
1824     return _barrier_set->atomic_add_at(access, value);
1825   }
1826 }
1827 
1828 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1829   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1830   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1831     decorators |= ACCESS_READ | ACCESS_WRITE;
1832   }
1833 
1834   return _barrier_set->resolve(this, decorators, obj);
1835 }
1836 
1837 void LIRGenerator::do_LoadField(LoadField* x) {
1838   bool needs_patching = x->needs_patching();
1839   bool is_volatile = x->field()->is_volatile();
1840   BasicType field_type = x->field_type();
1841 
1842   CodeEmitInfo* info = NULL;
1843   if (needs_patching) {
1844     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1845     info = state_for(x, x->state_before());
1846   } else if (x->needs_null_check()) {
1847     NullCheck* nc = x->explicit_null_check();
1848     if (nc == NULL) {
1849       info = state_for(x);
1850     } else {
1851       info = state_for(nc);
1852     }
1853   }
1854 
1855   LIRItem object(x->obj(), this);
1856 
1857   object.load_item();
1858 
1859 #ifndef PRODUCT
1860   if (PrintNotLoaded && needs_patching) {
1861     tty->print_cr("   ###class not loaded at load_%s bci %d",
1862                   x->is_static() ?  "static" : "field", x->printable_bci());
1863   }
1864 #endif
1865 
1866   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1867   if (x->needs_null_check() &&
1868       (needs_patching ||
1869        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1870        stress_deopt)) {
1871     if (needs_patching && field_type == T_VALUETYPE) {
1872       // We are loading a "Q" field, but the holder class is not yet loaded.
1873       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1874                                           Deoptimization::Reason_unloaded,
1875                                           Deoptimization::Action_make_not_entrant);
1876       __ branch(lir_cond_always, T_ILLEGAL, stub);
1877     } else {
1878       LIR_Opr obj = object.result();
1879       if (stress_deopt) {
1880         obj = new_register(T_OBJECT);
1881         __ move(LIR_OprFact::oopConst(NULL), obj);
1882       }
1883       // Emit an explicit null check because the offset is too large.
1884       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1885       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1886       __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1887     }
1888   } else if (x->value_klass() != NULL && x->default_value() == NULL) {
1889     assert(x->is_static() && !x->value_klass()->is_loaded(), "must be");
1890     assert(needs_patching, "must be");
1891     // The value klass was not loaded so we don't know what its default value should be
1892     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1893                                         Deoptimization::Reason_unloaded,
1894                                         Deoptimization::Action_make_not_entrant);
1895     __ branch(lir_cond_always, T_ILLEGAL, stub);
1896   }
1897 
1898   DecoratorSet decorators = IN_HEAP;
1899   if (is_volatile) {
1900     decorators |= MO_SEQ_CST;
1901   }
1902   if (needs_patching) {
1903     decorators |= C1_NEEDS_PATCHING;
1904   }
1905 
1906   LIR_Opr result = rlock_result(x, field_type);
1907   access_load_at(decorators, field_type,
1908                  object, LIR_OprFact::intConst(x->offset()), result,
1909                  info ? new CodeEmitInfo(info) : NULL, info);
1910 
1911   if (x->value_klass() != NULL && x->default_value() != NULL) {
1912     LabelObj* L_end = new LabelObj();
1913     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
1914     __ branch(lir_cond_notEqual, T_OBJECT, L_end->label());
1915 
1916     LIRItem default_value(x->default_value(), this);
1917     default_value.load_item();
1918     __ move(default_value.result(), result);
1919 
1920     __ branch_destination(L_end->label());
1921   }
1922 }
1923 
1924 
1925 //------------------------java.nio.Buffer.checkIndex------------------------
1926 
1927 // int java.nio.Buffer.checkIndex(int)
1928 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1929   // NOTE: by the time we are in checkIndex() we are guaranteed that
1930   // the buffer is non-null (because checkIndex is package-private and
1931   // only called from within other methods in the buffer).
1932   assert(x->number_of_arguments() == 2, "wrong type");
1933   LIRItem buf  (x->argument_at(0), this);
1934   LIRItem index(x->argument_at(1), this);
1935   buf.load_item();
1936   index.load_item();
1937 
1938   LIR_Opr result = rlock_result(x);
1939   if (GenerateRangeChecks) {
1940     CodeEmitInfo* info = state_for(x);
1941     CodeStub* stub = new RangeCheckStub(info, index.result());
1942     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
1943     if (index.result()->is_constant()) {
1944       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1945       __ branch(lir_cond_belowEqual, T_INT, stub);
1946     } else {
1947       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
1948                   java_nio_Buffer::limit_offset(), T_INT, info);
1949       __ branch(lir_cond_aboveEqual, T_INT, stub);
1950     }
1951     __ move(index.result(), result);
1952   } else {
1953     // Just load the index into the result register
1954     __ move(index.result(), result);
1955   }
1956 }
1957 
1958 
1959 //------------------------array access--------------------------------------
1960 
1961 
1962 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1963   LIRItem array(x->array(), this);
1964   array.load_item();
1965   LIR_Opr reg = rlock_result(x);
1966 
1967   CodeEmitInfo* info = NULL;
1968   if (x->needs_null_check()) {
1969     NullCheck* nc = x->explicit_null_check();
1970     if (nc == NULL) {
1971       info = state_for(x);
1972     } else {
1973       info = state_for(nc);
1974     }
1975     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1976       LIR_Opr obj = new_register(T_OBJECT);
1977       __ move(LIR_OprFact::oopConst(NULL), obj);
1978       __ null_check(obj, new CodeEmitInfo(info));
1979     }
1980   }
1981   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1982 }
1983 
1984 
1985 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1986   bool use_length = x->length() != NULL;
1987   LIRItem array(x->array(), this);
1988   LIRItem index(x->index(), this);
1989   LIRItem length(this);
1990   bool needs_range_check = x->compute_needs_range_check();
1991 
1992   if (use_length && needs_range_check) {
1993     length.set_instruction(x->length());
1994     length.load_item();
1995   }
1996 
1997   array.load_item();
1998   if (index.is_constant() && can_inline_as_constant(x->index())) {
1999     // let it be a constant
2000     index.dont_load_item();
2001   } else {
2002     index.load_item();
2003   }
2004 
2005   CodeEmitInfo* range_check_info = state_for(x);
2006   CodeEmitInfo* null_check_info = NULL;
2007   if (x->needs_null_check()) {
2008     NullCheck* nc = x->explicit_null_check();
2009     if (nc != NULL) {
2010       null_check_info = state_for(nc);
2011     } else {
2012       null_check_info = range_check_info;
2013     }
2014     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2015       LIR_Opr obj = new_register(T_OBJECT);
2016       __ move(LIR_OprFact::oopConst(NULL), obj);
2017       __ null_check(obj, new CodeEmitInfo(null_check_info));
2018     }
2019   }
2020 
2021   if (GenerateRangeChecks && needs_range_check) {
2022     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2023       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
2024     } else if (use_length) {
2025       // TODO: use a (modified) version of array_range_check that does not require a
2026       //       constant length to be loaded to a register
2027       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2028       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
2029     } else {
2030       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2031       // The range check performs the null check, so clear it out for the load
2032       null_check_info = NULL;
2033     }
2034   }
2035 
2036   if (x->array()->is_loaded_flattened_array()) {
2037     // Find the destination address (of the NewValueTypeInstance)
2038     LIR_Opr obj = x->vt()->operand();
2039     LIRItem obj_item(x->vt(), this);
2040 
2041     access_flattened_array(true, array, index, obj_item);
2042     set_no_result(x);
2043   } else {
2044     LIR_Opr result = rlock_result(x, x->elt_type());
2045     LoadFlattenedArrayStub* slow_path = NULL;
2046 
2047     if (x->array()->maybe_flattened_array()) {
2048       index.load_item();
2049       // Check if we indeed have a flattened array
2050       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x));
2051       check_flattened_array(array, slow_path);
2052     }
2053 
2054     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2055     access_load_at(decorators, x->elt_type(),
2056                    array, index.result(), result,
2057                    NULL, null_check_info);
2058 
2059     if (slow_path != NULL) {
2060       __ branch_destination(slow_path->continuation());
2061     }
2062   }
2063 }
2064 
2065 
2066 void LIRGenerator::do_NullCheck(NullCheck* x) {
2067   if (x->can_trap()) {
2068     LIRItem value(x->obj(), this);
2069     value.load_item();
2070     CodeEmitInfo* info = state_for(x);
2071     __ null_check(value.result(), info);
2072   }
2073 }
2074 
2075 
2076 void LIRGenerator::do_TypeCast(TypeCast* x) {
2077   LIRItem value(x->obj(), this);
2078   value.load_item();
2079   // the result is the same as from the node we are casting
2080   set_result(x, value.result());
2081 }
2082 
2083 
2084 void LIRGenerator::do_Throw(Throw* x) {
2085   LIRItem exception(x->exception(), this);
2086   exception.load_item();
2087   set_no_result(x);
2088   LIR_Opr exception_opr = exception.result();
2089   CodeEmitInfo* info = state_for(x, x->state());
2090 
2091 #ifndef PRODUCT
2092   if (PrintC1Statistics) {
2093     increment_counter(Runtime1::throw_count_address(), T_INT);
2094   }
2095 #endif
2096 
2097   // check if the instruction has an xhandler in any of the nested scopes
2098   bool unwind = false;
2099   if (info->exception_handlers()->length() == 0) {
2100     // this throw is not inside an xhandler
2101     unwind = true;
2102   } else {
2103     // get some idea of the throw type
2104     bool type_is_exact = true;
2105     ciType* throw_type = x->exception()->exact_type();
2106     if (throw_type == NULL) {
2107       type_is_exact = false;
2108       throw_type = x->exception()->declared_type();
2109     }
2110     if (throw_type != NULL && throw_type->is_instance_klass()) {
2111       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2112       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2113     }
2114   }
2115 
2116   // do null check before moving exception oop into fixed register
2117   // to avoid a fixed interval with an oop during the null check.
2118   // Use a copy of the CodeEmitInfo because debug information is
2119   // different for null_check and throw.
2120   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2121     // if the exception object wasn't created using new then it might be null.
2122     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2123   }
2124 
2125   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2126     // we need to go through the exception lookup path to get JVMTI
2127     // notification done
2128     unwind = false;
2129   }
2130 
2131   // move exception oop into fixed register
2132   __ move(exception_opr, exceptionOopOpr());
2133 
2134   if (unwind) {
2135     __ unwind_exception(exceptionOopOpr());
2136   } else {
2137     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2138   }
2139 }
2140 
2141 
2142 void LIRGenerator::do_RoundFP(RoundFP* x) {
2143   LIRItem input(x->input(), this);
2144   input.load_item();
2145   LIR_Opr input_opr = input.result();
2146   assert(input_opr->is_register(), "why round if value is not in a register?");
2147   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2148   if (input_opr->is_single_fpu()) {
2149     set_result(x, round_item(input_opr)); // This code path not currently taken
2150   } else {
2151     LIR_Opr result = new_register(T_DOUBLE);
2152     set_vreg_flag(result, must_start_in_memory);
2153     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2154     set_result(x, result);
2155   }
2156 }
2157 
2158 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2159 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2160 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2161   LIRItem base(x->base(), this);
2162   LIRItem idx(this);
2163 
2164   base.load_item();
2165   if (x->has_index()) {
2166     idx.set_instruction(x->index());
2167     idx.load_nonconstant();
2168   }
2169 
2170   LIR_Opr reg = rlock_result(x, x->basic_type());
2171 
2172   int   log2_scale = 0;
2173   if (x->has_index()) {
2174     log2_scale = x->log2_scale();
2175   }
2176 
2177   assert(!x->has_index() || idx.value() == x->index(), "should match");
2178 
2179   LIR_Opr base_op = base.result();
2180   LIR_Opr index_op = idx.result();
2181 #ifndef _LP64
2182   if (base_op->type() == T_LONG) {
2183     base_op = new_register(T_INT);
2184     __ convert(Bytecodes::_l2i, base.result(), base_op);
2185   }
2186   if (x->has_index()) {
2187     if (index_op->type() == T_LONG) {
2188       LIR_Opr long_index_op = index_op;
2189       if (index_op->is_constant()) {
2190         long_index_op = new_register(T_LONG);
2191         __ move(index_op, long_index_op);
2192       }
2193       index_op = new_register(T_INT);
2194       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2195     } else {
2196       assert(x->index()->type()->tag() == intTag, "must be");
2197     }
2198   }
2199   // At this point base and index should be all ints.
2200   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2201   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2202 #else
2203   if (x->has_index()) {
2204     if (index_op->type() == T_INT) {
2205       if (!index_op->is_constant()) {
2206         index_op = new_register(T_LONG);
2207         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2208       }
2209     } else {
2210       assert(index_op->type() == T_LONG, "must be");
2211       if (index_op->is_constant()) {
2212         index_op = new_register(T_LONG);
2213         __ move(idx.result(), index_op);
2214       }
2215     }
2216   }
2217   // At this point base is a long non-constant
2218   // Index is a long register or a int constant.
2219   // We allow the constant to stay an int because that would allow us a more compact encoding by
2220   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2221   // move it into a register first.
2222   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2223   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2224                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2225 #endif
2226 
2227   BasicType dst_type = x->basic_type();
2228 
2229   LIR_Address* addr;
2230   if (index_op->is_constant()) {
2231     assert(log2_scale == 0, "must not have a scale");
2232     assert(index_op->type() == T_INT, "only int constants supported");
2233     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2234   } else {
2235 #ifdef X86
2236     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2237 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2238     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2239 #else
2240     if (index_op->is_illegal() || log2_scale == 0) {
2241       addr = new LIR_Address(base_op, index_op, dst_type);
2242     } else {
2243       LIR_Opr tmp = new_pointer_register();
2244       __ shift_left(index_op, log2_scale, tmp);
2245       addr = new LIR_Address(base_op, tmp, dst_type);
2246     }
2247 #endif
2248   }
2249 
2250   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2251     __ unaligned_move(addr, reg);
2252   } else {
2253     if (dst_type == T_OBJECT && x->is_wide()) {
2254       __ move_wide(addr, reg);
2255     } else {
2256       __ move(addr, reg);
2257     }
2258   }
2259 }
2260 
2261 
2262 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2263   int  log2_scale = 0;
2264   BasicType type = x->basic_type();
2265 
2266   if (x->has_index()) {
2267     log2_scale = x->log2_scale();
2268   }
2269 
2270   LIRItem base(x->base(), this);
2271   LIRItem value(x->value(), this);
2272   LIRItem idx(this);
2273 
2274   base.load_item();
2275   if (x->has_index()) {
2276     idx.set_instruction(x->index());
2277     idx.load_item();
2278   }
2279 
2280   if (type == T_BYTE || type == T_BOOLEAN) {
2281     value.load_byte_item();
2282   } else {
2283     value.load_item();
2284   }
2285 
2286   set_no_result(x);
2287 
2288   LIR_Opr base_op = base.result();
2289   LIR_Opr index_op = idx.result();
2290 
2291 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2292   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2293 #else
2294 #ifndef _LP64
2295   if (base_op->type() == T_LONG) {
2296     base_op = new_register(T_INT);
2297     __ convert(Bytecodes::_l2i, base.result(), base_op);
2298   }
2299   if (x->has_index()) {
2300     if (index_op->type() == T_LONG) {
2301       index_op = new_register(T_INT);
2302       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2303     }
2304   }
2305   // At this point base and index should be all ints and not constants
2306   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2307   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2308 #else
2309   if (x->has_index()) {
2310     if (index_op->type() == T_INT) {
2311       index_op = new_register(T_LONG);
2312       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2313     }
2314   }
2315   // At this point base and index are long and non-constant
2316   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2317   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2318 #endif
2319 
2320   if (log2_scale != 0) {
2321     // temporary fix (platform dependent code without shift on Intel would be better)
2322     // TODO: ARM also allows embedded shift in the address
2323     LIR_Opr tmp = new_pointer_register();
2324     if (TwoOperandLIRForm) {
2325       __ move(index_op, tmp);
2326       index_op = tmp;
2327     }
2328     __ shift_left(index_op, log2_scale, tmp);
2329     if (!TwoOperandLIRForm) {
2330       index_op = tmp;
2331     }
2332   }
2333 
2334   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2335 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2336   __ move(value.result(), addr);
2337 }
2338 
2339 
2340 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2341   BasicType type = x->basic_type();
2342   LIRItem src(x->object(), this);
2343   LIRItem off(x->offset(), this);
2344 
2345   off.load_item();
2346   src.load_item();
2347 
2348   DecoratorSet decorators = IN_HEAP;
2349 
2350   if (x->is_volatile()) {
2351     decorators |= MO_SEQ_CST;
2352   }
2353   if (type == T_BOOLEAN) {
2354     decorators |= C1_MASK_BOOLEAN;
2355   }
2356   if (type == T_ARRAY || type == T_OBJECT) {
2357     decorators |= ON_UNKNOWN_OOP_REF;
2358   }
2359 
2360   LIR_Opr result = rlock_result(x, type);
2361   access_load_at(decorators, type,
2362                  src, off.result(), result);
2363 }
2364 
2365 
2366 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2367   BasicType type = x->basic_type();
2368   LIRItem src(x->object(), this);
2369   LIRItem off(x->offset(), this);
2370   LIRItem data(x->value(), this);
2371 
2372   src.load_item();
2373   if (type == T_BOOLEAN || type == T_BYTE) {
2374     data.load_byte_item();
2375   } else {
2376     data.load_item();
2377   }
2378   off.load_item();
2379 
2380   set_no_result(x);
2381 
2382   DecoratorSet decorators = IN_HEAP;
2383   if (type == T_ARRAY || type == T_OBJECT) {
2384     decorators |= ON_UNKNOWN_OOP_REF;
2385   }
2386   if (x->is_volatile()) {
2387     decorators |= MO_SEQ_CST;
2388   }
2389   access_store_at(decorators, type, src, off.result(), data.result());
2390 }
2391 
2392 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2393   BasicType type = x->basic_type();
2394   LIRItem src(x->object(), this);
2395   LIRItem off(x->offset(), this);
2396   LIRItem value(x->value(), this);
2397 
2398   DecoratorSet decorators = IN_HEAP | MO_SEQ_CST;
2399 
2400   if (type == T_ARRAY || type == T_OBJECT) {
2401     decorators |= ON_UNKNOWN_OOP_REF;
2402   }
2403 
2404   LIR_Opr result;
2405   if (x->is_add()) {
2406     result = access_atomic_add_at(decorators, type, src, off, value);
2407   } else {
2408     result = access_atomic_xchg_at(decorators, type, src, off, value);
2409   }
2410   set_result(x, result);
2411 }
2412 
2413 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2414   int lng = x->length();
2415 
2416   for (int i = 0; i < lng; i++) {
2417     SwitchRange* one_range = x->at(i);
2418     int low_key = one_range->low_key();
2419     int high_key = one_range->high_key();
2420     BlockBegin* dest = one_range->sux();
2421     if (low_key == high_key) {
2422       __ cmp(lir_cond_equal, value, low_key);
2423       __ branch(lir_cond_equal, T_INT, dest);
2424     } else if (high_key - low_key == 1) {
2425       __ cmp(lir_cond_equal, value, low_key);
2426       __ branch(lir_cond_equal, T_INT, dest);
2427       __ cmp(lir_cond_equal, value, high_key);
2428       __ branch(lir_cond_equal, T_INT, dest);
2429     } else {
2430       LabelObj* L = new LabelObj();
2431       __ cmp(lir_cond_less, value, low_key);
2432       __ branch(lir_cond_less, T_INT, L->label());
2433       __ cmp(lir_cond_lessEqual, value, high_key);
2434       __ branch(lir_cond_lessEqual, T_INT, dest);
2435       __ branch_destination(L->label());
2436     }
2437   }
2438   __ jump(default_sux);
2439 }
2440 
2441 
2442 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2443   SwitchRangeList* res = new SwitchRangeList();
2444   int len = x->length();
2445   if (len > 0) {
2446     BlockBegin* sux = x->sux_at(0);
2447     int key = x->lo_key();
2448     BlockBegin* default_sux = x->default_sux();
2449     SwitchRange* range = new SwitchRange(key, sux);
2450     for (int i = 0; i < len; i++, key++) {
2451       BlockBegin* new_sux = x->sux_at(i);
2452       if (sux == new_sux) {
2453         // still in same range
2454         range->set_high_key(key);
2455       } else {
2456         // skip tests which explicitly dispatch to the default
2457         if (sux != default_sux) {
2458           res->append(range);
2459         }
2460         range = new SwitchRange(key, new_sux);
2461       }
2462       sux = new_sux;
2463     }
2464     if (res->length() == 0 || res->last() != range)  res->append(range);
2465   }
2466   return res;
2467 }
2468 
2469 
2470 // we expect the keys to be sorted by increasing value
2471 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2472   SwitchRangeList* res = new SwitchRangeList();
2473   int len = x->length();
2474   if (len > 0) {
2475     BlockBegin* default_sux = x->default_sux();
2476     int key = x->key_at(0);
2477     BlockBegin* sux = x->sux_at(0);
2478     SwitchRange* range = new SwitchRange(key, sux);
2479     for (int i = 1; i < len; i++) {
2480       int new_key = x->key_at(i);
2481       BlockBegin* new_sux = x->sux_at(i);
2482       if (key+1 == new_key && sux == new_sux) {
2483         // still in same range
2484         range->set_high_key(new_key);
2485       } else {
2486         // skip tests which explicitly dispatch to the default
2487         if (range->sux() != default_sux) {
2488           res->append(range);
2489         }
2490         range = new SwitchRange(new_key, new_sux);
2491       }
2492       key = new_key;
2493       sux = new_sux;
2494     }
2495     if (res->length() == 0 || res->last() != range)  res->append(range);
2496   }
2497   return res;
2498 }
2499 
2500 
2501 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2502   LIRItem tag(x->tag(), this);
2503   tag.load_item();
2504   set_no_result(x);
2505 
2506   if (x->is_safepoint()) {
2507     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2508   }
2509 
2510   // move values into phi locations
2511   move_to_phi(x->state());
2512 
2513   int lo_key = x->lo_key();
2514   int len = x->length();
2515   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2516   LIR_Opr value = tag.result();
2517 
2518   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2519     ciMethod* method = x->state()->scope()->method();
2520     ciMethodData* md = method->method_data_or_null();
2521     assert(md != NULL, "Sanity");
2522     ciProfileData* data = md->bci_to_data(x->state()->bci());
2523     assert(data != NULL, "must have profiling data");
2524     assert(data->is_MultiBranchData(), "bad profile data?");
2525     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2526     LIR_Opr md_reg = new_register(T_METADATA);
2527     __ metadata2reg(md->constant_encoding(), md_reg);
2528     LIR_Opr data_offset_reg = new_pointer_register();
2529     LIR_Opr tmp_reg = new_pointer_register();
2530 
2531     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2532     for (int i = 0; i < len; i++) {
2533       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2534       __ cmp(lir_cond_equal, value, i + lo_key);
2535       __ move(data_offset_reg, tmp_reg);
2536       __ cmove(lir_cond_equal,
2537                LIR_OprFact::intptrConst(count_offset),
2538                tmp_reg,
2539                data_offset_reg, T_INT);
2540     }
2541 
2542     LIR_Opr data_reg = new_pointer_register();
2543     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2544     __ move(data_addr, data_reg);
2545     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2546     __ move(data_reg, data_addr);
2547   }
2548 
2549   if (UseTableRanges) {
2550     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2551   } else {
2552     for (int i = 0; i < len; i++) {
2553       __ cmp(lir_cond_equal, value, i + lo_key);
2554       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2555     }
2556     __ jump(x->default_sux());
2557   }
2558 }
2559 
2560 
2561 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2562   LIRItem tag(x->tag(), this);
2563   tag.load_item();
2564   set_no_result(x);
2565 
2566   if (x->is_safepoint()) {
2567     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2568   }
2569 
2570   // move values into phi locations
2571   move_to_phi(x->state());
2572 
2573   LIR_Opr value = tag.result();
2574   int len = x->length();
2575 
2576   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2577     ciMethod* method = x->state()->scope()->method();
2578     ciMethodData* md = method->method_data_or_null();
2579     assert(md != NULL, "Sanity");
2580     ciProfileData* data = md->bci_to_data(x->state()->bci());
2581     assert(data != NULL, "must have profiling data");
2582     assert(data->is_MultiBranchData(), "bad profile data?");
2583     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2584     LIR_Opr md_reg = new_register(T_METADATA);
2585     __ metadata2reg(md->constant_encoding(), md_reg);
2586     LIR_Opr data_offset_reg = new_pointer_register();
2587     LIR_Opr tmp_reg = new_pointer_register();
2588 
2589     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2590     for (int i = 0; i < len; i++) {
2591       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2592       __ cmp(lir_cond_equal, value, x->key_at(i));
2593       __ move(data_offset_reg, tmp_reg);
2594       __ cmove(lir_cond_equal,
2595                LIR_OprFact::intptrConst(count_offset),
2596                tmp_reg,
2597                data_offset_reg, T_INT);
2598     }
2599 
2600     LIR_Opr data_reg = new_pointer_register();
2601     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2602     __ move(data_addr, data_reg);
2603     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2604     __ move(data_reg, data_addr);
2605   }
2606 
2607   if (UseTableRanges) {
2608     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2609   } else {
2610     int len = x->length();
2611     for (int i = 0; i < len; i++) {
2612       __ cmp(lir_cond_equal, value, x->key_at(i));
2613       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2614     }
2615     __ jump(x->default_sux());
2616   }
2617 }
2618 
2619 
2620 void LIRGenerator::do_Goto(Goto* x) {
2621   set_no_result(x);
2622 
2623   if (block()->next()->as_OsrEntry()) {
2624     // need to free up storage used for OSR entry point
2625     LIR_Opr osrBuffer = block()->next()->operand();
2626     BasicTypeList signature;
2627     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2628     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2629     __ move(osrBuffer, cc->args()->at(0));
2630     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2631                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2632   }
2633 
2634   if (x->is_safepoint()) {
2635     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2636 
2637     // increment backedge counter if needed
2638     CodeEmitInfo* info = state_for(x, state);
2639     increment_backedge_counter(info, x->profiled_bci());
2640     CodeEmitInfo* safepoint_info = state_for(x, state);
2641     __ safepoint(safepoint_poll_register(), safepoint_info);
2642   }
2643 
2644   // Gotos can be folded Ifs, handle this case.
2645   if (x->should_profile()) {
2646     ciMethod* method = x->profiled_method();
2647     assert(method != NULL, "method should be set if branch is profiled");
2648     ciMethodData* md = method->method_data_or_null();
2649     assert(md != NULL, "Sanity");
2650     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2651     assert(data != NULL, "must have profiling data");
2652     int offset;
2653     if (x->direction() == Goto::taken) {
2654       assert(data->is_BranchData(), "need BranchData for two-way branches");
2655       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2656     } else if (x->direction() == Goto::not_taken) {
2657       assert(data->is_BranchData(), "need BranchData for two-way branches");
2658       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2659     } else {
2660       assert(data->is_JumpData(), "need JumpData for branches");
2661       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2662     }
2663     LIR_Opr md_reg = new_register(T_METADATA);
2664     __ metadata2reg(md->constant_encoding(), md_reg);
2665 
2666     increment_counter(new LIR_Address(md_reg, offset,
2667                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2668   }
2669 
2670   // emit phi-instruction move after safepoint since this simplifies
2671   // describing the state as the safepoint.
2672   move_to_phi(x->state());
2673 
2674   __ jump(x->default_sux());
2675 }
2676 
2677 /**
2678  * Emit profiling code if needed for arguments, parameters, return value types
2679  *
2680  * @param md                    MDO the code will update at runtime
2681  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2682  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2683  * @param profiled_k            current profile
2684  * @param obj                   IR node for the object to be profiled
2685  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2686  *                              Set once we find an update to make and use for next ones.
2687  * @param not_null              true if we know obj cannot be null
2688  * @param signature_at_call_k   signature at call for obj
2689  * @param callee_signature_k    signature of callee for obj
2690  *                              at call and callee signatures differ at method handle call
2691  * @return                      the only klass we know will ever be seen at this profile point
2692  */
2693 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2694                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2695                                     ciKlass* callee_signature_k) {
2696   ciKlass* result = NULL;
2697   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2698   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2699   // known not to be null or null bit already set and already set to
2700   // unknown: nothing we can do to improve profiling
2701   if (!do_null && !do_update) {
2702     return result;
2703   }
2704 
2705   ciKlass* exact_klass = NULL;
2706   Compilation* comp = Compilation::current();
2707   if (do_update) {
2708     // try to find exact type, using CHA if possible, so that loading
2709     // the klass from the object can be avoided
2710     ciType* type = obj->exact_type();
2711     if (type == NULL) {
2712       type = obj->declared_type();
2713       type = comp->cha_exact_type(type);
2714     }
2715     assert(type == NULL || type->is_klass(), "type should be class");
2716     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2717 
2718     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2719   }
2720 
2721   if (!do_null && !do_update) {
2722     return result;
2723   }
2724 
2725   ciKlass* exact_signature_k = NULL;
2726   if (do_update) {
2727     // Is the type from the signature exact (the only one possible)?
2728     exact_signature_k = signature_at_call_k->exact_klass();
2729     if (exact_signature_k == NULL) {
2730       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2731     } else {
2732       result = exact_signature_k;
2733       // Known statically. No need to emit any code: prevent
2734       // LIR_Assembler::emit_profile_type() from emitting useless code
2735       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2736     }
2737     // exact_klass and exact_signature_k can be both non NULL but
2738     // different if exact_klass is loaded after the ciObject for
2739     // exact_signature_k is created.
2740     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2741       // sometimes the type of the signature is better than the best type
2742       // the compiler has
2743       exact_klass = exact_signature_k;
2744     }
2745     if (callee_signature_k != NULL &&
2746         callee_signature_k != signature_at_call_k) {
2747       ciKlass* improved_klass = callee_signature_k->exact_klass();
2748       if (improved_klass == NULL) {
2749         improved_klass = comp->cha_exact_type(callee_signature_k);
2750       }
2751       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2752         exact_klass = exact_signature_k;
2753       }
2754     }
2755     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2756   }
2757 
2758   if (!do_null && !do_update) {
2759     return result;
2760   }
2761 
2762   if (mdp == LIR_OprFact::illegalOpr) {
2763     mdp = new_register(T_METADATA);
2764     __ metadata2reg(md->constant_encoding(), mdp);
2765     if (md_base_offset != 0) {
2766       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2767       mdp = new_pointer_register();
2768       __ leal(LIR_OprFact::address(base_type_address), mdp);
2769     }
2770   }
2771   LIRItem value(obj, this);
2772   value.load_item();
2773   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2774                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2775   return result;
2776 }
2777 
2778 // profile parameters on entry to the root of the compilation
2779 void LIRGenerator::profile_parameters(Base* x) {
2780   if (compilation()->profile_parameters()) {
2781     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2782     ciMethodData* md = scope()->method()->method_data_or_null();
2783     assert(md != NULL, "Sanity");
2784 
2785     if (md->parameters_type_data() != NULL) {
2786       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2787       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2788       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2789       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2790         LIR_Opr src = args->at(i);
2791         assert(!src->is_illegal(), "check");
2792         BasicType t = src->type();
2793         if (t == T_OBJECT || t == T_ARRAY) {
2794           intptr_t profiled_k = parameters->type(j);
2795           Local* local = x->state()->local_at(java_index)->as_Local();
2796           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2797                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2798                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2799           // If the profile is known statically set it once for all and do not emit any code
2800           if (exact != NULL) {
2801             md->set_parameter_type(j, exact);
2802           }
2803           j++;
2804         }
2805         java_index += type2size[t];
2806       }
2807     }
2808   }
2809 }
2810 
2811 void LIRGenerator::do_Base(Base* x) {
2812   __ std_entry(LIR_OprFact::illegalOpr);
2813   // Emit moves from physical registers / stack slots to virtual registers
2814   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2815   IRScope* irScope = compilation()->hir()->top_scope();
2816   int java_index = 0;
2817   for (int i = 0; i < args->length(); i++) {
2818     LIR_Opr src = args->at(i);
2819     assert(!src->is_illegal(), "check");
2820     BasicType t = src->type();
2821 
2822     // Types which are smaller than int are passed as int, so
2823     // correct the type which passed.
2824     switch (t) {
2825     case T_BYTE:
2826     case T_BOOLEAN:
2827     case T_SHORT:
2828     case T_CHAR:
2829       t = T_INT;
2830       break;
2831     default:
2832       break;
2833     }
2834 
2835     LIR_Opr dest = new_register(t);
2836     __ move(src, dest);
2837 
2838     // Assign new location to Local instruction for this local
2839     Local* local = x->state()->local_at(java_index)->as_Local();
2840     assert(local != NULL, "Locals for incoming arguments must have been created");
2841 #ifndef __SOFTFP__
2842     // The java calling convention passes double as long and float as int.
2843     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2844 #endif // __SOFTFP__
2845     local->set_operand(dest);
2846     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2847     java_index += type2size[t];
2848   }
2849 
2850   if (compilation()->env()->dtrace_method_probes()) {
2851     BasicTypeList signature;
2852     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2853     signature.append(T_METADATA); // Method*
2854     LIR_OprList* args = new LIR_OprList();
2855     args->append(getThreadPointer());
2856     LIR_Opr meth = new_register(T_METADATA);
2857     __ metadata2reg(method()->constant_encoding(), meth);
2858     args->append(meth);
2859     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2860   }
2861 
2862   if (method()->is_synchronized()) {
2863     LIR_Opr obj;
2864     if (method()->is_static()) {
2865       obj = new_register(T_OBJECT);
2866       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2867     } else {
2868       Local* receiver = x->state()->local_at(0)->as_Local();
2869       assert(receiver != NULL, "must already exist");
2870       obj = receiver->operand();
2871     }
2872     assert(obj->is_valid(), "must be valid");
2873 
2874     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2875       LIR_Opr lock = syncLockOpr();
2876       __ load_stack_address_monitor(0, lock);
2877 
2878       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2879       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2880 
2881       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2882       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2883     }
2884   }
2885   if (compilation()->age_code()) {
2886     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2887     decrement_age(info);
2888   }
2889   // increment invocation counters if needed
2890   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2891     profile_parameters(x);
2892     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2893     increment_invocation_counter(info);
2894   }
2895 
2896   // all blocks with a successor must end with an unconditional jump
2897   // to the successor even if they are consecutive
2898   __ jump(x->default_sux());
2899 }
2900 
2901 
2902 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2903   // construct our frame and model the production of incoming pointer
2904   // to the OSR buffer.
2905   __ osr_entry(LIR_Assembler::osrBufferPointer());
2906   LIR_Opr result = rlock_result(x);
2907   __ move(LIR_Assembler::osrBufferPointer(), result);
2908 }
2909 
2910 
2911 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2912   assert(args->length() == arg_list->length(),
2913          "args=%d, arg_list=%d", args->length(), arg_list->length());
2914   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2915     LIRItem* param = args->at(i);
2916     LIR_Opr loc = arg_list->at(i);
2917     if (loc->is_register()) {
2918       param->load_item_force(loc);
2919     } else {
2920       LIR_Address* addr = loc->as_address_ptr();
2921       param->load_for_store(addr->type());
2922       assert(addr->type() != T_VALUETYPE, "not supported yet");
2923       if (addr->type() == T_OBJECT) {
2924         __ move_wide(param->result(), addr);
2925       } else
2926         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2927           __ unaligned_move(param->result(), addr);
2928         } else {
2929           __ move(param->result(), addr);
2930         }
2931     }
2932   }
2933 
2934   if (x->has_receiver()) {
2935     LIRItem* receiver = args->at(0);
2936     LIR_Opr loc = arg_list->at(0);
2937     if (loc->is_register()) {
2938       receiver->load_item_force(loc);
2939     } else {
2940       assert(loc->is_address(), "just checking");
2941       receiver->load_for_store(T_OBJECT);
2942       __ move_wide(receiver->result(), loc->as_address_ptr());
2943     }
2944   }
2945 }
2946 
2947 
2948 // Visits all arguments, returns appropriate items without loading them
2949 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2950   LIRItemList* argument_items = new LIRItemList();
2951   if (x->has_receiver()) {
2952     LIRItem* receiver = new LIRItem(x->receiver(), this);
2953     argument_items->append(receiver);
2954   }
2955   for (int i = 0; i < x->number_of_arguments(); i++) {
2956     LIRItem* param = new LIRItem(x->argument_at(i), this);
2957     argument_items->append(param);
2958   }
2959   return argument_items;
2960 }
2961 
2962 
2963 // The invoke with receiver has following phases:
2964 //   a) traverse and load/lock receiver;
2965 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2966 //   c) push receiver on stack
2967 //   d) load each of the items and push on stack
2968 //   e) unlock receiver
2969 //   f) move receiver into receiver-register %o0
2970 //   g) lock result registers and emit call operation
2971 //
2972 // Before issuing a call, we must spill-save all values on stack
2973 // that are in caller-save register. "spill-save" moves those registers
2974 // either in a free callee-save register or spills them if no free
2975 // callee save register is available.
2976 //
2977 // The problem is where to invoke spill-save.
2978 // - if invoked between e) and f), we may lock callee save
2979 //   register in "spill-save" that destroys the receiver register
2980 //   before f) is executed
2981 // - if we rearrange f) to be earlier (by loading %o0) it
2982 //   may destroy a value on the stack that is currently in %o0
2983 //   and is waiting to be spilled
2984 // - if we keep the receiver locked while doing spill-save,
2985 //   we cannot spill it as it is spill-locked
2986 //
2987 void LIRGenerator::do_Invoke(Invoke* x) {
2988   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2989 
2990   LIR_OprList* arg_list = cc->args();
2991   LIRItemList* args = invoke_visit_arguments(x);
2992   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2993 
2994   // setup result register
2995   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2996   if (x->type() != voidType) {
2997     result_register = result_register_for(x->type());
2998   }
2999 
3000   CodeEmitInfo* info = state_for(x, x->state());
3001 
3002   invoke_load_arguments(x, args, arg_list);
3003 
3004   if (x->has_receiver()) {
3005     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3006     receiver = args->at(0)->result();
3007   }
3008 
3009   // emit invoke code
3010   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3011 
3012   // JSR 292
3013   // Preserve the SP over MethodHandle call sites, if needed.
3014   ciMethod* target = x->target();
3015   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3016                                   target->is_method_handle_intrinsic() ||
3017                                   target->is_compiled_lambda_form());
3018   if (is_method_handle_invoke) {
3019     info->set_is_method_handle_invoke(true);
3020     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3021         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3022     }
3023   }
3024 
3025   switch (x->code()) {
3026     case Bytecodes::_invokestatic:
3027       __ call_static(target, result_register,
3028                      SharedRuntime::get_resolve_static_call_stub(),
3029                      arg_list, info);
3030       break;
3031     case Bytecodes::_invokespecial:
3032     case Bytecodes::_invokevirtual:
3033     case Bytecodes::_invokeinterface:
3034       // for loaded and final (method or class) target we still produce an inline cache,
3035       // in order to be able to call mixed mode
3036       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3037         __ call_opt_virtual(target, receiver, result_register,
3038                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3039                             arg_list, info);
3040       } else if (x->vtable_index() < 0) {
3041         __ call_icvirtual(target, receiver, result_register,
3042                           SharedRuntime::get_resolve_virtual_call_stub(),
3043                           arg_list, info);
3044       } else {
3045         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3046         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3047         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3048       }
3049       break;
3050     case Bytecodes::_invokedynamic: {
3051       __ call_dynamic(target, receiver, result_register,
3052                       SharedRuntime::get_resolve_static_call_stub(),
3053                       arg_list, info);
3054       break;
3055     }
3056     default:
3057       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3058       break;
3059   }
3060 
3061   // JSR 292
3062   // Restore the SP after MethodHandle call sites, if needed.
3063   if (is_method_handle_invoke
3064       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3065     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3066   }
3067 
3068   if (x->type()->is_float() || x->type()->is_double()) {
3069     // Force rounding of results from non-strictfp when in strictfp
3070     // scope (or when we don't know the strictness of the callee, to
3071     // be safe.)
3072     if (method()->is_strict()) {
3073       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3074         result_register = round_item(result_register);
3075       }
3076     }
3077   }
3078 
3079   if (result_register->is_valid()) {
3080     LIR_Opr result = rlock_result(x);
3081     __ move(result_register, result);
3082   }
3083 }
3084 
3085 
3086 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3087   assert(x->number_of_arguments() == 1, "wrong type");
3088   LIRItem value       (x->argument_at(0), this);
3089   LIR_Opr reg = rlock_result(x);
3090   value.load_item();
3091   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3092   __ move(tmp, reg);
3093 }
3094 
3095 
3096 
3097 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3098 void LIRGenerator::do_IfOp(IfOp* x) {
3099 #ifdef ASSERT
3100   {
3101     ValueTag xtag = x->x()->type()->tag();
3102     ValueTag ttag = x->tval()->type()->tag();
3103     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3104     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3105     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3106   }
3107 #endif
3108 
3109   LIRItem left(x->x(), this);
3110   LIRItem right(x->y(), this);
3111   left.load_item();
3112   if (can_inline_as_constant(right.value())) {
3113     right.dont_load_item();
3114   } else {
3115     right.load_item();
3116   }
3117 
3118   LIRItem t_val(x->tval(), this);
3119   LIRItem f_val(x->fval(), this);
3120   t_val.dont_load_item();
3121   f_val.dont_load_item();
3122   LIR_Opr reg = rlock_result(x);
3123 
3124   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3125   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3126 }
3127 
3128 #ifdef JFR_HAVE_INTRINSICS
3129 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3130   CodeEmitInfo* info = state_for(x);
3131   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3132 
3133   assert(info != NULL, "must have info");
3134   LIRItem arg(x->argument_at(0), this);
3135 
3136   arg.load_item();
3137   LIR_Opr klass = new_register(T_METADATA);
3138   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3139   LIR_Opr id = new_register(T_LONG);
3140   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3141   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3142 
3143   __ move(trace_id_addr, id);
3144   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3145   __ store(id, trace_id_addr);
3146 
3147 #ifdef TRACE_ID_META_BITS
3148   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3149 #endif
3150 #ifdef TRACE_ID_SHIFT
3151   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3152 #endif
3153 
3154   __ move(id, rlock_result(x));
3155 }
3156 
3157 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3158   LabelObj* L_end = new LabelObj();
3159 
3160   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3161                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3162                                            T_OBJECT);
3163   LIR_Opr result = rlock_result(x);
3164   __ move_wide(jobj_addr, result);
3165   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3166   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3167 
3168   LIR_Opr jobj = new_register(T_OBJECT);
3169   __ move(result, jobj);
3170   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3171 
3172   __ branch_destination(L_end->label());
3173 }
3174 
3175 #endif
3176 
3177 
3178 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3179   assert(x->number_of_arguments() == 0, "wrong type");
3180   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3181   BasicTypeList signature;
3182   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3183   LIR_Opr reg = result_register_for(x->type());
3184   __ call_runtime_leaf(routine, getThreadTemp(),
3185                        reg, new LIR_OprList());
3186   LIR_Opr result = rlock_result(x);
3187   __ move(reg, result);
3188 }
3189 
3190 
3191 
3192 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3193   switch (x->id()) {
3194   case vmIntrinsics::_intBitsToFloat      :
3195   case vmIntrinsics::_doubleToRawLongBits :
3196   case vmIntrinsics::_longBitsToDouble    :
3197   case vmIntrinsics::_floatToRawIntBits   : {
3198     do_FPIntrinsics(x);
3199     break;
3200   }
3201 
3202 #ifdef JFR_HAVE_INTRINSICS
3203   case vmIntrinsics::_getClassId:
3204     do_ClassIDIntrinsic(x);
3205     break;
3206   case vmIntrinsics::_getEventWriter:
3207     do_getEventWriter(x);
3208     break;
3209   case vmIntrinsics::_counterTime:
3210     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3211     break;
3212 #endif
3213 
3214   case vmIntrinsics::_currentTimeMillis:
3215     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3216     break;
3217 
3218   case vmIntrinsics::_nanoTime:
3219     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3220     break;
3221 
3222   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3223   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3224   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3225   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3226   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3227 
3228   case vmIntrinsics::_dlog:           // fall through
3229   case vmIntrinsics::_dlog10:         // fall through
3230   case vmIntrinsics::_dabs:           // fall through
3231   case vmIntrinsics::_dsqrt:          // fall through
3232   case vmIntrinsics::_dtan:           // fall through
3233   case vmIntrinsics::_dsin :          // fall through
3234   case vmIntrinsics::_dcos :          // fall through
3235   case vmIntrinsics::_dexp :          // fall through
3236   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3237   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3238 
3239   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3240   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3241 
3242   // java.nio.Buffer.checkIndex
3243   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3244 
3245   case vmIntrinsics::_compareAndSetReference:
3246     do_CompareAndSwap(x, objectType);
3247     break;
3248   case vmIntrinsics::_compareAndSetInt:
3249     do_CompareAndSwap(x, intType);
3250     break;
3251   case vmIntrinsics::_compareAndSetLong:
3252     do_CompareAndSwap(x, longType);
3253     break;
3254 
3255   case vmIntrinsics::_loadFence :
3256     __ membar_acquire();
3257     break;
3258   case vmIntrinsics::_storeFence:
3259     __ membar_release();
3260     break;
3261   case vmIntrinsics::_fullFence :
3262     __ membar();
3263     break;
3264   case vmIntrinsics::_onSpinWait:
3265     __ on_spin_wait();
3266     break;
3267   case vmIntrinsics::_Reference_get:
3268     do_Reference_get(x);
3269     break;
3270 
3271   case vmIntrinsics::_updateCRC32:
3272   case vmIntrinsics::_updateBytesCRC32:
3273   case vmIntrinsics::_updateByteBufferCRC32:
3274     do_update_CRC32(x);
3275     break;
3276 
3277   case vmIntrinsics::_updateBytesCRC32C:
3278   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3279     do_update_CRC32C(x);
3280     break;
3281 
3282   case vmIntrinsics::_vectorizedMismatch:
3283     do_vectorizedMismatch(x);
3284     break;
3285 
3286   default: ShouldNotReachHere(); break;
3287   }
3288 }
3289 
3290 void LIRGenerator::profile_arguments(ProfileCall* x) {
3291   if (compilation()->profile_arguments()) {
3292     int bci = x->bci_of_invoke();
3293     ciMethodData* md = x->method()->method_data_or_null();
3294     assert(md != NULL, "Sanity");
3295     ciProfileData* data = md->bci_to_data(bci);
3296     if (data != NULL) {
3297       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3298           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3299         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3300         int base_offset = md->byte_offset_of_slot(data, extra);
3301         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3302         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3303 
3304         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3305         int start = 0;
3306         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3307         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3308           // first argument is not profiled at call (method handle invoke)
3309           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3310           start = 1;
3311         }
3312         ciSignature* callee_signature = x->callee()->signature();
3313         // method handle call to virtual method
3314         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3315         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3316 
3317         bool ignored_will_link;
3318         ciSignature* signature_at_call = NULL;
3319         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3320         ciSignatureStream signature_at_call_stream(signature_at_call);
3321 
3322         // if called through method handle invoke, some arguments may have been popped
3323         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3324           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3325           ciKlass* exact = profile_type(md, base_offset, off,
3326               args->type(i), x->profiled_arg_at(i+start), mdp,
3327               !x->arg_needs_null_check(i+start),
3328               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3329           if (exact != NULL) {
3330             md->set_argument_type(bci, i, exact);
3331           }
3332         }
3333       } else {
3334 #ifdef ASSERT
3335         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3336         int n = x->nb_profiled_args();
3337         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3338             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3339             "only at JSR292 bytecodes");
3340 #endif
3341       }
3342     }
3343   }
3344 }
3345 
3346 // profile parameters on entry to an inlined method
3347 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3348   if (compilation()->profile_parameters() && x->inlined()) {
3349     ciMethodData* md = x->callee()->method_data_or_null();
3350     if (md != NULL) {
3351       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3352       if (parameters_type_data != NULL) {
3353         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3354         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3355         bool has_receiver = !x->callee()->is_static();
3356         ciSignature* sig = x->callee()->signature();
3357         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3358         int i = 0; // to iterate on the Instructions
3359         Value arg = x->recv();
3360         bool not_null = false;
3361         int bci = x->bci_of_invoke();
3362         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3363         // The first parameter is the receiver so that's what we start
3364         // with if it exists. One exception is method handle call to
3365         // virtual method: the receiver is in the args list
3366         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3367           i = 1;
3368           arg = x->profiled_arg_at(0);
3369           not_null = !x->arg_needs_null_check(0);
3370         }
3371         int k = 0; // to iterate on the profile data
3372         for (;;) {
3373           intptr_t profiled_k = parameters->type(k);
3374           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3375                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3376                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3377           // If the profile is known statically set it once for all and do not emit any code
3378           if (exact != NULL) {
3379             md->set_parameter_type(k, exact);
3380           }
3381           k++;
3382           if (k >= parameters_type_data->number_of_parameters()) {
3383 #ifdef ASSERT
3384             int extra = 0;
3385             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3386                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3387                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3388               extra += 1;
3389             }
3390             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3391 #endif
3392             break;
3393           }
3394           arg = x->profiled_arg_at(i);
3395           not_null = !x->arg_needs_null_check(i);
3396           i++;
3397         }
3398       }
3399     }
3400   }
3401 }
3402 
3403 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3404   // Need recv in a temporary register so it interferes with the other temporaries
3405   LIR_Opr recv = LIR_OprFact::illegalOpr;
3406   LIR_Opr mdo = new_register(T_METADATA);
3407   // tmp is used to hold the counters on SPARC
3408   LIR_Opr tmp = new_pointer_register();
3409 
3410   if (x->nb_profiled_args() > 0) {
3411     profile_arguments(x);
3412   }
3413 
3414   // profile parameters on inlined method entry including receiver
3415   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3416     profile_parameters_at_call(x);
3417   }
3418 
3419   if (x->recv() != NULL) {
3420     LIRItem value(x->recv(), this);
3421     value.load_item();
3422     recv = new_register(T_OBJECT);
3423     __ move(value.result(), recv);
3424   }
3425   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3426 }
3427 
3428 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3429   int bci = x->bci_of_invoke();
3430   ciMethodData* md = x->method()->method_data_or_null();
3431   assert(md != NULL, "Sanity");
3432   ciProfileData* data = md->bci_to_data(bci);
3433   if (data != NULL) {
3434     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3435     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3436     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3437 
3438     bool ignored_will_link;
3439     ciSignature* signature_at_call = NULL;
3440     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3441 
3442     // The offset within the MDO of the entry to update may be too large
3443     // to be used in load/store instructions on some platforms. So have
3444     // profile_type() compute the address of the profile in a register.
3445     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3446         ret->type(), x->ret(), mdp,
3447         !x->needs_null_check(),
3448         signature_at_call->return_type()->as_klass(),
3449         x->callee()->signature()->return_type()->as_klass());
3450     if (exact != NULL) {
3451       md->set_return_type(bci, exact);
3452     }
3453   }
3454 }
3455 
3456 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3457   // We can safely ignore accessors here, since c2 will inline them anyway,
3458   // accessors are also always mature.
3459   if (!x->inlinee()->is_accessor()) {
3460     CodeEmitInfo* info = state_for(x, x->state(), true);
3461     // Notify the runtime very infrequently only to take care of counter overflows
3462     int freq_log = Tier23InlineeNotifyFreqLog;
3463     double scale;
3464     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3465       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3466     }
3467     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3468   }
3469 }
3470 
3471 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3472   if (compilation()->count_backedges()) {
3473     __ cmp(cond, left, right);
3474     LIR_Opr step = new_register(T_INT);
3475     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3476     LIR_Opr zero = LIR_OprFact::intConst(0);
3477     __ cmove(cond,
3478         (left_bci < bci) ? plus_one : zero,
3479         (right_bci < bci) ? plus_one : zero,
3480         step, left->type());
3481     increment_backedge_counter(info, step, bci);
3482   }
3483 }
3484 
3485 
3486 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3487   int freq_log = 0;
3488   int level = compilation()->env()->comp_level();
3489   if (level == CompLevel_limited_profile) {
3490     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3491   } else if (level == CompLevel_full_profile) {
3492     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3493   } else {
3494     ShouldNotReachHere();
3495   }
3496   // Increment the appropriate invocation/backedge counter and notify the runtime.
3497   double scale;
3498   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3499     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3500   }
3501   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3502 }
3503 
3504 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3505   ciMethod* method = info->scope()->method();
3506   MethodCounters* mc_adr = method->ensure_method_counters();
3507   if (mc_adr != NULL) {
3508     LIR_Opr mc = new_pointer_register();
3509     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3510     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3511     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3512     LIR_Opr result = new_register(T_INT);
3513     __ load(counter, result);
3514     __ sub(result, LIR_OprFact::intConst(1), result);
3515     __ store(result, counter);
3516     // DeoptimizeStub will reexecute from the current state in code info.
3517     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3518                                          Deoptimization::Action_make_not_entrant);
3519     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3520     __ branch(lir_cond_lessEqual, T_INT, deopt);
3521   }
3522 }
3523 
3524 
3525 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3526                                                 ciMethod *method, LIR_Opr step, int frequency,
3527                                                 int bci, bool backedge, bool notify) {
3528   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3529   int level = _compilation->env()->comp_level();
3530   assert(level > CompLevel_simple, "Shouldn't be here");
3531 
3532   int offset = -1;
3533   LIR_Opr counter_holder = NULL;
3534   if (level == CompLevel_limited_profile) {
3535     MethodCounters* counters_adr = method->ensure_method_counters();
3536     if (counters_adr == NULL) {
3537       bailout("method counters allocation failed");
3538       return;
3539     }
3540     counter_holder = new_pointer_register();
3541     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3542     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3543                                  MethodCounters::invocation_counter_offset());
3544   } else if (level == CompLevel_full_profile) {
3545     counter_holder = new_register(T_METADATA);
3546     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3547                                  MethodData::invocation_counter_offset());
3548     ciMethodData* md = method->method_data_or_null();
3549     assert(md != NULL, "Sanity");
3550     __ metadata2reg(md->constant_encoding(), counter_holder);
3551   } else {
3552     ShouldNotReachHere();
3553   }
3554   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3555   LIR_Opr result = new_register(T_INT);
3556   __ load(counter, result);
3557   __ add(result, step, result);
3558   __ store(result, counter);
3559   if (notify && (!backedge || UseOnStackReplacement)) {
3560     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3561     // The bci for info can point to cmp for if's we want the if bci
3562     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3563     int freq = frequency << InvocationCounter::count_shift;
3564     if (freq == 0) {
3565       if (!step->is_constant()) {
3566         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3567         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3568       } else {
3569         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3570       }
3571     } else {
3572       LIR_Opr mask = load_immediate(freq, T_INT);
3573       if (!step->is_constant()) {
3574         // If step is 0, make sure the overflow check below always fails
3575         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3576         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3577       }
3578       __ logical_and(result, mask, result);
3579       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3580       __ branch(lir_cond_equal, T_INT, overflow);
3581     }
3582     __ branch_destination(overflow->continuation());
3583   }
3584 }
3585 
3586 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3587   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3588   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3589 
3590   if (x->pass_thread()) {
3591     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3592     args->append(getThreadPointer());
3593   }
3594 
3595   for (int i = 0; i < x->number_of_arguments(); i++) {
3596     Value a = x->argument_at(i);
3597     LIRItem* item = new LIRItem(a, this);
3598     item->load_item();
3599     args->append(item->result());
3600     signature->append(as_BasicType(a->type()));
3601   }
3602 
3603   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3604   if (x->type() == voidType) {
3605     set_no_result(x);
3606   } else {
3607     __ move(result, rlock_result(x));
3608   }
3609 }
3610 
3611 #ifdef ASSERT
3612 void LIRGenerator::do_Assert(Assert *x) {
3613   ValueTag tag = x->x()->type()->tag();
3614   If::Condition cond = x->cond();
3615 
3616   LIRItem xitem(x->x(), this);
3617   LIRItem yitem(x->y(), this);
3618   LIRItem* xin = &xitem;
3619   LIRItem* yin = &yitem;
3620 
3621   assert(tag == intTag, "Only integer assertions are valid!");
3622 
3623   xin->load_item();
3624   yin->dont_load_item();
3625 
3626   set_no_result(x);
3627 
3628   LIR_Opr left = xin->result();
3629   LIR_Opr right = yin->result();
3630 
3631   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3632 }
3633 #endif
3634 
3635 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3636 
3637 
3638   Instruction *a = x->x();
3639   Instruction *b = x->y();
3640   if (!a || StressRangeCheckElimination) {
3641     assert(!b || StressRangeCheckElimination, "B must also be null");
3642 
3643     CodeEmitInfo *info = state_for(x, x->state());
3644     CodeStub* stub = new PredicateFailedStub(info);
3645 
3646     __ jump(stub);
3647   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3648     int a_int = a->type()->as_IntConstant()->value();
3649     int b_int = b->type()->as_IntConstant()->value();
3650 
3651     bool ok = false;
3652 
3653     switch(x->cond()) {
3654       case Instruction::eql: ok = (a_int == b_int); break;
3655       case Instruction::neq: ok = (a_int != b_int); break;
3656       case Instruction::lss: ok = (a_int < b_int); break;
3657       case Instruction::leq: ok = (a_int <= b_int); break;
3658       case Instruction::gtr: ok = (a_int > b_int); break;
3659       case Instruction::geq: ok = (a_int >= b_int); break;
3660       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3661       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3662       default: ShouldNotReachHere();
3663     }
3664 
3665     if (ok) {
3666 
3667       CodeEmitInfo *info = state_for(x, x->state());
3668       CodeStub* stub = new PredicateFailedStub(info);
3669 
3670       __ jump(stub);
3671     }
3672   } else {
3673 
3674     ValueTag tag = x->x()->type()->tag();
3675     If::Condition cond = x->cond();
3676     LIRItem xitem(x->x(), this);
3677     LIRItem yitem(x->y(), this);
3678     LIRItem* xin = &xitem;
3679     LIRItem* yin = &yitem;
3680 
3681     assert(tag == intTag, "Only integer deoptimizations are valid!");
3682 
3683     xin->load_item();
3684     yin->dont_load_item();
3685     set_no_result(x);
3686 
3687     LIR_Opr left = xin->result();
3688     LIR_Opr right = yin->result();
3689 
3690     CodeEmitInfo *info = state_for(x, x->state());
3691     CodeStub* stub = new PredicateFailedStub(info);
3692 
3693     __ cmp(lir_cond(cond), left, right);
3694     __ branch(lir_cond(cond), right->type(), stub);
3695   }
3696 }
3697 
3698 
3699 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3700   LIRItemList args(1);
3701   LIRItem value(arg1, this);
3702   args.append(&value);
3703   BasicTypeList signature;
3704   signature.append(as_BasicType(arg1->type()));
3705 
3706   return call_runtime(&signature, &args, entry, result_type, info);
3707 }
3708 
3709 
3710 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3711   LIRItemList args(2);
3712   LIRItem value1(arg1, this);
3713   LIRItem value2(arg2, this);
3714   args.append(&value1);
3715   args.append(&value2);
3716   BasicTypeList signature;
3717   signature.append(as_BasicType(arg1->type()));
3718   signature.append(as_BasicType(arg2->type()));
3719 
3720   return call_runtime(&signature, &args, entry, result_type, info);
3721 }
3722 
3723 
3724 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3725                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3726   // get a result register
3727   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3728   LIR_Opr result = LIR_OprFact::illegalOpr;
3729   if (result_type->tag() != voidTag) {
3730     result = new_register(result_type);
3731     phys_reg = result_register_for(result_type);
3732   }
3733 
3734   // move the arguments into the correct location
3735   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3736   assert(cc->length() == args->length(), "argument mismatch");
3737   for (int i = 0; i < args->length(); i++) {
3738     LIR_Opr arg = args->at(i);
3739     LIR_Opr loc = cc->at(i);
3740     if (loc->is_register()) {
3741       __ move(arg, loc);
3742     } else {
3743       LIR_Address* addr = loc->as_address_ptr();
3744 //           if (!can_store_as_constant(arg)) {
3745 //             LIR_Opr tmp = new_register(arg->type());
3746 //             __ move(arg, tmp);
3747 //             arg = tmp;
3748 //           }
3749       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3750         __ unaligned_move(arg, addr);
3751       } else {
3752         __ move(arg, addr);
3753       }
3754     }
3755   }
3756 
3757   if (info) {
3758     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3759   } else {
3760     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3761   }
3762   if (result->is_valid()) {
3763     __ move(phys_reg, result);
3764   }
3765   return result;
3766 }
3767 
3768 
3769 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3770                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3771   // get a result register
3772   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3773   LIR_Opr result = LIR_OprFact::illegalOpr;
3774   if (result_type->tag() != voidTag) {
3775     result = new_register(result_type);
3776     phys_reg = result_register_for(result_type);
3777   }
3778 
3779   // move the arguments into the correct location
3780   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3781 
3782   assert(cc->length() == args->length(), "argument mismatch");
3783   for (int i = 0; i < args->length(); i++) {
3784     LIRItem* arg = args->at(i);
3785     LIR_Opr loc = cc->at(i);
3786     if (loc->is_register()) {
3787       arg->load_item_force(loc);
3788     } else {
3789       LIR_Address* addr = loc->as_address_ptr();
3790       arg->load_for_store(addr->type());
3791       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3792         __ unaligned_move(arg->result(), addr);
3793       } else {
3794         __ move(arg->result(), addr);
3795       }
3796     }
3797   }
3798 
3799   if (info) {
3800     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3801   } else {
3802     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3803   }
3804   if (result->is_valid()) {
3805     __ move(phys_reg, result);
3806   }
3807   return result;
3808 }
3809 
3810 void LIRGenerator::do_MemBar(MemBar* x) {
3811   LIR_Code code = x->code();
3812   switch(code) {
3813   case lir_membar_acquire   : __ membar_acquire(); break;
3814   case lir_membar_release   : __ membar_release(); break;
3815   case lir_membar           : __ membar(); break;
3816   case lir_membar_loadload  : __ membar_loadload(); break;
3817   case lir_membar_storestore: __ membar_storestore(); break;
3818   case lir_membar_loadstore : __ membar_loadstore(); break;
3819   case lir_membar_storeload : __ membar_storeload(); break;
3820   default                   : ShouldNotReachHere(); break;
3821   }
3822 }
3823 
3824 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3825   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3826   if (TwoOperandLIRForm) {
3827     __ move(value, value_fixed);
3828     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3829   } else {
3830     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3831   }
3832   LIR_Opr klass = new_register(T_METADATA);
3833   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3834   null_check_info = NULL;
3835   LIR_Opr layout = new_register(T_INT);
3836   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3837   int diffbit = Klass::layout_helper_boolean_diffbit();
3838   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3839   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3840   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3841   value = value_fixed;
3842   return value;
3843 }
3844 
3845 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3846   if (x->check_boolean()) {
3847     value = mask_boolean(array, value, null_check_info);
3848   }
3849   return value;
3850 }