1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_Canonicalizer.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_GraphBuilder.hpp"
  30 #include "c1/c1_InstructionPrinter.hpp"
  31 #include "ci/ciCallSite.hpp"
  32 #include "ci/ciField.hpp"
  33 #include "ci/ciKlass.hpp"
  34 #include "ci/ciMemberName.hpp"
  35 #include "ci/ciUtilities.inline.hpp"
  36 #include "ci/ciValueKlass.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/bytecode.hpp"
  39 #include "jfr/jfrEvents.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/compilationPolicy.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 
  47 class BlockListBuilder {
  48  private:
  49   Compilation* _compilation;
  50   IRScope*     _scope;
  51 
  52   BlockList    _blocks;                // internal list of all blocks
  53   BlockList*   _bci2block;             // mapping from bci to blocks for GraphBuilder
  54 
  55   // fields used by mark_loops
  56   ResourceBitMap _active;              // for iteration of control flow graph
  57   ResourceBitMap _visited;             // for iteration of control flow graph
  58   intArray       _loop_map;            // caches the information if a block is contained in a loop
  59   int            _next_loop_index;     // next free loop number
  60   int            _next_block_number;   // for reverse postorder numbering of blocks
  61 
  62   // accessors
  63   Compilation*  compilation() const              { return _compilation; }
  64   IRScope*      scope() const                    { return _scope; }
  65   ciMethod*     method() const                   { return scope()->method(); }
  66   XHandlers*    xhandlers() const                { return scope()->xhandlers(); }
  67 
  68   // unified bailout support
  69   void          bailout(const char* msg) const   { compilation()->bailout(msg); }
  70   bool          bailed_out() const               { return compilation()->bailed_out(); }
  71 
  72   // helper functions
  73   BlockBegin* make_block_at(int bci, BlockBegin* predecessor);
  74   void handle_exceptions(BlockBegin* current, int cur_bci);
  75   void handle_jsr(BlockBegin* current, int sr_bci, int next_bci);
  76   void store_one(BlockBegin* current, int local);
  77   void store_two(BlockBegin* current, int local);
  78   void set_entries(int osr_bci);
  79   void set_leaders();
  80 
  81   void make_loop_header(BlockBegin* block);
  82   void mark_loops();
  83   int  mark_loops(BlockBegin* b, bool in_subroutine);
  84 
  85   // debugging
  86 #ifndef PRODUCT
  87   void print();
  88 #endif
  89 
  90  public:
  91   // creation
  92   BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci);
  93 
  94   // accessors for GraphBuilder
  95   BlockList*    bci2block() const                { return _bci2block; }
  96 };
  97 
  98 
  99 // Implementation of BlockListBuilder
 100 
 101 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci)
 102  : _compilation(compilation)
 103  , _scope(scope)
 104  , _blocks(16)
 105  , _bci2block(new BlockList(scope->method()->code_size(), NULL))
 106  , _active()         // size not known yet
 107  , _visited()        // size not known yet
 108  , _loop_map() // size not known yet
 109  , _next_loop_index(0)
 110  , _next_block_number(0)
 111 {
 112   set_entries(osr_bci);
 113   set_leaders();
 114   CHECK_BAILOUT();
 115 
 116   mark_loops();
 117   NOT_PRODUCT(if (PrintInitialBlockList) print());
 118 
 119 #ifndef PRODUCT
 120   if (PrintCFGToFile) {
 121     stringStream title;
 122     title.print("BlockListBuilder ");
 123     scope->method()->print_name(&title);
 124     CFGPrinter::print_cfg(_bci2block, title.as_string(), false, false);
 125   }
 126 #endif
 127 }
 128 
 129 
 130 void BlockListBuilder::set_entries(int osr_bci) {
 131   // generate start blocks
 132   BlockBegin* std_entry = make_block_at(0, NULL);
 133   if (scope()->caller() == NULL) {
 134     std_entry->set(BlockBegin::std_entry_flag);
 135   }
 136   if (osr_bci != -1) {
 137     BlockBegin* osr_entry = make_block_at(osr_bci, NULL);
 138     osr_entry->set(BlockBegin::osr_entry_flag);
 139   }
 140 
 141   // generate exception entry blocks
 142   XHandlers* list = xhandlers();
 143   const int n = list->length();
 144   for (int i = 0; i < n; i++) {
 145     XHandler* h = list->handler_at(i);
 146     BlockBegin* entry = make_block_at(h->handler_bci(), NULL);
 147     entry->set(BlockBegin::exception_entry_flag);
 148     h->set_entry_block(entry);
 149   }
 150 }
 151 
 152 
 153 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) {
 154   assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer");
 155 
 156   BlockBegin* block = _bci2block->at(cur_bci);
 157   if (block == NULL) {
 158     block = new BlockBegin(cur_bci);
 159     block->init_stores_to_locals(method()->max_locals());
 160     _bci2block->at_put(cur_bci, block);
 161     _blocks.append(block);
 162 
 163     assert(predecessor == NULL || predecessor->bci() < cur_bci, "targets for backward branches must already exist");
 164   }
 165 
 166   if (predecessor != NULL) {
 167     if (block->is_set(BlockBegin::exception_entry_flag)) {
 168       BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block);
 169     }
 170 
 171     predecessor->add_successor(block);
 172     block->increment_total_preds();
 173   }
 174 
 175   return block;
 176 }
 177 
 178 
 179 inline void BlockListBuilder::store_one(BlockBegin* current, int local) {
 180   current->stores_to_locals().set_bit(local);
 181 }
 182 inline void BlockListBuilder::store_two(BlockBegin* current, int local) {
 183   store_one(current, local);
 184   store_one(current, local + 1);
 185 }
 186 
 187 
 188 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) {
 189   // Draws edges from a block to its exception handlers
 190   XHandlers* list = xhandlers();
 191   const int n = list->length();
 192 
 193   for (int i = 0; i < n; i++) {
 194     XHandler* h = list->handler_at(i);
 195 
 196     if (h->covers(cur_bci)) {
 197       BlockBegin* entry = h->entry_block();
 198       assert(entry != NULL && entry == _bci2block->at(h->handler_bci()), "entry must be set");
 199       assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set");
 200 
 201       // add each exception handler only once
 202       if (!current->is_successor(entry)) {
 203         current->add_successor(entry);
 204         entry->increment_total_preds();
 205       }
 206 
 207       // stop when reaching catchall
 208       if (h->catch_type() == 0) break;
 209     }
 210   }
 211 }
 212 
 213 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) {
 214   // start a new block after jsr-bytecode and link this block into cfg
 215   make_block_at(next_bci, current);
 216 
 217   // start a new block at the subroutine entry at mark it with special flag
 218   BlockBegin* sr_block = make_block_at(sr_bci, current);
 219   if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) {
 220     sr_block->set(BlockBegin::subroutine_entry_flag);
 221   }
 222 }
 223 
 224 
 225 void BlockListBuilder::set_leaders() {
 226   bool has_xhandlers = xhandlers()->has_handlers();
 227   BlockBegin* current = NULL;
 228 
 229   // The information which bci starts a new block simplifies the analysis
 230   // Without it, backward branches could jump to a bci where no block was created
 231   // during bytecode iteration. This would require the creation of a new block at the
 232   // branch target and a modification of the successor lists.
 233   const BitMap& bci_block_start = method()->bci_block_start();
 234 
 235   ciBytecodeStream s(method());
 236   while (s.next() != ciBytecodeStream::EOBC()) {
 237     int cur_bci = s.cur_bci();
 238 
 239     if (bci_block_start.at(cur_bci)) {
 240       current = make_block_at(cur_bci, current);
 241     }
 242     assert(current != NULL, "must have current block");
 243 
 244     if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) {
 245       handle_exceptions(current, cur_bci);
 246     }
 247 
 248     switch (s.cur_bc()) {
 249       // track stores to local variables for selective creation of phi functions
 250       case Bytecodes::_iinc:     store_one(current, s.get_index()); break;
 251       case Bytecodes::_istore:   store_one(current, s.get_index()); break;
 252       case Bytecodes::_lstore:   store_two(current, s.get_index()); break;
 253       case Bytecodes::_fstore:   store_one(current, s.get_index()); break;
 254       case Bytecodes::_dstore:   store_two(current, s.get_index()); break;
 255       case Bytecodes::_astore:   store_one(current, s.get_index()); break;
 256       case Bytecodes::_istore_0: store_one(current, 0); break;
 257       case Bytecodes::_istore_1: store_one(current, 1); break;
 258       case Bytecodes::_istore_2: store_one(current, 2); break;
 259       case Bytecodes::_istore_3: store_one(current, 3); break;
 260       case Bytecodes::_lstore_0: store_two(current, 0); break;
 261       case Bytecodes::_lstore_1: store_two(current, 1); break;
 262       case Bytecodes::_lstore_2: store_two(current, 2); break;
 263       case Bytecodes::_lstore_3: store_two(current, 3); break;
 264       case Bytecodes::_fstore_0: store_one(current, 0); break;
 265       case Bytecodes::_fstore_1: store_one(current, 1); break;
 266       case Bytecodes::_fstore_2: store_one(current, 2); break;
 267       case Bytecodes::_fstore_3: store_one(current, 3); break;
 268       case Bytecodes::_dstore_0: store_two(current, 0); break;
 269       case Bytecodes::_dstore_1: store_two(current, 1); break;
 270       case Bytecodes::_dstore_2: store_two(current, 2); break;
 271       case Bytecodes::_dstore_3: store_two(current, 3); break;
 272       case Bytecodes::_astore_0: store_one(current, 0); break;
 273       case Bytecodes::_astore_1: store_one(current, 1); break;
 274       case Bytecodes::_astore_2: store_one(current, 2); break;
 275       case Bytecodes::_astore_3: store_one(current, 3); break;
 276 
 277       // track bytecodes that affect the control flow
 278       case Bytecodes::_athrow:  // fall through
 279       case Bytecodes::_ret:     // fall through
 280       case Bytecodes::_ireturn: // fall through
 281       case Bytecodes::_lreturn: // fall through
 282       case Bytecodes::_freturn: // fall through
 283       case Bytecodes::_dreturn: // fall through
 284       case Bytecodes::_areturn: // fall through
 285       case Bytecodes::_return:
 286         current = NULL;
 287         break;
 288 
 289       case Bytecodes::_ifeq:      // fall through
 290       case Bytecodes::_ifne:      // fall through
 291       case Bytecodes::_iflt:      // fall through
 292       case Bytecodes::_ifge:      // fall through
 293       case Bytecodes::_ifgt:      // fall through
 294       case Bytecodes::_ifle:      // fall through
 295       case Bytecodes::_if_icmpeq: // fall through
 296       case Bytecodes::_if_icmpne: // fall through
 297       case Bytecodes::_if_icmplt: // fall through
 298       case Bytecodes::_if_icmpge: // fall through
 299       case Bytecodes::_if_icmpgt: // fall through
 300       case Bytecodes::_if_icmple: // fall through
 301       case Bytecodes::_if_acmpeq: // fall through
 302       case Bytecodes::_if_acmpne: // fall through
 303       case Bytecodes::_ifnull:    // fall through
 304       case Bytecodes::_ifnonnull:
 305         make_block_at(s.next_bci(), current);
 306         make_block_at(s.get_dest(), current);
 307         current = NULL;
 308         break;
 309 
 310       case Bytecodes::_goto:
 311         make_block_at(s.get_dest(), current);
 312         current = NULL;
 313         break;
 314 
 315       case Bytecodes::_goto_w:
 316         make_block_at(s.get_far_dest(), current);
 317         current = NULL;
 318         break;
 319 
 320       case Bytecodes::_jsr:
 321         handle_jsr(current, s.get_dest(), s.next_bci());
 322         current = NULL;
 323         break;
 324 
 325       case Bytecodes::_jsr_w:
 326         handle_jsr(current, s.get_far_dest(), s.next_bci());
 327         current = NULL;
 328         break;
 329 
 330       case Bytecodes::_tableswitch: {
 331         // set block for each case
 332         Bytecode_tableswitch sw(&s);
 333         int l = sw.length();
 334         for (int i = 0; i < l; i++) {
 335           make_block_at(cur_bci + sw.dest_offset_at(i), current);
 336         }
 337         make_block_at(cur_bci + sw.default_offset(), current);
 338         current = NULL;
 339         break;
 340       }
 341 
 342       case Bytecodes::_lookupswitch: {
 343         // set block for each case
 344         Bytecode_lookupswitch sw(&s);
 345         int l = sw.number_of_pairs();
 346         for (int i = 0; i < l; i++) {
 347           make_block_at(cur_bci + sw.pair_at(i).offset(), current);
 348         }
 349         make_block_at(cur_bci + sw.default_offset(), current);
 350         current = NULL;
 351         break;
 352       }
 353 
 354       default:
 355         break;
 356     }
 357   }
 358 }
 359 
 360 
 361 void BlockListBuilder::mark_loops() {
 362   ResourceMark rm;
 363 
 364   _active.initialize(BlockBegin::number_of_blocks());
 365   _visited.initialize(BlockBegin::number_of_blocks());
 366   _loop_map = intArray(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), 0);
 367   _next_loop_index = 0;
 368   _next_block_number = _blocks.length();
 369 
 370   // recursively iterate the control flow graph
 371   mark_loops(_bci2block->at(0), false);
 372   assert(_next_block_number >= 0, "invalid block numbers");
 373 
 374   // Remove dangling Resource pointers before the ResourceMark goes out-of-scope.
 375   _active.resize(0);
 376   _visited.resize(0);
 377 }
 378 
 379 void BlockListBuilder::make_loop_header(BlockBegin* block) {
 380   if (block->is_set(BlockBegin::exception_entry_flag)) {
 381     // exception edges may look like loops but don't mark them as such
 382     // since it screws up block ordering.
 383     return;
 384   }
 385   if (!block->is_set(BlockBegin::parser_loop_header_flag)) {
 386     block->set(BlockBegin::parser_loop_header_flag);
 387 
 388     assert(_loop_map.at(block->block_id()) == 0, "must not be set yet");
 389     assert(0 <= _next_loop_index && _next_loop_index < BitsPerInt, "_next_loop_index is used as a bit-index in integer");
 390     _loop_map.at_put(block->block_id(), 1 << _next_loop_index);
 391     if (_next_loop_index < 31) _next_loop_index++;
 392   } else {
 393     // block already marked as loop header
 394     assert(is_power_of_2((unsigned int)_loop_map.at(block->block_id())), "exactly one bit must be set");
 395   }
 396 }
 397 
 398 int BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) {
 399   int block_id = block->block_id();
 400 
 401   if (_visited.at(block_id)) {
 402     if (_active.at(block_id)) {
 403       // reached block via backward branch
 404       make_loop_header(block);
 405     }
 406     // return cached loop information for this block
 407     return _loop_map.at(block_id);
 408   }
 409 
 410   if (block->is_set(BlockBegin::subroutine_entry_flag)) {
 411     in_subroutine = true;
 412   }
 413 
 414   // set active and visited bits before successors are processed
 415   _visited.set_bit(block_id);
 416   _active.set_bit(block_id);
 417 
 418   intptr_t loop_state = 0;
 419   for (int i = block->number_of_sux() - 1; i >= 0; i--) {
 420     // recursively process all successors
 421     loop_state |= mark_loops(block->sux_at(i), in_subroutine);
 422   }
 423 
 424   // clear active-bit after all successors are processed
 425   _active.clear_bit(block_id);
 426 
 427   // reverse-post-order numbering of all blocks
 428   block->set_depth_first_number(_next_block_number);
 429   _next_block_number--;
 430 
 431   if (loop_state != 0 || in_subroutine ) {
 432     // block is contained at least in one loop, so phi functions are necessary
 433     // phi functions are also necessary for all locals stored in a subroutine
 434     scope()->requires_phi_function().set_union(block->stores_to_locals());
 435   }
 436 
 437   if (block->is_set(BlockBegin::parser_loop_header_flag)) {
 438     int header_loop_state = _loop_map.at(block_id);
 439     assert(is_power_of_2((unsigned)header_loop_state), "exactly one bit must be set");
 440 
 441     // If the highest bit is set (i.e. when integer value is negative), the method
 442     // has 32 or more loops. This bit is never cleared because it is used for multiple loops
 443     if (header_loop_state >= 0) {
 444       clear_bits(loop_state, header_loop_state);
 445     }
 446   }
 447 
 448   // cache and return loop information for this block
 449   _loop_map.at_put(block_id, loop_state);
 450   return loop_state;
 451 }
 452 
 453 
 454 #ifndef PRODUCT
 455 
 456 int compare_depth_first(BlockBegin** a, BlockBegin** b) {
 457   return (*a)->depth_first_number() - (*b)->depth_first_number();
 458 }
 459 
 460 void BlockListBuilder::print() {
 461   tty->print("----- initial block list of BlockListBuilder for method ");
 462   method()->print_short_name();
 463   tty->cr();
 464 
 465   // better readability if blocks are sorted in processing order
 466   _blocks.sort(compare_depth_first);
 467 
 468   for (int i = 0; i < _blocks.length(); i++) {
 469     BlockBegin* cur = _blocks.at(i);
 470     tty->print("%4d: B%-4d bci: %-4d  preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds());
 471 
 472     tty->print(cur->is_set(BlockBegin::std_entry_flag)               ? " std" : "    ");
 473     tty->print(cur->is_set(BlockBegin::osr_entry_flag)               ? " osr" : "    ");
 474     tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
 475     tty->print(cur->is_set(BlockBegin::subroutine_entry_flag)        ? " sr" : "   ");
 476     tty->print(cur->is_set(BlockBegin::parser_loop_header_flag)      ? " lh" : "   ");
 477 
 478     if (cur->number_of_sux() > 0) {
 479       tty->print("    sux: ");
 480       for (int j = 0; j < cur->number_of_sux(); j++) {
 481         BlockBegin* sux = cur->sux_at(j);
 482         tty->print("B%d ", sux->block_id());
 483       }
 484     }
 485     tty->cr();
 486   }
 487 }
 488 
 489 #endif
 490 
 491 
 492 // A simple growable array of Values indexed by ciFields
 493 class FieldBuffer: public CompilationResourceObj {
 494  private:
 495   GrowableArray<Value> _values;
 496 
 497  public:
 498   FieldBuffer() {}
 499 
 500   void kill() {
 501     _values.trunc_to(0);
 502   }
 503 
 504   Value at(ciField* field) {
 505     assert(field->holder()->is_loaded(), "must be a loaded field");
 506     int offset = field->offset();
 507     if (offset < _values.length()) {
 508       return _values.at(offset);
 509     } else {
 510       return NULL;
 511     }
 512   }
 513 
 514   void at_put(ciField* field, Value value) {
 515     assert(field->holder()->is_loaded(), "must be a loaded field");
 516     int offset = field->offset();
 517     _values.at_put_grow(offset, value, NULL);
 518   }
 519 
 520 };
 521 
 522 
 523 // MemoryBuffer is fairly simple model of the current state of memory.
 524 // It partitions memory into several pieces.  The first piece is
 525 // generic memory where little is known about the owner of the memory.
 526 // This is conceptually represented by the tuple <O, F, V> which says
 527 // that the field F of object O has value V.  This is flattened so
 528 // that F is represented by the offset of the field and the parallel
 529 // arrays _objects and _values are used for O and V.  Loads of O.F can
 530 // simply use V.  Newly allocated objects are kept in a separate list
 531 // along with a parallel array for each object which represents the
 532 // current value of its fields.  Stores of the default value to fields
 533 // which have never been stored to before are eliminated since they
 534 // are redundant.  Once newly allocated objects are stored into
 535 // another object or they are passed out of the current compile they
 536 // are treated like generic memory.
 537 
 538 class MemoryBuffer: public CompilationResourceObj {
 539  private:
 540   FieldBuffer                 _values;
 541   GrowableArray<Value>        _objects;
 542   GrowableArray<Value>        _newobjects;
 543   GrowableArray<FieldBuffer*> _fields;
 544 
 545  public:
 546   MemoryBuffer() {}
 547 
 548   StoreField* store(StoreField* st) {
 549     if (!EliminateFieldAccess) {
 550       return st;
 551     }
 552 
 553     Value object = st->obj();
 554     Value value = st->value();
 555     ciField* field = st->field();
 556     if (field->holder()->is_loaded()) {
 557       int offset = field->offset();
 558       int index = _newobjects.find(object);
 559       if (index != -1) {
 560         // newly allocated object with no other stores performed on this field
 561         FieldBuffer* buf = _fields.at(index);
 562         if (buf->at(field) == NULL && is_default_value(value)) {
 563 #ifndef PRODUCT
 564           if (PrintIRDuringConstruction && Verbose) {
 565             tty->print_cr("Eliminated store for object %d:", index);
 566             st->print_line();
 567           }
 568 #endif
 569           return NULL;
 570         } else {
 571           buf->at_put(field, value);
 572         }
 573       } else {
 574         _objects.at_put_grow(offset, object, NULL);
 575         _values.at_put(field, value);
 576       }
 577 
 578       store_value(value);
 579     } else {
 580       // if we held onto field names we could alias based on names but
 581       // we don't know what's being stored to so kill it all.
 582       kill();
 583     }
 584     return st;
 585   }
 586 
 587 
 588   // return true if this value correspond to the default value of a field.
 589   bool is_default_value(Value value) {
 590     Constant* con = value->as_Constant();
 591     if (con) {
 592       switch (con->type()->tag()) {
 593         case intTag:    return con->type()->as_IntConstant()->value() == 0;
 594         case longTag:   return con->type()->as_LongConstant()->value() == 0;
 595         case floatTag:  return jint_cast(con->type()->as_FloatConstant()->value()) == 0;
 596         case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0);
 597         case objectTag: return con->type() == objectNull;
 598         default:  ShouldNotReachHere();
 599       }
 600     }
 601     return false;
 602   }
 603 
 604 
 605   // return either the actual value of a load or the load itself
 606   Value load(LoadField* load) {
 607     if (!EliminateFieldAccess) {
 608       return load;
 609     }
 610 
 611     if (RoundFPResults && UseSSE < 2 && load->type()->is_float_kind()) {
 612       // can't skip load since value might get rounded as a side effect
 613       return load;
 614     }
 615 
 616     ciField* field = load->field();
 617     Value object   = load->obj();
 618     if (field->holder()->is_loaded() && !field->is_volatile()) {
 619       int offset = field->offset();
 620       Value result = NULL;
 621       int index = _newobjects.find(object);
 622       if (index != -1) {
 623         result = _fields.at(index)->at(field);
 624       } else if (_objects.at_grow(offset, NULL) == object) {
 625         result = _values.at(field);
 626       }
 627       if (result != NULL) {
 628 #ifndef PRODUCT
 629         if (PrintIRDuringConstruction && Verbose) {
 630           tty->print_cr("Eliminated load: ");
 631           load->print_line();
 632         }
 633 #endif
 634         assert(result->type()->tag() == load->type()->tag(), "wrong types");
 635         return result;
 636       }
 637     }
 638     return load;
 639   }
 640 
 641   // Record this newly allocated object
 642   void new_instance(NewInstance* object) {
 643     int index = _newobjects.length();
 644     _newobjects.append(object);
 645     if (_fields.at_grow(index, NULL) == NULL) {
 646       _fields.at_put(index, new FieldBuffer());
 647     } else {
 648       _fields.at(index)->kill();
 649     }
 650   }
 651 
 652   // Record this newly allocated object
 653   void new_instance(NewValueTypeInstance* object) {
 654     int index = _newobjects.length();
 655     _newobjects.append(object);
 656     if (_fields.at_grow(index, NULL) == NULL) {
 657       _fields.at_put(index, new FieldBuffer());
 658     } else {
 659       _fields.at(index)->kill();
 660     }
 661   }
 662 
 663   void store_value(Value value) {
 664     int index = _newobjects.find(value);
 665     if (index != -1) {
 666       // stored a newly allocated object into another object.
 667       // Assume we've lost track of it as separate slice of memory.
 668       // We could do better by keeping track of whether individual
 669       // fields could alias each other.
 670       _newobjects.remove_at(index);
 671       // pull out the field info and store it at the end up the list
 672       // of field info list to be reused later.
 673       _fields.append(_fields.at(index));
 674       _fields.remove_at(index);
 675     }
 676   }
 677 
 678   void kill() {
 679     _newobjects.trunc_to(0);
 680     _objects.trunc_to(0);
 681     _values.kill();
 682   }
 683 };
 684 
 685 
 686 // Implementation of GraphBuilder's ScopeData
 687 
 688 GraphBuilder::ScopeData::ScopeData(ScopeData* parent)
 689   : _parent(parent)
 690   , _bci2block(NULL)
 691   , _scope(NULL)
 692   , _has_handler(false)
 693   , _stream(NULL)
 694   , _work_list(NULL)
 695   , _caller_stack_size(-1)
 696   , _continuation(NULL)
 697   , _parsing_jsr(false)
 698   , _jsr_xhandlers(NULL)
 699   , _num_returns(0)
 700   , _cleanup_block(NULL)
 701   , _cleanup_return_prev(NULL)
 702   , _cleanup_state(NULL)
 703   , _ignore_return(false)
 704 {
 705   if (parent != NULL) {
 706     _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f);
 707   } else {
 708     _max_inline_size = MaxInlineSize;
 709   }
 710   if (_max_inline_size < MaxTrivialSize) {
 711     _max_inline_size = MaxTrivialSize;
 712   }
 713 }
 714 
 715 
 716 void GraphBuilder::kill_all() {
 717   if (UseLocalValueNumbering) {
 718     vmap()->kill_all();
 719   }
 720   _memory->kill();
 721 }
 722 
 723 
 724 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) {
 725   if (parsing_jsr()) {
 726     // It is necessary to clone all blocks associated with a
 727     // subroutine, including those for exception handlers in the scope
 728     // of the method containing the jsr (because those exception
 729     // handlers may contain ret instructions in some cases).
 730     BlockBegin* block = bci2block()->at(bci);
 731     if (block != NULL && block == parent()->bci2block()->at(bci)) {
 732       BlockBegin* new_block = new BlockBegin(block->bci());
 733       if (PrintInitialBlockList) {
 734         tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr",
 735                       block->block_id(), block->bci(), new_block->block_id());
 736       }
 737       // copy data from cloned blocked
 738       new_block->set_depth_first_number(block->depth_first_number());
 739       if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag);
 740       // Preserve certain flags for assertion checking
 741       if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag);
 742       if (block->is_set(BlockBegin::exception_entry_flag))  new_block->set(BlockBegin::exception_entry_flag);
 743 
 744       // copy was_visited_flag to allow early detection of bailouts
 745       // if a block that is used in a jsr has already been visited before,
 746       // it is shared between the normal control flow and a subroutine
 747       // BlockBegin::try_merge returns false when the flag is set, this leads
 748       // to a compilation bailout
 749       if (block->is_set(BlockBegin::was_visited_flag))  new_block->set(BlockBegin::was_visited_flag);
 750 
 751       bci2block()->at_put(bci, new_block);
 752       block = new_block;
 753     }
 754     return block;
 755   } else {
 756     return bci2block()->at(bci);
 757   }
 758 }
 759 
 760 
 761 XHandlers* GraphBuilder::ScopeData::xhandlers() const {
 762   if (_jsr_xhandlers == NULL) {
 763     assert(!parsing_jsr(), "");
 764     return scope()->xhandlers();
 765   }
 766   assert(parsing_jsr(), "");
 767   return _jsr_xhandlers;
 768 }
 769 
 770 
 771 void GraphBuilder::ScopeData::set_scope(IRScope* scope) {
 772   _scope = scope;
 773   bool parent_has_handler = false;
 774   if (parent() != NULL) {
 775     parent_has_handler = parent()->has_handler();
 776   }
 777   _has_handler = parent_has_handler || scope->xhandlers()->has_handlers();
 778 }
 779 
 780 
 781 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block,
 782                                                       Instruction* return_prev,
 783                                                       ValueStack* return_state) {
 784   _cleanup_block       = block;
 785   _cleanup_return_prev = return_prev;
 786   _cleanup_state       = return_state;
 787 }
 788 
 789 
 790 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) {
 791   if (_work_list == NULL) {
 792     _work_list = new BlockList();
 793   }
 794 
 795   if (!block->is_set(BlockBegin::is_on_work_list_flag)) {
 796     // Do not start parsing the continuation block while in a
 797     // sub-scope
 798     if (parsing_jsr()) {
 799       if (block == jsr_continuation()) {
 800         return;
 801       }
 802     } else {
 803       if (block == continuation()) {
 804         return;
 805       }
 806     }
 807     block->set(BlockBegin::is_on_work_list_flag);
 808     _work_list->push(block);
 809 
 810     sort_top_into_worklist(_work_list, block);
 811   }
 812 }
 813 
 814 
 815 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) {
 816   assert(worklist->top() == top, "");
 817   // sort block descending into work list
 818   const int dfn = top->depth_first_number();
 819   assert(dfn != -1, "unknown depth first number");
 820   int i = worklist->length()-2;
 821   while (i >= 0) {
 822     BlockBegin* b = worklist->at(i);
 823     if (b->depth_first_number() < dfn) {
 824       worklist->at_put(i+1, b);
 825     } else {
 826       break;
 827     }
 828     i --;
 829   }
 830   if (i >= -1) worklist->at_put(i + 1, top);
 831 }
 832 
 833 
 834 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() {
 835   if (is_work_list_empty()) {
 836     return NULL;
 837   }
 838   return _work_list->pop();
 839 }
 840 
 841 
 842 bool GraphBuilder::ScopeData::is_work_list_empty() const {
 843   return (_work_list == NULL || _work_list->length() == 0);
 844 }
 845 
 846 
 847 void GraphBuilder::ScopeData::setup_jsr_xhandlers() {
 848   assert(parsing_jsr(), "");
 849   // clone all the exception handlers from the scope
 850   XHandlers* handlers = new XHandlers(scope()->xhandlers());
 851   const int n = handlers->length();
 852   for (int i = 0; i < n; i++) {
 853     // The XHandlers need to be adjusted to dispatch to the cloned
 854     // handler block instead of the default one but the synthetic
 855     // unlocker needs to be handled specially.  The synthetic unlocker
 856     // should be left alone since there can be only one and all code
 857     // should dispatch to the same one.
 858     XHandler* h = handlers->handler_at(i);
 859     assert(h->handler_bci() != SynchronizationEntryBCI, "must be real");
 860     h->set_entry_block(block_at(h->handler_bci()));
 861   }
 862   _jsr_xhandlers = handlers;
 863 }
 864 
 865 
 866 int GraphBuilder::ScopeData::num_returns() {
 867   if (parsing_jsr()) {
 868     return parent()->num_returns();
 869   }
 870   return _num_returns;
 871 }
 872 
 873 
 874 void GraphBuilder::ScopeData::incr_num_returns() {
 875   if (parsing_jsr()) {
 876     parent()->incr_num_returns();
 877   } else {
 878     ++_num_returns;
 879   }
 880 }
 881 
 882 
 883 // Implementation of GraphBuilder
 884 
 885 #define INLINE_BAILOUT(msg)        { inline_bailout(msg); return false; }
 886 
 887 
 888 void GraphBuilder::load_constant() {
 889   ciConstant con = stream()->get_constant();
 890   if (con.basic_type() == T_ILLEGAL) {
 891     // FIXME: an unresolved Dynamic constant can get here,
 892     // and that should not terminate the whole compilation.
 893     BAILOUT("could not resolve a constant");
 894   } else {
 895     ValueType* t = illegalType;
 896     ValueStack* patch_state = NULL;
 897     switch (con.basic_type()) {
 898       case T_BOOLEAN: t = new IntConstant     (con.as_boolean()); break;
 899       case T_BYTE   : t = new IntConstant     (con.as_byte   ()); break;
 900       case T_CHAR   : t = new IntConstant     (con.as_char   ()); break;
 901       case T_SHORT  : t = new IntConstant     (con.as_short  ()); break;
 902       case T_INT    : t = new IntConstant     (con.as_int    ()); break;
 903       case T_LONG   : t = new LongConstant    (con.as_long   ()); break;
 904       case T_FLOAT  : t = new FloatConstant   (con.as_float  ()); break;
 905       case T_DOUBLE : t = new DoubleConstant  (con.as_double ()); break;
 906       case T_ARRAY  : t = new ArrayConstant   (con.as_object ()->as_array   ()); break;
 907       case T_OBJECT :
 908        {
 909         ciObject* obj = con.as_object();
 910         if (!obj->is_loaded()
 911             || (PatchALot && obj->klass() != ciEnv::current()->String_klass())) {
 912           // A Class, MethodType, MethodHandle, or String.
 913           // Unloaded condy nodes show up as T_ILLEGAL, above.
 914           patch_state = copy_state_before();
 915           t = new ObjectConstant(obj);
 916         } else {
 917           // Might be a Class, MethodType, MethodHandle, or Dynamic constant
 918           // result, which might turn out to be an array.
 919           if (obj->is_null_object())
 920             t = objectNull;
 921           else if (obj->is_array())
 922             t = new ArrayConstant(obj->as_array());
 923           else
 924             t = new InstanceConstant(obj->as_instance());
 925         }
 926         break;
 927        }
 928       default       : ShouldNotReachHere();
 929     }
 930     Value x;
 931     if (patch_state != NULL) {
 932       x = new Constant(t, patch_state);
 933     } else {
 934       x = new Constant(t);
 935     }
 936     push(t, append(x));
 937   }
 938 }
 939 
 940 
 941 void GraphBuilder::load_local(ValueType* type, int index) {
 942   Value x = state()->local_at(index);
 943   assert(x != NULL && !x->type()->is_illegal(), "access of illegal local variable");
 944   push(type, x);
 945 }
 946 
 947 
 948 void GraphBuilder::store_local(ValueType* type, int index) {
 949   Value x = pop(type);
 950   store_local(state(), x, index);
 951 }
 952 
 953 
 954 void GraphBuilder::store_local(ValueStack* state, Value x, int index) {
 955   if (parsing_jsr()) {
 956     // We need to do additional tracking of the location of the return
 957     // address for jsrs since we don't handle arbitrary jsr/ret
 958     // constructs. Here we are figuring out in which circumstances we
 959     // need to bail out.
 960     if (x->type()->is_address()) {
 961       scope_data()->set_jsr_return_address_local(index);
 962 
 963       // Also check parent jsrs (if any) at this time to see whether
 964       // they are using this local. We don't handle skipping over a
 965       // ret.
 966       for (ScopeData* cur_scope_data = scope_data()->parent();
 967            cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
 968            cur_scope_data = cur_scope_data->parent()) {
 969         if (cur_scope_data->jsr_return_address_local() == index) {
 970           BAILOUT("subroutine overwrites return address from previous subroutine");
 971         }
 972       }
 973     } else if (index == scope_data()->jsr_return_address_local()) {
 974       scope_data()->set_jsr_return_address_local(-1);
 975     }
 976   }
 977 
 978   state->store_local(index, round_fp(x));
 979 }
 980 
 981 
 982 void GraphBuilder::load_indexed(BasicType type) {
 983   // In case of in block code motion in range check elimination
 984   ValueStack* state_before = copy_state_indexed_access();
 985   compilation()->set_has_access_indexed(true);
 986   Value index = ipop();
 987   Value array = apop();
 988   Value length = NULL;
 989   if (CSEArrayLength ||
 990       (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
 991       (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
 992     length = append(new ArrayLength(array, state_before));
 993   }
 994 
 995   if (array->is_loaded_flattened_array()) {
 996     ciType* array_type = array->declared_type();
 997     ciValueKlass* elem_klass = array_type->as_value_array_klass()->element_klass()->as_value_klass();
 998     NewValueTypeInstance* new_instance = new NewValueTypeInstance(elem_klass, state_before, false);
 999     _memory->new_instance(new_instance);
1000     apush(append_split(new_instance));
1001     LoadIndexed* load_indexed = new LoadIndexed(array, index, length, type, state_before);
1002     load_indexed->set_vt(new_instance);
1003     append(load_indexed);
1004   } else {
1005     push(as_ValueType(type), append(new LoadIndexed(array, index, length, type, state_before)));
1006   }
1007 }
1008 
1009 
1010 void GraphBuilder::store_indexed(BasicType type) {
1011   // In case of in block code motion in range check elimination
1012   ValueStack* state_before = copy_state_indexed_access();
1013   compilation()->set_has_access_indexed(true);
1014   Value value = pop(as_ValueType(type));
1015   Value index = ipop();
1016   Value array = apop();
1017   Value length = NULL;
1018   if (CSEArrayLength ||
1019       (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
1020       (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
1021     length = append(new ArrayLength(array, state_before));
1022   }
1023   ciType* array_type = array->declared_type();
1024   bool check_boolean = false;
1025   if (array_type != NULL) {
1026     if (array_type->is_loaded() &&
1027       array_type->as_array_klass()->element_type()->basic_type() == T_BOOLEAN) {
1028       assert(type == T_BYTE, "boolean store uses bastore");
1029       Value mask = append(new Constant(new IntConstant(1)));
1030       value = append(new LogicOp(Bytecodes::_iand, value, mask));
1031     }
1032   } else if (type == T_BYTE) {
1033     check_boolean = true;
1034   }
1035 
1036   StoreIndexed* result = new StoreIndexed(array, index, length, type, value, state_before, check_boolean);
1037   append(result);
1038   _memory->store_value(value);
1039 
1040   if (type == T_OBJECT && is_profiling()) {
1041     // Note that we'd collect profile data in this method if we wanted it.
1042     compilation()->set_would_profile(true);
1043 
1044     if (profile_checkcasts()) {
1045       result->set_profiled_method(method());
1046       result->set_profiled_bci(bci());
1047       result->set_should_profile(true);
1048     }
1049   }
1050 }
1051 
1052 
1053 void GraphBuilder::stack_op(Bytecodes::Code code) {
1054   switch (code) {
1055     case Bytecodes::_pop:
1056       { state()->raw_pop();
1057       }
1058       break;
1059     case Bytecodes::_pop2:
1060       { state()->raw_pop();
1061         state()->raw_pop();
1062       }
1063       break;
1064     case Bytecodes::_dup:
1065       { Value w = state()->raw_pop();
1066         state()->raw_push(w);
1067         state()->raw_push(w);
1068       }
1069       break;
1070     case Bytecodes::_dup_x1:
1071       { Value w1 = state()->raw_pop();
1072         Value w2 = state()->raw_pop();
1073         state()->raw_push(w1);
1074         state()->raw_push(w2);
1075         state()->raw_push(w1);
1076       }
1077       break;
1078     case Bytecodes::_dup_x2:
1079       { Value w1 = state()->raw_pop();
1080         Value w2 = state()->raw_pop();
1081         Value w3 = state()->raw_pop();
1082         state()->raw_push(w1);
1083         state()->raw_push(w3);
1084         state()->raw_push(w2);
1085         state()->raw_push(w1);
1086       }
1087       break;
1088     case Bytecodes::_dup2:
1089       { Value w1 = state()->raw_pop();
1090         Value w2 = state()->raw_pop();
1091         state()->raw_push(w2);
1092         state()->raw_push(w1);
1093         state()->raw_push(w2);
1094         state()->raw_push(w1);
1095       }
1096       break;
1097     case Bytecodes::_dup2_x1:
1098       { Value w1 = state()->raw_pop();
1099         Value w2 = state()->raw_pop();
1100         Value w3 = state()->raw_pop();
1101         state()->raw_push(w2);
1102         state()->raw_push(w1);
1103         state()->raw_push(w3);
1104         state()->raw_push(w2);
1105         state()->raw_push(w1);
1106       }
1107       break;
1108     case Bytecodes::_dup2_x2:
1109       { Value w1 = state()->raw_pop();
1110         Value w2 = state()->raw_pop();
1111         Value w3 = state()->raw_pop();
1112         Value w4 = state()->raw_pop();
1113         state()->raw_push(w2);
1114         state()->raw_push(w1);
1115         state()->raw_push(w4);
1116         state()->raw_push(w3);
1117         state()->raw_push(w2);
1118         state()->raw_push(w1);
1119       }
1120       break;
1121     case Bytecodes::_swap:
1122       { Value w1 = state()->raw_pop();
1123         Value w2 = state()->raw_pop();
1124         state()->raw_push(w1);
1125         state()->raw_push(w2);
1126       }
1127       break;
1128     default:
1129       ShouldNotReachHere();
1130       break;
1131   }
1132 }
1133 
1134 
1135 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before) {
1136   Value y = pop(type);
1137   Value x = pop(type);
1138   // NOTE: strictfp can be queried from current method since we don't
1139   // inline methods with differing strictfp bits
1140   Value res = new ArithmeticOp(code, x, y, method()->is_strict(), state_before);
1141   // Note: currently single-precision floating-point rounding on Intel is handled at the LIRGenerator level
1142   res = append(res);
1143   if (method()->is_strict()) {
1144     res = round_fp(res);
1145   }
1146   push(type, res);
1147 }
1148 
1149 
1150 void GraphBuilder::negate_op(ValueType* type) {
1151   push(type, append(new NegateOp(pop(type))));
1152 }
1153 
1154 
1155 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) {
1156   Value s = ipop();
1157   Value x = pop(type);
1158   // try to simplify
1159   // Note: This code should go into the canonicalizer as soon as it can
1160   //       can handle canonicalized forms that contain more than one node.
1161   if (CanonicalizeNodes && code == Bytecodes::_iushr) {
1162     // pattern: x >>> s
1163     IntConstant* s1 = s->type()->as_IntConstant();
1164     if (s1 != NULL) {
1165       // pattern: x >>> s1, with s1 constant
1166       ShiftOp* l = x->as_ShiftOp();
1167       if (l != NULL && l->op() == Bytecodes::_ishl) {
1168         // pattern: (a << b) >>> s1
1169         IntConstant* s0 = l->y()->type()->as_IntConstant();
1170         if (s0 != NULL) {
1171           // pattern: (a << s0) >>> s1
1172           const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts
1173           const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts
1174           if (s0c == s1c) {
1175             if (s0c == 0) {
1176               // pattern: (a << 0) >>> 0 => simplify to: a
1177               ipush(l->x());
1178             } else {
1179               // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant
1180               assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases");
1181               const int m = (1 << (BitsPerInt - s0c)) - 1;
1182               Value s = append(new Constant(new IntConstant(m)));
1183               ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s)));
1184             }
1185             return;
1186           }
1187         }
1188       }
1189     }
1190   }
1191   // could not simplify
1192   push(type, append(new ShiftOp(code, x, s)));
1193 }
1194 
1195 
1196 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) {
1197   Value y = pop(type);
1198   Value x = pop(type);
1199   push(type, append(new LogicOp(code, x, y)));
1200 }
1201 
1202 
1203 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) {
1204   ValueStack* state_before = copy_state_before();
1205   Value y = pop(type);
1206   Value x = pop(type);
1207   ipush(append(new CompareOp(code, x, y, state_before)));
1208 }
1209 
1210 
1211 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) {
1212   push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to))));
1213 }
1214 
1215 
1216 void GraphBuilder::increment() {
1217   int index = stream()->get_index();
1218   int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]);
1219   load_local(intType, index);
1220   ipush(append(new Constant(new IntConstant(delta))));
1221   arithmetic_op(intType, Bytecodes::_iadd);
1222   store_local(intType, index);
1223 }
1224 
1225 
1226 void GraphBuilder::_goto(int from_bci, int to_bci) {
1227   Goto *x = new Goto(block_at(to_bci), to_bci <= from_bci);
1228   if (is_profiling()) {
1229     compilation()->set_would_profile(true);
1230     x->set_profiled_bci(bci());
1231     if (profile_branches()) {
1232       x->set_profiled_method(method());
1233       x->set_should_profile(true);
1234     }
1235   }
1236   append(x);
1237 }
1238 
1239 
1240 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) {
1241   BlockBegin* tsux = block_at(stream()->get_dest());
1242   BlockBegin* fsux = block_at(stream()->next_bci());
1243   bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();






























1244   // In case of loop invariant code motion or predicate insertion
1245   // before the body of a loop the state is needed
1246   Instruction *i = append(new If(x, cond, false, y, tsux, fsux, (is_bb || compilation()->is_optimistic()) ? state_before : NULL, is_bb));
1247 
1248   assert(i->as_Goto() == NULL ||
1249          (i->as_Goto()->sux_at(0) == tsux  && i->as_Goto()->is_safepoint() == tsux->bci() < stream()->cur_bci()) ||
1250          (i->as_Goto()->sux_at(0) == fsux  && i->as_Goto()->is_safepoint() == fsux->bci() < stream()->cur_bci()),
1251          "safepoint state of Goto returned by canonicalizer incorrect");
1252 
1253   if (is_profiling()) {
1254     If* if_node = i->as_If();
1255     if (if_node != NULL) {
1256       // Note that we'd collect profile data in this method if we wanted it.
1257       compilation()->set_would_profile(true);
1258       // At level 2 we need the proper bci to count backedges
1259       if_node->set_profiled_bci(bci());
1260       if (profile_branches()) {
1261         // Successors can be rotated by the canonicalizer, check for this case.
1262         if_node->set_profiled_method(method());
1263         if_node->set_should_profile(true);
1264         if (if_node->tsux() == fsux) {
1265           if_node->set_swapped(true);
1266         }
1267       }
1268       return;
1269     }
1270 
1271     // Check if this If was reduced to Goto.
1272     Goto *goto_node = i->as_Goto();
1273     if (goto_node != NULL) {
1274       compilation()->set_would_profile(true);
1275       goto_node->set_profiled_bci(bci());
1276       if (profile_branches()) {
1277         goto_node->set_profiled_method(method());
1278         goto_node->set_should_profile(true);
1279         // Find out which successor is used.
1280         if (goto_node->default_sux() == tsux) {
1281           goto_node->set_direction(Goto::taken);
1282         } else if (goto_node->default_sux() == fsux) {
1283           goto_node->set_direction(Goto::not_taken);
1284         } else {
1285           ShouldNotReachHere();
1286         }
1287       }
1288       return;
1289     }
1290   }
1291 }
1292 
1293 
1294 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) {
1295   Value y = append(new Constant(intZero));
1296   ValueStack* state_before = copy_state_before();
1297   Value x = ipop();
1298   if_node(x, cond, y, state_before);
1299 }
1300 
1301 
1302 void GraphBuilder::if_null(ValueType* type, If::Condition cond) {
1303   Value y = append(new Constant(objectNull));
1304   ValueStack* state_before = copy_state_before();
1305   Value x = apop();
1306   if_node(x, cond, y, state_before);
1307 }
1308 
1309 
1310 void GraphBuilder::if_same(ValueType* type, If::Condition cond) {
1311   ValueStack* state_before = copy_state_before();
1312   Value y = pop(type);
1313   Value x = pop(type);
1314   if_node(x, cond, y, state_before);
1315 }
1316 
1317 
1318 void GraphBuilder::jsr(int dest) {
1319   // We only handle well-formed jsrs (those which are "block-structured").
1320   // If the bytecodes are strange (jumping out of a jsr block) then we
1321   // might end up trying to re-parse a block containing a jsr which
1322   // has already been activated. Watch for this case and bail out.
1323   for (ScopeData* cur_scope_data = scope_data();
1324        cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1325        cur_scope_data = cur_scope_data->parent()) {
1326     if (cur_scope_data->jsr_entry_bci() == dest) {
1327       BAILOUT("too-complicated jsr/ret structure");
1328     }
1329   }
1330 
1331   push(addressType, append(new Constant(new AddressConstant(next_bci()))));
1332   if (!try_inline_jsr(dest)) {
1333     return; // bailed out while parsing and inlining subroutine
1334   }
1335 }
1336 
1337 
1338 void GraphBuilder::ret(int local_index) {
1339   if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine");
1340 
1341   if (local_index != scope_data()->jsr_return_address_local()) {
1342     BAILOUT("can not handle complicated jsr/ret constructs");
1343   }
1344 
1345   // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation
1346   append(new Goto(scope_data()->jsr_continuation(), false));
1347 }
1348 
1349 
1350 void GraphBuilder::table_switch() {
1351   Bytecode_tableswitch sw(stream());
1352   const int l = sw.length();
1353   if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1354     // total of 2 successors => use If instead of switch
1355     // Note: This code should go into the canonicalizer as soon as it can
1356     //       can handle canonicalized forms that contain more than one node.
1357     Value key = append(new Constant(new IntConstant(sw.low_key())));
1358     BlockBegin* tsux = block_at(bci() + sw.dest_offset_at(0));
1359     BlockBegin* fsux = block_at(bci() + sw.default_offset());
1360     bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1361     // In case of loop invariant code motion or predicate insertion
1362     // before the body of a loop the state is needed
1363     ValueStack* state_before = copy_state_if_bb(is_bb);
1364     append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1365   } else {
1366     // collect successors
1367     BlockList* sux = new BlockList(l + 1, NULL);
1368     int i;
1369     bool has_bb = false;
1370     for (i = 0; i < l; i++) {
1371       sux->at_put(i, block_at(bci() + sw.dest_offset_at(i)));
1372       if (sw.dest_offset_at(i) < 0) has_bb = true;
1373     }
1374     // add default successor
1375     if (sw.default_offset() < 0) has_bb = true;
1376     sux->at_put(i, block_at(bci() + sw.default_offset()));
1377     // In case of loop invariant code motion or predicate insertion
1378     // before the body of a loop the state is needed
1379     ValueStack* state_before = copy_state_if_bb(has_bb);
1380     Instruction* res = append(new TableSwitch(ipop(), sux, sw.low_key(), state_before, has_bb));
1381 #ifdef ASSERT
1382     if (res->as_Goto()) {
1383       for (i = 0; i < l; i++) {
1384         if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1385           assert(res->as_Goto()->is_safepoint() == sw.dest_offset_at(i) < 0, "safepoint state of Goto returned by canonicalizer incorrect");
1386         }
1387       }
1388     }
1389 #endif
1390   }
1391 }
1392 
1393 
1394 void GraphBuilder::lookup_switch() {
1395   Bytecode_lookupswitch sw(stream());
1396   const int l = sw.number_of_pairs();
1397   if (CanonicalizeNodes && l == 1 && compilation()->env()->comp_level() != CompLevel_full_profile) {
1398     // total of 2 successors => use If instead of switch
1399     // Note: This code should go into the canonicalizer as soon as it can
1400     //       can handle canonicalized forms that contain more than one node.
1401     // simplify to If
1402     LookupswitchPair pair = sw.pair_at(0);
1403     Value key = append(new Constant(new IntConstant(pair.match())));
1404     BlockBegin* tsux = block_at(bci() + pair.offset());
1405     BlockBegin* fsux = block_at(bci() + sw.default_offset());
1406     bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1407     // In case of loop invariant code motion or predicate insertion
1408     // before the body of a loop the state is needed
1409     ValueStack* state_before = copy_state_if_bb(is_bb);;
1410     append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1411   } else {
1412     // collect successors & keys
1413     BlockList* sux = new BlockList(l + 1, NULL);
1414     intArray* keys = new intArray(l, l, 0);
1415     int i;
1416     bool has_bb = false;
1417     for (i = 0; i < l; i++) {
1418       LookupswitchPair pair = sw.pair_at(i);
1419       if (pair.offset() < 0) has_bb = true;
1420       sux->at_put(i, block_at(bci() + pair.offset()));
1421       keys->at_put(i, pair.match());
1422     }
1423     // add default successor
1424     if (sw.default_offset() < 0) has_bb = true;
1425     sux->at_put(i, block_at(bci() + sw.default_offset()));
1426     // In case of loop invariant code motion or predicate insertion
1427     // before the body of a loop the state is needed
1428     ValueStack* state_before = copy_state_if_bb(has_bb);
1429     Instruction* res = append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
1430 #ifdef ASSERT
1431     if (res->as_Goto()) {
1432       for (i = 0; i < l; i++) {
1433         if (sux->at(i) == res->as_Goto()->sux_at(0)) {
1434           assert(res->as_Goto()->is_safepoint() == sw.pair_at(i).offset() < 0, "safepoint state of Goto returned by canonicalizer incorrect");
1435         }
1436       }
1437     }
1438 #endif
1439   }
1440 }
1441 
1442 void GraphBuilder::call_register_finalizer() {
1443   // If the receiver requires finalization then emit code to perform
1444   // the registration on return.
1445 
1446   // Gather some type information about the receiver
1447   Value receiver = state()->local_at(0);
1448   assert(receiver != NULL, "must have a receiver");
1449   ciType* declared_type = receiver->declared_type();
1450   ciType* exact_type = receiver->exact_type();
1451   if (exact_type == NULL &&
1452       receiver->as_Local() &&
1453       receiver->as_Local()->java_index() == 0) {
1454     ciInstanceKlass* ik = compilation()->method()->holder();
1455     if (ik->is_final()) {
1456       exact_type = ik;
1457     } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1458       // test class is leaf class
1459       compilation()->dependency_recorder()->assert_leaf_type(ik);
1460       exact_type = ik;
1461     } else {
1462       declared_type = ik;
1463     }
1464   }
1465 
1466   // see if we know statically that registration isn't required
1467   bool needs_check = true;
1468   if (exact_type != NULL) {
1469     needs_check = exact_type->as_instance_klass()->has_finalizer();
1470   } else if (declared_type != NULL) {
1471     ciInstanceKlass* ik = declared_type->as_instance_klass();
1472     if (!Dependencies::has_finalizable_subclass(ik)) {
1473       compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik);
1474       needs_check = false;
1475     }
1476   }
1477 
1478   if (needs_check) {
1479     // Perform the registration of finalizable objects.
1480     ValueStack* state_before = copy_state_for_exception();
1481     load_local(objectType, 0);
1482     append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init,
1483                                state()->pop_arguments(1),
1484                                true, state_before, true));
1485   }
1486 }
1487 
1488 
1489 void GraphBuilder::method_return(Value x, bool ignore_return) {
1490   if (RegisterFinalizersAtInit &&
1491       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1492     call_register_finalizer();
1493   }
1494 
1495   bool need_mem_bar = false;
1496   if (method()->name() == ciSymbol::object_initializer_name() &&
1497       (scope()->wrote_final() || (AlwaysSafeConstructors && scope()->wrote_fields())
1498                               || (support_IRIW_for_not_multiple_copy_atomic_cpu && scope()->wrote_volatile())
1499      )){
1500     need_mem_bar = true;
1501   }
1502 
1503   BasicType bt = method()->return_type()->basic_type();
1504   switch (bt) {
1505     case T_BYTE:
1506     {
1507       Value shift = append(new Constant(new IntConstant(24)));
1508       x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1509       x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1510       break;
1511     }
1512     case T_SHORT:
1513     {
1514       Value shift = append(new Constant(new IntConstant(16)));
1515       x = append(new ShiftOp(Bytecodes::_ishl, x, shift));
1516       x = append(new ShiftOp(Bytecodes::_ishr, x, shift));
1517       break;
1518     }
1519     case T_CHAR:
1520     {
1521       Value mask = append(new Constant(new IntConstant(0xFFFF)));
1522       x = append(new LogicOp(Bytecodes::_iand, x, mask));
1523       break;
1524     }
1525     case T_BOOLEAN:
1526     {
1527       Value mask = append(new Constant(new IntConstant(1)));
1528       x = append(new LogicOp(Bytecodes::_iand, x, mask));
1529       break;
1530     }
1531     default:
1532       break;
1533   }
1534 
1535   // Check to see whether we are inlining. If so, Return
1536   // instructions become Gotos to the continuation point.
1537   if (continuation() != NULL) {
1538 
1539     int invoke_bci = state()->caller_state()->bci();
1540 
1541     if (x != NULL  && !ignore_return) {
1542       ciMethod* caller = state()->scope()->caller()->method();
1543       Bytecodes::Code invoke_raw_bc = caller->raw_code_at_bci(invoke_bci);
1544       if (invoke_raw_bc == Bytecodes::_invokehandle || invoke_raw_bc == Bytecodes::_invokedynamic) {
1545         ciType* declared_ret_type = caller->get_declared_signature_at_bci(invoke_bci)->return_type();
1546         if (declared_ret_type->is_klass() && x->exact_type() == NULL &&
1547             x->declared_type() != declared_ret_type && declared_ret_type != compilation()->env()->Object_klass()) {
1548           x = append(new TypeCast(declared_ret_type->as_klass(), x, copy_state_before()));
1549         }
1550       }
1551     }
1552 
1553     assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet");
1554 
1555     if (compilation()->env()->dtrace_method_probes()) {
1556       // Report exit from inline methods
1557       Values* args = new Values(1);
1558       args->push(append(new Constant(new MethodConstant(method()))));
1559       append(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args));
1560     }
1561 
1562     // If the inlined method is synchronized, the monitor must be
1563     // released before we jump to the continuation block.
1564     if (method()->is_synchronized()) {
1565       assert(state()->locks_size() == 1, "receiver must be locked here");
1566       monitorexit(state()->lock_at(0), SynchronizationEntryBCI);
1567     }
1568 
1569     if (need_mem_bar) {
1570       append(new MemBar(lir_membar_storestore));
1571     }
1572 
1573     // State at end of inlined method is the state of the caller
1574     // without the method parameters on stack, including the
1575     // return value, if any, of the inlined method on operand stack.
1576     set_state(state()->caller_state()->copy_for_parsing());
1577     if (x != NULL) {
1578       if (!ignore_return) {
1579         state()->push(x->type(), x);
1580       }
1581       if (profile_return() && x->type()->is_object_kind()) {
1582         ciMethod* caller = state()->scope()->method();
1583         profile_return_type(x, method(), caller, invoke_bci);
1584       }
1585     }
1586     Goto* goto_callee = new Goto(continuation(), false);
1587 
1588     // See whether this is the first return; if so, store off some
1589     // of the state for later examination
1590     if (num_returns() == 0) {
1591       set_inline_cleanup_info();
1592     }
1593 
1594     // The current bci() is in the wrong scope, so use the bci() of
1595     // the continuation point.
1596     append_with_bci(goto_callee, scope_data()->continuation()->bci());
1597     incr_num_returns();
1598     return;
1599   }
1600 
1601   state()->truncate_stack(0);
1602   if (method()->is_synchronized()) {
1603     // perform the unlocking before exiting the method
1604     Value receiver;
1605     if (!method()->is_static()) {
1606       receiver = _initial_state->local_at(0);
1607     } else {
1608       receiver = append(new Constant(new ClassConstant(method()->holder())));
1609     }
1610     append_split(new MonitorExit(receiver, state()->unlock()));
1611   }
1612 
1613   if (need_mem_bar) {
1614       append(new MemBar(lir_membar_storestore));
1615   }
1616 
1617   assert(!ignore_return, "Ignoring return value works only for inlining");
1618   append(new Return(x));
1619 }
1620 
1621 Value GraphBuilder::make_constant(ciConstant field_value, ciField* field) {
1622   if (!field_value.is_valid())  return NULL;
1623 
1624   BasicType field_type = field_value.basic_type();
1625   ValueType* value = as_ValueType(field_value);
1626 
1627   // Attach dimension info to stable arrays.
1628   if (FoldStableValues &&
1629       field->is_stable() && field_type == T_ARRAY && !field_value.is_null_or_zero()) {
1630     ciArray* array = field_value.as_object()->as_array();
1631     jint dimension = field->type()->as_array_klass()->dimension();
1632     value = new StableArrayConstant(array, dimension);
1633   }
1634 
1635   switch (field_type) {
1636     case T_ARRAY:
1637     case T_OBJECT:
1638       if (field_value.as_object()->should_be_constant()) {
1639         return new Constant(value);
1640       }
1641       return NULL; // Not a constant.
1642     default:
1643       return new Constant(value);
1644   }
1645 }
1646 
1647 void GraphBuilder::copy_value_content(ciValueKlass* vk, Value src, int src_off, Value dest, int dest_off,
1648     ValueStack* state_before, bool needs_patching) {
1649   for (int i = 0; i < vk->nof_nonstatic_fields(); i++) {
1650     ciField* inner_field = vk->nonstatic_field_at(i);
1651     assert(!inner_field->is_flattened(), "the iteration over nested fields is handled by the loop itself");
1652     int off = inner_field->offset() - vk->first_field_offset();
1653     LoadField* load = new LoadField(src, src_off + off, inner_field, false, state_before, needs_patching);
1654     Value replacement = append(load);
1655     StoreField* store = new StoreField(dest, dest_off + off, inner_field, replacement, false, state_before, needs_patching);
1656     append(store);
1657   }
1658 }
1659 
1660 void GraphBuilder::access_field(Bytecodes::Code code) {
1661   bool will_link;
1662   ciField* field = stream()->get_field(will_link);
1663   ciInstanceKlass* holder = field->holder();
1664   BasicType field_type = field->type()->basic_type();
1665   ValueType* type = as_ValueType(field_type);
1666 
1667   // call will_link again to determine if the field is valid.
1668   const bool needs_patching = !holder->is_loaded() ||
1669                               !field->will_link(method(), code) ||
1670                               PatchALot;
1671 
1672   ValueStack* state_before = NULL;
1673   if (!holder->is_initialized() || needs_patching) {
1674     // save state before instruction for debug info when
1675     // deoptimization happens during patching
1676     state_before = copy_state_before();
1677   }
1678 
1679   Value obj = NULL;
1680   if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
1681     if (state_before != NULL) {
1682       // build a patching constant
1683       obj = new Constant(new InstanceConstant(holder->java_mirror()), state_before);
1684     } else {
1685       obj = new Constant(new InstanceConstant(holder->java_mirror()));
1686     }
1687   }
1688 
1689   if (field->is_final() && (code == Bytecodes::_putfield)) {
1690     scope()->set_wrote_final();
1691   }
1692 
1693   if (code == Bytecodes::_putfield) {
1694     scope()->set_wrote_fields();
1695     if (field->is_volatile()) {
1696       scope()->set_wrote_volatile();
1697     }
1698   }
1699 
1700   const int offset = !needs_patching ? field->offset() : -1;
1701   switch (code) {
1702     case Bytecodes::_getstatic: {
1703       // check for compile-time constants, i.e., initialized static final fields
1704       Value constant = NULL;
1705       if (field->is_static_constant() && !PatchALot) {
1706         ciConstant field_value = field->constant_value();
1707         assert(!field->is_stable() || !field_value.is_null_or_zero(),
1708                "stable static w/ default value shouldn't be a constant");
1709         constant = make_constant(field_value, field);
1710       }
1711       if (constant != NULL) {
1712         push(type, append(constant));
1713       } else {
1714         if (state_before == NULL) {
1715           state_before = copy_state_for_exception();
1716         }
1717         LoadField* load_field = new LoadField(append(obj), offset, field, true,
1718                                         state_before, needs_patching);
1719         if (field->is_flattenable()) {
1720           load_field->set_never_null(true);
1721         }
1722         push(type, append(load_field));
1723       }
1724       break;
1725     }
1726     case Bytecodes::_putstatic: {
1727       Value val = pop(type);
1728       if (state_before == NULL) {
1729         state_before = copy_state_for_exception();
1730       }
1731       if (field->type()->basic_type() == T_BOOLEAN) {
1732         Value mask = append(new Constant(new IntConstant(1)));
1733         val = append(new LogicOp(Bytecodes::_iand, val, mask));
1734       }
1735       append(new StoreField(append(obj), offset, field, val, true, state_before, needs_patching));
1736       break;
1737     }
1738     case Bytecodes::_getfield: {
1739       // Check for compile-time constants, i.e., trusted final non-static fields.
1740       Value constant = NULL;
1741       obj = apop();
1742       ObjectType* obj_type = obj->type()->as_ObjectType();
1743       if (field->is_constant() && !field->is_flattened() && obj_type->is_constant() && !PatchALot) {
1744         ciObject* const_oop = obj_type->constant_value();
1745         if (!const_oop->is_null_object() && const_oop->is_loaded()) {
1746           ciConstant field_value = field->constant_value_of(const_oop);
1747           if (field_value.is_valid()) {
1748             constant = make_constant(field_value, field);
1749             // For CallSite objects add a dependency for invalidation of the optimization.
1750             if (field->is_call_site_target()) {
1751               ciCallSite* call_site = const_oop->as_call_site();
1752               if (!call_site->is_constant_call_site()) {
1753                 ciMethodHandle* target = field_value.as_object()->as_method_handle();
1754                 dependency_recorder()->assert_call_site_target_value(call_site, target);
1755               }
1756             }
1757           }
1758         }
1759       }
1760       if (constant != NULL) {
1761         push(type, append(constant));
1762       } else {
1763         if (state_before == NULL) {
1764           state_before = copy_state_for_exception();
1765         }
1766 
1767         if (!field->is_flattened()) {
1768           LoadField* load = new LoadField(obj, offset, field, false, state_before, needs_patching);
1769           Value replacement = !needs_patching ? _memory->load(load) : load;
1770           if (replacement != load) {
1771             assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked");
1772             push(type, replacement);
1773           } else {
1774             push(type, append(load));
1775           }
1776         } else { // flattened field, not optimized solution: re-instantiate the flattened value
1777           assert(field->type()->is_valuetype(), "Sanity check");
1778           ciValueKlass* value_klass = field->type()->as_value_klass();
1779           int flattening_offset = field->offset() - value_klass->first_field_offset();
1780           assert(field->type()->is_valuetype(), "Sanity check");
1781           scope()->set_wrote_final();
1782           scope()->set_wrote_fields();
1783           NewValueTypeInstance* new_instance = new NewValueTypeInstance(value_klass, state_before, false);
1784           _memory->new_instance(new_instance);
1785           apush(append_split(new_instance));
1786           copy_value_content(value_klass, obj, field->offset() , new_instance, value_klass->first_field_offset(),
1787                        state_before, needs_patching);
1788         }
1789       }
1790       break;
1791     }
1792     case Bytecodes::_putfield: {
1793       Value val = pop(type);
1794       obj = apop();
1795       if (state_before == NULL) {
1796         state_before = copy_state_for_exception();
1797       }
1798       if (field->type()->basic_type() == T_BOOLEAN) {
1799         Value mask = append(new Constant(new IntConstant(1)));
1800         val = append(new LogicOp(Bytecodes::_iand, val, mask));
1801       }
1802 
1803       if (!field->is_flattened()) {
1804         StoreField* store = new StoreField(obj, offset, field, val, false, state_before, needs_patching);
1805         if (!needs_patching) store = _memory->store(store);
1806         if (store != NULL) {
1807           append(store);
1808         }
1809       } else {
1810         assert(field->type()->is_valuetype(), "Sanity check");
1811         ciValueKlass* value_klass = field->type()->as_value_klass();
1812         int flattening_offset = field->offset() - value_klass->first_field_offset();
1813         copy_value_content(value_klass, val, value_klass->first_field_offset(), obj, field->offset(),
1814                    state_before, needs_patching);
1815       }
1816       break;
1817     }
1818     default:
1819       ShouldNotReachHere();
1820       break;
1821   }
1822 }
1823 
1824 // Baseline version of withfield, allocate every time
1825 void GraphBuilder::withfield(int field_index)
1826 {
1827   bool will_link;
1828   ciField* field_modify = stream()->get_field(will_link);
1829   ciInstanceKlass* holder = field_modify->holder();
1830   assert(holder->is_valuetype(), "must be a value klass");
1831   BasicType field_type = field_modify->type()->basic_type();
1832   ValueType* type = as_ValueType(field_type);
1833 
1834   // call will_link again to determine if the field is valid.
1835   const bool needs_patching = !holder->is_loaded() ||
1836                               !field_modify->will_link(method(), Bytecodes::_withfield) ||
1837                               PatchALot;
1838 
1839 
1840   scope()->set_wrote_final();
1841   scope()->set_wrote_fields();
1842 
1843   const int offset = !needs_patching ? field_modify->offset() : -1;
1844   Value val = pop(type);
1845   Value obj = apop();
1846 
1847   ValueStack* state_before = copy_state_for_exception();
1848 
1849   NewValueTypeInstance* new_instance = new NewValueTypeInstance(holder->as_value_klass(), state_before, false);
1850   _memory->new_instance(new_instance);
1851   apush(append_split(new_instance));
1852 
1853   for (int i = 0; i < holder->nof_nonstatic_fields(); i++) {
1854     ciField* field = holder->nonstatic_field_at(i);
1855     int off = field->offset();
1856 
1857     if (field->offset() != offset) {
1858       if (field->is_flattened()) {
1859         assert(field->type()->is_valuetype(), "Sanity check");
1860         assert(field->type()->is_valuetype(), "Only value types can be flattened");
1861         ciValueKlass* vk = field->type()->as_value_klass();
1862         copy_value_content(vk, obj, off, new_instance, vk->first_field_offset(), state_before, needs_patching);
1863       } else {
1864         // Only load those fields who are not modified
1865         LoadField* load = new LoadField(obj, off, field, false, state_before, needs_patching);
1866         Value replacement = append(load);
1867         StoreField* store = new StoreField(new_instance, off, field, replacement, false, state_before, needs_patching);
1868         append(store);
1869       }
1870     }
1871   }
1872 
1873   // Field to modify
1874   if (field_modify->type()->basic_type() == T_BOOLEAN) {
1875     Value mask = append(new Constant(new IntConstant(1)));
1876     val = append(new LogicOp(Bytecodes::_iand, val, mask));
1877   }
1878   if (field_modify->is_flattened()) {
1879     assert(field_modify->type()->is_valuetype(), "Only value types can be flattened");
1880     ciValueKlass* vk = field_modify->type()->as_value_klass();
1881     copy_value_content(vk, val, vk->first_field_offset(), new_instance, field_modify->offset(), state_before, needs_patching);
1882   } else {
1883     StoreField* store = new StoreField(new_instance, offset, field_modify, val, false, state_before, needs_patching);
1884     append(store);
1885   }
1886 }
1887 
1888 Dependencies* GraphBuilder::dependency_recorder() const {
1889   assert(DeoptC1, "need debug information");
1890   return compilation()->dependency_recorder();
1891 }
1892 
1893 // How many arguments do we want to profile?
1894 Values* GraphBuilder::args_list_for_profiling(ciMethod* target, int& start, bool may_have_receiver) {
1895   int n = 0;
1896   bool has_receiver = may_have_receiver && Bytecodes::has_receiver(method()->java_code_at_bci(bci()));
1897   start = has_receiver ? 1 : 0;
1898   if (profile_arguments()) {
1899     ciProfileData* data = method()->method_data()->bci_to_data(bci());
1900     if (data != NULL && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
1901       n = data->is_CallTypeData() ? data->as_CallTypeData()->number_of_arguments() : data->as_VirtualCallTypeData()->number_of_arguments();
1902     }
1903   }
1904   // If we are inlining then we need to collect arguments to profile parameters for the target
1905   if (profile_parameters() && target != NULL) {
1906     if (target->method_data() != NULL && target->method_data()->parameters_type_data() != NULL) {
1907       // The receiver is profiled on method entry so it's included in
1908       // the number of parameters but here we're only interested in
1909       // actual arguments.
1910       n = MAX2(n, target->method_data()->parameters_type_data()->number_of_parameters() - start);
1911     }
1912   }
1913   if (n > 0) {
1914     return new Values(n);
1915   }
1916   return NULL;
1917 }
1918 
1919 void GraphBuilder::check_args_for_profiling(Values* obj_args, int expected) {
1920 #ifdef ASSERT
1921   bool ignored_will_link;
1922   ciSignature* declared_signature = NULL;
1923   ciMethod* real_target = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1924   assert(expected == obj_args->max_length() || real_target->is_method_handle_intrinsic(), "missed on arg?");
1925 #endif
1926 }
1927 
1928 // Collect arguments that we want to profile in a list
1929 Values* GraphBuilder::collect_args_for_profiling(Values* args, ciMethod* target, bool may_have_receiver) {
1930   int start = 0;
1931   Values* obj_args = args_list_for_profiling(target, start, may_have_receiver);
1932   if (obj_args == NULL) {
1933     return NULL;
1934   }
1935   int s = obj_args->max_length();
1936   // if called through method handle invoke, some arguments may have been popped
1937   for (int i = start, j = 0; j < s && i < args->length(); i++) {
1938     if (args->at(i)->type()->is_object_kind()) {
1939       obj_args->push(args->at(i));
1940       j++;
1941     }
1942   }
1943   check_args_for_profiling(obj_args, s);
1944   return obj_args;
1945 }
1946 
1947 
1948 void GraphBuilder::invoke(Bytecodes::Code code) {
1949   bool will_link;
1950   ciSignature* declared_signature = NULL;
1951   ciMethod*             target = stream()->get_method(will_link, &declared_signature);
1952   ciKlass*              holder = stream()->get_declared_method_holder();
1953   const Bytecodes::Code bc_raw = stream()->cur_bc_raw();
1954   assert(declared_signature != NULL, "cannot be null");
1955   assert(will_link == target->is_loaded(), "");
1956 
1957   ciInstanceKlass* klass = target->holder();
1958   assert(!target->is_loaded() || klass->is_loaded(), "loaded target must imply loaded klass");
1959 
1960   // check if CHA possible: if so, change the code to invoke_special
1961   ciInstanceKlass* calling_klass = method()->holder();
1962   ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1963   ciInstanceKlass* actual_recv = callee_holder;
1964 
1965   CompileLog* log = compilation()->log();
1966   if (log != NULL)
1967       log->elem("call method='%d' instr='%s'",
1968                 log->identify(target),
1969                 Bytecodes::name(code));
1970 
1971   // invoke-special-super
1972   if (bc_raw == Bytecodes::_invokespecial && !target->is_object_initializer()) {
1973     ciInstanceKlass* sender_klass =
1974           calling_klass->is_unsafe_anonymous() ? calling_klass->unsafe_anonymous_host() :
1975                                                  calling_klass;
1976     if (sender_klass->is_interface()) {
1977       int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
1978       Value receiver = state()->stack_at(index);
1979       CheckCast* c = new CheckCast(sender_klass, receiver, copy_state_before());
1980       c->set_invokespecial_receiver_check();
1981       state()->stack_at_put(index, append_split(c));
1982     }
1983   }
1984 
1985   // Some methods are obviously bindable without any type checks so
1986   // convert them directly to an invokespecial or invokestatic.
1987   if (target->is_loaded() && !target->is_abstract() && target->can_be_statically_bound()) {
1988     switch (bc_raw) {
1989     case Bytecodes::_invokevirtual:
1990       code = Bytecodes::_invokespecial;
1991       break;
1992     case Bytecodes::_invokehandle:
1993       code = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokespecial;
1994       break;
1995     default:
1996       break;
1997     }
1998   } else {
1999     if (bc_raw == Bytecodes::_invokehandle) {
2000       assert(!will_link, "should come here only for unlinked call");
2001       code = Bytecodes::_invokespecial;
2002     }
2003   }
2004 
2005   // Push appendix argument (MethodType, CallSite, etc.), if one.
2006   bool patch_for_appendix = false;
2007   int patching_appendix_arg = 0;
2008   if (Bytecodes::has_optional_appendix(bc_raw) && (!will_link || PatchALot)) {
2009     Value arg = append(new Constant(new ObjectConstant(compilation()->env()->unloaded_ciinstance()), copy_state_before()));
2010     apush(arg);
2011     patch_for_appendix = true;
2012     patching_appendix_arg = (will_link && stream()->has_appendix()) ? 0 : 1;
2013   } else if (stream()->has_appendix()) {
2014     ciObject* appendix = stream()->get_appendix();
2015     Value arg = append(new Constant(new ObjectConstant(appendix)));
2016     apush(arg);
2017   }
2018 
2019   ciMethod* cha_monomorphic_target = NULL;
2020   ciMethod* exact_target = NULL;
2021   Value better_receiver = NULL;
2022   if (UseCHA && DeoptC1 && target->is_loaded() &&
2023       !(// %%% FIXME: Are both of these relevant?
2024         target->is_method_handle_intrinsic() ||
2025         target->is_compiled_lambda_form()) &&
2026       !patch_for_appendix) {
2027     Value receiver = NULL;
2028     ciInstanceKlass* receiver_klass = NULL;
2029     bool type_is_exact = false;
2030     // try to find a precise receiver type
2031     if (will_link && !target->is_static()) {
2032       int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
2033       receiver = state()->stack_at(index);
2034       ciType* type = receiver->exact_type();
2035       if (type != NULL && type->is_loaded() &&
2036           type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
2037         receiver_klass = (ciInstanceKlass*) type;
2038         type_is_exact = true;
2039       }
2040       if (type == NULL) {
2041         type = receiver->declared_type();
2042         if (type != NULL && type->is_loaded() &&
2043             type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
2044           receiver_klass = (ciInstanceKlass*) type;
2045           if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) {
2046             // Insert a dependency on this type since
2047             // find_monomorphic_target may assume it's already done.
2048             dependency_recorder()->assert_leaf_type(receiver_klass);
2049             type_is_exact = true;
2050           }
2051         }
2052       }
2053     }
2054     if (receiver_klass != NULL && type_is_exact &&
2055         receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) {
2056       // If we have the exact receiver type we can bind directly to
2057       // the method to call.
2058       exact_target = target->resolve_invoke(calling_klass, receiver_klass);
2059       if (exact_target != NULL) {
2060         target = exact_target;
2061         code = Bytecodes::_invokespecial;
2062       }
2063     }
2064     if (receiver_klass != NULL &&
2065         receiver_klass->is_subtype_of(actual_recv) &&
2066         actual_recv->is_initialized()) {
2067       actual_recv = receiver_klass;
2068     }
2069 
2070     if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) ||
2071         (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) {
2072       // Use CHA on the receiver to select a more precise method.
2073       cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv);
2074     } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != NULL) {
2075       assert(callee_holder->is_interface(), "invokeinterface to non interface?");
2076       // If there is only one implementor of this interface then we
2077       // may be able bind this invoke directly to the implementing
2078       // klass but we need both a dependence on the single interface
2079       // and on the method we bind to.  Additionally since all we know
2080       // about the receiver type is the it's supposed to implement the
2081       // interface we have to insert a check that it's the class we
2082       // expect.  Interface types are not checked by the verifier so
2083       // they are roughly equivalent to Object.
2084       // The number of implementors for declared_interface is less or
2085       // equal to the number of implementors for target->holder() so
2086       // if number of implementors of target->holder() == 1 then
2087       // number of implementors for decl_interface is 0 or 1. If
2088       // it's 0 then no class implements decl_interface and there's
2089       // no point in inlining.
2090       ciInstanceKlass* singleton = NULL;
2091       ciInstanceKlass* declared_interface = callee_holder;
2092       if (declared_interface->nof_implementors() == 1 &&
2093           (!target->is_default_method() || target->is_overpass()) /* CHA doesn't support default methods yet. */) {
2094         singleton = declared_interface->implementor();
2095         assert(singleton != NULL && singleton != declared_interface, "");
2096         cha_monomorphic_target = target->find_monomorphic_target(calling_klass, declared_interface, singleton);
2097         if (cha_monomorphic_target != NULL) {
2098           if (cha_monomorphic_target->holder() != compilation()->env()->Object_klass()) {
2099             // If CHA is able to bind this invoke then update the class
2100             // to match that class, otherwise klass will refer to the
2101             // interface.
2102             klass = cha_monomorphic_target->holder();
2103             actual_recv = declared_interface;
2104 
2105             // insert a check it's really the expected class.
2106             CheckCast* c = new CheckCast(klass, receiver, copy_state_for_exception());
2107             c->set_incompatible_class_change_check();
2108             c->set_direct_compare(klass->is_final());
2109             // pass the result of the checkcast so that the compiler has
2110             // more accurate type info in the inlinee
2111             better_receiver = append_split(c);
2112           } else {
2113             cha_monomorphic_target = NULL; // subtype check against Object is useless
2114           }
2115         }
2116       }
2117     }
2118   }
2119 
2120   if (cha_monomorphic_target != NULL) {
2121     assert(!cha_monomorphic_target->is_abstract(), "");
2122     if (!target->is_final_method() && !target->is_private()) {
2123       // If we inlined because CHA revealed only a single target method,
2124       // then we are dependent on that target method not getting overridden
2125       // by dynamic class loading.  Be sure to test the "static" receiver
2126       // dest_method here, as opposed to the actual receiver, which may
2127       // falsely lead us to believe that the receiver is final or private.
2128       dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target);
2129     }
2130     code = Bytecodes::_invokespecial;
2131   }
2132 
2133   // check if we could do inlining
2134   if (!PatchALot && Inline && target->is_loaded() &&
2135       (klass->is_initialized() || (klass->is_interface() && target->holder()->is_initialized()))
2136       && !patch_for_appendix) {
2137     // callee is known => check if we have static binding
2138     if (code == Bytecodes::_invokestatic  ||
2139         code == Bytecodes::_invokespecial ||
2140         (code == Bytecodes::_invokevirtual && target->is_final_method()) ||
2141         code == Bytecodes::_invokedynamic) {
2142       ciMethod* inline_target = (cha_monomorphic_target != NULL) ? cha_monomorphic_target : target;
2143       // static binding => check if callee is ok
2144       bool success = try_inline(inline_target, (cha_monomorphic_target != NULL) || (exact_target != NULL), false, code, better_receiver);
2145 
2146       CHECK_BAILOUT();
2147       clear_inline_bailout();
2148 
2149       if (success) {
2150         // Register dependence if JVMTI has either breakpoint
2151         // setting or hotswapping of methods capabilities since they may
2152         // cause deoptimization.
2153         if (compilation()->env()->jvmti_can_hotswap_or_post_breakpoint()) {
2154           dependency_recorder()->assert_evol_method(inline_target);
2155         }
2156         return;
2157       }
2158     } else {
2159       print_inlining(target, "no static binding", /*success*/ false);
2160     }
2161   } else {
2162     print_inlining(target, "not inlineable", /*success*/ false);
2163   }
2164 
2165   // If we attempted an inline which did not succeed because of a
2166   // bailout during construction of the callee graph, the entire
2167   // compilation has to be aborted. This is fairly rare and currently
2168   // seems to only occur for jasm-generated classes which contain
2169   // jsr/ret pairs which are not associated with finally clauses and
2170   // do not have exception handlers in the containing method, and are
2171   // therefore not caught early enough to abort the inlining without
2172   // corrupting the graph. (We currently bail out with a non-empty
2173   // stack at a ret in these situations.)
2174   CHECK_BAILOUT();
2175 
2176   // inlining not successful => standard invoke
2177   ValueType* result_type = as_ValueType(declared_signature->return_type());
2178   ValueStack* state_before = copy_state_exhandling();
2179 
2180   // The bytecode (code) might change in this method so we are checking this very late.
2181   const bool has_receiver =
2182     code == Bytecodes::_invokespecial   ||
2183     code == Bytecodes::_invokevirtual   ||
2184     code == Bytecodes::_invokeinterface;
2185   Values* args = state()->pop_arguments(target->arg_size_no_receiver() + patching_appendix_arg);
2186   Value recv = has_receiver ? apop() : NULL;
2187   int vtable_index = Method::invalid_vtable_index;
2188 
2189 #ifdef SPARC
2190   // Currently only supported on Sparc.
2191   // The UseInlineCaches only controls dispatch to invokevirtuals for
2192   // loaded classes which we weren't able to statically bind.
2193   if (!UseInlineCaches && target->is_loaded() && code == Bytecodes::_invokevirtual
2194       && !target->can_be_statically_bound()) {
2195     // Find a vtable index if one is available
2196     // For arrays, callee_holder is Object. Resolving the call with
2197     // Object would allow an illegal call to finalize() on an
2198     // array. We use holder instead: illegal calls to finalize() won't
2199     // be compiled as vtable calls (IC call resolution will catch the
2200     // illegal call) and the few legal calls on array types won't be
2201     // either.
2202     vtable_index = target->resolve_vtable_index(calling_klass, holder);
2203   }
2204 #endif
2205 
2206   // A null check is required here (when there is a receiver) for any of the following cases
2207   // - invokespecial, always need a null check.
2208   // - invokevirtual, when the target is final and loaded. Calls to final targets will become optimized
2209   //   and require null checking. If the target is loaded a null check is emitted here.
2210   //   If the target isn't loaded the null check must happen after the call resolution. We achieve that
2211   //   by using the target methods unverified entry point (see CompiledIC::compute_monomorphic_entry).
2212   //   (The JVM specification requires that LinkageError must be thrown before a NPE. An unloaded target may
2213   //   potentially fail, and can't have the null check before the resolution.)
2214   // - A call that will be profiled. (But we can't add a null check when the target is unloaded, by the same
2215   //   reason as above, so calls with a receiver to unloaded targets can't be profiled.)
2216   //
2217   // Normal invokevirtual will perform the null check during lookup
2218 
2219   bool need_null_check = (code == Bytecodes::_invokespecial) ||
2220       (target->is_loaded() && (target->is_final_method() || (is_profiling() && profile_calls())));
2221 
2222   if (need_null_check) {
2223     if (recv != NULL) {
2224       null_check(recv);
2225     }
2226 
2227     if (is_profiling()) {
2228       // Note that we'd collect profile data in this method if we wanted it.
2229       compilation()->set_would_profile(true);
2230 
2231       if (profile_calls()) {
2232         assert(cha_monomorphic_target == NULL || exact_target == NULL, "both can not be set");
2233         ciKlass* target_klass = NULL;
2234         if (cha_monomorphic_target != NULL) {
2235           target_klass = cha_monomorphic_target->holder();
2236         } else if (exact_target != NULL) {
2237           target_klass = exact_target->holder();
2238         }
2239         profile_call(target, recv, target_klass, collect_args_for_profiling(args, NULL, false), false);
2240       }
2241     }
2242   }
2243 
2244   Invoke* result = new Invoke(code, result_type, recv, args, vtable_index, target, state_before,
2245                               declared_signature->returns_never_null());
2246   // push result
2247   append_split(result);
2248 
2249   if (result_type != voidType) {
2250     if (method()->is_strict()) {
2251       push(result_type, round_fp(result));
2252     } else {
2253       push(result_type, result);
2254     }
2255   }
2256   if (profile_return() && result_type->is_object_kind()) {
2257     profile_return_type(result, target);
2258   }
2259 }
2260 
2261 
2262 void GraphBuilder::new_instance(int klass_index) {
2263   ValueStack* state_before = copy_state_exhandling();
2264   bool will_link;
2265   ciKlass* klass = stream()->get_klass(will_link);
2266   assert(klass->is_instance_klass(), "must be an instance klass");
2267   assert(!klass->is_valuetype(), "must not be a value klass");
2268   NewInstance* new_instance = new NewInstance(klass->as_instance_klass(), state_before, stream()->is_unresolved_klass());
2269   _memory->new_instance(new_instance);
2270   apush(append_split(new_instance));
2271 }
2272 
2273 void GraphBuilder::new_value_type_instance(int klass_index) {
2274   ValueStack* state_before = copy_state_exhandling();
2275   bool will_link;
2276   ciKlass* klass = stream()->get_klass(will_link);
2277   assert(klass->is_valuetype(), "must be a value klass");
2278   NewValueTypeInstance* new_instance = new NewValueTypeInstance(klass->as_value_klass(),
2279       state_before, stream()->is_unresolved_klass());
2280   _memory->new_instance(new_instance);
2281   apush(append_split(new_instance));
2282 }
2283 
2284 void GraphBuilder::new_type_array() {
2285   ValueStack* state_before = copy_state_exhandling();
2286   apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index(), state_before)));
2287 }
2288 
2289 
2290 void GraphBuilder::new_object_array() {
2291   bool will_link;
2292   ciKlass* klass = stream()->get_klass(will_link);
2293   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2294   NewArray* n = new NewObjectArray(klass, ipop(), state_before);
2295   if (stream()->is_klass_never_null()) {
2296     n->set_never_null(true);
2297   }
2298   apush(append_split(n));
2299 }
2300 
2301 
2302 bool GraphBuilder::direct_compare(ciKlass* k) {
2303   if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) {
2304     ciInstanceKlass* ik = k->as_instance_klass();
2305     if (ik->is_final()) {
2306       return true;
2307     } else {
2308       if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) {
2309         // test class is leaf class
2310         dependency_recorder()->assert_leaf_type(ik);
2311         return true;
2312       }
2313     }
2314   }
2315   return false;
2316 }
2317 
2318 
2319 void GraphBuilder::check_cast(int klass_index) {
2320   bool will_link;
2321   ciKlass* klass = stream()->get_klass(will_link);
2322   bool never_null = stream()->is_klass_never_null();
2323   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_for_exception();
2324   CheckCast* c = new CheckCast(klass, apop(), state_before, never_null);
2325   apush(append_split(c));
2326   c->set_direct_compare(direct_compare(klass));
2327 
2328   if (is_profiling()) {
2329     // Note that we'd collect profile data in this method if we wanted it.
2330     compilation()->set_would_profile(true);
2331 
2332     if (profile_checkcasts()) {
2333       c->set_profiled_method(method());
2334       c->set_profiled_bci(bci());
2335       c->set_should_profile(true);
2336     }
2337   }
2338 }
2339 
2340 
2341 void GraphBuilder::instance_of(int klass_index) {
2342   bool will_link;
2343   ciKlass* klass = stream()->get_klass(will_link);
2344   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2345   InstanceOf* i = new InstanceOf(klass, apop(), state_before);
2346   ipush(append_split(i));
2347   i->set_direct_compare(direct_compare(klass));
2348 
2349   if (is_profiling()) {
2350     // Note that we'd collect profile data in this method if we wanted it.
2351     compilation()->set_would_profile(true);
2352 
2353     if (profile_checkcasts()) {
2354       i->set_profiled_method(method());
2355       i->set_profiled_bci(bci());
2356       i->set_should_profile(true);
2357     }
2358   }
2359 }
2360 
2361 
2362 void GraphBuilder::monitorenter(Value x, int bci) {
2363   bool maybe_valuetype = false;
2364   if (bci == InvocationEntryBci) {
2365     // Called by GraphBuilder::inline_sync_entry.
2366 #ifdef ASSERT
2367     ciType* obj_type = x->declared_type();
2368     assert(obj_type == NULL || !obj_type->is_valuetype(), "valuetypes cannot have synchronized methods");
2369 #endif
2370   } else {
2371     // We are compiling a monitorenter bytecode
2372     if (EnableValhalla) {
2373       ciType* obj_type = x->declared_type();
2374       if (obj_type == NULL || obj_type->is_valuetype() || obj_type->as_klass()->is_java_lang_Object()) {
2375         // If we're (possibly) locking on a valuetype, check for markOopDesc::always_locked_pattern
2376         // and throw IMSE. (obj_type is null for Phi nodes, so let's just be conservative).
2377         maybe_valuetype = true;
2378       }
2379     }
2380   }
2381 
2382   // save state before locking in case of deoptimization after a NullPointerException
2383   ValueStack* state_before = copy_state_for_exception_with_bci(bci);
2384   append_with_bci(new MonitorEnter(x, state()->lock(x), state_before, maybe_valuetype), bci);
2385   kill_all();
2386 }
2387 
2388 
2389 void GraphBuilder::monitorexit(Value x, int bci) {
2390   append_with_bci(new MonitorExit(x, state()->unlock()), bci);
2391   kill_all();
2392 }
2393 
2394 
2395 void GraphBuilder::new_multi_array(int dimensions) {
2396   bool will_link;
2397   ciKlass* klass = stream()->get_klass(will_link);
2398   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
2399 
2400   Values* dims = new Values(dimensions, dimensions, NULL);
2401   // fill in all dimensions
2402   int i = dimensions;
2403   while (i-- > 0) dims->at_put(i, ipop());
2404   // create array
2405   NewArray* n = new NewMultiArray(klass, dims, state_before);
2406   apush(append_split(n));
2407 }
2408 
2409 
2410 void GraphBuilder::throw_op(int bci) {
2411   // We require that the debug info for a Throw be the "state before"
2412   // the Throw (i.e., exception oop is still on TOS)
2413   ValueStack* state_before = copy_state_before_with_bci(bci);
2414   Throw* t = new Throw(apop(), state_before);
2415   // operand stack not needed after a throw
2416   state()->truncate_stack(0);
2417   append_with_bci(t, bci);
2418 }
2419 
2420 
2421 Value GraphBuilder::round_fp(Value fp_value) {
2422   // no rounding needed if SSE2 is used
2423   if (RoundFPResults && UseSSE < 2) {
2424     // Must currently insert rounding node for doubleword values that
2425     // are results of expressions (i.e., not loads from memory or
2426     // constants)
2427     if (fp_value->type()->tag() == doubleTag &&
2428         fp_value->as_Constant() == NULL &&
2429         fp_value->as_Local() == NULL &&       // method parameters need no rounding
2430         fp_value->as_RoundFP() == NULL) {
2431       return append(new RoundFP(fp_value));
2432     }
2433   }
2434   return fp_value;
2435 }
2436 
2437 
2438 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) {
2439   Canonicalizer canon(compilation(), instr, bci);
2440   Instruction* i1 = canon.canonical();
2441   if (i1->is_linked() || !i1->can_be_linked()) {
2442     // Canonicalizer returned an instruction which was already
2443     // appended so simply return it.
2444     return i1;
2445   }
2446 
2447   if (UseLocalValueNumbering) {
2448     // Lookup the instruction in the ValueMap and add it to the map if
2449     // it's not found.
2450     Instruction* i2 = vmap()->find_insert(i1);
2451     if (i2 != i1) {
2452       // found an entry in the value map, so just return it.
2453       assert(i2->is_linked(), "should already be linked");
2454       return i2;
2455     }
2456     ValueNumberingEffects vne(vmap());
2457     i1->visit(&vne);
2458   }
2459 
2460   // i1 was not eliminated => append it
2461   assert(i1->next() == NULL, "shouldn't already be linked");
2462   _last = _last->set_next(i1, canon.bci());
2463 
2464   if (++_instruction_count >= InstructionCountCutoff && !bailed_out()) {
2465     // set the bailout state but complete normal processing.  We
2466     // might do a little more work before noticing the bailout so we
2467     // want processing to continue normally until it's noticed.
2468     bailout("Method and/or inlining is too large");
2469   }
2470 
2471 #ifndef PRODUCT
2472   if (PrintIRDuringConstruction) {
2473     InstructionPrinter ip;
2474     ip.print_line(i1);
2475     if (Verbose) {
2476       state()->print();
2477     }
2478   }
2479 #endif
2480 
2481   // save state after modification of operand stack for StateSplit instructions
2482   StateSplit* s = i1->as_StateSplit();
2483   if (s != NULL) {
2484     if (EliminateFieldAccess) {
2485       Intrinsic* intrinsic = s->as_Intrinsic();
2486       if (s->as_Invoke() != NULL || (intrinsic && !intrinsic->preserves_state())) {
2487         _memory->kill();
2488       }
2489     }
2490     s->set_state(state()->copy(ValueStack::StateAfter, canon.bci()));
2491   }
2492 
2493   // set up exception handlers for this instruction if necessary
2494   if (i1->can_trap()) {
2495     i1->set_exception_handlers(handle_exception(i1));
2496     assert(i1->exception_state() != NULL || !i1->needs_exception_state() || bailed_out(), "handle_exception must set exception state");
2497   }
2498   return i1;
2499 }
2500 
2501 
2502 Instruction* GraphBuilder::append(Instruction* instr) {
2503   assert(instr->as_StateSplit() == NULL || instr->as_BlockEnd() != NULL, "wrong append used");
2504   return append_with_bci(instr, bci());
2505 }
2506 
2507 
2508 Instruction* GraphBuilder::append_split(StateSplit* instr) {
2509   return append_with_bci(instr, bci());
2510 }
2511 
2512 
2513 void GraphBuilder::null_check(Value value) {
2514   if (value->as_NewArray() != NULL || value->as_NewInstance() != NULL) {
2515     return;
2516   } else {
2517     Constant* con = value->as_Constant();
2518     if (con) {
2519       ObjectType* c = con->type()->as_ObjectType();
2520       if (c && c->is_loaded()) {
2521         ObjectConstant* oc = c->as_ObjectConstant();
2522         if (!oc || !oc->value()->is_null_object()) {
2523           return;
2524         }
2525       }
2526     }
2527   }
2528   append(new NullCheck(value, copy_state_for_exception()));
2529 }
2530 
2531 
2532 
2533 XHandlers* GraphBuilder::handle_exception(Instruction* instruction) {
2534   if (!has_handler() && (!instruction->needs_exception_state() || instruction->exception_state() != NULL)) {
2535     assert(instruction->exception_state() == NULL
2536            || instruction->exception_state()->kind() == ValueStack::EmptyExceptionState
2537            || (instruction->exception_state()->kind() == ValueStack::ExceptionState && _compilation->env()->should_retain_local_variables()),
2538            "exception_state should be of exception kind");
2539     return new XHandlers();
2540   }
2541 
2542   XHandlers*  exception_handlers = new XHandlers();
2543   ScopeData*  cur_scope_data = scope_data();
2544   ValueStack* cur_state = instruction->state_before();
2545   ValueStack* prev_state = NULL;
2546   int scope_count = 0;
2547 
2548   assert(cur_state != NULL, "state_before must be set");
2549   do {
2550     int cur_bci = cur_state->bci();
2551     assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2552     assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci(), "invalid bci");
2553 
2554     // join with all potential exception handlers
2555     XHandlers* list = cur_scope_data->xhandlers();
2556     const int n = list->length();
2557     for (int i = 0; i < n; i++) {
2558       XHandler* h = list->handler_at(i);
2559       if (h->covers(cur_bci)) {
2560         // h is a potential exception handler => join it
2561         compilation()->set_has_exception_handlers(true);
2562 
2563         BlockBegin* entry = h->entry_block();
2564         if (entry == block()) {
2565           // It's acceptable for an exception handler to cover itself
2566           // but we don't handle that in the parser currently.  It's
2567           // very rare so we bailout instead of trying to handle it.
2568           BAILOUT_("exception handler covers itself", exception_handlers);
2569         }
2570         assert(entry->bci() == h->handler_bci(), "must match");
2571         assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond");
2572 
2573         // previously this was a BAILOUT, but this is not necessary
2574         // now because asynchronous exceptions are not handled this way.
2575         assert(entry->state() == NULL || cur_state->total_locks_size() == entry->state()->total_locks_size(), "locks do not match");
2576 
2577         // xhandler start with an empty expression stack
2578         if (cur_state->stack_size() != 0) {
2579           cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2580         }
2581         if (instruction->exception_state() == NULL) {
2582           instruction->set_exception_state(cur_state);
2583         }
2584 
2585         // Note: Usually this join must work. However, very
2586         // complicated jsr-ret structures where we don't ret from
2587         // the subroutine can cause the objects on the monitor
2588         // stacks to not match because blocks can be parsed twice.
2589         // The only test case we've seen so far which exhibits this
2590         // problem is caught by the infinite recursion test in
2591         // GraphBuilder::jsr() if the join doesn't work.
2592         if (!entry->try_merge(cur_state)) {
2593           BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers);
2594         }
2595 
2596         // add current state for correct handling of phi functions at begin of xhandler
2597         int phi_operand = entry->add_exception_state(cur_state);
2598 
2599         // add entry to the list of xhandlers of this block
2600         _block->add_exception_handler(entry);
2601 
2602         // add back-edge from xhandler entry to this block
2603         if (!entry->is_predecessor(_block)) {
2604           entry->add_predecessor(_block);
2605         }
2606 
2607         // clone XHandler because phi_operand and scope_count can not be shared
2608         XHandler* new_xhandler = new XHandler(h);
2609         new_xhandler->set_phi_operand(phi_operand);
2610         new_xhandler->set_scope_count(scope_count);
2611         exception_handlers->append(new_xhandler);
2612 
2613         // fill in exception handler subgraph lazily
2614         assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet");
2615         cur_scope_data->add_to_work_list(entry);
2616 
2617         // stop when reaching catchall
2618         if (h->catch_type() == 0) {
2619           return exception_handlers;
2620         }
2621       }
2622     }
2623 
2624     if (exception_handlers->length() == 0) {
2625       // This scope and all callees do not handle exceptions, so the local
2626       // variables of this scope are not needed. However, the scope itself is
2627       // required for a correct exception stack trace -> clear out the locals.
2628       if (_compilation->env()->should_retain_local_variables()) {
2629         cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2630       } else {
2631         cur_state = cur_state->copy(ValueStack::EmptyExceptionState, cur_state->bci());
2632       }
2633       if (prev_state != NULL) {
2634         prev_state->set_caller_state(cur_state);
2635       }
2636       if (instruction->exception_state() == NULL) {
2637         instruction->set_exception_state(cur_state);
2638       }
2639     }
2640 
2641     // Set up iteration for next time.
2642     // If parsing a jsr, do not grab exception handlers from the
2643     // parent scopes for this method (already got them, and they
2644     // needed to be cloned)
2645 
2646     while (cur_scope_data->parsing_jsr()) {
2647       cur_scope_data = cur_scope_data->parent();
2648     }
2649 
2650     assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2651     assert(cur_state->locks_size() == 0 || cur_state->locks_size() == 1, "unlocking must be done in a catchall exception handler");
2652 
2653     prev_state = cur_state;
2654     cur_state = cur_state->caller_state();
2655     cur_scope_data = cur_scope_data->parent();
2656     scope_count++;
2657   } while (cur_scope_data != NULL);
2658 
2659   return exception_handlers;
2660 }
2661 
2662 
2663 // Helper class for simplifying Phis.
2664 class PhiSimplifier : public BlockClosure {
2665  private:
2666   bool _has_substitutions;
2667   Value simplify(Value v);
2668 
2669  public:
2670   PhiSimplifier(BlockBegin* start) : _has_substitutions(false) {
2671     start->iterate_preorder(this);
2672     if (_has_substitutions) {
2673       SubstitutionResolver sr(start);
2674     }
2675   }
2676   void block_do(BlockBegin* b);
2677   bool has_substitutions() const { return _has_substitutions; }
2678 };
2679 
2680 
2681 Value PhiSimplifier::simplify(Value v) {
2682   Phi* phi = v->as_Phi();
2683 
2684   if (phi == NULL) {
2685     // no phi function
2686     return v;
2687   } else if (v->has_subst()) {
2688     // already substituted; subst can be phi itself -> simplify
2689     return simplify(v->subst());
2690   } else if (phi->is_set(Phi::cannot_simplify)) {
2691     // already tried to simplify phi before
2692     return phi;
2693   } else if (phi->is_set(Phi::visited)) {
2694     // break cycles in phi functions
2695     return phi;
2696   } else if (phi->type()->is_illegal()) {
2697     // illegal phi functions are ignored anyway
2698     return phi;
2699 
2700   } else {
2701     // mark phi function as processed to break cycles in phi functions
2702     phi->set(Phi::visited);
2703 
2704     // simplify x = [y, x] and x = [y, y] to y
2705     Value subst = NULL;
2706     int opd_count = phi->operand_count();
2707     for (int i = 0; i < opd_count; i++) {
2708       Value opd = phi->operand_at(i);
2709       assert(opd != NULL, "Operand must exist!");
2710 
2711       if (opd->type()->is_illegal()) {
2712         // if one operand is illegal, the entire phi function is illegal
2713         phi->make_illegal();
2714         phi->clear(Phi::visited);
2715         return phi;
2716       }
2717 
2718       Value new_opd = simplify(opd);
2719       assert(new_opd != NULL, "Simplified operand must exist!");
2720 
2721       if (new_opd != phi && new_opd != subst) {
2722         if (subst == NULL) {
2723           subst = new_opd;
2724         } else {
2725           // no simplification possible
2726           phi->set(Phi::cannot_simplify);
2727           phi->clear(Phi::visited);
2728           return phi;
2729         }
2730       }
2731     }
2732 
2733     // sucessfully simplified phi function
2734     assert(subst != NULL, "illegal phi function");
2735     _has_substitutions = true;
2736     phi->clear(Phi::visited);
2737     phi->set_subst(subst);
2738 
2739 #ifndef PRODUCT
2740     if (PrintPhiFunctions) {
2741       tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id());
2742     }
2743 #endif
2744 
2745     return subst;
2746   }
2747 }
2748 
2749 
2750 void PhiSimplifier::block_do(BlockBegin* b) {
2751   for_each_phi_fun(b, phi,
2752     simplify(phi);
2753   );
2754 
2755 #ifdef ASSERT
2756   for_each_phi_fun(b, phi,
2757                    assert(phi->operand_count() != 1 || phi->subst() != phi, "missed trivial simplification");
2758   );
2759 
2760   ValueStack* state = b->state()->caller_state();
2761   for_each_state_value(state, value,
2762     Phi* phi = value->as_Phi();
2763     assert(phi == NULL || phi->block() != b, "must not have phi function to simplify in caller state");
2764   );
2765 #endif
2766 }
2767 
2768 // This method is called after all blocks are filled with HIR instructions
2769 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x]
2770 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) {
2771   PhiSimplifier simplifier(start);
2772 }
2773 
2774 
2775 void GraphBuilder::connect_to_end(BlockBegin* beg) {
2776   // setup iteration
2777   kill_all();
2778   _block = beg;
2779   _state = beg->state()->copy_for_parsing();
2780   _last  = beg;
2781   iterate_bytecodes_for_block(beg->bci());
2782 }
2783 
2784 
2785 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) {
2786 #ifndef PRODUCT
2787   if (PrintIRDuringConstruction) {
2788     tty->cr();
2789     InstructionPrinter ip;
2790     ip.print_instr(_block); tty->cr();
2791     ip.print_stack(_block->state()); tty->cr();
2792     ip.print_inline_level(_block);
2793     ip.print_head();
2794     tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size());
2795   }
2796 #endif
2797   _skip_block = false;
2798   assert(state() != NULL, "ValueStack missing!");
2799   CompileLog* log = compilation()->log();
2800   ciBytecodeStream s(method());
2801   s.reset_to_bci(bci);
2802   int prev_bci = bci;
2803   scope_data()->set_stream(&s);
2804   // iterate
2805   Bytecodes::Code code = Bytecodes::_illegal;
2806   bool push_exception = false;
2807 
2808   if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == NULL) {
2809     // first thing in the exception entry block should be the exception object.
2810     push_exception = true;
2811   }
2812 
2813   bool ignore_return = scope_data()->ignore_return();
2814 
2815   while (!bailed_out() && last()->as_BlockEnd() == NULL &&
2816          (code = stream()->next()) != ciBytecodeStream::EOBC() &&
2817          (block_at(s.cur_bci()) == NULL || block_at(s.cur_bci()) == block())) {
2818     assert(state()->kind() == ValueStack::Parsing, "invalid state kind");
2819 
2820     if (log != NULL)
2821       log->set_context("bc code='%d' bci='%d'", (int)code, s.cur_bci());
2822 
2823     // Check for active jsr during OSR compilation
2824     if (compilation()->is_osr_compile()
2825         && scope()->is_top_scope()
2826         && parsing_jsr()
2827         && s.cur_bci() == compilation()->osr_bci()) {
2828       bailout("OSR not supported while a jsr is active");
2829     }
2830 
2831     if (push_exception) {
2832       apush(append(new ExceptionObject()));
2833       push_exception = false;
2834     }
2835 
2836     // handle bytecode
2837     switch (code) {
2838       case Bytecodes::_nop            : /* nothing to do */ break;
2839       case Bytecodes::_aconst_null    : apush(append(new Constant(objectNull            ))); break;
2840       case Bytecodes::_iconst_m1      : ipush(append(new Constant(new IntConstant   (-1)))); break;
2841       case Bytecodes::_iconst_0       : ipush(append(new Constant(intZero               ))); break;
2842       case Bytecodes::_iconst_1       : ipush(append(new Constant(intOne                ))); break;
2843       case Bytecodes::_iconst_2       : ipush(append(new Constant(new IntConstant   ( 2)))); break;
2844       case Bytecodes::_iconst_3       : ipush(append(new Constant(new IntConstant   ( 3)))); break;
2845       case Bytecodes::_iconst_4       : ipush(append(new Constant(new IntConstant   ( 4)))); break;
2846       case Bytecodes::_iconst_5       : ipush(append(new Constant(new IntConstant   ( 5)))); break;
2847       case Bytecodes::_lconst_0       : lpush(append(new Constant(new LongConstant  ( 0)))); break;
2848       case Bytecodes::_lconst_1       : lpush(append(new Constant(new LongConstant  ( 1)))); break;
2849       case Bytecodes::_fconst_0       : fpush(append(new Constant(new FloatConstant ( 0)))); break;
2850       case Bytecodes::_fconst_1       : fpush(append(new Constant(new FloatConstant ( 1)))); break;
2851       case Bytecodes::_fconst_2       : fpush(append(new Constant(new FloatConstant ( 2)))); break;
2852       case Bytecodes::_dconst_0       : dpush(append(new Constant(new DoubleConstant( 0)))); break;
2853       case Bytecodes::_dconst_1       : dpush(append(new Constant(new DoubleConstant( 1)))); break;
2854       case Bytecodes::_bipush         : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break;
2855       case Bytecodes::_sipush         : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break;
2856       case Bytecodes::_ldc            : // fall through
2857       case Bytecodes::_ldc_w          : // fall through
2858       case Bytecodes::_ldc2_w         : load_constant(); break;
2859       case Bytecodes::_iload          : load_local(intType     , s.get_index()); break;
2860       case Bytecodes::_lload          : load_local(longType    , s.get_index()); break;
2861       case Bytecodes::_fload          : load_local(floatType   , s.get_index()); break;
2862       case Bytecodes::_dload          : load_local(doubleType  , s.get_index()); break;
2863       case Bytecodes::_aload          : load_local(instanceType, s.get_index()); break;
2864       case Bytecodes::_iload_0        : load_local(intType   , 0); break;
2865       case Bytecodes::_iload_1        : load_local(intType   , 1); break;
2866       case Bytecodes::_iload_2        : load_local(intType   , 2); break;
2867       case Bytecodes::_iload_3        : load_local(intType   , 3); break;
2868       case Bytecodes::_lload_0        : load_local(longType  , 0); break;
2869       case Bytecodes::_lload_1        : load_local(longType  , 1); break;
2870       case Bytecodes::_lload_2        : load_local(longType  , 2); break;
2871       case Bytecodes::_lload_3        : load_local(longType  , 3); break;
2872       case Bytecodes::_fload_0        : load_local(floatType , 0); break;
2873       case Bytecodes::_fload_1        : load_local(floatType , 1); break;
2874       case Bytecodes::_fload_2        : load_local(floatType , 2); break;
2875       case Bytecodes::_fload_3        : load_local(floatType , 3); break;
2876       case Bytecodes::_dload_0        : load_local(doubleType, 0); break;
2877       case Bytecodes::_dload_1        : load_local(doubleType, 1); break;
2878       case Bytecodes::_dload_2        : load_local(doubleType, 2); break;
2879       case Bytecodes::_dload_3        : load_local(doubleType, 3); break;
2880       case Bytecodes::_aload_0        : load_local(objectType, 0); break;
2881       case Bytecodes::_aload_1        : load_local(objectType, 1); break;
2882       case Bytecodes::_aload_2        : load_local(objectType, 2); break;
2883       case Bytecodes::_aload_3        : load_local(objectType, 3); break;
2884       case Bytecodes::_iaload         : load_indexed(T_INT   ); break;
2885       case Bytecodes::_laload         : load_indexed(T_LONG  ); break;
2886       case Bytecodes::_faload         : load_indexed(T_FLOAT ); break;
2887       case Bytecodes::_daload         : load_indexed(T_DOUBLE); break;
2888       case Bytecodes::_aaload         : load_indexed(T_OBJECT); break;
2889       case Bytecodes::_baload         : load_indexed(T_BYTE  ); break;
2890       case Bytecodes::_caload         : load_indexed(T_CHAR  ); break;
2891       case Bytecodes::_saload         : load_indexed(T_SHORT ); break;
2892       case Bytecodes::_istore         : store_local(intType   , s.get_index()); break;
2893       case Bytecodes::_lstore         : store_local(longType  , s.get_index()); break;
2894       case Bytecodes::_fstore         : store_local(floatType , s.get_index()); break;
2895       case Bytecodes::_dstore         : store_local(doubleType, s.get_index()); break;
2896       case Bytecodes::_astore         : store_local(objectType, s.get_index()); break;
2897       case Bytecodes::_istore_0       : store_local(intType   , 0); break;
2898       case Bytecodes::_istore_1       : store_local(intType   , 1); break;
2899       case Bytecodes::_istore_2       : store_local(intType   , 2); break;
2900       case Bytecodes::_istore_3       : store_local(intType   , 3); break;
2901       case Bytecodes::_lstore_0       : store_local(longType  , 0); break;
2902       case Bytecodes::_lstore_1       : store_local(longType  , 1); break;
2903       case Bytecodes::_lstore_2       : store_local(longType  , 2); break;
2904       case Bytecodes::_lstore_3       : store_local(longType  , 3); break;
2905       case Bytecodes::_fstore_0       : store_local(floatType , 0); break;
2906       case Bytecodes::_fstore_1       : store_local(floatType , 1); break;
2907       case Bytecodes::_fstore_2       : store_local(floatType , 2); break;
2908       case Bytecodes::_fstore_3       : store_local(floatType , 3); break;
2909       case Bytecodes::_dstore_0       : store_local(doubleType, 0); break;
2910       case Bytecodes::_dstore_1       : store_local(doubleType, 1); break;
2911       case Bytecodes::_dstore_2       : store_local(doubleType, 2); break;
2912       case Bytecodes::_dstore_3       : store_local(doubleType, 3); break;
2913       case Bytecodes::_astore_0       : store_local(objectType, 0); break;
2914       case Bytecodes::_astore_1       : store_local(objectType, 1); break;
2915       case Bytecodes::_astore_2       : store_local(objectType, 2); break;
2916       case Bytecodes::_astore_3       : store_local(objectType, 3); break;
2917       case Bytecodes::_iastore        : store_indexed(T_INT   ); break;
2918       case Bytecodes::_lastore        : store_indexed(T_LONG  ); break;
2919       case Bytecodes::_fastore        : store_indexed(T_FLOAT ); break;
2920       case Bytecodes::_dastore        : store_indexed(T_DOUBLE); break;
2921       case Bytecodes::_aastore        : store_indexed(T_OBJECT); break;
2922       case Bytecodes::_bastore        : store_indexed(T_BYTE  ); break;
2923       case Bytecodes::_castore        : store_indexed(T_CHAR  ); break;
2924       case Bytecodes::_sastore        : store_indexed(T_SHORT ); break;
2925       case Bytecodes::_pop            : // fall through
2926       case Bytecodes::_pop2           : // fall through
2927       case Bytecodes::_dup            : // fall through
2928       case Bytecodes::_dup_x1         : // fall through
2929       case Bytecodes::_dup_x2         : // fall through
2930       case Bytecodes::_dup2           : // fall through
2931       case Bytecodes::_dup2_x1        : // fall through
2932       case Bytecodes::_dup2_x2        : // fall through
2933       case Bytecodes::_swap           : stack_op(code); break;
2934       case Bytecodes::_iadd           : arithmetic_op(intType   , code); break;
2935       case Bytecodes::_ladd           : arithmetic_op(longType  , code); break;
2936       case Bytecodes::_fadd           : arithmetic_op(floatType , code); break;
2937       case Bytecodes::_dadd           : arithmetic_op(doubleType, code); break;
2938       case Bytecodes::_isub           : arithmetic_op(intType   , code); break;
2939       case Bytecodes::_lsub           : arithmetic_op(longType  , code); break;
2940       case Bytecodes::_fsub           : arithmetic_op(floatType , code); break;
2941       case Bytecodes::_dsub           : arithmetic_op(doubleType, code); break;
2942       case Bytecodes::_imul           : arithmetic_op(intType   , code); break;
2943       case Bytecodes::_lmul           : arithmetic_op(longType  , code); break;
2944       case Bytecodes::_fmul           : arithmetic_op(floatType , code); break;
2945       case Bytecodes::_dmul           : arithmetic_op(doubleType, code); break;
2946       case Bytecodes::_idiv           : arithmetic_op(intType   , code, copy_state_for_exception()); break;
2947       case Bytecodes::_ldiv           : arithmetic_op(longType  , code, copy_state_for_exception()); break;
2948       case Bytecodes::_fdiv           : arithmetic_op(floatType , code); break;
2949       case Bytecodes::_ddiv           : arithmetic_op(doubleType, code); break;
2950       case Bytecodes::_irem           : arithmetic_op(intType   , code, copy_state_for_exception()); break;
2951       case Bytecodes::_lrem           : arithmetic_op(longType  , code, copy_state_for_exception()); break;
2952       case Bytecodes::_frem           : arithmetic_op(floatType , code); break;
2953       case Bytecodes::_drem           : arithmetic_op(doubleType, code); break;
2954       case Bytecodes::_ineg           : negate_op(intType   ); break;
2955       case Bytecodes::_lneg           : negate_op(longType  ); break;
2956       case Bytecodes::_fneg           : negate_op(floatType ); break;
2957       case Bytecodes::_dneg           : negate_op(doubleType); break;
2958       case Bytecodes::_ishl           : shift_op(intType , code); break;
2959       case Bytecodes::_lshl           : shift_op(longType, code); break;
2960       case Bytecodes::_ishr           : shift_op(intType , code); break;
2961       case Bytecodes::_lshr           : shift_op(longType, code); break;
2962       case Bytecodes::_iushr          : shift_op(intType , code); break;
2963       case Bytecodes::_lushr          : shift_op(longType, code); break;
2964       case Bytecodes::_iand           : logic_op(intType , code); break;
2965       case Bytecodes::_land           : logic_op(longType, code); break;
2966       case Bytecodes::_ior            : logic_op(intType , code); break;
2967       case Bytecodes::_lor            : logic_op(longType, code); break;
2968       case Bytecodes::_ixor           : logic_op(intType , code); break;
2969       case Bytecodes::_lxor           : logic_op(longType, code); break;
2970       case Bytecodes::_iinc           : increment(); break;
2971       case Bytecodes::_i2l            : convert(code, T_INT   , T_LONG  ); break;
2972       case Bytecodes::_i2f            : convert(code, T_INT   , T_FLOAT ); break;
2973       case Bytecodes::_i2d            : convert(code, T_INT   , T_DOUBLE); break;
2974       case Bytecodes::_l2i            : convert(code, T_LONG  , T_INT   ); break;
2975       case Bytecodes::_l2f            : convert(code, T_LONG  , T_FLOAT ); break;
2976       case Bytecodes::_l2d            : convert(code, T_LONG  , T_DOUBLE); break;
2977       case Bytecodes::_f2i            : convert(code, T_FLOAT , T_INT   ); break;
2978       case Bytecodes::_f2l            : convert(code, T_FLOAT , T_LONG  ); break;
2979       case Bytecodes::_f2d            : convert(code, T_FLOAT , T_DOUBLE); break;
2980       case Bytecodes::_d2i            : convert(code, T_DOUBLE, T_INT   ); break;
2981       case Bytecodes::_d2l            : convert(code, T_DOUBLE, T_LONG  ); break;
2982       case Bytecodes::_d2f            : convert(code, T_DOUBLE, T_FLOAT ); break;
2983       case Bytecodes::_i2b            : convert(code, T_INT   , T_BYTE  ); break;
2984       case Bytecodes::_i2c            : convert(code, T_INT   , T_CHAR  ); break;
2985       case Bytecodes::_i2s            : convert(code, T_INT   , T_SHORT ); break;
2986       case Bytecodes::_lcmp           : compare_op(longType  , code); break;
2987       case Bytecodes::_fcmpl          : compare_op(floatType , code); break;
2988       case Bytecodes::_fcmpg          : compare_op(floatType , code); break;
2989       case Bytecodes::_dcmpl          : compare_op(doubleType, code); break;
2990       case Bytecodes::_dcmpg          : compare_op(doubleType, code); break;
2991       case Bytecodes::_ifeq           : if_zero(intType   , If::eql); break;
2992       case Bytecodes::_ifne           : if_zero(intType   , If::neq); break;
2993       case Bytecodes::_iflt           : if_zero(intType   , If::lss); break;
2994       case Bytecodes::_ifge           : if_zero(intType   , If::geq); break;
2995       case Bytecodes::_ifgt           : if_zero(intType   , If::gtr); break;
2996       case Bytecodes::_ifle           : if_zero(intType   , If::leq); break;
2997       case Bytecodes::_if_icmpeq      : if_same(intType   , If::eql); break;
2998       case Bytecodes::_if_icmpne      : if_same(intType   , If::neq); break;
2999       case Bytecodes::_if_icmplt      : if_same(intType   , If::lss); break;
3000       case Bytecodes::_if_icmpge      : if_same(intType   , If::geq); break;
3001       case Bytecodes::_if_icmpgt      : if_same(intType   , If::gtr); break;
3002       case Bytecodes::_if_icmple      : if_same(intType   , If::leq); break;
3003       case Bytecodes::_if_acmpeq      : if_same(objectType, If::eql); break;
3004       case Bytecodes::_if_acmpne      : if_same(objectType, If::neq); break;
3005       case Bytecodes::_goto           : _goto(s.cur_bci(), s.get_dest()); break;
3006       case Bytecodes::_jsr            : jsr(s.get_dest()); break;
3007       case Bytecodes::_ret            : ret(s.get_index()); break;
3008       case Bytecodes::_tableswitch    : table_switch(); break;
3009       case Bytecodes::_lookupswitch   : lookup_switch(); break;
3010       case Bytecodes::_ireturn        : method_return(ipop(), ignore_return); break;
3011       case Bytecodes::_lreturn        : method_return(lpop(), ignore_return); break;
3012       case Bytecodes::_freturn        : method_return(fpop(), ignore_return); break;
3013       case Bytecodes::_dreturn        : method_return(dpop(), ignore_return); break;
3014       case Bytecodes::_areturn        : method_return(apop(), ignore_return); break;
3015       case Bytecodes::_return         : method_return(NULL  , ignore_return); break;
3016       case Bytecodes::_getstatic      : // fall through
3017       case Bytecodes::_putstatic      : // fall through
3018       case Bytecodes::_getfield       : // fall through
3019       case Bytecodes::_putfield       : access_field(code); break;
3020       case Bytecodes::_invokevirtual  : // fall through
3021       case Bytecodes::_invokespecial  : // fall through
3022       case Bytecodes::_invokestatic   : // fall through
3023       case Bytecodes::_invokedynamic  : // fall through
3024       case Bytecodes::_invokeinterface: invoke(code); break;
3025       case Bytecodes::_new            : new_instance(s.get_index_u2()); break;
3026       case Bytecodes::_newarray       : new_type_array(); break;
3027       case Bytecodes::_anewarray      : new_object_array(); break;
3028       case Bytecodes::_arraylength    : { ValueStack* state_before = copy_state_for_exception(); ipush(append(new ArrayLength(apop(), state_before))); break; }
3029       case Bytecodes::_athrow         : throw_op(s.cur_bci()); break;
3030       case Bytecodes::_checkcast      : check_cast(s.get_index_u2()); break;
3031       case Bytecodes::_instanceof     : instance_of(s.get_index_u2()); break;
3032       case Bytecodes::_monitorenter   : monitorenter(apop(), s.cur_bci()); break;
3033       case Bytecodes::_monitorexit    : monitorexit (apop(), s.cur_bci()); break;
3034       case Bytecodes::_wide           : ShouldNotReachHere(); break;
3035       case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break;
3036       case Bytecodes::_ifnull         : if_null(objectType, If::eql); break;
3037       case Bytecodes::_ifnonnull      : if_null(objectType, If::neq); break;
3038       case Bytecodes::_goto_w         : _goto(s.cur_bci(), s.get_far_dest()); break;
3039       case Bytecodes::_jsr_w          : jsr(s.get_far_dest()); break;
3040       case Bytecodes::_defaultvalue   : new_value_type_instance(s.get_index_u2()); break;
3041       case Bytecodes::_withfield      : withfield(s.get_index_u2()); break;
3042       case Bytecodes::_breakpoint     : BAILOUT_("concurrent setting of breakpoint", NULL);
3043       default                         : ShouldNotReachHere(); break;
3044     }
3045 
3046     if (log != NULL)
3047       log->clear_context(); // skip marker if nothing was printed
3048 
3049     // save current bci to setup Goto at the end
3050     prev_bci = s.cur_bci();
3051 
3052   }
3053   CHECK_BAILOUT_(NULL);
3054   // stop processing of this block (see try_inline_full)
3055   if (_skip_block) {
3056     _skip_block = false;
3057     assert(_last && _last->as_BlockEnd(), "");
3058     return _last->as_BlockEnd();
3059   }
3060   // if there are any, check if last instruction is a BlockEnd instruction
3061   BlockEnd* end = last()->as_BlockEnd();
3062   if (end == NULL) {
3063     // all blocks must end with a BlockEnd instruction => add a Goto
3064     end = new Goto(block_at(s.cur_bci()), false);
3065     append(end);
3066   }
3067   assert(end == last()->as_BlockEnd(), "inconsistency");
3068 
3069   assert(end->state() != NULL, "state must already be present");
3070   assert(end->as_Return() == NULL || end->as_Throw() == NULL || end->state()->stack_size() == 0, "stack not needed for return and throw");
3071 
3072   // connect to begin & set state
3073   // NOTE that inlining may have changed the block we are parsing
3074   block()->set_end(end);
3075   // propagate state
3076   for (int i = end->number_of_sux() - 1; i >= 0; i--) {
3077     BlockBegin* sux = end->sux_at(i);
3078     assert(sux->is_predecessor(block()), "predecessor missing");
3079     // be careful, bailout if bytecodes are strange
3080     if (!sux->try_merge(end->state())) BAILOUT_("block join failed", NULL);
3081     scope_data()->add_to_work_list(end->sux_at(i));
3082   }
3083 
3084   scope_data()->set_stream(NULL);
3085 
3086   // done
3087   return end;
3088 }
3089 
3090 
3091 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) {
3092   do {
3093     if (start_in_current_block_for_inlining && !bailed_out()) {
3094       iterate_bytecodes_for_block(0);
3095       start_in_current_block_for_inlining = false;
3096     } else {
3097       BlockBegin* b;
3098       while ((b = scope_data()->remove_from_work_list()) != NULL) {
3099         if (!b->is_set(BlockBegin::was_visited_flag)) {
3100           if (b->is_set(BlockBegin::osr_entry_flag)) {
3101             // we're about to parse the osr entry block, so make sure
3102             // we setup the OSR edge leading into this block so that
3103             // Phis get setup correctly.
3104             setup_osr_entry_block();
3105             // this is no longer the osr entry block, so clear it.
3106             b->clear(BlockBegin::osr_entry_flag);
3107           }
3108           b->set(BlockBegin::was_visited_flag);
3109           connect_to_end(b);
3110         }
3111       }
3112     }
3113   } while (!bailed_out() && !scope_data()->is_work_list_empty());
3114 }
3115 
3116 
3117 bool GraphBuilder::_can_trap      [Bytecodes::number_of_java_codes];
3118 
3119 void GraphBuilder::initialize() {
3120   // the following bytecodes are assumed to potentially
3121   // throw exceptions in compiled code - note that e.g.
3122   // monitorexit & the return bytecodes do not throw
3123   // exceptions since monitor pairing proved that they
3124   // succeed (if monitor pairing succeeded)
3125   Bytecodes::Code can_trap_list[] =
3126     { Bytecodes::_ldc
3127     , Bytecodes::_ldc_w
3128     , Bytecodes::_ldc2_w
3129     , Bytecodes::_iaload
3130     , Bytecodes::_laload
3131     , Bytecodes::_faload
3132     , Bytecodes::_daload
3133     , Bytecodes::_aaload
3134     , Bytecodes::_baload
3135     , Bytecodes::_caload
3136     , Bytecodes::_saload
3137     , Bytecodes::_iastore
3138     , Bytecodes::_lastore
3139     , Bytecodes::_fastore
3140     , Bytecodes::_dastore
3141     , Bytecodes::_aastore
3142     , Bytecodes::_bastore
3143     , Bytecodes::_castore
3144     , Bytecodes::_sastore
3145     , Bytecodes::_idiv
3146     , Bytecodes::_ldiv
3147     , Bytecodes::_irem
3148     , Bytecodes::_lrem
3149     , Bytecodes::_getstatic
3150     , Bytecodes::_putstatic
3151     , Bytecodes::_getfield
3152     , Bytecodes::_putfield
3153     , Bytecodes::_invokevirtual
3154     , Bytecodes::_invokespecial
3155     , Bytecodes::_invokestatic
3156     , Bytecodes::_invokedynamic
3157     , Bytecodes::_invokeinterface
3158     , Bytecodes::_new
3159     , Bytecodes::_newarray
3160     , Bytecodes::_anewarray
3161     , Bytecodes::_arraylength
3162     , Bytecodes::_athrow
3163     , Bytecodes::_checkcast
3164     , Bytecodes::_instanceof
3165     , Bytecodes::_monitorenter
3166     , Bytecodes::_multianewarray
3167     };
3168 
3169   // inititialize trap tables
3170   for (int i = 0; i < Bytecodes::number_of_java_codes; i++) {
3171     _can_trap[i] = false;
3172   }
3173   // set standard trap info
3174   for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) {
3175     _can_trap[can_trap_list[j]] = true;
3176   }
3177 }
3178 
3179 
3180 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
3181   assert(entry->is_set(f), "entry/flag mismatch");
3182   // create header block
3183   BlockBegin* h = new BlockBegin(entry->bci());
3184   h->set_depth_first_number(0);
3185 
3186   Value l = h;
3187   BlockEnd* g = new Goto(entry, false);
3188   l->set_next(g, entry->bci());
3189   h->set_end(g);
3190   h->set(f);
3191   // setup header block end state
3192   ValueStack* s = state->copy(ValueStack::StateAfter, entry->bci()); // can use copy since stack is empty (=> no phis)
3193   assert(s->stack_is_empty(), "must have empty stack at entry point");
3194   g->set_state(s);
3195   return h;
3196 }
3197 
3198 
3199 
3200 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) {
3201   BlockBegin* start = new BlockBegin(0);
3202 
3203   // This code eliminates the empty start block at the beginning of
3204   // each method.  Previously, each method started with the
3205   // start-block created below, and this block was followed by the
3206   // header block that was always empty.  This header block is only
3207   // necesary if std_entry is also a backward branch target because
3208   // then phi functions may be necessary in the header block.  It's
3209   // also necessary when profiling so that there's a single block that
3210   // can increment the interpreter_invocation_count.
3211   BlockBegin* new_header_block;
3212   if (std_entry->number_of_preds() > 0 || count_invocations() || count_backedges()) {
3213     new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state);
3214   } else {
3215     new_header_block = std_entry;
3216   }
3217 
3218   // setup start block (root for the IR graph)
3219   Base* base =
3220     new Base(
3221       new_header_block,
3222       osr_entry
3223     );
3224   start->set_next(base, 0);
3225   start->set_end(base);
3226   // create & setup state for start block
3227   start->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3228   base->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
3229 
3230   if (base->std_entry()->state() == NULL) {
3231     // setup states for header blocks
3232     base->std_entry()->merge(state);
3233   }
3234 
3235   assert(base->std_entry()->state() != NULL, "");
3236   return start;
3237 }
3238 
3239 
3240 void GraphBuilder::setup_osr_entry_block() {
3241   assert(compilation()->is_osr_compile(), "only for osrs");
3242 
3243   int osr_bci = compilation()->osr_bci();
3244   ciBytecodeStream s(method());
3245   s.reset_to_bci(osr_bci);
3246   s.next();
3247   scope_data()->set_stream(&s);
3248 
3249   // create a new block to be the osr setup code
3250   _osr_entry = new BlockBegin(osr_bci);
3251   _osr_entry->set(BlockBegin::osr_entry_flag);
3252   _osr_entry->set_depth_first_number(0);
3253   BlockBegin* target = bci2block()->at(osr_bci);
3254   assert(target != NULL && target->is_set(BlockBegin::osr_entry_flag), "must be there");
3255   // the osr entry has no values for locals
3256   ValueStack* state = target->state()->copy();
3257   _osr_entry->set_state(state);
3258 
3259   kill_all();
3260   _block = _osr_entry;
3261   _state = _osr_entry->state()->copy();
3262   assert(_state->bci() == osr_bci, "mismatch");
3263   _last  = _osr_entry;
3264   Value e = append(new OsrEntry());
3265   e->set_needs_null_check(false);
3266 
3267   // OSR buffer is
3268   //
3269   // locals[nlocals-1..0]
3270   // monitors[number_of_locks-1..0]
3271   //
3272   // locals is a direct copy of the interpreter frame so in the osr buffer
3273   // so first slot in the local array is the last local from the interpreter
3274   // and last slot is local[0] (receiver) from the interpreter
3275   //
3276   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
3277   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
3278   // in the interpreter frame (the method lock if a sync method)
3279 
3280   // Initialize monitors in the compiled activation.
3281 
3282   int index;
3283   Value local;
3284 
3285   // find all the locals that the interpreter thinks contain live oops
3286   const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci);
3287 
3288   // compute the offset into the locals so that we can treat the buffer
3289   // as if the locals were still in the interpreter frame
3290   int locals_offset = BytesPerWord * (method()->max_locals() - 1);
3291   for_each_local_value(state, index, local) {
3292     int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord;
3293     Value get;
3294     if (local->type()->is_object_kind() && !live_oops.at(index)) {
3295       // The interpreter thinks this local is dead but the compiler
3296       // doesn't so pretend that the interpreter passed in null.
3297       get = append(new Constant(objectNull));
3298     } else {
3299       get = append(new UnsafeGetRaw(as_BasicType(local->type()), e,
3300                                     append(new Constant(new IntConstant(offset))),
3301                                     0,
3302                                     true /*unaligned*/, true /*wide*/));
3303     }
3304     _state->store_local(index, get);
3305   }
3306 
3307   // the storage for the OSR buffer is freed manually in the LIRGenerator.
3308 
3309   assert(state->caller_state() == NULL, "should be top scope");
3310   state->clear_locals();
3311   Goto* g = new Goto(target, false);
3312   append(g);
3313   _osr_entry->set_end(g);
3314   target->merge(_osr_entry->end()->state());
3315 
3316   scope_data()->set_stream(NULL);
3317 }
3318 
3319 
3320 ValueStack* GraphBuilder::state_at_entry() {
3321   ValueStack* state = new ValueStack(scope(), NULL);
3322 
3323   // Set up locals for receiver
3324   int idx = 0;
3325   if (!method()->is_static()) {
3326     // we should always see the receiver
3327     state->store_local(idx, new Local(method()->holder(), objectType, idx,
3328              /*receiver*/ true, /*never_null*/ method()->holder()->is_value_array_klass()));
3329     idx = 1;
3330   }
3331 
3332   // Set up locals for incoming arguments
3333   ciSignature* sig = method()->signature();
3334   for (int i = 0; i < sig->count(); i++) {
3335     ciType* type = sig->type_at(i);
3336     BasicType basic_type = type->basic_type();
3337     // don't allow T_ARRAY to propagate into locals types
3338     if (basic_type == T_ARRAY || basic_type == T_VALUETYPE) basic_type = T_OBJECT;
3339     ValueType* vt = as_ValueType(basic_type);
3340     state->store_local(idx, new Local(type, vt, idx, false, sig->is_never_null_at(i)));
3341     idx += type->size();
3342   }
3343 
3344   // lock synchronized method
3345   if (method()->is_synchronized()) {
3346     state->lock(NULL);
3347   }
3348 
3349   return state;
3350 }
3351 
3352 
3353 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope)
3354   : _scope_data(NULL)
3355   , _compilation(compilation)
3356   , _memory(new MemoryBuffer())
3357   , _inline_bailout_msg(NULL)
3358   , _instruction_count(0)
3359   , _osr_entry(NULL)
3360 {
3361   int osr_bci = compilation->osr_bci();
3362 
3363   // determine entry points and bci2block mapping
3364   BlockListBuilder blm(compilation, scope, osr_bci);
3365   CHECK_BAILOUT();
3366 
3367   BlockList* bci2block = blm.bci2block();
3368   BlockBegin* start_block = bci2block->at(0);
3369 
3370   push_root_scope(scope, bci2block, start_block);
3371 
3372   // setup state for std entry
3373   _initial_state = state_at_entry();
3374   start_block->merge(_initial_state);
3375 
3376   // complete graph
3377   _vmap        = new ValueMap();
3378   switch (scope->method()->intrinsic_id()) {
3379   case vmIntrinsics::_dabs          : // fall through
3380   case vmIntrinsics::_dsqrt         : // fall through
3381   case vmIntrinsics::_dsin          : // fall through
3382   case vmIntrinsics::_dcos          : // fall through
3383   case vmIntrinsics::_dtan          : // fall through
3384   case vmIntrinsics::_dlog          : // fall through
3385   case vmIntrinsics::_dlog10        : // fall through
3386   case vmIntrinsics::_dexp          : // fall through
3387   case vmIntrinsics::_dpow          : // fall through
3388     {
3389       // Compiles where the root method is an intrinsic need a special
3390       // compilation environment because the bytecodes for the method
3391       // shouldn't be parsed during the compilation, only the special
3392       // Intrinsic node should be emitted.  If this isn't done the the
3393       // code for the inlined version will be different than the root
3394       // compiled version which could lead to monotonicity problems on
3395       // intel.
3396       if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3397         BAILOUT("failed to inline intrinsic, method not annotated");
3398       }
3399 
3400       // Set up a stream so that appending instructions works properly.
3401       ciBytecodeStream s(scope->method());
3402       s.reset_to_bci(0);
3403       scope_data()->set_stream(&s);
3404       s.next();
3405 
3406       // setup the initial block state
3407       _block = start_block;
3408       _state = start_block->state()->copy_for_parsing();
3409       _last  = start_block;
3410       load_local(doubleType, 0);
3411       if (scope->method()->intrinsic_id() == vmIntrinsics::_dpow) {
3412         load_local(doubleType, 2);
3413       }
3414 
3415       // Emit the intrinsic node.
3416       bool result = try_inline_intrinsics(scope->method());
3417       if (!result) BAILOUT("failed to inline intrinsic");
3418       method_return(dpop());
3419 
3420       // connect the begin and end blocks and we're all done.
3421       BlockEnd* end = last()->as_BlockEnd();
3422       block()->set_end(end);
3423       break;
3424     }
3425 
3426   case vmIntrinsics::_Reference_get:
3427     {
3428       {
3429         // With java.lang.ref.reference.get() we must go through the
3430         // intrinsic - when G1 is enabled - even when get() is the root
3431         // method of the compile so that, if necessary, the value in
3432         // the referent field of the reference object gets recorded by
3433         // the pre-barrier code.
3434         // Specifically, if G1 is enabled, the value in the referent
3435         // field is recorded by the G1 SATB pre barrier. This will
3436         // result in the referent being marked live and the reference
3437         // object removed from the list of discovered references during
3438         // reference processing.
3439         if (CheckIntrinsics && !scope->method()->intrinsic_candidate()) {
3440           BAILOUT("failed to inline intrinsic, method not annotated");
3441         }
3442 
3443         // Also we need intrinsic to prevent commoning reads from this field
3444         // across safepoint since GC can change its value.
3445 
3446         // Set up a stream so that appending instructions works properly.
3447         ciBytecodeStream s(scope->method());
3448         s.reset_to_bci(0);
3449         scope_data()->set_stream(&s);
3450         s.next();
3451 
3452         // setup the initial block state
3453         _block = start_block;
3454         _state = start_block->state()->copy_for_parsing();
3455         _last  = start_block;
3456         load_local(objectType, 0);
3457 
3458         // Emit the intrinsic node.
3459         bool result = try_inline_intrinsics(scope->method());
3460         if (!result) BAILOUT("failed to inline intrinsic");
3461         method_return(apop());
3462 
3463         // connect the begin and end blocks and we're all done.
3464         BlockEnd* end = last()->as_BlockEnd();
3465         block()->set_end(end);
3466         break;
3467       }
3468       // Otherwise, fall thru
3469     }
3470 
3471   default:
3472     scope_data()->add_to_work_list(start_block);
3473     iterate_all_blocks();
3474     break;
3475   }
3476   CHECK_BAILOUT();
3477 
3478   _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state);
3479 
3480   eliminate_redundant_phis(_start);
3481 
3482   NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats());
3483   // for osr compile, bailout if some requirements are not fulfilled
3484   if (osr_bci != -1) {
3485     BlockBegin* osr_block = blm.bci2block()->at(osr_bci);
3486     if (!osr_block->is_set(BlockBegin::was_visited_flag)) {
3487       BAILOUT("osr entry must have been visited for osr compile");
3488     }
3489 
3490     // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points
3491     if (!osr_block->state()->stack_is_empty()) {
3492       BAILOUT("stack not empty at OSR entry point");
3493     }
3494   }
3495 #ifndef PRODUCT
3496   if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count);
3497 #endif
3498 }
3499 
3500 
3501 ValueStack* GraphBuilder::copy_state_before() {
3502   return copy_state_before_with_bci(bci());
3503 }
3504 
3505 ValueStack* GraphBuilder::copy_state_exhandling() {
3506   return copy_state_exhandling_with_bci(bci());
3507 }
3508 
3509 ValueStack* GraphBuilder::copy_state_for_exception() {
3510   return copy_state_for_exception_with_bci(bci());
3511 }
3512 
3513 ValueStack* GraphBuilder::copy_state_before_with_bci(int bci) {
3514   return state()->copy(ValueStack::StateBefore, bci);
3515 }
3516 
3517 ValueStack* GraphBuilder::copy_state_exhandling_with_bci(int bci) {
3518   if (!has_handler()) return NULL;
3519   return state()->copy(ValueStack::StateBefore, bci);
3520 }
3521 
3522 ValueStack* GraphBuilder::copy_state_for_exception_with_bci(int bci) {
3523   ValueStack* s = copy_state_exhandling_with_bci(bci);
3524   if (s == NULL) {
3525     if (_compilation->env()->should_retain_local_variables()) {
3526       s = state()->copy(ValueStack::ExceptionState, bci);
3527     } else {
3528       s = state()->copy(ValueStack::EmptyExceptionState, bci);
3529     }
3530   }
3531   return s;
3532 }
3533 
3534 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
3535   int recur_level = 0;
3536   for (IRScope* s = scope(); s != NULL; s = s->caller()) {
3537     if (s->method() == cur_callee) {
3538       ++recur_level;
3539     }
3540   }
3541   return recur_level;
3542 }
3543 
3544 
3545 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
3546   const char* msg = NULL;
3547 
3548   // clear out any existing inline bailout condition
3549   clear_inline_bailout();
3550 
3551   // exclude methods we don't want to inline
3552   msg = should_not_inline(callee);
3553   if (msg != NULL) {
3554     print_inlining(callee, msg, /*success*/ false);
3555     return false;
3556   }
3557 
3558   // method handle invokes
3559   if (callee->is_method_handle_intrinsic()) {
3560     if (try_method_handle_inline(callee, ignore_return)) {
3561       if (callee->has_reserved_stack_access()) {
3562         compilation()->set_has_reserved_stack_access(true);
3563       }
3564       return true;
3565     }
3566     return false;
3567   }
3568 
3569   // handle intrinsics
3570   if (callee->intrinsic_id() != vmIntrinsics::_none &&
3571       (CheckIntrinsics ? callee->intrinsic_candidate() : true)) {
3572     if (try_inline_intrinsics(callee, ignore_return)) {
3573       print_inlining(callee, "intrinsic");
3574       if (callee->has_reserved_stack_access()) {
3575         compilation()->set_has_reserved_stack_access(true);
3576       }
3577       return true;
3578     }
3579     // try normal inlining
3580   }
3581 
3582   // certain methods cannot be parsed at all
3583   msg = check_can_parse(callee);
3584   if (msg != NULL) {
3585     print_inlining(callee, msg, /*success*/ false);
3586     return false;
3587   }
3588 
3589   // If bytecode not set use the current one.
3590   if (bc == Bytecodes::_illegal) {
3591     bc = code();
3592   }
3593   if (try_inline_full(callee, holder_known, ignore_return, bc, receiver)) {
3594     if (callee->has_reserved_stack_access()) {
3595       compilation()->set_has_reserved_stack_access(true);
3596     }
3597     return true;
3598   }
3599 
3600   // Entire compilation could fail during try_inline_full call.
3601   // In that case printing inlining decision info is useless.
3602   if (!bailed_out())
3603     print_inlining(callee, _inline_bailout_msg, /*success*/ false);
3604 
3605   return false;
3606 }
3607 
3608 
3609 const char* GraphBuilder::check_can_parse(ciMethod* callee) const {
3610   // Certain methods cannot be parsed at all:
3611   if ( callee->is_native())            return "native method";
3612   if ( callee->is_abstract())          return "abstract method";
3613   if (!callee->can_be_compiled())      return "not compilable (disabled)";
3614   if (!callee->can_be_parsed())        return "cannot be parsed";
3615   return NULL;
3616 }
3617 
3618 // negative filter: should callee NOT be inlined?  returns NULL, ok to inline, or rejection msg
3619 const char* GraphBuilder::should_not_inline(ciMethod* callee) const {
3620   if ( compilation()->directive()->should_not_inline(callee)) return "disallowed by CompileCommand";
3621   if ( callee->dont_inline())          return "don't inline by annotation";
3622   return NULL;
3623 }
3624 
3625 void GraphBuilder::build_graph_for_intrinsic(ciMethod* callee, bool ignore_return) {
3626   vmIntrinsics::ID id = callee->intrinsic_id();
3627   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
3628 
3629   // Some intrinsics need special IR nodes.
3630   switch(id) {
3631   case vmIntrinsics::_getReference       : append_unsafe_get_obj(callee, T_OBJECT,  false); return;
3632   case vmIntrinsics::_getBoolean         : append_unsafe_get_obj(callee, T_BOOLEAN, false); return;
3633   case vmIntrinsics::_getByte            : append_unsafe_get_obj(callee, T_BYTE,    false); return;
3634   case vmIntrinsics::_getShort           : append_unsafe_get_obj(callee, T_SHORT,   false); return;
3635   case vmIntrinsics::_getChar            : append_unsafe_get_obj(callee, T_CHAR,    false); return;
3636   case vmIntrinsics::_getInt             : append_unsafe_get_obj(callee, T_INT,     false); return;
3637   case vmIntrinsics::_getLong            : append_unsafe_get_obj(callee, T_LONG,    false); return;
3638   case vmIntrinsics::_getFloat           : append_unsafe_get_obj(callee, T_FLOAT,   false); return;
3639   case vmIntrinsics::_getDouble          : append_unsafe_get_obj(callee, T_DOUBLE,  false); return;
3640   case vmIntrinsics::_putReference       : append_unsafe_put_obj(callee, T_OBJECT,  false); return;
3641   case vmIntrinsics::_putBoolean         : append_unsafe_put_obj(callee, T_BOOLEAN, false); return;
3642   case vmIntrinsics::_putByte            : append_unsafe_put_obj(callee, T_BYTE,    false); return;
3643   case vmIntrinsics::_putShort           : append_unsafe_put_obj(callee, T_SHORT,   false); return;
3644   case vmIntrinsics::_putChar            : append_unsafe_put_obj(callee, T_CHAR,    false); return;
3645   case vmIntrinsics::_putInt             : append_unsafe_put_obj(callee, T_INT,     false); return;
3646   case vmIntrinsics::_putLong            : append_unsafe_put_obj(callee, T_LONG,    false); return;
3647   case vmIntrinsics::_putFloat           : append_unsafe_put_obj(callee, T_FLOAT,   false); return;
3648   case vmIntrinsics::_putDouble          : append_unsafe_put_obj(callee, T_DOUBLE,  false); return;
3649   case vmIntrinsics::_getShortUnaligned  : append_unsafe_get_obj(callee, T_SHORT,   false); return;
3650   case vmIntrinsics::_getCharUnaligned   : append_unsafe_get_obj(callee, T_CHAR,    false); return;
3651   case vmIntrinsics::_getIntUnaligned    : append_unsafe_get_obj(callee, T_INT,     false); return;
3652   case vmIntrinsics::_getLongUnaligned   : append_unsafe_get_obj(callee, T_LONG,    false); return;
3653   case vmIntrinsics::_putShortUnaligned  : append_unsafe_put_obj(callee, T_SHORT,   false); return;
3654   case vmIntrinsics::_putCharUnaligned   : append_unsafe_put_obj(callee, T_CHAR,    false); return;
3655   case vmIntrinsics::_putIntUnaligned    : append_unsafe_put_obj(callee, T_INT,     false); return;
3656   case vmIntrinsics::_putLongUnaligned   : append_unsafe_put_obj(callee, T_LONG,    false); return;
3657   case vmIntrinsics::_getReferenceVolatile  : append_unsafe_get_obj(callee, T_OBJECT,  true); return;
3658   case vmIntrinsics::_getBooleanVolatile : append_unsafe_get_obj(callee, T_BOOLEAN, true); return;
3659   case vmIntrinsics::_getByteVolatile    : append_unsafe_get_obj(callee, T_BYTE,    true); return;
3660   case vmIntrinsics::_getShortVolatile   : append_unsafe_get_obj(callee, T_SHORT,   true); return;
3661   case vmIntrinsics::_getCharVolatile    : append_unsafe_get_obj(callee, T_CHAR,    true); return;
3662   case vmIntrinsics::_getIntVolatile     : append_unsafe_get_obj(callee, T_INT,     true); return;
3663   case vmIntrinsics::_getLongVolatile    : append_unsafe_get_obj(callee, T_LONG,    true); return;
3664   case vmIntrinsics::_getFloatVolatile   : append_unsafe_get_obj(callee, T_FLOAT,   true); return;
3665   case vmIntrinsics::_getDoubleVolatile  : append_unsafe_get_obj(callee, T_DOUBLE,  true); return;
3666   case vmIntrinsics::_putReferenceVolatile : append_unsafe_put_obj(callee, T_OBJECT,  true); return;
3667   case vmIntrinsics::_putBooleanVolatile : append_unsafe_put_obj(callee, T_BOOLEAN, true); return;
3668   case vmIntrinsics::_putByteVolatile    : append_unsafe_put_obj(callee, T_BYTE,    true); return;
3669   case vmIntrinsics::_putShortVolatile   : append_unsafe_put_obj(callee, T_SHORT,   true); return;
3670   case vmIntrinsics::_putCharVolatile    : append_unsafe_put_obj(callee, T_CHAR,    true); return;
3671   case vmIntrinsics::_putIntVolatile     : append_unsafe_put_obj(callee, T_INT,     true); return;
3672   case vmIntrinsics::_putLongVolatile    : append_unsafe_put_obj(callee, T_LONG,    true); return;
3673   case vmIntrinsics::_putFloatVolatile   : append_unsafe_put_obj(callee, T_FLOAT,   true); return;
3674   case vmIntrinsics::_putDoubleVolatile  : append_unsafe_put_obj(callee, T_DOUBLE,  true); return;
3675   case vmIntrinsics::_compareAndSetLong:
3676   case vmIntrinsics::_compareAndSetInt:
3677   case vmIntrinsics::_compareAndSetReference : append_unsafe_CAS(callee); return;
3678   case vmIntrinsics::_getAndAddInt:
3679   case vmIntrinsics::_getAndAddLong      : append_unsafe_get_and_set_obj(callee, true); return;
3680   case vmIntrinsics::_getAndSetInt       :
3681   case vmIntrinsics::_getAndSetLong      :
3682   case vmIntrinsics::_getAndSetReference : append_unsafe_get_and_set_obj(callee, false); return;
3683   case vmIntrinsics::_getCharStringU     : append_char_access(callee, false); return;
3684   case vmIntrinsics::_putCharStringU     : append_char_access(callee, true); return;
3685   default:
3686     break;
3687   }
3688 
3689   // create intrinsic node
3690   const bool has_receiver = !callee->is_static();
3691   ValueType* result_type = as_ValueType(callee->return_type());
3692   ValueStack* state_before = copy_state_for_exception();
3693 
3694   Values* args = state()->pop_arguments(callee->arg_size());
3695 
3696   if (is_profiling()) {
3697     // Don't profile in the special case where the root method
3698     // is the intrinsic
3699     if (callee != method()) {
3700       // Note that we'd collect profile data in this method if we wanted it.
3701       compilation()->set_would_profile(true);
3702       if (profile_calls()) {
3703         Value recv = NULL;
3704         if (has_receiver) {
3705           recv = args->at(0);
3706           null_check(recv);
3707         }
3708         profile_call(callee, recv, NULL, collect_args_for_profiling(args, callee, true), true);
3709       }
3710     }
3711   }
3712 
3713   Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(),
3714                                     args, has_receiver, state_before,
3715                                     vmIntrinsics::preserves_state(id),
3716                                     vmIntrinsics::can_trap(id));
3717   // append instruction & push result
3718   Value value = append_split(result);
3719   if (result_type != voidType && !ignore_return) {
3720     push(result_type, value);
3721   }
3722 
3723   if (callee != method() && profile_return() && result_type->is_object_kind()) {
3724     profile_return_type(result, callee);
3725   }
3726 }
3727 
3728 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee, bool ignore_return) {
3729   // For calling is_intrinsic_available we need to transition to
3730   // the '_thread_in_vm' state because is_intrinsic_available()
3731   // accesses critical VM-internal data.
3732   bool is_available = false;
3733   {
3734     VM_ENTRY_MARK;
3735     methodHandle mh(THREAD, callee->get_Method());
3736     is_available = _compilation->compiler()->is_intrinsic_available(mh, _compilation->directive());
3737   }
3738 
3739   if (!is_available) {
3740     if (!InlineNatives) {
3741       // Return false and also set message that the inlining of
3742       // intrinsics has been disabled in general.
3743       INLINE_BAILOUT("intrinsic method inlining disabled");
3744     } else {
3745       return false;
3746     }
3747   }
3748   build_graph_for_intrinsic(callee, ignore_return);
3749   return true;
3750 }
3751 
3752 
3753 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) {
3754   // Introduce a new callee continuation point - all Ret instructions
3755   // will be replaced with Gotos to this point.
3756   BlockBegin* cont = block_at(next_bci());
3757   assert(cont != NULL, "continuation must exist (BlockListBuilder starts a new block after a jsr");
3758 
3759   // Note: can not assign state to continuation yet, as we have to
3760   // pick up the state from the Ret instructions.
3761 
3762   // Push callee scope
3763   push_scope_for_jsr(cont, jsr_dest_bci);
3764 
3765   // Temporarily set up bytecode stream so we can append instructions
3766   // (only using the bci of this stream)
3767   scope_data()->set_stream(scope_data()->parent()->stream());
3768 
3769   BlockBegin* jsr_start_block = block_at(jsr_dest_bci);
3770   assert(jsr_start_block != NULL, "jsr start block must exist");
3771   assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet");
3772   Goto* goto_sub = new Goto(jsr_start_block, false);
3773   // Must copy state to avoid wrong sharing when parsing bytecodes
3774   assert(jsr_start_block->state() == NULL, "should have fresh jsr starting block");
3775   jsr_start_block->set_state(copy_state_before_with_bci(jsr_dest_bci));
3776   append(goto_sub);
3777   _block->set_end(goto_sub);
3778   _last = _block = jsr_start_block;
3779 
3780   // Clear out bytecode stream
3781   scope_data()->set_stream(NULL);
3782 
3783   scope_data()->add_to_work_list(jsr_start_block);
3784 
3785   // Ready to resume parsing in subroutine
3786   iterate_all_blocks();
3787 
3788   // If we bailed out during parsing, return immediately (this is bad news)
3789   CHECK_BAILOUT_(false);
3790 
3791   // Detect whether the continuation can actually be reached. If not,
3792   // it has not had state set by the join() operations in
3793   // iterate_bytecodes_for_block()/ret() and we should not touch the
3794   // iteration state. The calling activation of
3795   // iterate_bytecodes_for_block will then complete normally.
3796   if (cont->state() != NULL) {
3797     if (!cont->is_set(BlockBegin::was_visited_flag)) {
3798       // add continuation to work list instead of parsing it immediately
3799       scope_data()->parent()->add_to_work_list(cont);
3800     }
3801   }
3802 
3803   assert(jsr_continuation() == cont, "continuation must not have changed");
3804   assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) ||
3805          jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag),
3806          "continuation can only be visited in case of backward branches");
3807   assert(_last && _last->as_BlockEnd(), "block must have end");
3808 
3809   // continuation is in work list, so end iteration of current block
3810   _skip_block = true;
3811   pop_scope_for_jsr();
3812 
3813   return true;
3814 }
3815 
3816 
3817 // Inline the entry of a synchronized method as a monitor enter and
3818 // register the exception handler which releases the monitor if an
3819 // exception is thrown within the callee. Note that the monitor enter
3820 // cannot throw an exception itself, because the receiver is
3821 // guaranteed to be non-null by the explicit null check at the
3822 // beginning of inlining.
3823 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) {
3824   assert(lock != NULL && sync_handler != NULL, "lock or handler missing");
3825 
3826   monitorenter(lock, SynchronizationEntryBCI);
3827   assert(_last->as_MonitorEnter() != NULL, "monitor enter expected");
3828   _last->set_needs_null_check(false);
3829 
3830   sync_handler->set(BlockBegin::exception_entry_flag);
3831   sync_handler->set(BlockBegin::is_on_work_list_flag);
3832 
3833   ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
3834   XHandler* h = new XHandler(desc);
3835   h->set_entry_block(sync_handler);
3836   scope_data()->xhandlers()->append(h);
3837   scope_data()->set_has_handler();
3838 }
3839 
3840 
3841 // If an exception is thrown and not handled within an inlined
3842 // synchronized method, the monitor must be released before the
3843 // exception is rethrown in the outer scope. Generate the appropriate
3844 // instructions here.
3845 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) {
3846   BlockBegin* orig_block = _block;
3847   ValueStack* orig_state = _state;
3848   Instruction* orig_last = _last;
3849   _last = _block = sync_handler;
3850   _state = sync_handler->state()->copy();
3851 
3852   assert(sync_handler != NULL, "handler missing");
3853   assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here");
3854 
3855   assert(lock != NULL || default_handler, "lock or handler missing");
3856 
3857   XHandler* h = scope_data()->xhandlers()->remove_last();
3858   assert(h->entry_block() == sync_handler, "corrupt list of handlers");
3859 
3860   block()->set(BlockBegin::was_visited_flag);
3861   Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI);
3862   assert(exception->is_pinned(), "must be");
3863 
3864   int bci = SynchronizationEntryBCI;
3865   if (compilation()->env()->dtrace_method_probes()) {
3866     // Report exit from inline methods.  We don't have a stream here
3867     // so pass an explicit bci of SynchronizationEntryBCI.
3868     Values* args = new Values(1);
3869     args->push(append_with_bci(new Constant(new MethodConstant(method())), bci));
3870     append_with_bci(new RuntimeCall(voidType, "dtrace_method_exit", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), args), bci);
3871   }
3872 
3873   if (lock) {
3874     assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing");
3875     if (!lock->is_linked()) {
3876       lock = append_with_bci(lock, bci);
3877     }
3878 
3879     // exit the monitor in the context of the synchronized method
3880     monitorexit(lock, bci);
3881 
3882     // exit the context of the synchronized method
3883     if (!default_handler) {
3884       pop_scope();
3885       bci = _state->caller_state()->bci();
3886       _state = _state->caller_state()->copy_for_parsing();
3887     }
3888   }
3889 
3890   // perform the throw as if at the the call site
3891   apush(exception);
3892   throw_op(bci);
3893 
3894   BlockEnd* end = last()->as_BlockEnd();
3895   block()->set_end(end);
3896 
3897   _block = orig_block;
3898   _state = orig_state;
3899   _last = orig_last;
3900 }
3901 
3902 
3903 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known, bool ignore_return, Bytecodes::Code bc, Value receiver) {
3904   assert(!callee->is_native(), "callee must not be native");
3905   if (CompilationPolicy::policy()->should_not_inline(compilation()->env(), callee)) {
3906     INLINE_BAILOUT("inlining prohibited by policy");
3907   }
3908   // first perform tests of things it's not possible to inline
3909   if (callee->has_exception_handlers() &&
3910       !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers");
3911   if (callee->is_synchronized() &&
3912       !InlineSynchronizedMethods         ) INLINE_BAILOUT("callee is synchronized");
3913   if (!callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet");
3914   if (!callee->has_balanced_monitors())    INLINE_BAILOUT("callee's monitors do not match");
3915 
3916   // Proper inlining of methods with jsrs requires a little more work.
3917   if (callee->has_jsrs()                 ) INLINE_BAILOUT("jsrs not handled properly by inliner yet");
3918 
3919   // When SSE2 is used on intel, then no special handling is needed
3920   // for strictfp because the enum-constant is fixed at compile time,
3921   // the check for UseSSE2 is needed here
3922   if (strict_fp_requires_explicit_rounding && UseSSE < 2 && method()->is_strict() != callee->is_strict()) {
3923     INLINE_BAILOUT("caller and callee have different strict fp requirements");
3924   }
3925 
3926   if (is_profiling() && !callee->ensure_method_data()) {
3927     INLINE_BAILOUT("mdo allocation failed");
3928   }
3929 
3930   // now perform tests that are based on flag settings
3931   bool inlinee_by_directive = compilation()->directive()->should_inline(callee);
3932   if (callee->force_inline() || inlinee_by_directive) {
3933     if (inline_level() > MaxForceInlineLevel                    ) INLINE_BAILOUT("MaxForceInlineLevel");
3934     if (recursive_inline_level(callee) > MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep");
3935 
3936     const char* msg = "";
3937     if (callee->force_inline())  msg = "force inline by annotation";
3938     if (inlinee_by_directive)    msg = "force inline by CompileCommand";
3939     print_inlining(callee, msg);
3940   } else {
3941     // use heuristic controls on inlining
3942     if (inline_level() > MaxInlineLevel                         ) INLINE_BAILOUT("inlining too deep");
3943     if (recursive_inline_level(callee) > MaxRecursiveInlineLevel) INLINE_BAILOUT("recursive inlining too deep");
3944     if (callee->code_size_for_inlining() > max_inline_size()    ) INLINE_BAILOUT("callee is too large");
3945 
3946     // don't inline throwable methods unless the inlining tree is rooted in a throwable class
3947     if (callee->name() == ciSymbol::object_initializer_name() &&
3948         callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
3949       // Throwable constructor call
3950       IRScope* top = scope();
3951       while (top->caller() != NULL) {
3952         top = top->caller();
3953       }
3954       if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
3955         INLINE_BAILOUT("don't inline Throwable constructors");
3956       }
3957     }
3958 
3959     if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
3960       INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
3961     }
3962     // printing
3963     print_inlining(callee);
3964   }
3965 
3966   // NOTE: Bailouts from this point on, which occur at the
3967   // GraphBuilder level, do not cause bailout just of the inlining but
3968   // in fact of the entire compilation.
3969 
3970   BlockBegin* orig_block = block();
3971 
3972   const bool is_invokedynamic = bc == Bytecodes::_invokedynamic;
3973   const bool has_receiver = (bc != Bytecodes::_invokestatic && !is_invokedynamic);
3974 
3975   const int args_base = state()->stack_size() - callee->arg_size();
3976   assert(args_base >= 0, "stack underflow during inlining");
3977 
3978   // Insert null check if necessary
3979   Value recv = NULL;
3980   if (has_receiver) {
3981     // note: null check must happen even if first instruction of callee does
3982     //       an implicit null check since the callee is in a different scope
3983     //       and we must make sure exception handling does the right thing
3984     assert(!callee->is_static(), "callee must not be static");
3985     assert(callee->arg_size() > 0, "must have at least a receiver");
3986     recv = state()->stack_at(args_base);
3987     null_check(recv);
3988   }
3989 
3990   if (is_profiling()) {
3991     // Note that we'd collect profile data in this method if we wanted it.
3992     // this may be redundant here...
3993     compilation()->set_would_profile(true);
3994 
3995     if (profile_calls()) {
3996       int start = 0;
3997       Values* obj_args = args_list_for_profiling(callee, start, has_receiver);
3998       if (obj_args != NULL) {
3999         int s = obj_args->max_length();
4000         // if called through method handle invoke, some arguments may have been popped
4001         for (int i = args_base+start, j = 0; j < obj_args->max_length() && i < state()->stack_size(); ) {
4002           Value v = state()->stack_at_inc(i);
4003           if (v->type()->is_object_kind()) {
4004             obj_args->push(v);
4005             j++;
4006           }
4007         }
4008         check_args_for_profiling(obj_args, s);
4009       }
4010       profile_call(callee, recv, holder_known ? callee->holder() : NULL, obj_args, true);
4011     }
4012   }
4013 
4014   // Introduce a new callee continuation point - if the callee has
4015   // more than one return instruction or the return does not allow
4016   // fall-through of control flow, all return instructions of the
4017   // callee will need to be replaced by Goto's pointing to this
4018   // continuation point.
4019   BlockBegin* cont = block_at(next_bci());
4020   bool continuation_existed = true;
4021   if (cont == NULL) {
4022     cont = new BlockBegin(next_bci());
4023     // low number so that continuation gets parsed as early as possible
4024     cont->set_depth_first_number(0);
4025     if (PrintInitialBlockList) {
4026       tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d",
4027                     cont->block_id(), cont->bci(), bci());
4028     }
4029     continuation_existed = false;
4030   }
4031   // Record number of predecessors of continuation block before
4032   // inlining, to detect if inlined method has edges to its
4033   // continuation after inlining.
4034   int continuation_preds = cont->number_of_preds();
4035 
4036   // Push callee scope
4037   push_scope(callee, cont);
4038 
4039   // the BlockListBuilder for the callee could have bailed out
4040   if (bailed_out())
4041       return false;
4042 
4043   // Temporarily set up bytecode stream so we can append instructions
4044   // (only using the bci of this stream)
4045   scope_data()->set_stream(scope_data()->parent()->stream());
4046 
4047   // Pass parameters into callee state: add assignments
4048   // note: this will also ensure that all arguments are computed before being passed
4049   ValueStack* callee_state = state();
4050   ValueStack* caller_state = state()->caller_state();
4051   for (int i = args_base; i < caller_state->stack_size(); ) {
4052     const int arg_no = i - args_base;
4053     Value arg = caller_state->stack_at_inc(i);
4054     store_local(callee_state, arg, arg_no);
4055   }
4056 
4057   // Remove args from stack.
4058   // Note that we preserve locals state in case we can use it later
4059   // (see use of pop_scope() below)
4060   caller_state->truncate_stack(args_base);
4061   assert(callee_state->stack_size() == 0, "callee stack must be empty");
4062 
4063   Value lock = NULL;
4064   BlockBegin* sync_handler = NULL;
4065 
4066   // Inline the locking of the receiver if the callee is synchronized
4067   if (callee->is_synchronized()) {
4068     lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror())))
4069                                : state()->local_at(0);
4070     sync_handler = new BlockBegin(SynchronizationEntryBCI);
4071     inline_sync_entry(lock, sync_handler);
4072   }
4073 
4074   if (compilation()->env()->dtrace_method_probes()) {
4075     Values* args = new Values(1);
4076     args->push(append(new Constant(new MethodConstant(method()))));
4077     append(new RuntimeCall(voidType, "dtrace_method_entry", CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), args));
4078   }
4079 
4080   if (profile_inlined_calls()) {
4081     profile_invocation(callee, copy_state_before_with_bci(SynchronizationEntryBCI));
4082   }
4083 
4084   BlockBegin* callee_start_block = block_at(0);
4085   if (callee_start_block != NULL) {
4086     assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header");
4087     Goto* goto_callee = new Goto(callee_start_block, false);
4088     // The state for this goto is in the scope of the callee, so use
4089     // the entry bci for the callee instead of the call site bci.
4090     append_with_bci(goto_callee, 0);
4091     _block->set_end(goto_callee);
4092     callee_start_block->merge(callee_state);
4093 
4094     _last = _block = callee_start_block;
4095 
4096     scope_data()->add_to_work_list(callee_start_block);
4097   }
4098 
4099   // Clear out bytecode stream
4100   scope_data()->set_stream(NULL);
4101   scope_data()->set_ignore_return(ignore_return);
4102 
4103   CompileLog* log = compilation()->log();
4104   if (log != NULL) log->head("parse method='%d'", log->identify(callee));
4105 
4106   // Ready to resume parsing in callee (either in the same block we
4107   // were in before or in the callee's start block)
4108   iterate_all_blocks(callee_start_block == NULL);
4109 
4110   if (log != NULL) log->done("parse");
4111 
4112   // If we bailed out during parsing, return immediately (this is bad news)
4113   if (bailed_out())
4114       return false;
4115 
4116   // iterate_all_blocks theoretically traverses in random order; in
4117   // practice, we have only traversed the continuation if we are
4118   // inlining into a subroutine
4119   assert(continuation_existed ||
4120          !continuation()->is_set(BlockBegin::was_visited_flag),
4121          "continuation should not have been parsed yet if we created it");
4122 
4123   // At this point we are almost ready to return and resume parsing of
4124   // the caller back in the GraphBuilder. The only thing we want to do
4125   // first is an optimization: during parsing of the callee we
4126   // generated at least one Goto to the continuation block. If we
4127   // generated exactly one, and if the inlined method spanned exactly
4128   // one block (and we didn't have to Goto its entry), then we snip
4129   // off the Goto to the continuation, allowing control to fall
4130   // through back into the caller block and effectively performing
4131   // block merging. This allows load elimination and CSE to take place
4132   // across multiple callee scopes if they are relatively simple, and
4133   // is currently essential to making inlining profitable.
4134   if (num_returns() == 1
4135       && block() == orig_block
4136       && block() == inline_cleanup_block()) {
4137     _last  = inline_cleanup_return_prev();
4138     _state = inline_cleanup_state();
4139   } else if (continuation_preds == cont->number_of_preds()) {
4140     // Inlining caused that the instructions after the invoke in the
4141     // caller are not reachable any more. So skip filling this block
4142     // with instructions!
4143     assert(cont == continuation(), "");
4144     assert(_last && _last->as_BlockEnd(), "");
4145     _skip_block = true;
4146   } else {
4147     // Resume parsing in continuation block unless it was already parsed.
4148     // Note that if we don't change _last here, iteration in
4149     // iterate_bytecodes_for_block will stop when we return.
4150     if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
4151       // add continuation to work list instead of parsing it immediately
4152       assert(_last && _last->as_BlockEnd(), "");
4153       scope_data()->parent()->add_to_work_list(continuation());
4154       _skip_block = true;
4155     }
4156   }
4157 
4158   // Fill the exception handler for synchronized methods with instructions
4159   if (callee->is_synchronized() && sync_handler->state() != NULL) {
4160     fill_sync_handler(lock, sync_handler);
4161   } else {
4162     pop_scope();
4163   }
4164 
4165   compilation()->notice_inlined_method(callee);
4166 
4167   return true;
4168 }
4169 
4170 
4171 bool GraphBuilder::try_method_handle_inline(ciMethod* callee, bool ignore_return) {
4172   ValueStack* state_before = copy_state_before();
4173   vmIntrinsics::ID iid = callee->intrinsic_id();
4174   switch (iid) {
4175   case vmIntrinsics::_invokeBasic:
4176     {
4177       // get MethodHandle receiver
4178       const int args_base = state()->stack_size() - callee->arg_size();
4179       ValueType* type = state()->stack_at(args_base)->type();
4180       if (type->is_constant()) {
4181         ciMethod* target = type->as_ObjectType()->constant_value()->as_method_handle()->get_vmtarget();
4182         // We don't do CHA here so only inline static and statically bindable methods.
4183         if (target->is_static() || target->can_be_statically_bound()) {
4184           if (ciMethod::is_consistent_info(callee, target)) {
4185             Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4186             ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4187             if (try_inline(target, /*holder_known*/ true, ignore_return, bc)) {
4188               return true;
4189             }
4190           } else {
4191             print_inlining(target, "signatures mismatch", /*success*/ false);
4192           }
4193         } else {
4194           print_inlining(target, "not static or statically bindable", /*success*/ false);
4195         }
4196       } else {
4197         print_inlining(callee, "receiver not constant", /*success*/ false);
4198       }
4199     }
4200     break;
4201 
4202   case vmIntrinsics::_linkToVirtual:
4203   case vmIntrinsics::_linkToStatic:
4204   case vmIntrinsics::_linkToSpecial:
4205   case vmIntrinsics::_linkToInterface:
4206     {
4207       // pop MemberName argument
4208       const int args_base = state()->stack_size() - callee->arg_size();
4209       ValueType* type = apop()->type();
4210       if (type->is_constant()) {
4211         ciMethod* target = type->as_ObjectType()->constant_value()->as_member_name()->get_vmtarget();
4212         ignore_return = ignore_return || (callee->return_type()->is_void() && !target->return_type()->is_void());
4213         // If the target is another method handle invoke, try to recursively get
4214         // a better target.
4215         if (target->is_method_handle_intrinsic()) {
4216           if (try_method_handle_inline(target, ignore_return)) {
4217             return true;
4218           }
4219         } else if (!ciMethod::is_consistent_info(callee, target)) {
4220           print_inlining(target, "signatures mismatch", /*success*/ false);
4221         } else {
4222           ciSignature* signature = target->signature();
4223           const int receiver_skip = target->is_static() ? 0 : 1;
4224           // Cast receiver to its type.
4225           if (!target->is_static()) {
4226             ciKlass* tk = signature->accessing_klass();
4227             Value obj = state()->stack_at(args_base);
4228             if (obj->exact_type() == NULL &&
4229                 obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4230               TypeCast* c = new TypeCast(tk, obj, state_before);
4231               append(c);
4232               state()->stack_at_put(args_base, c);
4233             }
4234           }
4235           // Cast reference arguments to its type.
4236           for (int i = 0, j = 0; i < signature->count(); i++) {
4237             ciType* t = signature->type_at(i);
4238             if (t->is_klass()) {
4239               ciKlass* tk = t->as_klass();
4240               Value obj = state()->stack_at(args_base + receiver_skip + j);
4241               if (obj->exact_type() == NULL &&
4242                   obj->declared_type() != tk && tk != compilation()->env()->Object_klass()) {
4243                 TypeCast* c = new TypeCast(t, obj, state_before);
4244                 append(c);
4245                 state()->stack_at_put(args_base + receiver_skip + j, c);
4246               }
4247             }
4248             j += t->size();  // long and double take two slots
4249           }
4250           // We don't do CHA here so only inline static and statically bindable methods.
4251           if (target->is_static() || target->can_be_statically_bound()) {
4252             Bytecodes::Code bc = target->is_static() ? Bytecodes::_invokestatic : Bytecodes::_invokevirtual;
4253             if (try_inline(target, /*holder_known*/ true, ignore_return, bc)) {
4254               return true;
4255             }
4256           } else {
4257             print_inlining(target, "not static or statically bindable", /*success*/ false);
4258           }
4259         }
4260       } else {
4261         print_inlining(callee, "MemberName not constant", /*success*/ false);
4262       }
4263     }
4264     break;
4265 
4266   default:
4267     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
4268     break;
4269   }
4270   set_state(state_before->copy_for_parsing());
4271   return false;
4272 }
4273 
4274 
4275 void GraphBuilder::inline_bailout(const char* msg) {
4276   assert(msg != NULL, "inline bailout msg must exist");
4277   _inline_bailout_msg = msg;
4278 }
4279 
4280 
4281 void GraphBuilder::clear_inline_bailout() {
4282   _inline_bailout_msg = NULL;
4283 }
4284 
4285 
4286 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) {
4287   ScopeData* data = new ScopeData(NULL);
4288   data->set_scope(scope);
4289   data->set_bci2block(bci2block);
4290   _scope_data = data;
4291   _block = start;
4292 }
4293 
4294 
4295 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) {
4296   IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false);
4297   scope()->add_callee(callee_scope);
4298 
4299   BlockListBuilder blb(compilation(), callee_scope, -1);
4300   CHECK_BAILOUT();
4301 
4302   if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) {
4303     // this scope can be inlined directly into the caller so remove
4304     // the block at bci 0.
4305     blb.bci2block()->at_put(0, NULL);
4306   }
4307 
4308   set_state(new ValueStack(callee_scope, state()->copy(ValueStack::CallerState, bci())));
4309 
4310   ScopeData* data = new ScopeData(scope_data());
4311   data->set_scope(callee_scope);
4312   data->set_bci2block(blb.bci2block());
4313   data->set_continuation(continuation);
4314   _scope_data = data;
4315 }
4316 
4317 
4318 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) {
4319   ScopeData* data = new ScopeData(scope_data());
4320   data->set_parsing_jsr();
4321   data->set_jsr_entry_bci(jsr_dest_bci);
4322   data->set_jsr_return_address_local(-1);
4323   // Must clone bci2block list as we will be mutating it in order to
4324   // properly clone all blocks in jsr region as well as exception
4325   // handlers containing rets
4326   BlockList* new_bci2block = new BlockList(bci2block()->length());
4327   new_bci2block->appendAll(bci2block());
4328   data->set_bci2block(new_bci2block);
4329   data->set_scope(scope());
4330   data->setup_jsr_xhandlers();
4331   data->set_continuation(continuation());
4332   data->set_jsr_continuation(jsr_continuation);
4333   _scope_data = data;
4334 }
4335 
4336 
4337 void GraphBuilder::pop_scope() {
4338   int number_of_locks = scope()->number_of_locks();
4339   _scope_data = scope_data()->parent();
4340   // accumulate minimum number of monitor slots to be reserved
4341   scope()->set_min_number_of_locks(number_of_locks);
4342 }
4343 
4344 
4345 void GraphBuilder::pop_scope_for_jsr() {
4346   _scope_data = scope_data()->parent();
4347 }
4348 
4349 void GraphBuilder::append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile) {
4350   Values* args = state()->pop_arguments(callee->arg_size());
4351   null_check(args->at(0));
4352   Instruction* offset = args->at(2);
4353 #ifndef _LP64
4354   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4355 #endif
4356   Instruction* op = append(new UnsafeGetObject(t, args->at(1), offset, is_volatile));
4357   push(op->type(), op);
4358   compilation()->set_has_unsafe_access(true);
4359 }
4360 
4361 
4362 void GraphBuilder::append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile) {
4363   Values* args = state()->pop_arguments(callee->arg_size());
4364   null_check(args->at(0));
4365   Instruction* offset = args->at(2);
4366 #ifndef _LP64
4367   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4368 #endif
4369   Value val = args->at(3);
4370   if (t == T_BOOLEAN) {
4371     Value mask = append(new Constant(new IntConstant(1)));
4372     val = append(new LogicOp(Bytecodes::_iand, val, mask));
4373   }
4374   Instruction* op = append(new UnsafePutObject(t, args->at(1), offset, val, is_volatile));
4375   compilation()->set_has_unsafe_access(true);
4376   kill_all();
4377 }
4378 
4379 
4380 void GraphBuilder::append_unsafe_get_raw(ciMethod* callee, BasicType t) {
4381   Values* args = state()->pop_arguments(callee->arg_size());
4382   null_check(args->at(0));
4383   Instruction* op = append(new UnsafeGetRaw(t, args->at(1), false));
4384   push(op->type(), op);
4385   compilation()->set_has_unsafe_access(true);
4386 }
4387 
4388 
4389 void GraphBuilder::append_unsafe_put_raw(ciMethod* callee, BasicType t) {
4390   Values* args = state()->pop_arguments(callee->arg_size());
4391   null_check(args->at(0));
4392   Instruction* op = append(new UnsafePutRaw(t, args->at(1), args->at(2)));
4393   compilation()->set_has_unsafe_access(true);
4394 }
4395 
4396 
4397 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
4398   ValueStack* state_before = copy_state_for_exception();
4399   ValueType* result_type = as_ValueType(callee->return_type());
4400   assert(result_type->is_int(), "int result");
4401   Values* args = state()->pop_arguments(callee->arg_size());
4402 
4403   // Pop off some args to specially handle, then push back
4404   Value newval = args->pop();
4405   Value cmpval = args->pop();
4406   Value offset = args->pop();
4407   Value src = args->pop();
4408   Value unsafe_obj = args->pop();
4409 
4410   // Separately handle the unsafe arg. It is not needed for code
4411   // generation, but must be null checked
4412   null_check(unsafe_obj);
4413 
4414 #ifndef _LP64
4415   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4416 #endif
4417 
4418   args->push(src);
4419   args->push(offset);
4420   args->push(cmpval);
4421   args->push(newval);
4422 
4423   // An unsafe CAS can alias with other field accesses, but we don't
4424   // know which ones so mark the state as no preserved.  This will
4425   // cause CSE to invalidate memory across it.
4426   bool preserves_state = false;
4427   Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, state_before, preserves_state);
4428   append_split(result);
4429   push(result_type, result);
4430   compilation()->set_has_unsafe_access(true);
4431 }
4432 
4433 void GraphBuilder::append_char_access(ciMethod* callee, bool is_store) {
4434   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
4435   // correctly requires matched array shapes.
4436   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
4437           "sanity: byte[] and char[] bases agree");
4438   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
4439           "sanity: byte[] and char[] scales agree");
4440 
4441   ValueStack* state_before = copy_state_indexed_access();
4442   compilation()->set_has_access_indexed(true);
4443   Values* args = state()->pop_arguments(callee->arg_size());
4444   Value array = args->at(0);
4445   Value index = args->at(1);
4446   if (is_store) {
4447     Value value = args->at(2);
4448     Instruction* store = append(new StoreIndexed(array, index, NULL, T_CHAR, value, state_before, false, true));
4449     store->set_flag(Instruction::NeedsRangeCheckFlag, false);
4450     _memory->store_value(value);
4451   } else {
4452     Instruction* load = append(new LoadIndexed(array, index, NULL, T_CHAR, state_before, true));
4453     load->set_flag(Instruction::NeedsRangeCheckFlag, false);
4454     push(load->type(), load);
4455   }
4456 }
4457 
4458 static void post_inlining_event(EventCompilerInlining* event,
4459                                 int compile_id,
4460                                 const char* msg,
4461                                 bool success,
4462                                 int bci,
4463                                 ciMethod* caller,
4464                                 ciMethod* callee) {
4465   assert(caller != NULL, "invariant");
4466   assert(callee != NULL, "invariant");
4467   assert(event != NULL, "invariant");
4468   assert(event->should_commit(), "invariant");
4469   JfrStructCalleeMethod callee_struct;
4470   callee_struct.set_type(callee->holder()->name()->as_utf8());
4471   callee_struct.set_name(callee->name()->as_utf8());
4472   callee_struct.set_descriptor(callee->signature()->as_symbol()->as_utf8());
4473   event->set_compileId(compile_id);
4474   event->set_message(msg);
4475   event->set_succeeded(success);
4476   event->set_bci(bci);
4477   event->set_caller(caller->get_Method());
4478   event->set_callee(callee_struct);
4479   event->commit();
4480 }
4481 
4482 void GraphBuilder::print_inlining(ciMethod* callee, const char* msg, bool success) {
4483   CompileLog* log = compilation()->log();
4484   if (log != NULL) {
4485     if (success) {
4486       if (msg != NULL)
4487         log->inline_success(msg);
4488       else
4489         log->inline_success("receiver is statically known");
4490     } else {
4491       if (msg != NULL)
4492         log->inline_fail(msg);
4493       else
4494         log->inline_fail("reason unknown");
4495     }
4496   }
4497   EventCompilerInlining event;
4498   if (event.should_commit()) {
4499     post_inlining_event(&event, compilation()->env()->task()->compile_id(), msg, success, bci(), method(), callee);
4500   }
4501 
4502   CompileTask::print_inlining_ul(callee, scope()->level(), bci(), msg);
4503 
4504   if (!compilation()->directive()->PrintInliningOption) {
4505     return;
4506   }
4507   CompileTask::print_inlining_tty(callee, scope()->level(), bci(), msg);
4508   if (success && CIPrintMethodCodes) {
4509     callee->print_codes();
4510   }
4511 }
4512 
4513 void GraphBuilder::append_unsafe_get_and_set_obj(ciMethod* callee, bool is_add) {
4514   Values* args = state()->pop_arguments(callee->arg_size());
4515   BasicType t = callee->return_type()->basic_type();
4516   null_check(args->at(0));
4517   Instruction* offset = args->at(2);
4518 #ifndef _LP64
4519   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
4520 #endif
4521   Instruction* op = append(new UnsafeGetAndSetObject(t, args->at(1), offset, args->at(3), is_add));
4522   compilation()->set_has_unsafe_access(true);
4523   kill_all();
4524   push(op->type(), op);
4525 }
4526 
4527 #ifndef PRODUCT
4528 void GraphBuilder::print_stats() {
4529   vmap()->print();
4530 }
4531 #endif // PRODUCT
4532 
4533 void GraphBuilder::profile_call(ciMethod* callee, Value recv, ciKlass* known_holder, Values* obj_args, bool inlined) {
4534   assert(known_holder == NULL || (known_holder->is_instance_klass() &&
4535                                   (!known_holder->is_interface() ||
4536                                    ((ciInstanceKlass*)known_holder)->has_nonstatic_concrete_methods())), "should be non-static concrete method");
4537   if (known_holder != NULL) {
4538     if (known_holder->exact_klass() == NULL) {
4539       known_holder = compilation()->cha_exact_type(known_holder);
4540     }
4541   }
4542 
4543   append(new ProfileCall(method(), bci(), callee, recv, known_holder, obj_args, inlined));
4544 }
4545 
4546 void GraphBuilder::profile_return_type(Value ret, ciMethod* callee, ciMethod* m, int invoke_bci) {
4547   assert((m == NULL) == (invoke_bci < 0), "invalid method and invalid bci together");
4548   if (m == NULL) {
4549     m = method();
4550   }
4551   if (invoke_bci < 0) {
4552     invoke_bci = bci();
4553   }
4554   ciMethodData* md = m->method_data_or_null();
4555   ciProfileData* data = md->bci_to_data(invoke_bci);
4556   if (data != NULL && (data->is_CallTypeData() || data->is_VirtualCallTypeData())) {
4557     bool has_return = data->is_CallTypeData() ? ((ciCallTypeData*)data)->has_return() : ((ciVirtualCallTypeData*)data)->has_return();
4558     if (has_return) {
4559       append(new ProfileReturnType(m , invoke_bci, callee, ret));
4560     }
4561   }
4562 }
4563 
4564 void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) {
4565   append(new ProfileInvoke(callee, state));
4566 }
--- EOF ---