1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset(int max_vregs) {
  59   // Initialize array sizes
  60   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _virtual_operands.trunc_to(0);
  62   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _other_operands.trunc_to(0);
  64   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  65   _vreg_table.trunc_to(0);
  66 }
  67 
  68 
  69 
  70 //--------------------------------------------------------------
  71 // PhiResolver
  72 
  73 // Resolves cycles:
  74 //
  75 //  r1 := r2  becomes  temp := r1
  76 //  r2 := r1           r1 := r2
  77 //                     r2 := temp
  78 // and orders moves:
  79 //
  80 //  r2 := r3  becomes  r1 := r2
  81 //  r1 := r2           r2 := r3
  82 
  83 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  84  : _gen(gen)
  85  , _state(gen->resolver_state())
  86  , _temp(LIR_OprFact::illegalOpr)
  87 {
  88   // reinitialize the shared state arrays
  89   _state.reset(max_vregs);
  90 }
  91 
  92 
  93 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  94   assert(src->is_valid(), "");
  95   assert(dest->is_valid(), "");
  96   __ move(src, dest);
  97 }
  98 
  99 
 100 void PhiResolver::move_temp_to(LIR_Opr dest) {
 101   assert(_temp->is_valid(), "");
 102   emit_move(_temp, dest);
 103   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 104 }
 105 
 106 
 107 void PhiResolver::move_to_temp(LIR_Opr src) {
 108   assert(_temp->is_illegal(), "");
 109   _temp = _gen->new_register(src->type());
 110   emit_move(src, _temp);
 111 }
 112 
 113 
 114 // Traverse assignment graph in depth first order and generate moves in post order
 115 // ie. two assignments: b := c, a := b start with node c:
 116 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 117 // Generates moves in this order: move b to a and move c to b
 118 // ie. cycle a := b, b := a start with node a
 119 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 120 // Generates moves in this order: move b to temp, move a to b, move temp to a
 121 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 122   if (!dest->visited()) {
 123     dest->set_visited();
 124     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 125       move(dest, dest->destination_at(i));
 126     }
 127   } else if (!dest->start_node()) {
 128     // cylce in graph detected
 129     assert(_loop == NULL, "only one loop valid!");
 130     _loop = dest;
 131     move_to_temp(src->operand());
 132     return;
 133   } // else dest is a start node
 134 
 135   if (!dest->assigned()) {
 136     if (_loop == dest) {
 137       move_temp_to(dest->operand());
 138       dest->set_assigned();
 139     } else if (src != NULL) {
 140       emit_move(src->operand(), dest->operand());
 141       dest->set_assigned();
 142     }
 143   }
 144 }
 145 
 146 
 147 PhiResolver::~PhiResolver() {
 148   int i;
 149   // resolve any cycles in moves from and to virtual registers
 150   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 151     ResolveNode* node = virtual_operands().at(i);
 152     if (!node->visited()) {
 153       _loop = NULL;
 154       move(NULL, node);
 155       node->set_start_node();
 156       assert(_temp->is_illegal(), "move_temp_to() call missing");
 157     }
 158   }
 159 
 160   // generate move for move from non virtual register to abitrary destination
 161   for (i = other_operands().length() - 1; i >= 0; i --) {
 162     ResolveNode* node = other_operands().at(i);
 163     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 164       emit_move(node->operand(), node->destination_at(j)->operand());
 165     }
 166   }
 167 }
 168 
 169 
 170 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 171   ResolveNode* node;
 172   if (opr->is_virtual()) {
 173     int vreg_num = opr->vreg_number();
 174     node = vreg_table().at_grow(vreg_num, NULL);
 175     assert(node == NULL || node->operand() == opr, "");
 176     if (node == NULL) {
 177       node = new ResolveNode(opr);
 178       vreg_table().at_put(vreg_num, node);
 179     }
 180     // Make sure that all virtual operands show up in the list when
 181     // they are used as the source of a move.
 182     if (source && !virtual_operands().contains(node)) {
 183       virtual_operands().append(node);
 184     }
 185   } else {
 186     assert(source, "");
 187     node = new ResolveNode(opr);
 188     other_operands().append(node);
 189   }
 190   return node;
 191 }
 192 
 193 
 194 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 195   assert(dest->is_virtual(), "");
 196   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 197   assert(src->is_valid(), "");
 198   assert(dest->is_valid(), "");
 199   ResolveNode* source = source_node(src);
 200   source->append(destination_node(dest));
 201 }
 202 
 203 
 204 //--------------------------------------------------------------
 205 // LIRItem
 206 
 207 void LIRItem::set_result(LIR_Opr opr) {
 208   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 209   value()->set_operand(opr);
 210 
 211   if (opr->is_virtual()) {
 212     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 213   }
 214 
 215   _result = opr;
 216 }
 217 
 218 void LIRItem::load_item() {
 219   if (result()->is_illegal()) {
 220     // update the items result
 221     _result = value()->operand();
 222   }
 223   if (!result()->is_register()) {
 224     LIR_Opr reg = _gen->new_register(value()->type());
 225     __ move(result(), reg);
 226     if (result()->is_constant()) {
 227       _result = reg;
 228     } else {
 229       set_result(reg);
 230     }
 231   }
 232 }
 233 
 234 
 235 void LIRItem::load_for_store(BasicType type) {
 236   if (_gen->can_store_as_constant(value(), type)) {
 237     _result = value()->operand();
 238     if (!_result->is_constant()) {
 239       _result = LIR_OprFact::value_type(value()->type());
 240     }
 241   } else if (type == T_BYTE || type == T_BOOLEAN) {
 242     load_byte_item();
 243   } else {
 244     load_item();
 245   }
 246 }
 247 
 248 void LIRItem::load_item_force(LIR_Opr reg) {
 249   LIR_Opr r = result();
 250   if (r != reg) {
 251 #if !defined(ARM) && !defined(E500V2)
 252     if (r->type() != reg->type()) {
 253       // moves between different types need an intervening spill slot
 254       r = _gen->force_to_spill(r, reg->type());
 255     }
 256 #endif
 257     __ move(r, reg);
 258     _result = reg;
 259   }
 260 }
 261 
 262 ciObject* LIRItem::get_jobject_constant() const {
 263   ObjectType* oc = type()->as_ObjectType();
 264   if (oc) {
 265     return oc->constant_value();
 266   }
 267   return NULL;
 268 }
 269 
 270 
 271 jint LIRItem::get_jint_constant() const {
 272   assert(is_constant() && value() != NULL, "");
 273   assert(type()->as_IntConstant() != NULL, "type check");
 274   return type()->as_IntConstant()->value();
 275 }
 276 
 277 
 278 jint LIRItem::get_address_constant() const {
 279   assert(is_constant() && value() != NULL, "");
 280   assert(type()->as_AddressConstant() != NULL, "type check");
 281   return type()->as_AddressConstant()->value();
 282 }
 283 
 284 
 285 jfloat LIRItem::get_jfloat_constant() const {
 286   assert(is_constant() && value() != NULL, "");
 287   assert(type()->as_FloatConstant() != NULL, "type check");
 288   return type()->as_FloatConstant()->value();
 289 }
 290 
 291 
 292 jdouble LIRItem::get_jdouble_constant() const {
 293   assert(is_constant() && value() != NULL, "");
 294   assert(type()->as_DoubleConstant() != NULL, "type check");
 295   return type()->as_DoubleConstant()->value();
 296 }
 297 
 298 
 299 jlong LIRItem::get_jlong_constant() const {
 300   assert(is_constant() && value() != NULL, "");
 301   assert(type()->as_LongConstant() != NULL, "type check");
 302   return type()->as_LongConstant()->value();
 303 }
 304 
 305 
 306 
 307 //--------------------------------------------------------------
 308 
 309 
 310 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 311 #ifndef PRODUCT
 312   if (PrintIRWithLIR) {
 313     block->print();
 314   }
 315 #endif
 316 
 317   // set up the list of LIR instructions
 318   assert(block->lir() == NULL, "LIR list already computed for this block");
 319   _lir = new LIR_List(compilation(), block);
 320   block->set_lir(_lir);
 321 
 322   __ branch_destination(block->label());
 323 
 324   if (LIRTraceExecution &&
 325       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 326       !block->is_set(BlockBegin::exception_entry_flag)) {
 327     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 328     trace_block_entry(block);
 329   }
 330 }
 331 
 332 
 333 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 334 #ifndef PRODUCT
 335   if (PrintIRWithLIR) {
 336     tty->cr();
 337   }
 338 #endif
 339 
 340   // LIR_Opr for unpinned constants shouldn't be referenced by other
 341   // blocks so clear them out after processing the block.
 342   for (int i = 0; i < _unpinned_constants.length(); i++) {
 343     _unpinned_constants.at(i)->clear_operand();
 344   }
 345   _unpinned_constants.trunc_to(0);
 346 
 347   // clear our any registers for other local constants
 348   _constants.trunc_to(0);
 349   _reg_for_constants.trunc_to(0);
 350 }
 351 
 352 
 353 void LIRGenerator::block_do(BlockBegin* block) {
 354   CHECK_BAILOUT();
 355 
 356   block_do_prolog(block);
 357   set_block(block);
 358 
 359   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 360     if (instr->is_pinned()) do_root(instr);
 361   }
 362 
 363   set_block(NULL);
 364   block_do_epilog(block);
 365 }
 366 
 367 
 368 //-------------------------LIRGenerator-----------------------------
 369 
 370 // This is where the tree-walk starts; instr must be root;
 371 void LIRGenerator::do_root(Value instr) {
 372   CHECK_BAILOUT();
 373 
 374   InstructionMark im(compilation(), instr);
 375 
 376   assert(instr->is_pinned(), "use only with roots");
 377   assert(instr->subst() == instr, "shouldn't have missed substitution");
 378 
 379   instr->visit(this);
 380 
 381   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 382          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 383 }
 384 
 385 
 386 // This is called for each node in tree; the walk stops if a root is reached
 387 void LIRGenerator::walk(Value instr) {
 388   InstructionMark im(compilation(), instr);
 389   //stop walk when encounter a root
 390   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 391     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 392   } else {
 393     assert(instr->subst() == instr, "shouldn't have missed substitution");
 394     instr->visit(this);
 395     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 396   }
 397 }
 398 
 399 
 400 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 401   assert(state != NULL, "state must be defined");
 402 
 403 #ifndef PRODUCT
 404   state->verify();
 405 #endif
 406 
 407   ValueStack* s = state;
 408   for_each_state(s) {
 409     if (s->kind() == ValueStack::EmptyExceptionState) {
 410       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 411       continue;
 412     }
 413 
 414     int index;
 415     Value value;
 416     for_each_stack_value(s, index, value) {
 417       assert(value->subst() == value, "missed substitution");
 418       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 419         walk(value);
 420         assert(value->operand()->is_valid(), "must be evaluated now");
 421       }
 422     }
 423 
 424     int bci = s->bci();
 425     IRScope* scope = s->scope();
 426     ciMethod* method = scope->method();
 427 
 428     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 429     if (bci == SynchronizationEntryBCI) {
 430       if (x->as_ExceptionObject() || x->as_Throw()) {
 431         // all locals are dead on exit from the synthetic unlocker
 432         liveness.clear();
 433       } else {
 434         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 435       }
 436     }
 437     if (!liveness.is_valid()) {
 438       // Degenerate or breakpointed method.
 439       bailout("Degenerate or breakpointed method");
 440     } else {
 441       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 442       for_each_local_value(s, index, value) {
 443         assert(value->subst() == value, "missed substition");
 444         if (liveness.at(index) && !value->type()->is_illegal()) {
 445           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 446             walk(value);
 447             assert(value->operand()->is_valid(), "must be evaluated now");
 448           }
 449         } else {
 450           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 451           s->invalidate_local(index);
 452         }
 453       }
 454     }
 455   }
 456 
 457   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 458 }
 459 
 460 
 461 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 462   return state_for(x, x->exception_state());
 463 }
 464 
 465 
 466 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 467   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 468    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 469    * the class. */
 470   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 471     assert(info != NULL, "info must be set if class is not loaded");
 472     __ klass2reg_patch(NULL, r, info);
 473   } else {
 474     // no patching needed
 475     __ metadata2reg(obj->constant_encoding(), r);
 476   }
 477 }
 478 
 479 
 480 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 481                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 482   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 483   if (index->is_constant()) {
 484     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 485                 index->as_jint(), null_check_info);
 486     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 487   } else {
 488     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 489                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 490     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 491   }
 492 }
 493 
 494 
 495 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 496   CodeStub* stub = new RangeCheckStub(info, index);
 497   if (index->is_constant()) {
 498     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 499     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 500   } else {
 501     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 502                 java_nio_Buffer::limit_offset(), T_INT, info);
 503     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 504   }
 505   __ move(index, result);
 506 }
 507 
 508 
 509 
 510 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 511   LIR_Opr result_op = result;
 512   LIR_Opr left_op   = left;
 513   LIR_Opr right_op  = right;
 514 
 515   if (TwoOperandLIRForm && left_op != result_op) {
 516     assert(right_op != result_op, "malformed");
 517     __ move(left_op, result_op);
 518     left_op = result_op;
 519   }
 520 
 521   switch(code) {
 522     case Bytecodes::_dadd:
 523     case Bytecodes::_fadd:
 524     case Bytecodes::_ladd:
 525     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 526     case Bytecodes::_fmul:
 527     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 528 
 529     case Bytecodes::_dmul:
 530       {
 531         if (is_strictfp) {
 532           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 533         } else {
 534           __ mul(left_op, right_op, result_op); break;
 535         }
 536       }
 537       break;
 538 
 539     case Bytecodes::_imul:
 540       {
 541         bool did_strength_reduce = false;
 542 
 543         if (right->is_constant()) {
 544           jint c = right->as_jint();
 545           if (c > 0 && is_power_of_2(c)) {
 546             // do not need tmp here
 547             __ shift_left(left_op, exact_log2(c), result_op);
 548             did_strength_reduce = true;
 549           } else {
 550             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 551           }
 552         }
 553         // we couldn't strength reduce so just emit the multiply
 554         if (!did_strength_reduce) {
 555           __ mul(left_op, right_op, result_op);
 556         }
 557       }
 558       break;
 559 
 560     case Bytecodes::_dsub:
 561     case Bytecodes::_fsub:
 562     case Bytecodes::_lsub:
 563     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 564 
 565     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 566     // ldiv and lrem are implemented with a direct runtime call
 567 
 568     case Bytecodes::_ddiv:
 569       {
 570         if (is_strictfp) {
 571           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 572         } else {
 573           __ div (left_op, right_op, result_op); break;
 574         }
 575       }
 576       break;
 577 
 578     case Bytecodes::_drem:
 579     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 580 
 581     default: ShouldNotReachHere();
 582   }
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 587   arithmetic_op(code, result, left, right, false, tmp);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 592   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 593 }
 594 
 595 
 596 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 597   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 598 }
 599 
 600 
 601 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 602 
 603   if (TwoOperandLIRForm && value != result_op
 604       // Only 32bit right shifts require two operand form on S390.
 605       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 647                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 648   if (!GenerateSynchronizationCode) return;
 649   // for slow path, use debug info for state after successful locking
 650   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 651   __ load_stack_address_monitor(monitor_no, lock);
 652   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 653   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 658   if (!GenerateSynchronizationCode) return;
 659   // setup registers
 660   LIR_Opr hdr = lock;
 661   lock = new_hdr;
 662   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 663   __ load_stack_address_monitor(monitor_no, lock);
 664   __ unlock_object(hdr, object, lock, scratch, slow_path);
 665 }
 666 
 667 #ifndef PRODUCT
 668 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 669   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 670     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 671   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 672     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 673   }
 674 }
 675 #endif
 676 
 677 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 678   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 679   // If klass is not loaded we do not know if the klass has finalizers:
 680   if (UseFastNewInstance && klass->is_loaded()
 681       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 682 
 683     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 684 
 685     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 686 
 687     assert(klass->is_loaded(), "must be loaded");
 688     // allocate space for instance
 689     assert(klass->size_helper() >= 0, "illegal instance size");
 690     const int instance_size = align_object_size(klass->size_helper());
 691     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 692                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 693   } else {
 694     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 695     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 696     __ branch_destination(slow_path->continuation());
 697   }
 698 }
 699 
 700 
 701 static bool is_constant_zero(Instruction* inst) {
 702   IntConstant* c = inst->type()->as_IntConstant();
 703   if (c) {
 704     return (c->value() == 0);
 705   }
 706   return false;
 707 }
 708 
 709 
 710 static bool positive_constant(Instruction* inst) {
 711   IntConstant* c = inst->type()->as_IntConstant();
 712   if (c) {
 713     return (c->value() >= 0);
 714   }
 715   return false;
 716 }
 717 
 718 
 719 static ciArrayKlass* as_array_klass(ciType* type) {
 720   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 721     return (ciArrayKlass*)type;
 722   } else {
 723     return NULL;
 724   }
 725 }
 726 
 727 static ciType* phi_declared_type(Phi* phi) {
 728   ciType* t = phi->operand_at(0)->declared_type();
 729   if (t == NULL) {
 730     return NULL;
 731   }
 732   for(int i = 1; i < phi->operand_count(); i++) {
 733     if (t != phi->operand_at(i)->declared_type()) {
 734       return NULL;
 735     }
 736   }
 737   return t;
 738 }
 739 
 740 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 741   Instruction* src     = x->argument_at(0);
 742   Instruction* src_pos = x->argument_at(1);
 743   Instruction* dst     = x->argument_at(2);
 744   Instruction* dst_pos = x->argument_at(3);
 745   Instruction* length  = x->argument_at(4);
 746 
 747   // first try to identify the likely type of the arrays involved
 748   ciArrayKlass* expected_type = NULL;
 749   bool is_exact = false, src_objarray = false, dst_objarray = false;
 750   {
 751     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 752     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 753     Phi* phi;
 754     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 755       src_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 758     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 759     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 760       dst_declared_type = as_array_klass(phi_declared_type(phi));
 761     }
 762 
 763     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 764       // the types exactly match so the type is fully known
 765       is_exact = true;
 766       expected_type = src_exact_type;
 767     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 768       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 769       ciArrayKlass* src_type = NULL;
 770       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 771         src_type = (ciArrayKlass*) src_exact_type;
 772       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_declared_type;
 774       }
 775       if (src_type != NULL) {
 776         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 777           is_exact = true;
 778           expected_type = dst_type;
 779         }
 780       }
 781     }
 782     // at least pass along a good guess
 783     if (expected_type == NULL) expected_type = dst_exact_type;
 784     if (expected_type == NULL) expected_type = src_declared_type;
 785     if (expected_type == NULL) expected_type = dst_declared_type;
 786 
 787     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 788     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 789   }
 790 
 791   // if a probable array type has been identified, figure out if any
 792   // of the required checks for a fast case can be elided.
 793   int flags = LIR_OpArrayCopy::all_flags;
 794 
 795   if (!src_objarray)
 796     flags &= ~LIR_OpArrayCopy::src_objarray;
 797   if (!dst_objarray)
 798     flags &= ~LIR_OpArrayCopy::dst_objarray;
 799 
 800   if (!x->arg_needs_null_check(0))
 801     flags &= ~LIR_OpArrayCopy::src_null_check;
 802   if (!x->arg_needs_null_check(2))
 803     flags &= ~LIR_OpArrayCopy::dst_null_check;
 804 
 805 
 806   if (expected_type != NULL) {
 807     Value length_limit = NULL;
 808 
 809     IfOp* ifop = length->as_IfOp();
 810     if (ifop != NULL) {
 811       // look for expressions like min(v, a.length) which ends up as
 812       //   x > y ? y : x  or  x >= y ? y : x
 813       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 814           ifop->x() == ifop->fval() &&
 815           ifop->y() == ifop->tval()) {
 816         length_limit = ifop->y();
 817       }
 818     }
 819 
 820     // try to skip null checks and range checks
 821     NewArray* src_array = src->as_NewArray();
 822     if (src_array != NULL) {
 823       flags &= ~LIR_OpArrayCopy::src_null_check;
 824       if (length_limit != NULL &&
 825           src_array->length() == length_limit &&
 826           is_constant_zero(src_pos)) {
 827         flags &= ~LIR_OpArrayCopy::src_range_check;
 828       }
 829     }
 830 
 831     NewArray* dst_array = dst->as_NewArray();
 832     if (dst_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::dst_null_check;
 834       if (length_limit != NULL &&
 835           dst_array->length() == length_limit &&
 836           is_constant_zero(dst_pos)) {
 837         flags &= ~LIR_OpArrayCopy::dst_range_check;
 838       }
 839     }
 840 
 841     // check from incoming constant values
 842     if (positive_constant(src_pos))
 843       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 844     if (positive_constant(dst_pos))
 845       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 846     if (positive_constant(length))
 847       flags &= ~LIR_OpArrayCopy::length_positive_check;
 848 
 849     // see if the range check can be elided, which might also imply
 850     // that src or dst is non-null.
 851     ArrayLength* al = length->as_ArrayLength();
 852     if (al != NULL) {
 853       if (al->array() == src) {
 854         // it's the length of the source array
 855         flags &= ~LIR_OpArrayCopy::length_positive_check;
 856         flags &= ~LIR_OpArrayCopy::src_null_check;
 857         if (is_constant_zero(src_pos))
 858           flags &= ~LIR_OpArrayCopy::src_range_check;
 859       }
 860       if (al->array() == dst) {
 861         // it's the length of the destination array
 862         flags &= ~LIR_OpArrayCopy::length_positive_check;
 863         flags &= ~LIR_OpArrayCopy::dst_null_check;
 864         if (is_constant_zero(dst_pos))
 865           flags &= ~LIR_OpArrayCopy::dst_range_check;
 866       }
 867     }
 868     if (is_exact) {
 869       flags &= ~LIR_OpArrayCopy::type_check;
 870     }
 871   }
 872 
 873   IntConstant* src_int = src_pos->type()->as_IntConstant();
 874   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 875   if (src_int && dst_int) {
 876     int s_offs = src_int->value();
 877     int d_offs = dst_int->value();
 878     if (src_int->value() >= dst_int->value()) {
 879       flags &= ~LIR_OpArrayCopy::overlapping;
 880     }
 881     if (expected_type != NULL) {
 882       BasicType t = expected_type->element_type()->basic_type();
 883       int element_size = type2aelembytes(t);
 884       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 885           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 886         flags &= ~LIR_OpArrayCopy::unaligned;
 887       }
 888     }
 889   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 890     // src and dest positions are the same, or dst is zero so assume
 891     // nonoverlapping copy.
 892     flags &= ~LIR_OpArrayCopy::overlapping;
 893   }
 894 
 895   if (src == dst) {
 896     // moving within a single array so no type checks are needed
 897     if (flags & LIR_OpArrayCopy::type_check) {
 898       flags &= ~LIR_OpArrayCopy::type_check;
 899     }
 900   }
 901   *flagsp = flags;
 902   *expected_typep = (ciArrayKlass*)expected_type;
 903 }
 904 
 905 
 906 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 907   assert(opr->is_register(), "why spill if item is not register?");
 908 
 909   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 910     LIR_Opr result = new_register(T_FLOAT);
 911     set_vreg_flag(result, must_start_in_memory);
 912     assert(opr->is_register(), "only a register can be spilled");
 913     assert(opr->value_type()->is_float(), "rounding only for floats available");
 914     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 915     return result;
 916   }
 917   return opr;
 918 }
 919 
 920 
 921 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 922   assert(type2size[t] == type2size[value->type()],
 923          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 924   if (!value->is_register()) {
 925     // force into a register
 926     LIR_Opr r = new_register(value->type());
 927     __ move(value, r);
 928     value = r;
 929   }
 930 
 931   // create a spill location
 932   LIR_Opr tmp = new_register(t);
 933   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 934 
 935   // move from register to spill
 936   __ move(value, tmp);
 937   return tmp;
 938 }
 939 
 940 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 941   if (if_instr->should_profile()) {
 942     ciMethod* method = if_instr->profiled_method();
 943     assert(method != NULL, "method should be set if branch is profiled");
 944     ciMethodData* md = method->method_data_or_null();
 945     assert(md != NULL, "Sanity");
 946     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 947     assert(data != NULL, "must have profiling data");
 948     assert(data->is_BranchData(), "need BranchData for two-way branches");
 949     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 950     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 951     if (if_instr->is_swapped()) {
 952       int t = taken_count_offset;
 953       taken_count_offset = not_taken_count_offset;
 954       not_taken_count_offset = t;
 955     }
 956 
 957     LIR_Opr md_reg = new_register(T_METADATA);
 958     __ metadata2reg(md->constant_encoding(), md_reg);
 959 
 960     LIR_Opr data_offset_reg = new_pointer_register();
 961     __ cmove(lir_cond(cond),
 962              LIR_OprFact::intptrConst(taken_count_offset),
 963              LIR_OprFact::intptrConst(not_taken_count_offset),
 964              data_offset_reg, as_BasicType(if_instr->x()->type()));
 965 
 966     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 967     LIR_Opr data_reg = new_pointer_register();
 968     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 969     __ move(data_addr, data_reg);
 970     // Use leal instead of add to avoid destroying condition codes on x86
 971     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 972     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 973     __ move(data_reg, data_addr);
 974   }
 975 }
 976 
 977 // Phi technique:
 978 // This is about passing live values from one basic block to the other.
 979 // In code generated with Java it is rather rare that more than one
 980 // value is on the stack from one basic block to the other.
 981 // We optimize our technique for efficient passing of one value
 982 // (of type long, int, double..) but it can be extended.
 983 // When entering or leaving a basic block, all registers and all spill
 984 // slots are release and empty. We use the released registers
 985 // and spill slots to pass the live values from one block
 986 // to the other. The topmost value, i.e., the value on TOS of expression
 987 // stack is passed in registers. All other values are stored in spilling
 988 // area. Every Phi has an index which designates its spill slot
 989 // At exit of a basic block, we fill the register(s) and spill slots.
 990 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 991 // and locks necessary registers and spilling slots.
 992 
 993 
 994 // move current value to referenced phi function
 995 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 996   Phi* phi = sux_val->as_Phi();
 997   // cur_val can be null without phi being null in conjunction with inlining
 998   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 999     Phi* cur_phi = cur_val->as_Phi();
1000     if (cur_phi != NULL && cur_phi->is_illegal()) {
1001       // Phi and local would need to get invalidated
1002       // (which is unexpected for Linear Scan).
1003       // But this case is very rare so we simply bail out.
1004       bailout("propagation of illegal phi");
1005       return;
1006     }
1007     LIR_Opr operand = cur_val->operand();
1008     if (operand->is_illegal()) {
1009       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1010              "these can be produced lazily");
1011       operand = operand_for_instruction(cur_val);
1012     }
1013     resolver->move(operand, operand_for_instruction(phi));
1014   }
1015 }
1016 
1017 
1018 // Moves all stack values into their PHI position
1019 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1020   BlockBegin* bb = block();
1021   if (bb->number_of_sux() == 1) {
1022     BlockBegin* sux = bb->sux_at(0);
1023     assert(sux->number_of_preds() > 0, "invalid CFG");
1024 
1025     // a block with only one predecessor never has phi functions
1026     if (sux->number_of_preds() > 1) {
1027       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1028       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1029 
1030       ValueStack* sux_state = sux->state();
1031       Value sux_value;
1032       int index;
1033 
1034       assert(cur_state->scope() == sux_state->scope(), "not matching");
1035       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1036       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1037 
1038       for_each_stack_value(sux_state, index, sux_value) {
1039         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1040       }
1041 
1042       for_each_local_value(sux_state, index, sux_value) {
1043         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1044       }
1045 
1046       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1047     }
1048   }
1049 }
1050 
1051 
1052 LIR_Opr LIRGenerator::new_register(BasicType type) {
1053   int vreg = _virtual_register_number;
1054   // add a little fudge factor for the bailout, since the bailout is
1055   // only checked periodically.  This gives a few extra registers to
1056   // hand out before we really run out, which helps us keep from
1057   // tripping over assertions.
1058   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1059     bailout("out of virtual registers");
1060     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1061       // wrap it around
1062       _virtual_register_number = LIR_OprDesc::vreg_base;
1063     }
1064   }
1065   _virtual_register_number += 1;
1066   return LIR_OprFact::virtual_register(vreg, type);
1067 }
1068 
1069 
1070 // Try to lock using register in hint
1071 LIR_Opr LIRGenerator::rlock(Value instr) {
1072   return new_register(instr->type());
1073 }
1074 
1075 
1076 // does an rlock and sets result
1077 LIR_Opr LIRGenerator::rlock_result(Value x) {
1078   LIR_Opr reg = rlock(x);
1079   set_result(x, reg);
1080   return reg;
1081 }
1082 
1083 
1084 // does an rlock and sets result
1085 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1086   LIR_Opr reg;
1087   switch (type) {
1088   case T_BYTE:
1089   case T_BOOLEAN:
1090     reg = rlock_byte(type);
1091     break;
1092   default:
1093     reg = rlock(x);
1094     break;
1095   }
1096 
1097   set_result(x, reg);
1098   return reg;
1099 }
1100 
1101 
1102 //---------------------------------------------------------------------
1103 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1104   ObjectType* oc = value->type()->as_ObjectType();
1105   if (oc) {
1106     return oc->constant_value();
1107   }
1108   return NULL;
1109 }
1110 
1111 
1112 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1113   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1114   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1115 
1116   // no moves are created for phi functions at the begin of exception
1117   // handlers, so assign operands manually here
1118   for_each_phi_fun(block(), phi,
1119                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1120 
1121   LIR_Opr thread_reg = getThreadPointer();
1122   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1123                exceptionOopOpr());
1124   __ move_wide(LIR_OprFact::oopConst(NULL),
1125                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1126   __ move_wide(LIR_OprFact::oopConst(NULL),
1127                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1128 
1129   LIR_Opr result = new_register(T_OBJECT);
1130   __ move(exceptionOopOpr(), result);
1131   set_result(x, result);
1132 }
1133 
1134 
1135 //----------------------------------------------------------------------
1136 //----------------------------------------------------------------------
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139 //                        visitor functions
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 
1145 void LIRGenerator::do_Phi(Phi* x) {
1146   // phi functions are never visited directly
1147   ShouldNotReachHere();
1148 }
1149 
1150 
1151 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1152 void LIRGenerator::do_Constant(Constant* x) {
1153   if (x->state_before() != NULL) {
1154     // Any constant with a ValueStack requires patching so emit the patch here
1155     LIR_Opr reg = rlock_result(x);
1156     CodeEmitInfo* info = state_for(x, x->state_before());
1157     __ oop2reg_patch(NULL, reg, info);
1158   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1159     if (!x->is_pinned()) {
1160       // unpinned constants are handled specially so that they can be
1161       // put into registers when they are used multiple times within a
1162       // block.  After the block completes their operand will be
1163       // cleared so that other blocks can't refer to that register.
1164       set_result(x, load_constant(x));
1165     } else {
1166       LIR_Opr res = x->operand();
1167       if (!res->is_valid()) {
1168         res = LIR_OprFact::value_type(x->type());
1169       }
1170       if (res->is_constant()) {
1171         LIR_Opr reg = rlock_result(x);
1172         __ move(res, reg);
1173       } else {
1174         set_result(x, res);
1175       }
1176     }
1177   } else {
1178     set_result(x, LIR_OprFact::value_type(x->type()));
1179   }
1180 }
1181 
1182 
1183 void LIRGenerator::do_Local(Local* x) {
1184   // operand_for_instruction has the side effect of setting the result
1185   // so there's no need to do it here.
1186   operand_for_instruction(x);
1187 }
1188 
1189 
1190 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1191   Unimplemented();
1192 }
1193 
1194 
1195 void LIRGenerator::do_Return(Return* x) {
1196   if (compilation()->env()->dtrace_method_probes()) {
1197     BasicTypeList signature;
1198     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1199     signature.append(T_METADATA); // Method*
1200     LIR_OprList* args = new LIR_OprList();
1201     args->append(getThreadPointer());
1202     LIR_Opr meth = new_register(T_METADATA);
1203     __ metadata2reg(method()->constant_encoding(), meth);
1204     args->append(meth);
1205     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1206   }
1207 
1208   if (x->type()->is_void()) {
1209     __ return_op(LIR_OprFact::illegalOpr);
1210   } else {
1211     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1212     LIRItem result(x->result(), this);
1213 
1214     result.load_item_force(reg);
1215     __ return_op(result.result());
1216   }
1217   set_no_result(x);
1218 }
1219 
1220 // Examble: ref.get()
1221 // Combination of LoadField and g1 pre-write barrier
1222 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1223 
1224   const int referent_offset = java_lang_ref_Reference::referent_offset;
1225   guarantee(referent_offset > 0, "referent offset not initialized");
1226 
1227   assert(x->number_of_arguments() == 1, "wrong type");
1228 
1229   LIRItem reference(x->argument_at(0), this);
1230   reference.load_item();
1231 
1232   // need to perform the null check on the reference objecy
1233   CodeEmitInfo* info = NULL;
1234   if (x->needs_null_check()) {
1235     info = state_for(x);
1236   }
1237 
1238   LIR_Opr result = rlock_result(x, T_OBJECT);
1239   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1240                  reference, LIR_OprFact::intConst(referent_offset), result);
1241 }
1242 
1243 // Example: clazz.isInstance(object)
1244 void LIRGenerator::do_isInstance(Intrinsic* x) {
1245   assert(x->number_of_arguments() == 2, "wrong type");
1246 
1247   // TODO could try to substitute this node with an equivalent InstanceOf
1248   // if clazz is known to be a constant Class. This will pick up newly found
1249   // constants after HIR construction. I'll leave this to a future change.
1250 
1251   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1252   // could follow the aastore example in a future change.
1253 
1254   LIRItem clazz(x->argument_at(0), this);
1255   LIRItem object(x->argument_at(1), this);
1256   clazz.load_item();
1257   object.load_item();
1258   LIR_Opr result = rlock_result(x);
1259 
1260   // need to perform null check on clazz
1261   if (x->needs_null_check()) {
1262     CodeEmitInfo* info = state_for(x);
1263     __ null_check(clazz.result(), info);
1264   }
1265 
1266   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1267                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1268                                      x->type(),
1269                                      NULL); // NULL CodeEmitInfo results in a leaf call
1270   __ move(call_result, result);
1271 }
1272 
1273 // Example: object.getClass ()
1274 void LIRGenerator::do_getClass(Intrinsic* x) {
1275   assert(x->number_of_arguments() == 1, "wrong type");
1276 
1277   LIRItem rcvr(x->argument_at(0), this);
1278   rcvr.load_item();
1279   LIR_Opr temp = new_register(T_METADATA);
1280   LIR_Opr result = rlock_result(x);
1281 
1282   // need to perform the null check on the rcvr
1283   CodeEmitInfo* info = NULL;
1284   if (x->needs_null_check()) {
1285     info = state_for(x);
1286   }
1287 
1288   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1289   // meaning of these two is mixed up (see JDK-8026837).
1290   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1291   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1292   // mirror = ((OopHandle)mirror)->resolve();
1293   access_load(IN_NATIVE, T_OBJECT,
1294               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1295 }
1296 
1297 // java.lang.Class::isPrimitive()
1298 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1299   assert(x->number_of_arguments() == 1, "wrong type");
1300 
1301   LIRItem rcvr(x->argument_at(0), this);
1302   rcvr.load_item();
1303   LIR_Opr temp = new_register(T_METADATA);
1304   LIR_Opr result = rlock_result(x);
1305 
1306   CodeEmitInfo* info = NULL;
1307   if (x->needs_null_check()) {
1308     info = state_for(x);
1309   }
1310 
1311   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1312   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1313   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1314 }
1315 
1316 
1317 // Example: Thread.currentThread()
1318 void LIRGenerator::do_currentThread(Intrinsic* x) {
1319   assert(x->number_of_arguments() == 0, "wrong type");
1320   LIR_Opr reg = rlock_result(x);
1321   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1322 }
1323 
1324 
1325 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1326   assert(x->number_of_arguments() == 1, "wrong type");
1327   LIRItem receiver(x->argument_at(0), this);
1328 
1329   receiver.load_item();
1330   BasicTypeList signature;
1331   signature.append(T_OBJECT); // receiver
1332   LIR_OprList* args = new LIR_OprList();
1333   args->append(receiver.result());
1334   CodeEmitInfo* info = state_for(x, x->state());
1335   call_runtime(&signature, args,
1336                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1337                voidType, info);
1338 
1339   set_no_result(x);
1340 }
1341 
1342 
1343 //------------------------local access--------------------------------------
1344 
1345 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1346   if (x->operand()->is_illegal()) {
1347     Constant* c = x->as_Constant();
1348     if (c != NULL) {
1349       x->set_operand(LIR_OprFact::value_type(c->type()));
1350     } else {
1351       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1352       // allocate a virtual register for this local or phi
1353       x->set_operand(rlock(x));
1354       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1355     }
1356   }
1357   return x->operand();
1358 }
1359 
1360 
1361 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1362   if (opr->is_virtual()) {
1363     return instruction_for_vreg(opr->vreg_number());
1364   }
1365   return NULL;
1366 }
1367 
1368 
1369 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1370   if (reg_num < _instruction_for_operand.length()) {
1371     return _instruction_for_operand.at(reg_num);
1372   }
1373   return NULL;
1374 }
1375 
1376 
1377 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1378   if (_vreg_flags.size_in_bits() == 0) {
1379     BitMap2D temp(100, num_vreg_flags);
1380     _vreg_flags = temp;
1381   }
1382   _vreg_flags.at_put_grow(vreg_num, f, true);
1383 }
1384 
1385 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1386   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1387     return false;
1388   }
1389   return _vreg_flags.at(vreg_num, f);
1390 }
1391 
1392 
1393 // Block local constant handling.  This code is useful for keeping
1394 // unpinned constants and constants which aren't exposed in the IR in
1395 // registers.  Unpinned Constant instructions have their operands
1396 // cleared when the block is finished so that other blocks can't end
1397 // up referring to their registers.
1398 
1399 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1400   assert(!x->is_pinned(), "only for unpinned constants");
1401   _unpinned_constants.append(x);
1402   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1403 }
1404 
1405 
1406 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1407   BasicType t = c->type();
1408   for (int i = 0; i < _constants.length(); i++) {
1409     LIR_Const* other = _constants.at(i);
1410     if (t == other->type()) {
1411       switch (t) {
1412       case T_INT:
1413       case T_FLOAT:
1414         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1415         break;
1416       case T_LONG:
1417       case T_DOUBLE:
1418         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1419         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1420         break;
1421       case T_OBJECT:
1422         if (c->as_jobject() != other->as_jobject()) continue;
1423         break;
1424       default:
1425         break;
1426       }
1427       return _reg_for_constants.at(i);
1428     }
1429   }
1430 
1431   LIR_Opr result = new_register(t);
1432   __ move((LIR_Opr)c, result);
1433   _constants.append(c);
1434   _reg_for_constants.append(result);
1435   return result;
1436 }
1437 
1438 //------------------------field access--------------------------------------
1439 
1440 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1441   assert(x->number_of_arguments() == 4, "wrong type");
1442   LIRItem obj   (x->argument_at(0), this);  // object
1443   LIRItem offset(x->argument_at(1), this);  // offset of field
1444   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1445   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1446   assert(obj.type()->tag() == objectTag, "invalid type");
1447 
1448   // In 64bit the type can be long, sparc doesn't have this assert
1449   // assert(offset.type()->tag() == intTag, "invalid type");
1450 
1451   assert(cmp.type()->tag() == type->tag(), "invalid type");
1452   assert(val.type()->tag() == type->tag(), "invalid type");
1453 
1454   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1455                                             obj, offset, cmp, val);
1456   set_result(x, result);
1457 }
1458 
1459 // Comment copied form templateTable_i486.cpp
1460 // ----------------------------------------------------------------------------
1461 // Volatile variables demand their effects be made known to all CPU's in
1462 // order.  Store buffers on most chips allow reads & writes to reorder; the
1463 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1464 // memory barrier (i.e., it's not sufficient that the interpreter does not
1465 // reorder volatile references, the hardware also must not reorder them).
1466 //
1467 // According to the new Java Memory Model (JMM):
1468 // (1) All volatiles are serialized wrt to each other.
1469 // ALSO reads & writes act as aquire & release, so:
1470 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1471 // the read float up to before the read.  It's OK for non-volatile memory refs
1472 // that happen before the volatile read to float down below it.
1473 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1474 // that happen BEFORE the write float down to after the write.  It's OK for
1475 // non-volatile memory refs that happen after the volatile write to float up
1476 // before it.
1477 //
1478 // We only put in barriers around volatile refs (they are expensive), not
1479 // _between_ memory refs (that would require us to track the flavor of the
1480 // previous memory refs).  Requirements (2) and (3) require some barriers
1481 // before volatile stores and after volatile loads.  These nearly cover
1482 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1483 // case is placed after volatile-stores although it could just as well go
1484 // before volatile-loads.
1485 
1486 
1487 void LIRGenerator::do_StoreField(StoreField* x) {
1488   bool needs_patching = x->needs_patching();
1489   bool is_volatile = x->field()->is_volatile();
1490   BasicType field_type = x->field_type();
1491 
1492   CodeEmitInfo* info = NULL;
1493   if (needs_patching) {
1494     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1495     info = state_for(x, x->state_before());
1496   } else if (x->needs_null_check()) {
1497     NullCheck* nc = x->explicit_null_check();
1498     if (nc == NULL) {
1499       info = state_for(x);
1500     } else {
1501       info = state_for(nc);
1502     }
1503   }
1504 
1505   LIRItem object(x->obj(), this);
1506   LIRItem value(x->value(),  this);
1507 
1508   object.load_item();
1509 
1510   if (is_volatile || needs_patching) {
1511     // load item if field is volatile (fewer special cases for volatiles)
1512     // load item if field not initialized
1513     // load item if field not constant
1514     // because of code patching we cannot inline constants
1515     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1516       value.load_byte_item();
1517     } else  {
1518       value.load_item();
1519     }
1520   } else {
1521     value.load_for_store(field_type);
1522   }
1523 
1524   set_no_result(x);
1525 
1526 #ifndef PRODUCT
1527   if (PrintNotLoaded && needs_patching) {
1528     tty->print_cr("   ###class not loaded at store_%s bci %d",
1529                   x->is_static() ?  "static" : "field", x->printable_bci());
1530   }
1531 #endif
1532 
1533   if (x->needs_null_check() &&
1534       (needs_patching ||
1535        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1536     if (needs_patching && field_type == T_VALUETYPE) {
1537       // We are storing a "Q" field, but the holder class is not yet loaded.
1538       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1539                                           Deoptimization::Reason_unloaded,
1540                                           Deoptimization::Action_make_not_entrant);
1541       __ branch(lir_cond_always, T_ILLEGAL, stub);
1542     } else {
1543       // Emit an explicit null check because the offset is too large.
1544       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1545       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1546       __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1547     }
1548   }
1549 
1550   DecoratorSet decorators = IN_HEAP;
1551   if (is_volatile) {
1552     decorators |= MO_SEQ_CST;
1553   }
1554   if (needs_patching) {
1555     decorators |= C1_NEEDS_PATCHING;
1556   }
1557 
1558   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1559                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1560 }
1561 
1562 // FIXME -- I can't find any other way to pass an address to access_load_at().
1563 class TempResolvedAddress: public Instruction {
1564  public:
1565   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1566     set_operand(addr);
1567   }
1568   virtual void input_values_do(ValueVisitor*) {}
1569   virtual void visit(InstructionVisitor* v)   {}
1570   virtual const char* name() const  { return "TempResolvedAddress"; }
1571 };
1572 
1573 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1574   // Find the starting address of the source (inside the array)
1575   ciType* array_type = array.value()->declared_type();
1576   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1577   assert(value_array_klass->is_loaded(), "must be");
1578 
1579   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1580   int array_header_size = value_array_klass->array_header_in_bytes();
1581   int shift = value_array_klass->log2_element_size();
1582 
1583 #ifndef _LP64
1584   LIR_Opr index_op = new_register(T_INT);
1585   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1586   // the top (shift+1) bits of index_op must be zero, or
1587   // else throw ArrayIndexOutOfBoundsException
1588   if (index.result()->is_constant()) {
1589     jint const_index = index.result()->as_jint();
1590     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1591   } else {
1592     __ shift_left(index_op, shift, index.result());
1593   }
1594 #else
1595   LIR_Opr index_op = new_register(T_LONG);
1596   if (index.result()->is_constant()) {
1597     jint const_index = index.result()->as_jint();
1598     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1599   } else {
1600     __ convert(Bytecodes::_i2l, index.result(), index_op);
1601     // Need to shift manually, as LIR_Address can scale only up to 3.
1602     __ shift_left(index_op, shift, index_op);
1603   }
1604 #endif
1605 
1606   LIR_Opr elm_op = new_pointer_register();
1607   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1608   __ leal(LIR_OprFact::address(elm_address), elm_op);
1609 
1610   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1611     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1612     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1613     int obj_offset = inner_field->offset();
1614     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1615 
1616     BasicType field_type = inner_field->type()->basic_type();
1617     switch (field_type) {
1618     case T_BYTE:
1619     case T_BOOLEAN:
1620     case T_SHORT:
1621     case T_CHAR:
1622      field_type = T_INT;
1623       break;
1624     default:
1625       break;
1626     }
1627 
1628     LIR_Opr temp = new_register(field_type);
1629     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1630     LIRItem elm_item(elm_resolved_addr, this);
1631 
1632     DecoratorSet decorators = IN_HEAP;
1633     if (is_load) {
1634       access_load_at(decorators, field_type,
1635                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1636                      NULL, NULL);
1637       access_store_at(decorators, field_type,
1638                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1639                       NULL, NULL);
1640     } else {
1641     access_load_at(decorators, field_type,
1642                    obj_item, LIR_OprFact::intConst(obj_offset), temp,
1643                    NULL, NULL);
1644     access_store_at(decorators, field_type,
1645                     elm_item, LIR_OprFact::intConst(elm_offset), temp,
1646                     NULL, NULL);
1647     }
1648   }
1649 }
1650 
1651 void LIRGenerator::check_flattened_array(LIRItem& array, CodeStub* slow_path) {
1652   LIR_Opr array_klass_reg = new_register(T_METADATA);
1653 
1654   __ move(new LIR_Address(array.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), array_klass_reg);
1655   LIR_Opr layout = new_register(T_INT);
1656   __ move(new LIR_Address(array_klass_reg, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
1657   __ shift_right(layout, Klass::_lh_array_tag_shift, layout);
1658   __ cmp(lir_cond_equal, layout, LIR_OprFact::intConst(Klass::_lh_array_tag_vt_value));
1659   __ branch(lir_cond_equal, T_ILLEGAL, slow_path);
1660 }
1661 
1662 bool LIRGenerator::needs_flattened_array_store_check(StoreIndexed* x) {
1663   if (ValueArrayFlatten && x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
1664     ciType* type = x->value()->declared_type();
1665     if (type != NULL && type->is_klass()) {
1666       ciKlass* klass = type->as_klass();
1667       if (klass->is_loaded() &&
1668           !(klass->is_valuetype() && klass->as_value_klass()->flatten_array()) &&
1669           !klass->is_java_lang_Object() &&
1670           !klass->is_interface()) {
1671         // This is known to be a non-flattenable object. If the array is flattened,
1672         // it will be caught by the code generated by array_store_check().
1673         return false;
1674       }
1675     }
1676     // We're not 100% sure, so let's do the flattened_array_store_check.
1677     return true;
1678   }
1679   return false;
1680 }
1681 
1682 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1683   assert(x->is_pinned(),"");
1684   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1685   bool needs_range_check = x->compute_needs_range_check();
1686   bool use_length = x->length() != NULL;
1687   bool obj_store = x->elt_type() == T_OBJECT; assert(x->elt_type() != T_ARRAY, "never used");
1688   bool needs_store_check = obj_store && !is_loaded_flattened_array &&
1689                                         (x->value()->as_Constant() == NULL ||
1690                                          !get_jobject_constant(x->value())->is_null_object() ||
1691                                          x->should_profile());
1692 
1693   LIRItem array(x->array(), this);
1694   LIRItem index(x->index(), this);
1695   LIRItem value(x->value(), this);
1696   LIRItem length(this);
1697 
1698   array.load_item();
1699   index.load_nonconstant();
1700 
1701   if (use_length && needs_range_check) {
1702     length.set_instruction(x->length());
1703     length.load_item();
1704   }
1705 
1706   if (needs_store_check || x->check_boolean()
1707       || is_loaded_flattened_array || needs_flattened_array_store_check(x)) {
1708     value.load_item();
1709   } else {
1710     value.load_for_store(x->elt_type());
1711   }
1712 
1713   set_no_result(x);
1714 
1715   // the CodeEmitInfo must be duplicated for each different
1716   // LIR-instruction because spilling can occur anywhere between two
1717   // instructions and so the debug information must be different
1718   CodeEmitInfo* range_check_info = state_for(x);
1719   CodeEmitInfo* null_check_info = NULL;
1720   if (x->needs_null_check()) {
1721     null_check_info = new CodeEmitInfo(range_check_info);
1722   }
1723 
1724   if (GenerateRangeChecks && needs_range_check) {
1725     if (use_length) {
1726       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1727       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1728     } else {
1729       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1730       // range_check also does the null check
1731       null_check_info = NULL;
1732     }
1733   }
1734 
1735   if (GenerateArrayStoreCheck && needs_store_check) {
1736     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1737     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1738   }
1739 
1740   if (is_loaded_flattened_array) {
1741     if (!x->is_exact_flattened_array_store()) {
1742       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1743       ciKlass* element_klass = x->array()->declared_type()->as_value_array_klass()->element_klass();
1744       flattened_array_store_check(value.result(), element_klass, info);
1745     } else if (!x->value()->is_never_null()) {
1746       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1747     }
1748     access_flattened_array(false, array, index, value);
1749   } else {
1750     StoreFlattenedArrayStub* slow_path = NULL;
1751 
1752     if (needs_flattened_array_store_check(x)) {
1753       // Check if we indeed have a flattened array
1754       index.load_item();
1755       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x));
1756       check_flattened_array(array, slow_path);
1757     }
1758 
1759     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1760     if (x->check_boolean()) {
1761       decorators |= C1_MASK_BOOLEAN;
1762     }
1763 
1764     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1765                     NULL, null_check_info);
1766     if (slow_path != NULL) {
1767       __ branch_destination(slow_path->continuation());
1768     }
1769   }
1770 }
1771 
1772 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1773                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1774                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1775   decorators |= ACCESS_READ;
1776   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1777   if (access.is_raw()) {
1778     _barrier_set->BarrierSetC1::load_at(access, result);
1779   } else {
1780     _barrier_set->load_at(access, result);
1781   }
1782 }
1783 
1784 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1785                                LIR_Opr addr, LIR_Opr result) {
1786   decorators |= ACCESS_READ;
1787   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1788   access.set_resolved_addr(addr);
1789   if (access.is_raw()) {
1790     _barrier_set->BarrierSetC1::load(access, result);
1791   } else {
1792     _barrier_set->load(access, result);
1793   }
1794 }
1795 
1796 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1797                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1798                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1799   decorators |= ACCESS_WRITE;
1800   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1801   if (access.is_raw()) {
1802     _barrier_set->BarrierSetC1::store_at(access, value);
1803   } else {
1804     _barrier_set->store_at(access, value);
1805   }
1806 }
1807 
1808 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1809                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1810   decorators |= ACCESS_READ;
1811   decorators |= ACCESS_WRITE;
1812   // Atomic operations are SEQ_CST by default
1813   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1814   LIRAccess access(this, decorators, base, offset, type);
1815   if (access.is_raw()) {
1816     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1817   } else {
1818     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1819   }
1820 }
1821 
1822 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1823                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1824   decorators |= ACCESS_READ;
1825   decorators |= ACCESS_WRITE;
1826   // Atomic operations are SEQ_CST by default
1827   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1828   LIRAccess access(this, decorators, base, offset, type);
1829   if (access.is_raw()) {
1830     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1831   } else {
1832     return _barrier_set->atomic_xchg_at(access, value);
1833   }
1834 }
1835 
1836 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1837                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1838   decorators |= ACCESS_READ;
1839   decorators |= ACCESS_WRITE;
1840   // Atomic operations are SEQ_CST by default
1841   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1842   LIRAccess access(this, decorators, base, offset, type);
1843   if (access.is_raw()) {
1844     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1845   } else {
1846     return _barrier_set->atomic_add_at(access, value);
1847   }
1848 }
1849 
1850 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1851   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1852   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1853     decorators |= ACCESS_READ | ACCESS_WRITE;
1854   }
1855 
1856   return _barrier_set->resolve(this, decorators, obj);
1857 }
1858 
1859 void LIRGenerator::do_LoadField(LoadField* x) {
1860   bool needs_patching = x->needs_patching();
1861   bool is_volatile = x->field()->is_volatile();
1862   BasicType field_type = x->field_type();
1863 
1864   CodeEmitInfo* info = NULL;
1865   if (needs_patching) {
1866     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1867     info = state_for(x, x->state_before());
1868   } else if (x->needs_null_check()) {
1869     NullCheck* nc = x->explicit_null_check();
1870     if (nc == NULL) {
1871       info = state_for(x);
1872     } else {
1873       info = state_for(nc);
1874     }
1875   }
1876 
1877   LIRItem object(x->obj(), this);
1878 
1879   object.load_item();
1880 
1881 #ifndef PRODUCT
1882   if (PrintNotLoaded && needs_patching) {
1883     tty->print_cr("   ###class not loaded at load_%s bci %d",
1884                   x->is_static() ?  "static" : "field", x->printable_bci());
1885   }
1886 #endif
1887 
1888   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1889   if (x->needs_null_check() &&
1890       (needs_patching ||
1891        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1892        stress_deopt)) {
1893     if (needs_patching && field_type == T_VALUETYPE) {
1894       // We are loading a "Q" field, but the holder class is not yet loaded.
1895       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1896                                           Deoptimization::Reason_unloaded,
1897                                           Deoptimization::Action_make_not_entrant);
1898       __ branch(lir_cond_always, T_ILLEGAL, stub);
1899     } else {
1900       LIR_Opr obj = object.result();
1901       if (stress_deopt) {
1902         obj = new_register(T_OBJECT);
1903         __ move(LIR_OprFact::oopConst(NULL), obj);
1904       }
1905       // Emit an explicit null check because the offset is too large.
1906       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1907       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1908       __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1909     }
1910   } else if (x->value_klass() != NULL && x->default_value() == NULL) {
1911     assert(x->is_static() && !x->value_klass()->is_loaded(), "must be");
1912     assert(needs_patching, "must be");
1913     // The value klass was not loaded so we don't know what its default value should be
1914     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1915                                         Deoptimization::Reason_unloaded,
1916                                         Deoptimization::Action_make_not_entrant);
1917     __ branch(lir_cond_always, T_ILLEGAL, stub);
1918   }
1919 
1920   DecoratorSet decorators = IN_HEAP;
1921   if (is_volatile) {
1922     decorators |= MO_SEQ_CST;
1923   }
1924   if (needs_patching) {
1925     decorators |= C1_NEEDS_PATCHING;
1926   }
1927 
1928   LIR_Opr result = rlock_result(x, field_type);
1929   access_load_at(decorators, field_type,
1930                  object, LIR_OprFact::intConst(x->offset()), result,
1931                  info ? new CodeEmitInfo(info) : NULL, info);
1932 
1933   if (x->value_klass() != NULL && x->default_value() != NULL) {
1934     LabelObj* L_end = new LabelObj();
1935     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
1936     __ branch(lir_cond_notEqual, T_OBJECT, L_end->label());
1937 
1938     LIRItem default_value(x->default_value(), this);
1939     default_value.load_item();
1940     __ move(default_value.result(), result);
1941 
1942     __ branch_destination(L_end->label());
1943   }
1944 }
1945 
1946 
1947 //------------------------java.nio.Buffer.checkIndex------------------------
1948 
1949 // int java.nio.Buffer.checkIndex(int)
1950 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1951   // NOTE: by the time we are in checkIndex() we are guaranteed that
1952   // the buffer is non-null (because checkIndex is package-private and
1953   // only called from within other methods in the buffer).
1954   assert(x->number_of_arguments() == 2, "wrong type");
1955   LIRItem buf  (x->argument_at(0), this);
1956   LIRItem index(x->argument_at(1), this);
1957   buf.load_item();
1958   index.load_item();
1959 
1960   LIR_Opr result = rlock_result(x);
1961   if (GenerateRangeChecks) {
1962     CodeEmitInfo* info = state_for(x);
1963     CodeStub* stub = new RangeCheckStub(info, index.result());
1964     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
1965     if (index.result()->is_constant()) {
1966       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1967       __ branch(lir_cond_belowEqual, T_INT, stub);
1968     } else {
1969       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
1970                   java_nio_Buffer::limit_offset(), T_INT, info);
1971       __ branch(lir_cond_aboveEqual, T_INT, stub);
1972     }
1973     __ move(index.result(), result);
1974   } else {
1975     // Just load the index into the result register
1976     __ move(index.result(), result);
1977   }
1978 }
1979 
1980 
1981 //------------------------array access--------------------------------------
1982 
1983 
1984 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1985   LIRItem array(x->array(), this);
1986   array.load_item();
1987   LIR_Opr reg = rlock_result(x);
1988 
1989   CodeEmitInfo* info = NULL;
1990   if (x->needs_null_check()) {
1991     NullCheck* nc = x->explicit_null_check();
1992     if (nc == NULL) {
1993       info = state_for(x);
1994     } else {
1995       info = state_for(nc);
1996     }
1997     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1998       LIR_Opr obj = new_register(T_OBJECT);
1999       __ move(LIR_OprFact::oopConst(NULL), obj);
2000       __ null_check(obj, new CodeEmitInfo(info));
2001     }
2002   }
2003   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2004 }
2005 
2006 
2007 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2008   bool use_length = x->length() != NULL;
2009   LIRItem array(x->array(), this);
2010   LIRItem index(x->index(), this);
2011   LIRItem length(this);
2012   bool needs_range_check = x->compute_needs_range_check();
2013 
2014   if (use_length && needs_range_check) {
2015     length.set_instruction(x->length());
2016     length.load_item();
2017   }
2018 
2019   array.load_item();
2020   if (index.is_constant() && can_inline_as_constant(x->index())) {
2021     // let it be a constant
2022     index.dont_load_item();
2023   } else {
2024     index.load_item();
2025   }
2026 
2027   CodeEmitInfo* range_check_info = state_for(x);
2028   CodeEmitInfo* null_check_info = NULL;
2029   if (x->needs_null_check()) {
2030     NullCheck* nc = x->explicit_null_check();
2031     if (nc != NULL) {
2032       null_check_info = state_for(nc);
2033     } else {
2034       null_check_info = range_check_info;
2035     }
2036     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2037       LIR_Opr obj = new_register(T_OBJECT);
2038       __ move(LIR_OprFact::oopConst(NULL), obj);
2039       __ null_check(obj, new CodeEmitInfo(null_check_info));
2040     }
2041   }
2042 
2043   if (GenerateRangeChecks && needs_range_check) {
2044     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2045       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
2046     } else if (use_length) {
2047       // TODO: use a (modified) version of array_range_check that does not require a
2048       //       constant length to be loaded to a register
2049       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2050       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
2051     } else {
2052       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2053       // The range check performs the null check, so clear it out for the load
2054       null_check_info = NULL;
2055     }
2056   }
2057 
2058   if (x->array()->is_loaded_flattened_array()) {
2059     // Find the destination address (of the NewValueTypeInstance)
2060     LIR_Opr obj = x->vt()->operand();
2061     LIRItem obj_item(x->vt(), this);
2062 
2063     access_flattened_array(true, array, index, obj_item);
2064     set_no_result(x);
2065   } else {
2066     LIR_Opr result = rlock_result(x, x->elt_type());
2067     LoadFlattenedArrayStub* slow_path = NULL;
2068 
2069     if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
2070       index.load_item();
2071       // if we are loading from flattened array, load it using a runtime call
2072       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x));
2073       check_flattened_array(array, slow_path);
2074     }
2075 
2076     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2077     access_load_at(decorators, x->elt_type(),
2078                    array, index.result(), result,
2079                    NULL, null_check_info);
2080 
2081     if (slow_path != NULL) {
2082       __ branch_destination(slow_path->continuation());
2083     }
2084   }
2085 }
2086 
2087 
2088 void LIRGenerator::do_NullCheck(NullCheck* x) {
2089   if (x->can_trap()) {
2090     LIRItem value(x->obj(), this);
2091     value.load_item();
2092     CodeEmitInfo* info = state_for(x);
2093     __ null_check(value.result(), info);
2094   }
2095 }
2096 
2097 
2098 void LIRGenerator::do_TypeCast(TypeCast* x) {
2099   LIRItem value(x->obj(), this);
2100   value.load_item();
2101   // the result is the same as from the node we are casting
2102   set_result(x, value.result());
2103 }
2104 
2105 
2106 void LIRGenerator::do_Throw(Throw* x) {
2107   LIRItem exception(x->exception(), this);
2108   exception.load_item();
2109   set_no_result(x);
2110   LIR_Opr exception_opr = exception.result();
2111   CodeEmitInfo* info = state_for(x, x->state());
2112 
2113 #ifndef PRODUCT
2114   if (PrintC1Statistics) {
2115     increment_counter(Runtime1::throw_count_address(), T_INT);
2116   }
2117 #endif
2118 
2119   // check if the instruction has an xhandler in any of the nested scopes
2120   bool unwind = false;
2121   if (info->exception_handlers()->length() == 0) {
2122     // this throw is not inside an xhandler
2123     unwind = true;
2124   } else {
2125     // get some idea of the throw type
2126     bool type_is_exact = true;
2127     ciType* throw_type = x->exception()->exact_type();
2128     if (throw_type == NULL) {
2129       type_is_exact = false;
2130       throw_type = x->exception()->declared_type();
2131     }
2132     if (throw_type != NULL && throw_type->is_instance_klass()) {
2133       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2134       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2135     }
2136   }
2137 
2138   // do null check before moving exception oop into fixed register
2139   // to avoid a fixed interval with an oop during the null check.
2140   // Use a copy of the CodeEmitInfo because debug information is
2141   // different for null_check and throw.
2142   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2143     // if the exception object wasn't created using new then it might be null.
2144     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2145   }
2146 
2147   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2148     // we need to go through the exception lookup path to get JVMTI
2149     // notification done
2150     unwind = false;
2151   }
2152 
2153   // move exception oop into fixed register
2154   __ move(exception_opr, exceptionOopOpr());
2155 
2156   if (unwind) {
2157     __ unwind_exception(exceptionOopOpr());
2158   } else {
2159     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2160   }
2161 }
2162 
2163 
2164 void LIRGenerator::do_RoundFP(RoundFP* x) {
2165   LIRItem input(x->input(), this);
2166   input.load_item();
2167   LIR_Opr input_opr = input.result();
2168   assert(input_opr->is_register(), "why round if value is not in a register?");
2169   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2170   if (input_opr->is_single_fpu()) {
2171     set_result(x, round_item(input_opr)); // This code path not currently taken
2172   } else {
2173     LIR_Opr result = new_register(T_DOUBLE);
2174     set_vreg_flag(result, must_start_in_memory);
2175     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2176     set_result(x, result);
2177   }
2178 }
2179 
2180 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2181 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2182 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2183   LIRItem base(x->base(), this);
2184   LIRItem idx(this);
2185 
2186   base.load_item();
2187   if (x->has_index()) {
2188     idx.set_instruction(x->index());
2189     idx.load_nonconstant();
2190   }
2191 
2192   LIR_Opr reg = rlock_result(x, x->basic_type());
2193 
2194   int   log2_scale = 0;
2195   if (x->has_index()) {
2196     log2_scale = x->log2_scale();
2197   }
2198 
2199   assert(!x->has_index() || idx.value() == x->index(), "should match");
2200 
2201   LIR_Opr base_op = base.result();
2202   LIR_Opr index_op = idx.result();
2203 #ifndef _LP64
2204   if (base_op->type() == T_LONG) {
2205     base_op = new_register(T_INT);
2206     __ convert(Bytecodes::_l2i, base.result(), base_op);
2207   }
2208   if (x->has_index()) {
2209     if (index_op->type() == T_LONG) {
2210       LIR_Opr long_index_op = index_op;
2211       if (index_op->is_constant()) {
2212         long_index_op = new_register(T_LONG);
2213         __ move(index_op, long_index_op);
2214       }
2215       index_op = new_register(T_INT);
2216       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2217     } else {
2218       assert(x->index()->type()->tag() == intTag, "must be");
2219     }
2220   }
2221   // At this point base and index should be all ints.
2222   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2223   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2224 #else
2225   if (x->has_index()) {
2226     if (index_op->type() == T_INT) {
2227       if (!index_op->is_constant()) {
2228         index_op = new_register(T_LONG);
2229         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2230       }
2231     } else {
2232       assert(index_op->type() == T_LONG, "must be");
2233       if (index_op->is_constant()) {
2234         index_op = new_register(T_LONG);
2235         __ move(idx.result(), index_op);
2236       }
2237     }
2238   }
2239   // At this point base is a long non-constant
2240   // Index is a long register or a int constant.
2241   // We allow the constant to stay an int because that would allow us a more compact encoding by
2242   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2243   // move it into a register first.
2244   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2245   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2246                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2247 #endif
2248 
2249   BasicType dst_type = x->basic_type();
2250 
2251   LIR_Address* addr;
2252   if (index_op->is_constant()) {
2253     assert(log2_scale == 0, "must not have a scale");
2254     assert(index_op->type() == T_INT, "only int constants supported");
2255     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2256   } else {
2257 #ifdef X86
2258     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2259 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2260     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2261 #else
2262     if (index_op->is_illegal() || log2_scale == 0) {
2263       addr = new LIR_Address(base_op, index_op, dst_type);
2264     } else {
2265       LIR_Opr tmp = new_pointer_register();
2266       __ shift_left(index_op, log2_scale, tmp);
2267       addr = new LIR_Address(base_op, tmp, dst_type);
2268     }
2269 #endif
2270   }
2271 
2272   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2273     __ unaligned_move(addr, reg);
2274   } else {
2275     if (dst_type == T_OBJECT && x->is_wide()) {
2276       __ move_wide(addr, reg);
2277     } else {
2278       __ move(addr, reg);
2279     }
2280   }
2281 }
2282 
2283 
2284 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2285   int  log2_scale = 0;
2286   BasicType type = x->basic_type();
2287 
2288   if (x->has_index()) {
2289     log2_scale = x->log2_scale();
2290   }
2291 
2292   LIRItem base(x->base(), this);
2293   LIRItem value(x->value(), this);
2294   LIRItem idx(this);
2295 
2296   base.load_item();
2297   if (x->has_index()) {
2298     idx.set_instruction(x->index());
2299     idx.load_item();
2300   }
2301 
2302   if (type == T_BYTE || type == T_BOOLEAN) {
2303     value.load_byte_item();
2304   } else {
2305     value.load_item();
2306   }
2307 
2308   set_no_result(x);
2309 
2310   LIR_Opr base_op = base.result();
2311   LIR_Opr index_op = idx.result();
2312 
2313 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2314   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2315 #else
2316 #ifndef _LP64
2317   if (base_op->type() == T_LONG) {
2318     base_op = new_register(T_INT);
2319     __ convert(Bytecodes::_l2i, base.result(), base_op);
2320   }
2321   if (x->has_index()) {
2322     if (index_op->type() == T_LONG) {
2323       index_op = new_register(T_INT);
2324       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2325     }
2326   }
2327   // At this point base and index should be all ints and not constants
2328   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2329   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2330 #else
2331   if (x->has_index()) {
2332     if (index_op->type() == T_INT) {
2333       index_op = new_register(T_LONG);
2334       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2335     }
2336   }
2337   // At this point base and index are long and non-constant
2338   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2339   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2340 #endif
2341 
2342   if (log2_scale != 0) {
2343     // temporary fix (platform dependent code without shift on Intel would be better)
2344     // TODO: ARM also allows embedded shift in the address
2345     LIR_Opr tmp = new_pointer_register();
2346     if (TwoOperandLIRForm) {
2347       __ move(index_op, tmp);
2348       index_op = tmp;
2349     }
2350     __ shift_left(index_op, log2_scale, tmp);
2351     if (!TwoOperandLIRForm) {
2352       index_op = tmp;
2353     }
2354   }
2355 
2356   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2357 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2358   __ move(value.result(), addr);
2359 }
2360 
2361 
2362 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2363   BasicType type = x->basic_type();
2364   LIRItem src(x->object(), this);
2365   LIRItem off(x->offset(), this);
2366 
2367   off.load_item();
2368   src.load_item();
2369 
2370   DecoratorSet decorators = IN_HEAP;
2371 
2372   if (x->is_volatile()) {
2373     decorators |= MO_SEQ_CST;
2374   }
2375   if (type == T_BOOLEAN) {
2376     decorators |= C1_MASK_BOOLEAN;
2377   }
2378   if (type == T_ARRAY || type == T_OBJECT) {
2379     decorators |= ON_UNKNOWN_OOP_REF;
2380   }
2381 
2382   LIR_Opr result = rlock_result(x, type);
2383   access_load_at(decorators, type,
2384                  src, off.result(), result);
2385 }
2386 
2387 
2388 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2389   BasicType type = x->basic_type();
2390   LIRItem src(x->object(), this);
2391   LIRItem off(x->offset(), this);
2392   LIRItem data(x->value(), this);
2393 
2394   src.load_item();
2395   if (type == T_BOOLEAN || type == T_BYTE) {
2396     data.load_byte_item();
2397   } else {
2398     data.load_item();
2399   }
2400   off.load_item();
2401 
2402   set_no_result(x);
2403 
2404   DecoratorSet decorators = IN_HEAP;
2405   if (type == T_ARRAY || type == T_OBJECT) {
2406     decorators |= ON_UNKNOWN_OOP_REF;
2407   }
2408   if (x->is_volatile()) {
2409     decorators |= MO_SEQ_CST;
2410   }
2411   access_store_at(decorators, type, src, off.result(), data.result());
2412 }
2413 
2414 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2415   BasicType type = x->basic_type();
2416   LIRItem src(x->object(), this);
2417   LIRItem off(x->offset(), this);
2418   LIRItem value(x->value(), this);
2419 
2420   DecoratorSet decorators = IN_HEAP | MO_SEQ_CST;
2421 
2422   if (type == T_ARRAY || type == T_OBJECT) {
2423     decorators |= ON_UNKNOWN_OOP_REF;
2424   }
2425 
2426   LIR_Opr result;
2427   if (x->is_add()) {
2428     result = access_atomic_add_at(decorators, type, src, off, value);
2429   } else {
2430     result = access_atomic_xchg_at(decorators, type, src, off, value);
2431   }
2432   set_result(x, result);
2433 }
2434 
2435 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2436   int lng = x->length();
2437 
2438   for (int i = 0; i < lng; i++) {
2439     SwitchRange* one_range = x->at(i);
2440     int low_key = one_range->low_key();
2441     int high_key = one_range->high_key();
2442     BlockBegin* dest = one_range->sux();
2443     if (low_key == high_key) {
2444       __ cmp(lir_cond_equal, value, low_key);
2445       __ branch(lir_cond_equal, T_INT, dest);
2446     } else if (high_key - low_key == 1) {
2447       __ cmp(lir_cond_equal, value, low_key);
2448       __ branch(lir_cond_equal, T_INT, dest);
2449       __ cmp(lir_cond_equal, value, high_key);
2450       __ branch(lir_cond_equal, T_INT, dest);
2451     } else {
2452       LabelObj* L = new LabelObj();
2453       __ cmp(lir_cond_less, value, low_key);
2454       __ branch(lir_cond_less, T_INT, L->label());
2455       __ cmp(lir_cond_lessEqual, value, high_key);
2456       __ branch(lir_cond_lessEqual, T_INT, dest);
2457       __ branch_destination(L->label());
2458     }
2459   }
2460   __ jump(default_sux);
2461 }
2462 
2463 
2464 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2465   SwitchRangeList* res = new SwitchRangeList();
2466   int len = x->length();
2467   if (len > 0) {
2468     BlockBegin* sux = x->sux_at(0);
2469     int key = x->lo_key();
2470     BlockBegin* default_sux = x->default_sux();
2471     SwitchRange* range = new SwitchRange(key, sux);
2472     for (int i = 0; i < len; i++, key++) {
2473       BlockBegin* new_sux = x->sux_at(i);
2474       if (sux == new_sux) {
2475         // still in same range
2476         range->set_high_key(key);
2477       } else {
2478         // skip tests which explicitly dispatch to the default
2479         if (sux != default_sux) {
2480           res->append(range);
2481         }
2482         range = new SwitchRange(key, new_sux);
2483       }
2484       sux = new_sux;
2485     }
2486     if (res->length() == 0 || res->last() != range)  res->append(range);
2487   }
2488   return res;
2489 }
2490 
2491 
2492 // we expect the keys to be sorted by increasing value
2493 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2494   SwitchRangeList* res = new SwitchRangeList();
2495   int len = x->length();
2496   if (len > 0) {
2497     BlockBegin* default_sux = x->default_sux();
2498     int key = x->key_at(0);
2499     BlockBegin* sux = x->sux_at(0);
2500     SwitchRange* range = new SwitchRange(key, sux);
2501     for (int i = 1; i < len; i++) {
2502       int new_key = x->key_at(i);
2503       BlockBegin* new_sux = x->sux_at(i);
2504       if (key+1 == new_key && sux == new_sux) {
2505         // still in same range
2506         range->set_high_key(new_key);
2507       } else {
2508         // skip tests which explicitly dispatch to the default
2509         if (range->sux() != default_sux) {
2510           res->append(range);
2511         }
2512         range = new SwitchRange(new_key, new_sux);
2513       }
2514       key = new_key;
2515       sux = new_sux;
2516     }
2517     if (res->length() == 0 || res->last() != range)  res->append(range);
2518   }
2519   return res;
2520 }
2521 
2522 
2523 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2524   LIRItem tag(x->tag(), this);
2525   tag.load_item();
2526   set_no_result(x);
2527 
2528   if (x->is_safepoint()) {
2529     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2530   }
2531 
2532   // move values into phi locations
2533   move_to_phi(x->state());
2534 
2535   int lo_key = x->lo_key();
2536   int len = x->length();
2537   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2538   LIR_Opr value = tag.result();
2539 
2540   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2541     ciMethod* method = x->state()->scope()->method();
2542     ciMethodData* md = method->method_data_or_null();
2543     assert(md != NULL, "Sanity");
2544     ciProfileData* data = md->bci_to_data(x->state()->bci());
2545     assert(data != NULL, "must have profiling data");
2546     assert(data->is_MultiBranchData(), "bad profile data?");
2547     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2548     LIR_Opr md_reg = new_register(T_METADATA);
2549     __ metadata2reg(md->constant_encoding(), md_reg);
2550     LIR_Opr data_offset_reg = new_pointer_register();
2551     LIR_Opr tmp_reg = new_pointer_register();
2552 
2553     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2554     for (int i = 0; i < len; i++) {
2555       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2556       __ cmp(lir_cond_equal, value, i + lo_key);
2557       __ move(data_offset_reg, tmp_reg);
2558       __ cmove(lir_cond_equal,
2559                LIR_OprFact::intptrConst(count_offset),
2560                tmp_reg,
2561                data_offset_reg, T_INT);
2562     }
2563 
2564     LIR_Opr data_reg = new_pointer_register();
2565     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2566     __ move(data_addr, data_reg);
2567     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2568     __ move(data_reg, data_addr);
2569   }
2570 
2571   if (UseTableRanges) {
2572     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2573   } else {
2574     for (int i = 0; i < len; i++) {
2575       __ cmp(lir_cond_equal, value, i + lo_key);
2576       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2577     }
2578     __ jump(x->default_sux());
2579   }
2580 }
2581 
2582 
2583 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2584   LIRItem tag(x->tag(), this);
2585   tag.load_item();
2586   set_no_result(x);
2587 
2588   if (x->is_safepoint()) {
2589     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2590   }
2591 
2592   // move values into phi locations
2593   move_to_phi(x->state());
2594 
2595   LIR_Opr value = tag.result();
2596   int len = x->length();
2597 
2598   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2599     ciMethod* method = x->state()->scope()->method();
2600     ciMethodData* md = method->method_data_or_null();
2601     assert(md != NULL, "Sanity");
2602     ciProfileData* data = md->bci_to_data(x->state()->bci());
2603     assert(data != NULL, "must have profiling data");
2604     assert(data->is_MultiBranchData(), "bad profile data?");
2605     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2606     LIR_Opr md_reg = new_register(T_METADATA);
2607     __ metadata2reg(md->constant_encoding(), md_reg);
2608     LIR_Opr data_offset_reg = new_pointer_register();
2609     LIR_Opr tmp_reg = new_pointer_register();
2610 
2611     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2612     for (int i = 0; i < len; i++) {
2613       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2614       __ cmp(lir_cond_equal, value, x->key_at(i));
2615       __ move(data_offset_reg, tmp_reg);
2616       __ cmove(lir_cond_equal,
2617                LIR_OprFact::intptrConst(count_offset),
2618                tmp_reg,
2619                data_offset_reg, T_INT);
2620     }
2621 
2622     LIR_Opr data_reg = new_pointer_register();
2623     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2624     __ move(data_addr, data_reg);
2625     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2626     __ move(data_reg, data_addr);
2627   }
2628 
2629   if (UseTableRanges) {
2630     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2631   } else {
2632     int len = x->length();
2633     for (int i = 0; i < len; i++) {
2634       __ cmp(lir_cond_equal, value, x->key_at(i));
2635       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2636     }
2637     __ jump(x->default_sux());
2638   }
2639 }
2640 
2641 
2642 void LIRGenerator::do_Goto(Goto* x) {
2643   set_no_result(x);
2644 
2645   if (block()->next()->as_OsrEntry()) {
2646     // need to free up storage used for OSR entry point
2647     LIR_Opr osrBuffer = block()->next()->operand();
2648     BasicTypeList signature;
2649     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2650     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2651     __ move(osrBuffer, cc->args()->at(0));
2652     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2653                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2654   }
2655 
2656   if (x->is_safepoint()) {
2657     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2658 
2659     // increment backedge counter if needed
2660     CodeEmitInfo* info = state_for(x, state);
2661     increment_backedge_counter(info, x->profiled_bci());
2662     CodeEmitInfo* safepoint_info = state_for(x, state);
2663     __ safepoint(safepoint_poll_register(), safepoint_info);
2664   }
2665 
2666   // Gotos can be folded Ifs, handle this case.
2667   if (x->should_profile()) {
2668     ciMethod* method = x->profiled_method();
2669     assert(method != NULL, "method should be set if branch is profiled");
2670     ciMethodData* md = method->method_data_or_null();
2671     assert(md != NULL, "Sanity");
2672     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2673     assert(data != NULL, "must have profiling data");
2674     int offset;
2675     if (x->direction() == Goto::taken) {
2676       assert(data->is_BranchData(), "need BranchData for two-way branches");
2677       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2678     } else if (x->direction() == Goto::not_taken) {
2679       assert(data->is_BranchData(), "need BranchData for two-way branches");
2680       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2681     } else {
2682       assert(data->is_JumpData(), "need JumpData for branches");
2683       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2684     }
2685     LIR_Opr md_reg = new_register(T_METADATA);
2686     __ metadata2reg(md->constant_encoding(), md_reg);
2687 
2688     increment_counter(new LIR_Address(md_reg, offset,
2689                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2690   }
2691 
2692   // emit phi-instruction move after safepoint since this simplifies
2693   // describing the state as the safepoint.
2694   move_to_phi(x->state());
2695 
2696   __ jump(x->default_sux());
2697 }
2698 
2699 /**
2700  * Emit profiling code if needed for arguments, parameters, return value types
2701  *
2702  * @param md                    MDO the code will update at runtime
2703  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2704  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2705  * @param profiled_k            current profile
2706  * @param obj                   IR node for the object to be profiled
2707  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2708  *                              Set once we find an update to make and use for next ones.
2709  * @param not_null              true if we know obj cannot be null
2710  * @param signature_at_call_k   signature at call for obj
2711  * @param callee_signature_k    signature of callee for obj
2712  *                              at call and callee signatures differ at method handle call
2713  * @return                      the only klass we know will ever be seen at this profile point
2714  */
2715 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2716                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2717                                     ciKlass* callee_signature_k) {
2718   ciKlass* result = NULL;
2719   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2720   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2721   // known not to be null or null bit already set and already set to
2722   // unknown: nothing we can do to improve profiling
2723   if (!do_null && !do_update) {
2724     return result;
2725   }
2726 
2727   ciKlass* exact_klass = NULL;
2728   Compilation* comp = Compilation::current();
2729   if (do_update) {
2730     // try to find exact type, using CHA if possible, so that loading
2731     // the klass from the object can be avoided
2732     ciType* type = obj->exact_type();
2733     if (type == NULL) {
2734       type = obj->declared_type();
2735       type = comp->cha_exact_type(type);
2736     }
2737     assert(type == NULL || type->is_klass(), "type should be class");
2738     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2739 
2740     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2741   }
2742 
2743   if (!do_null && !do_update) {
2744     return result;
2745   }
2746 
2747   ciKlass* exact_signature_k = NULL;
2748   if (do_update) {
2749     // Is the type from the signature exact (the only one possible)?
2750     exact_signature_k = signature_at_call_k->exact_klass();
2751     if (exact_signature_k == NULL) {
2752       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2753     } else {
2754       result = exact_signature_k;
2755       // Known statically. No need to emit any code: prevent
2756       // LIR_Assembler::emit_profile_type() from emitting useless code
2757       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2758     }
2759     // exact_klass and exact_signature_k can be both non NULL but
2760     // different if exact_klass is loaded after the ciObject for
2761     // exact_signature_k is created.
2762     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2763       // sometimes the type of the signature is better than the best type
2764       // the compiler has
2765       exact_klass = exact_signature_k;
2766     }
2767     if (callee_signature_k != NULL &&
2768         callee_signature_k != signature_at_call_k) {
2769       ciKlass* improved_klass = callee_signature_k->exact_klass();
2770       if (improved_klass == NULL) {
2771         improved_klass = comp->cha_exact_type(callee_signature_k);
2772       }
2773       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2774         exact_klass = exact_signature_k;
2775       }
2776     }
2777     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2778   }
2779 
2780   if (!do_null && !do_update) {
2781     return result;
2782   }
2783 
2784   if (mdp == LIR_OprFact::illegalOpr) {
2785     mdp = new_register(T_METADATA);
2786     __ metadata2reg(md->constant_encoding(), mdp);
2787     if (md_base_offset != 0) {
2788       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2789       mdp = new_pointer_register();
2790       __ leal(LIR_OprFact::address(base_type_address), mdp);
2791     }
2792   }
2793   LIRItem value(obj, this);
2794   value.load_item();
2795   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2796                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2797   return result;
2798 }
2799 
2800 // profile parameters on entry to the root of the compilation
2801 void LIRGenerator::profile_parameters(Base* x) {
2802   if (compilation()->profile_parameters()) {
2803     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2804     ciMethodData* md = scope()->method()->method_data_or_null();
2805     assert(md != NULL, "Sanity");
2806 
2807     if (md->parameters_type_data() != NULL) {
2808       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2809       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2810       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2811       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2812         LIR_Opr src = args->at(i);
2813         assert(!src->is_illegal(), "check");
2814         BasicType t = src->type();
2815         if (t == T_OBJECT || t == T_ARRAY) {
2816           intptr_t profiled_k = parameters->type(j);
2817           Local* local = x->state()->local_at(java_index)->as_Local();
2818           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2819                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2820                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2821           // If the profile is known statically set it once for all and do not emit any code
2822           if (exact != NULL) {
2823             md->set_parameter_type(j, exact);
2824           }
2825           j++;
2826         }
2827         java_index += type2size[t];
2828       }
2829     }
2830   }
2831 }
2832 
2833 void LIRGenerator::do_Base(Base* x) {
2834   __ std_entry(LIR_OprFact::illegalOpr);
2835   // Emit moves from physical registers / stack slots to virtual registers
2836   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2837   IRScope* irScope = compilation()->hir()->top_scope();
2838   int java_index = 0;
2839   for (int i = 0; i < args->length(); i++) {
2840     LIR_Opr src = args->at(i);
2841     assert(!src->is_illegal(), "check");
2842     BasicType t = src->type();
2843 
2844     // Types which are smaller than int are passed as int, so
2845     // correct the type which passed.
2846     switch (t) {
2847     case T_BYTE:
2848     case T_BOOLEAN:
2849     case T_SHORT:
2850     case T_CHAR:
2851       t = T_INT;
2852       break;
2853     default:
2854       break;
2855     }
2856 
2857     LIR_Opr dest = new_register(t);
2858     __ move(src, dest);
2859 
2860     // Assign new location to Local instruction for this local
2861     Local* local = x->state()->local_at(java_index)->as_Local();
2862     assert(local != NULL, "Locals for incoming arguments must have been created");
2863 #ifndef __SOFTFP__
2864     // The java calling convention passes double as long and float as int.
2865     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2866 #endif // __SOFTFP__
2867     local->set_operand(dest);
2868     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2869     java_index += type2size[t];
2870   }
2871 
2872   if (compilation()->env()->dtrace_method_probes()) {
2873     BasicTypeList signature;
2874     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2875     signature.append(T_METADATA); // Method*
2876     LIR_OprList* args = new LIR_OprList();
2877     args->append(getThreadPointer());
2878     LIR_Opr meth = new_register(T_METADATA);
2879     __ metadata2reg(method()->constant_encoding(), meth);
2880     args->append(meth);
2881     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2882   }
2883 
2884   if (method()->is_synchronized()) {
2885     LIR_Opr obj;
2886     if (method()->is_static()) {
2887       obj = new_register(T_OBJECT);
2888       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2889     } else {
2890       Local* receiver = x->state()->local_at(0)->as_Local();
2891       assert(receiver != NULL, "must already exist");
2892       obj = receiver->operand();
2893     }
2894     assert(obj->is_valid(), "must be valid");
2895 
2896     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2897       LIR_Opr lock = syncLockOpr();
2898       __ load_stack_address_monitor(0, lock);
2899 
2900       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2901       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2902 
2903       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2904       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2905     }
2906   }
2907   if (compilation()->age_code()) {
2908     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2909     decrement_age(info);
2910   }
2911   // increment invocation counters if needed
2912   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2913     profile_parameters(x);
2914     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2915     increment_invocation_counter(info);
2916   }
2917 
2918   // all blocks with a successor must end with an unconditional jump
2919   // to the successor even if they are consecutive
2920   __ jump(x->default_sux());
2921 }
2922 
2923 
2924 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2925   // construct our frame and model the production of incoming pointer
2926   // to the OSR buffer.
2927   __ osr_entry(LIR_Assembler::osrBufferPointer());
2928   LIR_Opr result = rlock_result(x);
2929   __ move(LIR_Assembler::osrBufferPointer(), result);
2930 }
2931 
2932 
2933 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2934   assert(args->length() == arg_list->length(),
2935          "args=%d, arg_list=%d", args->length(), arg_list->length());
2936   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2937     LIRItem* param = args->at(i);
2938     LIR_Opr loc = arg_list->at(i);
2939     if (loc->is_register()) {
2940       param->load_item_force(loc);
2941     } else {
2942       LIR_Address* addr = loc->as_address_ptr();
2943       param->load_for_store(addr->type());
2944       assert(addr->type() != T_VALUETYPE, "not supported yet");
2945       if (addr->type() == T_OBJECT) {
2946         __ move_wide(param->result(), addr);
2947       } else
2948         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2949           __ unaligned_move(param->result(), addr);
2950         } else {
2951           __ move(param->result(), addr);
2952         }
2953     }
2954   }
2955 
2956   if (x->has_receiver()) {
2957     LIRItem* receiver = args->at(0);
2958     LIR_Opr loc = arg_list->at(0);
2959     if (loc->is_register()) {
2960       receiver->load_item_force(loc);
2961     } else {
2962       assert(loc->is_address(), "just checking");
2963       receiver->load_for_store(T_OBJECT);
2964       __ move_wide(receiver->result(), loc->as_address_ptr());
2965     }
2966   }
2967 }
2968 
2969 
2970 // Visits all arguments, returns appropriate items without loading them
2971 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2972   LIRItemList* argument_items = new LIRItemList();
2973   if (x->has_receiver()) {
2974     LIRItem* receiver = new LIRItem(x->receiver(), this);
2975     argument_items->append(receiver);
2976   }
2977   for (int i = 0; i < x->number_of_arguments(); i++) {
2978     LIRItem* param = new LIRItem(x->argument_at(i), this);
2979     argument_items->append(param);
2980   }
2981   return argument_items;
2982 }
2983 
2984 
2985 // The invoke with receiver has following phases:
2986 //   a) traverse and load/lock receiver;
2987 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2988 //   c) push receiver on stack
2989 //   d) load each of the items and push on stack
2990 //   e) unlock receiver
2991 //   f) move receiver into receiver-register %o0
2992 //   g) lock result registers and emit call operation
2993 //
2994 // Before issuing a call, we must spill-save all values on stack
2995 // that are in caller-save register. "spill-save" moves those registers
2996 // either in a free callee-save register or spills them if no free
2997 // callee save register is available.
2998 //
2999 // The problem is where to invoke spill-save.
3000 // - if invoked between e) and f), we may lock callee save
3001 //   register in "spill-save" that destroys the receiver register
3002 //   before f) is executed
3003 // - if we rearrange f) to be earlier (by loading %o0) it
3004 //   may destroy a value on the stack that is currently in %o0
3005 //   and is waiting to be spilled
3006 // - if we keep the receiver locked while doing spill-save,
3007 //   we cannot spill it as it is spill-locked
3008 //
3009 void LIRGenerator::do_Invoke(Invoke* x) {
3010   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3011 
3012   LIR_OprList* arg_list = cc->args();
3013   LIRItemList* args = invoke_visit_arguments(x);
3014   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3015 
3016   // setup result register
3017   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3018   if (x->type() != voidType) {
3019     result_register = result_register_for(x->type());
3020   }
3021 
3022   CodeEmitInfo* info = state_for(x, x->state());
3023 
3024   invoke_load_arguments(x, args, arg_list);
3025 
3026   if (x->has_receiver()) {
3027     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3028     receiver = args->at(0)->result();
3029   }
3030 
3031   // emit invoke code
3032   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3033 
3034   // JSR 292
3035   // Preserve the SP over MethodHandle call sites, if needed.
3036   ciMethod* target = x->target();
3037   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3038                                   target->is_method_handle_intrinsic() ||
3039                                   target->is_compiled_lambda_form());
3040   if (is_method_handle_invoke) {
3041     info->set_is_method_handle_invoke(true);
3042     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3043         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3044     }
3045   }
3046 
3047   switch (x->code()) {
3048     case Bytecodes::_invokestatic:
3049       __ call_static(target, result_register,
3050                      SharedRuntime::get_resolve_static_call_stub(),
3051                      arg_list, info);
3052       break;
3053     case Bytecodes::_invokespecial:
3054     case Bytecodes::_invokevirtual:
3055     case Bytecodes::_invokeinterface:
3056       // for loaded and final (method or class) target we still produce an inline cache,
3057       // in order to be able to call mixed mode
3058       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3059         __ call_opt_virtual(target, receiver, result_register,
3060                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3061                             arg_list, info);
3062       } else if (x->vtable_index() < 0) {
3063         __ call_icvirtual(target, receiver, result_register,
3064                           SharedRuntime::get_resolve_virtual_call_stub(),
3065                           arg_list, info);
3066       } else {
3067         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3068         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3069         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3070       }
3071       break;
3072     case Bytecodes::_invokedynamic: {
3073       __ call_dynamic(target, receiver, result_register,
3074                       SharedRuntime::get_resolve_static_call_stub(),
3075                       arg_list, info);
3076       break;
3077     }
3078     default:
3079       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3080       break;
3081   }
3082 
3083   // JSR 292
3084   // Restore the SP after MethodHandle call sites, if needed.
3085   if (is_method_handle_invoke
3086       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3087     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3088   }
3089 
3090   if (x->type()->is_float() || x->type()->is_double()) {
3091     // Force rounding of results from non-strictfp when in strictfp
3092     // scope (or when we don't know the strictness of the callee, to
3093     // be safe.)
3094     if (method()->is_strict()) {
3095       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3096         result_register = round_item(result_register);
3097       }
3098     }
3099   }
3100 
3101   if (result_register->is_valid()) {
3102     LIR_Opr result = rlock_result(x);
3103     __ move(result_register, result);
3104   }
3105 }
3106 
3107 
3108 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3109   assert(x->number_of_arguments() == 1, "wrong type");
3110   LIRItem value       (x->argument_at(0), this);
3111   LIR_Opr reg = rlock_result(x);
3112   value.load_item();
3113   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3114   __ move(tmp, reg);
3115 }
3116 
3117 
3118 
3119 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3120 void LIRGenerator::do_IfOp(IfOp* x) {
3121 #ifdef ASSERT
3122   {
3123     ValueTag xtag = x->x()->type()->tag();
3124     ValueTag ttag = x->tval()->type()->tag();
3125     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3126     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3127     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3128   }
3129 #endif
3130 
3131   LIRItem left(x->x(), this);
3132   LIRItem right(x->y(), this);
3133   left.load_item();
3134   if (can_inline_as_constant(right.value())) {
3135     right.dont_load_item();
3136   } else {
3137     right.load_item();
3138   }
3139 
3140   LIRItem t_val(x->tval(), this);
3141   LIRItem f_val(x->fval(), this);
3142   t_val.dont_load_item();
3143   f_val.dont_load_item();
3144   LIR_Opr reg = rlock_result(x);
3145 
3146   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3147   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3148 }
3149 
3150 #ifdef JFR_HAVE_INTRINSICS
3151 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3152   CodeEmitInfo* info = state_for(x);
3153   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3154 
3155   assert(info != NULL, "must have info");
3156   LIRItem arg(x->argument_at(0), this);
3157 
3158   arg.load_item();
3159   LIR_Opr klass = new_register(T_METADATA);
3160   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3161   LIR_Opr id = new_register(T_LONG);
3162   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3163   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3164 
3165   __ move(trace_id_addr, id);
3166   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3167   __ store(id, trace_id_addr);
3168 
3169 #ifdef TRACE_ID_META_BITS
3170   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3171 #endif
3172 #ifdef TRACE_ID_SHIFT
3173   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3174 #endif
3175 
3176   __ move(id, rlock_result(x));
3177 }
3178 
3179 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3180   LabelObj* L_end = new LabelObj();
3181 
3182   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3183                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3184                                            T_OBJECT);
3185   LIR_Opr result = rlock_result(x);
3186   __ move_wide(jobj_addr, result);
3187   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3188   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3189 
3190   LIR_Opr jobj = new_register(T_OBJECT);
3191   __ move(result, jobj);
3192   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3193 
3194   __ branch_destination(L_end->label());
3195 }
3196 
3197 #endif
3198 
3199 
3200 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3201   assert(x->number_of_arguments() == 0, "wrong type");
3202   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3203   BasicTypeList signature;
3204   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3205   LIR_Opr reg = result_register_for(x->type());
3206   __ call_runtime_leaf(routine, getThreadTemp(),
3207                        reg, new LIR_OprList());
3208   LIR_Opr result = rlock_result(x);
3209   __ move(reg, result);
3210 }
3211 
3212 
3213 
3214 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3215   switch (x->id()) {
3216   case vmIntrinsics::_intBitsToFloat      :
3217   case vmIntrinsics::_doubleToRawLongBits :
3218   case vmIntrinsics::_longBitsToDouble    :
3219   case vmIntrinsics::_floatToRawIntBits   : {
3220     do_FPIntrinsics(x);
3221     break;
3222   }
3223 
3224 #ifdef JFR_HAVE_INTRINSICS
3225   case vmIntrinsics::_getClassId:
3226     do_ClassIDIntrinsic(x);
3227     break;
3228   case vmIntrinsics::_getEventWriter:
3229     do_getEventWriter(x);
3230     break;
3231   case vmIntrinsics::_counterTime:
3232     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3233     break;
3234 #endif
3235 
3236   case vmIntrinsics::_currentTimeMillis:
3237     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3238     break;
3239 
3240   case vmIntrinsics::_nanoTime:
3241     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3242     break;
3243 
3244   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3245   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3246   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3247   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3248   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3249 
3250   case vmIntrinsics::_dlog:           // fall through
3251   case vmIntrinsics::_dlog10:         // fall through
3252   case vmIntrinsics::_dabs:           // fall through
3253   case vmIntrinsics::_dsqrt:          // fall through
3254   case vmIntrinsics::_dtan:           // fall through
3255   case vmIntrinsics::_dsin :          // fall through
3256   case vmIntrinsics::_dcos :          // fall through
3257   case vmIntrinsics::_dexp :          // fall through
3258   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3259   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3260 
3261   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3262   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3263 
3264   // java.nio.Buffer.checkIndex
3265   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3266 
3267   case vmIntrinsics::_compareAndSetReference:
3268     do_CompareAndSwap(x, objectType);
3269     break;
3270   case vmIntrinsics::_compareAndSetInt:
3271     do_CompareAndSwap(x, intType);
3272     break;
3273   case vmIntrinsics::_compareAndSetLong:
3274     do_CompareAndSwap(x, longType);
3275     break;
3276 
3277   case vmIntrinsics::_loadFence :
3278     __ membar_acquire();
3279     break;
3280   case vmIntrinsics::_storeFence:
3281     __ membar_release();
3282     break;
3283   case vmIntrinsics::_fullFence :
3284     __ membar();
3285     break;
3286   case vmIntrinsics::_onSpinWait:
3287     __ on_spin_wait();
3288     break;
3289   case vmIntrinsics::_Reference_get:
3290     do_Reference_get(x);
3291     break;
3292 
3293   case vmIntrinsics::_updateCRC32:
3294   case vmIntrinsics::_updateBytesCRC32:
3295   case vmIntrinsics::_updateByteBufferCRC32:
3296     do_update_CRC32(x);
3297     break;
3298 
3299   case vmIntrinsics::_updateBytesCRC32C:
3300   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3301     do_update_CRC32C(x);
3302     break;
3303 
3304   case vmIntrinsics::_vectorizedMismatch:
3305     do_vectorizedMismatch(x);
3306     break;
3307 
3308   default: ShouldNotReachHere(); break;
3309   }
3310 }
3311 
3312 void LIRGenerator::profile_arguments(ProfileCall* x) {
3313   if (compilation()->profile_arguments()) {
3314     int bci = x->bci_of_invoke();
3315     ciMethodData* md = x->method()->method_data_or_null();
3316     assert(md != NULL, "Sanity");
3317     ciProfileData* data = md->bci_to_data(bci);
3318     if (data != NULL) {
3319       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3320           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3321         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3322         int base_offset = md->byte_offset_of_slot(data, extra);
3323         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3324         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3325 
3326         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3327         int start = 0;
3328         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3329         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3330           // first argument is not profiled at call (method handle invoke)
3331           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3332           start = 1;
3333         }
3334         ciSignature* callee_signature = x->callee()->signature();
3335         // method handle call to virtual method
3336         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3337         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3338 
3339         bool ignored_will_link;
3340         ciSignature* signature_at_call = NULL;
3341         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3342         ciSignatureStream signature_at_call_stream(signature_at_call);
3343 
3344         // if called through method handle invoke, some arguments may have been popped
3345         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3346           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3347           ciKlass* exact = profile_type(md, base_offset, off,
3348               args->type(i), x->profiled_arg_at(i+start), mdp,
3349               !x->arg_needs_null_check(i+start),
3350               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3351           if (exact != NULL) {
3352             md->set_argument_type(bci, i, exact);
3353           }
3354         }
3355       } else {
3356 #ifdef ASSERT
3357         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3358         int n = x->nb_profiled_args();
3359         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3360             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3361             "only at JSR292 bytecodes");
3362 #endif
3363       }
3364     }
3365   }
3366 }
3367 
3368 // profile parameters on entry to an inlined method
3369 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3370   if (compilation()->profile_parameters() && x->inlined()) {
3371     ciMethodData* md = x->callee()->method_data_or_null();
3372     if (md != NULL) {
3373       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3374       if (parameters_type_data != NULL) {
3375         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3376         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3377         bool has_receiver = !x->callee()->is_static();
3378         ciSignature* sig = x->callee()->signature();
3379         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3380         int i = 0; // to iterate on the Instructions
3381         Value arg = x->recv();
3382         bool not_null = false;
3383         int bci = x->bci_of_invoke();
3384         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3385         // The first parameter is the receiver so that's what we start
3386         // with if it exists. One exception is method handle call to
3387         // virtual method: the receiver is in the args list
3388         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3389           i = 1;
3390           arg = x->profiled_arg_at(0);
3391           not_null = !x->arg_needs_null_check(0);
3392         }
3393         int k = 0; // to iterate on the profile data
3394         for (;;) {
3395           intptr_t profiled_k = parameters->type(k);
3396           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3397                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3398                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3399           // If the profile is known statically set it once for all and do not emit any code
3400           if (exact != NULL) {
3401             md->set_parameter_type(k, exact);
3402           }
3403           k++;
3404           if (k >= parameters_type_data->number_of_parameters()) {
3405 #ifdef ASSERT
3406             int extra = 0;
3407             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3408                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3409                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3410               extra += 1;
3411             }
3412             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3413 #endif
3414             break;
3415           }
3416           arg = x->profiled_arg_at(i);
3417           not_null = !x->arg_needs_null_check(i);
3418           i++;
3419         }
3420       }
3421     }
3422   }
3423 }
3424 
3425 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3426   // Need recv in a temporary register so it interferes with the other temporaries
3427   LIR_Opr recv = LIR_OprFact::illegalOpr;
3428   LIR_Opr mdo = new_register(T_METADATA);
3429   // tmp is used to hold the counters on SPARC
3430   LIR_Opr tmp = new_pointer_register();
3431 
3432   if (x->nb_profiled_args() > 0) {
3433     profile_arguments(x);
3434   }
3435 
3436   // profile parameters on inlined method entry including receiver
3437   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3438     profile_parameters_at_call(x);
3439   }
3440 
3441   if (x->recv() != NULL) {
3442     LIRItem value(x->recv(), this);
3443     value.load_item();
3444     recv = new_register(T_OBJECT);
3445     __ move(value.result(), recv);
3446   }
3447   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3448 }
3449 
3450 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3451   int bci = x->bci_of_invoke();
3452   ciMethodData* md = x->method()->method_data_or_null();
3453   assert(md != NULL, "Sanity");
3454   ciProfileData* data = md->bci_to_data(bci);
3455   if (data != NULL) {
3456     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3457     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3458     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3459 
3460     bool ignored_will_link;
3461     ciSignature* signature_at_call = NULL;
3462     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3463 
3464     // The offset within the MDO of the entry to update may be too large
3465     // to be used in load/store instructions on some platforms. So have
3466     // profile_type() compute the address of the profile in a register.
3467     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3468         ret->type(), x->ret(), mdp,
3469         !x->needs_null_check(),
3470         signature_at_call->return_type()->as_klass(),
3471         x->callee()->signature()->return_type()->as_klass());
3472     if (exact != NULL) {
3473       md->set_return_type(bci, exact);
3474     }
3475   }
3476 }
3477 
3478 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3479   // We can safely ignore accessors here, since c2 will inline them anyway,
3480   // accessors are also always mature.
3481   if (!x->inlinee()->is_accessor()) {
3482     CodeEmitInfo* info = state_for(x, x->state(), true);
3483     // Notify the runtime very infrequently only to take care of counter overflows
3484     int freq_log = Tier23InlineeNotifyFreqLog;
3485     double scale;
3486     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3487       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3488     }
3489     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3490   }
3491 }
3492 
3493 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3494   if (compilation()->count_backedges()) {
3495     __ cmp(cond, left, right);
3496     LIR_Opr step = new_register(T_INT);
3497     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3498     LIR_Opr zero = LIR_OprFact::intConst(0);
3499     __ cmove(cond,
3500         (left_bci < bci) ? plus_one : zero,
3501         (right_bci < bci) ? plus_one : zero,
3502         step, left->type());
3503     increment_backedge_counter(info, step, bci);
3504   }
3505 }
3506 
3507 
3508 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3509   int freq_log = 0;
3510   int level = compilation()->env()->comp_level();
3511   if (level == CompLevel_limited_profile) {
3512     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3513   } else if (level == CompLevel_full_profile) {
3514     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3515   } else {
3516     ShouldNotReachHere();
3517   }
3518   // Increment the appropriate invocation/backedge counter and notify the runtime.
3519   double scale;
3520   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3521     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3522   }
3523   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3524 }
3525 
3526 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3527   ciMethod* method = info->scope()->method();
3528   MethodCounters* mc_adr = method->ensure_method_counters();
3529   if (mc_adr != NULL) {
3530     LIR_Opr mc = new_pointer_register();
3531     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3532     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3533     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3534     LIR_Opr result = new_register(T_INT);
3535     __ load(counter, result);
3536     __ sub(result, LIR_OprFact::intConst(1), result);
3537     __ store(result, counter);
3538     // DeoptimizeStub will reexecute from the current state in code info.
3539     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3540                                          Deoptimization::Action_make_not_entrant);
3541     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3542     __ branch(lir_cond_lessEqual, T_INT, deopt);
3543   }
3544 }
3545 
3546 
3547 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3548                                                 ciMethod *method, LIR_Opr step, int frequency,
3549                                                 int bci, bool backedge, bool notify) {
3550   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3551   int level = _compilation->env()->comp_level();
3552   assert(level > CompLevel_simple, "Shouldn't be here");
3553 
3554   int offset = -1;
3555   LIR_Opr counter_holder = NULL;
3556   if (level == CompLevel_limited_profile) {
3557     MethodCounters* counters_adr = method->ensure_method_counters();
3558     if (counters_adr == NULL) {
3559       bailout("method counters allocation failed");
3560       return;
3561     }
3562     counter_holder = new_pointer_register();
3563     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3564     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3565                                  MethodCounters::invocation_counter_offset());
3566   } else if (level == CompLevel_full_profile) {
3567     counter_holder = new_register(T_METADATA);
3568     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3569                                  MethodData::invocation_counter_offset());
3570     ciMethodData* md = method->method_data_or_null();
3571     assert(md != NULL, "Sanity");
3572     __ metadata2reg(md->constant_encoding(), counter_holder);
3573   } else {
3574     ShouldNotReachHere();
3575   }
3576   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3577   LIR_Opr result = new_register(T_INT);
3578   __ load(counter, result);
3579   __ add(result, step, result);
3580   __ store(result, counter);
3581   if (notify && (!backedge || UseOnStackReplacement)) {
3582     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3583     // The bci for info can point to cmp for if's we want the if bci
3584     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3585     int freq = frequency << InvocationCounter::count_shift;
3586     if (freq == 0) {
3587       if (!step->is_constant()) {
3588         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3589         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3590       } else {
3591         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3592       }
3593     } else {
3594       LIR_Opr mask = load_immediate(freq, T_INT);
3595       if (!step->is_constant()) {
3596         // If step is 0, make sure the overflow check below always fails
3597         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3598         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3599       }
3600       __ logical_and(result, mask, result);
3601       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3602       __ branch(lir_cond_equal, T_INT, overflow);
3603     }
3604     __ branch_destination(overflow->continuation());
3605   }
3606 }
3607 
3608 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3609   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3610   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3611 
3612   if (x->pass_thread()) {
3613     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3614     args->append(getThreadPointer());
3615   }
3616 
3617   for (int i = 0; i < x->number_of_arguments(); i++) {
3618     Value a = x->argument_at(i);
3619     LIRItem* item = new LIRItem(a, this);
3620     item->load_item();
3621     args->append(item->result());
3622     signature->append(as_BasicType(a->type()));
3623   }
3624 
3625   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3626   if (x->type() == voidType) {
3627     set_no_result(x);
3628   } else {
3629     __ move(result, rlock_result(x));
3630   }
3631 }
3632 
3633 #ifdef ASSERT
3634 void LIRGenerator::do_Assert(Assert *x) {
3635   ValueTag tag = x->x()->type()->tag();
3636   If::Condition cond = x->cond();
3637 
3638   LIRItem xitem(x->x(), this);
3639   LIRItem yitem(x->y(), this);
3640   LIRItem* xin = &xitem;
3641   LIRItem* yin = &yitem;
3642 
3643   assert(tag == intTag, "Only integer assertions are valid!");
3644 
3645   xin->load_item();
3646   yin->dont_load_item();
3647 
3648   set_no_result(x);
3649 
3650   LIR_Opr left = xin->result();
3651   LIR_Opr right = yin->result();
3652 
3653   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3654 }
3655 #endif
3656 
3657 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3658 
3659 
3660   Instruction *a = x->x();
3661   Instruction *b = x->y();
3662   if (!a || StressRangeCheckElimination) {
3663     assert(!b || StressRangeCheckElimination, "B must also be null");
3664 
3665     CodeEmitInfo *info = state_for(x, x->state());
3666     CodeStub* stub = new PredicateFailedStub(info);
3667 
3668     __ jump(stub);
3669   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3670     int a_int = a->type()->as_IntConstant()->value();
3671     int b_int = b->type()->as_IntConstant()->value();
3672 
3673     bool ok = false;
3674 
3675     switch(x->cond()) {
3676       case Instruction::eql: ok = (a_int == b_int); break;
3677       case Instruction::neq: ok = (a_int != b_int); break;
3678       case Instruction::lss: ok = (a_int < b_int); break;
3679       case Instruction::leq: ok = (a_int <= b_int); break;
3680       case Instruction::gtr: ok = (a_int > b_int); break;
3681       case Instruction::geq: ok = (a_int >= b_int); break;
3682       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3683       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3684       default: ShouldNotReachHere();
3685     }
3686 
3687     if (ok) {
3688 
3689       CodeEmitInfo *info = state_for(x, x->state());
3690       CodeStub* stub = new PredicateFailedStub(info);
3691 
3692       __ jump(stub);
3693     }
3694   } else {
3695 
3696     ValueTag tag = x->x()->type()->tag();
3697     If::Condition cond = x->cond();
3698     LIRItem xitem(x->x(), this);
3699     LIRItem yitem(x->y(), this);
3700     LIRItem* xin = &xitem;
3701     LIRItem* yin = &yitem;
3702 
3703     assert(tag == intTag, "Only integer deoptimizations are valid!");
3704 
3705     xin->load_item();
3706     yin->dont_load_item();
3707     set_no_result(x);
3708 
3709     LIR_Opr left = xin->result();
3710     LIR_Opr right = yin->result();
3711 
3712     CodeEmitInfo *info = state_for(x, x->state());
3713     CodeStub* stub = new PredicateFailedStub(info);
3714 
3715     __ cmp(lir_cond(cond), left, right);
3716     __ branch(lir_cond(cond), right->type(), stub);
3717   }
3718 }
3719 
3720 
3721 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3722   LIRItemList args(1);
3723   LIRItem value(arg1, this);
3724   args.append(&value);
3725   BasicTypeList signature;
3726   signature.append(as_BasicType(arg1->type()));
3727 
3728   return call_runtime(&signature, &args, entry, result_type, info);
3729 }
3730 
3731 
3732 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3733   LIRItemList args(2);
3734   LIRItem value1(arg1, this);
3735   LIRItem value2(arg2, this);
3736   args.append(&value1);
3737   args.append(&value2);
3738   BasicTypeList signature;
3739   signature.append(as_BasicType(arg1->type()));
3740   signature.append(as_BasicType(arg2->type()));
3741 
3742   return call_runtime(&signature, &args, entry, result_type, info);
3743 }
3744 
3745 
3746 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3747                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3748   // get a result register
3749   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3750   LIR_Opr result = LIR_OprFact::illegalOpr;
3751   if (result_type->tag() != voidTag) {
3752     result = new_register(result_type);
3753     phys_reg = result_register_for(result_type);
3754   }
3755 
3756   // move the arguments into the correct location
3757   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3758   assert(cc->length() == args->length(), "argument mismatch");
3759   for (int i = 0; i < args->length(); i++) {
3760     LIR_Opr arg = args->at(i);
3761     LIR_Opr loc = cc->at(i);
3762     if (loc->is_register()) {
3763       __ move(arg, loc);
3764     } else {
3765       LIR_Address* addr = loc->as_address_ptr();
3766 //           if (!can_store_as_constant(arg)) {
3767 //             LIR_Opr tmp = new_register(arg->type());
3768 //             __ move(arg, tmp);
3769 //             arg = tmp;
3770 //           }
3771       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3772         __ unaligned_move(arg, addr);
3773       } else {
3774         __ move(arg, addr);
3775       }
3776     }
3777   }
3778 
3779   if (info) {
3780     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3781   } else {
3782     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3783   }
3784   if (result->is_valid()) {
3785     __ move(phys_reg, result);
3786   }
3787   return result;
3788 }
3789 
3790 
3791 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3792                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3793   // get a result register
3794   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3795   LIR_Opr result = LIR_OprFact::illegalOpr;
3796   if (result_type->tag() != voidTag) {
3797     result = new_register(result_type);
3798     phys_reg = result_register_for(result_type);
3799   }
3800 
3801   // move the arguments into the correct location
3802   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3803 
3804   assert(cc->length() == args->length(), "argument mismatch");
3805   for (int i = 0; i < args->length(); i++) {
3806     LIRItem* arg = args->at(i);
3807     LIR_Opr loc = cc->at(i);
3808     if (loc->is_register()) {
3809       arg->load_item_force(loc);
3810     } else {
3811       LIR_Address* addr = loc->as_address_ptr();
3812       arg->load_for_store(addr->type());
3813       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3814         __ unaligned_move(arg->result(), addr);
3815       } else {
3816         __ move(arg->result(), addr);
3817       }
3818     }
3819   }
3820 
3821   if (info) {
3822     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3823   } else {
3824     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3825   }
3826   if (result->is_valid()) {
3827     __ move(phys_reg, result);
3828   }
3829   return result;
3830 }
3831 
3832 void LIRGenerator::do_MemBar(MemBar* x) {
3833   LIR_Code code = x->code();
3834   switch(code) {
3835   case lir_membar_acquire   : __ membar_acquire(); break;
3836   case lir_membar_release   : __ membar_release(); break;
3837   case lir_membar           : __ membar(); break;
3838   case lir_membar_loadload  : __ membar_loadload(); break;
3839   case lir_membar_storestore: __ membar_storestore(); break;
3840   case lir_membar_loadstore : __ membar_loadstore(); break;
3841   case lir_membar_storeload : __ membar_storeload(); break;
3842   default                   : ShouldNotReachHere(); break;
3843   }
3844 }
3845 
3846 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3847   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3848   if (TwoOperandLIRForm) {
3849     __ move(value, value_fixed);
3850     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3851   } else {
3852     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3853   }
3854   LIR_Opr klass = new_register(T_METADATA);
3855   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3856   null_check_info = NULL;
3857   LIR_Opr layout = new_register(T_INT);
3858   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3859   int diffbit = Klass::layout_helper_boolean_diffbit();
3860   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3861   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3862   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3863   value = value_fixed;
3864   return value;
3865 }
3866 
3867 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3868   if (x->check_boolean()) {
3869     value = mask_boolean(array, value, null_check_info);
3870   }
3871   return value;
3872 }