1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciValueKlass.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/cardTableBarrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "nativeInst_x86.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "vmreg_x86.inline.hpp"
  45 
  46 
  47 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  48 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  49 // fast versions of NegF/NegD and AbsF/AbsD.
  50 
  51 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  52 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  53   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  54   // of 128-bits operands for SSE instructions.
  55   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  56   // Store the value to a 128-bits operand.
  57   operand[0] = lo;
  58   operand[1] = hi;
  59   return operand;
  60 }
  61 
  62 // Buffer for 128-bits masks used by SSE instructions.
  63 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  64 
  65 // Static initialization during VM startup.
  66 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  67 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  68 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  69 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  70 
  71 
  72 NEEDS_CLEANUP // remove this definitions ?
  73 const Register IC_Klass    = rax;   // where the IC klass is cached
  74 const Register SYNC_header = rax;   // synchronization header
  75 const Register SHIFT_count = rcx;   // where count for shift operations must be
  76 
  77 #define __ _masm->
  78 
  79 
  80 static void select_different_registers(Register preserve,
  81                                        Register extra,
  82                                        Register &tmp1,
  83                                        Register &tmp2) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, extra);
  89     tmp2 = extra;
  90   }
  91   assert_different_registers(preserve, tmp1, tmp2);
  92 }
  93 
  94 
  95 
  96 static void select_different_registers(Register preserve,
  97                                        Register extra,
  98                                        Register &tmp1,
  99                                        Register &tmp2,
 100                                        Register &tmp3) {
 101   if (tmp1 == preserve) {
 102     assert_different_registers(tmp1, tmp2, tmp3, extra);
 103     tmp1 = extra;
 104   } else if (tmp2 == preserve) {
 105     assert_different_registers(tmp1, tmp2, tmp3, extra);
 106     tmp2 = extra;
 107   } else if (tmp3 == preserve) {
 108     assert_different_registers(tmp1, tmp2, tmp3, extra);
 109     tmp3 = extra;
 110   }
 111   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 112 }
 113 
 114 
 115 
 116 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 117   if (opr->is_constant()) {
 118     LIR_Const* constant = opr->as_constant_ptr();
 119     switch (constant->type()) {
 120       case T_INT: {
 121         return true;
 122       }
 123 
 124       default:
 125         return false;
 126     }
 127   }
 128   return false;
 129 }
 130 
 131 
 132 LIR_Opr LIR_Assembler::receiverOpr() {
 133   return FrameMap::receiver_opr;
 134 }
 135 
 136 LIR_Opr LIR_Assembler::osrBufferPointer() {
 137   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 138 }
 139 
 140 //--------------fpu register translations-----------------------
 141 
 142 
 143 address LIR_Assembler::float_constant(float f) {
 144   address const_addr = __ float_constant(f);
 145   if (const_addr == NULL) {
 146     bailout("const section overflow");
 147     return __ code()->consts()->start();
 148   } else {
 149     return const_addr;
 150   }
 151 }
 152 
 153 
 154 address LIR_Assembler::double_constant(double d) {
 155   address const_addr = __ double_constant(d);
 156   if (const_addr == NULL) {
 157     bailout("const section overflow");
 158     return __ code()->consts()->start();
 159   } else {
 160     return const_addr;
 161   }
 162 }
 163 
 164 
 165 void LIR_Assembler::set_24bit_FPU() {
 166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 167 }
 168 
 169 void LIR_Assembler::reset_FPU() {
 170   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 171 }
 172 
 173 void LIR_Assembler::fpop() {
 174   __ fpop();
 175 }
 176 
 177 void LIR_Assembler::fxch(int i) {
 178   __ fxch(i);
 179 }
 180 
 181 void LIR_Assembler::fld(int i) {
 182   __ fld_s(i);
 183 }
 184 
 185 void LIR_Assembler::ffree(int i) {
 186   __ ffree(i);
 187 }
 188 
 189 void LIR_Assembler::breakpoint() {
 190   __ int3();
 191 }
 192 
 193 void LIR_Assembler::push(LIR_Opr opr) {
 194   if (opr->is_single_cpu()) {
 195     __ push_reg(opr->as_register());
 196   } else if (opr->is_double_cpu()) {
 197     NOT_LP64(__ push_reg(opr->as_register_hi()));
 198     __ push_reg(opr->as_register_lo());
 199   } else if (opr->is_stack()) {
 200     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 201   } else if (opr->is_constant()) {
 202     LIR_Const* const_opr = opr->as_constant_ptr();
 203     if (const_opr->type() == T_OBJECT || const_opr->type() == T_VALUETYPE) {
 204       __ push_oop(const_opr->as_jobject());
 205     } else if (const_opr->type() == T_INT) {
 206       __ push_jint(const_opr->as_jint());
 207     } else {
 208       ShouldNotReachHere();
 209     }
 210 
 211   } else {
 212     ShouldNotReachHere();
 213   }
 214 }
 215 
 216 void LIR_Assembler::pop(LIR_Opr opr) {
 217   if (opr->is_single_cpu()) {
 218     __ pop_reg(opr->as_register());
 219   } else {
 220     ShouldNotReachHere();
 221   }
 222 }
 223 
 224 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 225   return addr->base()->is_illegal() && addr->index()->is_illegal();
 226 }
 227 
 228 //-------------------------------------------
 229 
 230 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 231   return as_Address(addr, rscratch1);
 232 }
 233 
 234 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 235   if (addr->base()->is_illegal()) {
 236     assert(addr->index()->is_illegal(), "must be illegal too");
 237     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 238     if (! __ reachable(laddr)) {
 239       __ movptr(tmp, laddr.addr());
 240       Address res(tmp, 0);
 241       return res;
 242     } else {
 243       return __ as_Address(laddr);
 244     }
 245   }
 246 
 247   Register base = addr->base()->as_pointer_register();
 248 
 249   if (addr->index()->is_illegal()) {
 250     return Address( base, addr->disp());
 251   } else if (addr->index()->is_cpu_register()) {
 252     Register index = addr->index()->as_pointer_register();
 253     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 254   } else if (addr->index()->is_constant()) {
 255     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 256     assert(Assembler::is_simm32(addr_offset), "must be");
 257 
 258     return Address(base, addr_offset);
 259   } else {
 260     Unimplemented();
 261     return Address();
 262   }
 263 }
 264 
 265 
 266 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 267   Address base = as_Address(addr);
 268   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 269 }
 270 
 271 
 272 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 273   return as_Address(addr);
 274 }
 275 
 276 
 277 void LIR_Assembler::osr_entry() {
 278   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 279   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 280   ValueStack* entry_state = osr_entry->state();
 281   int number_of_locks = entry_state->locks_size();
 282 
 283   // we jump here if osr happens with the interpreter
 284   // state set up to continue at the beginning of the
 285   // loop that triggered osr - in particular, we have
 286   // the following registers setup:
 287   //
 288   // rcx: osr buffer
 289   //
 290 
 291   // build frame
 292   ciMethod* m = compilation()->method();
 293   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes(),
 294                  needs_stack_repair(), NULL);
 295 
 296   // OSR buffer is
 297   //
 298   // locals[nlocals-1..0]
 299   // monitors[0..number_of_locks]
 300   //
 301   // locals is a direct copy of the interpreter frame so in the osr buffer
 302   // so first slot in the local array is the last local from the interpreter
 303   // and last slot is local[0] (receiver) from the interpreter
 304   //
 305   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 306   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 307   // in the interpreter frame (the method lock if a sync method)
 308 
 309   // Initialize monitors in the compiled activation.
 310   //   rcx: pointer to osr buffer
 311   //
 312   // All other registers are dead at this point and the locals will be
 313   // copied into place by code emitted in the IR.
 314 
 315   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 316   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 317     int monitor_offset = BytesPerWord * method()->max_locals() +
 318       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 319     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 320     // the OSR buffer using 2 word entries: first the lock and then
 321     // the oop.
 322     for (int i = 0; i < number_of_locks; i++) {
 323       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 324 #ifdef ASSERT
 325       // verify the interpreter's monitor has a non-null object
 326       {
 327         Label L;
 328         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 329         __ jcc(Assembler::notZero, L);
 330         __ stop("locked object is NULL");
 331         __ bind(L);
 332       }
 333 #endif
 334       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 335       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 336       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 337       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 338     }
 339   }
 340 }
 341 
 342 
 343 // inline cache check; done before the frame is built.
 344 int LIR_Assembler::check_icache() {
 345   Register receiver = FrameMap::receiver_opr->as_register();
 346   Register ic_klass = IC_Klass;
 347   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 348   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 349   if (!do_post_padding) {
 350     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 351     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 352   }
 353   int offset = __ offset();
 354   __ inline_cache_check(receiver, IC_Klass);
 355   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 356   if (do_post_padding) {
 357     // force alignment after the cache check.
 358     // It's been verified to be aligned if !VerifyOops
 359     __ align(CodeEntryAlignment);
 360   }
 361   return offset;
 362 }
 363 
 364 
 365 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 366   jobject o = NULL;
 367   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 368   __ movoop(reg, o);
 369   patching_epilog(patch, lir_patch_normal, reg, info);
 370 }
 371 
 372 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 373   Metadata* o = NULL;
 374   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 375   __ mov_metadata(reg, o);
 376   patching_epilog(patch, lir_patch_normal, reg, info);
 377 }
 378 
 379 // This specifies the rsp decrement needed to build the frame
 380 int LIR_Assembler::initial_frame_size_in_bytes() const {
 381   // if rounding, must let FrameMap know!
 382 
 383   // The frame_map records size in slots (32bit word)
 384 
 385   // subtract two words to account for return address and link
 386   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 387 }
 388 
 389 
 390 int LIR_Assembler::emit_exception_handler() {
 391   // if the last instruction is a call (typically to do a throw which
 392   // is coming at the end after block reordering) the return address
 393   // must still point into the code area in order to avoid assertion
 394   // failures when searching for the corresponding bci => add a nop
 395   // (was bug 5/14/1999 - gri)
 396   __ nop();
 397 
 398   // generate code for exception handler
 399   address handler_base = __ start_a_stub(exception_handler_size());
 400   if (handler_base == NULL) {
 401     // not enough space left for the handler
 402     bailout("exception handler overflow");
 403     return -1;
 404   }
 405 
 406   int offset = code_offset();
 407 
 408   // the exception oop and pc are in rax, and rdx
 409   // no other registers need to be preserved, so invalidate them
 410   __ invalidate_registers(false, true, true, false, true, true);
 411 
 412   // check that there is really an exception
 413   __ verify_not_null_oop(rax);
 414 
 415   // search an exception handler (rax: exception oop, rdx: throwing pc)
 416   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 417   __ should_not_reach_here();
 418   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 419   __ end_a_stub();
 420 
 421   return offset;
 422 }
 423 
 424 
 425 // Emit the code to remove the frame from the stack in the exception
 426 // unwind path.
 427 int LIR_Assembler::emit_unwind_handler() {
 428 #ifndef PRODUCT
 429   if (CommentedAssembly) {
 430     _masm->block_comment("Unwind handler");
 431   }
 432 #endif
 433 
 434   int offset = code_offset();
 435 
 436   // Fetch the exception from TLS and clear out exception related thread state
 437   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 438   NOT_LP64(__ get_thread(rsi));
 439   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 440   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 441   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 442 
 443   __ bind(_unwind_handler_entry);
 444   __ verify_not_null_oop(rax);
 445   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 446     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 447   }
 448 
 449   // Preform needed unlocking
 450   MonitorExitStub* stub = NULL;
 451   if (method()->is_synchronized()) {
 452     monitor_address(0, FrameMap::rax_opr);
 453     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 454     __ unlock_object(rdi, rsi, rax, *stub->entry());
 455     __ bind(*stub->continuation());
 456   }
 457 
 458   if (compilation()->env()->dtrace_method_probes()) {
 459 #ifdef _LP64
 460     __ mov(rdi, r15_thread);
 461     __ mov_metadata(rsi, method()->constant_encoding());
 462 #else
 463     __ get_thread(rax);
 464     __ movptr(Address(rsp, 0), rax);
 465     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 466 #endif
 467     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 468   }
 469 
 470   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 471     __ mov(rax, rbx);  // Restore the exception
 472   }
 473 
 474   // remove the activation and dispatch to the unwind handler
 475   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 476   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 477 
 478   // Emit the slow path assembly
 479   if (stub != NULL) {
 480     stub->emit_code(this);
 481   }
 482 
 483   return offset;
 484 }
 485 
 486 
 487 int LIR_Assembler::emit_deopt_handler() {
 488   // if the last instruction is a call (typically to do a throw which
 489   // is coming at the end after block reordering) the return address
 490   // must still point into the code area in order to avoid assertion
 491   // failures when searching for the corresponding bci => add a nop
 492   // (was bug 5/14/1999 - gri)
 493   __ nop();
 494 
 495   // generate code for exception handler
 496   address handler_base = __ start_a_stub(deopt_handler_size());
 497   if (handler_base == NULL) {
 498     // not enough space left for the handler
 499     bailout("deopt handler overflow");
 500     return -1;
 501   }
 502 
 503   int offset = code_offset();
 504   InternalAddress here(__ pc());
 505 
 506   __ pushptr(here.addr());
 507   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 508   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 509   __ end_a_stub();
 510 
 511   return offset;
 512 }
 513 
 514 
 515 void LIR_Assembler::return_op(LIR_Opr result) {
 516   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 517   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 518     assert(result->fpu() == 0, "result must already be on TOS");
 519   }
 520 
 521   ciMethod* method = compilation()->method();
 522   if (ValueTypeReturnedAsFields && method->signature()->returns_never_null()) {
 523     ciType* return_type = method->return_type();
 524     if (return_type->is_valuetype()) {
 525       ciValueKlass* vk = return_type->as_value_klass();
 526       if (vk->can_be_returned_as_fields()) {
 527 #ifndef _LP64
 528         Unimplemented();
 529 #else
 530         address unpack_handler = vk->unpack_handler();
 531         assert(unpack_handler != NULL, "must be");
 532         __ call(RuntimeAddress(unpack_handler));
 533         // At this point, rax points to the value object (for interpreter or C1 caller).
 534         // The fields of the object are copied into registers (for C2 caller).
 535 #endif
 536       }
 537     }
 538   }
 539 
 540   // Pop the stack before the safepoint code
 541   __ remove_frame(initial_frame_size_in_bytes(), needs_stack_repair());
 542 
 543   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 544     __ reserved_stack_check();
 545   }
 546 
 547   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 548 
 549   // Note: we do not need to round double result; float result has the right precision
 550   // the poll sets the condition code, but no data registers
 551 
 552   if (SafepointMechanism::uses_thread_local_poll()) {
 553 #ifdef _LP64
 554     const Register poll_addr = rscratch1;
 555     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 556 #else
 557     const Register poll_addr = rbx;
 558     assert(FrameMap::is_caller_save_register(poll_addr), "will overwrite");
 559     __ get_thread(poll_addr);
 560     __ movptr(poll_addr, Address(poll_addr, Thread::polling_page_offset()));
 561 #endif
 562     __ relocate(relocInfo::poll_return_type);
 563     __ testl(rax, Address(poll_addr, 0));
 564   } else {
 565     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 566 
 567     if (Assembler::is_polling_page_far()) {
 568       __ lea(rscratch1, polling_page);
 569       __ relocate(relocInfo::poll_return_type);
 570       __ testl(rax, Address(rscratch1, 0));
 571     } else {
 572       __ testl(rax, polling_page);
 573     }
 574   }
 575   __ ret(0);
 576 }
 577 
 578 
 579 void LIR_Assembler::store_value_type_fields_to_buf(ciValueKlass* vk) {
 580   __ store_value_type_fields_to_buf(vk);
 581 }
 582 
 583 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 584   guarantee(info != NULL, "Shouldn't be NULL");
 585   int offset = __ offset();
 586   if (SafepointMechanism::uses_thread_local_poll()) {
 587 #ifdef _LP64
 588     const Register poll_addr = rscratch1;
 589     __ movptr(poll_addr, Address(r15_thread, Thread::polling_page_offset()));
 590 #else
 591     assert(tmp->is_cpu_register(), "needed");
 592     const Register poll_addr = tmp->as_register();
 593     __ get_thread(poll_addr);
 594     __ movptr(poll_addr, Address(poll_addr, in_bytes(Thread::polling_page_offset())));
 595 #endif
 596     add_debug_info_for_branch(info);
 597     __ relocate(relocInfo::poll_type);
 598     address pre_pc = __ pc();
 599     __ testl(rax, Address(poll_addr, 0));
 600     address post_pc = __ pc();
 601     guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 602   } else {
 603     AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 604     if (Assembler::is_polling_page_far()) {
 605       __ lea(rscratch1, polling_page);
 606       offset = __ offset();
 607       add_debug_info_for_branch(info);
 608       __ relocate(relocInfo::poll_type);
 609       __ testl(rax, Address(rscratch1, 0));
 610     } else {
 611       add_debug_info_for_branch(info);
 612       __ testl(rax, polling_page);
 613     }
 614   }
 615   return offset;
 616 }
 617 
 618 
 619 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 620   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 621 }
 622 
 623 void LIR_Assembler::swap_reg(Register a, Register b) {
 624   __ xchgptr(a, b);
 625 }
 626 
 627 
 628 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 629   assert(src->is_constant(), "should not call otherwise");
 630   assert(dest->is_register(), "should not call otherwise");
 631   LIR_Const* c = src->as_constant_ptr();
 632 
 633   switch (c->type()) {
 634     case T_INT: {
 635       assert(patch_code == lir_patch_none, "no patching handled here");
 636       __ movl(dest->as_register(), c->as_jint());
 637       break;
 638     }
 639 
 640     case T_ADDRESS: {
 641       assert(patch_code == lir_patch_none, "no patching handled here");
 642       __ movptr(dest->as_register(), c->as_jint());
 643       break;
 644     }
 645 
 646     case T_LONG: {
 647       assert(patch_code == lir_patch_none, "no patching handled here");
 648 #ifdef _LP64
 649       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 650 #else
 651       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 652       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 653 #endif // _LP64
 654       break;
 655     }
 656 
 657     case T_VALUETYPE: // Fall through
 658     case T_OBJECT: {
 659       if (patch_code != lir_patch_none) {
 660         jobject2reg_with_patching(dest->as_register(), info);
 661       } else {
 662         __ movoop(dest->as_register(), c->as_jobject());
 663       }
 664       break;
 665     }
 666 
 667     case T_METADATA: {
 668       if (patch_code != lir_patch_none) {
 669         klass2reg_with_patching(dest->as_register(), info);
 670       } else {
 671         __ mov_metadata(dest->as_register(), c->as_metadata());
 672       }
 673       break;
 674     }
 675 
 676     case T_FLOAT: {
 677       if (dest->is_single_xmm()) {
 678         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 679           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 680         } else {
 681           __ movflt(dest->as_xmm_float_reg(),
 682                    InternalAddress(float_constant(c->as_jfloat())));
 683         }
 684       } else {
 685         assert(dest->is_single_fpu(), "must be");
 686         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 687         if (c->is_zero_float()) {
 688           __ fldz();
 689         } else if (c->is_one_float()) {
 690           __ fld1();
 691         } else {
 692           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 693         }
 694       }
 695       break;
 696     }
 697 
 698     case T_DOUBLE: {
 699       if (dest->is_double_xmm()) {
 700         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 701           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 702         } else {
 703           __ movdbl(dest->as_xmm_double_reg(),
 704                     InternalAddress(double_constant(c->as_jdouble())));
 705         }
 706       } else {
 707         assert(dest->is_double_fpu(), "must be");
 708         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 709         if (c->is_zero_double()) {
 710           __ fldz();
 711         } else if (c->is_one_double()) {
 712           __ fld1();
 713         } else {
 714           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 715         }
 716       }
 717       break;
 718     }
 719 
 720     default:
 721       ShouldNotReachHere();
 722   }
 723 }
 724 
 725 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 726   assert(src->is_constant(), "should not call otherwise");
 727   assert(dest->is_stack(), "should not call otherwise");
 728   LIR_Const* c = src->as_constant_ptr();
 729 
 730   switch (c->type()) {
 731     case T_INT:  // fall through
 732     case T_FLOAT:
 733       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 734       break;
 735 
 736     case T_ADDRESS:
 737       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 738       break;
 739 
 740     case T_VALUETYPE: // Fall through
 741     case T_OBJECT:
 742       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 743       break;
 744 
 745     case T_LONG:  // fall through
 746     case T_DOUBLE:
 747 #ifdef _LP64
 748       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 749                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 750 #else
 751       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 752                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 753       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 754                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 755 #endif // _LP64
 756       break;
 757 
 758     default:
 759       ShouldNotReachHere();
 760   }
 761 }
 762 
 763 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 764   assert(src->is_constant(), "should not call otherwise");
 765   assert(dest->is_address(), "should not call otherwise");
 766   LIR_Const* c = src->as_constant_ptr();
 767   LIR_Address* addr = dest->as_address_ptr();
 768 
 769   int null_check_here = code_offset();
 770   switch (type) {
 771     case T_INT:    // fall through
 772     case T_FLOAT:
 773       __ movl(as_Address(addr), c->as_jint_bits());
 774       break;
 775 
 776     case T_ADDRESS:
 777       __ movptr(as_Address(addr), c->as_jint_bits());
 778       break;
 779 
 780     case T_VALUETYPE: // fall through
 781     case T_OBJECT:  // fall through
 782     case T_ARRAY:
 783       if (c->as_jobject() == NULL) {
 784         if (UseCompressedOops && !wide) {
 785           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 786         } else {
 787 #ifdef _LP64
 788           __ xorptr(rscratch1, rscratch1);
 789           null_check_here = code_offset();
 790           __ movptr(as_Address(addr), rscratch1);
 791 #else
 792           __ movptr(as_Address(addr), NULL_WORD);
 793 #endif
 794         }
 795       } else {
 796         if (is_literal_address(addr)) {
 797           ShouldNotReachHere();
 798           __ movoop(as_Address(addr, noreg), c->as_jobject());
 799         } else {
 800 #ifdef _LP64
 801           __ movoop(rscratch1, c->as_jobject());
 802           if (UseCompressedOops && !wide) {
 803             __ encode_heap_oop(rscratch1);
 804             null_check_here = code_offset();
 805             __ movl(as_Address_lo(addr), rscratch1);
 806           } else {
 807             null_check_here = code_offset();
 808             __ movptr(as_Address_lo(addr), rscratch1);
 809           }
 810 #else
 811           __ movoop(as_Address(addr), c->as_jobject());
 812 #endif
 813         }
 814       }
 815       break;
 816 
 817     case T_LONG:    // fall through
 818     case T_DOUBLE:
 819 #ifdef _LP64
 820       if (is_literal_address(addr)) {
 821         ShouldNotReachHere();
 822         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 823       } else {
 824         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 825         null_check_here = code_offset();
 826         __ movptr(as_Address_lo(addr), r10);
 827       }
 828 #else
 829       // Always reachable in 32bit so this doesn't produce useless move literal
 830       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 831       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 832 #endif // _LP64
 833       break;
 834 
 835     case T_BOOLEAN: // fall through
 836     case T_BYTE:
 837       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 838       break;
 839 
 840     case T_CHAR:    // fall through
 841     case T_SHORT:
 842       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 843       break;
 844 
 845     default:
 846       ShouldNotReachHere();
 847   };
 848 
 849   if (info != NULL) {
 850     add_debug_info_for_null_check(null_check_here, info);
 851   }
 852 }
 853 
 854 
 855 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 856   assert(src->is_register(), "should not call otherwise");
 857   assert(dest->is_register(), "should not call otherwise");
 858 
 859   // move between cpu-registers
 860   if (dest->is_single_cpu()) {
 861 #ifdef _LP64
 862     if (src->type() == T_LONG) {
 863       // Can do LONG -> OBJECT
 864       move_regs(src->as_register_lo(), dest->as_register());
 865       return;
 866     }
 867 #endif
 868     assert(src->is_single_cpu(), "must match");
 869     if (src->type() == T_OBJECT || src->type() == T_VALUETYPE) {
 870       __ verify_oop(src->as_register());
 871     }
 872     move_regs(src->as_register(), dest->as_register());
 873 
 874   } else if (dest->is_double_cpu()) {
 875 #ifdef _LP64
 876     if (src->type() == T_OBJECT || src->type() == T_ARRAY || src->type() == T_VALUETYPE) {
 877       // Surprising to me but we can see move of a long to t_object
 878       __ verify_oop(src->as_register());
 879       move_regs(src->as_register(), dest->as_register_lo());
 880       return;
 881     }
 882 #endif
 883     assert(src->is_double_cpu(), "must match");
 884     Register f_lo = src->as_register_lo();
 885     Register f_hi = src->as_register_hi();
 886     Register t_lo = dest->as_register_lo();
 887     Register t_hi = dest->as_register_hi();
 888 #ifdef _LP64
 889     assert(f_hi == f_lo, "must be same");
 890     assert(t_hi == t_lo, "must be same");
 891     move_regs(f_lo, t_lo);
 892 #else
 893     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 894 
 895 
 896     if (f_lo == t_hi && f_hi == t_lo) {
 897       swap_reg(f_lo, f_hi);
 898     } else if (f_hi == t_lo) {
 899       assert(f_lo != t_hi, "overwriting register");
 900       move_regs(f_hi, t_hi);
 901       move_regs(f_lo, t_lo);
 902     } else {
 903       assert(f_hi != t_lo, "overwriting register");
 904       move_regs(f_lo, t_lo);
 905       move_regs(f_hi, t_hi);
 906     }
 907 #endif // LP64
 908 
 909     // special moves from fpu-register to xmm-register
 910     // necessary for method results
 911   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 912     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 913     __ fld_s(Address(rsp, 0));
 914   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 915     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 916     __ fld_d(Address(rsp, 0));
 917   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 918     __ fstp_s(Address(rsp, 0));
 919     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 920   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 921     __ fstp_d(Address(rsp, 0));
 922     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 923 
 924     // move between xmm-registers
 925   } else if (dest->is_single_xmm()) {
 926     assert(src->is_single_xmm(), "must match");
 927     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 928   } else if (dest->is_double_xmm()) {
 929     assert(src->is_double_xmm(), "must match");
 930     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 931 
 932     // move between fpu-registers (no instruction necessary because of fpu-stack)
 933   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 934     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 935     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 936   } else {
 937     ShouldNotReachHere();
 938   }
 939 }
 940 
 941 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 942   assert(src->is_register(), "should not call otherwise");
 943   assert(dest->is_stack(), "should not call otherwise");
 944 
 945   if (src->is_single_cpu()) {
 946     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 947     if (type == T_OBJECT || type == T_ARRAY || type == T_VALUETYPE) {
 948       __ verify_oop(src->as_register());
 949       __ movptr (dst, src->as_register());
 950     } else if (type == T_METADATA) {
 951       __ movptr (dst, src->as_register());
 952     } else {
 953       __ movl (dst, src->as_register());
 954     }
 955 
 956   } else if (src->is_double_cpu()) {
 957     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 958     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 959     __ movptr (dstLO, src->as_register_lo());
 960     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 961 
 962   } else if (src->is_single_xmm()) {
 963     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 964     __ movflt(dst_addr, src->as_xmm_float_reg());
 965 
 966   } else if (src->is_double_xmm()) {
 967     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 968     __ movdbl(dst_addr, src->as_xmm_double_reg());
 969 
 970   } else if (src->is_single_fpu()) {
 971     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 972     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 973     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 974     else                   __ fst_s  (dst_addr);
 975 
 976   } else if (src->is_double_fpu()) {
 977     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 978     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 979     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 980     else                   __ fst_d  (dst_addr);
 981 
 982   } else {
 983     ShouldNotReachHere();
 984   }
 985 }
 986 
 987 
 988 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 989   LIR_Address* to_addr = dest->as_address_ptr();
 990   PatchingStub* patch = NULL;
 991   Register compressed_src = rscratch1;
 992 
 993   if (type == T_ARRAY || type == T_OBJECT || type == T_VALUETYPE) {
 994     __ verify_oop(src->as_register());
 995 #ifdef _LP64
 996     if (UseCompressedOops && !wide) {
 997       __ movptr(compressed_src, src->as_register());
 998       __ encode_heap_oop(compressed_src);
 999       if (patch_code != lir_patch_none) {
1000         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
1001       }
1002     }
1003 #endif
1004   }
1005 
1006   if (patch_code != lir_patch_none) {
1007     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1008     Address toa = as_Address(to_addr);
1009     assert(toa.disp() != 0, "must have");
1010   }
1011 
1012   int null_check_here = code_offset();
1013   switch (type) {
1014     case T_FLOAT: {
1015       if (src->is_single_xmm()) {
1016         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1017       } else {
1018         assert(src->is_single_fpu(), "must be");
1019         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1020         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1021         else                    __ fst_s (as_Address(to_addr));
1022       }
1023       break;
1024     }
1025 
1026     case T_DOUBLE: {
1027       if (src->is_double_xmm()) {
1028         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1029       } else {
1030         assert(src->is_double_fpu(), "must be");
1031         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1032         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1033         else                    __ fst_d (as_Address(to_addr));
1034       }
1035       break;
1036     }
1037 
1038     case T_VALUETYPE: // fall through
1039     case T_ARRAY:   // fall through
1040     case T_OBJECT:  // fall through
1041       if (UseCompressedOops && !wide) {
1042         __ movl(as_Address(to_addr), compressed_src);
1043       } else {
1044         __ movptr(as_Address(to_addr), src->as_register());
1045       }
1046       break;
1047     case T_METADATA:
1048       // We get here to store a method pointer to the stack to pass to
1049       // a dtrace runtime call. This can't work on 64 bit with
1050       // compressed klass ptrs: T_METADATA can be a compressed klass
1051       // ptr or a 64 bit method pointer.
1052       LP64_ONLY(ShouldNotReachHere());
1053       __ movptr(as_Address(to_addr), src->as_register());
1054       break;
1055     case T_ADDRESS:
1056       __ movptr(as_Address(to_addr), src->as_register());
1057       break;
1058     case T_INT:
1059       __ movl(as_Address(to_addr), src->as_register());
1060       break;
1061 
1062     case T_LONG: {
1063       Register from_lo = src->as_register_lo();
1064       Register from_hi = src->as_register_hi();
1065 #ifdef _LP64
1066       __ movptr(as_Address_lo(to_addr), from_lo);
1067 #else
1068       Register base = to_addr->base()->as_register();
1069       Register index = noreg;
1070       if (to_addr->index()->is_register()) {
1071         index = to_addr->index()->as_register();
1072       }
1073       if (base == from_lo || index == from_lo) {
1074         assert(base != from_hi, "can't be");
1075         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1076         __ movl(as_Address_hi(to_addr), from_hi);
1077         if (patch != NULL) {
1078           patching_epilog(patch, lir_patch_high, base, info);
1079           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1080           patch_code = lir_patch_low;
1081         }
1082         __ movl(as_Address_lo(to_addr), from_lo);
1083       } else {
1084         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1085         __ movl(as_Address_lo(to_addr), from_lo);
1086         if (patch != NULL) {
1087           patching_epilog(patch, lir_patch_low, base, info);
1088           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1089           patch_code = lir_patch_high;
1090         }
1091         __ movl(as_Address_hi(to_addr), from_hi);
1092       }
1093 #endif // _LP64
1094       break;
1095     }
1096 
1097     case T_BYTE:    // fall through
1098     case T_BOOLEAN: {
1099       Register src_reg = src->as_register();
1100       Address dst_addr = as_Address(to_addr);
1101       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1102       __ movb(dst_addr, src_reg);
1103       break;
1104     }
1105 
1106     case T_CHAR:    // fall through
1107     case T_SHORT:
1108       __ movw(as_Address(to_addr), src->as_register());
1109       break;
1110 
1111     default:
1112       ShouldNotReachHere();
1113   }
1114   if (info != NULL) {
1115     add_debug_info_for_null_check(null_check_here, info);
1116   }
1117 
1118   if (patch_code != lir_patch_none) {
1119     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1120   }
1121 }
1122 
1123 
1124 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1125   assert(src->is_stack(), "should not call otherwise");
1126   assert(dest->is_register(), "should not call otherwise");
1127 
1128   if (dest->is_single_cpu()) {
1129     if (type == T_ARRAY || type == T_OBJECT || type == T_VALUETYPE) {
1130       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1131       __ verify_oop(dest->as_register());
1132     } else if (type == T_METADATA) {
1133       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1134     } else {
1135       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1136     }
1137 
1138   } else if (dest->is_double_cpu()) {
1139     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1140     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1141     __ movptr(dest->as_register_lo(), src_addr_LO);
1142     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1143 
1144   } else if (dest->is_single_xmm()) {
1145     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1146     __ movflt(dest->as_xmm_float_reg(), src_addr);
1147 
1148   } else if (dest->is_double_xmm()) {
1149     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1150     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1151 
1152   } else if (dest->is_single_fpu()) {
1153     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1154     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1155     __ fld_s(src_addr);
1156 
1157   } else if (dest->is_double_fpu()) {
1158     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1159     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1160     __ fld_d(src_addr);
1161 
1162   } else {
1163     ShouldNotReachHere();
1164   }
1165 }
1166 
1167 
1168 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1169   if (src->is_single_stack()) {
1170     if (type == T_OBJECT || type == T_ARRAY || type == T_VALUETYPE) {
1171       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1172       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1173     } else {
1174 #ifndef _LP64
1175       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1176       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1177 #else
1178       //no pushl on 64bits
1179       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1180       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1181 #endif
1182     }
1183 
1184   } else if (src->is_double_stack()) {
1185 #ifdef _LP64
1186     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1187     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1188 #else
1189     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1190     // push and pop the part at src + wordSize, adding wordSize for the previous push
1191     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1192     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1193     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1194 #endif // _LP64
1195 
1196   } else {
1197     ShouldNotReachHere();
1198   }
1199 }
1200 
1201 
1202 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1203   assert(src->is_address(), "should not call otherwise");
1204   assert(dest->is_register(), "should not call otherwise");
1205 
1206   LIR_Address* addr = src->as_address_ptr();
1207   Address from_addr = as_Address(addr);
1208 
1209   if (addr->base()->type() == T_OBJECT || addr->base()->type() == T_VALUETYPE) {
1210     __ verify_oop(addr->base()->as_pointer_register());
1211   }
1212 
1213   switch (type) {
1214     case T_BOOLEAN: // fall through
1215     case T_BYTE:    // fall through
1216     case T_CHAR:    // fall through
1217     case T_SHORT:
1218       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1219         // on pre P6 processors we may get partial register stalls
1220         // so blow away the value of to_rinfo before loading a
1221         // partial word into it.  Do it here so that it precedes
1222         // the potential patch point below.
1223         __ xorptr(dest->as_register(), dest->as_register());
1224       }
1225       break;
1226    default:
1227      break;
1228   }
1229 
1230   PatchingStub* patch = NULL;
1231   if (patch_code != lir_patch_none) {
1232     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1233     assert(from_addr.disp() != 0, "must have");
1234   }
1235   if (info != NULL) {
1236     add_debug_info_for_null_check_here(info);
1237   }
1238 
1239   switch (type) {
1240     case T_FLOAT: {
1241       if (dest->is_single_xmm()) {
1242         __ movflt(dest->as_xmm_float_reg(), from_addr);
1243       } else {
1244         assert(dest->is_single_fpu(), "must be");
1245         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1246         __ fld_s(from_addr);
1247       }
1248       break;
1249     }
1250 
1251     case T_DOUBLE: {
1252       if (dest->is_double_xmm()) {
1253         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1254       } else {
1255         assert(dest->is_double_fpu(), "must be");
1256         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1257         __ fld_d(from_addr);
1258       }
1259       break;
1260     }
1261 
1262     case T_VALUETYPE: // fall through
1263     case T_OBJECT:  // fall through
1264     case T_ARRAY:   // fall through
1265       if (UseCompressedOops && !wide) {
1266         __ movl(dest->as_register(), from_addr);
1267       } else {
1268         __ movptr(dest->as_register(), from_addr);
1269       }
1270       break;
1271 
1272     case T_ADDRESS:
1273       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1274         __ movl(dest->as_register(), from_addr);
1275       } else {
1276         __ movptr(dest->as_register(), from_addr);
1277       }
1278       break;
1279     case T_INT:
1280       __ movl(dest->as_register(), from_addr);
1281       break;
1282 
1283     case T_LONG: {
1284       Register to_lo = dest->as_register_lo();
1285       Register to_hi = dest->as_register_hi();
1286 #ifdef _LP64
1287       __ movptr(to_lo, as_Address_lo(addr));
1288 #else
1289       Register base = addr->base()->as_register();
1290       Register index = noreg;
1291       if (addr->index()->is_register()) {
1292         index = addr->index()->as_register();
1293       }
1294       if ((base == to_lo && index == to_hi) ||
1295           (base == to_hi && index == to_lo)) {
1296         // addresses with 2 registers are only formed as a result of
1297         // array access so this code will never have to deal with
1298         // patches or null checks.
1299         assert(info == NULL && patch == NULL, "must be");
1300         __ lea(to_hi, as_Address(addr));
1301         __ movl(to_lo, Address(to_hi, 0));
1302         __ movl(to_hi, Address(to_hi, BytesPerWord));
1303       } else if (base == to_lo || index == to_lo) {
1304         assert(base != to_hi, "can't be");
1305         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1306         __ movl(to_hi, as_Address_hi(addr));
1307         if (patch != NULL) {
1308           patching_epilog(patch, lir_patch_high, base, info);
1309           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1310           patch_code = lir_patch_low;
1311         }
1312         __ movl(to_lo, as_Address_lo(addr));
1313       } else {
1314         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1315         __ movl(to_lo, as_Address_lo(addr));
1316         if (patch != NULL) {
1317           patching_epilog(patch, lir_patch_low, base, info);
1318           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1319           patch_code = lir_patch_high;
1320         }
1321         __ movl(to_hi, as_Address_hi(addr));
1322       }
1323 #endif // _LP64
1324       break;
1325     }
1326 
1327     case T_BOOLEAN: // fall through
1328     case T_BYTE: {
1329       Register dest_reg = dest->as_register();
1330       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1331       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1332         __ movsbl(dest_reg, from_addr);
1333       } else {
1334         __ movb(dest_reg, from_addr);
1335         __ shll(dest_reg, 24);
1336         __ sarl(dest_reg, 24);
1337       }
1338       break;
1339     }
1340 
1341     case T_CHAR: {
1342       Register dest_reg = dest->as_register();
1343       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1344       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1345         __ movzwl(dest_reg, from_addr);
1346       } else {
1347         __ movw(dest_reg, from_addr);
1348       }
1349       break;
1350     }
1351 
1352     case T_SHORT: {
1353       Register dest_reg = dest->as_register();
1354       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1355         __ movswl(dest_reg, from_addr);
1356       } else {
1357         __ movw(dest_reg, from_addr);
1358         __ shll(dest_reg, 16);
1359         __ sarl(dest_reg, 16);
1360       }
1361       break;
1362     }
1363 
1364     default:
1365       ShouldNotReachHere();
1366   }
1367 
1368   if (patch != NULL) {
1369     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1370   }
1371 
1372   if (type == T_ARRAY || type == T_OBJECT || type == T_VALUETYPE) {
1373 #ifdef _LP64
1374     if (UseCompressedOops && !wide) {
1375       __ decode_heap_oop(dest->as_register());
1376     }
1377 #endif
1378 
1379     // Load barrier has not yet been applied, so ZGC can't verify the oop here
1380     if (!UseZGC) {
1381       __ verify_oop(dest->as_register());
1382     }
1383   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1384 #ifdef _LP64
1385     if (UseCompressedClassPointers) {
1386       __ decode_klass_not_null(dest->as_register());
1387     }
1388 #endif
1389   }
1390 }
1391 
1392 
1393 NEEDS_CLEANUP; // This could be static?
1394 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1395   int elem_size = type2aelembytes(type);
1396   switch (elem_size) {
1397     case 1: return Address::times_1;
1398     case 2: return Address::times_2;
1399     case 4: return Address::times_4;
1400     case 8: return Address::times_8;
1401   }
1402   ShouldNotReachHere();
1403   return Address::no_scale;
1404 }
1405 
1406 
1407 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1408   switch (op->code()) {
1409     case lir_idiv:
1410     case lir_irem:
1411       arithmetic_idiv(op->code(),
1412                       op->in_opr1(),
1413                       op->in_opr2(),
1414                       op->in_opr3(),
1415                       op->result_opr(),
1416                       op->info());
1417       break;
1418     case lir_fmad:
1419       __ fmad(op->result_opr()->as_xmm_double_reg(),
1420               op->in_opr1()->as_xmm_double_reg(),
1421               op->in_opr2()->as_xmm_double_reg(),
1422               op->in_opr3()->as_xmm_double_reg());
1423       break;
1424     case lir_fmaf:
1425       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1426               op->in_opr1()->as_xmm_float_reg(),
1427               op->in_opr2()->as_xmm_float_reg(),
1428               op->in_opr3()->as_xmm_float_reg());
1429       break;
1430     default:      ShouldNotReachHere(); break;
1431   }
1432 }
1433 
1434 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1435 #ifdef ASSERT
1436   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1437   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1438   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1439 #endif
1440 
1441   if (op->cond() == lir_cond_always) {
1442     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1443     __ jmp (*(op->label()));
1444   } else {
1445     Assembler::Condition acond = Assembler::zero;
1446     if (op->code() == lir_cond_float_branch) {
1447       assert(op->ublock() != NULL, "must have unordered successor");
1448       __ jcc(Assembler::parity, *(op->ublock()->label()));
1449       switch(op->cond()) {
1450         case lir_cond_equal:        acond = Assembler::equal;      break;
1451         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1452         case lir_cond_less:         acond = Assembler::below;      break;
1453         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1454         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1455         case lir_cond_greater:      acond = Assembler::above;      break;
1456         default:                         ShouldNotReachHere();
1457       }
1458     } else {
1459       switch (op->cond()) {
1460         case lir_cond_equal:        acond = Assembler::equal;       break;
1461         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1462         case lir_cond_less:         acond = Assembler::less;        break;
1463         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1464         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1465         case lir_cond_greater:      acond = Assembler::greater;     break;
1466         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1467         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1468         default:                         ShouldNotReachHere();
1469       }
1470     }
1471     __ jcc(acond,*(op->label()));
1472   }
1473 }
1474 
1475 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1476   LIR_Opr src  = op->in_opr();
1477   LIR_Opr dest = op->result_opr();
1478 
1479   switch (op->bytecode()) {
1480     case Bytecodes::_i2l:
1481 #ifdef _LP64
1482       __ movl2ptr(dest->as_register_lo(), src->as_register());
1483 #else
1484       move_regs(src->as_register(), dest->as_register_lo());
1485       move_regs(src->as_register(), dest->as_register_hi());
1486       __ sarl(dest->as_register_hi(), 31);
1487 #endif // LP64
1488       break;
1489 
1490     case Bytecodes::_l2i:
1491 #ifdef _LP64
1492       __ movl(dest->as_register(), src->as_register_lo());
1493 #else
1494       move_regs(src->as_register_lo(), dest->as_register());
1495 #endif
1496       break;
1497 
1498     case Bytecodes::_i2b:
1499       move_regs(src->as_register(), dest->as_register());
1500       __ sign_extend_byte(dest->as_register());
1501       break;
1502 
1503     case Bytecodes::_i2c:
1504       move_regs(src->as_register(), dest->as_register());
1505       __ andl(dest->as_register(), 0xFFFF);
1506       break;
1507 
1508     case Bytecodes::_i2s:
1509       move_regs(src->as_register(), dest->as_register());
1510       __ sign_extend_short(dest->as_register());
1511       break;
1512 
1513 
1514     case Bytecodes::_f2d:
1515     case Bytecodes::_d2f:
1516       if (dest->is_single_xmm()) {
1517         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1518       } else if (dest->is_double_xmm()) {
1519         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1520       } else {
1521         assert(src->fpu() == dest->fpu(), "register must be equal");
1522         // do nothing (float result is rounded later through spilling)
1523       }
1524       break;
1525 
1526     case Bytecodes::_i2f:
1527     case Bytecodes::_i2d:
1528       if (dest->is_single_xmm()) {
1529         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1530       } else if (dest->is_double_xmm()) {
1531         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1532       } else {
1533         assert(dest->fpu() == 0, "result must be on TOS");
1534         __ movl(Address(rsp, 0), src->as_register());
1535         __ fild_s(Address(rsp, 0));
1536       }
1537       break;
1538 
1539     case Bytecodes::_f2i:
1540     case Bytecodes::_d2i:
1541       if (src->is_single_xmm()) {
1542         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1543       } else if (src->is_double_xmm()) {
1544         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1545       } else {
1546         assert(src->fpu() == 0, "input must be on TOS");
1547         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1548         __ fist_s(Address(rsp, 0));
1549         __ movl(dest->as_register(), Address(rsp, 0));
1550         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1551       }
1552 
1553       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1554       assert(op->stub() != NULL, "stub required");
1555       __ cmpl(dest->as_register(), 0x80000000);
1556       __ jcc(Assembler::equal, *op->stub()->entry());
1557       __ bind(*op->stub()->continuation());
1558       break;
1559 
1560     case Bytecodes::_l2f:
1561     case Bytecodes::_l2d:
1562       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1563       assert(dest->fpu() == 0, "result must be on TOS");
1564 
1565       __ movptr(Address(rsp, 0),            src->as_register_lo());
1566       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1567       __ fild_d(Address(rsp, 0));
1568       // float result is rounded later through spilling
1569       break;
1570 
1571     case Bytecodes::_f2l:
1572     case Bytecodes::_d2l:
1573       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1574       assert(src->fpu() == 0, "input must be on TOS");
1575       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1576 
1577       // instruction sequence too long to inline it here
1578       {
1579         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1580       }
1581       break;
1582 
1583     default: ShouldNotReachHere();
1584   }
1585 }
1586 
1587 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1588   if (op->init_check()) {
1589     add_debug_info_for_null_check_here(op->stub()->info());
1590     __ cmpb(Address(op->klass()->as_register(),
1591                     InstanceKlass::init_state_offset()),
1592                     InstanceKlass::fully_initialized);
1593     __ jcc(Assembler::notEqual, *op->stub()->entry());
1594   }
1595   __ allocate_object(op->obj()->as_register(),
1596                      op->tmp1()->as_register(),
1597                      op->tmp2()->as_register(),
1598                      op->header_size(),
1599                      op->object_size(),
1600                      op->klass()->as_register(),
1601                      *op->stub()->entry());
1602   __ bind(*op->stub()->continuation());
1603 }
1604 
1605 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1606   Register len =  op->len()->as_register();
1607   LP64_ONLY( __ movslq(len, len); )
1608 
1609   if (UseSlowPath || op->type() == T_VALUETYPE ||
1610       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1611       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1612     __ jmp(*op->stub()->entry());
1613   } else {
1614     Register tmp1 = op->tmp1()->as_register();
1615     Register tmp2 = op->tmp2()->as_register();
1616     Register tmp3 = op->tmp3()->as_register();
1617     if (len == tmp1) {
1618       tmp1 = tmp3;
1619     } else if (len == tmp2) {
1620       tmp2 = tmp3;
1621     } else if (len == tmp3) {
1622       // everything is ok
1623     } else {
1624       __ mov(tmp3, len);
1625     }
1626     __ allocate_array(op->obj()->as_register(),
1627                       len,
1628                       tmp1,
1629                       tmp2,
1630                       arrayOopDesc::header_size(op->type()),
1631                       array_element_size(op->type()),
1632                       op->klass()->as_register(),
1633                       *op->stub()->entry());
1634   }
1635   __ bind(*op->stub()->continuation());
1636 }
1637 
1638 void LIR_Assembler::type_profile_helper(Register mdo,
1639                                         ciMethodData *md, ciProfileData *data,
1640                                         Register recv, Label* update_done) {
1641   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1642     Label next_test;
1643     // See if the receiver is receiver[n].
1644     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1645     __ jccb(Assembler::notEqual, next_test);
1646     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1647     __ addptr(data_addr, DataLayout::counter_increment);
1648     __ jmp(*update_done);
1649     __ bind(next_test);
1650   }
1651 
1652   // Didn't find receiver; find next empty slot and fill it in
1653   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1654     Label next_test;
1655     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1656     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1657     __ jccb(Assembler::notEqual, next_test);
1658     __ movptr(recv_addr, recv);
1659     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1660     __ jmp(*update_done);
1661     __ bind(next_test);
1662   }
1663 }
1664 
1665 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1666   // we always need a stub for the failure case.
1667   CodeStub* stub = op->stub();
1668   Register obj = op->object()->as_register();
1669   Register k_RInfo = op->tmp1()->as_register();
1670   Register klass_RInfo = op->tmp2()->as_register();
1671   Register dst = op->result_opr()->as_register();
1672   ciKlass* k = op->klass();
1673   Register Rtmp1 = noreg;
1674 
1675   // check if it needs to be profiled
1676   ciMethodData* md = NULL;
1677   ciProfileData* data = NULL;
1678 
1679   if (op->should_profile()) {
1680     ciMethod* method = op->profiled_method();
1681     assert(method != NULL, "Should have method");
1682     int bci = op->profiled_bci();
1683     md = method->method_data_or_null();
1684     assert(md != NULL, "Sanity");
1685     data = md->bci_to_data(bci);
1686     assert(data != NULL,                "need data for type check");
1687     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1688   }
1689   Label profile_cast_success, profile_cast_failure;
1690   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1691   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1692 
1693   if (obj == k_RInfo) {
1694     k_RInfo = dst;
1695   } else if (obj == klass_RInfo) {
1696     klass_RInfo = dst;
1697   }
1698   if (k->is_loaded() && !UseCompressedClassPointers) {
1699     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1700   } else {
1701     Rtmp1 = op->tmp3()->as_register();
1702     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1703   }
1704 
1705   assert_different_registers(obj, k_RInfo, klass_RInfo);
1706 
1707   if (op->need_null_check()) {
1708     __ cmpptr(obj, (int32_t)NULL_WORD);
1709     if (op->should_profile()) {
1710       Label not_null;
1711       __ jccb(Assembler::notEqual, not_null);
1712       // Object is null; update MDO and exit
1713       Register mdo  = klass_RInfo;
1714       __ mov_metadata(mdo, md->constant_encoding());
1715       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1716       int header_bits = BitData::null_seen_byte_constant();
1717       __ orb(data_addr, header_bits);
1718       __ jmp(*obj_is_null);
1719       __ bind(not_null);
1720     } else {
1721       __ jcc(Assembler::equal, *obj_is_null);
1722     }
1723   }
1724 
1725   if (!k->is_loaded()) {
1726     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1727   } else {
1728 #ifdef _LP64
1729     __ mov_metadata(k_RInfo, k->constant_encoding());
1730 #endif // _LP64
1731   }
1732   __ verify_oop(obj);
1733 
1734   if (op->fast_check()) {
1735     // get object class
1736     // not a safepoint as obj null check happens earlier
1737 #ifdef _LP64
1738     if (UseCompressedClassPointers) {
1739       __ load_klass(Rtmp1, obj);
1740       __ cmpptr(k_RInfo, Rtmp1);
1741     } else {
1742       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1743     }
1744 #else
1745     if (k->is_loaded()) {
1746       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1747     } else {
1748       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1749     }
1750 #endif
1751     __ jcc(Assembler::notEqual, *failure_target);
1752     // successful cast, fall through to profile or jump
1753   } else {
1754     // get object class
1755     // not a safepoint as obj null check happens earlier
1756     __ load_klass(klass_RInfo, obj);
1757     if (k->is_loaded()) {
1758       // See if we get an immediate positive hit
1759 #ifdef _LP64
1760       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1761 #else
1762       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1763 #endif // _LP64
1764       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1765         __ jcc(Assembler::notEqual, *failure_target);
1766         // successful cast, fall through to profile or jump
1767       } else {
1768         // See if we get an immediate positive hit
1769         __ jcc(Assembler::equal, *success_target);
1770         // check for self
1771 #ifdef _LP64
1772         __ cmpptr(klass_RInfo, k_RInfo);
1773 #else
1774         __ cmpklass(klass_RInfo, k->constant_encoding());
1775 #endif // _LP64
1776         __ jcc(Assembler::equal, *success_target);
1777 
1778         __ push(klass_RInfo);
1779 #ifdef _LP64
1780         __ push(k_RInfo);
1781 #else
1782         __ pushklass(k->constant_encoding());
1783 #endif // _LP64
1784         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1785         __ pop(klass_RInfo);
1786         __ pop(klass_RInfo);
1787         // result is a boolean
1788         __ cmpl(klass_RInfo, 0);
1789         __ jcc(Assembler::equal, *failure_target);
1790         // successful cast, fall through to profile or jump
1791       }
1792     } else {
1793       // perform the fast part of the checking logic
1794       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1795       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1796       __ push(klass_RInfo);
1797       __ push(k_RInfo);
1798       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1799       __ pop(klass_RInfo);
1800       __ pop(k_RInfo);
1801       // result is a boolean
1802       __ cmpl(k_RInfo, 0);
1803       __ jcc(Assembler::equal, *failure_target);
1804       // successful cast, fall through to profile or jump
1805     }
1806   }
1807   if (op->should_profile()) {
1808     Register mdo  = klass_RInfo, recv = k_RInfo;
1809     __ bind(profile_cast_success);
1810     __ mov_metadata(mdo, md->constant_encoding());
1811     __ load_klass(recv, obj);
1812     type_profile_helper(mdo, md, data, recv, success);
1813     __ jmp(*success);
1814 
1815     __ bind(profile_cast_failure);
1816     __ mov_metadata(mdo, md->constant_encoding());
1817     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1818     __ subptr(counter_addr, DataLayout::counter_increment);
1819     __ jmp(*failure);
1820   }
1821   __ jmp(*success);
1822 }
1823 
1824 
1825 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1826   LIR_Code code = op->code();
1827   if (code == lir_store_check) {
1828     Register value = op->object()->as_register();
1829     Register array = op->array()->as_register();
1830     Register k_RInfo = op->tmp1()->as_register();
1831     Register klass_RInfo = op->tmp2()->as_register();
1832     Register Rtmp1 = op->tmp3()->as_register();
1833 
1834     CodeStub* stub = op->stub();
1835 
1836     // check if it needs to be profiled
1837     ciMethodData* md = NULL;
1838     ciProfileData* data = NULL;
1839 
1840     if (op->should_profile()) {
1841       ciMethod* method = op->profiled_method();
1842       assert(method != NULL, "Should have method");
1843       int bci = op->profiled_bci();
1844       md = method->method_data_or_null();
1845       assert(md != NULL, "Sanity");
1846       data = md->bci_to_data(bci);
1847       assert(data != NULL,                "need data for type check");
1848       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1849     }
1850     Label profile_cast_success, profile_cast_failure, done;
1851     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1852     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1853 
1854     __ cmpptr(value, (int32_t)NULL_WORD);
1855     if (op->should_profile()) {
1856       Label not_null;
1857       __ jccb(Assembler::notEqual, not_null);
1858       // Object is null; update MDO and exit
1859       Register mdo  = klass_RInfo;
1860       __ mov_metadata(mdo, md->constant_encoding());
1861       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1862       int header_bits = BitData::null_seen_byte_constant();
1863       __ orb(data_addr, header_bits);
1864       __ jmp(done);
1865       __ bind(not_null);
1866     } else {
1867       __ jcc(Assembler::equal, done);
1868     }
1869 
1870     add_debug_info_for_null_check_here(op->info_for_exception());
1871     __ load_klass(k_RInfo, array);
1872     __ load_klass(klass_RInfo, value);
1873 
1874     // get instance klass (it's already uncompressed)
1875     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1876     // perform the fast part of the checking logic
1877     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1878     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1879     __ push(klass_RInfo);
1880     __ push(k_RInfo);
1881     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1882     __ pop(klass_RInfo);
1883     __ pop(k_RInfo);
1884     // result is a boolean
1885     __ cmpl(k_RInfo, 0);
1886     __ jcc(Assembler::equal, *failure_target);
1887     // fall through to the success case
1888 
1889     if (op->should_profile()) {
1890       Register mdo  = klass_RInfo, recv = k_RInfo;
1891       __ bind(profile_cast_success);
1892       __ mov_metadata(mdo, md->constant_encoding());
1893       __ load_klass(recv, value);
1894       type_profile_helper(mdo, md, data, recv, &done);
1895       __ jmpb(done);
1896 
1897       __ bind(profile_cast_failure);
1898       __ mov_metadata(mdo, md->constant_encoding());
1899       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1900       __ subptr(counter_addr, DataLayout::counter_increment);
1901       __ jmp(*stub->entry());
1902     }
1903 
1904     __ bind(done);
1905   } else
1906     if (code == lir_checkcast) {
1907       Register obj = op->object()->as_register();
1908       Register dst = op->result_opr()->as_register();
1909       Label success;
1910       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1911       __ bind(success);
1912       if (dst != obj) {
1913         __ mov(dst, obj);
1914       }
1915     } else
1916       if (code == lir_instanceof) {
1917         Register obj = op->object()->as_register();
1918         Register dst = op->result_opr()->as_register();
1919         Label success, failure, done;
1920         emit_typecheck_helper(op, &success, &failure, &failure);
1921         __ bind(failure);
1922         __ xorptr(dst, dst);
1923         __ jmpb(done);
1924         __ bind(success);
1925         __ movptr(dst, 1);
1926         __ bind(done);
1927       } else {
1928         ShouldNotReachHere();
1929       }
1930 
1931 }
1932 
1933 void LIR_Assembler::emit_opFlattenedArrayCheck(LIR_OpFlattenedArrayCheck* op) {
1934   // We are loading/storing an array that *may* be a flattened array (e.g., the declared type
1935   // is Object[]). If this array is flattened, take slow path.
1936 
1937   __ load_storage_props(op->tmp()->as_register(), op->array()->as_register());
1938   __ testb(op->tmp()->as_register(), ArrayStorageProperties::flattened_value);
1939   __ jcc(Assembler::notZero, *op->stub()->entry());
1940   if (!op->value()->is_illegal()) {
1941     // We are storing into the array.
1942     Label skip;
1943     __ testb(op->tmp()->as_register(), ArrayStorageProperties::null_free_value);
1944     __ jcc(Assembler::zero, skip);
1945     // The array is not flattened, but it is null_free. If we are storing
1946     // a null, take the slow path (which will throw NPE).
1947     __ cmpptr(op->value()->as_register(), (int32_t)NULL_WORD);
1948     __ jcc(Assembler::zero, *op->stub()->entry());
1949     __ bind(skip);
1950   }
1951 }
1952 
1953 void LIR_Assembler::emit_opNullFreeArrayCheck(LIR_OpNullFreeArrayCheck* op) {
1954   // This is called when we use aastore into a an array declared as "[LVT;",
1955   // where we know VT is not flattenable (due to ValueArrayElemMaxFlatOops, etc).
1956   // However, we need to do a NULL check if the actual array is a "QLVT;".
1957 
1958   __ load_storage_props(op->tmp()->as_register(), op->array()->as_register());
1959   __ testb(op->tmp()->as_register(), ArrayStorageProperties::null_free_value);
1960 }
1961 
1962 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1963   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1964     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1965     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1966     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1967     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1968     Register addr = op->addr()->as_register();
1969     __ lock();
1970     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1971 
1972   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1973     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1974     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1975     Register newval = op->new_value()->as_register();
1976     Register cmpval = op->cmp_value()->as_register();
1977     assert(cmpval == rax, "wrong register");
1978     assert(newval != NULL, "new val must be register");
1979     assert(cmpval != newval, "cmp and new values must be in different registers");
1980     assert(cmpval != addr, "cmp and addr must be in different registers");
1981     assert(newval != addr, "new value and addr must be in different registers");
1982 
1983     if ( op->code() == lir_cas_obj) {
1984 #ifdef _LP64
1985       if (UseCompressedOops) {
1986         __ encode_heap_oop(cmpval);
1987         __ mov(rscratch1, newval);
1988         __ encode_heap_oop(rscratch1);
1989         __ lock();
1990         // cmpval (rax) is implicitly used by this instruction
1991         __ cmpxchgl(rscratch1, Address(addr, 0));
1992       } else
1993 #endif
1994       {
1995         __ lock();
1996         __ cmpxchgptr(newval, Address(addr, 0));
1997       }
1998     } else {
1999       assert(op->code() == lir_cas_int, "lir_cas_int expected");
2000       __ lock();
2001       __ cmpxchgl(newval, Address(addr, 0));
2002     }
2003 #ifdef _LP64
2004   } else if (op->code() == lir_cas_long) {
2005     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2006     Register newval = op->new_value()->as_register_lo();
2007     Register cmpval = op->cmp_value()->as_register_lo();
2008     assert(cmpval == rax, "wrong register");
2009     assert(newval != NULL, "new val must be register");
2010     assert(cmpval != newval, "cmp and new values must be in different registers");
2011     assert(cmpval != addr, "cmp and addr must be in different registers");
2012     assert(newval != addr, "new value and addr must be in different registers");
2013     __ lock();
2014     __ cmpxchgq(newval, Address(addr, 0));
2015 #endif // _LP64
2016   } else {
2017     Unimplemented();
2018   }
2019 }
2020 
2021 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
2022   Assembler::Condition acond, ncond;
2023   switch (condition) {
2024     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2025     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2026     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2027     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2028     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2029     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2030     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2031     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2032     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
2033                                 ShouldNotReachHere();
2034   }
2035 
2036   if (opr1->is_cpu_register()) {
2037     reg2reg(opr1, result);
2038   } else if (opr1->is_stack()) {
2039     stack2reg(opr1, result, result->type());
2040   } else if (opr1->is_constant()) {
2041     const2reg(opr1, result, lir_patch_none, NULL);
2042   } else {
2043     ShouldNotReachHere();
2044   }
2045 
2046   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2047     // optimized version that does not require a branch
2048     if (opr2->is_single_cpu()) {
2049       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2050       __ cmov(ncond, result->as_register(), opr2->as_register());
2051     } else if (opr2->is_double_cpu()) {
2052       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2053       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2054       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2055       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2056     } else if (opr2->is_single_stack()) {
2057       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2058     } else if (opr2->is_double_stack()) {
2059       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2060       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2061     } else {
2062       ShouldNotReachHere();
2063     }
2064 
2065   } else {
2066     Label skip;
2067     __ jcc (acond, skip);
2068     if (opr2->is_cpu_register()) {
2069       reg2reg(opr2, result);
2070     } else if (opr2->is_stack()) {
2071       stack2reg(opr2, result, result->type());
2072     } else if (opr2->is_constant()) {
2073       const2reg(opr2, result, lir_patch_none, NULL);
2074     } else {
2075       ShouldNotReachHere();
2076     }
2077     __ bind(skip);
2078   }
2079 }
2080 
2081 
2082 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2083   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2084 
2085   if (left->is_single_cpu()) {
2086     assert(left == dest, "left and dest must be equal");
2087     Register lreg = left->as_register();
2088 
2089     if (right->is_single_cpu()) {
2090       // cpu register - cpu register
2091       Register rreg = right->as_register();
2092       switch (code) {
2093         case lir_add: __ addl (lreg, rreg); break;
2094         case lir_sub: __ subl (lreg, rreg); break;
2095         case lir_mul: __ imull(lreg, rreg); break;
2096         default:      ShouldNotReachHere();
2097       }
2098 
2099     } else if (right->is_stack()) {
2100       // cpu register - stack
2101       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2102       switch (code) {
2103         case lir_add: __ addl(lreg, raddr); break;
2104         case lir_sub: __ subl(lreg, raddr); break;
2105         default:      ShouldNotReachHere();
2106       }
2107 
2108     } else if (right->is_constant()) {
2109       // cpu register - constant
2110       jint c = right->as_constant_ptr()->as_jint();
2111       switch (code) {
2112         case lir_add: {
2113           __ incrementl(lreg, c);
2114           break;
2115         }
2116         case lir_sub: {
2117           __ decrementl(lreg, c);
2118           break;
2119         }
2120         default: ShouldNotReachHere();
2121       }
2122 
2123     } else {
2124       ShouldNotReachHere();
2125     }
2126 
2127   } else if (left->is_double_cpu()) {
2128     assert(left == dest, "left and dest must be equal");
2129     Register lreg_lo = left->as_register_lo();
2130     Register lreg_hi = left->as_register_hi();
2131 
2132     if (right->is_double_cpu()) {
2133       // cpu register - cpu register
2134       Register rreg_lo = right->as_register_lo();
2135       Register rreg_hi = right->as_register_hi();
2136       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2137       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2138       switch (code) {
2139         case lir_add:
2140           __ addptr(lreg_lo, rreg_lo);
2141           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2142           break;
2143         case lir_sub:
2144           __ subptr(lreg_lo, rreg_lo);
2145           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2146           break;
2147         case lir_mul:
2148 #ifdef _LP64
2149           __ imulq(lreg_lo, rreg_lo);
2150 #else
2151           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2152           __ imull(lreg_hi, rreg_lo);
2153           __ imull(rreg_hi, lreg_lo);
2154           __ addl (rreg_hi, lreg_hi);
2155           __ mull (rreg_lo);
2156           __ addl (lreg_hi, rreg_hi);
2157 #endif // _LP64
2158           break;
2159         default:
2160           ShouldNotReachHere();
2161       }
2162 
2163     } else if (right->is_constant()) {
2164       // cpu register - constant
2165 #ifdef _LP64
2166       jlong c = right->as_constant_ptr()->as_jlong_bits();
2167       __ movptr(r10, (intptr_t) c);
2168       switch (code) {
2169         case lir_add:
2170           __ addptr(lreg_lo, r10);
2171           break;
2172         case lir_sub:
2173           __ subptr(lreg_lo, r10);
2174           break;
2175         default:
2176           ShouldNotReachHere();
2177       }
2178 #else
2179       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2180       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2181       switch (code) {
2182         case lir_add:
2183           __ addptr(lreg_lo, c_lo);
2184           __ adcl(lreg_hi, c_hi);
2185           break;
2186         case lir_sub:
2187           __ subptr(lreg_lo, c_lo);
2188           __ sbbl(lreg_hi, c_hi);
2189           break;
2190         default:
2191           ShouldNotReachHere();
2192       }
2193 #endif // _LP64
2194 
2195     } else {
2196       ShouldNotReachHere();
2197     }
2198 
2199   } else if (left->is_single_xmm()) {
2200     assert(left == dest, "left and dest must be equal");
2201     XMMRegister lreg = left->as_xmm_float_reg();
2202 
2203     if (right->is_single_xmm()) {
2204       XMMRegister rreg = right->as_xmm_float_reg();
2205       switch (code) {
2206         case lir_add: __ addss(lreg, rreg);  break;
2207         case lir_sub: __ subss(lreg, rreg);  break;
2208         case lir_mul_strictfp: // fall through
2209         case lir_mul: __ mulss(lreg, rreg);  break;
2210         case lir_div_strictfp: // fall through
2211         case lir_div: __ divss(lreg, rreg);  break;
2212         default: ShouldNotReachHere();
2213       }
2214     } else {
2215       Address raddr;
2216       if (right->is_single_stack()) {
2217         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2218       } else if (right->is_constant()) {
2219         // hack for now
2220         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2221       } else {
2222         ShouldNotReachHere();
2223       }
2224       switch (code) {
2225         case lir_add: __ addss(lreg, raddr);  break;
2226         case lir_sub: __ subss(lreg, raddr);  break;
2227         case lir_mul_strictfp: // fall through
2228         case lir_mul: __ mulss(lreg, raddr);  break;
2229         case lir_div_strictfp: // fall through
2230         case lir_div: __ divss(lreg, raddr);  break;
2231         default: ShouldNotReachHere();
2232       }
2233     }
2234 
2235   } else if (left->is_double_xmm()) {
2236     assert(left == dest, "left and dest must be equal");
2237 
2238     XMMRegister lreg = left->as_xmm_double_reg();
2239     if (right->is_double_xmm()) {
2240       XMMRegister rreg = right->as_xmm_double_reg();
2241       switch (code) {
2242         case lir_add: __ addsd(lreg, rreg);  break;
2243         case lir_sub: __ subsd(lreg, rreg);  break;
2244         case lir_mul_strictfp: // fall through
2245         case lir_mul: __ mulsd(lreg, rreg);  break;
2246         case lir_div_strictfp: // fall through
2247         case lir_div: __ divsd(lreg, rreg);  break;
2248         default: ShouldNotReachHere();
2249       }
2250     } else {
2251       Address raddr;
2252       if (right->is_double_stack()) {
2253         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2254       } else if (right->is_constant()) {
2255         // hack for now
2256         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2257       } else {
2258         ShouldNotReachHere();
2259       }
2260       switch (code) {
2261         case lir_add: __ addsd(lreg, raddr);  break;
2262         case lir_sub: __ subsd(lreg, raddr);  break;
2263         case lir_mul_strictfp: // fall through
2264         case lir_mul: __ mulsd(lreg, raddr);  break;
2265         case lir_div_strictfp: // fall through
2266         case lir_div: __ divsd(lreg, raddr);  break;
2267         default: ShouldNotReachHere();
2268       }
2269     }
2270 
2271   } else if (left->is_single_fpu()) {
2272     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2273 
2274     if (right->is_single_fpu()) {
2275       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2276 
2277     } else {
2278       assert(left->fpu_regnr() == 0, "left must be on TOS");
2279       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2280 
2281       Address raddr;
2282       if (right->is_single_stack()) {
2283         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2284       } else if (right->is_constant()) {
2285         address const_addr = float_constant(right->as_jfloat());
2286         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2287         // hack for now
2288         raddr = __ as_Address(InternalAddress(const_addr));
2289       } else {
2290         ShouldNotReachHere();
2291       }
2292 
2293       switch (code) {
2294         case lir_add: __ fadd_s(raddr); break;
2295         case lir_sub: __ fsub_s(raddr); break;
2296         case lir_mul_strictfp: // fall through
2297         case lir_mul: __ fmul_s(raddr); break;
2298         case lir_div_strictfp: // fall through
2299         case lir_div: __ fdiv_s(raddr); break;
2300         default:      ShouldNotReachHere();
2301       }
2302     }
2303 
2304   } else if (left->is_double_fpu()) {
2305     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2306 
2307     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2308       // Double values require special handling for strictfp mul/div on x86
2309       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2310       __ fmulp(left->fpu_regnrLo() + 1);
2311     }
2312 
2313     if (right->is_double_fpu()) {
2314       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2315 
2316     } else {
2317       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2318       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2319 
2320       Address raddr;
2321       if (right->is_double_stack()) {
2322         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2323       } else if (right->is_constant()) {
2324         // hack for now
2325         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2326       } else {
2327         ShouldNotReachHere();
2328       }
2329 
2330       switch (code) {
2331         case lir_add: __ fadd_d(raddr); break;
2332         case lir_sub: __ fsub_d(raddr); break;
2333         case lir_mul_strictfp: // fall through
2334         case lir_mul: __ fmul_d(raddr); break;
2335         case lir_div_strictfp: // fall through
2336         case lir_div: __ fdiv_d(raddr); break;
2337         default: ShouldNotReachHere();
2338       }
2339     }
2340 
2341     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2342       // Double values require special handling for strictfp mul/div on x86
2343       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2344       __ fmulp(dest->fpu_regnrLo() + 1);
2345     }
2346 
2347   } else if (left->is_single_stack() || left->is_address()) {
2348     assert(left == dest, "left and dest must be equal");
2349 
2350     Address laddr;
2351     if (left->is_single_stack()) {
2352       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2353     } else if (left->is_address()) {
2354       laddr = as_Address(left->as_address_ptr());
2355     } else {
2356       ShouldNotReachHere();
2357     }
2358 
2359     if (right->is_single_cpu()) {
2360       Register rreg = right->as_register();
2361       switch (code) {
2362         case lir_add: __ addl(laddr, rreg); break;
2363         case lir_sub: __ subl(laddr, rreg); break;
2364         default:      ShouldNotReachHere();
2365       }
2366     } else if (right->is_constant()) {
2367       jint c = right->as_constant_ptr()->as_jint();
2368       switch (code) {
2369         case lir_add: {
2370           __ incrementl(laddr, c);
2371           break;
2372         }
2373         case lir_sub: {
2374           __ decrementl(laddr, c);
2375           break;
2376         }
2377         default: ShouldNotReachHere();
2378       }
2379     } else {
2380       ShouldNotReachHere();
2381     }
2382 
2383   } else {
2384     ShouldNotReachHere();
2385   }
2386 }
2387 
2388 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2389   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2390   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2391   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2392 
2393   bool left_is_tos = (left_index == 0);
2394   bool dest_is_tos = (dest_index == 0);
2395   int non_tos_index = (left_is_tos ? right_index : left_index);
2396 
2397   switch (code) {
2398     case lir_add:
2399       if (pop_fpu_stack)       __ faddp(non_tos_index);
2400       else if (dest_is_tos)    __ fadd (non_tos_index);
2401       else                     __ fadda(non_tos_index);
2402       break;
2403 
2404     case lir_sub:
2405       if (left_is_tos) {
2406         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2407         else if (dest_is_tos)  __ fsub  (non_tos_index);
2408         else                   __ fsubra(non_tos_index);
2409       } else {
2410         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2411         else if (dest_is_tos)  __ fsubr (non_tos_index);
2412         else                   __ fsuba (non_tos_index);
2413       }
2414       break;
2415 
2416     case lir_mul_strictfp: // fall through
2417     case lir_mul:
2418       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2419       else if (dest_is_tos)    __ fmul (non_tos_index);
2420       else                     __ fmula(non_tos_index);
2421       break;
2422 
2423     case lir_div_strictfp: // fall through
2424     case lir_div:
2425       if (left_is_tos) {
2426         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2427         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2428         else                   __ fdivra(non_tos_index);
2429       } else {
2430         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2431         else if (dest_is_tos)  __ fdivr (non_tos_index);
2432         else                   __ fdiva (non_tos_index);
2433       }
2434       break;
2435 
2436     case lir_rem:
2437       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2438       __ fremr(noreg);
2439       break;
2440 
2441     default:
2442       ShouldNotReachHere();
2443   }
2444 }
2445 
2446 
2447 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2448   if (value->is_double_xmm()) {
2449     switch(code) {
2450       case lir_abs :
2451         {
2452 #ifdef _LP64
2453           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2454             assert(tmp->is_valid(), "need temporary");
2455             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2456           } else
2457 #endif
2458           {
2459             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2460               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2461             }
2462             assert(!tmp->is_valid(), "do not need temporary");
2463             __ andpd(dest->as_xmm_double_reg(),
2464                      ExternalAddress((address)double_signmask_pool));
2465           }
2466         }
2467         break;
2468 
2469       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2470       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2471       default      : ShouldNotReachHere();
2472     }
2473 
2474   } else if (value->is_double_fpu()) {
2475     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2476     switch(code) {
2477       case lir_abs   : __ fabs() ; break;
2478       case lir_sqrt  : __ fsqrt(); break;
2479       default      : ShouldNotReachHere();
2480     }
2481   } else {
2482     Unimplemented();
2483   }
2484 }
2485 
2486 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2487   // assert(left->destroys_register(), "check");
2488   if (left->is_single_cpu()) {
2489     Register reg = left->as_register();
2490     if (right->is_constant()) {
2491       int val = right->as_constant_ptr()->as_jint();
2492       switch (code) {
2493         case lir_logic_and: __ andl (reg, val); break;
2494         case lir_logic_or:  __ orl  (reg, val); break;
2495         case lir_logic_xor: __ xorl (reg, val); break;
2496         default: ShouldNotReachHere();
2497       }
2498     } else if (right->is_stack()) {
2499       // added support for stack operands
2500       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2501       switch (code) {
2502         case lir_logic_and: __ andl (reg, raddr); break;
2503         case lir_logic_or:  __ orl  (reg, raddr); break;
2504         case lir_logic_xor: __ xorl (reg, raddr); break;
2505         default: ShouldNotReachHere();
2506       }
2507     } else {
2508       Register rright = right->as_register();
2509       switch (code) {
2510         case lir_logic_and: __ andptr (reg, rright); break;
2511         case lir_logic_or : __ orptr  (reg, rright); break;
2512         case lir_logic_xor: __ xorptr (reg, rright); break;
2513         default: ShouldNotReachHere();
2514       }
2515     }
2516     move_regs(reg, dst->as_register());
2517   } else {
2518     Register l_lo = left->as_register_lo();
2519     Register l_hi = left->as_register_hi();
2520     if (right->is_constant()) {
2521 #ifdef _LP64
2522       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2523       switch (code) {
2524         case lir_logic_and:
2525           __ andq(l_lo, rscratch1);
2526           break;
2527         case lir_logic_or:
2528           __ orq(l_lo, rscratch1);
2529           break;
2530         case lir_logic_xor:
2531           __ xorq(l_lo, rscratch1);
2532           break;
2533         default: ShouldNotReachHere();
2534       }
2535 #else
2536       int r_lo = right->as_constant_ptr()->as_jint_lo();
2537       int r_hi = right->as_constant_ptr()->as_jint_hi();
2538       switch (code) {
2539         case lir_logic_and:
2540           __ andl(l_lo, r_lo);
2541           __ andl(l_hi, r_hi);
2542           break;
2543         case lir_logic_or:
2544           __ orl(l_lo, r_lo);
2545           __ orl(l_hi, r_hi);
2546           break;
2547         case lir_logic_xor:
2548           __ xorl(l_lo, r_lo);
2549           __ xorl(l_hi, r_hi);
2550           break;
2551         default: ShouldNotReachHere();
2552       }
2553 #endif // _LP64
2554     } else {
2555 #ifdef _LP64
2556       Register r_lo;
2557       if (right->type() == T_OBJECT || right->type() == T_ARRAY || right->type() == T_VALUETYPE) {
2558         r_lo = right->as_register();
2559       } else {
2560         r_lo = right->as_register_lo();
2561       }
2562 #else
2563       Register r_lo = right->as_register_lo();
2564       Register r_hi = right->as_register_hi();
2565       assert(l_lo != r_hi, "overwriting registers");
2566 #endif
2567       switch (code) {
2568         case lir_logic_and:
2569           __ andptr(l_lo, r_lo);
2570           NOT_LP64(__ andptr(l_hi, r_hi);)
2571           break;
2572         case lir_logic_or:
2573           __ orptr(l_lo, r_lo);
2574           NOT_LP64(__ orptr(l_hi, r_hi);)
2575           break;
2576         case lir_logic_xor:
2577           __ xorptr(l_lo, r_lo);
2578           NOT_LP64(__ xorptr(l_hi, r_hi);)
2579           break;
2580         default: ShouldNotReachHere();
2581       }
2582     }
2583 
2584     Register dst_lo = dst->as_register_lo();
2585     Register dst_hi = dst->as_register_hi();
2586 
2587 #ifdef _LP64
2588     move_regs(l_lo, dst_lo);
2589 #else
2590     if (dst_lo == l_hi) {
2591       assert(dst_hi != l_lo, "overwriting registers");
2592       move_regs(l_hi, dst_hi);
2593       move_regs(l_lo, dst_lo);
2594     } else {
2595       assert(dst_lo != l_hi, "overwriting registers");
2596       move_regs(l_lo, dst_lo);
2597       move_regs(l_hi, dst_hi);
2598     }
2599 #endif // _LP64
2600   }
2601 }
2602 
2603 
2604 // we assume that rax, and rdx can be overwritten
2605 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2606 
2607   assert(left->is_single_cpu(),   "left must be register");
2608   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2609   assert(result->is_single_cpu(), "result must be register");
2610 
2611   //  assert(left->destroys_register(), "check");
2612   //  assert(right->destroys_register(), "check");
2613 
2614   Register lreg = left->as_register();
2615   Register dreg = result->as_register();
2616 
2617   if (right->is_constant()) {
2618     jint divisor = right->as_constant_ptr()->as_jint();
2619     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2620     if (code == lir_idiv) {
2621       assert(lreg == rax, "must be rax,");
2622       assert(temp->as_register() == rdx, "tmp register must be rdx");
2623       __ cdql(); // sign extend into rdx:rax
2624       if (divisor == 2) {
2625         __ subl(lreg, rdx);
2626       } else {
2627         __ andl(rdx, divisor - 1);
2628         __ addl(lreg, rdx);
2629       }
2630       __ sarl(lreg, log2_jint(divisor));
2631       move_regs(lreg, dreg);
2632     } else if (code == lir_irem) {
2633       Label done;
2634       __ mov(dreg, lreg);
2635       __ andl(dreg, 0x80000000 | (divisor - 1));
2636       __ jcc(Assembler::positive, done);
2637       __ decrement(dreg);
2638       __ orl(dreg, ~(divisor - 1));
2639       __ increment(dreg);
2640       __ bind(done);
2641     } else {
2642       ShouldNotReachHere();
2643     }
2644   } else {
2645     Register rreg = right->as_register();
2646     assert(lreg == rax, "left register must be rax,");
2647     assert(rreg != rdx, "right register must not be rdx");
2648     assert(temp->as_register() == rdx, "tmp register must be rdx");
2649 
2650     move_regs(lreg, rax);
2651 
2652     int idivl_offset = __ corrected_idivl(rreg);
2653     if (ImplicitDiv0Checks) {
2654       add_debug_info_for_div0(idivl_offset, info);
2655     }
2656     if (code == lir_irem) {
2657       move_regs(rdx, dreg); // result is in rdx
2658     } else {
2659       move_regs(rax, dreg);
2660     }
2661   }
2662 }
2663 
2664 
2665 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2666   if (opr1->is_single_cpu()) {
2667     Register reg1 = opr1->as_register();
2668     if (opr2->is_single_cpu()) {
2669       // cpu register - cpu register
2670       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY || opr1->type() == T_VALUETYPE) {
2671         __ cmpoop(reg1, opr2->as_register());
2672       } else {
2673         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_VALUETYPE, "cmp int, oop?");
2674         __ cmpl(reg1, opr2->as_register());
2675       }
2676     } else if (opr2->is_stack()) {
2677       // cpu register - stack
2678       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY || opr1->type() == T_VALUETYPE) {
2679         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2680       } else {
2681         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2682       }
2683     } else if (opr2->is_constant()) {
2684       // cpu register - constant
2685       LIR_Const* c = opr2->as_constant_ptr();
2686       if (c->type() == T_INT) {
2687         __ cmpl(reg1, c->as_jint());
2688       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY || c->type() == T_VALUETYPE) {
2689         // In 64bit oops are single register
2690         jobject o = c->as_jobject();
2691         if (o == NULL) {
2692           __ cmpptr(reg1, (int32_t)NULL_WORD);
2693         } else {
2694           __ cmpoop(reg1, o);
2695         }
2696       } else {
2697         fatal("unexpected type: %s", basictype_to_str(c->type()));
2698       }
2699       // cpu register - address
2700     } else if (opr2->is_address()) {
2701       if (op->info() != NULL) {
2702         add_debug_info_for_null_check_here(op->info());
2703       }
2704       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2705     } else {
2706       ShouldNotReachHere();
2707     }
2708 
2709   } else if(opr1->is_double_cpu()) {
2710     Register xlo = opr1->as_register_lo();
2711     Register xhi = opr1->as_register_hi();
2712     if (opr2->is_double_cpu()) {
2713 #ifdef _LP64
2714       __ cmpptr(xlo, opr2->as_register_lo());
2715 #else
2716       // cpu register - cpu register
2717       Register ylo = opr2->as_register_lo();
2718       Register yhi = opr2->as_register_hi();
2719       __ subl(xlo, ylo);
2720       __ sbbl(xhi, yhi);
2721       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2722         __ orl(xhi, xlo);
2723       }
2724 #endif // _LP64
2725     } else if (opr2->is_constant()) {
2726       // cpu register - constant 0
2727       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2728 #ifdef _LP64
2729       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2730 #else
2731       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2732       __ orl(xhi, xlo);
2733 #endif // _LP64
2734     } else {
2735       ShouldNotReachHere();
2736     }
2737 
2738   } else if (opr1->is_single_xmm()) {
2739     XMMRegister reg1 = opr1->as_xmm_float_reg();
2740     if (opr2->is_single_xmm()) {
2741       // xmm register - xmm register
2742       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2743     } else if (opr2->is_stack()) {
2744       // xmm register - stack
2745       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2746     } else if (opr2->is_constant()) {
2747       // xmm register - constant
2748       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2749     } else if (opr2->is_address()) {
2750       // xmm register - address
2751       if (op->info() != NULL) {
2752         add_debug_info_for_null_check_here(op->info());
2753       }
2754       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2755     } else {
2756       ShouldNotReachHere();
2757     }
2758 
2759   } else if (opr1->is_double_xmm()) {
2760     XMMRegister reg1 = opr1->as_xmm_double_reg();
2761     if (opr2->is_double_xmm()) {
2762       // xmm register - xmm register
2763       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2764     } else if (opr2->is_stack()) {
2765       // xmm register - stack
2766       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2767     } else if (opr2->is_constant()) {
2768       // xmm register - constant
2769       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2770     } else if (opr2->is_address()) {
2771       // xmm register - address
2772       if (op->info() != NULL) {
2773         add_debug_info_for_null_check_here(op->info());
2774       }
2775       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2776     } else {
2777       ShouldNotReachHere();
2778     }
2779 
2780   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2781     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2782     assert(opr2->is_fpu_register(), "both must be registers");
2783     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2784 
2785   } else if (opr1->is_address() && opr2->is_constant()) {
2786     LIR_Const* c = opr2->as_constant_ptr();
2787 #ifdef _LP64
2788     if (c->type() == T_OBJECT || c->type() == T_ARRAY || c->type() == T_VALUETYPE) {
2789       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2790       __ movoop(rscratch1, c->as_jobject());
2791     }
2792 #endif // LP64
2793     if (op->info() != NULL) {
2794       add_debug_info_for_null_check_here(op->info());
2795     }
2796     // special case: address - constant
2797     LIR_Address* addr = opr1->as_address_ptr();
2798     if (c->type() == T_INT) {
2799       __ cmpl(as_Address(addr), c->as_jint());
2800     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY || c->type() == T_VALUETYPE) {
2801 #ifdef _LP64
2802       // %%% Make this explode if addr isn't reachable until we figure out a
2803       // better strategy by giving noreg as the temp for as_Address
2804       __ cmpoop(rscratch1, as_Address(addr, noreg));
2805 #else
2806       __ cmpoop(as_Address(addr), c->as_jobject());
2807 #endif // _LP64
2808     } else {
2809       ShouldNotReachHere();
2810     }
2811 
2812   } else {
2813     ShouldNotReachHere();
2814   }
2815 }
2816 
2817 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2818   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2819     if (left->is_single_xmm()) {
2820       assert(right->is_single_xmm(), "must match");
2821       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2822     } else if (left->is_double_xmm()) {
2823       assert(right->is_double_xmm(), "must match");
2824       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2825 
2826     } else {
2827       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2828       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2829 
2830       assert(left->fpu() == 0, "left must be on TOS");
2831       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2832                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2833     }
2834   } else {
2835     assert(code == lir_cmp_l2i, "check");
2836 #ifdef _LP64
2837     Label done;
2838     Register dest = dst->as_register();
2839     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2840     __ movl(dest, -1);
2841     __ jccb(Assembler::less, done);
2842     __ set_byte_if_not_zero(dest);
2843     __ movzbl(dest, dest);
2844     __ bind(done);
2845 #else
2846     __ lcmp2int(left->as_register_hi(),
2847                 left->as_register_lo(),
2848                 right->as_register_hi(),
2849                 right->as_register_lo());
2850     move_regs(left->as_register_hi(), dst->as_register());
2851 #endif // _LP64
2852   }
2853 }
2854 
2855 
2856 void LIR_Assembler::align_call(LIR_Code code) {
2857   // make sure that the displacement word of the call ends up word aligned
2858   int offset = __ offset();
2859   switch (code) {
2860   case lir_static_call:
2861   case lir_optvirtual_call:
2862   case lir_dynamic_call:
2863     offset += NativeCall::displacement_offset;
2864     break;
2865   case lir_icvirtual_call:
2866     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2867     break;
2868   case lir_virtual_call:  // currently, sparc-specific for niagara
2869   default: ShouldNotReachHere();
2870   }
2871   __ align(BytesPerWord, offset);
2872 }
2873 
2874 
2875 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2876   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2877          "must be aligned");
2878   __ call(AddressLiteral(op->addr(), rtype));
2879   add_call_info(code_offset(), op->info());
2880 }
2881 
2882 
2883 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2884   __ ic_call(op->addr());
2885   add_call_info(code_offset(), op->info());
2886   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2887          "must be aligned");
2888 }
2889 
2890 
2891 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2892 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2893   ShouldNotReachHere();
2894 }
2895 
2896 
2897 void LIR_Assembler::emit_static_call_stub() {
2898   address call_pc = __ pc();
2899   address stub = __ start_a_stub(call_stub_size());
2900   if (stub == NULL) {
2901     bailout("static call stub overflow");
2902     return;
2903   }
2904 
2905   int start = __ offset();
2906 
2907   // make sure that the displacement word of the call ends up word aligned
2908   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2909   __ relocate(static_stub_Relocation::spec(call_pc, false /* is_aot */));
2910   __ mov_metadata(rbx, (Metadata*)NULL);
2911   // must be set to -1 at code generation time
2912   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2913   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2914   __ jump(RuntimeAddress(__ pc()));
2915 
2916   if (UseAOT) {
2917     // Trampoline to aot code
2918     __ relocate(static_stub_Relocation::spec(call_pc, true /* is_aot */));
2919 #ifdef _LP64
2920     __ mov64(rax, CONST64(0));  // address is zapped till fixup time.
2921 #else
2922     __ movl(rax, 0xdeadffff);  // address is zapped till fixup time.
2923 #endif
2924     __ jmp(rax);
2925   }
2926   assert(__ offset() - start <= call_stub_size(), "stub too big");
2927   __ end_a_stub();
2928 }
2929 
2930 
2931 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2932   assert(exceptionOop->as_register() == rax, "must match");
2933   assert(exceptionPC->as_register() == rdx, "must match");
2934 
2935   // exception object is not added to oop map by LinearScan
2936   // (LinearScan assumes that no oops are in fixed registers)
2937   info->add_register_oop(exceptionOop);
2938   Runtime1::StubID unwind_id;
2939 
2940   // get current pc information
2941   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2942   int pc_for_athrow_offset = __ offset();
2943   InternalAddress pc_for_athrow(__ pc());
2944   __ lea(exceptionPC->as_register(), pc_for_athrow);
2945   add_call_info(pc_for_athrow_offset, info); // for exception handler
2946 
2947   __ verify_not_null_oop(rax);
2948   // search an exception handler (rax: exception oop, rdx: throwing pc)
2949   if (compilation()->has_fpu_code()) {
2950     unwind_id = Runtime1::handle_exception_id;
2951   } else {
2952     unwind_id = Runtime1::handle_exception_nofpu_id;
2953   }
2954   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2955 
2956   // enough room for two byte trap
2957   __ nop();
2958 }
2959 
2960 
2961 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2962   assert(exceptionOop->as_register() == rax, "must match");
2963 
2964   __ jmp(_unwind_handler_entry);
2965 }
2966 
2967 
2968 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2969 
2970   // optimized version for linear scan:
2971   // * count must be already in ECX (guaranteed by LinearScan)
2972   // * left and dest must be equal
2973   // * tmp must be unused
2974   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2975   assert(left == dest, "left and dest must be equal");
2976   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2977 
2978   if (left->is_single_cpu()) {
2979     Register value = left->as_register();
2980     assert(value != SHIFT_count, "left cannot be ECX");
2981 
2982     switch (code) {
2983       case lir_shl:  __ shll(value); break;
2984       case lir_shr:  __ sarl(value); break;
2985       case lir_ushr: __ shrl(value); break;
2986       default: ShouldNotReachHere();
2987     }
2988   } else if (left->is_double_cpu()) {
2989     Register lo = left->as_register_lo();
2990     Register hi = left->as_register_hi();
2991     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2992 #ifdef _LP64
2993     switch (code) {
2994       case lir_shl:  __ shlptr(lo);        break;
2995       case lir_shr:  __ sarptr(lo);        break;
2996       case lir_ushr: __ shrptr(lo);        break;
2997       default: ShouldNotReachHere();
2998     }
2999 #else
3000 
3001     switch (code) {
3002       case lir_shl:  __ lshl(hi, lo);        break;
3003       case lir_shr:  __ lshr(hi, lo, true);  break;
3004       case lir_ushr: __ lshr(hi, lo, false); break;
3005       default: ShouldNotReachHere();
3006     }
3007 #endif // LP64
3008   } else {
3009     ShouldNotReachHere();
3010   }
3011 }
3012 
3013 
3014 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3015   if (dest->is_single_cpu()) {
3016     // first move left into dest so that left is not destroyed by the shift
3017     Register value = dest->as_register();
3018     count = count & 0x1F; // Java spec
3019 
3020     move_regs(left->as_register(), value);
3021     switch (code) {
3022       case lir_shl:  __ shll(value, count); break;
3023       case lir_shr:  __ sarl(value, count); break;
3024       case lir_ushr: __ shrl(value, count); break;
3025       default: ShouldNotReachHere();
3026     }
3027   } else if (dest->is_double_cpu()) {
3028 #ifndef _LP64
3029     Unimplemented();
3030 #else
3031     // first move left into dest so that left is not destroyed by the shift
3032     Register value = dest->as_register_lo();
3033     count = count & 0x1F; // Java spec
3034 
3035     move_regs(left->as_register_lo(), value);
3036     switch (code) {
3037       case lir_shl:  __ shlptr(value, count); break;
3038       case lir_shr:  __ sarptr(value, count); break;
3039       case lir_ushr: __ shrptr(value, count); break;
3040       default: ShouldNotReachHere();
3041     }
3042 #endif // _LP64
3043   } else {
3044     ShouldNotReachHere();
3045   }
3046 }
3047 
3048 
3049 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3050   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3051   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3052   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3053   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3054 }
3055 
3056 
3057 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3058   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3059   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3060   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3061   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3062 }
3063 
3064 
3065 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3066   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3067   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3068   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3069   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3070 }
3071 
3072 
3073 void LIR_Assembler::store_parameter(Metadata* m,  int offset_from_rsp_in_words) {
3074   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3075   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3076   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3077   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m);
3078 }
3079 
3080 
3081 void LIR_Assembler::arraycopy_flat_check(Register obj, Register tmp, CodeStub* slow_path) {
3082   Address klass_addr = Address(obj, oopDesc::klass_offset_in_bytes());
3083   if (UseCompressedClassPointers) {
3084     __ movl(tmp, klass_addr);
3085     LP64_ONLY(__ decode_klass_not_null(tmp));
3086   } else {
3087     __ movptr(tmp, klass_addr);
3088   }
3089   __ movl(tmp, Address(tmp, Klass::layout_helper_offset()));
3090   __ sarl(tmp, Klass::_lh_array_tag_shift);
3091   __ cmpl(tmp, Klass::_lh_array_tag_vt_value);
3092   __ jcc(Assembler::equal, *slow_path->entry());
3093 }
3094 
3095 
3096 // This code replaces a call to arraycopy; no exception may
3097 // be thrown in this code, they must be thrown in the System.arraycopy
3098 // activation frame; we could save some checks if this would not be the case
3099 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3100   ciArrayKlass* default_type = op->expected_type();
3101   Register src = op->src()->as_register();
3102   Register dst = op->dst()->as_register();
3103   Register src_pos = op->src_pos()->as_register();
3104   Register dst_pos = op->dst_pos()->as_register();
3105   Register length  = op->length()->as_register();
3106   Register tmp = op->tmp()->as_register();
3107 
3108   __ resolve(ACCESS_READ, src);
3109   __ resolve(ACCESS_WRITE, dst);
3110 
3111   CodeStub* stub = op->stub();
3112   int flags = op->flags();
3113   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3114   if (basic_type == T_ARRAY || basic_type == T_VALUETYPE) basic_type = T_OBJECT;
3115 
3116   if (flags & LIR_OpArrayCopy::always_slow_path) {
3117     __ jmp(*stub->entry());
3118     __ bind(*stub->continuation());
3119     return;
3120   }
3121 
3122   if (flags & LIR_OpArrayCopy::src_flat_check) {
3123     arraycopy_flat_check(src, tmp, stub);
3124   }
3125 
3126   if (flags & LIR_OpArrayCopy::dst_flat_check) {
3127     arraycopy_flat_check(dst, tmp, stub);
3128   }
3129 
3130   // if we don't know anything, just go through the generic arraycopy
3131   if (default_type == NULL) {
3132     // save outgoing arguments on stack in case call to System.arraycopy is needed
3133     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3134     // for interpreter calling conventions. Now we have to do it in new style conventions.
3135     // For the moment until C1 gets the new register allocator I just force all the
3136     // args to the right place (except the register args) and then on the back side
3137     // reload the register args properly if we go slow path. Yuck
3138 
3139     // These are proper for the calling convention
3140     store_parameter(length, 2);
3141     store_parameter(dst_pos, 1);
3142     store_parameter(dst, 0);
3143 
3144     // these are just temporary placements until we need to reload
3145     store_parameter(src_pos, 3);
3146     store_parameter(src, 4);
3147     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3148 
3149     address copyfunc_addr = StubRoutines::generic_arraycopy();
3150     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
3151 
3152     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3153 #ifdef _LP64
3154     // The arguments are in java calling convention so we can trivially shift them to C
3155     // convention
3156     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3157     __ mov(c_rarg0, j_rarg0);
3158     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3159     __ mov(c_rarg1, j_rarg1);
3160     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3161     __ mov(c_rarg2, j_rarg2);
3162     assert_different_registers(c_rarg3, j_rarg4);
3163     __ mov(c_rarg3, j_rarg3);
3164 #ifdef _WIN64
3165     // Allocate abi space for args but be sure to keep stack aligned
3166     __ subptr(rsp, 6*wordSize);
3167     store_parameter(j_rarg4, 4);
3168 #ifndef PRODUCT
3169     if (PrintC1Statistics) {
3170       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3171     }
3172 #endif
3173     __ call(RuntimeAddress(copyfunc_addr));
3174     __ addptr(rsp, 6*wordSize);
3175 #else
3176     __ mov(c_rarg4, j_rarg4);
3177 #ifndef PRODUCT
3178     if (PrintC1Statistics) {
3179       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3180     }
3181 #endif
3182     __ call(RuntimeAddress(copyfunc_addr));
3183 #endif // _WIN64
3184 #else
3185     __ push(length);
3186     __ push(dst_pos);
3187     __ push(dst);
3188     __ push(src_pos);
3189     __ push(src);
3190 
3191 #ifndef PRODUCT
3192     if (PrintC1Statistics) {
3193       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3194     }
3195 #endif
3196     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3197 
3198 #endif // _LP64
3199 
3200     __ cmpl(rax, 0);
3201     __ jcc(Assembler::equal, *stub->continuation());
3202 
3203     __ mov(tmp, rax);
3204     __ xorl(tmp, -1);
3205 
3206     // Reload values from the stack so they are where the stub
3207     // expects them.
3208     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3209     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3210     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3211     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3212     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3213 
3214     __ subl(length, tmp);
3215     __ addl(src_pos, tmp);
3216     __ addl(dst_pos, tmp);
3217     __ jmp(*stub->entry());
3218 
3219     __ bind(*stub->continuation());
3220     return;
3221   }
3222 
3223   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3224 
3225   int elem_size = type2aelembytes(basic_type);
3226   Address::ScaleFactor scale;
3227 
3228   switch (elem_size) {
3229     case 1 :
3230       scale = Address::times_1;
3231       break;
3232     case 2 :
3233       scale = Address::times_2;
3234       break;
3235     case 4 :
3236       scale = Address::times_4;
3237       break;
3238     case 8 :
3239       scale = Address::times_8;
3240       break;
3241     default:
3242       scale = Address::no_scale;
3243       ShouldNotReachHere();
3244   }
3245 
3246   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3247   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3248   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3249   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3250 
3251   // length and pos's are all sign extended at this point on 64bit
3252 
3253   // test for NULL
3254   if (flags & LIR_OpArrayCopy::src_null_check) {
3255     __ testptr(src, src);
3256     __ jcc(Assembler::zero, *stub->entry());
3257   }
3258   if (flags & LIR_OpArrayCopy::dst_null_check) {
3259     __ testptr(dst, dst);
3260     __ jcc(Assembler::zero, *stub->entry());
3261   }
3262 
3263   // If the compiler was not able to prove that exact type of the source or the destination
3264   // of the arraycopy is an array type, check at runtime if the source or the destination is
3265   // an instance type.
3266   if (flags & LIR_OpArrayCopy::type_check) {
3267     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3268       __ load_klass(tmp, dst);
3269       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3270       __ jcc(Assembler::greaterEqual, *stub->entry());
3271     }
3272 
3273     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3274       __ load_klass(tmp, src);
3275       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3276       __ jcc(Assembler::greaterEqual, *stub->entry());
3277     }
3278   }
3279 
3280   // check if negative
3281   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3282     __ testl(src_pos, src_pos);
3283     __ jcc(Assembler::less, *stub->entry());
3284   }
3285   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3286     __ testl(dst_pos, dst_pos);
3287     __ jcc(Assembler::less, *stub->entry());
3288   }
3289 
3290   if (flags & LIR_OpArrayCopy::src_range_check) {
3291     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3292     __ cmpl(tmp, src_length_addr);
3293     __ jcc(Assembler::above, *stub->entry());
3294   }
3295   if (flags & LIR_OpArrayCopy::dst_range_check) {
3296     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3297     __ cmpl(tmp, dst_length_addr);
3298     __ jcc(Assembler::above, *stub->entry());
3299   }
3300 
3301   if (flags & LIR_OpArrayCopy::length_positive_check) {
3302     __ testl(length, length);
3303     __ jcc(Assembler::less, *stub->entry());
3304   }
3305 
3306 #ifdef _LP64
3307   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3308   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3309 #endif
3310 
3311   if (flags & LIR_OpArrayCopy::type_check) {
3312     // We don't know the array types are compatible
3313     if (basic_type != T_OBJECT) {
3314       // Simple test for basic type arrays
3315       if (UseCompressedClassPointers) {
3316         __ movl(tmp, src_klass_addr);
3317         __ cmpl(tmp, dst_klass_addr);
3318       } else {
3319         __ movptr(tmp, src_klass_addr);
3320         __ cmpptr(tmp, dst_klass_addr);
3321       }
3322       __ jcc(Assembler::notEqual, *stub->entry());
3323     } else {
3324       // For object arrays, if src is a sub class of dst then we can
3325       // safely do the copy.
3326       Label cont, slow;
3327 
3328       __ push(src);
3329       __ push(dst);
3330 
3331       __ load_klass(src, src);
3332       __ load_klass(dst, dst);
3333 
3334       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3335 
3336       __ push(src);
3337       __ push(dst);
3338       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3339       __ pop(dst);
3340       __ pop(src);
3341 
3342       __ cmpl(src, 0);
3343       __ jcc(Assembler::notEqual, cont);
3344 
3345       __ bind(slow);
3346       __ pop(dst);
3347       __ pop(src);
3348 
3349       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3350       if (copyfunc_addr != NULL) { // use stub if available
3351         // src is not a sub class of dst so we have to do a
3352         // per-element check.
3353 
3354         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3355         if ((flags & mask) != mask) {
3356           // Check that at least both of them object arrays.
3357           assert(flags & mask, "one of the two should be known to be an object array");
3358 
3359           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3360             __ load_klass(tmp, src);
3361           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3362             __ load_klass(tmp, dst);
3363           }
3364           int lh_offset = in_bytes(Klass::layout_helper_offset());
3365           Address klass_lh_addr(tmp, lh_offset);
3366           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3367           __ cmpl(klass_lh_addr, objArray_lh);
3368           __ jcc(Assembler::notEqual, *stub->entry());
3369         }
3370 
3371        // Spill because stubs can use any register they like and it's
3372        // easier to restore just those that we care about.
3373        store_parameter(dst, 0);
3374        store_parameter(dst_pos, 1);
3375        store_parameter(length, 2);
3376        store_parameter(src_pos, 3);
3377        store_parameter(src, 4);
3378 
3379 #ifndef _LP64
3380         __ movptr(tmp, dst_klass_addr);
3381         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3382         __ push(tmp);
3383         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3384         __ push(tmp);
3385         __ push(length);
3386         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3387         __ push(tmp);
3388         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3389         __ push(tmp);
3390 
3391         __ call_VM_leaf(copyfunc_addr, 5);
3392 #else
3393         __ movl2ptr(length, length); //higher 32bits must be null
3394 
3395         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3396         assert_different_registers(c_rarg0, dst, dst_pos, length);
3397         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3398         assert_different_registers(c_rarg1, dst, length);
3399 
3400         __ mov(c_rarg2, length);
3401         assert_different_registers(c_rarg2, dst);
3402 
3403 #ifdef _WIN64
3404         // Allocate abi space for args but be sure to keep stack aligned
3405         __ subptr(rsp, 6*wordSize);
3406         __ load_klass(c_rarg3, dst);
3407         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3408         store_parameter(c_rarg3, 4);
3409         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3410         __ call(RuntimeAddress(copyfunc_addr));
3411         __ addptr(rsp, 6*wordSize);
3412 #else
3413         __ load_klass(c_rarg4, dst);
3414         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3415         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3416         __ call(RuntimeAddress(copyfunc_addr));
3417 #endif
3418 
3419 #endif
3420 
3421 #ifndef PRODUCT
3422         if (PrintC1Statistics) {
3423           Label failed;
3424           __ testl(rax, rax);
3425           __ jcc(Assembler::notZero, failed);
3426           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3427           __ bind(failed);
3428         }
3429 #endif
3430 
3431         __ testl(rax, rax);
3432         __ jcc(Assembler::zero, *stub->continuation());
3433 
3434 #ifndef PRODUCT
3435         if (PrintC1Statistics) {
3436           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3437         }
3438 #endif
3439 
3440         __ mov(tmp, rax);
3441 
3442         __ xorl(tmp, -1);
3443 
3444         // Restore previously spilled arguments
3445         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3446         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3447         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3448         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3449         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3450 
3451 
3452         __ subl(length, tmp);
3453         __ addl(src_pos, tmp);
3454         __ addl(dst_pos, tmp);
3455       }
3456 
3457       __ jmp(*stub->entry());
3458 
3459       __ bind(cont);
3460       __ pop(dst);
3461       __ pop(src);
3462     }
3463   }
3464 
3465 #ifdef ASSERT
3466   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3467     // Sanity check the known type with the incoming class.  For the
3468     // primitive case the types must match exactly with src.klass and
3469     // dst.klass each exactly matching the default type.  For the
3470     // object array case, if no type check is needed then either the
3471     // dst type is exactly the expected type and the src type is a
3472     // subtype which we can't check or src is the same array as dst
3473     // but not necessarily exactly of type default_type.
3474     Label known_ok, halt;
3475     __ mov_metadata(tmp, default_type->constant_encoding());
3476 #ifdef _LP64
3477     if (UseCompressedClassPointers) {
3478       __ encode_klass_not_null(tmp);
3479     }
3480 #endif
3481 
3482     if (basic_type != T_OBJECT) {
3483 
3484       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3485       else                   __ cmpptr(tmp, dst_klass_addr);
3486       __ jcc(Assembler::notEqual, halt);
3487       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3488       else                   __ cmpptr(tmp, src_klass_addr);
3489       __ jcc(Assembler::equal, known_ok);
3490     } else {
3491       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3492       else                   __ cmpptr(tmp, dst_klass_addr);
3493       __ jcc(Assembler::equal, known_ok);
3494       __ cmpptr(src, dst);
3495       __ jcc(Assembler::equal, known_ok);
3496     }
3497     __ bind(halt);
3498     __ stop("incorrect type information in arraycopy");
3499     __ bind(known_ok);
3500   }
3501 #endif
3502 
3503 #ifndef PRODUCT
3504   if (PrintC1Statistics) {
3505     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3506   }
3507 #endif
3508 
3509 #ifdef _LP64
3510   assert_different_registers(c_rarg0, dst, dst_pos, length);
3511   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3512   assert_different_registers(c_rarg1, length);
3513   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3514   __ mov(c_rarg2, length);
3515 
3516 #else
3517   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3518   store_parameter(tmp, 0);
3519   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3520   store_parameter(tmp, 1);
3521   store_parameter(length, 2);
3522 #endif // _LP64
3523 
3524   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3525   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3526   const char *name;
3527   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3528   __ call_VM_leaf(entry, 0);
3529 
3530   __ bind(*stub->continuation());
3531 }
3532 
3533 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3534   assert(op->crc()->is_single_cpu(),  "crc must be register");
3535   assert(op->val()->is_single_cpu(),  "byte value must be register");
3536   assert(op->result_opr()->is_single_cpu(), "result must be register");
3537   Register crc = op->crc()->as_register();
3538   Register val = op->val()->as_register();
3539   Register res = op->result_opr()->as_register();
3540 
3541   assert_different_registers(val, crc, res);
3542 
3543   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3544   __ notl(crc); // ~crc
3545   __ update_byte_crc32(crc, val, res);
3546   __ notl(crc); // ~crc
3547   __ mov(res, crc);
3548 }
3549 
3550 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3551   Register obj = op->obj_opr()->as_register();  // may not be an oop
3552   Register hdr = op->hdr_opr()->as_register();
3553   Register lock = op->lock_opr()->as_register();
3554   if (!UseFastLocking) {
3555     __ jmp(*op->stub()->entry());
3556   } else if (op->code() == lir_lock) {
3557     Register scratch = noreg;
3558     if (UseBiasedLocking) {
3559       scratch = op->scratch_opr()->as_register();
3560     }
3561     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3562     __ resolve(ACCESS_READ | ACCESS_WRITE, obj);
3563     // add debug info for NullPointerException only if one is possible
3564     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3565     if (op->info() != NULL) {
3566       add_debug_info_for_null_check(null_check_offset, op->info());
3567     }
3568     // done
3569   } else if (op->code() == lir_unlock) {
3570     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3571     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3572   } else {
3573     Unimplemented();
3574   }
3575   __ bind(*op->stub()->continuation());
3576 }
3577 
3578 
3579 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3580   ciMethod* method = op->profiled_method();
3581   int bci          = op->profiled_bci();
3582   ciMethod* callee = op->profiled_callee();
3583 
3584   // Update counter for all call types
3585   ciMethodData* md = method->method_data_or_null();
3586   assert(md != NULL, "Sanity");
3587   ciProfileData* data = md->bci_to_data(bci);
3588   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3589   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3590   Register mdo  = op->mdo()->as_register();
3591   __ mov_metadata(mdo, md->constant_encoding());
3592   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3593   // Perform additional virtual call profiling for invokevirtual and
3594   // invokeinterface bytecodes
3595   if (op->should_profile_receiver_type()) {
3596     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3597     Register recv = op->recv()->as_register();
3598     assert_different_registers(mdo, recv);
3599     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3600     ciKlass* known_klass = op->known_holder();
3601     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3602       // We know the type that will be seen at this call site; we can
3603       // statically update the MethodData* rather than needing to do
3604       // dynamic tests on the receiver type
3605 
3606       // NOTE: we should probably put a lock around this search to
3607       // avoid collisions by concurrent compilations
3608       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3609       uint i;
3610       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3611         ciKlass* receiver = vc_data->receiver(i);
3612         if (known_klass->equals(receiver)) {
3613           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3614           __ addptr(data_addr, DataLayout::counter_increment);
3615           return;
3616         }
3617       }
3618 
3619       // Receiver type not found in profile data; select an empty slot
3620 
3621       // Note that this is less efficient than it should be because it
3622       // always does a write to the receiver part of the
3623       // VirtualCallData rather than just the first time
3624       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3625         ciKlass* receiver = vc_data->receiver(i);
3626         if (receiver == NULL) {
3627           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3628           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3629           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3630           __ addptr(data_addr, DataLayout::counter_increment);
3631           return;
3632         }
3633       }
3634     } else {
3635       __ load_klass(recv, recv);
3636       Label update_done;
3637       type_profile_helper(mdo, md, data, recv, &update_done);
3638       // Receiver did not match any saved receiver and there is no empty row for it.
3639       // Increment total counter to indicate polymorphic case.
3640       __ addptr(counter_addr, DataLayout::counter_increment);
3641 
3642       __ bind(update_done);
3643     }
3644   } else {
3645     // Static call
3646     __ addptr(counter_addr, DataLayout::counter_increment);
3647   }
3648 }
3649 
3650 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3651   Register obj = op->obj()->as_register();
3652   Register tmp = op->tmp()->as_pointer_register();
3653   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3654   ciKlass* exact_klass = op->exact_klass();
3655   intptr_t current_klass = op->current_klass();
3656   bool not_null = op->not_null();
3657   bool no_conflict = op->no_conflict();
3658 
3659   Label update, next, none;
3660 
3661   bool do_null = !not_null;
3662   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3663   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3664 
3665   assert(do_null || do_update, "why are we here?");
3666   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3667 
3668   __ verify_oop(obj);
3669 
3670   if (tmp != obj) {
3671     __ mov(tmp, obj);
3672   }
3673   if (do_null) {
3674     __ testptr(tmp, tmp);
3675     __ jccb(Assembler::notZero, update);
3676     if (!TypeEntries::was_null_seen(current_klass)) {
3677       __ orptr(mdo_addr, TypeEntries::null_seen);
3678     }
3679     if (do_update) {
3680 #ifndef ASSERT
3681       __ jmpb(next);
3682     }
3683 #else
3684       __ jmp(next);
3685     }
3686   } else {
3687     __ testptr(tmp, tmp);
3688     __ jcc(Assembler::notZero, update);
3689     __ stop("unexpect null obj");
3690 #endif
3691   }
3692 
3693   __ bind(update);
3694 
3695   if (do_update) {
3696 #ifdef ASSERT
3697     if (exact_klass != NULL) {
3698       Label ok;
3699       __ load_klass(tmp, tmp);
3700       __ push(tmp);
3701       __ mov_metadata(tmp, exact_klass->constant_encoding());
3702       __ cmpptr(tmp, Address(rsp, 0));
3703       __ jcc(Assembler::equal, ok);
3704       __ stop("exact klass and actual klass differ");
3705       __ bind(ok);
3706       __ pop(tmp);
3707     }
3708 #endif
3709     if (!no_conflict) {
3710       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3711         if (exact_klass != NULL) {
3712           __ mov_metadata(tmp, exact_klass->constant_encoding());
3713         } else {
3714           __ load_klass(tmp, tmp);
3715         }
3716 
3717         __ xorptr(tmp, mdo_addr);
3718         __ testptr(tmp, TypeEntries::type_klass_mask);
3719         // klass seen before, nothing to do. The unknown bit may have been
3720         // set already but no need to check.
3721         __ jccb(Assembler::zero, next);
3722 
3723         __ testptr(tmp, TypeEntries::type_unknown);
3724         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3725 
3726         if (TypeEntries::is_type_none(current_klass)) {
3727           __ cmpptr(mdo_addr, 0);
3728           __ jccb(Assembler::equal, none);
3729           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3730           __ jccb(Assembler::equal, none);
3731           // There is a chance that the checks above (re-reading profiling
3732           // data from memory) fail if another thread has just set the
3733           // profiling to this obj's klass
3734           __ xorptr(tmp, mdo_addr);
3735           __ testptr(tmp, TypeEntries::type_klass_mask);
3736           __ jccb(Assembler::zero, next);
3737         }
3738       } else {
3739         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3740                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3741 
3742         __ movptr(tmp, mdo_addr);
3743         __ testptr(tmp, TypeEntries::type_unknown);
3744         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3745       }
3746 
3747       // different than before. Cannot keep accurate profile.
3748       __ orptr(mdo_addr, TypeEntries::type_unknown);
3749 
3750       if (TypeEntries::is_type_none(current_klass)) {
3751         __ jmpb(next);
3752 
3753         __ bind(none);
3754         // first time here. Set profile type.
3755         __ movptr(mdo_addr, tmp);
3756       }
3757     } else {
3758       // There's a single possible klass at this profile point
3759       assert(exact_klass != NULL, "should be");
3760       if (TypeEntries::is_type_none(current_klass)) {
3761         __ mov_metadata(tmp, exact_klass->constant_encoding());
3762         __ xorptr(tmp, mdo_addr);
3763         __ testptr(tmp, TypeEntries::type_klass_mask);
3764 #ifdef ASSERT
3765         __ jcc(Assembler::zero, next);
3766 
3767         {
3768           Label ok;
3769           __ push(tmp);
3770           __ cmpptr(mdo_addr, 0);
3771           __ jcc(Assembler::equal, ok);
3772           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3773           __ jcc(Assembler::equal, ok);
3774           // may have been set by another thread
3775           __ mov_metadata(tmp, exact_klass->constant_encoding());
3776           __ xorptr(tmp, mdo_addr);
3777           __ testptr(tmp, TypeEntries::type_mask);
3778           __ jcc(Assembler::zero, ok);
3779 
3780           __ stop("unexpected profiling mismatch");
3781           __ bind(ok);
3782           __ pop(tmp);
3783         }
3784 #else
3785         __ jccb(Assembler::zero, next);
3786 #endif
3787         // first time here. Set profile type.
3788         __ movptr(mdo_addr, tmp);
3789       } else {
3790         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3791                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3792 
3793         __ movptr(tmp, mdo_addr);
3794         __ testptr(tmp, TypeEntries::type_unknown);
3795         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3796 
3797         __ orptr(mdo_addr, TypeEntries::type_unknown);
3798       }
3799     }
3800 
3801     __ bind(next);
3802   }
3803 }
3804 
3805 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3806   Unimplemented();
3807 }
3808 
3809 
3810 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3811   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3812 }
3813 
3814 
3815 void LIR_Assembler::align_backward_branch_target() {
3816   __ align(BytesPerWord);
3817 }
3818 
3819 
3820 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3821   if (left->is_single_cpu()) {
3822     __ negl(left->as_register());
3823     move_regs(left->as_register(), dest->as_register());
3824 
3825   } else if (left->is_double_cpu()) {
3826     Register lo = left->as_register_lo();
3827 #ifdef _LP64
3828     Register dst = dest->as_register_lo();
3829     __ movptr(dst, lo);
3830     __ negptr(dst);
3831 #else
3832     Register hi = left->as_register_hi();
3833     __ lneg(hi, lo);
3834     if (dest->as_register_lo() == hi) {
3835       assert(dest->as_register_hi() != lo, "destroying register");
3836       move_regs(hi, dest->as_register_hi());
3837       move_regs(lo, dest->as_register_lo());
3838     } else {
3839       move_regs(lo, dest->as_register_lo());
3840       move_regs(hi, dest->as_register_hi());
3841     }
3842 #endif // _LP64
3843 
3844   } else if (dest->is_single_xmm()) {
3845 #ifdef _LP64
3846     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3847       assert(tmp->is_valid(), "need temporary");
3848       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3849       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3850     }
3851     else
3852 #endif
3853     {
3854       assert(!tmp->is_valid(), "do not need temporary");
3855       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3856         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3857       }
3858       __ xorps(dest->as_xmm_float_reg(),
3859                ExternalAddress((address)float_signflip_pool));
3860     }
3861   } else if (dest->is_double_xmm()) {
3862 #ifdef _LP64
3863     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3864       assert(tmp->is_valid(), "need temporary");
3865       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3866       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3867     }
3868     else
3869 #endif
3870     {
3871       assert(!tmp->is_valid(), "do not need temporary");
3872       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3873         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3874       }
3875       __ xorpd(dest->as_xmm_double_reg(),
3876                ExternalAddress((address)double_signflip_pool));
3877     }
3878   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3879     assert(left->fpu() == 0, "arg must be on TOS");
3880     assert(dest->fpu() == 0, "dest must be TOS");
3881     __ fchs();
3882 
3883   } else {
3884     ShouldNotReachHere();
3885   }
3886 }
3887 
3888 
3889 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3890   assert(src->is_address(), "must be an address");
3891   assert(dest->is_register(), "must be a register");
3892 
3893   PatchingStub* patch = NULL;
3894   if (patch_code != lir_patch_none) {
3895     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3896   }
3897 
3898   Register reg = dest->as_pointer_register();
3899   LIR_Address* addr = src->as_address_ptr();
3900   __ lea(reg, as_Address(addr));
3901 
3902   if (patch != NULL) {
3903     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3904   }
3905 }
3906 
3907 
3908 
3909 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3910   assert(!tmp->is_valid(), "don't need temporary");
3911   __ call(RuntimeAddress(dest));
3912   if (info != NULL) {
3913     add_call_info_here(info);
3914   }
3915 }
3916 
3917 
3918 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3919   assert(type == T_LONG, "only for volatile long fields");
3920 
3921   if (info != NULL) {
3922     add_debug_info_for_null_check_here(info);
3923   }
3924 
3925   if (src->is_double_xmm()) {
3926     if (dest->is_double_cpu()) {
3927 #ifdef _LP64
3928       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3929 #else
3930       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3931       __ psrlq(src->as_xmm_double_reg(), 32);
3932       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3933 #endif // _LP64
3934     } else if (dest->is_double_stack()) {
3935       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3936     } else if (dest->is_address()) {
3937       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3938     } else {
3939       ShouldNotReachHere();
3940     }
3941 
3942   } else if (dest->is_double_xmm()) {
3943     if (src->is_double_stack()) {
3944       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3945     } else if (src->is_address()) {
3946       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3947     } else {
3948       ShouldNotReachHere();
3949     }
3950 
3951   } else if (src->is_double_fpu()) {
3952     assert(src->fpu_regnrLo() == 0, "must be TOS");
3953     if (dest->is_double_stack()) {
3954       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3955     } else if (dest->is_address()) {
3956       __ fistp_d(as_Address(dest->as_address_ptr()));
3957     } else {
3958       ShouldNotReachHere();
3959     }
3960 
3961   } else if (dest->is_double_fpu()) {
3962     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3963     if (src->is_double_stack()) {
3964       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3965     } else if (src->is_address()) {
3966       __ fild_d(as_Address(src->as_address_ptr()));
3967     } else {
3968       ShouldNotReachHere();
3969     }
3970   } else {
3971     ShouldNotReachHere();
3972   }
3973 }
3974 
3975 #ifdef ASSERT
3976 // emit run-time assertion
3977 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3978   assert(op->code() == lir_assert, "must be");
3979 
3980   if (op->in_opr1()->is_valid()) {
3981     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3982     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3983   } else {
3984     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3985     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3986   }
3987 
3988   Label ok;
3989   if (op->condition() != lir_cond_always) {
3990     Assembler::Condition acond = Assembler::zero;
3991     switch (op->condition()) {
3992       case lir_cond_equal:        acond = Assembler::equal;       break;
3993       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3994       case lir_cond_less:         acond = Assembler::less;        break;
3995       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3996       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3997       case lir_cond_greater:      acond = Assembler::greater;     break;
3998       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3999       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
4000       default:                    ShouldNotReachHere();
4001     }
4002     __ jcc(acond, ok);
4003   }
4004   if (op->halt()) {
4005     const char* str = __ code_string(op->msg());
4006     __ stop(str);
4007   } else {
4008     breakpoint();
4009   }
4010   __ bind(ok);
4011 }
4012 #endif
4013 
4014 void LIR_Assembler::membar() {
4015   // QQQ sparc TSO uses this,
4016   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
4017 }
4018 
4019 void LIR_Assembler::membar_acquire() {
4020   // No x86 machines currently require load fences
4021 }
4022 
4023 void LIR_Assembler::membar_release() {
4024   // No x86 machines currently require store fences
4025 }
4026 
4027 void LIR_Assembler::membar_loadload() {
4028   // no-op
4029   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4030 }
4031 
4032 void LIR_Assembler::membar_storestore() {
4033   // no-op
4034   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4035 }
4036 
4037 void LIR_Assembler::membar_loadstore() {
4038   // no-op
4039   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4040 }
4041 
4042 void LIR_Assembler::membar_storeload() {
4043   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4044 }
4045 
4046 void LIR_Assembler::on_spin_wait() {
4047   __ pause ();
4048 }
4049 
4050 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4051   assert(result_reg->is_register(), "check");
4052 #ifdef _LP64
4053   // __ get_thread(result_reg->as_register_lo());
4054   __ mov(result_reg->as_register(), r15_thread);
4055 #else
4056   __ get_thread(result_reg->as_register());
4057 #endif // _LP64
4058 }
4059 
4060 
4061 void LIR_Assembler::peephole(LIR_List*) {
4062   // do nothing for now
4063 }
4064 
4065 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4066   assert(data == dest, "xchg/xadd uses only 2 operands");
4067 
4068   if (data->type() == T_INT) {
4069     if (code == lir_xadd) {
4070       __ lock();
4071       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4072     } else {
4073       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4074     }
4075   } else if (data->is_oop()) {
4076     assert (code == lir_xchg, "xadd for oops");
4077     Register obj = data->as_register();
4078 #ifdef _LP64
4079     if (UseCompressedOops) {
4080       __ encode_heap_oop(obj);
4081       __ xchgl(obj, as_Address(src->as_address_ptr()));
4082       __ decode_heap_oop(obj);
4083     } else {
4084       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4085     }
4086 #else
4087     __ xchgl(obj, as_Address(src->as_address_ptr()));
4088 #endif
4089   } else if (data->type() == T_LONG) {
4090 #ifdef _LP64
4091     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4092     if (code == lir_xadd) {
4093       __ lock();
4094       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4095     } else {
4096       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4097     }
4098 #else
4099     ShouldNotReachHere();
4100 #endif
4101   } else {
4102     ShouldNotReachHere();
4103   }
4104 }
4105 
4106 #undef __