1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset(int max_vregs) {
  59   // Initialize array sizes
  60   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _virtual_operands.trunc_to(0);
  62   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _other_operands.trunc_to(0);
  64   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _vreg_table.trunc_to(0);
  66 }
  67 
  68 
  69 
  70 //--------------------------------------------------------------
  71 // PhiResolver
  72 
  73 // Resolves cycles:
  74 //
  75 //  r1 := r2  becomes  temp := r1
  76 //  r2 := r1           r1 := r2
  77 //                     r2 := temp
  78 // and orders moves:
  79 //
  80 //  r2 := r3  becomes  r1 := r2
  81 //  r1 := r2           r2 := r3
  82 
  83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  84  : _gen(gen)
  85  , _state(gen->resolver_state())
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset(max_vregs);
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == NULL, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != NULL) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = NULL;
 154       move(NULL, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, NULL);
 175     assert(node == NULL || node->operand() == opr, "");
 176     if (node == NULL) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 213   }
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {
 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {
 239       _result = LIR_OprFact::value_type(value()->type());
 240     }
 241   } else if (type == T_BYTE || type == T_BOOLEAN) {
 242     load_byte_item();
 243   } else {
 244     load_item();
 245   }
 246 }
 247 
 248 void LIRItem::load_item_force(LIR_Opr reg) {
 249   LIR_Opr r = result();
 250   if (r != reg) {
 251 #if !defined(ARM) && !defined(E500V2)
 252     if (r->type() != reg->type()) {
 253       // moves between different types need an intervening spill slot
 254       r = _gen->force_to_spill(r, reg->type());
 255     }
 256 #endif
 257     __ move(r, reg);
 258     _result = reg;
 259   }
 260 }
 261 
 262 ciObject* LIRItem::get_jobject_constant() const {
 263   ObjectType* oc = type()->as_ObjectType();
 264   if (oc) {
 265     return oc->constant_value();
 266   }
 267   return NULL;
 268 }
 269 
 270 
 271 jint LIRItem::get_jint_constant() const {
 272   assert(is_constant() && value() != NULL, "");
 273   assert(type()->as_IntConstant() != NULL, "type check");
 274   return type()->as_IntConstant()->value();
 275 }
 276 
 277 
 278 jint LIRItem::get_address_constant() const {
 279   assert(is_constant() && value() != NULL, "");
 280   assert(type()->as_AddressConstant() != NULL, "type check");
 281   return type()->as_AddressConstant()->value();
 282 }
 283 
 284 
 285 jfloat LIRItem::get_jfloat_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_FloatConstant() != NULL, "type check");
 288   return type()->as_FloatConstant()->value();
 289 }
 290 
 291 
 292 jdouble LIRItem::get_jdouble_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_DoubleConstant() != NULL, "type check");
 295   return type()->as_DoubleConstant()->value();
 296 }
 297 
 298 
 299 jlong LIRItem::get_jlong_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_LongConstant() != NULL, "type check");
 302   return type()->as_LongConstant()->value();
 303 }
 304 
 305 
 306 
 307 //--------------------------------------------------------------
 308 
 309 
 310 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 311 #ifndef PRODUCT
 312   if (PrintIRWithLIR) {
 313     block->print();
 314   }
 315 #endif
 316 
 317   // set up the list of LIR instructions
 318   assert(block->lir() == NULL, "LIR list already computed for this block");
 319   _lir = new LIR_List(compilation(), block);
 320   block->set_lir(_lir);
 321 
 322   __ branch_destination(block->label());
 323 
 324   if (LIRTraceExecution &&
 325       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 326       !block->is_set(BlockBegin::exception_entry_flag)) {
 327     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 328     trace_block_entry(block);
 329   }
 330 }
 331 
 332 
 333 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 334 #ifndef PRODUCT
 335   if (PrintIRWithLIR) {
 336     tty->cr();
 337   }
 338 #endif
 339 
 340   // LIR_Opr for unpinned constants shouldn't be referenced by other
 341   // blocks so clear them out after processing the block.
 342   for (int i = 0; i < _unpinned_constants.length(); i++) {
 343     _unpinned_constants.at(i)->clear_operand();
 344   }
 345   _unpinned_constants.trunc_to(0);
 346 
 347   // clear our any registers for other local constants
 348   _constants.trunc_to(0);
 349   _reg_for_constants.trunc_to(0);
 350 }
 351 
 352 
 353 void LIRGenerator::block_do(BlockBegin* block) {
 354   CHECK_BAILOUT();
 355 
 356   block_do_prolog(block);
 357   set_block(block);
 358 
 359   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 360     if (instr->is_pinned()) do_root(instr);
 361   }
 362 
 363   set_block(NULL);
 364   block_do_epilog(block);
 365 }
 366 
 367 
 368 //-------------------------LIRGenerator-----------------------------
 369 
 370 // This is where the tree-walk starts; instr must be root;
 371 void LIRGenerator::do_root(Value instr) {
 372   CHECK_BAILOUT();
 373 
 374   InstructionMark im(compilation(), instr);
 375 
 376   assert(instr->is_pinned(), "use only with roots");
 377   assert(instr->subst() == instr, "shouldn't have missed substitution");
 378 
 379   instr->visit(this);
 380 
 381   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 382          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 383 }
 384 
 385 
 386 // This is called for each node in tree; the walk stops if a root is reached
 387 void LIRGenerator::walk(Value instr) {
 388   InstructionMark im(compilation(), instr);
 389   //stop walk when encounter a root
 390   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 391     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 392   } else {
 393     assert(instr->subst() == instr, "shouldn't have missed substitution");
 394     instr->visit(this);
 395     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 396   }
 397 }
 398 
 399 
 400 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 401   assert(state != NULL, "state must be defined");
 402 
 403 #ifndef PRODUCT
 404   state->verify();
 405 #endif
 406 
 407   ValueStack* s = state;
 408   for_each_state(s) {
 409     if (s->kind() == ValueStack::EmptyExceptionState) {
 410       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 411       continue;
 412     }
 413 
 414     int index;
 415     Value value;
 416     for_each_stack_value(s, index, value) {
 417       assert(value->subst() == value, "missed substitution");
 418       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 419         walk(value);
 420         assert(value->operand()->is_valid(), "must be evaluated now");
 421       }
 422     }
 423 
 424     int bci = s->bci();
 425     IRScope* scope = s->scope();
 426     ciMethod* method = scope->method();
 427 
 428     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 429     if (bci == SynchronizationEntryBCI) {
 430       if (x->as_ExceptionObject() || x->as_Throw()) {
 431         // all locals are dead on exit from the synthetic unlocker
 432         liveness.clear();
 433       } else {
 434         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 435       }
 436     }
 437     if (!liveness.is_valid()) {
 438       // Degenerate or breakpointed method.
 439       bailout("Degenerate or breakpointed method");
 440     } else {
 441       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 442       for_each_local_value(s, index, value) {
 443         assert(value->subst() == value, "missed substition");
 444         if (liveness.at(index) && !value->type()->is_illegal()) {
 445           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 446             walk(value);
 447             assert(value->operand()->is_valid(), "must be evaluated now");
 448           }
 449         } else {
 450           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 451           s->invalidate_local(index);
 452         }
 453       }
 454     }
 455   }
 456 
 457   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 458 }
 459 
 460 
 461 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 462   return state_for(x, x->exception_state());
 463 }
 464 
 465 
 466 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 467   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 468    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 469    * the class. */
 470   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           jint c = right->as_jint();
 545           if (c > 0 && is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602 
 603   if (TwoOperandLIRForm && value != result_op
 604       // Only 32bit right shifts require two operand form on S390.
 605       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 647                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 648   if (!GenerateSynchronizationCode) return;
 649   // for slow path, use debug info for state after successful locking
 650   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 651   __ load_stack_address_monitor(monitor_no, lock);
 652   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 653   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 658   if (!GenerateSynchronizationCode) return;
 659   // setup registers
 660   LIR_Opr hdr = lock;
 661   lock = new_hdr;
 662   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 663   __ load_stack_address_monitor(monitor_no, lock);
 664   __ unlock_object(hdr, object, lock, scratch, slow_path);
 665 }
 666 
 667 #ifndef PRODUCT
 668 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 669   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 670     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 671   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 672     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 673   }
 674 }
 675 #endif
 676 
 677 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 678   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 679   // If klass is not loaded we do not know if the klass has finalizers:
 680   if (UseFastNewInstance && klass->is_loaded()
 681       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 682 
 683     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 684 
 685     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 686 
 687     assert(klass->is_loaded(), "must be loaded");
 688     // allocate space for instance
 689     assert(klass->size_helper() >= 0, "illegal instance size");
 690     const int instance_size = align_object_size(klass->size_helper());
 691     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 692                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 693   } else {
 694     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 695     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 696     __ branch_destination(slow_path->continuation());
 697   }
 698 }
 699 
 700 
 701 static bool is_constant_zero(Instruction* inst) {
 702   IntConstant* c = inst->type()->as_IntConstant();
 703   if (c) {
 704     return (c->value() == 0);
 705   }
 706   return false;
 707 }
 708 
 709 
 710 static bool positive_constant(Instruction* inst) {
 711   IntConstant* c = inst->type()->as_IntConstant();
 712   if (c) {
 713     return (c->value() >= 0);
 714   }
 715   return false;
 716 }
 717 
 718 
 719 static ciArrayKlass* as_array_klass(ciType* type) {
 720   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 721     return (ciArrayKlass*)type;
 722   } else {
 723     return NULL;
 724   }
 725 }
 726 
 727 static ciType* phi_declared_type(Phi* phi) {
 728   ciType* t = phi->operand_at(0)->declared_type();
 729   if (t == NULL) {
 730     return NULL;
 731   }
 732   for(int i = 1; i < phi->operand_count(); i++) {
 733     if (t != phi->operand_at(i)->declared_type()) {
 734       return NULL;
 735     }
 736   }
 737   return t;
 738 }
 739 
 740 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 741   Instruction* src     = x->argument_at(0);
 742   Instruction* src_pos = x->argument_at(1);
 743   Instruction* dst     = x->argument_at(2);
 744   Instruction* dst_pos = x->argument_at(3);
 745   Instruction* length  = x->argument_at(4);
 746 
 747   // first try to identify the likely type of the arrays involved
 748   ciArrayKlass* expected_type = NULL;
 749   bool is_exact = false, src_objarray = false, dst_objarray = false;
 750   {
 751     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 752     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 753     Phi* phi;
 754     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 755       src_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 758     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 759     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 760       dst_declared_type = as_array_klass(phi_declared_type(phi));
 761     }
 762 
 763     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 764       // the types exactly match so the type is fully known
 765       is_exact = true;
 766       expected_type = src_exact_type;
 767     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 768       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 769       ciArrayKlass* src_type = NULL;
 770       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 771         src_type = (ciArrayKlass*) src_exact_type;
 772       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_declared_type;
 774       }
 775       if (src_type != NULL) {
 776         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 777           is_exact = true;
 778           expected_type = dst_type;
 779         }
 780       }
 781     }
 782     // at least pass along a good guess
 783     if (expected_type == NULL) expected_type = dst_exact_type;
 784     if (expected_type == NULL) expected_type = src_declared_type;
 785     if (expected_type == NULL) expected_type = dst_declared_type;
 786 
 787     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 788     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 789   }
 790 
 791   // if a probable array type has been identified, figure out if any
 792   // of the required checks for a fast case can be elided.
 793   int flags = LIR_OpArrayCopy::all_flags;
 794 
 795   if (!src_objarray)
 796     flags &= ~LIR_OpArrayCopy::src_objarray;
 797   if (!dst_objarray)
 798     flags &= ~LIR_OpArrayCopy::dst_objarray;
 799 
 800   if (!x->arg_needs_null_check(0))
 801     flags &= ~LIR_OpArrayCopy::src_null_check;
 802   if (!x->arg_needs_null_check(2))
 803     flags &= ~LIR_OpArrayCopy::dst_null_check;
 804 
 805 
 806   if (expected_type != NULL) {
 807     Value length_limit = NULL;
 808 
 809     IfOp* ifop = length->as_IfOp();
 810     if (ifop != NULL) {
 811       // look for expressions like min(v, a.length) which ends up as
 812       //   x > y ? y : x  or  x >= y ? y : x
 813       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 814           ifop->x() == ifop->fval() &&
 815           ifop->y() == ifop->tval()) {
 816         length_limit = ifop->y();
 817       }
 818     }
 819 
 820     // try to skip null checks and range checks
 821     NewArray* src_array = src->as_NewArray();
 822     if (src_array != NULL) {
 823       flags &= ~LIR_OpArrayCopy::src_null_check;
 824       if (length_limit != NULL &&
 825           src_array->length() == length_limit &&
 826           is_constant_zero(src_pos)) {
 827         flags &= ~LIR_OpArrayCopy::src_range_check;
 828       }
 829     }
 830 
 831     NewArray* dst_array = dst->as_NewArray();
 832     if (dst_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::dst_null_check;
 834       if (length_limit != NULL &&
 835           dst_array->length() == length_limit &&
 836           is_constant_zero(dst_pos)) {
 837         flags &= ~LIR_OpArrayCopy::dst_range_check;
 838       }
 839     }
 840 
 841     // check from incoming constant values
 842     if (positive_constant(src_pos))
 843       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 844     if (positive_constant(dst_pos))
 845       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 846     if (positive_constant(length))
 847       flags &= ~LIR_OpArrayCopy::length_positive_check;
 848 
 849     // see if the range check can be elided, which might also imply
 850     // that src or dst is non-null.
 851     ArrayLength* al = length->as_ArrayLength();
 852     if (al != NULL) {
 853       if (al->array() == src) {
 854         // it's the length of the source array
 855         flags &= ~LIR_OpArrayCopy::length_positive_check;
 856         flags &= ~LIR_OpArrayCopy::src_null_check;
 857         if (is_constant_zero(src_pos))
 858           flags &= ~LIR_OpArrayCopy::src_range_check;
 859       }
 860       if (al->array() == dst) {
 861         // it's the length of the destination array
 862         flags &= ~LIR_OpArrayCopy::length_positive_check;
 863         flags &= ~LIR_OpArrayCopy::dst_null_check;
 864         if (is_constant_zero(dst_pos))
 865           flags &= ~LIR_OpArrayCopy::dst_range_check;
 866       }
 867     }
 868     if (is_exact) {
 869       flags &= ~LIR_OpArrayCopy::type_check;
 870     }
 871   }
 872 
 873   IntConstant* src_int = src_pos->type()->as_IntConstant();
 874   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 875   if (src_int && dst_int) {
 876     int s_offs = src_int->value();
 877     int d_offs = dst_int->value();
 878     if (src_int->value() >= dst_int->value()) {
 879       flags &= ~LIR_OpArrayCopy::overlapping;
 880     }
 881     if (expected_type != NULL) {
 882       BasicType t = expected_type->element_type()->basic_type();
 883       int element_size = type2aelembytes(t);
 884       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 885           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 886         flags &= ~LIR_OpArrayCopy::unaligned;
 887       }
 888     }
 889   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 890     // src and dest positions are the same, or dst is zero so assume
 891     // nonoverlapping copy.
 892     flags &= ~LIR_OpArrayCopy::overlapping;
 893   }
 894 
 895   if (src == dst) {
 896     // moving within a single array so no type checks are needed
 897     if (flags & LIR_OpArrayCopy::type_check) {
 898       flags &= ~LIR_OpArrayCopy::type_check;
 899     }
 900   }
 901   *flagsp = flags;
 902   *expected_typep = (ciArrayKlass*)expected_type;
 903 }
 904 
 905 
 906 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 907   assert(opr->is_register(), "why spill if item is not register?");
 908 
 909   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 910     LIR_Opr result = new_register(T_FLOAT);
 911     set_vreg_flag(result, must_start_in_memory);
 912     assert(opr->is_register(), "only a register can be spilled");
 913     assert(opr->value_type()->is_float(), "rounding only for floats available");
 914     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 915     return result;
 916   }
 917   return opr;
 918 }
 919 
 920 
 921 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 922   assert(type2size[t] == type2size[value->type()],
 923          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_METADATA);
 958     __ metadata2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     Phi* cur_phi = cur_val->as_Phi();
1000     if (cur_phi != NULL && cur_phi->is_illegal()) {
1001       // Phi and local would need to get invalidated
1002       // (which is unexpected for Linear Scan).
1003       // But this case is very rare so we simply bail out.
1004       bailout("propagation of illegal phi");
1005       return;
1006     }
1007     LIR_Opr operand = cur_val->operand();
1008     if (operand->is_illegal()) {
1009       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1010              "these can be produced lazily");
1011       operand = operand_for_instruction(cur_val);
1012     }
1013     resolver->move(operand, operand_for_instruction(phi));
1014   }
1015 }
1016 
1017 
1018 // Moves all stack values into their PHI position
1019 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1020   BlockBegin* bb = block();
1021   if (bb->number_of_sux() == 1) {
1022     BlockBegin* sux = bb->sux_at(0);
1023     assert(sux->number_of_preds() > 0, "invalid CFG");
1024 
1025     // a block with only one predecessor never has phi functions
1026     if (sux->number_of_preds() > 1) {
1027       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1028       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1029 
1030       ValueStack* sux_state = sux->state();
1031       Value sux_value;
1032       int index;
1033 
1034       assert(cur_state->scope() == sux_state->scope(), "not matching");
1035       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1036       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1037 
1038       for_each_stack_value(sux_state, index, sux_value) {
1039         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1040       }
1041 
1042       for_each_local_value(sux_state, index, sux_value) {
1043         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1044       }
1045 
1046       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1047     }
1048   }
1049 }
1050 
1051 
1052 LIR_Opr LIRGenerator::new_register(BasicType type) {
1053   int vreg = _virtual_register_number;
1054   // add a little fudge factor for the bailout, since the bailout is
1055   // only checked periodically.  This gives a few extra registers to
1056   // hand out before we really run out, which helps us keep from
1057   // tripping over assertions.
1058   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1059     bailout("out of virtual registers");
1060     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1061       // wrap it around
1062       _virtual_register_number = LIR_OprDesc::vreg_base;
1063     }
1064   }
1065   _virtual_register_number += 1;
1066   return LIR_OprFact::virtual_register(vreg, type);
1067 }
1068 
1069 
1070 // Try to lock using register in hint
1071 LIR_Opr LIRGenerator::rlock(Value instr) {
1072   return new_register(instr->type());
1073 }
1074 
1075 
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x) {
1078   LIR_Opr reg = rlock(x);
1079   set_result(x, reg);
1080   return reg;
1081 }
1082 
1083 
1084 // does an rlock and sets result
1085 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1086   LIR_Opr reg;
1087   switch (type) {
1088   case T_BYTE:
1089   case T_BOOLEAN:
1090     reg = rlock_byte(type);
1091     break;
1092   default:
1093     reg = rlock(x);
1094     break;
1095   }
1096 
1097   set_result(x, reg);
1098   return reg;
1099 }
1100 
1101 
1102 //---------------------------------------------------------------------
1103 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1104   ObjectType* oc = value->type()->as_ObjectType();
1105   if (oc) {
1106     return oc->constant_value();
1107   }
1108   return NULL;
1109 }
1110 
1111 
1112 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1113   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1114   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1115 
1116   // no moves are created for phi functions at the begin of exception
1117   // handlers, so assign operands manually here
1118   for_each_phi_fun(block(), phi,
1119                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1120 
1121   LIR_Opr thread_reg = getThreadPointer();
1122   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1123                exceptionOopOpr());
1124   __ move_wide(LIR_OprFact::oopConst(NULL),
1125                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1126   __ move_wide(LIR_OprFact::oopConst(NULL),
1127                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1128 
1129   LIR_Opr result = new_register(T_OBJECT);
1130   __ move(exceptionOopOpr(), result);
1131   set_result(x, result);
1132 }
1133 
1134 
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139 //                        visitor functions
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 
1145 void LIRGenerator::do_Phi(Phi* x) {
1146   // phi functions are never visited directly
1147   ShouldNotReachHere();
1148 }
1149 
1150 
1151 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1152 void LIRGenerator::do_Constant(Constant* x) {
1153   if (x->state_before() != NULL) {
1154     // Any constant with a ValueStack requires patching so emit the patch here
1155     LIR_Opr reg = rlock_result(x);
1156     CodeEmitInfo* info = state_for(x, x->state_before());
1157     __ oop2reg_patch(NULL, reg, info);
1158   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1159     if (!x->is_pinned()) {
1160       // unpinned constants are handled specially so that they can be
1161       // put into registers when they are used multiple times within a
1162       // block.  After the block completes their operand will be
1163       // cleared so that other blocks can't refer to that register.
1164       set_result(x, load_constant(x));
1165     } else {
1166       LIR_Opr res = x->operand();
1167       if (!res->is_valid()) {
1168         res = LIR_OprFact::value_type(x->type());
1169       }
1170       if (res->is_constant()) {
1171         LIR_Opr reg = rlock_result(x);
1172         __ move(res, reg);
1173       } else {
1174         set_result(x, res);
1175       }
1176     }
1177   } else {
1178     set_result(x, LIR_OprFact::value_type(x->type()));
1179   }
1180 }
1181 
1182 
1183 void LIRGenerator::do_Local(Local* x) {
1184   // operand_for_instruction has the side effect of setting the result
1185   // so there's no need to do it here.
1186   operand_for_instruction(x);
1187 }
1188 
1189 
1190 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1191   Unimplemented();
1192 }
1193 
1194 
1195 void LIRGenerator::do_Return(Return* x) {
1196   if (compilation()->env()->dtrace_method_probes()) {
1197     BasicTypeList signature;
1198     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1199     signature.append(T_METADATA); // Method*
1200     LIR_OprList* args = new LIR_OprList();
1201     args->append(getThreadPointer());
1202     LIR_Opr meth = new_register(T_METADATA);
1203     __ metadata2reg(method()->constant_encoding(), meth);
1204     args->append(meth);
1205     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1206   }
1207 
1208   if (x->type()->is_void()) {
1209     __ return_op(LIR_OprFact::illegalOpr);
1210   } else {
1211     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1212     LIRItem result(x->result(), this);
1213 
1214     result.load_item_force(reg);
1215     __ return_op(result.result());
1216   }
1217   set_no_result(x);
1218 }
1219 
1220 // Examble: ref.get()
1221 // Combination of LoadField and g1 pre-write barrier
1222 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1223 
1224   const int referent_offset = java_lang_ref_Reference::referent_offset;
1225   guarantee(referent_offset > 0, "referent offset not initialized");
1226 
1227   assert(x->number_of_arguments() == 1, "wrong type");
1228 
1229   LIRItem reference(x->argument_at(0), this);
1230   reference.load_item();
1231 
1232   // need to perform the null check on the reference objecy
1233   CodeEmitInfo* info = NULL;
1234   if (x->needs_null_check()) {
1235     info = state_for(x);
1236   }
1237 
1238   LIR_Opr result = rlock_result(x, T_OBJECT);
1239   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1240                  reference, LIR_OprFact::intConst(referent_offset), result);
1241 }
1242 
1243 // Example: clazz.isInstance(object)
1244 void LIRGenerator::do_isInstance(Intrinsic* x) {
1245   assert(x->number_of_arguments() == 2, "wrong type");
1246 
1247   // TODO could try to substitute this node with an equivalent InstanceOf
1248   // if clazz is known to be a constant Class. This will pick up newly found
1249   // constants after HIR construction. I'll leave this to a future change.
1250 
1251   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1252   // could follow the aastore example in a future change.
1253 
1254   LIRItem clazz(x->argument_at(0), this);
1255   LIRItem object(x->argument_at(1), this);
1256   clazz.load_item();
1257   object.load_item();
1258   LIR_Opr result = rlock_result(x);
1259 
1260   // need to perform null check on clazz
1261   if (x->needs_null_check()) {
1262     CodeEmitInfo* info = state_for(x);
1263     __ null_check(clazz.result(), info);
1264   }
1265 
1266   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1267                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1268                                      x->type(),
1269                                      NULL); // NULL CodeEmitInfo results in a leaf call
1270   __ move(call_result, result);
1271 }
1272 
1273 // Example: object.getClass ()
1274 void LIRGenerator::do_getClass(Intrinsic* x) {
1275   assert(x->number_of_arguments() == 1, "wrong type");
1276 
1277   LIRItem rcvr(x->argument_at(0), this);
1278   rcvr.load_item();
1279   LIR_Opr temp = new_register(T_METADATA);
1280   LIR_Opr result = rlock_result(x);
1281 
1282   // need to perform the null check on the rcvr
1283   CodeEmitInfo* info = NULL;
1284   if (x->needs_null_check()) {
1285     info = state_for(x);
1286   }
1287 
1288   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1289   // meaning of these two is mixed up (see JDK-8026837).
1290   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1291   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1292   // mirror = ((OopHandle)mirror)->resolve();
1293   access_load(IN_NATIVE, T_OBJECT,
1294               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1295 }
1296 
1297 // java.lang.Class::isPrimitive()
1298 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1299   assert(x->number_of_arguments() == 1, "wrong type");
1300 
1301   LIRItem rcvr(x->argument_at(0), this);
1302   rcvr.load_item();
1303   LIR_Opr temp = new_register(T_METADATA);
1304   LIR_Opr result = rlock_result(x);
1305 
1306   CodeEmitInfo* info = NULL;
1307   if (x->needs_null_check()) {
1308     info = state_for(x);
1309   }
1310 
1311   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1312   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1313   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1314 }
1315 
1316 
1317 // Example: Thread.currentThread()
1318 void LIRGenerator::do_currentThread(Intrinsic* x) {
1319   assert(x->number_of_arguments() == 0, "wrong type");
1320   LIR_Opr reg = rlock_result(x);
1321   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1322 }
1323 
1324 
1325 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1326   assert(x->number_of_arguments() == 1, "wrong type");
1327   LIRItem receiver(x->argument_at(0), this);
1328 
1329   receiver.load_item();
1330   BasicTypeList signature;
1331   signature.append(T_OBJECT); // receiver
1332   LIR_OprList* args = new LIR_OprList();
1333   args->append(receiver.result());
1334   CodeEmitInfo* info = state_for(x, x->state());
1335   call_runtime(&signature, args,
1336                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1337                voidType, info);
1338 
1339   set_no_result(x);
1340 }
1341 
1342 
1343 //------------------------local access--------------------------------------
1344 
1345 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1346   if (x->operand()->is_illegal()) {
1347     Constant* c = x->as_Constant();
1348     if (c != NULL) {
1349       x->set_operand(LIR_OprFact::value_type(c->type()));
1350     } else {
1351       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1352       // allocate a virtual register for this local or phi
1353       x->set_operand(rlock(x));
1354       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1355     }
1356   }
1357   return x->operand();
1358 }
1359 
1360 
1361 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1362   if (opr->is_virtual()) {
1363     return instruction_for_vreg(opr->vreg_number());
1364   }
1365   return NULL;
1366 }
1367 
1368 
1369 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1370   if (reg_num < _instruction_for_operand.length()) {
1371     return _instruction_for_operand.at(reg_num);
1372   }
1373   return NULL;
1374 }
1375 
1376 
1377 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1378   if (_vreg_flags.size_in_bits() == 0) {
1379     BitMap2D temp(100, num_vreg_flags);
1380     _vreg_flags = temp;
1381   }
1382   _vreg_flags.at_put_grow(vreg_num, f, true);
1383 }
1384 
1385 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1386   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1387     return false;
1388   }
1389   return _vreg_flags.at(vreg_num, f);
1390 }
1391 
1392 
1393 // Block local constant handling.  This code is useful for keeping
1394 // unpinned constants and constants which aren't exposed in the IR in
1395 // registers.  Unpinned Constant instructions have their operands
1396 // cleared when the block is finished so that other blocks can't end
1397 // up referring to their registers.
1398 
1399 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1400   assert(!x->is_pinned(), "only for unpinned constants");
1401   _unpinned_constants.append(x);
1402   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1403 }
1404 
1405 
1406 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1407   BasicType t = c->type();
1408   for (int i = 0; i < _constants.length(); i++) {
1409     LIR_Const* other = _constants.at(i);
1410     if (t == other->type()) {
1411       switch (t) {
1412       case T_INT:
1413       case T_FLOAT:
1414         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1415         break;
1416       case T_LONG:
1417       case T_DOUBLE:
1418         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1419         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1420         break;
1421       case T_OBJECT:
1422         if (c->as_jobject() != other->as_jobject()) continue;
1423         break;
1424       default:
1425         break;
1426       }
1427       return _reg_for_constants.at(i);
1428     }
1429   }
1430 
1431   LIR_Opr result = new_register(t);
1432   __ move((LIR_Opr)c, result);
1433   _constants.append(c);
1434   _reg_for_constants.append(result);
1435   return result;
1436 }
1437 
1438 //------------------------field access--------------------------------------
1439 
1440 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1441   assert(x->number_of_arguments() == 4, "wrong type");
1442   LIRItem obj   (x->argument_at(0), this);  // object
1443   LIRItem offset(x->argument_at(1), this);  // offset of field
1444   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1445   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1446   assert(obj.type()->tag() == objectTag, "invalid type");
1447 
1448   // In 64bit the type can be long, sparc doesn't have this assert
1449   // assert(offset.type()->tag() == intTag, "invalid type");
1450 
1451   assert(cmp.type()->tag() == type->tag(), "invalid type");
1452   assert(val.type()->tag() == type->tag(), "invalid type");
1453 
1454   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1455                                             obj, offset, cmp, val);
1456   set_result(x, result);
1457 }
1458 
1459 // Comment copied form templateTable_i486.cpp
1460 // ----------------------------------------------------------------------------
1461 // Volatile variables demand their effects be made known to all CPU's in
1462 // order.  Store buffers on most chips allow reads & writes to reorder; the
1463 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1464 // memory barrier (i.e., it's not sufficient that the interpreter does not
1465 // reorder volatile references, the hardware also must not reorder them).
1466 //
1467 // According to the new Java Memory Model (JMM):
1468 // (1) All volatiles are serialized wrt to each other.
1469 // ALSO reads & writes act as aquire & release, so:
1470 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1471 // the read float up to before the read.  It's OK for non-volatile memory refs
1472 // that happen before the volatile read to float down below it.
1473 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1474 // that happen BEFORE the write float down to after the write.  It's OK for
1475 // non-volatile memory refs that happen after the volatile write to float up
1476 // before it.
1477 //
1478 // We only put in barriers around volatile refs (they are expensive), not
1479 // _between_ memory refs (that would require us to track the flavor of the
1480 // previous memory refs).  Requirements (2) and (3) require some barriers
1481 // before volatile stores and after volatile loads.  These nearly cover
1482 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1483 // case is placed after volatile-stores although it could just as well go
1484 // before volatile-loads.
1485 
1486 
1487 void LIRGenerator::do_StoreField(StoreField* x) {
1488   bool needs_patching = x->needs_patching();
1489   bool is_volatile = x->field()->is_volatile();
1490   BasicType field_type = x->field_type();
1491 
1492   CodeEmitInfo* info = NULL;
1493   if (needs_patching) {
1494     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1495     info = state_for(x, x->state_before());
1496   } else if (x->needs_null_check()) {
1497     NullCheck* nc = x->explicit_null_check();
1498     if (nc == NULL) {
1499       info = state_for(x);
1500     } else {
1501       info = state_for(nc);
1502     }
1503   }
1504 
1505   LIRItem object(x->obj(), this);
1506   LIRItem value(x->value(),  this);
1507 
1508   object.load_item();
1509 
1510   if (is_volatile || needs_patching) {
1511     // load item if field is volatile (fewer special cases for volatiles)
1512     // load item if field not initialized
1513     // load item if field not constant
1514     // because of code patching we cannot inline constants
1515     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1516       value.load_byte_item();
1517     } else  {
1518       value.load_item();
1519     }
1520   } else {
1521     value.load_for_store(field_type);
1522   }
1523 
1524   set_no_result(x);
1525 
1526 #ifndef PRODUCT
1527   if (PrintNotLoaded && needs_patching) {
1528     tty->print_cr("   ###class not loaded at store_%s bci %d",
1529                   x->is_static() ?  "static" : "field", x->printable_bci());
1530   }
1531 #endif
1532 
1533   if (x->needs_null_check() &&
1534       (needs_patching ||
1535        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1536     if (needs_patching && field_type == T_VALUETYPE) {
1537       // We are storing a "Q" field, but the holder class is not yet loaded.
1538       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1539                                           Deoptimization::Reason_unloaded,
1540                                           Deoptimization::Action_make_not_entrant);
1541       __ branch(lir_cond_always, T_ILLEGAL, stub);
1542     } else {
1543       // Emit an explicit null check because the offset is too large.
1544       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1545       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1546       __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1547     }
1548   }
1549 
1550   DecoratorSet decorators = IN_HEAP;
1551   if (is_volatile) {
1552     decorators |= MO_SEQ_CST;
1553   }
1554   if (needs_patching) {
1555     decorators |= C1_NEEDS_PATCHING;
1556   }
1557 
1558   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1559                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1560 }
1561 
1562 // FIXME -- I can't find any other way to pass an address to access_load_at().
1563 class TempResolvedAddress: public Instruction {
1564  public:
1565   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1566     set_operand(addr);
1567   }
1568   virtual void input_values_do(ValueVisitor*) {}
1569   virtual void visit(InstructionVisitor* v)   {}
1570   virtual const char* name() const  { return "TempResolvedAddress"; }
1571 };
1572 
1573 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1574   // Find the starting address of the source (inside the array)
1575   ciType* array_type = array.value()->declared_type();
1576   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1577   assert(value_array_klass->is_loaded(), "must be");
1578 
1579   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1580   int array_header_size = value_array_klass->array_header_in_bytes();
1581   int shift = value_array_klass->log2_element_size();
1582 
1583 #ifndef _LP64
1584   LIR_Opr index_op = new_register(T_INT);
1585   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1586   // the top (shift+1) bits of index_op must be zero, or
1587   // else throw ArrayIndexOutOfBoundsException
1588   if (index.result()->is_constant()) {
1589     jint const_index = index.result()->as_jint();
1590     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1591   } else {
1592     __ shift_left(index_op, shift, index.result());
1593   }
1594 #else
1595   LIR_Opr index_op = new_register(T_LONG);
1596   if (index.result()->is_constant()) {
1597     jint const_index = index.result()->as_jint();
1598     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1599   } else {
1600     __ convert(Bytecodes::_i2l, index.result(), index_op);
1601     // Need to shift manually, as LIR_Address can scale only up to 3.
1602     __ shift_left(index_op, shift, index_op);
1603   }
1604 #endif
1605 
1606   LIR_Opr elm_op = new_pointer_register();
1607   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1608   __ leal(LIR_OprFact::address(elm_address), elm_op);
1609 
1610   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1611     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1612     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1613     int obj_offset = inner_field->offset();
1614     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1615 
1616     BasicType field_type = inner_field->type()->basic_type();
1617     switch (field_type) {
1618     case T_BYTE:
1619     case T_BOOLEAN:
1620     case T_SHORT:
1621     case T_CHAR:
1622      field_type = T_INT;
1623       break;
1624     default:
1625       break;
1626     }
1627 
1628     LIR_Opr temp = new_register(field_type);
1629     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1630     LIRItem elm_item(elm_resolved_addr, this);
1631 
1632     DecoratorSet decorators = IN_HEAP;
1633     if (is_load) {
1634       access_load_at(decorators, field_type,
1635                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1636                      NULL, NULL);
1637       access_store_at(decorators, field_type,
1638                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1639                       NULL, NULL);
1640     } else {
1641     access_load_at(decorators, field_type,
1642                    obj_item, LIR_OprFact::intConst(obj_offset), temp,
1643                    NULL, NULL);
1644     access_store_at(decorators, field_type,
1645                     elm_item, LIR_OprFact::intConst(elm_offset), temp,
1646                     NULL, NULL);
1647     }
1648   }
1649 }
1650 
1651 void LIRGenerator::check_flattened_array(LIRItem& array, CodeStub* slow_path) {
1652   LIR_Opr array_klass_reg = new_register(T_METADATA);
1653 
1654   __ move(new LIR_Address(array.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), array_klass_reg);
1655   LIR_Opr layout = new_register(T_INT);
1656   __ move(new LIR_Address(array_klass_reg, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1657   __ shift_right(layout, Klass::_lh_array_tag_shift, layout);
1658   __ cmp(lir_cond_equal, layout, LIR_OprFact::intConst(Klass::_lh_array_tag_vt_value));
1659   __ branch(lir_cond_equal, T_ILLEGAL, slow_path);
1660 }
1661 
1662 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1663   assert(x->is_pinned(),"");
1664   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1665   bool needs_range_check = x->compute_needs_range_check();
1666   bool use_length = x->length() != NULL;
1667   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
1668   bool needs_store_check = obj_store && !is_loaded_flattened_array &&
1669                                         (x->value()->as_Constant() == NULL ||
1670                                          !get_jobject_constant(x->value())->is_null_object() ||
1671                                          x->should_profile());
1672 
1673   LIRItem array(x->array(), this);
1674   LIRItem index(x->index(), this);
1675   LIRItem value(x->value(), this);
1676   LIRItem length(this);
1677 
1678   array.load_item();
1679   index.load_nonconstant();
1680 
1681   if (use_length && needs_range_check) {
1682     length.set_instruction(x->length());
1683     length.load_item();
1684   }
1685 
1686   if (needs_store_check || x->check_boolean()
1687       || is_loaded_flattened_array || x->array()->maybe_flattened_array()) {
1688     value.load_item();
1689   } else {
1690     value.load_for_store(x->elt_type());
1691   }
1692 
1693   set_no_result(x);
1694 
1695   // the CodeEmitInfo must be duplicated for each different
1696   // LIR-instruction because spilling can occur anywhere between two
1697   // instructions and so the debug information must be different
1698   CodeEmitInfo* range_check_info = state_for(x);
1699   CodeEmitInfo* null_check_info = NULL;
1700   if (x->needs_null_check()) {
1701     null_check_info = new CodeEmitInfo(range_check_info);
1702   }
1703 
1704   if (GenerateRangeChecks && needs_range_check) {
1705     if (use_length) {
1706       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1707       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1708     } else {
1709       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1710       // range_check also does the null check
1711       null_check_info = NULL;
1712     }
1713   }
1714 
1715   if (GenerateArrayStoreCheck && needs_store_check) {
1716     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1717     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1718   }
1719 
1720   if (is_loaded_flattened_array) {
1721     if (!x->is_exact_flattened_array_store()) {
1722       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1723       ciKlass* element_klass = x->array()->declared_type()->as_value_array_klass()->element_klass();
1724       flattened_array_store_check(value.result(), element_klass, info);
1725     } else if (!x->value()->is_never_null()) {
1726       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1727     }
1728     access_flattened_array(false, array, index, value);
1729   } else {
1730     StoreFlattenedArrayStub* slow_path = NULL;
1731 
1732     if (x->array()->maybe_flattened_array()) {
1733       // Check if we indeed have a flattened array
1734       index.load_item();
1735       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x));
1736       check_flattened_array(array, slow_path);
1737     }
1738 
1739     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1740     if (x->check_boolean()) {
1741       decorators |= C1_MASK_BOOLEAN;
1742     }
1743 
1744     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1745                     NULL, null_check_info);
1746     if (slow_path != NULL) {
1747       __ branch_destination(slow_path->continuation());
1748     }
1749   }
1750 }
1751 
1752 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1753                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1754                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1755   decorators |= ACCESS_READ;
1756   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1757   if (access.is_raw()) {
1758     _barrier_set->BarrierSetC1::load_at(access, result);
1759   } else {
1760     _barrier_set->load_at(access, result);
1761   }
1762 }
1763 
1764 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1765                                LIR_Opr addr, LIR_Opr result) {
1766   decorators |= ACCESS_READ;
1767   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1768   access.set_resolved_addr(addr);
1769   if (access.is_raw()) {
1770     _barrier_set->BarrierSetC1::load(access, result);
1771   } else {
1772     _barrier_set->load(access, result);
1773   }
1774 }
1775 
1776 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1777                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1778                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1779   decorators |= ACCESS_WRITE;
1780   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1781   if (access.is_raw()) {
1782     _barrier_set->BarrierSetC1::store_at(access, value);
1783   } else {
1784     _barrier_set->store_at(access, value);
1785   }
1786 }
1787 
1788 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1789                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1790   decorators |= ACCESS_READ;
1791   decorators |= ACCESS_WRITE;
1792   // Atomic operations are SEQ_CST by default
1793   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1794   LIRAccess access(this, decorators, base, offset, type);
1795   if (access.is_raw()) {
1796     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1797   } else {
1798     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1799   }
1800 }
1801 
1802 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1803                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1804   decorators |= ACCESS_READ;
1805   decorators |= ACCESS_WRITE;
1806   // Atomic operations are SEQ_CST by default
1807   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1808   LIRAccess access(this, decorators, base, offset, type);
1809   if (access.is_raw()) {
1810     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1811   } else {
1812     return _barrier_set->atomic_xchg_at(access, value);
1813   }
1814 }
1815 
1816 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1817                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1818   decorators |= ACCESS_READ;
1819   decorators |= ACCESS_WRITE;
1820   // Atomic operations are SEQ_CST by default
1821   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1822   LIRAccess access(this, decorators, base, offset, type);
1823   if (access.is_raw()) {
1824     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1825   } else {
1826     return _barrier_set->atomic_add_at(access, value);
1827   }
1828 }
1829 
1830 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1831   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1832   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1833     decorators |= ACCESS_READ | ACCESS_WRITE;
1834   }
1835 
1836   return _barrier_set->resolve(this, decorators, obj);
1837 }
1838 
1839 void LIRGenerator::do_LoadField(LoadField* x) {
1840   bool needs_patching = x->needs_patching();
1841   bool is_volatile = x->field()->is_volatile();
1842   BasicType field_type = x->field_type();
1843 
1844   CodeEmitInfo* info = NULL;
1845   if (needs_patching) {
1846     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1847     info = state_for(x, x->state_before());
1848   } else if (x->needs_null_check()) {
1849     NullCheck* nc = x->explicit_null_check();
1850     if (nc == NULL) {
1851       info = state_for(x);
1852     } else {
1853       info = state_for(nc);
1854     }
1855   }
1856 
1857   LIRItem object(x->obj(), this);
1858 
1859   object.load_item();
1860 
1861 #ifndef PRODUCT
1862   if (PrintNotLoaded && needs_patching) {
1863     tty->print_cr("   ###class not loaded at load_%s bci %d",
1864                   x->is_static() ?  "static" : "field", x->printable_bci());
1865   }
1866 #endif
1867 
1868   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1869   if (x->needs_null_check() &&
1870       (needs_patching ||
1871        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1872        stress_deopt)) {
1873     if (needs_patching && field_type == T_VALUETYPE) {
1874       // We are loading a "Q" field, but the holder class is not yet loaded.
1875       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1876                                           Deoptimization::Reason_unloaded,
1877                                           Deoptimization::Action_make_not_entrant);
1878       __ branch(lir_cond_always, T_ILLEGAL, stub);
1879     } else {
1880       LIR_Opr obj = object.result();
1881       if (stress_deopt) {
1882         obj = new_register(T_OBJECT);
1883         __ move(LIR_OprFact::oopConst(NULL), obj);
1884       }
1885       // Emit an explicit null check because the offset is too large.
1886       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1887       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1888       __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1889     }
1890   } else if (x->value_klass() != NULL && x->default_value() == NULL) {
1891     assert(x->is_static() && !x->value_klass()->is_loaded(), "must be");
1892     assert(needs_patching, "must be");
1893     // The value klass was not loaded so we don't know what its default value should be
1894     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1895                                         Deoptimization::Reason_unloaded,
1896                                         Deoptimization::Action_make_not_entrant);
1897     __ branch(lir_cond_always, T_ILLEGAL, stub);
1898   }
1899 
1900   DecoratorSet decorators = IN_HEAP;
1901   if (is_volatile) {
1902     decorators |= MO_SEQ_CST;
1903   }
1904   if (needs_patching) {
1905     decorators |= C1_NEEDS_PATCHING;
1906   }
1907 
1908   LIR_Opr result = rlock_result(x, field_type);
1909   access_load_at(decorators, field_type,
1910                  object, LIR_OprFact::intConst(x->offset()), result,
1911                  info ? new CodeEmitInfo(info) : NULL, info);
1912 
1913   if (x->value_klass() != NULL && x->default_value() != NULL) {
1914     LabelObj* L_end = new LabelObj();
1915     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
1916     __ branch(lir_cond_notEqual, T_OBJECT, L_end->label());
1917 
1918     LIRItem default_value(x->default_value(), this);
1919     default_value.load_item();
1920     __ move(default_value.result(), result);
1921 
1922     __ branch_destination(L_end->label());
1923   }
1924 }
1925 
1926 
1927 //------------------------java.nio.Buffer.checkIndex------------------------
1928 
1929 // int java.nio.Buffer.checkIndex(int)
1930 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1931   // NOTE: by the time we are in checkIndex() we are guaranteed that
1932   // the buffer is non-null (because checkIndex is package-private and
1933   // only called from within other methods in the buffer).
1934   assert(x->number_of_arguments() == 2, "wrong type");
1935   LIRItem buf  (x->argument_at(0), this);
1936   LIRItem index(x->argument_at(1), this);
1937   buf.load_item();
1938   index.load_item();
1939 
1940   LIR_Opr result = rlock_result(x);
1941   if (GenerateRangeChecks) {
1942     CodeEmitInfo* info = state_for(x);
1943     CodeStub* stub = new RangeCheckStub(info, index.result());
1944     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
1945     if (index.result()->is_constant()) {
1946       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1947       __ branch(lir_cond_belowEqual, T_INT, stub);
1948     } else {
1949       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
1950                   java_nio_Buffer::limit_offset(), T_INT, info);
1951       __ branch(lir_cond_aboveEqual, T_INT, stub);
1952     }
1953     __ move(index.result(), result);
1954   } else {
1955     // Just load the index into the result register
1956     __ move(index.result(), result);
1957   }
1958 }
1959 
1960 
1961 //------------------------array access--------------------------------------
1962 
1963 
1964 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1965   LIRItem array(x->array(), this);
1966   array.load_item();
1967   LIR_Opr reg = rlock_result(x);
1968 
1969   CodeEmitInfo* info = NULL;
1970   if (x->needs_null_check()) {
1971     NullCheck* nc = x->explicit_null_check();
1972     if (nc == NULL) {
1973       info = state_for(x);
1974     } else {
1975       info = state_for(nc);
1976     }
1977     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1978       LIR_Opr obj = new_register(T_OBJECT);
1979       __ move(LIR_OprFact::oopConst(NULL), obj);
1980       __ null_check(obj, new CodeEmitInfo(info));
1981     }
1982   }
1983   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1984 }
1985 
1986 
1987 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1988   bool use_length = x->length() != NULL;
1989   LIRItem array(x->array(), this);
1990   LIRItem index(x->index(), this);
1991   LIRItem length(this);
1992   bool needs_range_check = x->compute_needs_range_check();
1993 
1994   if (use_length && needs_range_check) {
1995     length.set_instruction(x->length());
1996     length.load_item();
1997   }
1998 
1999   array.load_item();
2000   if (index.is_constant() && can_inline_as_constant(x->index())) {
2001     // let it be a constant
2002     index.dont_load_item();
2003   } else {
2004     index.load_item();
2005   }
2006 
2007   CodeEmitInfo* range_check_info = state_for(x);
2008   CodeEmitInfo* null_check_info = NULL;
2009   if (x->needs_null_check()) {
2010     NullCheck* nc = x->explicit_null_check();
2011     if (nc != NULL) {
2012       null_check_info = state_for(nc);
2013     } else {
2014       null_check_info = range_check_info;
2015     }
2016     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2017       LIR_Opr obj = new_register(T_OBJECT);
2018       __ move(LIR_OprFact::oopConst(NULL), obj);
2019       __ null_check(obj, new CodeEmitInfo(null_check_info));
2020     }
2021   }
2022 
2023   if (GenerateRangeChecks && needs_range_check) {
2024     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2025       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
2026     } else if (use_length) {
2027       // TODO: use a (modified) version of array_range_check that does not require a
2028       //       constant length to be loaded to a register
2029       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2030       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
2031     } else {
2032       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2033       // The range check performs the null check, so clear it out for the load
2034       null_check_info = NULL;
2035     }
2036   }
2037 
2038   if (x->array()->is_loaded_flattened_array()) {
2039     // Find the destination address (of the NewValueTypeInstance)
2040     LIR_Opr obj = x->vt()->operand();
2041     LIRItem obj_item(x->vt(), this);
2042 
2043     access_flattened_array(true, array, index, obj_item);
2044     set_no_result(x);
2045   } else {
2046     LIR_Opr result = rlock_result(x, x->elt_type());
2047     LoadFlattenedArrayStub* slow_path = NULL;
2048 
2049     if (x->array()->maybe_flattened_array()) {
2050       index.load_item();
2051       // Check if we indeed have a flattened array
2052       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x));
2053       check_flattened_array(array, slow_path);
2054     }
2055 
2056     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2057     access_load_at(decorators, x->elt_type(),
2058                    array, index.result(), result,
2059                    NULL, null_check_info);
2060 
2061     if (slow_path != NULL) {
2062       __ branch_destination(slow_path->continuation());
2063     }
2064   }
2065 }
2066 
2067 
2068 void LIRGenerator::do_NullCheck(NullCheck* x) {
2069   if (x->can_trap()) {
2070     LIRItem value(x->obj(), this);
2071     value.load_item();
2072     CodeEmitInfo* info = state_for(x);
2073     __ null_check(value.result(), info);
2074   }
2075 }
2076 
2077 
2078 void LIRGenerator::do_TypeCast(TypeCast* x) {
2079   LIRItem value(x->obj(), this);
2080   value.load_item();
2081   // the result is the same as from the node we are casting
2082   set_result(x, value.result());
2083 }
2084 
2085 
2086 void LIRGenerator::do_Throw(Throw* x) {
2087   LIRItem exception(x->exception(), this);
2088   exception.load_item();
2089   set_no_result(x);
2090   LIR_Opr exception_opr = exception.result();
2091   CodeEmitInfo* info = state_for(x, x->state());
2092 
2093 #ifndef PRODUCT
2094   if (PrintC1Statistics) {
2095     increment_counter(Runtime1::throw_count_address(), T_INT);
2096   }
2097 #endif
2098 
2099   // check if the instruction has an xhandler in any of the nested scopes
2100   bool unwind = false;
2101   if (info->exception_handlers()->length() == 0) {
2102     // this throw is not inside an xhandler
2103     unwind = true;
2104   } else {
2105     // get some idea of the throw type
2106     bool type_is_exact = true;
2107     ciType* throw_type = x->exception()->exact_type();
2108     if (throw_type == NULL) {
2109       type_is_exact = false;
2110       throw_type = x->exception()->declared_type();
2111     }
2112     if (throw_type != NULL && throw_type->is_instance_klass()) {
2113       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2114       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2115     }
2116   }
2117 
2118   // do null check before moving exception oop into fixed register
2119   // to avoid a fixed interval with an oop during the null check.
2120   // Use a copy of the CodeEmitInfo because debug information is
2121   // different for null_check and throw.
2122   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2123     // if the exception object wasn't created using new then it might be null.
2124     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2125   }
2126 
2127   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2128     // we need to go through the exception lookup path to get JVMTI
2129     // notification done
2130     unwind = false;
2131   }
2132 
2133   // move exception oop into fixed register
2134   __ move(exception_opr, exceptionOopOpr());
2135 
2136   if (unwind) {
2137     __ unwind_exception(exceptionOopOpr());
2138   } else {
2139     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2140   }
2141 }
2142 
2143 
2144 void LIRGenerator::do_RoundFP(RoundFP* x) {
2145   LIRItem input(x->input(), this);
2146   input.load_item();
2147   LIR_Opr input_opr = input.result();
2148   assert(input_opr->is_register(), "why round if value is not in a register?");
2149   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2150   if (input_opr->is_single_fpu()) {
2151     set_result(x, round_item(input_opr)); // This code path not currently taken
2152   } else {
2153     LIR_Opr result = new_register(T_DOUBLE);
2154     set_vreg_flag(result, must_start_in_memory);
2155     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2156     set_result(x, result);
2157   }
2158 }
2159 
2160 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2161 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2162 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2163   LIRItem base(x->base(), this);
2164   LIRItem idx(this);
2165 
2166   base.load_item();
2167   if (x->has_index()) {
2168     idx.set_instruction(x->index());
2169     idx.load_nonconstant();
2170   }
2171 
2172   LIR_Opr reg = rlock_result(x, x->basic_type());
2173 
2174   int   log2_scale = 0;
2175   if (x->has_index()) {
2176     log2_scale = x->log2_scale();
2177   }
2178 
2179   assert(!x->has_index() || idx.value() == x->index(), "should match");
2180 
2181   LIR_Opr base_op = base.result();
2182   LIR_Opr index_op = idx.result();
2183 #ifndef _LP64
2184   if (base_op->type() == T_LONG) {
2185     base_op = new_register(T_INT);
2186     __ convert(Bytecodes::_l2i, base.result(), base_op);
2187   }
2188   if (x->has_index()) {
2189     if (index_op->type() == T_LONG) {
2190       LIR_Opr long_index_op = index_op;
2191       if (index_op->is_constant()) {
2192         long_index_op = new_register(T_LONG);
2193         __ move(index_op, long_index_op);
2194       }
2195       index_op = new_register(T_INT);
2196       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2197     } else {
2198       assert(x->index()->type()->tag() == intTag, "must be");
2199     }
2200   }
2201   // At this point base and index should be all ints.
2202   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2203   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2204 #else
2205   if (x->has_index()) {
2206     if (index_op->type() == T_INT) {
2207       if (!index_op->is_constant()) {
2208         index_op = new_register(T_LONG);
2209         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2210       }
2211     } else {
2212       assert(index_op->type() == T_LONG, "must be");
2213       if (index_op->is_constant()) {
2214         index_op = new_register(T_LONG);
2215         __ move(idx.result(), index_op);
2216       }
2217     }
2218   }
2219   // At this point base is a long non-constant
2220   // Index is a long register or a int constant.
2221   // We allow the constant to stay an int because that would allow us a more compact encoding by
2222   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2223   // move it into a register first.
2224   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2225   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2226                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2227 #endif
2228 
2229   BasicType dst_type = x->basic_type();
2230 
2231   LIR_Address* addr;
2232   if (index_op->is_constant()) {
2233     assert(log2_scale == 0, "must not have a scale");
2234     assert(index_op->type() == T_INT, "only int constants supported");
2235     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2236   } else {
2237 #ifdef X86
2238     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2239 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2240     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2241 #else
2242     if (index_op->is_illegal() || log2_scale == 0) {
2243       addr = new LIR_Address(base_op, index_op, dst_type);
2244     } else {
2245       LIR_Opr tmp = new_pointer_register();
2246       __ shift_left(index_op, log2_scale, tmp);
2247       addr = new LIR_Address(base_op, tmp, dst_type);
2248     }
2249 #endif
2250   }
2251 
2252   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2253     __ unaligned_move(addr, reg);
2254   } else {
2255     if (dst_type == T_OBJECT && x->is_wide()) {
2256       __ move_wide(addr, reg);
2257     } else {
2258       __ move(addr, reg);
2259     }
2260   }
2261 }
2262 
2263 
2264 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2265   int  log2_scale = 0;
2266   BasicType type = x->basic_type();
2267 
2268   if (x->has_index()) {
2269     log2_scale = x->log2_scale();
2270   }
2271 
2272   LIRItem base(x->base(), this);
2273   LIRItem value(x->value(), this);
2274   LIRItem idx(this);
2275 
2276   base.load_item();
2277   if (x->has_index()) {
2278     idx.set_instruction(x->index());
2279     idx.load_item();
2280   }
2281 
2282   if (type == T_BYTE || type == T_BOOLEAN) {
2283     value.load_byte_item();
2284   } else {
2285     value.load_item();
2286   }
2287 
2288   set_no_result(x);
2289 
2290   LIR_Opr base_op = base.result();
2291   LIR_Opr index_op = idx.result();
2292 
2293 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2294   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2295 #else
2296 #ifndef _LP64
2297   if (base_op->type() == T_LONG) {
2298     base_op = new_register(T_INT);
2299     __ convert(Bytecodes::_l2i, base.result(), base_op);
2300   }
2301   if (x->has_index()) {
2302     if (index_op->type() == T_LONG) {
2303       index_op = new_register(T_INT);
2304       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2305     }
2306   }
2307   // At this point base and index should be all ints and not constants
2308   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2309   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2310 #else
2311   if (x->has_index()) {
2312     if (index_op->type() == T_INT) {
2313       index_op = new_register(T_LONG);
2314       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2315     }
2316   }
2317   // At this point base and index are long and non-constant
2318   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2319   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2320 #endif
2321 
2322   if (log2_scale != 0) {
2323     // temporary fix (platform dependent code without shift on Intel would be better)
2324     // TODO: ARM also allows embedded shift in the address
2325     LIR_Opr tmp = new_pointer_register();
2326     if (TwoOperandLIRForm) {
2327       __ move(index_op, tmp);
2328       index_op = tmp;
2329     }
2330     __ shift_left(index_op, log2_scale, tmp);
2331     if (!TwoOperandLIRForm) {
2332       index_op = tmp;
2333     }
2334   }
2335 
2336   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2337 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2338   __ move(value.result(), addr);
2339 }
2340 
2341 
2342 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2343   BasicType type = x->basic_type();
2344   LIRItem src(x->object(), this);
2345   LIRItem off(x->offset(), this);
2346 
2347   off.load_item();
2348   src.load_item();
2349 
2350   DecoratorSet decorators = IN_HEAP;
2351 
2352   if (x->is_volatile()) {
2353     decorators |= MO_SEQ_CST;
2354   }
2355   if (type == T_BOOLEAN) {
2356     decorators |= C1_MASK_BOOLEAN;
2357   }
2358   if (type == T_ARRAY || type == T_OBJECT) {
2359     decorators |= ON_UNKNOWN_OOP_REF;
2360   }
2361 
2362   LIR_Opr result = rlock_result(x, type);
2363   access_load_at(decorators, type,
2364                  src, off.result(), result);
2365 }
2366 
2367 
2368 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2369   BasicType type = x->basic_type();
2370   LIRItem src(x->object(), this);
2371   LIRItem off(x->offset(), this);
2372   LIRItem data(x->value(), this);
2373 
2374   src.load_item();
2375   if (type == T_BOOLEAN || type == T_BYTE) {
2376     data.load_byte_item();
2377   } else {
2378     data.load_item();
2379   }
2380   off.load_item();
2381 
2382   set_no_result(x);
2383 
2384   DecoratorSet decorators = IN_HEAP;
2385   if (type == T_ARRAY || type == T_OBJECT) {
2386     decorators |= ON_UNKNOWN_OOP_REF;
2387   }
2388   if (x->is_volatile()) {
2389     decorators |= MO_SEQ_CST;
2390   }
2391   access_store_at(decorators, type, src, off.result(), data.result());
2392 }
2393 
2394 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2395   BasicType type = x->basic_type();
2396   LIRItem src(x->object(), this);
2397   LIRItem off(x->offset(), this);
2398   LIRItem value(x->value(), this);
2399 
2400   DecoratorSet decorators = IN_HEAP | MO_SEQ_CST;
2401 
2402   if (type == T_ARRAY || type == T_OBJECT) {
2403     decorators |= ON_UNKNOWN_OOP_REF;
2404   }
2405 
2406   LIR_Opr result;
2407   if (x->is_add()) {
2408     result = access_atomic_add_at(decorators, type, src, off, value);
2409   } else {
2410     result = access_atomic_xchg_at(decorators, type, src, off, value);
2411   }
2412   set_result(x, result);
2413 }
2414 
2415 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2416   int lng = x->length();
2417 
2418   for (int i = 0; i < lng; i++) {
2419     SwitchRange* one_range = x->at(i);
2420     int low_key = one_range->low_key();
2421     int high_key = one_range->high_key();
2422     BlockBegin* dest = one_range->sux();
2423     if (low_key == high_key) {
2424       __ cmp(lir_cond_equal, value, low_key);
2425       __ branch(lir_cond_equal, T_INT, dest);
2426     } else if (high_key - low_key == 1) {
2427       __ cmp(lir_cond_equal, value, low_key);
2428       __ branch(lir_cond_equal, T_INT, dest);
2429       __ cmp(lir_cond_equal, value, high_key);
2430       __ branch(lir_cond_equal, T_INT, dest);
2431     } else {
2432       LabelObj* L = new LabelObj();
2433       __ cmp(lir_cond_less, value, low_key);
2434       __ branch(lir_cond_less, T_INT, L->label());
2435       __ cmp(lir_cond_lessEqual, value, high_key);
2436       __ branch(lir_cond_lessEqual, T_INT, dest);
2437       __ branch_destination(L->label());
2438     }
2439   }
2440   __ jump(default_sux);
2441 }
2442 
2443 
2444 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2445   SwitchRangeList* res = new SwitchRangeList();
2446   int len = x->length();
2447   if (len > 0) {
2448     BlockBegin* sux = x->sux_at(0);
2449     int key = x->lo_key();
2450     BlockBegin* default_sux = x->default_sux();
2451     SwitchRange* range = new SwitchRange(key, sux);
2452     for (int i = 0; i < len; i++, key++) {
2453       BlockBegin* new_sux = x->sux_at(i);
2454       if (sux == new_sux) {
2455         // still in same range
2456         range->set_high_key(key);
2457       } else {
2458         // skip tests which explicitly dispatch to the default
2459         if (sux != default_sux) {
2460           res->append(range);
2461         }
2462         range = new SwitchRange(key, new_sux);
2463       }
2464       sux = new_sux;
2465     }
2466     if (res->length() == 0 || res->last() != range)  res->append(range);
2467   }
2468   return res;
2469 }
2470 
2471 
2472 // we expect the keys to be sorted by increasing value
2473 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2474   SwitchRangeList* res = new SwitchRangeList();
2475   int len = x->length();
2476   if (len > 0) {
2477     BlockBegin* default_sux = x->default_sux();
2478     int key = x->key_at(0);
2479     BlockBegin* sux = x->sux_at(0);
2480     SwitchRange* range = new SwitchRange(key, sux);
2481     for (int i = 1; i < len; i++) {
2482       int new_key = x->key_at(i);
2483       BlockBegin* new_sux = x->sux_at(i);
2484       if (key+1 == new_key && sux == new_sux) {
2485         // still in same range
2486         range->set_high_key(new_key);
2487       } else {
2488         // skip tests which explicitly dispatch to the default
2489         if (range->sux() != default_sux) {
2490           res->append(range);
2491         }
2492         range = new SwitchRange(new_key, new_sux);
2493       }
2494       key = new_key;
2495       sux = new_sux;
2496     }
2497     if (res->length() == 0 || res->last() != range)  res->append(range);
2498   }
2499   return res;
2500 }
2501 
2502 
2503 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2504   LIRItem tag(x->tag(), this);
2505   tag.load_item();
2506   set_no_result(x);
2507 
2508   if (x->is_safepoint()) {
2509     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2510   }
2511 
2512   // move values into phi locations
2513   move_to_phi(x->state());
2514 
2515   int lo_key = x->lo_key();
2516   int len = x->length();
2517   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2518   LIR_Opr value = tag.result();
2519 
2520   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2521     ciMethod* method = x->state()->scope()->method();
2522     ciMethodData* md = method->method_data_or_null();
2523     assert(md != NULL, "Sanity");
2524     ciProfileData* data = md->bci_to_data(x->state()->bci());
2525     assert(data != NULL, "must have profiling data");
2526     assert(data->is_MultiBranchData(), "bad profile data?");
2527     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2528     LIR_Opr md_reg = new_register(T_METADATA);
2529     __ metadata2reg(md->constant_encoding(), md_reg);
2530     LIR_Opr data_offset_reg = new_pointer_register();
2531     LIR_Opr tmp_reg = new_pointer_register();
2532 
2533     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2534     for (int i = 0; i < len; i++) {
2535       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2536       __ cmp(lir_cond_equal, value, i + lo_key);
2537       __ move(data_offset_reg, tmp_reg);
2538       __ cmove(lir_cond_equal,
2539                LIR_OprFact::intptrConst(count_offset),
2540                tmp_reg,
2541                data_offset_reg, T_INT);
2542     }
2543 
2544     LIR_Opr data_reg = new_pointer_register();
2545     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2546     __ move(data_addr, data_reg);
2547     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2548     __ move(data_reg, data_addr);
2549   }
2550 
2551   if (UseTableRanges) {
2552     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2553   } else {
2554     for (int i = 0; i < len; i++) {
2555       __ cmp(lir_cond_equal, value, i + lo_key);
2556       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2557     }
2558     __ jump(x->default_sux());
2559   }
2560 }
2561 
2562 
2563 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2564   LIRItem tag(x->tag(), this);
2565   tag.load_item();
2566   set_no_result(x);
2567 
2568   if (x->is_safepoint()) {
2569     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2570   }
2571 
2572   // move values into phi locations
2573   move_to_phi(x->state());
2574 
2575   LIR_Opr value = tag.result();
2576   int len = x->length();
2577 
2578   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2579     ciMethod* method = x->state()->scope()->method();
2580     ciMethodData* md = method->method_data_or_null();
2581     assert(md != NULL, "Sanity");
2582     ciProfileData* data = md->bci_to_data(x->state()->bci());
2583     assert(data != NULL, "must have profiling data");
2584     assert(data->is_MultiBranchData(), "bad profile data?");
2585     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2586     LIR_Opr md_reg = new_register(T_METADATA);
2587     __ metadata2reg(md->constant_encoding(), md_reg);
2588     LIR_Opr data_offset_reg = new_pointer_register();
2589     LIR_Opr tmp_reg = new_pointer_register();
2590 
2591     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2592     for (int i = 0; i < len; i++) {
2593       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2594       __ cmp(lir_cond_equal, value, x->key_at(i));
2595       __ move(data_offset_reg, tmp_reg);
2596       __ cmove(lir_cond_equal,
2597                LIR_OprFact::intptrConst(count_offset),
2598                tmp_reg,
2599                data_offset_reg, T_INT);
2600     }
2601 
2602     LIR_Opr data_reg = new_pointer_register();
2603     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2604     __ move(data_addr, data_reg);
2605     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2606     __ move(data_reg, data_addr);
2607   }
2608 
2609   if (UseTableRanges) {
2610     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2611   } else {
2612     int len = x->length();
2613     for (int i = 0; i < len; i++) {
2614       __ cmp(lir_cond_equal, value, x->key_at(i));
2615       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2616     }
2617     __ jump(x->default_sux());
2618   }
2619 }
2620 
2621 
2622 void LIRGenerator::do_Goto(Goto* x) {
2623   set_no_result(x);
2624 
2625   if (block()->next()->as_OsrEntry()) {
2626     // need to free up storage used for OSR entry point
2627     LIR_Opr osrBuffer = block()->next()->operand();
2628     BasicTypeList signature;
2629     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2630     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2631     __ move(osrBuffer, cc->args()->at(0));
2632     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2633                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2634   }
2635 
2636   if (x->is_safepoint()) {
2637     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2638 
2639     // increment backedge counter if needed
2640     CodeEmitInfo* info = state_for(x, state);
2641     increment_backedge_counter(info, x->profiled_bci());
2642     CodeEmitInfo* safepoint_info = state_for(x, state);
2643     __ safepoint(safepoint_poll_register(), safepoint_info);
2644   }
2645 
2646   // Gotos can be folded Ifs, handle this case.
2647   if (x->should_profile()) {
2648     ciMethod* method = x->profiled_method();
2649     assert(method != NULL, "method should be set if branch is profiled");
2650     ciMethodData* md = method->method_data_or_null();
2651     assert(md != NULL, "Sanity");
2652     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2653     assert(data != NULL, "must have profiling data");
2654     int offset;
2655     if (x->direction() == Goto::taken) {
2656       assert(data->is_BranchData(), "need BranchData for two-way branches");
2657       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2658     } else if (x->direction() == Goto::not_taken) {
2659       assert(data->is_BranchData(), "need BranchData for two-way branches");
2660       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2661     } else {
2662       assert(data->is_JumpData(), "need JumpData for branches");
2663       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2664     }
2665     LIR_Opr md_reg = new_register(T_METADATA);
2666     __ metadata2reg(md->constant_encoding(), md_reg);
2667 
2668     increment_counter(new LIR_Address(md_reg, offset,
2669                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2670   }
2671 
2672   // emit phi-instruction move after safepoint since this simplifies
2673   // describing the state as the safepoint.
2674   move_to_phi(x->state());
2675 
2676   __ jump(x->default_sux());
2677 }
2678 
2679 /**
2680  * Emit profiling code if needed for arguments, parameters, return value types
2681  *
2682  * @param md                    MDO the code will update at runtime
2683  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2684  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2685  * @param profiled_k            current profile
2686  * @param obj                   IR node for the object to be profiled
2687  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2688  *                              Set once we find an update to make and use for next ones.
2689  * @param not_null              true if we know obj cannot be null
2690  * @param signature_at_call_k   signature at call for obj
2691  * @param callee_signature_k    signature of callee for obj
2692  *                              at call and callee signatures differ at method handle call
2693  * @return                      the only klass we know will ever be seen at this profile point
2694  */
2695 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2696                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2697                                     ciKlass* callee_signature_k) {
2698   ciKlass* result = NULL;
2699   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2700   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2701   // known not to be null or null bit already set and already set to
2702   // unknown: nothing we can do to improve profiling
2703   if (!do_null && !do_update) {
2704     return result;
2705   }
2706 
2707   ciKlass* exact_klass = NULL;
2708   Compilation* comp = Compilation::current();
2709   if (do_update) {
2710     // try to find exact type, using CHA if possible, so that loading
2711     // the klass from the object can be avoided
2712     ciType* type = obj->exact_type();
2713     if (type == NULL) {
2714       type = obj->declared_type();
2715       type = comp->cha_exact_type(type);
2716     }
2717     assert(type == NULL || type->is_klass(), "type should be class");
2718     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2719 
2720     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2721   }
2722 
2723   if (!do_null && !do_update) {
2724     return result;
2725   }
2726 
2727   ciKlass* exact_signature_k = NULL;
2728   if (do_update) {
2729     // Is the type from the signature exact (the only one possible)?
2730     exact_signature_k = signature_at_call_k->exact_klass();
2731     if (exact_signature_k == NULL) {
2732       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2733     } else {
2734       result = exact_signature_k;
2735       // Known statically. No need to emit any code: prevent
2736       // LIR_Assembler::emit_profile_type() from emitting useless code
2737       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2738     }
2739     // exact_klass and exact_signature_k can be both non NULL but
2740     // different if exact_klass is loaded after the ciObject for
2741     // exact_signature_k is created.
2742     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2743       // sometimes the type of the signature is better than the best type
2744       // the compiler has
2745       exact_klass = exact_signature_k;
2746     }
2747     if (callee_signature_k != NULL &&
2748         callee_signature_k != signature_at_call_k) {
2749       ciKlass* improved_klass = callee_signature_k->exact_klass();
2750       if (improved_klass == NULL) {
2751         improved_klass = comp->cha_exact_type(callee_signature_k);
2752       }
2753       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2754         exact_klass = exact_signature_k;
2755       }
2756     }
2757     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2758   }
2759 
2760   if (!do_null && !do_update) {
2761     return result;
2762   }
2763 
2764   if (mdp == LIR_OprFact::illegalOpr) {
2765     mdp = new_register(T_METADATA);
2766     __ metadata2reg(md->constant_encoding(), mdp);
2767     if (md_base_offset != 0) {
2768       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2769       mdp = new_pointer_register();
2770       __ leal(LIR_OprFact::address(base_type_address), mdp);
2771     }
2772   }
2773   LIRItem value(obj, this);
2774   value.load_item();
2775   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2776                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2777   return result;
2778 }
2779 
2780 // profile parameters on entry to the root of the compilation
2781 void LIRGenerator::profile_parameters(Base* x) {
2782   if (compilation()->profile_parameters()) {
2783     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2784     ciMethodData* md = scope()->method()->method_data_or_null();
2785     assert(md != NULL, "Sanity");
2786 
2787     if (md->parameters_type_data() != NULL) {
2788       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2789       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2790       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2791       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2792         LIR_Opr src = args->at(i);
2793         assert(!src->is_illegal(), "check");
2794         BasicType t = src->type();
2795         if (t == T_OBJECT || t == T_ARRAY) {
2796           intptr_t profiled_k = parameters->type(j);
2797           Local* local = x->state()->local_at(java_index)->as_Local();
2798           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2799                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2800                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2801           // If the profile is known statically set it once for all and do not emit any code
2802           if (exact != NULL) {
2803             md->set_parameter_type(j, exact);
2804           }
2805           j++;
2806         }
2807         java_index += type2size[t];
2808       }
2809     }
2810   }
2811 }
2812 
2813 void LIRGenerator::do_Base(Base* x) {
2814   __ std_entry(LIR_OprFact::illegalOpr);
2815   // Emit moves from physical registers / stack slots to virtual registers
2816   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2817   IRScope* irScope = compilation()->hir()->top_scope();
2818   int java_index = 0;
2819   for (int i = 0; i < args->length(); i++) {
2820     LIR_Opr src = args->at(i);
2821     assert(!src->is_illegal(), "check");
2822     BasicType t = src->type();
2823 
2824     // Types which are smaller than int are passed as int, so
2825     // correct the type which passed.
2826     switch (t) {
2827     case T_BYTE:
2828     case T_BOOLEAN:
2829     case T_SHORT:
2830     case T_CHAR:
2831       t = T_INT;
2832       break;
2833     default:
2834       break;
2835     }
2836 
2837     LIR_Opr dest = new_register(t);
2838     __ move(src, dest);
2839 
2840     // Assign new location to Local instruction for this local
2841     Local* local = x->state()->local_at(java_index)->as_Local();
2842     assert(local != NULL, "Locals for incoming arguments must have been created");
2843 #ifndef __SOFTFP__
2844     // The java calling convention passes double as long and float as int.
2845     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2846 #endif // __SOFTFP__
2847     local->set_operand(dest);
2848     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2849     java_index += type2size[t];
2850   }
2851 
2852   if (compilation()->env()->dtrace_method_probes()) {
2853     BasicTypeList signature;
2854     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2855     signature.append(T_METADATA); // Method*
2856     LIR_OprList* args = new LIR_OprList();
2857     args->append(getThreadPointer());
2858     LIR_Opr meth = new_register(T_METADATA);
2859     __ metadata2reg(method()->constant_encoding(), meth);
2860     args->append(meth);
2861     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2862   }
2863 
2864   if (method()->is_synchronized()) {
2865     LIR_Opr obj;
2866     if (method()->is_static()) {
2867       obj = new_register(T_OBJECT);
2868       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2869     } else {
2870       Local* receiver = x->state()->local_at(0)->as_Local();
2871       assert(receiver != NULL, "must already exist");
2872       obj = receiver->operand();
2873     }
2874     assert(obj->is_valid(), "must be valid");
2875 
2876     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2877       LIR_Opr lock = syncLockOpr();
2878       __ load_stack_address_monitor(0, lock);
2879 
2880       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2881       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2882 
2883       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2884       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2885     }
2886   }
2887   if (compilation()->age_code()) {
2888     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2889     decrement_age(info);
2890   }
2891   // increment invocation counters if needed
2892   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2893     profile_parameters(x);
2894     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2895     increment_invocation_counter(info);
2896   }
2897 
2898   // all blocks with a successor must end with an unconditional jump
2899   // to the successor even if they are consecutive
2900   __ jump(x->default_sux());
2901 }
2902 
2903 
2904 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2905   // construct our frame and model the production of incoming pointer
2906   // to the OSR buffer.
2907   __ osr_entry(LIR_Assembler::osrBufferPointer());
2908   LIR_Opr result = rlock_result(x);
2909   __ move(LIR_Assembler::osrBufferPointer(), result);
2910 }
2911 
2912 
2913 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2914   assert(args->length() == arg_list->length(),
2915          "args=%d, arg_list=%d", args->length(), arg_list->length());
2916   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2917     LIRItem* param = args->at(i);
2918     LIR_Opr loc = arg_list->at(i);
2919     if (loc->is_register()) {
2920       param->load_item_force(loc);
2921     } else {
2922       LIR_Address* addr = loc->as_address_ptr();
2923       param->load_for_store(addr->type());
2924       assert(addr->type() != T_VALUETYPE, "not supported yet");
2925       if (addr->type() == T_OBJECT) {
2926         __ move_wide(param->result(), addr);
2927       } else
2928         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2929           __ unaligned_move(param->result(), addr);
2930         } else {
2931           __ move(param->result(), addr);
2932         }
2933     }
2934   }
2935 
2936   if (x->has_receiver()) {
2937     LIRItem* receiver = args->at(0);
2938     LIR_Opr loc = arg_list->at(0);
2939     if (loc->is_register()) {
2940       receiver->load_item_force(loc);
2941     } else {
2942       assert(loc->is_address(), "just checking");
2943       receiver->load_for_store(T_OBJECT);
2944       __ move_wide(receiver->result(), loc->as_address_ptr());
2945     }
2946   }
2947 }
2948 
2949 
2950 // Visits all arguments, returns appropriate items without loading them
2951 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2952   LIRItemList* argument_items = new LIRItemList();
2953   if (x->has_receiver()) {
2954     LIRItem* receiver = new LIRItem(x->receiver(), this);
2955     argument_items->append(receiver);
2956   }
2957   for (int i = 0; i < x->number_of_arguments(); i++) {
2958     LIRItem* param = new LIRItem(x->argument_at(i), this);
2959     argument_items->append(param);
2960   }
2961   return argument_items;
2962 }
2963 
2964 
2965 // The invoke with receiver has following phases:
2966 //   a) traverse and load/lock receiver;
2967 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2968 //   c) push receiver on stack
2969 //   d) load each of the items and push on stack
2970 //   e) unlock receiver
2971 //   f) move receiver into receiver-register %o0
2972 //   g) lock result registers and emit call operation
2973 //
2974 // Before issuing a call, we must spill-save all values on stack
2975 // that are in caller-save register. "spill-save" moves those registers
2976 // either in a free callee-save register or spills them if no free
2977 // callee save register is available.
2978 //
2979 // The problem is where to invoke spill-save.
2980 // - if invoked between e) and f), we may lock callee save
2981 //   register in "spill-save" that destroys the receiver register
2982 //   before f) is executed
2983 // - if we rearrange f) to be earlier (by loading %o0) it
2984 //   may destroy a value on the stack that is currently in %o0
2985 //   and is waiting to be spilled
2986 // - if we keep the receiver locked while doing spill-save,
2987 //   we cannot spill it as it is spill-locked
2988 //
2989 void LIRGenerator::do_Invoke(Invoke* x) {
2990   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2991 
2992   LIR_OprList* arg_list = cc->args();
2993   LIRItemList* args = invoke_visit_arguments(x);
2994   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2995 
2996   // setup result register
2997   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2998   if (x->type() != voidType) {
2999     result_register = result_register_for(x->type());
3000   }
3001 
3002   CodeEmitInfo* info = state_for(x, x->state());
3003 
3004   invoke_load_arguments(x, args, arg_list);
3005 
3006   if (x->has_receiver()) {
3007     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3008     receiver = args->at(0)->result();
3009   }
3010 
3011   // emit invoke code
3012   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3013 
3014   // JSR 292
3015   // Preserve the SP over MethodHandle call sites, if needed.
3016   ciMethod* target = x->target();
3017   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3018                                   target->is_method_handle_intrinsic() ||
3019                                   target->is_compiled_lambda_form());
3020   if (is_method_handle_invoke) {
3021     info->set_is_method_handle_invoke(true);
3022     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3023         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3024     }
3025   }
3026 
3027   switch (x->code()) {
3028     case Bytecodes::_invokestatic:
3029       __ call_static(target, result_register,
3030                      SharedRuntime::get_resolve_static_call_stub(),
3031                      arg_list, info);
3032       break;
3033     case Bytecodes::_invokespecial:
3034     case Bytecodes::_invokevirtual:
3035     case Bytecodes::_invokeinterface:
3036       // for loaded and final (method or class) target we still produce an inline cache,
3037       // in order to be able to call mixed mode
3038       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3039         __ call_opt_virtual(target, receiver, result_register,
3040                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3041                             arg_list, info);
3042       } else if (x->vtable_index() < 0) {
3043         __ call_icvirtual(target, receiver, result_register,
3044                           SharedRuntime::get_resolve_virtual_call_stub(),
3045                           arg_list, info);
3046       } else {
3047         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3048         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3049         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3050       }
3051       break;
3052     case Bytecodes::_invokedynamic: {
3053       __ call_dynamic(target, receiver, result_register,
3054                       SharedRuntime::get_resolve_static_call_stub(),
3055                       arg_list, info);
3056       break;
3057     }
3058     default:
3059       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3060       break;
3061   }
3062 
3063   // JSR 292
3064   // Restore the SP after MethodHandle call sites, if needed.
3065   if (is_method_handle_invoke
3066       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3067     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3068   }
3069 
3070   if (x->type()->is_float() || x->type()->is_double()) {
3071     // Force rounding of results from non-strictfp when in strictfp
3072     // scope (or when we don't know the strictness of the callee, to
3073     // be safe.)
3074     if (method()->is_strict()) {
3075       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3076         result_register = round_item(result_register);
3077       }
3078     }
3079   }
3080 
3081   if (result_register->is_valid()) {
3082     LIR_Opr result = rlock_result(x);
3083     __ move(result_register, result);
3084   }
3085 }
3086 
3087 
3088 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3089   assert(x->number_of_arguments() == 1, "wrong type");
3090   LIRItem value       (x->argument_at(0), this);
3091   LIR_Opr reg = rlock_result(x);
3092   value.load_item();
3093   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3094   __ move(tmp, reg);
3095 }
3096 
3097 
3098 
3099 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3100 void LIRGenerator::do_IfOp(IfOp* x) {
3101 #ifdef ASSERT
3102   {
3103     ValueTag xtag = x->x()->type()->tag();
3104     ValueTag ttag = x->tval()->type()->tag();
3105     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3106     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3107     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3108   }
3109 #endif
3110 
3111   LIRItem left(x->x(), this);
3112   LIRItem right(x->y(), this);
3113   left.load_item();
3114   if (can_inline_as_constant(right.value())) {
3115     right.dont_load_item();
3116   } else {
3117     right.load_item();
3118   }
3119 
3120   LIRItem t_val(x->tval(), this);
3121   LIRItem f_val(x->fval(), this);
3122   t_val.dont_load_item();
3123   f_val.dont_load_item();
3124   LIR_Opr reg = rlock_result(x);
3125 
3126   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3127   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3128 }
3129 
3130 #ifdef JFR_HAVE_INTRINSICS
3131 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3132   CodeEmitInfo* info = state_for(x);
3133   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3134 
3135   assert(info != NULL, "must have info");
3136   LIRItem arg(x->argument_at(0), this);
3137 
3138   arg.load_item();
3139   LIR_Opr klass = new_register(T_METADATA);
3140   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3141   LIR_Opr id = new_register(T_LONG);
3142   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3143   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3144 
3145   __ move(trace_id_addr, id);
3146   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3147   __ store(id, trace_id_addr);
3148 
3149 #ifdef TRACE_ID_META_BITS
3150   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3151 #endif
3152 #ifdef TRACE_ID_SHIFT
3153   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3154 #endif
3155 
3156   __ move(id, rlock_result(x));
3157 }
3158 
3159 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3160   LabelObj* L_end = new LabelObj();
3161 
3162   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3163                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3164                                            T_OBJECT);
3165   LIR_Opr result = rlock_result(x);
3166   __ move_wide(jobj_addr, result);
3167   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3168   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3169 
3170   LIR_Opr jobj = new_register(T_OBJECT);
3171   __ move(result, jobj);
3172   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3173 
3174   __ branch_destination(L_end->label());
3175 }
3176 
3177 #endif
3178 
3179 
3180 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3181   assert(x->number_of_arguments() == 0, "wrong type");
3182   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3183   BasicTypeList signature;
3184   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3185   LIR_Opr reg = result_register_for(x->type());
3186   __ call_runtime_leaf(routine, getThreadTemp(),
3187                        reg, new LIR_OprList());
3188   LIR_Opr result = rlock_result(x);
3189   __ move(reg, result);
3190 }
3191 
3192 
3193 
3194 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3195   switch (x->id()) {
3196   case vmIntrinsics::_intBitsToFloat      :
3197   case vmIntrinsics::_doubleToRawLongBits :
3198   case vmIntrinsics::_longBitsToDouble    :
3199   case vmIntrinsics::_floatToRawIntBits   : {
3200     do_FPIntrinsics(x);
3201     break;
3202   }
3203 
3204 #ifdef JFR_HAVE_INTRINSICS
3205   case vmIntrinsics::_getClassId:
3206     do_ClassIDIntrinsic(x);
3207     break;
3208   case vmIntrinsics::_getEventWriter:
3209     do_getEventWriter(x);
3210     break;
3211   case vmIntrinsics::_counterTime:
3212     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3213     break;
3214 #endif
3215 
3216   case vmIntrinsics::_currentTimeMillis:
3217     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3218     break;
3219 
3220   case vmIntrinsics::_nanoTime:
3221     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3222     break;
3223 
3224   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3225   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3226   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3227   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3228   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3229 
3230   case vmIntrinsics::_dlog:           // fall through
3231   case vmIntrinsics::_dlog10:         // fall through
3232   case vmIntrinsics::_dabs:           // fall through
3233   case vmIntrinsics::_dsqrt:          // fall through
3234   case vmIntrinsics::_dtan:           // fall through
3235   case vmIntrinsics::_dsin :          // fall through
3236   case vmIntrinsics::_dcos :          // fall through
3237   case vmIntrinsics::_dexp :          // fall through
3238   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3239   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3240 
3241   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3242   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3243 
3244   // java.nio.Buffer.checkIndex
3245   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3246 
3247   case vmIntrinsics::_compareAndSetReference:
3248     do_CompareAndSwap(x, objectType);
3249     break;
3250   case vmIntrinsics::_compareAndSetInt:
3251     do_CompareAndSwap(x, intType);
3252     break;
3253   case vmIntrinsics::_compareAndSetLong:
3254     do_CompareAndSwap(x, longType);
3255     break;
3256 
3257   case vmIntrinsics::_loadFence :
3258     __ membar_acquire();
3259     break;
3260   case vmIntrinsics::_storeFence:
3261     __ membar_release();
3262     break;
3263   case vmIntrinsics::_fullFence :
3264     __ membar();
3265     break;
3266   case vmIntrinsics::_onSpinWait:
3267     __ on_spin_wait();
3268     break;
3269   case vmIntrinsics::_Reference_get:
3270     do_Reference_get(x);
3271     break;
3272 
3273   case vmIntrinsics::_updateCRC32:
3274   case vmIntrinsics::_updateBytesCRC32:
3275   case vmIntrinsics::_updateByteBufferCRC32:
3276     do_update_CRC32(x);
3277     break;
3278 
3279   case vmIntrinsics::_updateBytesCRC32C:
3280   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3281     do_update_CRC32C(x);
3282     break;
3283 
3284   case vmIntrinsics::_vectorizedMismatch:
3285     do_vectorizedMismatch(x);
3286     break;
3287 
3288   default: ShouldNotReachHere(); break;
3289   }
3290 }
3291 
3292 void LIRGenerator::profile_arguments(ProfileCall* x) {
3293   if (compilation()->profile_arguments()) {
3294     int bci = x->bci_of_invoke();
3295     ciMethodData* md = x->method()->method_data_or_null();
3296     assert(md != NULL, "Sanity");
3297     ciProfileData* data = md->bci_to_data(bci);
3298     if (data != NULL) {
3299       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3300           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3301         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3302         int base_offset = md->byte_offset_of_slot(data, extra);
3303         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3304         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3305 
3306         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3307         int start = 0;
3308         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3309         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3310           // first argument is not profiled at call (method handle invoke)
3311           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3312           start = 1;
3313         }
3314         ciSignature* callee_signature = x->callee()->signature();
3315         // method handle call to virtual method
3316         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3317         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3318 
3319         bool ignored_will_link;
3320         ciSignature* signature_at_call = NULL;
3321         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3322         ciSignatureStream signature_at_call_stream(signature_at_call);
3323 
3324         // if called through method handle invoke, some arguments may have been popped
3325         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3326           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3327           ciKlass* exact = profile_type(md, base_offset, off,
3328               args->type(i), x->profiled_arg_at(i+start), mdp,
3329               !x->arg_needs_null_check(i+start),
3330               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3331           if (exact != NULL) {
3332             md->set_argument_type(bci, i, exact);
3333           }
3334         }
3335       } else {
3336 #ifdef ASSERT
3337         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3338         int n = x->nb_profiled_args();
3339         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3340             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3341             "only at JSR292 bytecodes");
3342 #endif
3343       }
3344     }
3345   }
3346 }
3347 
3348 // profile parameters on entry to an inlined method
3349 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3350   if (compilation()->profile_parameters() && x->inlined()) {
3351     ciMethodData* md = x->callee()->method_data_or_null();
3352     if (md != NULL) {
3353       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3354       if (parameters_type_data != NULL) {
3355         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3356         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3357         bool has_receiver = !x->callee()->is_static();
3358         ciSignature* sig = x->callee()->signature();
3359         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3360         int i = 0; // to iterate on the Instructions
3361         Value arg = x->recv();
3362         bool not_null = false;
3363         int bci = x->bci_of_invoke();
3364         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3365         // The first parameter is the receiver so that's what we start
3366         // with if it exists. One exception is method handle call to
3367         // virtual method: the receiver is in the args list
3368         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3369           i = 1;
3370           arg = x->profiled_arg_at(0);
3371           not_null = !x->arg_needs_null_check(0);
3372         }
3373         int k = 0; // to iterate on the profile data
3374         for (;;) {
3375           intptr_t profiled_k = parameters->type(k);
3376           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3377                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3378                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3379           // If the profile is known statically set it once for all and do not emit any code
3380           if (exact != NULL) {
3381             md->set_parameter_type(k, exact);
3382           }
3383           k++;
3384           if (k >= parameters_type_data->number_of_parameters()) {
3385 #ifdef ASSERT
3386             int extra = 0;
3387             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3388                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3389                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3390               extra += 1;
3391             }
3392             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3393 #endif
3394             break;
3395           }
3396           arg = x->profiled_arg_at(i);
3397           not_null = !x->arg_needs_null_check(i);
3398           i++;
3399         }
3400       }
3401     }
3402   }
3403 }
3404 
3405 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3406   // Need recv in a temporary register so it interferes with the other temporaries
3407   LIR_Opr recv = LIR_OprFact::illegalOpr;
3408   LIR_Opr mdo = new_register(T_METADATA);
3409   // tmp is used to hold the counters on SPARC
3410   LIR_Opr tmp = new_pointer_register();
3411 
3412   if (x->nb_profiled_args() > 0) {
3413     profile_arguments(x);
3414   }
3415 
3416   // profile parameters on inlined method entry including receiver
3417   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3418     profile_parameters_at_call(x);
3419   }
3420 
3421   if (x->recv() != NULL) {
3422     LIRItem value(x->recv(), this);
3423     value.load_item();
3424     recv = new_register(T_OBJECT);
3425     __ move(value.result(), recv);
3426   }
3427   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3428 }
3429 
3430 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3431   int bci = x->bci_of_invoke();
3432   ciMethodData* md = x->method()->method_data_or_null();
3433   assert(md != NULL, "Sanity");
3434   ciProfileData* data = md->bci_to_data(bci);
3435   if (data != NULL) {
3436     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3437     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3438     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3439 
3440     bool ignored_will_link;
3441     ciSignature* signature_at_call = NULL;
3442     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3443 
3444     // The offset within the MDO of the entry to update may be too large
3445     // to be used in load/store instructions on some platforms. So have
3446     // profile_type() compute the address of the profile in a register.
3447     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3448         ret->type(), x->ret(), mdp,
3449         !x->needs_null_check(),
3450         signature_at_call->return_type()->as_klass(),
3451         x->callee()->signature()->return_type()->as_klass());
3452     if (exact != NULL) {
3453       md->set_return_type(bci, exact);
3454     }
3455   }
3456 }
3457 
3458 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3459   // We can safely ignore accessors here, since c2 will inline them anyway,
3460   // accessors are also always mature.
3461   if (!x->inlinee()->is_accessor()) {
3462     CodeEmitInfo* info = state_for(x, x->state(), true);
3463     // Notify the runtime very infrequently only to take care of counter overflows
3464     int freq_log = Tier23InlineeNotifyFreqLog;
3465     double scale;
3466     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3467       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3468     }
3469     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3470   }
3471 }
3472 
3473 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3474   if (compilation()->count_backedges()) {
3475     __ cmp(cond, left, right);
3476     LIR_Opr step = new_register(T_INT);
3477     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3478     LIR_Opr zero = LIR_OprFact::intConst(0);
3479     __ cmove(cond,
3480         (left_bci < bci) ? plus_one : zero,
3481         (right_bci < bci) ? plus_one : zero,
3482         step, left->type());
3483     increment_backedge_counter(info, step, bci);
3484   }
3485 }
3486 
3487 
3488 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3489   int freq_log = 0;
3490   int level = compilation()->env()->comp_level();
3491   if (level == CompLevel_limited_profile) {
3492     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3493   } else if (level == CompLevel_full_profile) {
3494     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3495   } else {
3496     ShouldNotReachHere();
3497   }
3498   // Increment the appropriate invocation/backedge counter and notify the runtime.
3499   double scale;
3500   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3501     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3502   }
3503   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3504 }
3505 
3506 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3507   ciMethod* method = info->scope()->method();
3508   MethodCounters* mc_adr = method->ensure_method_counters();
3509   if (mc_adr != NULL) {
3510     LIR_Opr mc = new_pointer_register();
3511     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3512     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3513     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3514     LIR_Opr result = new_register(T_INT);
3515     __ load(counter, result);
3516     __ sub(result, LIR_OprFact::intConst(1), result);
3517     __ store(result, counter);
3518     // DeoptimizeStub will reexecute from the current state in code info.
3519     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3520                                          Deoptimization::Action_make_not_entrant);
3521     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3522     __ branch(lir_cond_lessEqual, T_INT, deopt);
3523   }
3524 }
3525 
3526 
3527 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3528                                                 ciMethod *method, LIR_Opr step, int frequency,
3529                                                 int bci, bool backedge, bool notify) {
3530   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3531   int level = _compilation->env()->comp_level();
3532   assert(level > CompLevel_simple, "Shouldn't be here");
3533 
3534   int offset = -1;
3535   LIR_Opr counter_holder = NULL;
3536   if (level == CompLevel_limited_profile) {
3537     MethodCounters* counters_adr = method->ensure_method_counters();
3538     if (counters_adr == NULL) {
3539       bailout("method counters allocation failed");
3540       return;
3541     }
3542     counter_holder = new_pointer_register();
3543     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3544     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3545                                  MethodCounters::invocation_counter_offset());
3546   } else if (level == CompLevel_full_profile) {
3547     counter_holder = new_register(T_METADATA);
3548     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3549                                  MethodData::invocation_counter_offset());
3550     ciMethodData* md = method->method_data_or_null();
3551     assert(md != NULL, "Sanity");
3552     __ metadata2reg(md->constant_encoding(), counter_holder);
3553   } else {
3554     ShouldNotReachHere();
3555   }
3556   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3557   LIR_Opr result = new_register(T_INT);
3558   __ load(counter, result);
3559   __ add(result, step, result);
3560   __ store(result, counter);
3561   if (notify && (!backedge || UseOnStackReplacement)) {
3562     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3563     // The bci for info can point to cmp for if's we want the if bci
3564     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3565     int freq = frequency << InvocationCounter::count_shift;
3566     if (freq == 0) {
3567       if (!step->is_constant()) {
3568         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3569         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3570       } else {
3571         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3572       }
3573     } else {
3574       LIR_Opr mask = load_immediate(freq, T_INT);
3575       if (!step->is_constant()) {
3576         // If step is 0, make sure the overflow check below always fails
3577         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3578         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3579       }
3580       __ logical_and(result, mask, result);
3581       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3582       __ branch(lir_cond_equal, T_INT, overflow);
3583     }
3584     __ branch_destination(overflow->continuation());
3585   }
3586 }
3587 
3588 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3589   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3590   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3591 
3592   if (x->pass_thread()) {
3593     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3594     args->append(getThreadPointer());
3595   }
3596 
3597   for (int i = 0; i < x->number_of_arguments(); i++) {
3598     Value a = x->argument_at(i);
3599     LIRItem* item = new LIRItem(a, this);
3600     item->load_item();
3601     args->append(item->result());
3602     signature->append(as_BasicType(a->type()));
3603   }
3604 
3605   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3606   if (x->type() == voidType) {
3607     set_no_result(x);
3608   } else {
3609     __ move(result, rlock_result(x));
3610   }
3611 }
3612 
3613 #ifdef ASSERT
3614 void LIRGenerator::do_Assert(Assert *x) {
3615   ValueTag tag = x->x()->type()->tag();
3616   If::Condition cond = x->cond();
3617 
3618   LIRItem xitem(x->x(), this);
3619   LIRItem yitem(x->y(), this);
3620   LIRItem* xin = &xitem;
3621   LIRItem* yin = &yitem;
3622 
3623   assert(tag == intTag, "Only integer assertions are valid!");
3624 
3625   xin->load_item();
3626   yin->dont_load_item();
3627 
3628   set_no_result(x);
3629 
3630   LIR_Opr left = xin->result();
3631   LIR_Opr right = yin->result();
3632 
3633   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3634 }
3635 #endif
3636 
3637 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3638 
3639 
3640   Instruction *a = x->x();
3641   Instruction *b = x->y();
3642   if (!a || StressRangeCheckElimination) {
3643     assert(!b || StressRangeCheckElimination, "B must also be null");
3644 
3645     CodeEmitInfo *info = state_for(x, x->state());
3646     CodeStub* stub = new PredicateFailedStub(info);
3647 
3648     __ jump(stub);
3649   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3650     int a_int = a->type()->as_IntConstant()->value();
3651     int b_int = b->type()->as_IntConstant()->value();
3652 
3653     bool ok = false;
3654 
3655     switch(x->cond()) {
3656       case Instruction::eql: ok = (a_int == b_int); break;
3657       case Instruction::neq: ok = (a_int != b_int); break;
3658       case Instruction::lss: ok = (a_int < b_int); break;
3659       case Instruction::leq: ok = (a_int <= b_int); break;
3660       case Instruction::gtr: ok = (a_int > b_int); break;
3661       case Instruction::geq: ok = (a_int >= b_int); break;
3662       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3663       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3664       default: ShouldNotReachHere();
3665     }
3666 
3667     if (ok) {
3668 
3669       CodeEmitInfo *info = state_for(x, x->state());
3670       CodeStub* stub = new PredicateFailedStub(info);
3671 
3672       __ jump(stub);
3673     }
3674   } else {
3675 
3676     ValueTag tag = x->x()->type()->tag();
3677     If::Condition cond = x->cond();
3678     LIRItem xitem(x->x(), this);
3679     LIRItem yitem(x->y(), this);
3680     LIRItem* xin = &xitem;
3681     LIRItem* yin = &yitem;
3682 
3683     assert(tag == intTag, "Only integer deoptimizations are valid!");
3684 
3685     xin->load_item();
3686     yin->dont_load_item();
3687     set_no_result(x);
3688 
3689     LIR_Opr left = xin->result();
3690     LIR_Opr right = yin->result();
3691 
3692     CodeEmitInfo *info = state_for(x, x->state());
3693     CodeStub* stub = new PredicateFailedStub(info);
3694 
3695     __ cmp(lir_cond(cond), left, right);
3696     __ branch(lir_cond(cond), right->type(), stub);
3697   }
3698 }
3699 
3700 
3701 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3702   LIRItemList args(1);
3703   LIRItem value(arg1, this);
3704   args.append(&value);
3705   BasicTypeList signature;
3706   signature.append(as_BasicType(arg1->type()));
3707 
3708   return call_runtime(&signature, &args, entry, result_type, info);
3709 }
3710 
3711 
3712 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3713   LIRItemList args(2);
3714   LIRItem value1(arg1, this);
3715   LIRItem value2(arg2, this);
3716   args.append(&value1);
3717   args.append(&value2);
3718   BasicTypeList signature;
3719   signature.append(as_BasicType(arg1->type()));
3720   signature.append(as_BasicType(arg2->type()));
3721 
3722   return call_runtime(&signature, &args, entry, result_type, info);
3723 }
3724 
3725 
3726 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3727                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3728   // get a result register
3729   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3730   LIR_Opr result = LIR_OprFact::illegalOpr;
3731   if (result_type->tag() != voidTag) {
3732     result = new_register(result_type);
3733     phys_reg = result_register_for(result_type);
3734   }
3735 
3736   // move the arguments into the correct location
3737   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3738   assert(cc->length() == args->length(), "argument mismatch");
3739   for (int i = 0; i < args->length(); i++) {
3740     LIR_Opr arg = args->at(i);
3741     LIR_Opr loc = cc->at(i);
3742     if (loc->is_register()) {
3743       __ move(arg, loc);
3744     } else {
3745       LIR_Address* addr = loc->as_address_ptr();
3746 //           if (!can_store_as_constant(arg)) {
3747 //             LIR_Opr tmp = new_register(arg->type());
3748 //             __ move(arg, tmp);
3749 //             arg = tmp;
3750 //           }
3751       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3752         __ unaligned_move(arg, addr);
3753       } else {
3754         __ move(arg, addr);
3755       }
3756     }
3757   }
3758 
3759   if (info) {
3760     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3761   } else {
3762     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3763   }
3764   if (result->is_valid()) {
3765     __ move(phys_reg, result);
3766   }
3767   return result;
3768 }
3769 
3770 
3771 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3772                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3773   // get a result register
3774   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3775   LIR_Opr result = LIR_OprFact::illegalOpr;
3776   if (result_type->tag() != voidTag) {
3777     result = new_register(result_type);
3778     phys_reg = result_register_for(result_type);
3779   }
3780 
3781   // move the arguments into the correct location
3782   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3783 
3784   assert(cc->length() == args->length(), "argument mismatch");
3785   for (int i = 0; i < args->length(); i++) {
3786     LIRItem* arg = args->at(i);
3787     LIR_Opr loc = cc->at(i);
3788     if (loc->is_register()) {
3789       arg->load_item_force(loc);
3790     } else {
3791       LIR_Address* addr = loc->as_address_ptr();
3792       arg->load_for_store(addr->type());
3793       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3794         __ unaligned_move(arg->result(), addr);
3795       } else {
3796         __ move(arg->result(), addr);
3797       }
3798     }
3799   }
3800 
3801   if (info) {
3802     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3803   } else {
3804     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3805   }
3806   if (result->is_valid()) {
3807     __ move(phys_reg, result);
3808   }
3809   return result;
3810 }
3811 
3812 void LIRGenerator::do_MemBar(MemBar* x) {
3813   LIR_Code code = x->code();
3814   switch(code) {
3815   case lir_membar_acquire   : __ membar_acquire(); break;
3816   case lir_membar_release   : __ membar_release(); break;
3817   case lir_membar           : __ membar(); break;
3818   case lir_membar_loadload  : __ membar_loadload(); break;
3819   case lir_membar_storestore: __ membar_storestore(); break;
3820   case lir_membar_loadstore : __ membar_loadstore(); break;
3821   case lir_membar_storeload : __ membar_storeload(); break;
3822   default                   : ShouldNotReachHere(); break;
3823   }
3824 }
3825 
3826 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3827   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3828   if (TwoOperandLIRForm) {
3829     __ move(value, value_fixed);
3830     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3831   } else {
3832     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3833   }
3834   LIR_Opr klass = new_register(T_METADATA);
3835   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3836   null_check_info = NULL;
3837   LIR_Opr layout = new_register(T_INT);
3838   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3839   int diffbit = Klass::layout_helper_boolean_diffbit();
3840   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3841   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3842   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3843   value = value_fixed;
3844   return value;
3845 }
3846 
3847 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3848   if (x->check_boolean()) {
3849     value = mask_boolean(array, value, null_check_info);
3850   }
3851   return value;
3852 }