1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_IR.hpp"
  27 #include "c1/c1_Instruction.hpp"
  28 #include "c1/c1_InstructionPrinter.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciObjArrayKlass.hpp"
  31 #include "ci/ciTypeArrayKlass.hpp"
  32 #include "ci/ciValueArrayKlass.hpp"
  33 #include "ci/ciValueKlass.hpp"
  34 
  35 
  36 // Implementation of Instruction
  37 
  38 
  39 int Instruction::dominator_depth() {
  40   int result = -1;
  41   if (block()) {
  42     result = block()->dominator_depth();
  43   }
  44   assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
  45   return result;
  46 }
  47 
  48 Instruction::Condition Instruction::mirror(Condition cond) {
  49   switch (cond) {
  50     case eql: return eql;
  51     case neq: return neq;
  52     case lss: return gtr;
  53     case leq: return geq;
  54     case gtr: return lss;
  55     case geq: return leq;
  56     case aeq: return beq;
  57     case beq: return aeq;
  58   }
  59   ShouldNotReachHere();
  60   return eql;
  61 }
  62 
  63 
  64 Instruction::Condition Instruction::negate(Condition cond) {
  65   switch (cond) {
  66     case eql: return neq;
  67     case neq: return eql;
  68     case lss: return geq;
  69     case leq: return gtr;
  70     case gtr: return leq;
  71     case geq: return lss;
  72     case aeq: assert(false, "Above equal cannot be negated");
  73     case beq: assert(false, "Below equal cannot be negated");
  74   }
  75   ShouldNotReachHere();
  76   return eql;
  77 }
  78 
  79 void Instruction::update_exception_state(ValueStack* state) {
  80   if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
  81     assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind");
  82     _exception_state = state;
  83   } else {
  84     _exception_state = NULL;
  85   }
  86 }
  87 
  88 // Prev without need to have BlockBegin
  89 Instruction* Instruction::prev() {
  90   Instruction* p = NULL;
  91   Instruction* q = block();
  92   while (q != this) {
  93     assert(q != NULL, "this is not in the block's instruction list");
  94     p = q; q = q->next();
  95   }
  96   return p;
  97 }
  98 
  99 
 100 void Instruction::state_values_do(ValueVisitor* f) {
 101   if (state_before() != NULL) {
 102     state_before()->values_do(f);
 103   }
 104   if (exception_state() != NULL){
 105     exception_state()->values_do(f);
 106   }
 107 }
 108 
 109 ciType* Instruction::exact_type() const {
 110   ciType* t =  declared_type();
 111   if (t != NULL && t->is_klass()) {
 112     return t->as_klass()->exact_klass();
 113   }
 114   return NULL;
 115 }
 116 
 117 ciKlass* Instruction::as_loaded_klass_or_null() const {
 118   ciType* type = declared_type();
 119   if (type != NULL && type->is_klass()) {
 120     ciKlass* klass = type->as_klass();
 121     if (klass->is_loaded()) {
 122       return klass;
 123     }
 124   }
 125   return NULL;
 126 }
 127 
 128 // FIXME -- this is used by ValueStack::merge_types only. We should remove this function
 129 // and use a better way for handling phi nodes.
 130 bool Instruction::is_flattened_array() const {
 131   if (ValueArrayFlatten) {
 132     ciType* type = declared_type();
 133     if (type != NULL && type->is_value_array_klass()) {
 134       ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass();
 135       assert(element_klass->is_loaded(), "ciValueKlasses are always loaded");
 136       if (element_klass->flatten_array()) {
 137         return true;
 138       }
 139     }
 140   }
 141 
 142   return false;
 143 }
 144 
 145 bool Instruction::is_loaded_flattened_array() const {
 146   if (ValueArrayFlatten) {
 147     ciType* type = declared_type();
 148     if (type != NULL && type->is_value_array_klass()) {
 149       ciValueArrayKlass* vak = type->as_value_array_klass();
 150       ArrayStorageProperties props = vak->storage_properties();
 151       return (!props.is_empty() && props.is_null_free() && props.is_flattened());
 152     }
 153   }
 154 
 155   return false;
 156 }
 157 
 158 bool Instruction::maybe_flattened_array() {
 159   if (ValueArrayFlatten) {
 160     ciType* type = declared_type();
 161     if (type != NULL) {
 162       if (type->is_obj_array_klass()) {
 163         // Check for array covariance. One of the following declared types may be a flattened array:
 164         ciKlass* element_klass = type->as_obj_array_klass()->element_klass();
 165         if (!element_klass->is_loaded() ||
 166             element_klass->is_java_lang_Object() ||                                                // (ValueType[] <: Object[])
 167             element_klass->is_interface() ||                                                       // (ValueType[] <: <any interface>[])
 168             (element_klass->is_valuetype() && element_klass->as_value_klass()->flatten_array())) { // (ValueType[] <: ValueType?[])
 169           // We will add a runtime check for flat-ness.
 170           return true;
 171         }
 172       } else if (type->is_klass() && type->as_klass()->is_java_lang_Object()) {
 173         // This can happen as a parameter to System.arraycopy()
 174         return true;
 175       }
 176     } else {
 177       // Type info gets lost during Phi merging (Phi, IfOp, etc), but we might be storing into a
 178       // flattened array, so we should do a runtime check.
 179       return true;
 180     }
 181   }
 182 
 183   return false;
 184 }
 185 
 186 bool Instruction::maybe_null_free_array() {
 187   ciType* type = declared_type();
 188   if (type != NULL) {
 189     if (type->is_obj_array_klass()) {
 190       // Check for array covariance. One of the following declared types may be a null-free array:
 191       ciKlass* element_klass = type->as_obj_array_klass()->element_klass();
 192       if (!element_klass->is_loaded() ||
 193           element_klass->is_java_lang_Object() ||   // (ValueType[] <: Object[])
 194           element_klass->is_interface() ||          // (ValueType[] <: <any interface>[])
 195           element_klass->is_valuetype()) {          // (ValueType[] <: ValueType?[])
 196           // We will add a runtime check for flat-ness.
 197           return true;
 198       }
 199     }
 200   } else {
 201     // Type info gets lost during Phi merging (Phi, IfOp, etc), but we might be storing into a
 202     // flattened array, so we should do a runtime check.
 203     return true;
 204   }
 205 
 206   return false;
 207 }
 208 
 209 #ifndef PRODUCT
 210 void Instruction::check_state(ValueStack* state) {
 211   if (state != NULL) {
 212     state->verify();
 213   }
 214 }
 215 
 216 
 217 void Instruction::print() {
 218   InstructionPrinter ip;
 219   print(ip);
 220 }
 221 
 222 
 223 void Instruction::print_line() {
 224   InstructionPrinter ip;
 225   ip.print_line(this);
 226 }
 227 
 228 
 229 void Instruction::print(InstructionPrinter& ip) {
 230   ip.print_head();
 231   ip.print_line(this);
 232   tty->cr();
 233 }
 234 #endif // PRODUCT
 235 
 236 
 237 // perform constant and interval tests on index value
 238 bool AccessIndexed::compute_needs_range_check() {
 239   if (length()) {
 240     Constant* clength = length()->as_Constant();
 241     Constant* cindex = index()->as_Constant();
 242     if (clength && cindex) {
 243       IntConstant* l = clength->type()->as_IntConstant();
 244       IntConstant* i = cindex->type()->as_IntConstant();
 245       if (l && i && i->value() < l->value() && i->value() >= 0) {
 246         return false;
 247       }
 248     }
 249   }
 250 
 251   if (!this->check_flag(NeedsRangeCheckFlag)) {
 252     return false;
 253   }
 254 
 255   return true;
 256 }
 257 
 258 
 259 ciType* Constant::exact_type() const {
 260   if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
 261     return type()->as_ObjectType()->exact_type();
 262   }
 263   return NULL;
 264 }
 265 
 266 ciType* LoadIndexed::exact_type() const {
 267   ciType* array_type = array()->exact_type();
 268   if (array_type != NULL) {
 269     assert(array_type->is_array_klass(), "what else?");
 270     ciArrayKlass* ak = (ciArrayKlass*)array_type;
 271 
 272     if (ak->element_type()->is_instance_klass()) {
 273       ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
 274       if (ik->is_loaded() && ik->is_final()) {
 275         return ik;
 276       }
 277     }
 278   }
 279   return Instruction::exact_type();
 280 }
 281 
 282 
 283 ciType* LoadIndexed::declared_type() const {
 284   ciType* array_type = array()->declared_type();
 285   if (array_type == NULL || !array_type->is_loaded()) {
 286     return NULL;
 287   }
 288   assert(array_type->is_array_klass(), "what else?");
 289   ciArrayKlass* ak = (ciArrayKlass*)array_type;
 290   return ak->element_type();
 291 }
 292 
 293 bool StoreIndexed::is_exact_flattened_array_store() const {
 294   if (array()->is_loaded_flattened_array() && value()->as_Constant() == NULL) {
 295     ciKlass* element_klass = array()->declared_type()->as_value_array_klass()->element_klass();
 296     ciKlass* actual_klass = value()->declared_type()->as_klass();
 297     if (element_klass == actual_klass) {
 298       return true;
 299     } else {
 300       // This can happen with inlining:
 301       //     void test45_inline(Object[] oa, Object o, int index) { oa[index] = o; }
 302       //     void test45(MyValue1[] va, int index, MyValue2 v) { test45_inline(va, v, index); }
 303       return false;
 304     }
 305   }
 306   return false;
 307 }
 308 
 309 ciType* LoadField::declared_type() const {
 310   return field()->type();
 311 }
 312 
 313 
 314 ciType* NewTypeArray::exact_type() const {
 315   return ciTypeArrayKlass::make(elt_type());
 316 }
 317 
 318 ciType* NewObjectArray::exact_type() const {
 319   ciKlass* element_klass = klass();
 320   if (is_never_null() && element_klass->is_valuetype()) {
 321     return ciValueArrayKlass::make(element_klass);
 322   } else {
 323     return ciObjArrayKlass::make(element_klass);
 324   }
 325 }
 326 
 327 ciType* NewMultiArray::exact_type() const {
 328   return _klass;
 329 }
 330 
 331 ciType* NewArray::declared_type() const {
 332   return exact_type();
 333 }
 334 
 335 ciType* NewInstance::exact_type() const {
 336   return klass();
 337 }
 338 
 339 ciType* NewInstance::declared_type() const {
 340   return exact_type();
 341 }
 342 
 343 Value NewValueTypeInstance::depends_on() {
 344   if (_depends_on != this) {
 345     if (_depends_on->as_NewValueTypeInstance() != NULL) {
 346       return _depends_on->as_NewValueTypeInstance()->depends_on();
 347     }
 348   }
 349   return _depends_on;
 350 }
 351 
 352 ciType* NewValueTypeInstance::exact_type() const {
 353   return klass();
 354 }
 355 
 356 ciType* NewValueTypeInstance::declared_type() const {
 357   return exact_type();
 358 }
 359 
 360 ciType* CheckCast::declared_type() const {
 361   return klass();
 362 }
 363 
 364 // Implementation of ArithmeticOp
 365 
 366 bool ArithmeticOp::is_commutative() const {
 367   switch (op()) {
 368     case Bytecodes::_iadd: // fall through
 369     case Bytecodes::_ladd: // fall through
 370     case Bytecodes::_fadd: // fall through
 371     case Bytecodes::_dadd: // fall through
 372     case Bytecodes::_imul: // fall through
 373     case Bytecodes::_lmul: // fall through
 374     case Bytecodes::_fmul: // fall through
 375     case Bytecodes::_dmul: return true;
 376     default              : return false;
 377   }
 378 }
 379 
 380 
 381 bool ArithmeticOp::can_trap() const {
 382   switch (op()) {
 383     case Bytecodes::_idiv: // fall through
 384     case Bytecodes::_ldiv: // fall through
 385     case Bytecodes::_irem: // fall through
 386     case Bytecodes::_lrem: return true;
 387     default              : return false;
 388   }
 389 }
 390 
 391 
 392 // Implementation of LogicOp
 393 
 394 bool LogicOp::is_commutative() const {
 395 #ifdef ASSERT
 396   switch (op()) {
 397     case Bytecodes::_iand: // fall through
 398     case Bytecodes::_land: // fall through
 399     case Bytecodes::_ior : // fall through
 400     case Bytecodes::_lor : // fall through
 401     case Bytecodes::_ixor: // fall through
 402     case Bytecodes::_lxor: break;
 403     default              : ShouldNotReachHere(); break;
 404   }
 405 #endif
 406   // all LogicOps are commutative
 407   return true;
 408 }
 409 
 410 
 411 // Implementation of IfOp
 412 
 413 bool IfOp::is_commutative() const {
 414   return cond() == eql || cond() == neq;
 415 }
 416 
 417 
 418 // Implementation of StateSplit
 419 
 420 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
 421   NOT_PRODUCT(bool assigned = false;)
 422   for (int i = 0; i < list.length(); i++) {
 423     BlockBegin** b = list.adr_at(i);
 424     if (*b == old_block) {
 425       *b = new_block;
 426       NOT_PRODUCT(assigned = true;)
 427     }
 428   }
 429   assert(assigned == true, "should have assigned at least once");
 430 }
 431 
 432 
 433 IRScope* StateSplit::scope() const {
 434   return _state->scope();
 435 }
 436 
 437 
 438 void StateSplit::state_values_do(ValueVisitor* f) {
 439   Instruction::state_values_do(f);
 440   if (state() != NULL) state()->values_do(f);
 441 }
 442 
 443 
 444 void BlockBegin::state_values_do(ValueVisitor* f) {
 445   StateSplit::state_values_do(f);
 446 
 447   if (is_set(BlockBegin::exception_entry_flag)) {
 448     for (int i = 0; i < number_of_exception_states(); i++) {
 449       exception_state_at(i)->values_do(f);
 450     }
 451   }
 452 }
 453 
 454 
 455 // Implementation of Invoke
 456 
 457 
 458 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
 459                int vtable_index, ciMethod* target, ValueStack* state_before, bool never_null)
 460   : StateSplit(result_type, state_before)
 461   , _code(code)
 462   , _recv(recv)
 463   , _args(args)
 464   , _vtable_index(vtable_index)
 465   , _target(target)
 466 {
 467   set_flag(TargetIsLoadedFlag,   target->is_loaded());
 468   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
 469   set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
 470   set_never_null(never_null);
 471 
 472   assert(args != NULL, "args must exist");
 473 #ifdef ASSERT
 474   AssertValues assert_value;
 475   values_do(&assert_value);
 476 #endif
 477 
 478   // provide an initial guess of signature size.
 479   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
 480   if (has_receiver()) {
 481     _signature->append(as_BasicType(receiver()->type()));
 482   }
 483   for (int i = 0; i < number_of_arguments(); i++) {
 484     ValueType* t = argument_at(i)->type();
 485     BasicType bt = as_BasicType(t);
 486     _signature->append(bt);
 487   }
 488 }
 489 
 490 
 491 void Invoke::state_values_do(ValueVisitor* f) {
 492   StateSplit::state_values_do(f);
 493   if (state_before() != NULL) state_before()->values_do(f);
 494   if (state()        != NULL) state()->values_do(f);
 495 }
 496 
 497 ciType* Invoke::declared_type() const {
 498   ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci());
 499   ciType *t = declared_signature->return_type();
 500   assert(t->basic_type() != T_VOID, "need return value of void method?");
 501   return t;
 502 }
 503 
 504 // Implementation of Contant
 505 intx Constant::hash() const {
 506   if (state_before() == NULL) {
 507     switch (type()->tag()) {
 508     case intTag:
 509       return HASH2(name(), type()->as_IntConstant()->value());
 510     case addressTag:
 511       return HASH2(name(), type()->as_AddressConstant()->value());
 512     case longTag:
 513       {
 514         jlong temp = type()->as_LongConstant()->value();
 515         return HASH3(name(), high(temp), low(temp));
 516       }
 517     case floatTag:
 518       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
 519     case doubleTag:
 520       {
 521         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
 522         return HASH3(name(), high(temp), low(temp));
 523       }
 524     case objectTag:
 525       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
 526       return HASH2(name(), type()->as_ObjectType()->constant_value());
 527     case metaDataTag:
 528       assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
 529       return HASH2(name(), type()->as_MetadataType()->constant_value());
 530     default:
 531       ShouldNotReachHere();
 532     }
 533   }
 534   return 0;
 535 }
 536 
 537 bool Constant::is_equal(Value v) const {
 538   if (v->as_Constant() == NULL) return false;
 539 
 540   switch (type()->tag()) {
 541     case intTag:
 542       {
 543         IntConstant* t1 =    type()->as_IntConstant();
 544         IntConstant* t2 = v->type()->as_IntConstant();
 545         return (t1 != NULL && t2 != NULL &&
 546                 t1->value() == t2->value());
 547       }
 548     case longTag:
 549       {
 550         LongConstant* t1 =    type()->as_LongConstant();
 551         LongConstant* t2 = v->type()->as_LongConstant();
 552         return (t1 != NULL && t2 != NULL &&
 553                 t1->value() == t2->value());
 554       }
 555     case floatTag:
 556       {
 557         FloatConstant* t1 =    type()->as_FloatConstant();
 558         FloatConstant* t2 = v->type()->as_FloatConstant();
 559         return (t1 != NULL && t2 != NULL &&
 560                 jint_cast(t1->value()) == jint_cast(t2->value()));
 561       }
 562     case doubleTag:
 563       {
 564         DoubleConstant* t1 =    type()->as_DoubleConstant();
 565         DoubleConstant* t2 = v->type()->as_DoubleConstant();
 566         return (t1 != NULL && t2 != NULL &&
 567                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
 568       }
 569     case objectTag:
 570       {
 571         ObjectType* t1 =    type()->as_ObjectType();
 572         ObjectType* t2 = v->type()->as_ObjectType();
 573         return (t1 != NULL && t2 != NULL &&
 574                 t1->is_loaded() && t2->is_loaded() &&
 575                 t1->constant_value() == t2->constant_value());
 576       }
 577     case metaDataTag:
 578       {
 579         MetadataType* t1 =    type()->as_MetadataType();
 580         MetadataType* t2 = v->type()->as_MetadataType();
 581         return (t1 != NULL && t2 != NULL &&
 582                 t1->is_loaded() && t2->is_loaded() &&
 583                 t1->constant_value() == t2->constant_value());
 584       }
 585     default:
 586       return false;
 587   }
 588 }
 589 
 590 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
 591   Constant* rc = right->as_Constant();
 592   // other is not a constant
 593   if (rc == NULL) return not_comparable;
 594 
 595   ValueType* lt = type();
 596   ValueType* rt = rc->type();
 597   // different types
 598   if (lt->base() != rt->base()) return not_comparable;
 599   switch (lt->tag()) {
 600   case intTag: {
 601     int x = lt->as_IntConstant()->value();
 602     int y = rt->as_IntConstant()->value();
 603     switch (cond) {
 604     case If::eql: return x == y ? cond_true : cond_false;
 605     case If::neq: return x != y ? cond_true : cond_false;
 606     case If::lss: return x <  y ? cond_true : cond_false;
 607     case If::leq: return x <= y ? cond_true : cond_false;
 608     case If::gtr: return x >  y ? cond_true : cond_false;
 609     case If::geq: return x >= y ? cond_true : cond_false;
 610     default     : break;
 611     }
 612     break;
 613   }
 614   case longTag: {
 615     jlong x = lt->as_LongConstant()->value();
 616     jlong y = rt->as_LongConstant()->value();
 617     switch (cond) {
 618     case If::eql: return x == y ? cond_true : cond_false;
 619     case If::neq: return x != y ? cond_true : cond_false;
 620     case If::lss: return x <  y ? cond_true : cond_false;
 621     case If::leq: return x <= y ? cond_true : cond_false;
 622     case If::gtr: return x >  y ? cond_true : cond_false;
 623     case If::geq: return x >= y ? cond_true : cond_false;
 624     default     : break;
 625     }
 626     break;
 627   }
 628   case objectTag: {
 629     ciObject* xvalue = lt->as_ObjectType()->constant_value();
 630     ciObject* yvalue = rt->as_ObjectType()->constant_value();
 631     assert(xvalue != NULL && yvalue != NULL, "not constants");
 632     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 633       switch (cond) {
 634       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 635       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 636       default     : break;
 637       }
 638     }
 639     break;
 640   }
 641   case metaDataTag: {
 642     ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
 643     ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
 644     assert(xvalue != NULL && yvalue != NULL, "not constants");
 645     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 646       switch (cond) {
 647       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 648       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 649       default     : break;
 650       }
 651     }
 652     break;
 653   }
 654   default:
 655     break;
 656   }
 657   return not_comparable;
 658 }
 659 
 660 
 661 // Implementation of BlockBegin
 662 
 663 void BlockBegin::set_end(BlockEnd* end) {
 664   assert(end != NULL, "should not reset block end to NULL");
 665   if (end == _end) {
 666     return;
 667   }
 668   clear_end();
 669 
 670   // Set the new end
 671   _end = end;
 672 
 673   _successors.clear();
 674   // Now reset successors list based on BlockEnd
 675   for (int i = 0; i < end->number_of_sux(); i++) {
 676     BlockBegin* sux = end->sux_at(i);
 677     _successors.append(sux);
 678     sux->_predecessors.append(this);
 679   }
 680   _end->set_begin(this);
 681 }
 682 
 683 
 684 void BlockBegin::clear_end() {
 685   // Must make the predecessors/successors match up with the
 686   // BlockEnd's notion.
 687   if (_end != NULL) {
 688     // disconnect from the old end
 689     _end->set_begin(NULL);
 690 
 691     // disconnect this block from it's current successors
 692     for (int i = 0; i < _successors.length(); i++) {
 693       _successors.at(i)->remove_predecessor(this);
 694     }
 695     _end = NULL;
 696   }
 697 }
 698 
 699 
 700 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
 701   // disconnect any edges between from and to
 702 #ifndef PRODUCT
 703   if (PrintIR && Verbose) {
 704     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
 705   }
 706 #endif
 707   for (int s = 0; s < from->number_of_sux();) {
 708     BlockBegin* sux = from->sux_at(s);
 709     if (sux == to) {
 710       int index = sux->_predecessors.find(from);
 711       if (index >= 0) {
 712         sux->_predecessors.remove_at(index);
 713       }
 714       from->_successors.remove_at(s);
 715     } else {
 716       s++;
 717     }
 718   }
 719 }
 720 
 721 
 722 void BlockBegin::disconnect_from_graph() {
 723   // disconnect this block from all other blocks
 724   for (int p = 0; p < number_of_preds(); p++) {
 725     pred_at(p)->remove_successor(this);
 726   }
 727   for (int s = 0; s < number_of_sux(); s++) {
 728     sux_at(s)->remove_predecessor(this);
 729   }
 730 }
 731 
 732 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
 733   // modify predecessors before substituting successors
 734   for (int i = 0; i < number_of_sux(); i++) {
 735     if (sux_at(i) == old_sux) {
 736       // remove old predecessor before adding new predecessor
 737       // otherwise there is a dead predecessor in the list
 738       new_sux->remove_predecessor(old_sux);
 739       new_sux->add_predecessor(this);
 740     }
 741   }
 742   old_sux->remove_predecessor(this);
 743   end()->substitute_sux(old_sux, new_sux);
 744 }
 745 
 746 
 747 
 748 // In general it is not possible to calculate a value for the field "depth_first_number"
 749 // of the inserted block, without recomputing the values of the other blocks
 750 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
 751 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
 752   int bci = sux->bci();
 753   // critical edge splitting may introduce a goto after a if and array
 754   // bound check elimination may insert a predicate between the if and
 755   // goto. The bci of the goto can't be the one of the if otherwise
 756   // the state and bci are inconsistent and a deoptimization triggered
 757   // by the predicate would lead to incorrect execution/a crash.
 758   BlockBegin* new_sux = new BlockBegin(bci);
 759 
 760   // mark this block (special treatment when block order is computed)
 761   new_sux->set(critical_edge_split_flag);
 762 
 763   // This goto is not a safepoint.
 764   Goto* e = new Goto(sux, false);
 765   new_sux->set_next(e, bci);
 766   new_sux->set_end(e);
 767   // setup states
 768   ValueStack* s = end()->state();
 769   new_sux->set_state(s->copy(s->kind(), bci));
 770   e->set_state(s->copy(s->kind(), bci));
 771   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
 772   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
 773   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
 774 
 775   // link predecessor to new block
 776   end()->substitute_sux(sux, new_sux);
 777 
 778   // The ordering needs to be the same, so remove the link that the
 779   // set_end call above added and substitute the new_sux for this
 780   // block.
 781   sux->remove_predecessor(new_sux);
 782 
 783   // the successor could be the target of a switch so it might have
 784   // multiple copies of this predecessor, so substitute the new_sux
 785   // for the first and delete the rest.
 786   bool assigned = false;
 787   BlockList& list = sux->_predecessors;
 788   for (int i = 0; i < list.length(); i++) {
 789     BlockBegin** b = list.adr_at(i);
 790     if (*b == this) {
 791       if (assigned) {
 792         list.remove_at(i);
 793         // reprocess this index
 794         i--;
 795       } else {
 796         assigned = true;
 797         *b = new_sux;
 798       }
 799       // link the new block back to it's predecessors.
 800       new_sux->add_predecessor(this);
 801     }
 802   }
 803   assert(assigned == true, "should have assigned at least once");
 804   return new_sux;
 805 }
 806 
 807 
 808 void BlockBegin::remove_successor(BlockBegin* pred) {
 809   int idx;
 810   while ((idx = _successors.find(pred)) >= 0) {
 811     _successors.remove_at(idx);
 812   }
 813 }
 814 
 815 
 816 void BlockBegin::add_predecessor(BlockBegin* pred) {
 817   _predecessors.append(pred);
 818 }
 819 
 820 
 821 void BlockBegin::remove_predecessor(BlockBegin* pred) {
 822   int idx;
 823   while ((idx = _predecessors.find(pred)) >= 0) {
 824     _predecessors.remove_at(idx);
 825   }
 826 }
 827 
 828 
 829 void BlockBegin::add_exception_handler(BlockBegin* b) {
 830   assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
 831   // add only if not in the list already
 832   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
 833 }
 834 
 835 int BlockBegin::add_exception_state(ValueStack* state) {
 836   assert(is_set(exception_entry_flag), "only for xhandlers");
 837   if (_exception_states == NULL) {
 838     _exception_states = new ValueStackStack(4);
 839   }
 840   _exception_states->append(state);
 841   return _exception_states->length() - 1;
 842 }
 843 
 844 
 845 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
 846   if (!mark.at(block_id())) {
 847     mark.at_put(block_id(), true);
 848     closure->block_do(this);
 849     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
 850     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
 851     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
 852   }
 853 }
 854 
 855 
 856 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
 857   if (!mark.at(block_id())) {
 858     mark.at_put(block_id(), true);
 859     BlockEnd* e = end();
 860     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
 861     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
 862     closure->block_do(this);
 863   }
 864 }
 865 
 866 
 867 void BlockBegin::iterate_preorder(BlockClosure* closure) {
 868   int mark_len = number_of_blocks();
 869   boolArray mark(mark_len, mark_len, false);
 870   iterate_preorder(mark, closure);
 871 }
 872 
 873 
 874 void BlockBegin::iterate_postorder(BlockClosure* closure) {
 875   int mark_len = number_of_blocks();
 876   boolArray mark(mark_len, mark_len, false);
 877   iterate_postorder(mark, closure);
 878 }
 879 
 880 
 881 void BlockBegin::block_values_do(ValueVisitor* f) {
 882   for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
 883 }
 884 
 885 
 886 #ifndef PRODUCT
 887    #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
 888 #else
 889    #define TRACE_PHI(coce)
 890 #endif
 891 
 892 
 893 bool BlockBegin::try_merge(ValueStack* new_state) {
 894   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
 895 
 896   // local variables used for state iteration
 897   int index;
 898   Value new_value, existing_value;
 899 
 900   ValueStack* existing_state = state();
 901   if (existing_state == NULL) {
 902     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
 903 
 904     if (is_set(BlockBegin::was_visited_flag)) {
 905       // this actually happens for complicated jsr/ret structures
 906       return false; // BAILOUT in caller
 907     }
 908 
 909     // copy state because it is altered
 910     new_state = new_state->copy(ValueStack::BlockBeginState, bci());
 911 
 912     // Use method liveness to invalidate dead locals
 913     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
 914     if (liveness.is_valid()) {
 915       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
 916 
 917       for_each_local_value(new_state, index, new_value) {
 918         if (!liveness.at(index) || new_value->type()->is_illegal()) {
 919           new_state->invalidate_local(index);
 920           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
 921         }
 922       }
 923     }
 924 
 925     if (is_set(BlockBegin::parser_loop_header_flag)) {
 926       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
 927 
 928       for_each_stack_value(new_state, index, new_value) {
 929         new_state->setup_phi_for_stack(this, index, NULL, new_value);
 930         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
 931       }
 932 
 933       BitMap& requires_phi_function = new_state->scope()->requires_phi_function();
 934 
 935       for_each_local_value(new_state, index, new_value) {
 936         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
 937         if (requires_phi || !SelectivePhiFunctions) {
 938           new_state->setup_phi_for_local(this, index, NULL, new_value);
 939           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
 940         }
 941       }
 942     }
 943 
 944     // initialize state of block
 945     set_state(new_state);
 946 
 947   } else if (existing_state->is_same(new_state)) {
 948     TRACE_PHI(tty->print_cr("exisiting state found"));
 949 
 950     assert(existing_state->scope() == new_state->scope(), "not matching");
 951     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
 952     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
 953 
 954     if (is_set(BlockBegin::was_visited_flag)) {
 955       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
 956 
 957       if (!is_set(BlockBegin::parser_loop_header_flag)) {
 958         // this actually happens for complicated jsr/ret structures
 959         return false; // BAILOUT in caller
 960       }
 961 
 962       for_each_local_value(existing_state, index, existing_value) {
 963         Value new_value = new_state->local_at(index);
 964         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
 965           Phi* existing_phi = existing_value->as_Phi();
 966           if (existing_phi == NULL) {
 967             return false; // BAILOUT in caller
 968           }
 969           // Invalidate the phi function here. This case is very rare except for
 970           // JVMTI capability "can_access_local_variables".
 971           // In really rare cases we will bail out in LIRGenerator::move_to_phi.
 972           existing_phi->make_illegal();
 973           existing_state->invalidate_local(index);
 974           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 975         }
 976       }
 977 
 978 #ifdef ASSERT
 979       // check that all necessary phi functions are present
 980       for_each_stack_value(existing_state, index, existing_value) {
 981         assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
 982       }
 983       for_each_local_value(existing_state, index, existing_value) {
 984         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
 985       }
 986 #endif
 987 
 988     } else {
 989       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
 990 
 991       // create necessary phi functions for stack
 992       for_each_stack_value(existing_state, index, existing_value) {
 993         Value new_value = new_state->stack_at(index);
 994         Phi* existing_phi = existing_value->as_Phi();
 995 
 996         if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
 997           existing_state->setup_phi_for_stack(this, index, existing_value, new_value);
 998           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
 999         }
1000       }
1001 
1002       // create necessary phi functions for locals
1003       for_each_local_value(existing_state, index, existing_value) {
1004         Value new_value = new_state->local_at(index);
1005         Phi* existing_phi = existing_value->as_Phi();
1006 
1007         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
1008           existing_state->invalidate_local(index);
1009           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
1010         } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
1011           existing_state->setup_phi_for_local(this, index, existing_value, new_value);
1012           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
1013         }
1014       }
1015     }
1016 
1017     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
1018 
1019   } else {
1020     assert(false, "stack or locks not matching (invalid bytecodes)");
1021     return false;
1022   }
1023 
1024   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
1025 
1026   return true;
1027 }
1028 
1029 
1030 #ifndef PRODUCT
1031 void BlockBegin::print_block() {
1032   InstructionPrinter ip;
1033   print_block(ip, false);
1034 }
1035 
1036 
1037 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
1038   ip.print_instr(this); tty->cr();
1039   ip.print_stack(this->state()); tty->cr();
1040   ip.print_inline_level(this);
1041   ip.print_head();
1042   for (Instruction* n = next(); n != NULL; n = n->next()) {
1043     if (!live_only || n->is_pinned() || n->use_count() > 0) {
1044       ip.print_line(n);
1045     }
1046   }
1047   tty->cr();
1048 }
1049 #endif // PRODUCT
1050 
1051 
1052 // Implementation of BlockList
1053 
1054 void BlockList::iterate_forward (BlockClosure* closure) {
1055   const int l = length();
1056   for (int i = 0; i < l; i++) closure->block_do(at(i));
1057 }
1058 
1059 
1060 void BlockList::iterate_backward(BlockClosure* closure) {
1061   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
1062 }
1063 
1064 
1065 void BlockList::blocks_do(void f(BlockBegin*)) {
1066   for (int i = length() - 1; i >= 0; i--) f(at(i));
1067 }
1068 
1069 
1070 void BlockList::values_do(ValueVisitor* f) {
1071   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
1072 }
1073 
1074 
1075 #ifndef PRODUCT
1076 void BlockList::print(bool cfg_only, bool live_only) {
1077   InstructionPrinter ip;
1078   for (int i = 0; i < length(); i++) {
1079     BlockBegin* block = at(i);
1080     if (cfg_only) {
1081       ip.print_instr(block); tty->cr();
1082     } else {
1083       block->print_block(ip, live_only);
1084     }
1085   }
1086 }
1087 #endif // PRODUCT
1088 
1089 
1090 // Implementation of BlockEnd
1091 
1092 void BlockEnd::set_begin(BlockBegin* begin) {
1093   BlockList* sux = NULL;
1094   if (begin != NULL) {
1095     sux = begin->successors();
1096   } else if (this->begin() != NULL) {
1097     // copy our sux list
1098     BlockList* sux = new BlockList(this->begin()->number_of_sux());
1099     for (int i = 0; i < this->begin()->number_of_sux(); i++) {
1100       sux->append(this->begin()->sux_at(i));
1101     }
1102   }
1103   _sux = sux;
1104 }
1105 
1106 
1107 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
1108   substitute(*_sux, old_sux, new_sux);
1109 }
1110 
1111 
1112 // Implementation of Phi
1113 
1114 // Normal phi functions take their operands from the last instruction of the
1115 // predecessor. Special handling is needed for xhanlder entries because there
1116 // the state of arbitrary instructions are needed.
1117 
1118 Value Phi::operand_at(int i) const {
1119   ValueStack* state;
1120   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1121     state = _block->exception_state_at(i);
1122   } else {
1123     state = _block->pred_at(i)->end()->state();
1124   }
1125   assert(state != NULL, "");
1126 
1127   if (is_local()) {
1128     return state->local_at(local_index());
1129   } else {
1130     return state->stack_at(stack_index());
1131   }
1132 }
1133 
1134 
1135 int Phi::operand_count() const {
1136   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1137     return _block->number_of_exception_states();
1138   } else {
1139     return _block->number_of_preds();
1140   }
1141 }
1142 
1143 #ifdef ASSERT
1144 // Constructor of Assert
1145 Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
1146   , _x(x)
1147   , _cond(cond)
1148   , _y(y)
1149 {
1150   set_flag(UnorderedIsTrueFlag, unordered_is_true);
1151   assert(x->type()->tag() == y->type()->tag(), "types must match");
1152   pin();
1153 
1154   stringStream strStream;
1155   Compilation::current()->method()->print_name(&strStream);
1156 
1157   stringStream strStream1;
1158   InstructionPrinter ip1(1, &strStream1);
1159   ip1.print_instr(x);
1160 
1161   stringStream strStream2;
1162   InstructionPrinter ip2(1, &strStream2);
1163   ip2.print_instr(y);
1164 
1165   stringStream ss;
1166   ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
1167 
1168   _message = ss.as_string();
1169 }
1170 #endif
1171 
1172 void RangeCheckPredicate::check_state() {
1173   assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
1174 }
1175 
1176 void ProfileInvoke::state_values_do(ValueVisitor* f) {
1177   if (state() != NULL) state()->values_do(f);
1178 }