1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "memory/universe.hpp"
  50 #include "oops/access.hpp"
  51 #include "oops/fieldStreams.hpp"
  52 #include "oops/klass.hpp"
  53 #include "oops/method.inline.hpp"
  54 #include "oops/objArrayKlass.hpp"
  55 #include "oops/objArrayOop.inline.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/valueKlass.hpp"
  58 #include "prims/forte.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "prims/methodHandles.hpp"
  61 #include "prims/nativeLookup.hpp"
  62 #include "runtime/arguments.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/biasedLocking.hpp"
  65 #include "runtime/compilationPolicy.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/handles.inline.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/stubRoutines.hpp"
  74 #include "runtime/vframe.inline.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "utilities/copy.hpp"
  77 #include "utilities/dtrace.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/hashtable.inline.hpp"
  80 #include "utilities/macros.hpp"
  81 #include "utilities/xmlstream.hpp"
  82 #ifdef COMPILER1
  83 #include "c1/c1_Runtime1.hpp"
  84 #endif
  85 
  86 // Shared stub locations
  87 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  88 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  89 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  91 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  92 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  93 address             SharedRuntime::_resolve_static_call_entry;
  94 
  95 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  96 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  97 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  98 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  99 
 100 #ifdef COMPILER2
 101 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
 102 #endif // COMPILER2
 103 
 104 
 105 //----------------------------generate_stubs-----------------------------------
 106 void SharedRuntime::generate_stubs() {
 107   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 108   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 109   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 110   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 111   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 112   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 113   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 114 
 115 #if COMPILER2_OR_JVMCI
 116   // Vectors are generated only by C2 and JVMCI.
 117   bool support_wide = is_wide_vector(MaxVectorSize);
 118   if (support_wide) {
 119     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 120   }
 121 #endif // COMPILER2_OR_JVMCI
 122   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 123   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 124 
 125   generate_deopt_blob();
 126 
 127 #ifdef COMPILER2
 128   generate_uncommon_trap_blob();
 129 #endif // COMPILER2
 130 }
 131 
 132 #include <math.h>
 133 
 134 // Implementation of SharedRuntime
 135 
 136 #ifndef PRODUCT
 137 // For statistics
 138 int SharedRuntime::_ic_miss_ctr = 0;
 139 int SharedRuntime::_wrong_method_ctr = 0;
 140 int SharedRuntime::_resolve_static_ctr = 0;
 141 int SharedRuntime::_resolve_virtual_ctr = 0;
 142 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 143 int SharedRuntime::_implicit_null_throws = 0;
 144 int SharedRuntime::_implicit_div0_throws = 0;
 145 int SharedRuntime::_throw_null_ctr = 0;
 146 
 147 int SharedRuntime::_nof_normal_calls = 0;
 148 int SharedRuntime::_nof_optimized_calls = 0;
 149 int SharedRuntime::_nof_inlined_calls = 0;
 150 int SharedRuntime::_nof_megamorphic_calls = 0;
 151 int SharedRuntime::_nof_static_calls = 0;
 152 int SharedRuntime::_nof_inlined_static_calls = 0;
 153 int SharedRuntime::_nof_interface_calls = 0;
 154 int SharedRuntime::_nof_optimized_interface_calls = 0;
 155 int SharedRuntime::_nof_inlined_interface_calls = 0;
 156 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 157 int SharedRuntime::_nof_removable_exceptions = 0;
 158 
 159 int SharedRuntime::_new_instance_ctr=0;
 160 int SharedRuntime::_new_array_ctr=0;
 161 int SharedRuntime::_multi1_ctr=0;
 162 int SharedRuntime::_multi2_ctr=0;
 163 int SharedRuntime::_multi3_ctr=0;
 164 int SharedRuntime::_multi4_ctr=0;
 165 int SharedRuntime::_multi5_ctr=0;
 166 int SharedRuntime::_mon_enter_stub_ctr=0;
 167 int SharedRuntime::_mon_exit_stub_ctr=0;
 168 int SharedRuntime::_mon_enter_ctr=0;
 169 int SharedRuntime::_mon_exit_ctr=0;
 170 int SharedRuntime::_partial_subtype_ctr=0;
 171 int SharedRuntime::_jbyte_array_copy_ctr=0;
 172 int SharedRuntime::_jshort_array_copy_ctr=0;
 173 int SharedRuntime::_jint_array_copy_ctr=0;
 174 int SharedRuntime::_jlong_array_copy_ctr=0;
 175 int SharedRuntime::_oop_array_copy_ctr=0;
 176 int SharedRuntime::_checkcast_array_copy_ctr=0;
 177 int SharedRuntime::_unsafe_array_copy_ctr=0;
 178 int SharedRuntime::_generic_array_copy_ctr=0;
 179 int SharedRuntime::_slow_array_copy_ctr=0;
 180 int SharedRuntime::_find_handler_ctr=0;
 181 int SharedRuntime::_rethrow_ctr=0;
 182 
 183 int     SharedRuntime::_ICmiss_index                    = 0;
 184 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 185 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 186 
 187 
 188 void SharedRuntime::trace_ic_miss(address at) {
 189   for (int i = 0; i < _ICmiss_index; i++) {
 190     if (_ICmiss_at[i] == at) {
 191       _ICmiss_count[i]++;
 192       return;
 193     }
 194   }
 195   int index = _ICmiss_index++;
 196   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 197   _ICmiss_at[index] = at;
 198   _ICmiss_count[index] = 1;
 199 }
 200 
 201 void SharedRuntime::print_ic_miss_histogram() {
 202   if (ICMissHistogram) {
 203     tty->print_cr("IC Miss Histogram:");
 204     int tot_misses = 0;
 205     for (int i = 0; i < _ICmiss_index; i++) {
 206       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 207       tot_misses += _ICmiss_count[i];
 208     }
 209     tty->print_cr("Total IC misses: %7d", tot_misses);
 210   }
 211 }
 212 #endif // PRODUCT
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 216   return x * y;
 217 JRT_END
 218 
 219 
 220 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 221   if (x == min_jlong && y == CONST64(-1)) {
 222     return x;
 223   } else {
 224     return x / y;
 225   }
 226 JRT_END
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 230   if (x == min_jlong && y == CONST64(-1)) {
 231     return 0;
 232   } else {
 233     return x % y;
 234   }
 235 JRT_END
 236 
 237 
 238 const juint  float_sign_mask  = 0x7FFFFFFF;
 239 const juint  float_infinity   = 0x7F800000;
 240 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 241 const julong double_infinity  = CONST64(0x7FF0000000000000);
 242 
 243 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 244 #ifdef _WIN64
 245   // 64-bit Windows on amd64 returns the wrong values for
 246   // infinity operands.
 247   union { jfloat f; juint i; } xbits, ybits;
 248   xbits.f = x;
 249   ybits.f = y;
 250   // x Mod Infinity == x unless x is infinity
 251   if (((xbits.i & float_sign_mask) != float_infinity) &&
 252        ((ybits.i & float_sign_mask) == float_infinity) ) {
 253     return x;
 254   }
 255   return ((jfloat)fmod_winx64((double)x, (double)y));
 256 #else
 257   return ((jfloat)fmod((double)x,(double)y));
 258 #endif
 259 JRT_END
 260 
 261 
 262 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 263 #ifdef _WIN64
 264   union { jdouble d; julong l; } xbits, ybits;
 265   xbits.d = x;
 266   ybits.d = y;
 267   // x Mod Infinity == x unless x is infinity
 268   if (((xbits.l & double_sign_mask) != double_infinity) &&
 269        ((ybits.l & double_sign_mask) == double_infinity) ) {
 270     return x;
 271   }
 272   return ((jdouble)fmod_winx64((double)x, (double)y));
 273 #else
 274   return ((jdouble)fmod((double)x,(double)y));
 275 #endif
 276 JRT_END
 277 
 278 #ifdef __SOFTFP__
 279 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 280   return x + y;
 281 JRT_END
 282 
 283 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 284   return x - y;
 285 JRT_END
 286 
 287 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 288   return x * y;
 289 JRT_END
 290 
 291 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 292   return x / y;
 293 JRT_END
 294 
 295 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 296   return x + y;
 297 JRT_END
 298 
 299 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 300   return x - y;
 301 JRT_END
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 304   return x * y;
 305 JRT_END
 306 
 307 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 308   return x / y;
 309 JRT_END
 310 
 311 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 312   return (jfloat)x;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 316   return (jdouble)x;
 317 JRT_END
 318 
 319 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 320   return (jdouble)x;
 321 JRT_END
 322 
 323 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 324   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 325 JRT_END
 326 
 327 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 328   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 329 JRT_END
 330 
 331 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 332   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 333 JRT_END
 334 
 335 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 336   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 337 JRT_END
 338 
 339 // Functions to return the opposite of the aeabi functions for nan.
 340 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 341   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 342 JRT_END
 343 
 344 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 345   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 346 JRT_END
 347 
 348 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 349   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 350 JRT_END
 351 
 352 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 353   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 357   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 361   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 365   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 369   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 370 JRT_END
 371 
 372 // Intrinsics make gcc generate code for these.
 373 float  SharedRuntime::fneg(float f)   {
 374   return -f;
 375 }
 376 
 377 double SharedRuntime::dneg(double f)  {
 378   return -f;
 379 }
 380 
 381 #endif // __SOFTFP__
 382 
 383 #if defined(__SOFTFP__) || defined(E500V2)
 384 // Intrinsics make gcc generate code for these.
 385 double SharedRuntime::dabs(double f)  {
 386   return (f <= (double)0.0) ? (double)0.0 - f : f;
 387 }
 388 
 389 #endif
 390 
 391 #if defined(__SOFTFP__) || defined(PPC)
 392 double SharedRuntime::dsqrt(double f) {
 393   return sqrt(f);
 394 }
 395 #endif
 396 
 397 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 398   if (g_isnan(x))
 399     return 0;
 400   if (x >= (jfloat) max_jint)
 401     return max_jint;
 402   if (x <= (jfloat) min_jint)
 403     return min_jint;
 404   return (jint) x;
 405 JRT_END
 406 
 407 
 408 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 409   if (g_isnan(x))
 410     return 0;
 411   if (x >= (jfloat) max_jlong)
 412     return max_jlong;
 413   if (x <= (jfloat) min_jlong)
 414     return min_jlong;
 415   return (jlong) x;
 416 JRT_END
 417 
 418 
 419 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jdouble) max_jint)
 423     return max_jint;
 424   if (x <= (jdouble) min_jint)
 425     return min_jint;
 426   return (jint) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jdouble) max_jlong)
 434     return max_jlong;
 435   if (x <= (jdouble) min_jlong)
 436     return min_jlong;
 437   return (jlong) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 447   return (jfloat)x;
 448 JRT_END
 449 
 450 
 451 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 452   return (jdouble)x;
 453 JRT_END
 454 
 455 // Exception handling across interpreter/compiler boundaries
 456 //
 457 // exception_handler_for_return_address(...) returns the continuation address.
 458 // The continuation address is the entry point of the exception handler of the
 459 // previous frame depending on the return address.
 460 
 461 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 462   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 463   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 464 
 465   // Reset method handle flag.
 466   thread->set_is_method_handle_return(false);
 467 
 468 #if INCLUDE_JVMCI
 469   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 470   // and other exception handler continuations do not read it
 471   thread->set_exception_pc(NULL);
 472 #endif // INCLUDE_JVMCI
 473 
 474   // The fastest case first
 475   CodeBlob* blob = CodeCache::find_blob(return_address);
 476   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 477   if (nm != NULL) {
 478     // Set flag if return address is a method handle call site.
 479     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 480     // native nmethods don't have exception handlers
 481     assert(!nm->is_native_method(), "no exception handler");
 482     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 483     if (nm->is_deopt_pc(return_address)) {
 484       // If we come here because of a stack overflow, the stack may be
 485       // unguarded. Reguard the stack otherwise if we return to the
 486       // deopt blob and the stack bang causes a stack overflow we
 487       // crash.
 488       bool guard_pages_enabled = thread->stack_guards_enabled();
 489       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 490       if (thread->reserved_stack_activation() != thread->stack_base()) {
 491         thread->set_reserved_stack_activation(thread->stack_base());
 492       }
 493       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 494       return SharedRuntime::deopt_blob()->unpack_with_exception();
 495     } else {
 496       return nm->exception_begin();
 497     }
 498   }
 499 
 500   // Entry code
 501   if (StubRoutines::returns_to_call_stub(return_address)) {
 502     return StubRoutines::catch_exception_entry();
 503   }
 504   // Interpreted code
 505   if (Interpreter::contains(return_address)) {
 506     return Interpreter::rethrow_exception_entry();
 507   }
 508 
 509   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 510   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 511 
 512 #ifndef PRODUCT
 513   { ResourceMark rm;
 514     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 515     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 516     tty->print_cr("b) other problem");
 517   }
 518 #endif // PRODUCT
 519 
 520   ShouldNotReachHere();
 521   return NULL;
 522 }
 523 
 524 
 525 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 526   return raw_exception_handler_for_return_address(thread, return_address);
 527 JRT_END
 528 
 529 
 530 address SharedRuntime::get_poll_stub(address pc) {
 531   address stub;
 532   // Look up the code blob
 533   CodeBlob *cb = CodeCache::find_blob(pc);
 534 
 535   // Should be an nmethod
 536   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 537 
 538   // Look up the relocation information
 539   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 540     "safepoint polling: type must be poll");
 541 
 542 #ifdef ASSERT
 543   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 544     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 545     Disassembler::decode(cb);
 546     fatal("Only polling locations are used for safepoint");
 547   }
 548 #endif
 549 
 550   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 551   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 552   if (at_poll_return) {
 553     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 554            "polling page return stub not created yet");
 555     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 556   } else if (has_wide_vectors) {
 557     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 558            "polling page vectors safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 560   } else {
 561     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 562            "polling page safepoint stub not created yet");
 563     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 564   }
 565   log_debug(safepoint)("... found polling page %s exception at pc = "
 566                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 567                        at_poll_return ? "return" : "loop",
 568                        (intptr_t)pc, (intptr_t)stub);
 569   return stub;
 570 }
 571 
 572 
 573 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 574   assert(caller.is_interpreted_frame(), "");
 575   int args_size = ArgumentSizeComputer(sig).size() + 1;
 576   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 577   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 578   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 579   return result;
 580 }
 581 
 582 
 583 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 584   if (JvmtiExport::can_post_on_exceptions()) {
 585     vframeStream vfst(thread, true);
 586     methodHandle method = methodHandle(thread, vfst.method());
 587     address bcp = method()->bcp_from(vfst.bci());
 588     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 589   }
 590   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 591 }
 592 
 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 594   Handle h_exception = Exceptions::new_exception(thread, name, message);
 595   throw_and_post_jvmti_exception(thread, h_exception);
 596 }
 597 
 598 // The interpreter code to call this tracing function is only
 599 // called/generated when UL is on for redefine, class and has the right level
 600 // and tags. Since obsolete methods are never compiled, we don't have
 601 // to modify the compilers to generate calls to this function.
 602 //
 603 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 604     JavaThread* thread, Method* method))
 605   if (method->is_obsolete()) {
 606     // We are calling an obsolete method, but this is not necessarily
 607     // an error. Our method could have been redefined just after we
 608     // fetched the Method* from the constant pool.
 609     ResourceMark rm;
 610     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 611   }
 612   return 0;
 613 JRT_END
 614 
 615 // ret_pc points into caller; we are returning caller's exception handler
 616 // for given exception
 617 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 618                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 619   assert(cm != NULL, "must exist");
 620   ResourceMark rm;
 621 
 622 #if INCLUDE_JVMCI
 623   if (cm->is_compiled_by_jvmci()) {
 624     // lookup exception handler for this pc
 625     int catch_pco = ret_pc - cm->code_begin();
 626     ExceptionHandlerTable table(cm);
 627     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 628     if (t != NULL) {
 629       return cm->code_begin() + t->pco();
 630     } else {
 631       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 632     }
 633   }
 634 #endif // INCLUDE_JVMCI
 635 
 636   nmethod* nm = cm->as_nmethod();
 637   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 638   // determine handler bci, if any
 639   EXCEPTION_MARK;
 640 
 641   int handler_bci = -1;
 642   int scope_depth = 0;
 643   if (!force_unwind) {
 644     int bci = sd->bci();
 645     bool recursive_exception = false;
 646     do {
 647       bool skip_scope_increment = false;
 648       // exception handler lookup
 649       Klass* ek = exception->klass();
 650       methodHandle mh(THREAD, sd->method());
 651       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 652       if (HAS_PENDING_EXCEPTION) {
 653         recursive_exception = true;
 654         // We threw an exception while trying to find the exception handler.
 655         // Transfer the new exception to the exception handle which will
 656         // be set into thread local storage, and do another lookup for an
 657         // exception handler for this exception, this time starting at the
 658         // BCI of the exception handler which caused the exception to be
 659         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 660         // argument to ensure that the correct exception is thrown (4870175).
 661         recursive_exception_occurred = true;
 662         exception = Handle(THREAD, PENDING_EXCEPTION);
 663         CLEAR_PENDING_EXCEPTION;
 664         if (handler_bci >= 0) {
 665           bci = handler_bci;
 666           handler_bci = -1;
 667           skip_scope_increment = true;
 668         }
 669       }
 670       else {
 671         recursive_exception = false;
 672       }
 673       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 674         sd = sd->sender();
 675         if (sd != NULL) {
 676           bci = sd->bci();
 677         }
 678         ++scope_depth;
 679       }
 680     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 681   }
 682 
 683   // found handling method => lookup exception handler
 684   int catch_pco = ret_pc - nm->code_begin();
 685 
 686   ExceptionHandlerTable table(nm);
 687   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 688   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 689     // Allow abbreviated catch tables.  The idea is to allow a method
 690     // to materialize its exceptions without committing to the exact
 691     // routing of exceptions.  In particular this is needed for adding
 692     // a synthetic handler to unlock monitors when inlining
 693     // synchronized methods since the unlock path isn't represented in
 694     // the bytecodes.
 695     t = table.entry_for(catch_pco, -1, 0);
 696   }
 697 
 698 #ifdef COMPILER1
 699   if (t == NULL && nm->is_compiled_by_c1()) {
 700     assert(nm->unwind_handler_begin() != NULL, "");
 701     return nm->unwind_handler_begin();
 702   }
 703 #endif
 704 
 705   if (t == NULL) {
 706     ttyLocker ttyl;
 707     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 708     tty->print_cr("   Exception:");
 709     exception->print();
 710     tty->cr();
 711     tty->print_cr(" Compiled exception table :");
 712     table.print();
 713     nm->print_code();
 714     guarantee(false, "missing exception handler");
 715     return NULL;
 716   }
 717 
 718   return nm->code_begin() + t->pco();
 719 }
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 727   // These errors occur only at call sites
 728   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 729 JRT_END
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 732   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 733 JRT_END
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 736   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 737 JRT_END
 738 
 739 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 740   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 741   // cache sites (when the callee activation is not yet set up) so we are at a call site
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 746   throw_StackOverflowError_common(thread, false);
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 750   throw_StackOverflowError_common(thread, true);
 751 JRT_END
 752 
 753 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 754   // We avoid using the normal exception construction in this case because
 755   // it performs an upcall to Java, and we're already out of stack space.
 756   Thread* THREAD = thread;
 757   Klass* k = SystemDictionary::StackOverflowError_klass();
 758   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 759   if (delayed) {
 760     java_lang_Throwable::set_message(exception_oop,
 761                                      Universe::delayed_stack_overflow_error_message());
 762   }
 763   Handle exception (thread, exception_oop);
 764   if (StackTraceInThrowable) {
 765     java_lang_Throwable::fill_in_stack_trace(exception);
 766   }
 767   // Increment counter for hs_err file reporting
 768   Atomic::inc(&Exceptions::_stack_overflow_errors);
 769   throw_and_post_jvmti_exception(thread, exception);
 770 }
 771 
 772 #if INCLUDE_JVMCI
 773 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 774   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 775   thread->set_jvmci_implicit_exception_pc(pc);
 776   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 777   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 778 }
 779 #endif // INCLUDE_JVMCI
 780 
 781 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 782                                                            address pc,
 783                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 784 {
 785   address target_pc = NULL;
 786 
 787   if (Interpreter::contains(pc)) {
 788 #ifdef CC_INTERP
 789     // C++ interpreter doesn't throw implicit exceptions
 790     ShouldNotReachHere();
 791 #else
 792     switch (exception_kind) {
 793       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 794       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 795       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 796       default:                      ShouldNotReachHere();
 797     }
 798 #endif // !CC_INTERP
 799   } else {
 800     switch (exception_kind) {
 801       case STACK_OVERFLOW: {
 802         // Stack overflow only occurs upon frame setup; the callee is
 803         // going to be unwound. Dispatch to a shared runtime stub
 804         // which will cause the StackOverflowError to be fabricated
 805         // and processed.
 806         // Stack overflow should never occur during deoptimization:
 807         // the compiled method bangs the stack by as much as the
 808         // interpreter would need in case of a deoptimization. The
 809         // deoptimization blob and uncommon trap blob bang the stack
 810         // in a debug VM to verify the correctness of the compiled
 811         // method stack banging.
 812         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 813         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 814         return StubRoutines::throw_StackOverflowError_entry();
 815       }
 816 
 817       case IMPLICIT_NULL: {
 818         if (VtableStubs::contains(pc)) {
 819           // We haven't yet entered the callee frame. Fabricate an
 820           // exception and begin dispatching it in the caller. Since
 821           // the caller was at a call site, it's safe to destroy all
 822           // caller-saved registers, as these entry points do.
 823           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 824 
 825           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 826           if (vt_stub == NULL) return NULL;
 827 
 828           if (vt_stub->is_abstract_method_error(pc)) {
 829             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 830             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 831             // Instead of throwing the abstract method error here directly, we re-resolve
 832             // and will throw the AbstractMethodError during resolve. As a result, we'll
 833             // get a more detailed error message.
 834             return SharedRuntime::get_handle_wrong_method_stub();
 835           } else {
 836             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 837             // Assert that the signal comes from the expected location in stub code.
 838             assert(vt_stub->is_null_pointer_exception(pc),
 839                    "obtained signal from unexpected location in stub code");
 840             return StubRoutines::throw_NullPointerException_at_call_entry();
 841           }
 842         } else {
 843           CodeBlob* cb = CodeCache::find_blob(pc);
 844 
 845           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 846           if (cb == NULL) return NULL;
 847 
 848           // Exception happened in CodeCache. Must be either:
 849           // 1. Inline-cache check in C2I handler blob,
 850           // 2. Inline-cache check in nmethod, or
 851           // 3. Implicit null exception in nmethod
 852 
 853           if (!cb->is_compiled()) {
 854             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 855             if (!is_in_blob) {
 856               // Allow normal crash reporting to handle this
 857               return NULL;
 858             }
 859             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 860             // There is no handler here, so we will simply unwind.
 861             return StubRoutines::throw_NullPointerException_at_call_entry();
 862           }
 863 
 864           // Otherwise, it's a compiled method.  Consult its exception handlers.
 865           CompiledMethod* cm = (CompiledMethod*)cb;
 866           if (cm->inlinecache_check_contains(pc)) {
 867             // exception happened inside inline-cache check code
 868             // => the nmethod is not yet active (i.e., the frame
 869             // is not set up yet) => use return address pushed by
 870             // caller => don't push another return address
 871             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 872             return StubRoutines::throw_NullPointerException_at_call_entry();
 873           }
 874 
 875           if (cm->method()->is_method_handle_intrinsic()) {
 876             // exception happened inside MH dispatch code, similar to a vtable stub
 877             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 878             return StubRoutines::throw_NullPointerException_at_call_entry();
 879           }
 880 
 881 #ifndef PRODUCT
 882           _implicit_null_throws++;
 883 #endif
 884 #if INCLUDE_JVMCI
 885           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 886             // If there's no PcDesc then we'll die way down inside of
 887             // deopt instead of just getting normal error reporting,
 888             // so only go there if it will succeed.
 889             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 890           } else {
 891 #endif // INCLUDE_JVMCI
 892           assert (cm->is_nmethod(), "Expect nmethod");
 893           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 894 #if INCLUDE_JVMCI
 895           }
 896 #endif // INCLUDE_JVMCI
 897           // If there's an unexpected fault, target_pc might be NULL,
 898           // in which case we want to fall through into the normal
 899           // error handling code.
 900         }
 901 
 902         break; // fall through
 903       }
 904 
 905 
 906       case IMPLICIT_DIVIDE_BY_ZERO: {
 907         CompiledMethod* cm = CodeCache::find_compiled(pc);
 908         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 909 #ifndef PRODUCT
 910         _implicit_div0_throws++;
 911 #endif
 912 #if INCLUDE_JVMCI
 913         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 914           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 915         } else {
 916 #endif // INCLUDE_JVMCI
 917         target_pc = cm->continuation_for_implicit_exception(pc);
 918 #if INCLUDE_JVMCI
 919         }
 920 #endif // INCLUDE_JVMCI
 921         // If there's an unexpected fault, target_pc might be NULL,
 922         // in which case we want to fall through into the normal
 923         // error handling code.
 924         break; // fall through
 925       }
 926 
 927       default: ShouldNotReachHere();
 928     }
 929 
 930     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 931 
 932     if (exception_kind == IMPLICIT_NULL) {
 933 #ifndef PRODUCT
 934       // for AbortVMOnException flag
 935       Exceptions::debug_check_abort("java.lang.NullPointerException");
 936 #endif //PRODUCT
 937       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 938     } else {
 939 #ifndef PRODUCT
 940       // for AbortVMOnException flag
 941       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 942 #endif //PRODUCT
 943       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 944     }
 945     return target_pc;
 946   }
 947 
 948   ShouldNotReachHere();
 949   return NULL;
 950 }
 951 
 952 
 953 /**
 954  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 955  * installed in the native function entry of all native Java methods before
 956  * they get linked to their actual native methods.
 957  *
 958  * \note
 959  * This method actually never gets called!  The reason is because
 960  * the interpreter's native entries call NativeLookup::lookup() which
 961  * throws the exception when the lookup fails.  The exception is then
 962  * caught and forwarded on the return from NativeLookup::lookup() call
 963  * before the call to the native function.  This might change in the future.
 964  */
 965 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 966 {
 967   // We return a bad value here to make sure that the exception is
 968   // forwarded before we look at the return value.
 969   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 970 }
 971 JNI_END
 972 
 973 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 974   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 975 }
 976 
 977 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 978 #if INCLUDE_JVMCI
 979   if (!obj->klass()->has_finalizer()) {
 980     return;
 981   }
 982 #endif // INCLUDE_JVMCI
 983   assert(oopDesc::is_oop(obj), "must be a valid oop");
 984   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 985   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 986 JRT_END
 987 
 988 
 989 jlong SharedRuntime::get_java_tid(Thread* thread) {
 990   if (thread != NULL) {
 991     if (thread->is_Java_thread()) {
 992       oop obj = ((JavaThread*)thread)->threadObj();
 993       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 994     }
 995   }
 996   return 0;
 997 }
 998 
 999 /**
1000  * This function ought to be a void function, but cannot be because
1001  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1002  * 6254741.  Once that is fixed we can remove the dummy return value.
1003  */
1004 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1005   return dtrace_object_alloc_base(Thread::current(), o, size);
1006 }
1007 
1008 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1009   assert(DTraceAllocProbes, "wrong call");
1010   Klass* klass = o->klass();
1011   Symbol* name = klass->name();
1012   HOTSPOT_OBJECT_ALLOC(
1013                    get_java_tid(thread),
1014                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1015   return 0;
1016 }
1017 
1018 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1019     JavaThread* thread, Method* method))
1020   assert(DTraceMethodProbes, "wrong call");
1021   Symbol* kname = method->klass_name();
1022   Symbol* name = method->name();
1023   Symbol* sig = method->signature();
1024   HOTSPOT_METHOD_ENTRY(
1025       get_java_tid(thread),
1026       (char *) kname->bytes(), kname->utf8_length(),
1027       (char *) name->bytes(), name->utf8_length(),
1028       (char *) sig->bytes(), sig->utf8_length());
1029   return 0;
1030 JRT_END
1031 
1032 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1033     JavaThread* thread, Method* method))
1034   assert(DTraceMethodProbes, "wrong call");
1035   Symbol* kname = method->klass_name();
1036   Symbol* name = method->name();
1037   Symbol* sig = method->signature();
1038   HOTSPOT_METHOD_RETURN(
1039       get_java_tid(thread),
1040       (char *) kname->bytes(), kname->utf8_length(),
1041       (char *) name->bytes(), name->utf8_length(),
1042       (char *) sig->bytes(), sig->utf8_length());
1043   return 0;
1044 JRT_END
1045 
1046 
1047 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1048 // for a call current in progress, i.e., arguments has been pushed on stack
1049 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1050 // vtable updates, etc.  Caller frame must be compiled.
1051 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1052   ResourceMark rm(THREAD);
1053 
1054   // last java frame on stack (which includes native call frames)
1055   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1056 
1057   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1058 }
1059 
1060 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1061   CompiledMethod* caller = vfst.nm();
1062 
1063   nmethodLocker caller_lock(caller);
1064 
1065   address pc = vfst.frame_pc();
1066   { // Get call instruction under lock because another thread may be busy patching it.
1067     CompiledICLocker ic_locker(caller);
1068     return caller->attached_method_before_pc(pc);
1069   }
1070   return NULL;
1071 }
1072 
1073 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1074 // for a call current in progress, i.e., arguments has been pushed on stack
1075 // but callee has not been invoked yet.  Caller frame must be compiled.
1076 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1077                                               vframeStream& vfst,
1078                                               Bytecodes::Code& bc,
1079                                               CallInfo& callinfo, TRAPS) {
1080   Handle receiver;
1081   Handle nullHandle;  //create a handy null handle for exception returns
1082 
1083   assert(!vfst.at_end(), "Java frame must exist");
1084 
1085   // Find caller and bci from vframe
1086   methodHandle caller(THREAD, vfst.method());
1087   int          bci   = vfst.bci();
1088 
1089   Bytecode_invoke bytecode(caller, bci);
1090   int bytecode_index = bytecode.index();
1091   bc = bytecode.invoke_code();
1092 
1093   methodHandle attached_method = extract_attached_method(vfst);
1094   if (attached_method.not_null()) {
1095     methodHandle callee = bytecode.static_target(CHECK_NH);
1096     vmIntrinsics::ID id = callee->intrinsic_id();
1097     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1098     // it attaches statically resolved method to the call site.
1099     if (MethodHandles::is_signature_polymorphic(id) &&
1100         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1101       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1102 
1103       // Adjust invocation mode according to the attached method.
1104       switch (bc) {
1105         case Bytecodes::_invokevirtual:
1106           if (attached_method->method_holder()->is_interface()) {
1107             bc = Bytecodes::_invokeinterface;
1108           }
1109           break;
1110         case Bytecodes::_invokeinterface:
1111           if (!attached_method->method_holder()->is_interface()) {
1112             bc = Bytecodes::_invokevirtual;
1113           }
1114           break;
1115         case Bytecodes::_invokehandle:
1116           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1117             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1118                                               : Bytecodes::_invokevirtual;
1119           }
1120           break;
1121         default:
1122           break;
1123       }
1124     } else {
1125       assert(attached_method->has_scalarized_args(), "invalid use of attached method");
1126       if (!attached_method->method_holder()->is_value()) {
1127         // Ignore the attached method in this case to not confuse below code
1128         attached_method = NULL;
1129       }
1130     }
1131   }
1132 
1133   assert(bc != Bytecodes::_illegal, "not initialized");
1134 
1135   bool has_receiver = bc != Bytecodes::_invokestatic &&
1136                       bc != Bytecodes::_invokedynamic &&
1137                       bc != Bytecodes::_invokehandle;
1138 
1139   // Find receiver for non-static call
1140   if (has_receiver) {
1141     // This register map must be update since we need to find the receiver for
1142     // compiled frames. The receiver might be in a register.
1143     RegisterMap reg_map2(thread);
1144     frame stubFrame   = thread->last_frame();
1145     // Caller-frame is a compiled frame
1146     frame callerFrame = stubFrame.sender(&reg_map2);
1147 
1148     methodHandle callee = attached_method;
1149     if (callee.is_null()) {
1150       callee = bytecode.static_target(CHECK_NH);
1151       if (callee.is_null()) {
1152         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1153       }
1154     }
1155     if (callee->has_scalarized_args() && callee->method_holder()->is_value()) {
1156       // If the receiver is a value type that is passed as fields, no oop is available.
1157       // Resolve the call without receiver null checking.
1158       assert(!attached_method.is_null(), "must have attached method");
1159       if (bc == Bytecodes::_invokevirtual) {
1160         LinkInfo link_info(attached_method->method_holder(), attached_method->name(), attached_method->signature());
1161         LinkResolver::resolve_virtual_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH);
1162       } else {
1163         assert(bc == Bytecodes::_invokeinterface, "anything else?");
1164         LinkInfo link_info(constantPoolHandle(THREAD, caller->constants()), bytecode_index, CHECK_NH);
1165         LinkResolver::resolve_interface_call(callinfo, receiver, callee->method_holder(), link_info, /*check_null_and_abstract=*/ false, CHECK_NH);
1166       }
1167       return receiver; // is null
1168     } else {
1169       // Retrieve from a compiled argument list
1170       receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1171 
1172       if (receiver.is_null()) {
1173         THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1174       }
1175     }
1176   }
1177 
1178   // Resolve method
1179   if (attached_method.not_null()) {
1180     // Parameterized by attached method.
1181     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1182   } else {
1183     // Parameterized by bytecode.
1184     constantPoolHandle constants(THREAD, caller->constants());
1185     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1186   }
1187 
1188 #ifdef ASSERT
1189   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1190   if (has_receiver) {
1191     assert(receiver.not_null(), "should have thrown exception");
1192     Klass* receiver_klass = receiver->klass();
1193     Klass* rk = NULL;
1194     if (attached_method.not_null()) {
1195       // In case there's resolved method attached, use its holder during the check.
1196       rk = attached_method->method_holder();
1197     } else {
1198       // Klass is already loaded.
1199       constantPoolHandle constants(THREAD, caller->constants());
1200       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1201     }
1202     Klass* static_receiver_klass = rk;
1203     methodHandle callee = callinfo.selected_method();
1204     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1205            "actual receiver must be subclass of static receiver klass");
1206     if (receiver_klass->is_instance_klass()) {
1207       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1208         tty->print_cr("ERROR: Klass not yet initialized!!");
1209         receiver_klass->print();
1210       }
1211       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1212     }
1213   }
1214 #endif
1215 
1216   return receiver;
1217 }
1218 
1219 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1220   ResourceMark rm(THREAD);
1221   // We need first to check if any Java activations (compiled, interpreted)
1222   // exist on the stack since last JavaCall.  If not, we need
1223   // to get the target method from the JavaCall wrapper.
1224   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1225   methodHandle callee_method;
1226   if (vfst.at_end()) {
1227     // No Java frames were found on stack since we did the JavaCall.
1228     // Hence the stack can only contain an entry_frame.  We need to
1229     // find the target method from the stub frame.
1230     RegisterMap reg_map(thread, false);
1231     frame fr = thread->last_frame();
1232     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1233     fr = fr.sender(&reg_map);
1234     assert(fr.is_entry_frame(), "must be");
1235     // fr is now pointing to the entry frame.
1236     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1237   } else {
1238     Bytecodes::Code bc;
1239     CallInfo callinfo;
1240     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1241     callee_method = callinfo.selected_method();
1242   }
1243   assert(callee_method()->is_method(), "must be");
1244   return callee_method;
1245 }
1246 
1247 // Resolves a call.
1248 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1249                                            bool is_virtual,
1250                                            bool is_optimized, TRAPS) {
1251   methodHandle callee_method;
1252   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1253   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1254     int retry_count = 0;
1255     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1256            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1257       // If has a pending exception then there is no need to re-try to
1258       // resolve this method.
1259       // If the method has been redefined, we need to try again.
1260       // Hack: we have no way to update the vtables of arrays, so don't
1261       // require that java.lang.Object has been updated.
1262 
1263       // It is very unlikely that method is redefined more than 100 times
1264       // in the middle of resolve. If it is looping here more than 100 times
1265       // means then there could be a bug here.
1266       guarantee((retry_count++ < 100),
1267                 "Could not resolve to latest version of redefined method");
1268       // method is redefined in the middle of resolve so re-try.
1269       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1270     }
1271   }
1272   return callee_method;
1273 }
1274 
1275 // This fails if resolution required refilling of IC stubs
1276 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1277                                                 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1278                                                 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1279   StaticCallInfo static_call_info;
1280   CompiledICInfo virtual_call_info;
1281 
1282   // Make sure the callee nmethod does not get deoptimized and removed before
1283   // we are done patching the code.
1284   CompiledMethod* callee = callee_method->code();
1285 
1286   if (callee != NULL) {
1287     assert(callee->is_compiled(), "must be nmethod for patching");
1288   }
1289 
1290   if (callee != NULL && !callee->is_in_use()) {
1291     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1292     callee = NULL;
1293   }
1294   nmethodLocker nl_callee(callee);
1295 #ifdef ASSERT
1296   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1297 #endif
1298 
1299   bool is_nmethod = caller_nm->is_nmethod();
1300 
1301   if (is_virtual) {
1302     Klass* receiver_klass = NULL;
1303     if (ValueTypePassFieldsAsArgs && callee_method->method_holder()->is_value()) {
1304       // If the receiver is a value type that is passed as fields, no oop is available
1305       receiver_klass = callee_method->method_holder();
1306     } else {
1307       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1308       receiver_klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1309     }
1310     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1311     CompiledIC::compute_monomorphic_entry(callee_method, receiver_klass,
1312                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1313                      CHECK_false);
1314   } else {
1315     // static call
1316     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1317   }
1318 
1319   // grab lock, check for deoptimization and potentially patch caller
1320   {
1321     CompiledICLocker ml(caller_nm);
1322 
1323     // Lock blocks for safepoint during which both nmethods can change state.
1324 
1325     // Now that we are ready to patch if the Method* was redefined then
1326     // don't update call site and let the caller retry.
1327     // Don't update call site if callee nmethod was unloaded or deoptimized.
1328     // Don't update call site if callee nmethod was replaced by an other nmethod
1329     // which may happen when multiply alive nmethod (tiered compilation)
1330     // will be supported.
1331     if (!callee_method->is_old() &&
1332         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1333 #ifdef ASSERT
1334       // We must not try to patch to jump to an already unloaded method.
1335       if (dest_entry_point != 0) {
1336         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1337         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1338                "should not call unloaded nmethod");
1339       }
1340 #endif
1341       if (is_virtual) {
1342         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1343         if (inline_cache->is_clean()) {
1344           if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1345             return false;
1346           }
1347         }
1348       } else {
1349         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1350         if (ssc->is_clean()) ssc->set(static_call_info);
1351       }
1352     }
1353   } // unlock CompiledICLocker
1354   return true;
1355 }
1356 
1357 // Resolves a call.  The compilers generate code for calls that go here
1358 // and are patched with the real destination of the call.
1359 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1360                                                bool is_virtual,
1361                                                bool is_optimized, TRAPS) {
1362 
1363   ResourceMark rm(thread);
1364   RegisterMap cbl_map(thread, false);
1365   frame caller_frame = thread->last_frame().sender(&cbl_map);
1366 
1367   CodeBlob* caller_cb = caller_frame.cb();
1368   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1369   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1370 
1371   // make sure caller is not getting deoptimized
1372   // and removed before we are done with it.
1373   // CLEANUP - with lazy deopt shouldn't need this lock
1374   nmethodLocker caller_lock(caller_nm);
1375 
1376   if (!is_virtual && !is_optimized) {
1377     SimpleScopeDesc ssd(caller_nm, caller_frame.pc());
1378     Bytecode bc(ssd.method(), ssd.method()->bcp_from(ssd.bci()));
1379     // Substitutability test implementation piggy backs on static call resolution
1380     if (bc.code() == Bytecodes::_if_acmpeq || bc.code() == Bytecodes::_if_acmpne) {
1381       SystemDictionary::ValueBootstrapMethods_klass()->initialize(CHECK_NULL);
1382       return SystemDictionary::ValueBootstrapMethods_klass()->find_method(vmSymbols::isSubstitutable_name(), vmSymbols::object_object_boolean_signature());
1383     }
1384   }
1385 
1386   // determine call info & receiver
1387   // note: a) receiver is NULL for static calls
1388   //       b) an exception is thrown if receiver is NULL for non-static calls
1389   CallInfo call_info;
1390   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1391   Handle receiver = find_callee_info(thread, invoke_code,
1392                                      call_info, CHECK_(methodHandle()));
1393   methodHandle callee_method = call_info.selected_method();
1394 
1395   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1396          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1397          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1398          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1399          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1400 
1401   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1402 
1403 #ifndef PRODUCT
1404   // tracing/debugging/statistics
1405   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1406                 (is_virtual) ? (&_resolve_virtual_ctr) :
1407                                (&_resolve_static_ctr);
1408   Atomic::inc(addr);
1409 
1410   if (TraceCallFixup) {
1411     ResourceMark rm(thread);
1412     tty->print("resolving %s%s (%s) call to",
1413       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1414       Bytecodes::name(invoke_code));
1415     callee_method->print_short_name(tty);
1416     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1417                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1418   }
1419 #endif
1420 
1421   // Do not patch call site for static call to another class
1422   // when the class is not fully initialized.
1423   if (invoke_code == Bytecodes::_invokestatic) {
1424     if (!callee_method->method_holder()->is_initialized() &&
1425         callee_method->method_holder() != caller_nm->method()->method_holder()) {
1426       assert(callee_method->method_holder()->is_linked(), "must be");
1427       return callee_method;
1428     } else {
1429       assert(callee_method->method_holder()->is_initialized() ||
1430              callee_method->method_holder()->is_reentrant_initialization(thread),
1431              "invalid class initialization state for invoke_static");
1432     }
1433   }
1434 
1435   // JSR 292 key invariant:
1436   // If the resolved method is a MethodHandle invoke target, the call
1437   // site must be a MethodHandle call site, because the lambda form might tail-call
1438   // leaving the stack in a state unknown to either caller or callee
1439   // TODO detune for now but we might need it again
1440 //  assert(!callee_method->is_compiled_lambda_form() ||
1441 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1442 
1443   // Compute entry points. This might require generation of C2I converter
1444   // frames, so we cannot be holding any locks here. Furthermore, the
1445   // computation of the entry points is independent of patching the call.  We
1446   // always return the entry-point, but we only patch the stub if the call has
1447   // not been deoptimized.  Return values: For a virtual call this is an
1448   // (cached_oop, destination address) pair. For a static call/optimized
1449   // virtual this is just a destination address.
1450 
1451   // Patching IC caches may fail if we run out if transition stubs.
1452   // We refill the ic stubs then and try again.
1453   for (;;) {
1454     ICRefillVerifier ic_refill_verifier;
1455     bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1456                                                   is_virtual, is_optimized, receiver,
1457                                                   call_info, invoke_code, CHECK_(methodHandle()));
1458     if (successful) {
1459       return callee_method;
1460     } else {
1461       InlineCacheBuffer::refill_ic_stubs();
1462     }
1463   }
1464 
1465 }
1466 
1467 
1468 // Inline caches exist only in compiled code
1469 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1470 #ifdef ASSERT
1471   RegisterMap reg_map(thread, false);
1472   frame stub_frame = thread->last_frame();
1473   assert(stub_frame.is_runtime_frame(), "sanity check");
1474   frame caller_frame = stub_frame.sender(&reg_map);
1475   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1476 #endif /* ASSERT */
1477 
1478   methodHandle callee_method;
1479   bool is_optimized = false;
1480   JRT_BLOCK
1481     callee_method = SharedRuntime::handle_ic_miss_helper(thread, is_optimized, CHECK_NULL);
1482     // Return Method* through TLS
1483     thread->set_vm_result_2(callee_method());
1484   JRT_BLOCK_END
1485   // return compiled code entry point after potential safepoints
1486   assert(callee_method->verified_code_entry() != NULL, "Jump to zero!");
1487   assert(callee_method->verified_value_ro_code_entry() != NULL, "Jump to zero!");
1488   return is_optimized ? callee_method->verified_code_entry() : callee_method->verified_value_ro_code_entry();
1489 JRT_END
1490 
1491 
1492 // Handle call site that has been made non-entrant
1493 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1494   // 6243940 We might end up in here if the callee is deoptimized
1495   // as we race to call it.  We don't want to take a safepoint if
1496   // the caller was interpreted because the caller frame will look
1497   // interpreted to the stack walkers and arguments are now
1498   // "compiled" so it is much better to make this transition
1499   // invisible to the stack walking code. The i2c path will
1500   // place the callee method in the callee_target. It is stashed
1501   // there because if we try and find the callee by normal means a
1502   // safepoint is possible and have trouble gc'ing the compiled args.
1503   RegisterMap reg_map(thread, false);
1504   frame stub_frame = thread->last_frame();
1505   assert(stub_frame.is_runtime_frame(), "sanity check");
1506   frame caller_frame = stub_frame.sender(&reg_map);
1507 
1508   if (caller_frame.is_interpreted_frame() ||
1509       caller_frame.is_entry_frame()) {
1510     Method* callee = thread->callee_target();
1511     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1512     thread->set_vm_result_2(callee);
1513     thread->set_callee_target(NULL);
1514     return callee->get_c2i_entry();
1515   }
1516 
1517   // Must be compiled to compiled path which is safe to stackwalk
1518   methodHandle callee_method;
1519   bool is_optimized = false;
1520   JRT_BLOCK
1521     // Force resolving of caller (if we called from compiled frame)
1522     callee_method = SharedRuntime::reresolve_call_site(thread, is_optimized, CHECK_NULL);
1523     thread->set_vm_result_2(callee_method());
1524   JRT_BLOCK_END
1525   // return compiled code entry point after potential safepoints
1526   assert(callee_method->verified_code_entry() != NULL, "Jump to zero!");
1527   assert(callee_method->verified_value_ro_code_entry() != NULL, "Jump to zero!");
1528   return is_optimized ? callee_method->verified_code_entry() : callee_method->verified_value_ro_code_entry();
1529 JRT_END
1530 
1531 // Handle abstract method call
1532 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1533   // Verbose error message for AbstractMethodError.
1534   // Get the called method from the invoke bytecode.
1535   vframeStream vfst(thread, true);
1536   assert(!vfst.at_end(), "Java frame must exist");
1537   methodHandle caller(vfst.method());
1538   Bytecode_invoke invoke(caller, vfst.bci());
1539   DEBUG_ONLY( invoke.verify(); )
1540 
1541   // Find the compiled caller frame.
1542   RegisterMap reg_map(thread);
1543   frame stubFrame = thread->last_frame();
1544   assert(stubFrame.is_runtime_frame(), "must be");
1545   frame callerFrame = stubFrame.sender(&reg_map);
1546   assert(callerFrame.is_compiled_frame(), "must be");
1547 
1548   // Install exception and return forward entry.
1549   address res = StubRoutines::throw_AbstractMethodError_entry();
1550   JRT_BLOCK
1551     methodHandle callee = invoke.static_target(thread);
1552     if (!callee.is_null()) {
1553       oop recv = callerFrame.retrieve_receiver(&reg_map);
1554       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1555       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1556       res = StubRoutines::forward_exception_entry();
1557     }
1558   JRT_BLOCK_END
1559   return res;
1560 JRT_END
1561 
1562 
1563 // resolve a static call and patch code
1564 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1565   methodHandle callee_method;
1566   JRT_BLOCK
1567     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1568     thread->set_vm_result_2(callee_method());
1569   JRT_BLOCK_END
1570   // return compiled code entry point after potential safepoints
1571   assert(callee_method->verified_code_entry() != NULL, "Jump to zero!");
1572   return callee_method->verified_code_entry();
1573 JRT_END
1574 
1575 
1576 // resolve virtual call and update inline cache to monomorphic
1577 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1578   methodHandle callee_method;
1579   JRT_BLOCK
1580     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1581     thread->set_vm_result_2(callee_method());
1582   JRT_BLOCK_END
1583   // return compiled code entry point after potential safepoints
1584   assert(callee_method->verified_value_ro_code_entry() != NULL, "Jump to zero!");
1585   return callee_method->verified_value_ro_code_entry();
1586 JRT_END
1587 
1588 
1589 // Resolve a virtual call that can be statically bound (e.g., always
1590 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1591 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1592   methodHandle callee_method;
1593   JRT_BLOCK
1594     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1595     thread->set_vm_result_2(callee_method());
1596   JRT_BLOCK_END
1597   // return compiled code entry point after potential safepoints
1598   assert(callee_method->verified_code_entry() != NULL, "Jump to zero!");
1599   return callee_method->verified_code_entry();
1600 JRT_END
1601 
1602 // The handle_ic_miss_helper_internal function returns false if it failed due
1603 // to either running out of vtable stubs or ic stubs due to IC transitions
1604 // to transitional states. The needs_ic_stub_refill value will be set if
1605 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1606 // refills the IC stubs and tries again.
1607 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1608                                                    const frame& caller_frame, methodHandle callee_method,
1609                                                    Bytecodes::Code bc, CallInfo& call_info,
1610                                                    bool& needs_ic_stub_refill, bool& is_optimized, TRAPS) {
1611   CompiledICLocker ml(caller_nm);
1612   CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1613   bool should_be_mono = false;
1614   if (inline_cache->is_optimized()) {
1615     if (TraceCallFixup) {
1616       ResourceMark rm(THREAD);
1617       tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1618       callee_method->print_short_name(tty);
1619       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1620     }
1621     is_optimized = true;
1622     should_be_mono = true;
1623   } else if (inline_cache->is_icholder_call()) {
1624     CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1625     if (ic_oop != NULL) {
1626       if (!ic_oop->is_loader_alive()) {
1627         // Deferred IC cleaning due to concurrent class unloading
1628         if (!inline_cache->set_to_clean()) {
1629           needs_ic_stub_refill = true;
1630           return false;
1631         }
1632       } else if (receiver()->klass() == ic_oop->holder_klass()) {
1633         // This isn't a real miss. We must have seen that compiled code
1634         // is now available and we want the call site converted to a
1635         // monomorphic compiled call site.
1636         // We can't assert for callee_method->code() != NULL because it
1637         // could have been deoptimized in the meantime
1638         if (TraceCallFixup) {
1639           ResourceMark rm(THREAD);
1640           tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1641           callee_method->print_short_name(tty);
1642           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1643         }
1644         should_be_mono = true;
1645       }
1646     }
1647   }
1648 
1649   if (should_be_mono) {
1650     // We have a path that was monomorphic but was going interpreted
1651     // and now we have (or had) a compiled entry. We correct the IC
1652     // by using a new icBuffer.
1653     CompiledICInfo info;
1654     Klass* receiver_klass = receiver()->klass();
1655     inline_cache->compute_monomorphic_entry(callee_method,
1656                                             receiver_klass,
1657                                             inline_cache->is_optimized(),
1658                                             false, caller_nm->is_nmethod(),
1659                                             info, CHECK_false);
1660     if (!inline_cache->set_to_monomorphic(info)) {
1661       needs_ic_stub_refill = true;
1662       return false;
1663     }
1664   } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1665     // Potential change to megamorphic
1666 
1667     bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1668     if (needs_ic_stub_refill) {
1669       return false;
1670     }
1671     if (!successful) {
1672       if (!inline_cache->set_to_clean()) {
1673         needs_ic_stub_refill = true;
1674         return false;
1675       }
1676     }
1677   } else {
1678     // Either clean or megamorphic
1679   }
1680   return true;
1681 }
1682 
1683 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, bool& is_optimized, TRAPS) {
1684   ResourceMark rm(thread);
1685   CallInfo call_info;
1686   Bytecodes::Code bc;
1687 
1688   // receiver is NULL for static calls. An exception is thrown for NULL
1689   // receivers for non-static calls
1690   Handle receiver = find_callee_info(thread, bc, call_info,
1691                                      CHECK_(methodHandle()));
1692   // Compiler1 can produce virtual call sites that can actually be statically bound
1693   // If we fell thru to below we would think that the site was going megamorphic
1694   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1695   // we'd try and do a vtable dispatch however methods that can be statically bound
1696   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1697   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1698   // plain ic_miss) and the site will be converted to an optimized virtual call site
1699   // never to miss again. I don't believe C2 will produce code like this but if it
1700   // did this would still be the correct thing to do for it too, hence no ifdef.
1701   //
1702   if (call_info.resolved_method()->can_be_statically_bound()) {
1703     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, is_optimized, CHECK_(methodHandle()));
1704     if (TraceCallFixup) {
1705       RegisterMap reg_map(thread, false);
1706       frame caller_frame = thread->last_frame().sender(&reg_map);
1707       ResourceMark rm(thread);
1708       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1709       callee_method->print_short_name(tty);
1710       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1711       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1712     }
1713     return callee_method;
1714   }
1715 
1716   methodHandle callee_method = call_info.selected_method();
1717 
1718 #ifndef PRODUCT
1719   Atomic::inc(&_ic_miss_ctr);
1720 
1721   // Statistics & Tracing
1722   if (TraceCallFixup) {
1723     ResourceMark rm(thread);
1724     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1725     callee_method->print_short_name(tty);
1726     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1727   }
1728 
1729   if (ICMissHistogram) {
1730     MutexLocker m(VMStatistic_lock);
1731     RegisterMap reg_map(thread, false);
1732     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1733     // produce statistics under the lock
1734     trace_ic_miss(f.pc());
1735   }
1736 #endif
1737 
1738   // install an event collector so that when a vtable stub is created the
1739   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1740   // event can't be posted when the stub is created as locks are held
1741   // - instead the event will be deferred until the event collector goes
1742   // out of scope.
1743   JvmtiDynamicCodeEventCollector event_collector;
1744 
1745   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1746   // Transitioning IC caches may require transition stubs. If we run out
1747   // of transition stubs, we have to drop locks and perform a safepoint
1748   // that refills them.
1749   RegisterMap reg_map(thread, false);
1750   frame caller_frame = thread->last_frame().sender(&reg_map);
1751   CodeBlob* cb = caller_frame.cb();
1752   CompiledMethod* caller_nm = cb->as_compiled_method();
1753 
1754   for (;;) {
1755     ICRefillVerifier ic_refill_verifier;
1756     bool needs_ic_stub_refill = false;
1757     bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1758                                                      bc, call_info, needs_ic_stub_refill, is_optimized, CHECK_(methodHandle()));
1759     if (successful || !needs_ic_stub_refill) {
1760       return callee_method;
1761     } else {
1762       InlineCacheBuffer::refill_ic_stubs();
1763     }
1764   }
1765 }
1766 
1767 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1768   CompiledICLocker ml(caller_nm);
1769   if (is_static_call) {
1770     CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1771     if (!ssc->is_clean()) {
1772       return ssc->set_to_clean();
1773     }
1774   } else {
1775     // compiled, dispatched call (which used to call an interpreted method)
1776     CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1777     if (!inline_cache->is_clean()) {
1778       return inline_cache->set_to_clean();
1779     }
1780   }
1781   return true;
1782 }
1783 
1784 //
1785 // Resets a call-site in compiled code so it will get resolved again.
1786 // This routines handles both virtual call sites, optimized virtual call
1787 // sites, and static call sites. Typically used to change a call sites
1788 // destination from compiled to interpreted.
1789 //
1790 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, bool& is_optimized, TRAPS) {
1791   ResourceMark rm(thread);
1792   RegisterMap reg_map(thread, false);
1793   frame stub_frame = thread->last_frame();
1794   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1795   frame caller = stub_frame.sender(&reg_map);
1796 
1797   // Do nothing if the frame isn't a live compiled frame.
1798   // nmethod could be deoptimized by the time we get here
1799   // so no update to the caller is needed.
1800 
1801   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1802 
1803     address pc = caller.pc();
1804 
1805     // Check for static or virtual call
1806     bool is_static_call = false;
1807     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1808 
1809     // Default call_addr is the location of the "basic" call.
1810     // Determine the address of the call we a reresolving. With
1811     // Inline Caches we will always find a recognizable call.
1812     // With Inline Caches disabled we may or may not find a
1813     // recognizable call. We will always find a call for static
1814     // calls and for optimized virtual calls. For vanilla virtual
1815     // calls it depends on the state of the UseInlineCaches switch.
1816     //
1817     // With Inline Caches disabled we can get here for a virtual call
1818     // for two reasons:
1819     //   1 - calling an abstract method. The vtable for abstract methods
1820     //       will run us thru handle_wrong_method and we will eventually
1821     //       end up in the interpreter to throw the ame.
1822     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1823     //       call and between the time we fetch the entry address and
1824     //       we jump to it the target gets deoptimized. Similar to 1
1825     //       we will wind up in the interprter (thru a c2i with c2).
1826     //
1827     address call_addr = NULL;
1828     {
1829       // Get call instruction under lock because another thread may be
1830       // busy patching it.
1831       CompiledICLocker ml(caller_nm);
1832       // Location of call instruction
1833       call_addr = caller_nm->call_instruction_address(pc);
1834     }
1835     // Make sure nmethod doesn't get deoptimized and removed until
1836     // this is done with it.
1837     // CLEANUP - with lazy deopt shouldn't need this lock
1838     nmethodLocker nmlock(caller_nm);
1839 
1840     if (call_addr != NULL) {
1841       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1842       int ret = iter.next(); // Get item
1843       if (ret) {
1844         assert(iter.addr() == call_addr, "must find call");
1845         if (iter.type() == relocInfo::static_call_type) {
1846           is_static_call = true;
1847         } else {
1848           assert(iter.type() == relocInfo::virtual_call_type ||
1849                  iter.type() == relocInfo::opt_virtual_call_type
1850                 , "unexpected relocInfo. type");
1851           is_optimized = (iter.type() == relocInfo::opt_virtual_call_type);
1852         }
1853       } else {
1854         assert(!UseInlineCaches, "relocation info. must exist for this address");
1855       }
1856 
1857       // Cleaning the inline cache will force a new resolve. This is more robust
1858       // than directly setting it to the new destination, since resolving of calls
1859       // is always done through the same code path. (experience shows that it
1860       // leads to very hard to track down bugs, if an inline cache gets updated
1861       // to a wrong method). It should not be performance critical, since the
1862       // resolve is only done once.
1863 
1864       for (;;) {
1865         ICRefillVerifier ic_refill_verifier;
1866         if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1867           InlineCacheBuffer::refill_ic_stubs();
1868         } else {
1869           break;
1870         }
1871       }
1872     }
1873   }
1874 
1875   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1876 
1877 #ifndef PRODUCT
1878   Atomic::inc(&_wrong_method_ctr);
1879 
1880   if (TraceCallFixup) {
1881     ResourceMark rm(thread);
1882     tty->print("handle_wrong_method reresolving call to");
1883     callee_method->print_short_name(tty);
1884     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1885   }
1886 #endif
1887 
1888   return callee_method;
1889 }
1890 
1891 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1892   // The faulting unsafe accesses should be changed to throw the error
1893   // synchronously instead. Meanwhile the faulting instruction will be
1894   // skipped over (effectively turning it into a no-op) and an
1895   // asynchronous exception will be raised which the thread will
1896   // handle at a later point. If the instruction is a load it will
1897   // return garbage.
1898 
1899   // Request an async exception.
1900   thread->set_pending_unsafe_access_error();
1901 
1902   // Return address of next instruction to execute.
1903   return next_pc;
1904 }
1905 
1906 #ifdef ASSERT
1907 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1908                                                                 const BasicType* sig_bt,
1909                                                                 const VMRegPair* regs) {
1910   ResourceMark rm;
1911   const int total_args_passed = method->size_of_parameters();
1912   const VMRegPair*    regs_with_member_name = regs;
1913         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1914 
1915   const int member_arg_pos = total_args_passed - 1;
1916   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1917   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1918 
1919   const bool is_outgoing = method->is_method_handle_intrinsic();
1920   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1921 
1922   for (int i = 0; i < member_arg_pos; i++) {
1923     VMReg a =    regs_with_member_name[i].first();
1924     VMReg b = regs_without_member_name[i].first();
1925     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1926   }
1927   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1928 }
1929 #endif
1930 
1931 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1932   if (destination != entry_point) {
1933     CodeBlob* callee = CodeCache::find_blob(destination);
1934     // callee == cb seems weird. It means calling interpreter thru stub.
1935     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1936       // static call or optimized virtual
1937       if (TraceCallFixup) {
1938         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1939         moop->print_short_name(tty);
1940         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1941       }
1942       return true;
1943     } else {
1944       if (TraceCallFixup) {
1945         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1946         moop->print_short_name(tty);
1947         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1948       }
1949       // assert is too strong could also be resolve destinations.
1950       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1951     }
1952   } else {
1953     if (TraceCallFixup) {
1954       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1955       moop->print_short_name(tty);
1956       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1957     }
1958   }
1959   return false;
1960 }
1961 
1962 // ---------------------------------------------------------------------------
1963 // We are calling the interpreter via a c2i. Normally this would mean that
1964 // we were called by a compiled method. However we could have lost a race
1965 // where we went int -> i2c -> c2i and so the caller could in fact be
1966 // interpreted. If the caller is compiled we attempt to patch the caller
1967 // so he no longer calls into the interpreter.
1968 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1969   Method* moop(method);
1970 
1971   address entry_point = moop->from_compiled_entry_no_trampoline();
1972 
1973   // It's possible that deoptimization can occur at a call site which hasn't
1974   // been resolved yet, in which case this function will be called from
1975   // an nmethod that has been patched for deopt and we can ignore the
1976   // request for a fixup.
1977   // Also it is possible that we lost a race in that from_compiled_entry
1978   // is now back to the i2c in that case we don't need to patch and if
1979   // we did we'd leap into space because the callsite needs to use
1980   // "to interpreter" stub in order to load up the Method*. Don't
1981   // ask me how I know this...
1982 
1983   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1984   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1985     return;
1986   }
1987 
1988   // The check above makes sure this is a nmethod.
1989   CompiledMethod* nm = cb->as_compiled_method_or_null();
1990   assert(nm, "must be");
1991 
1992   // Get the return PC for the passed caller PC.
1993   address return_pc = caller_pc + frame::pc_return_offset;
1994 
1995   // There is a benign race here. We could be attempting to patch to a compiled
1996   // entry point at the same time the callee is being deoptimized. If that is
1997   // the case then entry_point may in fact point to a c2i and we'd patch the
1998   // call site with the same old data. clear_code will set code() to NULL
1999   // at the end of it. If we happen to see that NULL then we can skip trying
2000   // to patch. If we hit the window where the callee has a c2i in the
2001   // from_compiled_entry and the NULL isn't present yet then we lose the race
2002   // and patch the code with the same old data. Asi es la vida.
2003 
2004   if (moop->code() == NULL) return;
2005 
2006   if (nm->is_in_use()) {
2007     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
2008     CompiledICLocker ic_locker(nm);
2009     if (NativeCall::is_call_before(return_pc)) {
2010       ResourceMark mark;
2011       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2012       //
2013       // bug 6281185. We might get here after resolving a call site to a vanilla
2014       // virtual call. Because the resolvee uses the verified entry it may then
2015       // see compiled code and attempt to patch the site by calling us. This would
2016       // then incorrectly convert the call site to optimized and its downhill from
2017       // there. If you're lucky you'll get the assert in the bugid, if not you've
2018       // just made a call site that could be megamorphic into a monomorphic site
2019       // for the rest of its life! Just another racing bug in the life of
2020       // fixup_callers_callsite ...
2021       //
2022       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2023       iter.next();
2024       assert(iter.has_current(), "must have a reloc at java call site");
2025       relocInfo::relocType typ = iter.reloc()->type();
2026       if (typ != relocInfo::static_call_type &&
2027            typ != relocInfo::opt_virtual_call_type &&
2028            typ != relocInfo::static_stub_type) {
2029         return;
2030       }
2031       address destination = call->destination();
2032       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2033         call->set_destination_mt_safe(entry_point);
2034       }
2035     }
2036   }
2037 IRT_END
2038 
2039 
2040 // same as JVM_Arraycopy, but called directly from compiled code
2041 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
2042                                                 oopDesc* dest, jint dest_pos,
2043                                                 jint length,
2044                                                 JavaThread* thread)) {
2045 #ifndef PRODUCT
2046   _slow_array_copy_ctr++;
2047 #endif
2048   // Check if we have null pointers
2049   if (src == NULL || dest == NULL) {
2050     THROW(vmSymbols::java_lang_NullPointerException());
2051   }
2052   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
2053   // even though the copy_array API also performs dynamic checks to ensure
2054   // that src and dest are truly arrays (and are conformable).
2055   // The copy_array mechanism is awkward and could be removed, but
2056   // the compilers don't call this function except as a last resort,
2057   // so it probably doesn't matter.
2058   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2059                                         (arrayOopDesc*)dest, dest_pos,
2060                                         length, thread);
2061 }
2062 JRT_END
2063 
2064 // The caller of generate_class_cast_message() (or one of its callers)
2065 // must use a ResourceMark in order to correctly free the result.
2066 char* SharedRuntime::generate_class_cast_message(
2067     JavaThread* thread, Klass* caster_klass) {
2068 
2069   // Get target class name from the checkcast instruction
2070   vframeStream vfst(thread, true);
2071   assert(!vfst.at_end(), "Java frame must exist");
2072   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2073   constantPoolHandle cpool(thread, vfst.method()->constants());
2074   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2075   Symbol* target_klass_name = NULL;
2076   if (target_klass == NULL) {
2077     // This klass should be resolved, but just in case, get the name in the klass slot.
2078     target_klass_name = cpool->klass_name_at(cc.index());
2079   }
2080   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2081 }
2082 
2083 
2084 // The caller of generate_class_cast_message() (or one of its callers)
2085 // must use a ResourceMark in order to correctly free the result.
2086 char* SharedRuntime::generate_class_cast_message(
2087     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2088   const char* caster_name = caster_klass->external_name();
2089 
2090   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2091   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
2092                                                    target_klass->external_name();
2093 
2094   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2095 
2096   const char* caster_klass_description = "";
2097   const char* target_klass_description = "";
2098   const char* klass_separator = "";
2099   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2100     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2101   } else {
2102     caster_klass_description = caster_klass->class_in_module_of_loader();
2103     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2104     klass_separator = (target_klass != NULL) ? "; " : "";
2105   }
2106 
2107   // add 3 for parenthesis and preceeding space
2108   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2109 
2110   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2111   if (message == NULL) {
2112     // Shouldn't happen, but don't cause even more problems if it does
2113     message = const_cast<char*>(caster_klass->external_name());
2114   } else {
2115     jio_snprintf(message,
2116                  msglen,
2117                  "class %s cannot be cast to class %s (%s%s%s)",
2118                  caster_name,
2119                  target_name,
2120                  caster_klass_description,
2121                  klass_separator,
2122                  target_klass_description
2123                  );
2124   }
2125   return message;
2126 }
2127 
2128 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2129   (void) JavaThread::current()->reguard_stack();
2130 JRT_END
2131 
2132 
2133 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2134 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2135   if (!SafepointSynchronize::is_synchronizing()) {
2136     // Only try quick_enter() if we're not trying to reach a safepoint
2137     // so that the calling thread reaches the safepoint more quickly.
2138     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2139   }
2140   // NO_ASYNC required because an async exception on the state transition destructor
2141   // would leave you with the lock held and it would never be released.
2142   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2143   // and the model is that an exception implies the method failed.
2144   JRT_BLOCK_NO_ASYNC
2145   oop obj(_obj);
2146   if (PrintBiasedLockingStatistics) {
2147     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2148   }
2149   Handle h_obj(THREAD, obj);
2150   if (UseBiasedLocking) {
2151     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2152     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2153   } else {
2154     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2155   }
2156   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2157   JRT_BLOCK_END
2158 JRT_END
2159 
2160 // Handles the uncommon cases of monitor unlocking in compiled code
2161 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2162    oop obj(_obj);
2163   assert(JavaThread::current() == THREAD, "invariant");
2164   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2165   // testing was unable to ever fire the assert that guarded it so I have removed it.
2166   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2167 #undef MIGHT_HAVE_PENDING
2168 #ifdef MIGHT_HAVE_PENDING
2169   // Save and restore any pending_exception around the exception mark.
2170   // While the slow_exit must not throw an exception, we could come into
2171   // this routine with one set.
2172   oop pending_excep = NULL;
2173   const char* pending_file;
2174   int pending_line;
2175   if (HAS_PENDING_EXCEPTION) {
2176     pending_excep = PENDING_EXCEPTION;
2177     pending_file  = THREAD->exception_file();
2178     pending_line  = THREAD->exception_line();
2179     CLEAR_PENDING_EXCEPTION;
2180   }
2181 #endif /* MIGHT_HAVE_PENDING */
2182 
2183   {
2184     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2185     EXCEPTION_MARK;
2186     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2187   }
2188 
2189 #ifdef MIGHT_HAVE_PENDING
2190   if (pending_excep != NULL) {
2191     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2192   }
2193 #endif /* MIGHT_HAVE_PENDING */
2194 JRT_END
2195 
2196 #ifndef PRODUCT
2197 
2198 void SharedRuntime::print_statistics() {
2199   ttyLocker ttyl;
2200   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2201 
2202   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2203 
2204   SharedRuntime::print_ic_miss_histogram();
2205 
2206   if (CountRemovableExceptions) {
2207     if (_nof_removable_exceptions > 0) {
2208       Unimplemented(); // this counter is not yet incremented
2209       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2210     }
2211   }
2212 
2213   // Dump the JRT_ENTRY counters
2214   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2215   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2216   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2217   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2218   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2219   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2220   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2221 
2222   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2223   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2224   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2225   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2226   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2227 
2228   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2229   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2230   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2231   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2232   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2233   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2234   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2235   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2236   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2237   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2238   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2239   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2240   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2241   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2242   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2243   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2244 
2245   AdapterHandlerLibrary::print_statistics();
2246 
2247   if (xtty != NULL)  xtty->tail("statistics");
2248 }
2249 
2250 inline double percent(int x, int y) {
2251   return 100.0 * x / MAX2(y, 1);
2252 }
2253 
2254 class MethodArityHistogram {
2255  public:
2256   enum { MAX_ARITY = 256 };
2257  private:
2258   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2259   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2260   static int _max_arity;                      // max. arity seen
2261   static int _max_size;                       // max. arg size seen
2262 
2263   static void add_method_to_histogram(nmethod* nm) {
2264     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2265       Method* method = nm->method();
2266       ArgumentCount args(method->signature());
2267       int arity   = args.size() + (method->is_static() ? 0 : 1);
2268       int argsize = method->size_of_parameters();
2269       arity   = MIN2(arity, MAX_ARITY-1);
2270       argsize = MIN2(argsize, MAX_ARITY-1);
2271       int count = method->compiled_invocation_count();
2272       _arity_histogram[arity]  += count;
2273       _size_histogram[argsize] += count;
2274       _max_arity = MAX2(_max_arity, arity);
2275       _max_size  = MAX2(_max_size, argsize);
2276     }
2277   }
2278 
2279   void print_histogram_helper(int n, int* histo, const char* name) {
2280     const int N = MIN2(5, n);
2281     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2282     double sum = 0;
2283     double weighted_sum = 0;
2284     int i;
2285     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2286     double rest = sum;
2287     double percent = sum / 100;
2288     for (i = 0; i <= N; i++) {
2289       rest -= histo[i];
2290       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2291     }
2292     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2293     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2294   }
2295 
2296   void print_histogram() {
2297     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2298     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2299     tty->print_cr("\nSame for parameter size (in words):");
2300     print_histogram_helper(_max_size, _size_histogram, "size");
2301     tty->cr();
2302   }
2303 
2304  public:
2305   MethodArityHistogram() {
2306     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2307     _max_arity = _max_size = 0;
2308     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2309     CodeCache::nmethods_do(add_method_to_histogram);
2310     print_histogram();
2311   }
2312 };
2313 
2314 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2315 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2316 int MethodArityHistogram::_max_arity;
2317 int MethodArityHistogram::_max_size;
2318 
2319 void SharedRuntime::print_call_statistics(int comp_total) {
2320   tty->print_cr("Calls from compiled code:");
2321   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2322   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2323   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2324   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2325   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2326   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2327   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2328   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2329   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2330   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2331   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2332   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2333   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2334   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2335   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2336   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2337   tty->cr();
2338   tty->print_cr("Note 1: counter updates are not MT-safe.");
2339   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2340   tty->print_cr("        %% in nested categories are relative to their category");
2341   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2342   tty->cr();
2343 
2344   MethodArityHistogram h;
2345 }
2346 #endif
2347 
2348 
2349 // A simple wrapper class around the calling convention information
2350 // that allows sharing of adapters for the same calling convention.
2351 class AdapterFingerPrint : public CHeapObj<mtCode> {
2352  private:
2353   enum {
2354     _basic_type_bits = 4,
2355     _basic_type_mask = right_n_bits(_basic_type_bits),
2356     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2357     _compact_int_count = 3
2358   };
2359   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2360   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2361 
2362   union {
2363     int  _compact[_compact_int_count];
2364     int* _fingerprint;
2365   } _value;
2366   int _length; // A negative length indicates the fingerprint is in the compact form,
2367                // Otherwise _value._fingerprint is the array.
2368 
2369   // Remap BasicTypes that are handled equivalently by the adapters.
2370   // These are correct for the current system but someday it might be
2371   // necessary to make this mapping platform dependent.
2372   static int adapter_encoding(BasicType in, bool is_valuetype) {
2373     switch (in) {
2374       case T_BOOLEAN:
2375       case T_BYTE:
2376       case T_SHORT:
2377       case T_CHAR: {
2378         if (is_valuetype) {
2379           // Do not widen value type field types
2380           assert(ValueTypePassFieldsAsArgs, "must be enabled");
2381           return in;
2382         } else {
2383           // They are all promoted to T_INT in the calling convention
2384           return T_INT;
2385         }
2386       }
2387 
2388       case T_VALUETYPE: {
2389         // If value types are passed as fields, return 'in' to differentiate
2390         // between a T_VALUETYPE and a T_OBJECT in the signature.
2391         return ValueTypePassFieldsAsArgs ? in : adapter_encoding(T_OBJECT, false);
2392       }
2393 
2394       case T_OBJECT:
2395       case T_ARRAY:
2396         // In other words, we assume that any register good enough for
2397         // an int or long is good enough for a managed pointer.
2398 #ifdef _LP64
2399         return T_LONG;
2400 #else
2401         return T_INT;
2402 #endif
2403 
2404       case T_INT:
2405       case T_LONG:
2406       case T_FLOAT:
2407       case T_DOUBLE:
2408       case T_VOID:
2409         return in;
2410 
2411       default:
2412         ShouldNotReachHere();
2413         return T_CONFLICT;
2414     }
2415   }
2416 
2417  public:
2418   AdapterFingerPrint(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2419     // The fingerprint is based on the BasicType signature encoded
2420     // into an array of ints with eight entries per int.
2421     int total_args_passed = (sig != NULL) ? sig->length() : 0;
2422     int* ptr;
2423     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2424     if (len <= _compact_int_count) {
2425       assert(_compact_int_count == 3, "else change next line");
2426       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2427       // Storing the signature encoded as signed chars hits about 98%
2428       // of the time.
2429       _length = -len;
2430       ptr = _value._compact;
2431     } else {
2432       _length = len;
2433       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2434       ptr = _value._fingerprint;
2435     }
2436 
2437     // Now pack the BasicTypes with 8 per int
2438     int sig_index = 0;
2439     BasicType prev_sbt = T_ILLEGAL;
2440     int vt_count = 0;
2441     for (int index = 0; index < len; index++) {
2442       int value = 0;
2443       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2444         int bt = 0;
2445         if (sig_index < total_args_passed) {
2446           BasicType sbt = sig->at(sig_index++)._bt;
2447           if (ValueTypePassFieldsAsArgs && sbt == T_VALUETYPE) {
2448             // Found start of value type in signature
2449             vt_count++;
2450             if (sig_index == 1 && has_ro_adapter) {
2451               // With a ro_adapter, replace receiver value type delimiter by T_VOID to prevent matching
2452               // with other adapters that have the same value type as first argument and no receiver.
2453               sbt = T_VOID;
2454             }
2455           } else if (ValueTypePassFieldsAsArgs && sbt == T_VOID &&
2456                      prev_sbt != T_LONG && prev_sbt != T_DOUBLE) {
2457             // Found end of value type in signature
2458             vt_count--;
2459             assert(vt_count >= 0, "invalid vt_count");
2460           }
2461           bt = adapter_encoding(sbt, vt_count > 0);
2462           prev_sbt = sbt;
2463         }
2464         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2465         value = (value << _basic_type_bits) | bt;
2466       }
2467       ptr[index] = value;
2468     }
2469     assert(vt_count == 0, "invalid vt_count");
2470   }
2471 
2472   ~AdapterFingerPrint() {
2473     if (_length > 0) {
2474       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2475     }
2476   }
2477 
2478   int value(int index) {
2479     if (_length < 0) {
2480       return _value._compact[index];
2481     }
2482     return _value._fingerprint[index];
2483   }
2484   int length() {
2485     if (_length < 0) return -_length;
2486     return _length;
2487   }
2488 
2489   bool is_compact() {
2490     return _length <= 0;
2491   }
2492 
2493   unsigned int compute_hash() {
2494     int hash = 0;
2495     for (int i = 0; i < length(); i++) {
2496       int v = value(i);
2497       hash = (hash << 8) ^ v ^ (hash >> 5);
2498     }
2499     return (unsigned int)hash;
2500   }
2501 
2502   const char* as_string() {
2503     stringStream st;
2504     st.print("0x");
2505     for (int i = 0; i < length(); i++) {
2506       st.print("%08x", value(i));
2507     }
2508     return st.as_string();
2509   }
2510 
2511   bool equals(AdapterFingerPrint* other) {
2512     if (other->_length != _length) {
2513       return false;
2514     }
2515     if (_length < 0) {
2516       assert(_compact_int_count == 3, "else change next line");
2517       return _value._compact[0] == other->_value._compact[0] &&
2518              _value._compact[1] == other->_value._compact[1] &&
2519              _value._compact[2] == other->_value._compact[2];
2520     } else {
2521       for (int i = 0; i < _length; i++) {
2522         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2523           return false;
2524         }
2525       }
2526     }
2527     return true;
2528   }
2529 };
2530 
2531 
2532 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2533 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2534   friend class AdapterHandlerTableIterator;
2535 
2536  private:
2537 
2538 #ifndef PRODUCT
2539   static int _lookups; // number of calls to lookup
2540   static int _buckets; // number of buckets checked
2541   static int _equals;  // number of buckets checked with matching hash
2542   static int _hits;    // number of successful lookups
2543   static int _compact; // number of equals calls with compact signature
2544 #endif
2545 
2546   AdapterHandlerEntry* bucket(int i) {
2547     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2548   }
2549 
2550  public:
2551   AdapterHandlerTable()
2552     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2553 
2554   // Create a new entry suitable for insertion in the table
2555   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_value_entry, address c2i_value_ro_entry, address c2i_unverified_entry) {
2556     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2557     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry, c2i_unverified_entry);
2558     if (DumpSharedSpaces) {
2559       ((CDSAdapterHandlerEntry*)entry)->init();
2560     }
2561     return entry;
2562   }
2563 
2564   // Insert an entry into the table
2565   void add(AdapterHandlerEntry* entry) {
2566     int index = hash_to_index(entry->hash());
2567     add_entry(index, entry);
2568   }
2569 
2570   void free_entry(AdapterHandlerEntry* entry) {
2571     entry->deallocate();
2572     BasicHashtable<mtCode>::free_entry(entry);
2573   }
2574 
2575   // Find a entry with the same fingerprint if it exists
2576   AdapterHandlerEntry* lookup(const GrowableArray<SigEntry>* sig, bool has_ro_adapter = false) {
2577     NOT_PRODUCT(_lookups++);
2578     AdapterFingerPrint fp(sig, has_ro_adapter);
2579     unsigned int hash = fp.compute_hash();
2580     int index = hash_to_index(hash);
2581     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2582       NOT_PRODUCT(_buckets++);
2583       if (e->hash() == hash) {
2584         NOT_PRODUCT(_equals++);
2585         if (fp.equals(e->fingerprint())) {
2586 #ifndef PRODUCT
2587           if (fp.is_compact()) _compact++;
2588           _hits++;
2589 #endif
2590           return e;
2591         }
2592       }
2593     }
2594     return NULL;
2595   }
2596 
2597 #ifndef PRODUCT
2598   void print_statistics() {
2599     ResourceMark rm;
2600     int longest = 0;
2601     int empty = 0;
2602     int total = 0;
2603     int nonempty = 0;
2604     for (int index = 0; index < table_size(); index++) {
2605       int count = 0;
2606       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2607         count++;
2608       }
2609       if (count != 0) nonempty++;
2610       if (count == 0) empty++;
2611       if (count > longest) longest = count;
2612       total += count;
2613     }
2614     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2615                   empty, longest, total, total / (double)nonempty);
2616     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2617                   _lookups, _buckets, _equals, _hits, _compact);
2618   }
2619 #endif
2620 };
2621 
2622 
2623 #ifndef PRODUCT
2624 
2625 int AdapterHandlerTable::_lookups;
2626 int AdapterHandlerTable::_buckets;
2627 int AdapterHandlerTable::_equals;
2628 int AdapterHandlerTable::_hits;
2629 int AdapterHandlerTable::_compact;
2630 
2631 #endif
2632 
2633 class AdapterHandlerTableIterator : public StackObj {
2634  private:
2635   AdapterHandlerTable* _table;
2636   int _index;
2637   AdapterHandlerEntry* _current;
2638 
2639   void scan() {
2640     while (_index < _table->table_size()) {
2641       AdapterHandlerEntry* a = _table->bucket(_index);
2642       _index++;
2643       if (a != NULL) {
2644         _current = a;
2645         return;
2646       }
2647     }
2648   }
2649 
2650  public:
2651   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2652     scan();
2653   }
2654   bool has_next() {
2655     return _current != NULL;
2656   }
2657   AdapterHandlerEntry* next() {
2658     if (_current != NULL) {
2659       AdapterHandlerEntry* result = _current;
2660       _current = _current->next();
2661       if (_current == NULL) scan();
2662       return result;
2663     } else {
2664       return NULL;
2665     }
2666   }
2667 };
2668 
2669 
2670 // ---------------------------------------------------------------------------
2671 // Implementation of AdapterHandlerLibrary
2672 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2673 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2674 const int AdapterHandlerLibrary_size = 16*K;
2675 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2676 
2677 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2678   // Should be called only when AdapterHandlerLibrary_lock is active.
2679   if (_buffer == NULL) // Initialize lazily
2680       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2681   return _buffer;
2682 }
2683 
2684 extern "C" void unexpected_adapter_call() {
2685   ShouldNotCallThis();
2686 }
2687 
2688 void AdapterHandlerLibrary::initialize() {
2689   if (_adapters != NULL) return;
2690   _adapters = new AdapterHandlerTable();
2691 
2692   // Create a special handler for abstract methods.  Abstract methods
2693   // are never compiled so an i2c entry is somewhat meaningless, but
2694   // throw AbstractMethodError just in case.
2695   // Pass wrong_method_abstract for the c2i transitions to return
2696   // AbstractMethodError for invalid invocations.
2697   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2698   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2699                                                               StubRoutines::throw_AbstractMethodError_entry(),
2700                                                               wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, wrong_method_abstract);
2701 }
2702 
2703 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2704                                                       address i2c_entry,
2705                                                       address c2i_entry,
2706                                                       address c2i_value_entry,
2707                                                       address c2i_value_ro_entry,
2708                                                       address c2i_unverified_entry) {
2709   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_value_entry, c2i_value_ro_entry, c2i_unverified_entry);
2710 }
2711 
2712 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2713   AdapterHandlerEntry* entry = get_adapter0(method);
2714   if (method->is_shared()) {
2715     // See comments around Method::link_method()
2716     MutexLocker mu(AdapterHandlerLibrary_lock);
2717     if (method->adapter() == NULL) {
2718       method->update_adapter_trampoline(entry);
2719     }
2720     address trampoline = method->from_compiled_entry();
2721     if (*(int*)trampoline == 0) {
2722       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2723       MacroAssembler _masm(&buffer);
2724       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2725       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2726 
2727       if (PrintInterpreter) {
2728         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2729       }
2730     }
2731   }
2732 
2733   return entry;
2734 }
2735 
2736 static int compute_scalarized_cc(const methodHandle& method, GrowableArray<SigEntry>& sig_cc, VMRegPair*& regs_cc, bool scalar_receiver) {
2737   InstanceKlass* holder = method->method_holder();
2738   sig_cc = GrowableArray<SigEntry>(method->size_of_parameters());
2739   if (!method->is_static()) {
2740     if (holder->is_value() && scalar_receiver) {
2741       sig_cc.appendAll(ValueKlass::cast(holder)->extended_sig());
2742     } else {
2743       SigEntry::add_entry(&sig_cc, T_OBJECT);
2744     }
2745   }
2746   Thread* THREAD = Thread::current();
2747   for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2748     if (ss.type() == T_VALUETYPE) {
2749       Klass* k = ss.as_klass(Handle(THREAD, holder->class_loader()),
2750                              Handle(THREAD, holder->protection_domain()),
2751                              SignatureStream::ReturnNull, THREAD);
2752       assert(k != NULL && !HAS_PENDING_EXCEPTION, "value klass should have been pre-loaded");
2753       sig_cc.appendAll(ValueKlass::cast(k)->extended_sig());
2754     } else {
2755       SigEntry::add_entry(&sig_cc, ss.type());
2756     }
2757   }
2758   regs_cc = NEW_RESOURCE_ARRAY(VMRegPair, sig_cc.length() + 2);
2759   return SharedRuntime::java_calling_convention(&sig_cc, regs_cc);
2760 }
2761 
2762 static int insert_reserved_entry(GrowableArray<SigEntry>& sig_cc, VMRegPair*& regs_cc, int ret_off) {
2763   // Find index in signature that belongs to return address slot
2764   BasicType bt = T_ILLEGAL;
2765   int i = 0;
2766   for (uint off = 0; i < sig_cc.length(); ++i) {
2767     if (SigEntry::skip_value_delimiters(&sig_cc, i)) {
2768       VMReg first = regs_cc[off++].first();
2769       if (first->is_valid() && first->is_stack()) {
2770         // Select a type for the reserved entry that will end up on the stack
2771         bt = sig_cc.at(i)._bt;
2772         if (((int)first->reg2stack() + VMRegImpl::slots_per_word) == ret_off) {
2773           break; // Index of the return address found
2774         }
2775       }
2776     }
2777   }
2778   // Insert reserved entry and re-compute calling convention
2779   SigEntry::insert_reserved_entry(&sig_cc, i, bt);
2780   return SharedRuntime::java_calling_convention(&sig_cc, regs_cc);
2781 }
2782 
2783 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2784   // Use customized signature handler.  Need to lock around updates to
2785   // the AdapterHandlerTable (it is not safe for concurrent readers
2786   // and a single writer: this could be fixed if it becomes a
2787   // problem).
2788 
2789   ResourceMark rm;
2790 
2791   NOT_PRODUCT(int insts_size = 0);
2792   AdapterBlob* new_adapter = NULL;
2793   AdapterHandlerEntry* entry = NULL;
2794   AdapterFingerPrint* fingerprint = NULL;
2795 
2796   {
2797     MutexLocker mu(AdapterHandlerLibrary_lock);
2798     // make sure data structure is initialized
2799     initialize();
2800 
2801     bool has_value_arg = false;
2802     bool has_value_recv = false;
2803     GrowableArray<SigEntry> sig(method->size_of_parameters());
2804     if (!method->is_static()) {
2805       has_value_recv = method->method_holder()->is_value();
2806       has_value_arg = has_value_recv;
2807       SigEntry::add_entry(&sig, T_OBJECT);
2808     }
2809     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2810       BasicType bt = ss.type();
2811       if (bt == T_VALUETYPE) {
2812         has_value_arg = true;
2813         bt = T_OBJECT;
2814       }
2815       SigEntry::add_entry(&sig, bt);
2816     }
2817 
2818     // Process abstract method if it has value type args to set has_scalarized_args accordingly
2819     if (method->is_abstract() && !(ValueTypePassFieldsAsArgs && has_value_arg)) {
2820       return _abstract_method_handler;
2821     }
2822 
2823     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2824     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, sig.length());
2825     int args_on_stack = SharedRuntime::java_calling_convention(&sig, regs);
2826 
2827     // Now compute the scalarized calling convention if there are value types in the signature
2828     GrowableArray<SigEntry> sig_cc = sig;
2829     GrowableArray<SigEntry> sig_cc_ro = sig;
2830     VMRegPair* regs_cc = regs;
2831     VMRegPair* regs_cc_ro = regs;
2832     int args_on_stack_cc = args_on_stack;
2833     int args_on_stack_cc_ro = args_on_stack;
2834 
2835     if (ValueTypePassFieldsAsArgs && has_value_arg && !method->is_native()) {
2836       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2837       args_on_stack_cc = compute_scalarized_cc(method, sig_cc, regs_cc, /* scalar_receiver = */ true);
2838 
2839       sig_cc_ro = sig_cc;
2840       regs_cc_ro = regs_cc;
2841       args_on_stack_cc_ro = args_on_stack_cc;
2842       if (has_value_recv || args_on_stack_cc > args_on_stack) {
2843         // For interface calls, we need another entry point / adapter to unpack the receiver
2844         args_on_stack_cc_ro = compute_scalarized_cc(method, sig_cc_ro, regs_cc_ro, /* scalar_receiver = */ false);
2845       }
2846 
2847       // Compute the stack extension that is required to convert between the calling conventions.
2848       // The stack slots at these offsets are occupied by the return address with the unscalarized
2849       // calling convention. Don't use them for arguments with the scalarized calling convention.
2850       int ret_off    = args_on_stack_cc - args_on_stack;
2851       int ret_off_ro = args_on_stack_cc - args_on_stack_cc_ro;
2852       assert(ret_off_ro <= 0 || ret_off > 0, "receiver unpacking requires more stack space than expected");
2853 
2854       if (ret_off > 0) {
2855         // Make sure the stack of the scalarized calling convention with the reserved
2856         // entries (2 slots each) remains 16-byte (4 slots) aligned after stack extension.
2857         int alignment = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
2858         if (ret_off_ro != ret_off && ret_off_ro >= 0) {
2859           ret_off    += 4; // Account for two reserved entries (4 slots)
2860           ret_off_ro += 4;
2861           ret_off     = align_up(ret_off, alignment);
2862           ret_off_ro  = align_up(ret_off_ro, alignment);
2863           // TODO can we avoid wasting a stack slot here?
2864           //assert(ret_off != ret_off_ro, "fail");
2865           if (ret_off > ret_off_ro) {
2866             swap(ret_off, ret_off_ro); // Sort by offset
2867           }
2868           args_on_stack_cc = insert_reserved_entry(sig_cc, regs_cc, ret_off);
2869           args_on_stack_cc = insert_reserved_entry(sig_cc, regs_cc, ret_off_ro);
2870         } else {
2871           ret_off += 2; // Account for one reserved entry (2 slots)
2872           ret_off = align_up(ret_off, alignment);
2873           args_on_stack_cc = insert_reserved_entry(sig_cc, regs_cc, ret_off);
2874         }
2875       }
2876 
2877       // Upper bound on stack arguments to avoid hitting the argument limit and
2878       // bailing out of compilation ("unsupported incoming calling sequence").
2879       // TODO we need a reasonable limit (flag?) here
2880       if (args_on_stack_cc > 50) {
2881         // Don't scalarize value type arguments
2882         sig_cc = sig;
2883         sig_cc_ro = sig;
2884         regs_cc = regs;
2885         regs_cc_ro = regs;
2886         args_on_stack_cc = args_on_stack;
2887       } else {
2888         method->set_has_scalarized_args(true);
2889         method->set_needs_stack_repair(args_on_stack_cc > args_on_stack);
2890       }
2891     }
2892 
2893     if (method->is_abstract()) {
2894       // Save a C heap allocated version of the signature for abstract methods with scalarized value type arguments
2895       assert(ValueTypePassFieldsAsArgs && has_value_arg, "must have scalarized value type args");
2896       address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2897       entry = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(NULL),
2898                                                StubRoutines::throw_AbstractMethodError_entry(),
2899                                                wrong_method_abstract, wrong_method_abstract, wrong_method_abstract, wrong_method_abstract);
2900       GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc_ro.length(), true);
2901       heap_sig->appendAll(&sig_cc_ro);
2902       entry->set_sig_cc(heap_sig);
2903       return entry;
2904     }
2905 
2906     // Lookup method signature's fingerprint
2907     entry = _adapters->lookup(&sig_cc, regs_cc != regs_cc_ro);
2908 
2909 #ifdef ASSERT
2910     AdapterHandlerEntry* shared_entry = NULL;
2911     // Start adapter sharing verification only after the VM is booted.
2912     if (VerifyAdapterSharing && (entry != NULL)) {
2913       shared_entry = entry;
2914       entry = NULL;
2915     }
2916 #endif
2917 
2918     if (entry != NULL) {
2919       return entry;
2920     }
2921 
2922     // Make a C heap allocated version of the fingerprint to store in the adapter
2923     fingerprint = new AdapterFingerPrint(&sig_cc, regs_cc != regs_cc_ro);
2924 
2925     // StubRoutines::code2() is initialized after this function can be called. As a result,
2926     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2927     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2928     // stub that ensure that an I2C stub is called from an interpreter frame.
2929     bool contains_all_checks = StubRoutines::code2() != NULL;
2930 
2931     // Create I2C & C2I handlers
2932     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2933     if (buf != NULL) {
2934       CodeBuffer buffer(buf);
2935       short buffer_locs[20];
2936       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2937                                              sizeof(buffer_locs)/sizeof(relocInfo));
2938 
2939       MacroAssembler _masm(&buffer);
2940       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2941                                                      args_on_stack,
2942                                                      args_on_stack_cc,
2943                                                      &sig,
2944                                                      regs,
2945                                                      &sig_cc,
2946                                                      regs_cc,
2947                                                      &sig_cc_ro,
2948                                                      regs_cc_ro,
2949                                                      fingerprint,
2950                                                      new_adapter);
2951 
2952       if (regs != regs_cc) {
2953         // Save a C heap allocated version of the scalarized signature and store it in the adapter
2954         GrowableArray<SigEntry>* heap_sig = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<SigEntry>(sig_cc.length(), true);
2955         heap_sig->appendAll(&sig_cc);
2956         entry->set_sig_cc(heap_sig);
2957       }
2958 
2959 #ifdef ASSERT
2960       if (VerifyAdapterSharing) {
2961         if (shared_entry != NULL) {
2962           if (!shared_entry->compare_code(buf->code_begin(), buffer.insts_size())) {
2963             method->print();
2964           }
2965           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2966           // Release the one just created and return the original
2967           _adapters->free_entry(entry);
2968           return shared_entry;
2969         } else  {
2970           entry->save_code(buf->code_begin(), buffer.insts_size());
2971         }
2972       }
2973 #endif
2974 
2975       NOT_PRODUCT(insts_size = buffer.insts_size());
2976     }
2977     if (new_adapter == NULL) {
2978       // CodeCache is full, disable compilation
2979       // Ought to log this but compile log is only per compile thread
2980       // and we're some non descript Java thread.
2981       return NULL; // Out of CodeCache space
2982     }
2983     entry->relocate(new_adapter->content_begin());
2984 #ifndef PRODUCT
2985     // debugging suppport
2986     if (PrintAdapterHandlers || PrintStubCode) {
2987       ttyLocker ttyl;
2988       entry->print_adapter_on(tty);
2989       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2990                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2991                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2992       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2993       if (Verbose || PrintStubCode) {
2994         address first_pc = entry->base_address();
2995         if (first_pc != NULL) {
2996           Disassembler::decode(first_pc, first_pc + insts_size);
2997           tty->cr();
2998         }
2999       }
3000     }
3001 #endif
3002     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
3003     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
3004     if (contains_all_checks || !VerifyAdapterCalls) {
3005       _adapters->add(entry);
3006     }
3007   }
3008   // Outside of the lock
3009   if (new_adapter != NULL) {
3010     char blob_id[256];
3011     jio_snprintf(blob_id,
3012                  sizeof(blob_id),
3013                  "%s(%s)@" PTR_FORMAT,
3014                  new_adapter->name(),
3015                  fingerprint->as_string(),
3016                  new_adapter->content_begin());
3017     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3018 
3019     if (JvmtiExport::should_post_dynamic_code_generated()) {
3020       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
3021     }
3022   }
3023   return entry;
3024 }
3025 
3026 address AdapterHandlerEntry::base_address() {
3027   address base = _i2c_entry;
3028   if (base == NULL)  base = _c2i_entry;
3029   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
3030   assert(base <= _c2i_value_entry || _c2i_value_entry == NULL, "");
3031   assert(base <= _c2i_value_ro_entry || _c2i_value_ro_entry == NULL, "");
3032   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
3033   return base;
3034 }
3035 
3036 void AdapterHandlerEntry::relocate(address new_base) {
3037   address old_base = base_address();
3038   assert(old_base != NULL, "");
3039   ptrdiff_t delta = new_base - old_base;
3040   if (_i2c_entry != NULL)
3041     _i2c_entry += delta;
3042   if (_c2i_entry != NULL)
3043     _c2i_entry += delta;
3044   if (_c2i_value_entry != NULL)
3045     _c2i_value_entry += delta;
3046   if (_c2i_value_ro_entry != NULL)
3047     _c2i_value_ro_entry += delta;
3048   if (_c2i_unverified_entry != NULL)
3049     _c2i_unverified_entry += delta;
3050   assert(base_address() == new_base, "");
3051 }
3052 
3053 
3054 void AdapterHandlerEntry::deallocate() {
3055   delete _fingerprint;
3056   if (_sig_cc != NULL) {
3057     delete _sig_cc;
3058   }
3059 #ifdef ASSERT
3060   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
3061 #endif
3062 }
3063 
3064 
3065 #ifdef ASSERT
3066 // Capture the code before relocation so that it can be compared
3067 // against other versions.  If the code is captured after relocation
3068 // then relative instructions won't be equivalent.
3069 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3070   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3071   _saved_code_length = length;
3072   memcpy(_saved_code, buffer, length);
3073 }
3074 
3075 
3076 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
3077   if (length != _saved_code_length) {
3078     return false;
3079   }
3080 
3081   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
3082 }
3083 #endif
3084 
3085 
3086 /**
3087  * Create a native wrapper for this native method.  The wrapper converts the
3088  * Java-compiled calling convention to the native convention, handles
3089  * arguments, and transitions to native.  On return from the native we transition
3090  * back to java blocking if a safepoint is in progress.
3091  */
3092 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3093   ResourceMark rm;
3094   nmethod* nm = NULL;
3095 
3096   assert(method->is_native(), "must be native");
3097   assert(method->is_method_handle_intrinsic() ||
3098          method->has_native_function(), "must have something valid to call!");
3099 
3100   {
3101     // Perform the work while holding the lock, but perform any printing outside the lock
3102     MutexLocker mu(AdapterHandlerLibrary_lock);
3103     // See if somebody beat us to it
3104     if (method->code() != NULL) {
3105       return;
3106     }
3107 
3108     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3109     assert(compile_id > 0, "Must generate native wrapper");
3110 
3111 
3112     ResourceMark rm;
3113     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
3114     if (buf != NULL) {
3115       CodeBuffer buffer(buf);
3116       double locs_buf[20];
3117       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3118       MacroAssembler _masm(&buffer);
3119 
3120       // Fill in the signature array, for the calling-convention call.
3121       const int total_args_passed = method->size_of_parameters();
3122 
3123       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
3124       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3125       int i=0;
3126       if (!method->is_static())  // Pass in receiver first
3127         sig_bt[i++] = T_OBJECT;
3128       SignatureStream ss(method->signature());
3129       for (; !ss.at_return_type(); ss.next()) {
3130         BasicType bt = ss.type();
3131         sig_bt[i++] = bt;  // Collect remaining bits of signature
3132         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
3133           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
3134       }
3135       assert(i == total_args_passed, "");
3136       BasicType ret_type = ss.type();
3137 
3138       // Now get the compiled-Java layout as input (or output) arguments.
3139       // NOTE: Stubs for compiled entry points of method handle intrinsics
3140       // are just trampolines so the argument registers must be outgoing ones.
3141       const bool is_outgoing = method->is_method_handle_intrinsic();
3142       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
3143 
3144       // Generate the compiled-to-native wrapper code
3145       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
3146 
3147       if (nm != NULL) {
3148         method->set_code(method, nm);
3149 
3150         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3151         if (directive->PrintAssemblyOption) {
3152           nm->print_code();
3153         }
3154         DirectivesStack::release(directive);
3155       }
3156     }
3157   } // Unlock AdapterHandlerLibrary_lock
3158 
3159 
3160   // Install the generated code.
3161   if (nm != NULL) {
3162     const char *msg = method->is_static() ? "(static)" : "";
3163     CompileTask::print_ul(nm, msg);
3164     if (PrintCompilation) {
3165       ttyLocker ttyl;
3166       CompileTask::print(tty, nm, msg);
3167     }
3168     nm->post_compiled_method_load_event();
3169   }
3170 }
3171 
3172 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
3173   assert(thread == JavaThread::current(), "must be");
3174   // The code is about to enter a JNI lazy critical native method and
3175   // _needs_gc is true, so if this thread is already in a critical
3176   // section then just return, otherwise this thread should block
3177   // until needs_gc has been cleared.
3178   if (thread->in_critical()) {
3179     return;
3180   }
3181   // Lock and unlock a critical section to give the system a chance to block
3182   GCLocker::lock_critical(thread);
3183   GCLocker::unlock_critical(thread);
3184 JRT_END
3185 
3186 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
3187   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3188   assert(obj != NULL, "Should not be null");
3189   oop o(obj);
3190   o = Universe::heap()->pin_object(thread, o);
3191   assert(o != NULL, "Should not be null");
3192   return o;
3193 JRT_END
3194 
3195 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
3196   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
3197   assert(obj != NULL, "Should not be null");
3198   oop o(obj);
3199   Universe::heap()->unpin_object(thread, o);
3200 JRT_END
3201 
3202 // -------------------------------------------------------------------------
3203 // Java-Java calling convention
3204 // (what you use when Java calls Java)
3205 
3206 //------------------------------name_for_receiver----------------------------------
3207 // For a given signature, return the VMReg for parameter 0.
3208 VMReg SharedRuntime::name_for_receiver() {
3209   VMRegPair regs;
3210   BasicType sig_bt = T_OBJECT;
3211   (void) java_calling_convention(&sig_bt, &regs, 1, true);
3212   // Return argument 0 register.  In the LP64 build pointers
3213   // take 2 registers, but the VM wants only the 'main' name.
3214   return regs.first();
3215 }
3216 
3217 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3218   // This method is returning a data structure allocating as a
3219   // ResourceObject, so do not put any ResourceMarks in here.
3220   char *s = sig->as_C_string();
3221   int len = (int)strlen(s);
3222   s++; len--;                   // Skip opening paren
3223 
3224   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3225   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3226   int cnt = 0;
3227   if (has_receiver) {
3228     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3229   }
3230 
3231   while (*s != ')') {          // Find closing right paren
3232     switch (*s++) {            // Switch on signature character
3233     case 'B': sig_bt[cnt++] = T_BYTE;    break;
3234     case 'C': sig_bt[cnt++] = T_CHAR;    break;
3235     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
3236     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
3237     case 'I': sig_bt[cnt++] = T_INT;     break;
3238     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
3239     case 'S': sig_bt[cnt++] = T_SHORT;   break;
3240     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
3241     case 'V': sig_bt[cnt++] = T_VOID;    break;
3242     case 'L':                   // Oop
3243       while (*s++ != ';');   // Skip signature
3244       sig_bt[cnt++] = T_OBJECT;
3245       break;
3246     case 'Q':                // Value type
3247       while (*s++ != ';');   // Skip signature
3248       sig_bt[cnt++] = T_VALUETYPE;
3249       break;
3250     case '[': {                 // Array
3251       do {                      // Skip optional size
3252         while (*s >= '0' && *s <= '9') s++;
3253       } while (*s++ == '[');   // Nested arrays?
3254       // Skip element type
3255       if (s[-1] == 'L' || s[-1] == 'Q')
3256         while (*s++ != ';'); // Skip signature
3257       sig_bt[cnt++] = T_ARRAY;
3258       break;
3259     }
3260     default : ShouldNotReachHere();
3261     }
3262   }
3263 
3264   if (has_appendix) {
3265     sig_bt[cnt++] = T_OBJECT;
3266   }
3267 
3268   assert(cnt < 256, "grow table size");
3269 
3270   int comp_args_on_stack;
3271   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3272 
3273   // the calling convention doesn't count out_preserve_stack_slots so
3274   // we must add that in to get "true" stack offsets.
3275 
3276   if (comp_args_on_stack) {
3277     for (int i = 0; i < cnt; i++) {
3278       VMReg reg1 = regs[i].first();
3279       if (reg1->is_stack()) {
3280         // Yuck
3281         reg1 = reg1->bias(out_preserve_stack_slots());
3282       }
3283       VMReg reg2 = regs[i].second();
3284       if (reg2->is_stack()) {
3285         // Yuck
3286         reg2 = reg2->bias(out_preserve_stack_slots());
3287       }
3288       regs[i].set_pair(reg2, reg1);
3289     }
3290   }
3291 
3292   // results
3293   *arg_size = cnt;
3294   return regs;
3295 }
3296 
3297 // OSR Migration Code
3298 //
3299 // This code is used convert interpreter frames into compiled frames.  It is
3300 // called from very start of a compiled OSR nmethod.  A temp array is
3301 // allocated to hold the interesting bits of the interpreter frame.  All
3302 // active locks are inflated to allow them to move.  The displaced headers and
3303 // active interpreter locals are copied into the temp buffer.  Then we return
3304 // back to the compiled code.  The compiled code then pops the current
3305 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3306 // copies the interpreter locals and displaced headers where it wants.
3307 // Finally it calls back to free the temp buffer.
3308 //
3309 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3310 
3311 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3312 
3313   //
3314   // This code is dependent on the memory layout of the interpreter local
3315   // array and the monitors. On all of our platforms the layout is identical
3316   // so this code is shared. If some platform lays the their arrays out
3317   // differently then this code could move to platform specific code or
3318   // the code here could be modified to copy items one at a time using
3319   // frame accessor methods and be platform independent.
3320 
3321   frame fr = thread->last_frame();
3322   assert(fr.is_interpreted_frame(), "");
3323   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3324 
3325   // Figure out how many monitors are active.
3326   int active_monitor_count = 0;
3327   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3328        kptr < fr.interpreter_frame_monitor_begin();
3329        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3330     if (kptr->obj() != NULL) active_monitor_count++;
3331   }
3332 
3333   // QQQ we could place number of active monitors in the array so that compiled code
3334   // could double check it.
3335 
3336   Method* moop = fr.interpreter_frame_method();
3337   int max_locals = moop->max_locals();
3338   // Allocate temp buffer, 1 word per local & 2 per active monitor
3339   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3340   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3341 
3342   // Copy the locals.  Order is preserved so that loading of longs works.
3343   // Since there's no GC I can copy the oops blindly.
3344   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3345   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3346                        (HeapWord*)&buf[0],
3347                        max_locals);
3348 
3349   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3350   int i = max_locals;
3351   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3352        kptr2 < fr.interpreter_frame_monitor_begin();
3353        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3354     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3355       BasicLock *lock = kptr2->lock();
3356       // Inflate so the displaced header becomes position-independent
3357       if (lock->displaced_header()->is_unlocked())
3358         ObjectSynchronizer::inflate_helper(kptr2->obj());
3359       // Now the displaced header is free to move
3360       buf[i++] = (intptr_t)lock->displaced_header();
3361       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3362     }
3363   }
3364   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3365 
3366   return buf;
3367 JRT_END
3368 
3369 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3370   FREE_C_HEAP_ARRAY(intptr_t, buf);
3371 JRT_END
3372 
3373 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3374   AdapterHandlerTableIterator iter(_adapters);
3375   while (iter.has_next()) {
3376     AdapterHandlerEntry* a = iter.next();
3377     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3378   }
3379   return false;
3380 }
3381 
3382 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3383   AdapterHandlerTableIterator iter(_adapters);
3384   while (iter.has_next()) {
3385     AdapterHandlerEntry* a = iter.next();
3386     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3387       st->print("Adapter for signature: ");
3388       a->print_adapter_on(tty);
3389       return;
3390     }
3391   }
3392   assert(false, "Should have found handler");
3393 }
3394 
3395 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3396   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iVE: " INTPTR_FORMAT " c2iVROE: " INTPTR_FORMAT " c2iUE: " INTPTR_FORMAT,
3397                p2i(this), fingerprint()->as_string(),
3398                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_value_entry()), p2i(get_c2i_value_ro_entry()), p2i(get_c2i_unverified_entry()));
3399 
3400 }
3401 
3402 #if INCLUDE_CDS
3403 
3404 void CDSAdapterHandlerEntry::init() {
3405   assert(DumpSharedSpaces, "used during dump time only");
3406   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3407   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3408 };
3409 
3410 #endif // INCLUDE_CDS
3411 
3412 
3413 #ifndef PRODUCT
3414 
3415 void AdapterHandlerLibrary::print_statistics() {
3416   _adapters->print_statistics();
3417 }
3418 
3419 #endif /* PRODUCT */
3420 
3421 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3422   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3423   if (thread->stack_reserved_zone_disabled()) {
3424   thread->enable_stack_reserved_zone();
3425   }
3426   thread->set_reserved_stack_activation(thread->stack_base());
3427 JRT_END
3428 
3429 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3430   ResourceMark rm(thread);
3431   frame activation;
3432   CompiledMethod* nm = NULL;
3433   int count = 1;
3434 
3435   assert(fr.is_java_frame(), "Must start on Java frame");
3436 
3437   while (true) {
3438     Method* method = NULL;
3439     bool found = false;
3440     if (fr.is_interpreted_frame()) {
3441       method = fr.interpreter_frame_method();
3442       if (method != NULL && method->has_reserved_stack_access()) {
3443         found = true;
3444       }
3445     } else {
3446       CodeBlob* cb = fr.cb();
3447       if (cb != NULL && cb->is_compiled()) {
3448         nm = cb->as_compiled_method();
3449         method = nm->method();
3450         // scope_desc_near() must be used, instead of scope_desc_at() because on
3451         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3452         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3453           method = sd->method();
3454           if (method != NULL && method->has_reserved_stack_access()) {
3455             found = true;
3456       }
3457     }
3458       }
3459     }
3460     if (found) {
3461       activation = fr;
3462       warning("Potentially dangerous stack overflow in "
3463               "ReservedStackAccess annotated method %s [%d]",
3464               method->name_and_sig_as_C_string(), count++);
3465       EventReservedStackActivation event;
3466       if (event.should_commit()) {
3467         event.set_method(method);
3468         event.commit();
3469       }
3470     }
3471     if (fr.is_first_java_frame()) {
3472       break;
3473     } else {
3474       fr = fr.java_sender();
3475     }
3476   }
3477   return activation;
3478 }
3479 
3480 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3481   // After any safepoint, just before going back to compiled code,
3482   // we inform the GC that we will be doing initializing writes to
3483   // this object in the future without emitting card-marks, so
3484   // GC may take any compensating steps.
3485 
3486   oop new_obj = thread->vm_result();
3487   if (new_obj == NULL) return;
3488 
3489   BarrierSet *bs = BarrierSet::barrier_set();
3490   bs->on_slowpath_allocation_exit(thread, new_obj);
3491 }
3492 
3493 // We are at a compiled code to interpreter call. We need backing
3494 // buffers for all value type arguments. Allocate an object array to
3495 // hold them (convenient because once we're done with it we don't have
3496 // to worry about freeing it).
3497 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method, bool allocate_receiver))
3498 {
3499   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3500   ResourceMark rm;
3501   JavaThread* THREAD = thread;
3502   methodHandle callee(callee_method);
3503 
3504   int nb_slots = 0;
3505   InstanceKlass* holder = callee->method_holder();
3506   allocate_receiver &= !callee->is_static() && holder->is_value();
3507   if (allocate_receiver) {
3508     nb_slots++;
3509   }
3510   Handle class_loader(THREAD, holder->class_loader());
3511   Handle protection_domain(THREAD, holder->protection_domain());
3512   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3513     if (ss.type() == T_VALUETYPE) {
3514       nb_slots++;
3515     }
3516   }
3517   objArrayOop array_oop = oopFactory::new_objectArray(nb_slots, CHECK);
3518   objArrayHandle array(THREAD, array_oop);
3519   int i = 0;
3520   if (allocate_receiver) {
3521     ValueKlass* vk = ValueKlass::cast(holder);
3522     oop res = vk->allocate_instance(CHECK);
3523     array->obj_at_put(i, res);
3524     i++;
3525   }
3526   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3527     if (ss.type() == T_VALUETYPE) {
3528       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3529       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3530       ValueKlass* vk = ValueKlass::cast(k);
3531       oop res = vk->allocate_instance(CHECK);
3532       array->obj_at_put(i, res);
3533       i++;
3534     }
3535   }
3536   thread->set_vm_result(array());
3537   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3538 }
3539 JRT_END
3540 
3541 // Iterate of the array of heap allocated value types and apply the GC post barrier to all reference fields.
3542 // This is called from the C2I adapter after value type arguments are heap allocated and initialized.
3543 JRT_LEAF(void, SharedRuntime::apply_post_barriers(JavaThread* thread, objArrayOopDesc* array))
3544 {
3545   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3546   assert(oopDesc::is_oop(array), "should be oop");
3547   for (int i = 0; i < array->length(); ++i) {
3548     instanceOop valueOop = (instanceOop)array->obj_at(i);
3549     ValueKlass* vk = ValueKlass::cast(valueOop->klass());
3550     if (vk->contains_oops()) {
3551       const address dst_oop_addr = ((address) (void*) valueOop);
3552       OopMapBlock* map = vk->start_of_nonstatic_oop_maps();
3553       OopMapBlock* const end = map + vk->nonstatic_oop_map_count();
3554       while (map != end) {
3555         address doop_address = dst_oop_addr + map->offset();
3556         barrier_set_cast<ModRefBarrierSet>(BarrierSet::barrier_set())->
3557           write_ref_array((HeapWord*) doop_address, map->count());
3558         map++;
3559       }
3560     }
3561   }
3562 }
3563 JRT_END
3564 
3565 // We're returning from an interpreted method: load each field into a
3566 // register following the calling convention
3567 JRT_LEAF(void, SharedRuntime::load_value_type_fields_in_regs(JavaThread* thread, oopDesc* res))
3568 {
3569   assert(res->klass()->is_value(), "only value types here");
3570   ResourceMark rm;
3571   RegisterMap reg_map(thread);
3572   frame stubFrame = thread->last_frame();
3573   frame callerFrame = stubFrame.sender(&reg_map);
3574   assert(callerFrame.is_interpreted_frame(), "should be coming from interpreter");
3575 
3576   ValueKlass* vk = ValueKlass::cast(res->klass());
3577 
3578   const Array<SigEntry>* sig_vk = vk->extended_sig();
3579   const Array<VMRegPair>* regs = vk->return_regs();
3580 
3581   if (regs == NULL) {
3582     // The fields of the value klass don't fit in registers, bail out
3583     return;
3584   }
3585 
3586   int j = 1;
3587   for (int i = 0; i < sig_vk->length(); i++) {
3588     BasicType bt = sig_vk->at(i)._bt;
3589     if (bt == T_VALUETYPE) {
3590       continue;
3591     }
3592     if (bt == T_VOID) {
3593       if (sig_vk->at(i-1)._bt == T_LONG ||
3594           sig_vk->at(i-1)._bt == T_DOUBLE) {
3595         j++;
3596       }
3597       continue;
3598     }
3599     int off = sig_vk->at(i)._offset;
3600     assert(off > 0, "offset in object should be positive");
3601     VMRegPair pair = regs->at(j);
3602     address loc = reg_map.location(pair.first());
3603     switch(bt) {
3604     case T_BOOLEAN:
3605       *(jboolean*)loc = res->bool_field(off);
3606       break;
3607     case T_CHAR:
3608       *(jchar*)loc = res->char_field(off);
3609       break;
3610     case T_BYTE:
3611       *(jbyte*)loc = res->byte_field(off);
3612       break;
3613     case T_SHORT:
3614       *(jshort*)loc = res->short_field(off);
3615       break;
3616     case T_INT: {
3617       *(jint*)loc = res->int_field(off);
3618       break;
3619     }
3620     case T_LONG:
3621 #ifdef _LP64
3622       *(intptr_t*)loc = res->long_field(off);
3623 #else
3624       Unimplemented();
3625 #endif
3626       break;
3627     case T_OBJECT:
3628     case T_ARRAY: {
3629       *(oop*)loc = res->obj_field(off);
3630       break;
3631     }
3632     case T_FLOAT:
3633       *(jfloat*)loc = res->float_field(off);
3634       break;
3635     case T_DOUBLE:
3636       *(jdouble*)loc = res->double_field(off);
3637       break;
3638     default:
3639       ShouldNotReachHere();
3640     }
3641     j++;
3642   }
3643   assert(j == regs->length(), "missed a field?");
3644 
3645 #ifdef ASSERT
3646   VMRegPair pair = regs->at(0);
3647   address loc = reg_map.location(pair.first());
3648   assert(*(oopDesc**)loc == res, "overwritten object");
3649 #endif
3650 
3651   thread->set_vm_result(res);
3652 }
3653 JRT_END
3654 
3655 // We've returned to an interpreted method, the interpreter needs a
3656 // reference to a value type instance. Allocate it and initialize it
3657 // from field's values in registers.
3658 JRT_BLOCK_ENTRY(void, SharedRuntime::store_value_type_fields_to_buf(JavaThread* thread, intptr_t res))
3659 {
3660   ResourceMark rm;
3661   RegisterMap reg_map(thread);
3662   frame stubFrame = thread->last_frame();
3663   frame callerFrame = stubFrame.sender(&reg_map);
3664 
3665 #ifdef ASSERT
3666   ValueKlass* verif_vk = ValueKlass::returned_value_klass(reg_map);
3667 #endif
3668 
3669   if (!is_set_nth_bit(res, 0)) {
3670     // We're not returning with value type fields in registers (the
3671     // calling convention didn't allow it for this value klass)
3672     assert(!Metaspace::contains((void*)res), "should be oop or pointer in buffer area");
3673     thread->set_vm_result((oopDesc*)res);
3674     assert(verif_vk == NULL, "broken calling convention");
3675     return;
3676   }
3677 
3678   clear_nth_bit(res, 0);
3679   ValueKlass* vk = (ValueKlass*)res;
3680   assert(verif_vk == vk, "broken calling convention");
3681   assert(Metaspace::contains((void*)res), "should be klass");
3682 
3683   // Allocate handles for every oop field so they are safe in case of
3684   // a safepoint when allocating
3685   GrowableArray<Handle> handles;
3686   vk->save_oop_fields(reg_map, handles);
3687 
3688   // It's unsafe to safepoint until we are here
3689   JRT_BLOCK;
3690   {
3691     Thread* THREAD = thread;
3692     oop vt = vk->realloc_result(reg_map, handles, CHECK);
3693     thread->set_vm_result(vt);
3694   }
3695   JRT_BLOCK_END;
3696 }
3697 JRT_END
3698