1 /* 2 * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "c1/c1_IR.hpp" 27 #include "c1/c1_Instruction.hpp" 28 #include "c1/c1_InstructionPrinter.hpp" 29 #include "c1/c1_ValueStack.hpp" 30 #include "ci/ciObjArrayKlass.hpp" 31 #include "ci/ciTypeArrayKlass.hpp" 32 #include "ci/ciValueArrayKlass.hpp" 33 #include "ci/ciValueKlass.hpp" 34 35 36 // Implementation of Instruction 37 38 39 int Instruction::dominator_depth() { 40 int result = -1; 41 if (block()) { 42 result = block()->dominator_depth(); 43 } 44 assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1"); 45 return result; 46 } 47 48 Instruction::Condition Instruction::mirror(Condition cond) { 49 switch (cond) { 50 case eql: return eql; 51 case neq: return neq; 52 case lss: return gtr; 53 case leq: return geq; 54 case gtr: return lss; 55 case geq: return leq; 56 case aeq: return beq; 57 case beq: return aeq; 58 } 59 ShouldNotReachHere(); 60 return eql; 61 } 62 63 64 Instruction::Condition Instruction::negate(Condition cond) { 65 switch (cond) { 66 case eql: return neq; 67 case neq: return eql; 68 case lss: return geq; 69 case leq: return gtr; 70 case gtr: return leq; 71 case geq: return lss; 72 case aeq: assert(false, "Above equal cannot be negated"); 73 case beq: assert(false, "Below equal cannot be negated"); 74 } 75 ShouldNotReachHere(); 76 return eql; 77 } 78 79 void Instruction::update_exception_state(ValueStack* state) { 80 if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) { 81 assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind"); 82 _exception_state = state; 83 } else { 84 _exception_state = NULL; 85 } 86 } 87 88 // Prev without need to have BlockBegin 89 Instruction* Instruction::prev() { 90 Instruction* p = NULL; 91 Instruction* q = block(); 92 while (q != this) { 93 assert(q != NULL, "this is not in the block's instruction list"); 94 p = q; q = q->next(); 95 } 96 return p; 97 } 98 99 100 void Instruction::state_values_do(ValueVisitor* f) { 101 if (state_before() != NULL) { 102 state_before()->values_do(f); 103 } 104 if (exception_state() != NULL){ 105 exception_state()->values_do(f); 106 } 107 } 108 109 ciType* Instruction::exact_type() const { 110 ciType* t = declared_type(); 111 if (t != NULL && t->is_klass()) { 112 return t->as_klass()->exact_klass(); 113 } 114 return NULL; 115 } 116 117 118 // FIXME -- this is used by ValueStack::merge_types only. We should remove this function 119 // and use a better way for handling phi nodes. 120 bool Instruction::is_flattened_array() const { 121 if (ValueArrayFlatten) { 122 ciType* type = declared_type(); 123 if (type != NULL && type->is_value_array_klass()) { 124 ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass(); 125 assert(element_klass->is_loaded(), "ciValueKlasses are always loaded"); 126 if (element_klass->flatten_array()) { 127 return true; 128 } 129 } 130 } 131 132 return false; 133 } 134 135 bool Instruction::is_loaded_flattened_array() const { 136 if (ValueArrayFlatten) { 137 ciType* type = declared_type(); 138 if (type != NULL && type->is_value_array_klass()) { 139 ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass(); 140 assert(element_klass->is_loaded(), "ciValueKlasses are always loaded"); 141 if (element_klass->flatten_array()) { 142 return true; 143 } 144 } 145 } 146 147 return false; 148 } 149 150 bool Instruction::maybe_flattened_array() { 151 if (ValueArrayFlatten) { 152 ciType* type = declared_type(); 153 if (type != NULL) { 154 if (type->is_value_array_klass()) { 155 ciValueKlass* element_klass = type->as_value_array_klass()->element_klass()->as_value_klass(); 156 assert(element_klass->is_loaded(), "ciValueKlasses are always loaded"); 157 if (element_klass->flatten_array()) { 158 return true; 159 } 160 } else if (type->is_obj_array_klass()) { 161 ciKlass* element_klass = type->as_obj_array_klass()->element_klass(); 162 if (!element_klass->is_loaded() || element_klass->is_java_lang_Object() || element_klass->is_interface()) { 163 // Array covariance: 164 // (ValueType[] <: Object[]) 165 // (ValueType[] <: <any interface>[]) 166 // We will add a runtime check for flat-ness. 167 return true; 168 } 169 } else if (type->is_klass() && type->as_klass()->is_java_lang_Object()) { 170 // This can happen as a parameter to System.arraycopy() 171 return true; 172 } 173 } else if (as_Phi() != NULL) { 174 // Type info gets lost during Phi merging, but we might be storing into a 175 // flattened array, so we should do a runtime check. 176 return true; 177 } 178 } 179 180 return false; 181 } 182 183 #ifndef PRODUCT 184 void Instruction::check_state(ValueStack* state) { 185 if (state != NULL) { 186 state->verify(); 187 } 188 } 189 190 191 void Instruction::print() { 192 InstructionPrinter ip; 193 print(ip); 194 } 195 196 197 void Instruction::print_line() { 198 InstructionPrinter ip; 199 ip.print_line(this); 200 } 201 202 203 void Instruction::print(InstructionPrinter& ip) { 204 ip.print_head(); 205 ip.print_line(this); 206 tty->cr(); 207 } 208 #endif // PRODUCT 209 210 211 // perform constant and interval tests on index value 212 bool AccessIndexed::compute_needs_range_check() { 213 if (length()) { 214 Constant* clength = length()->as_Constant(); 215 Constant* cindex = index()->as_Constant(); 216 if (clength && cindex) { 217 IntConstant* l = clength->type()->as_IntConstant(); 218 IntConstant* i = cindex->type()->as_IntConstant(); 219 if (l && i && i->value() < l->value() && i->value() >= 0) { 220 return false; 221 } 222 } 223 } 224 225 if (!this->check_flag(NeedsRangeCheckFlag)) { 226 return false; 227 } 228 229 return true; 230 } 231 232 233 ciType* Constant::exact_type() const { 234 if (type()->is_object() && type()->as_ObjectType()->is_loaded()) { 235 return type()->as_ObjectType()->exact_type(); 236 } 237 return NULL; 238 } 239 240 ciType* LoadIndexed::exact_type() const { 241 ciType* array_type = array()->exact_type(); 242 if (array_type != NULL) { 243 assert(array_type->is_array_klass(), "what else?"); 244 ciArrayKlass* ak = (ciArrayKlass*)array_type; 245 246 if (ak->element_type()->is_instance_klass()) { 247 ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type(); 248 if (ik->is_loaded() && ik->is_final()) { 249 return ik; 250 } 251 } 252 } 253 return Instruction::exact_type(); 254 } 255 256 257 ciType* LoadIndexed::declared_type() const { 258 ciType* array_type = array()->declared_type(); 259 if (array_type == NULL || !array_type->is_loaded()) { 260 return NULL; 261 } 262 assert(array_type->is_array_klass(), "what else?"); 263 ciArrayKlass* ak = (ciArrayKlass*)array_type; 264 return ak->element_type(); 265 } 266 267 bool StoreIndexed::is_exact_flattened_array_store() const { 268 if (array()->is_loaded_flattened_array() && value()->as_Constant() == NULL) { 269 ciKlass* element_klass = array()->declared_type()->as_value_array_klass()->element_klass(); 270 ciKlass* actual_klass = value()->declared_type()->as_klass(); 271 if (element_klass == actual_klass) { 272 return true; 273 } 274 } 275 return false; 276 } 277 278 ciType* LoadField::declared_type() const { 279 return field()->type(); 280 } 281 282 283 ciType* NewTypeArray::exact_type() const { 284 return ciTypeArrayKlass::make(elt_type()); 285 } 286 287 ciType* NewObjectArray::exact_type() const { 288 ciKlass* element_klass = klass(); 289 if (element_klass->is_valuetype()) { 290 return ciValueArrayKlass::make(element_klass); 291 } else { 292 return ciObjArrayKlass::make(element_klass); 293 } 294 } 295 296 ciType* NewMultiArray::exact_type() const { 297 return _klass; 298 } 299 300 ciType* NewArray::declared_type() const { 301 return exact_type(); 302 } 303 304 ciType* NewInstance::exact_type() const { 305 return klass(); 306 } 307 308 ciType* NewInstance::declared_type() const { 309 return exact_type(); 310 } 311 312 Value NewValueTypeInstance::depends_on() { 313 if (_depends_on != this) { 314 if (_depends_on->as_NewValueTypeInstance() != NULL) { 315 return _depends_on->as_NewValueTypeInstance()->depends_on(); 316 } 317 } 318 return _depends_on; 319 } 320 321 ciType* NewValueTypeInstance::exact_type() const { 322 return klass(); 323 } 324 325 ciType* NewValueTypeInstance::declared_type() const { 326 return exact_type(); 327 } 328 329 ciType* CheckCast::declared_type() const { 330 return klass(); 331 } 332 333 // Implementation of ArithmeticOp 334 335 bool ArithmeticOp::is_commutative() const { 336 switch (op()) { 337 case Bytecodes::_iadd: // fall through 338 case Bytecodes::_ladd: // fall through 339 case Bytecodes::_fadd: // fall through 340 case Bytecodes::_dadd: // fall through 341 case Bytecodes::_imul: // fall through 342 case Bytecodes::_lmul: // fall through 343 case Bytecodes::_fmul: // fall through 344 case Bytecodes::_dmul: return true; 345 default : return false; 346 } 347 } 348 349 350 bool ArithmeticOp::can_trap() const { 351 switch (op()) { 352 case Bytecodes::_idiv: // fall through 353 case Bytecodes::_ldiv: // fall through 354 case Bytecodes::_irem: // fall through 355 case Bytecodes::_lrem: return true; 356 default : return false; 357 } 358 } 359 360 361 // Implementation of LogicOp 362 363 bool LogicOp::is_commutative() const { 364 #ifdef ASSERT 365 switch (op()) { 366 case Bytecodes::_iand: // fall through 367 case Bytecodes::_land: // fall through 368 case Bytecodes::_ior : // fall through 369 case Bytecodes::_lor : // fall through 370 case Bytecodes::_ixor: // fall through 371 case Bytecodes::_lxor: break; 372 default : ShouldNotReachHere(); break; 373 } 374 #endif 375 // all LogicOps are commutative 376 return true; 377 } 378 379 380 // Implementation of IfOp 381 382 bool IfOp::is_commutative() const { 383 return cond() == eql || cond() == neq; 384 } 385 386 387 // Implementation of StateSplit 388 389 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) { 390 NOT_PRODUCT(bool assigned = false;) 391 for (int i = 0; i < list.length(); i++) { 392 BlockBegin** b = list.adr_at(i); 393 if (*b == old_block) { 394 *b = new_block; 395 NOT_PRODUCT(assigned = true;) 396 } 397 } 398 assert(assigned == true, "should have assigned at least once"); 399 } 400 401 402 IRScope* StateSplit::scope() const { 403 return _state->scope(); 404 } 405 406 407 void StateSplit::state_values_do(ValueVisitor* f) { 408 Instruction::state_values_do(f); 409 if (state() != NULL) state()->values_do(f); 410 } 411 412 413 void BlockBegin::state_values_do(ValueVisitor* f) { 414 StateSplit::state_values_do(f); 415 416 if (is_set(BlockBegin::exception_entry_flag)) { 417 for (int i = 0; i < number_of_exception_states(); i++) { 418 exception_state_at(i)->values_do(f); 419 } 420 } 421 } 422 423 424 // Implementation of Invoke 425 426 427 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args, 428 int vtable_index, ciMethod* target, ValueStack* state_before, bool never_null) 429 : StateSplit(result_type, state_before) 430 , _code(code) 431 , _recv(recv) 432 , _args(args) 433 , _vtable_index(vtable_index) 434 , _target(target) 435 { 436 set_flag(TargetIsLoadedFlag, target->is_loaded()); 437 set_flag(TargetIsFinalFlag, target_is_loaded() && target->is_final_method()); 438 set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict()); 439 set_never_null(never_null); 440 441 assert(args != NULL, "args must exist"); 442 #ifdef ASSERT 443 AssertValues assert_value; 444 values_do(&assert_value); 445 #endif 446 447 // provide an initial guess of signature size. 448 _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0)); 449 if (has_receiver()) { 450 _signature->append(as_BasicType(receiver()->type())); 451 } 452 for (int i = 0; i < number_of_arguments(); i++) { 453 ValueType* t = argument_at(i)->type(); 454 BasicType bt = as_BasicType(t); 455 _signature->append(bt); 456 } 457 } 458 459 460 void Invoke::state_values_do(ValueVisitor* f) { 461 StateSplit::state_values_do(f); 462 if (state_before() != NULL) state_before()->values_do(f); 463 if (state() != NULL) state()->values_do(f); 464 } 465 466 ciType* Invoke::declared_type() const { 467 ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci()); 468 ciType *t = declared_signature->return_type(); 469 assert(t->basic_type() != T_VOID, "need return value of void method?"); 470 return t; 471 } 472 473 // Implementation of Contant 474 intx Constant::hash() const { 475 if (state_before() == NULL) { 476 switch (type()->tag()) { 477 case intTag: 478 return HASH2(name(), type()->as_IntConstant()->value()); 479 case addressTag: 480 return HASH2(name(), type()->as_AddressConstant()->value()); 481 case longTag: 482 { 483 jlong temp = type()->as_LongConstant()->value(); 484 return HASH3(name(), high(temp), low(temp)); 485 } 486 case floatTag: 487 return HASH2(name(), jint_cast(type()->as_FloatConstant()->value())); 488 case doubleTag: 489 { 490 jlong temp = jlong_cast(type()->as_DoubleConstant()->value()); 491 return HASH3(name(), high(temp), low(temp)); 492 } 493 case objectTag: 494 assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values"); 495 return HASH2(name(), type()->as_ObjectType()->constant_value()); 496 case metaDataTag: 497 assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values"); 498 return HASH2(name(), type()->as_MetadataType()->constant_value()); 499 default: 500 ShouldNotReachHere(); 501 } 502 } 503 return 0; 504 } 505 506 bool Constant::is_equal(Value v) const { 507 if (v->as_Constant() == NULL) return false; 508 509 switch (type()->tag()) { 510 case intTag: 511 { 512 IntConstant* t1 = type()->as_IntConstant(); 513 IntConstant* t2 = v->type()->as_IntConstant(); 514 return (t1 != NULL && t2 != NULL && 515 t1->value() == t2->value()); 516 } 517 case longTag: 518 { 519 LongConstant* t1 = type()->as_LongConstant(); 520 LongConstant* t2 = v->type()->as_LongConstant(); 521 return (t1 != NULL && t2 != NULL && 522 t1->value() == t2->value()); 523 } 524 case floatTag: 525 { 526 FloatConstant* t1 = type()->as_FloatConstant(); 527 FloatConstant* t2 = v->type()->as_FloatConstant(); 528 return (t1 != NULL && t2 != NULL && 529 jint_cast(t1->value()) == jint_cast(t2->value())); 530 } 531 case doubleTag: 532 { 533 DoubleConstant* t1 = type()->as_DoubleConstant(); 534 DoubleConstant* t2 = v->type()->as_DoubleConstant(); 535 return (t1 != NULL && t2 != NULL && 536 jlong_cast(t1->value()) == jlong_cast(t2->value())); 537 } 538 case objectTag: 539 { 540 ObjectType* t1 = type()->as_ObjectType(); 541 ObjectType* t2 = v->type()->as_ObjectType(); 542 return (t1 != NULL && t2 != NULL && 543 t1->is_loaded() && t2->is_loaded() && 544 t1->constant_value() == t2->constant_value()); 545 } 546 case metaDataTag: 547 { 548 MetadataType* t1 = type()->as_MetadataType(); 549 MetadataType* t2 = v->type()->as_MetadataType(); 550 return (t1 != NULL && t2 != NULL && 551 t1->is_loaded() && t2->is_loaded() && 552 t1->constant_value() == t2->constant_value()); 553 } 554 default: 555 return false; 556 } 557 } 558 559 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const { 560 Constant* rc = right->as_Constant(); 561 // other is not a constant 562 if (rc == NULL) return not_comparable; 563 564 ValueType* lt = type(); 565 ValueType* rt = rc->type(); 566 // different types 567 if (lt->base() != rt->base()) return not_comparable; 568 switch (lt->tag()) { 569 case intTag: { 570 int x = lt->as_IntConstant()->value(); 571 int y = rt->as_IntConstant()->value(); 572 switch (cond) { 573 case If::eql: return x == y ? cond_true : cond_false; 574 case If::neq: return x != y ? cond_true : cond_false; 575 case If::lss: return x < y ? cond_true : cond_false; 576 case If::leq: return x <= y ? cond_true : cond_false; 577 case If::gtr: return x > y ? cond_true : cond_false; 578 case If::geq: return x >= y ? cond_true : cond_false; 579 default : break; 580 } 581 break; 582 } 583 case longTag: { 584 jlong x = lt->as_LongConstant()->value(); 585 jlong y = rt->as_LongConstant()->value(); 586 switch (cond) { 587 case If::eql: return x == y ? cond_true : cond_false; 588 case If::neq: return x != y ? cond_true : cond_false; 589 case If::lss: return x < y ? cond_true : cond_false; 590 case If::leq: return x <= y ? cond_true : cond_false; 591 case If::gtr: return x > y ? cond_true : cond_false; 592 case If::geq: return x >= y ? cond_true : cond_false; 593 default : break; 594 } 595 break; 596 } 597 case objectTag: { 598 ciObject* xvalue = lt->as_ObjectType()->constant_value(); 599 ciObject* yvalue = rt->as_ObjectType()->constant_value(); 600 assert(xvalue != NULL && yvalue != NULL, "not constants"); 601 if (xvalue->is_loaded() && yvalue->is_loaded()) { 602 switch (cond) { 603 case If::eql: return xvalue == yvalue ? cond_true : cond_false; 604 case If::neq: return xvalue != yvalue ? cond_true : cond_false; 605 default : break; 606 } 607 } 608 break; 609 } 610 case metaDataTag: { 611 ciMetadata* xvalue = lt->as_MetadataType()->constant_value(); 612 ciMetadata* yvalue = rt->as_MetadataType()->constant_value(); 613 assert(xvalue != NULL && yvalue != NULL, "not constants"); 614 if (xvalue->is_loaded() && yvalue->is_loaded()) { 615 switch (cond) { 616 case If::eql: return xvalue == yvalue ? cond_true : cond_false; 617 case If::neq: return xvalue != yvalue ? cond_true : cond_false; 618 default : break; 619 } 620 } 621 break; 622 } 623 default: 624 break; 625 } 626 return not_comparable; 627 } 628 629 630 // Implementation of BlockBegin 631 632 void BlockBegin::set_end(BlockEnd* end) { 633 assert(end != NULL, "should not reset block end to NULL"); 634 if (end == _end) { 635 return; 636 } 637 clear_end(); 638 639 // Set the new end 640 _end = end; 641 642 _successors.clear(); 643 // Now reset successors list based on BlockEnd 644 for (int i = 0; i < end->number_of_sux(); i++) { 645 BlockBegin* sux = end->sux_at(i); 646 _successors.append(sux); 647 sux->_predecessors.append(this); 648 } 649 _end->set_begin(this); 650 } 651 652 653 void BlockBegin::clear_end() { 654 // Must make the predecessors/successors match up with the 655 // BlockEnd's notion. 656 if (_end != NULL) { 657 // disconnect from the old end 658 _end->set_begin(NULL); 659 660 // disconnect this block from it's current successors 661 for (int i = 0; i < _successors.length(); i++) { 662 _successors.at(i)->remove_predecessor(this); 663 } 664 _end = NULL; 665 } 666 } 667 668 669 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) { 670 // disconnect any edges between from and to 671 #ifndef PRODUCT 672 if (PrintIR && Verbose) { 673 tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id()); 674 } 675 #endif 676 for (int s = 0; s < from->number_of_sux();) { 677 BlockBegin* sux = from->sux_at(s); 678 if (sux == to) { 679 int index = sux->_predecessors.find(from); 680 if (index >= 0) { 681 sux->_predecessors.remove_at(index); 682 } 683 from->_successors.remove_at(s); 684 } else { 685 s++; 686 } 687 } 688 } 689 690 691 void BlockBegin::disconnect_from_graph() { 692 // disconnect this block from all other blocks 693 for (int p = 0; p < number_of_preds(); p++) { 694 pred_at(p)->remove_successor(this); 695 } 696 for (int s = 0; s < number_of_sux(); s++) { 697 sux_at(s)->remove_predecessor(this); 698 } 699 } 700 701 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) { 702 // modify predecessors before substituting successors 703 for (int i = 0; i < number_of_sux(); i++) { 704 if (sux_at(i) == old_sux) { 705 // remove old predecessor before adding new predecessor 706 // otherwise there is a dead predecessor in the list 707 new_sux->remove_predecessor(old_sux); 708 new_sux->add_predecessor(this); 709 } 710 } 711 old_sux->remove_predecessor(this); 712 end()->substitute_sux(old_sux, new_sux); 713 } 714 715 716 717 // In general it is not possible to calculate a value for the field "depth_first_number" 718 // of the inserted block, without recomputing the values of the other blocks 719 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless. 720 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) { 721 int bci = sux->bci(); 722 // critical edge splitting may introduce a goto after a if and array 723 // bound check elimination may insert a predicate between the if and 724 // goto. The bci of the goto can't be the one of the if otherwise 725 // the state and bci are inconsistent and a deoptimization triggered 726 // by the predicate would lead to incorrect execution/a crash. 727 BlockBegin* new_sux = new BlockBegin(bci); 728 729 // mark this block (special treatment when block order is computed) 730 new_sux->set(critical_edge_split_flag); 731 732 // This goto is not a safepoint. 733 Goto* e = new Goto(sux, false); 734 new_sux->set_next(e, bci); 735 new_sux->set_end(e); 736 // setup states 737 ValueStack* s = end()->state(); 738 new_sux->set_state(s->copy(s->kind(), bci)); 739 e->set_state(s->copy(s->kind(), bci)); 740 assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!"); 741 assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!"); 742 assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!"); 743 744 // link predecessor to new block 745 end()->substitute_sux(sux, new_sux); 746 747 // The ordering needs to be the same, so remove the link that the 748 // set_end call above added and substitute the new_sux for this 749 // block. 750 sux->remove_predecessor(new_sux); 751 752 // the successor could be the target of a switch so it might have 753 // multiple copies of this predecessor, so substitute the new_sux 754 // for the first and delete the rest. 755 bool assigned = false; 756 BlockList& list = sux->_predecessors; 757 for (int i = 0; i < list.length(); i++) { 758 BlockBegin** b = list.adr_at(i); 759 if (*b == this) { 760 if (assigned) { 761 list.remove_at(i); 762 // reprocess this index 763 i--; 764 } else { 765 assigned = true; 766 *b = new_sux; 767 } 768 // link the new block back to it's predecessors. 769 new_sux->add_predecessor(this); 770 } 771 } 772 assert(assigned == true, "should have assigned at least once"); 773 return new_sux; 774 } 775 776 777 void BlockBegin::remove_successor(BlockBegin* pred) { 778 int idx; 779 while ((idx = _successors.find(pred)) >= 0) { 780 _successors.remove_at(idx); 781 } 782 } 783 784 785 void BlockBegin::add_predecessor(BlockBegin* pred) { 786 _predecessors.append(pred); 787 } 788 789 790 void BlockBegin::remove_predecessor(BlockBegin* pred) { 791 int idx; 792 while ((idx = _predecessors.find(pred)) >= 0) { 793 _predecessors.remove_at(idx); 794 } 795 } 796 797 798 void BlockBegin::add_exception_handler(BlockBegin* b) { 799 assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist"); 800 // add only if not in the list already 801 if (!_exception_handlers.contains(b)) _exception_handlers.append(b); 802 } 803 804 int BlockBegin::add_exception_state(ValueStack* state) { 805 assert(is_set(exception_entry_flag), "only for xhandlers"); 806 if (_exception_states == NULL) { 807 _exception_states = new ValueStackStack(4); 808 } 809 _exception_states->append(state); 810 return _exception_states->length() - 1; 811 } 812 813 814 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) { 815 if (!mark.at(block_id())) { 816 mark.at_put(block_id(), true); 817 closure->block_do(this); 818 BlockEnd* e = end(); // must do this after block_do because block_do may change it! 819 { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); } 820 { for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_preorder(mark, closure); } 821 } 822 } 823 824 825 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) { 826 if (!mark.at(block_id())) { 827 mark.at_put(block_id(), true); 828 BlockEnd* e = end(); 829 { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); } 830 { for (int i = e->number_of_sux () - 1; i >= 0; i--) e->sux_at (i)->iterate_postorder(mark, closure); } 831 closure->block_do(this); 832 } 833 } 834 835 836 void BlockBegin::iterate_preorder(BlockClosure* closure) { 837 int mark_len = number_of_blocks(); 838 boolArray mark(mark_len, mark_len, false); 839 iterate_preorder(mark, closure); 840 } 841 842 843 void BlockBegin::iterate_postorder(BlockClosure* closure) { 844 int mark_len = number_of_blocks(); 845 boolArray mark(mark_len, mark_len, false); 846 iterate_postorder(mark, closure); 847 } 848 849 850 void BlockBegin::block_values_do(ValueVisitor* f) { 851 for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f); 852 } 853 854 855 #ifndef PRODUCT 856 #define TRACE_PHI(code) if (PrintPhiFunctions) { code; } 857 #else 858 #define TRACE_PHI(coce) 859 #endif 860 861 862 bool BlockBegin::try_merge(ValueStack* new_state) { 863 TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id())); 864 865 // local variables used for state iteration 866 int index; 867 Value new_value, existing_value; 868 869 ValueStack* existing_state = state(); 870 if (existing_state == NULL) { 871 TRACE_PHI(tty->print_cr("first call of try_merge for this block")); 872 873 if (is_set(BlockBegin::was_visited_flag)) { 874 // this actually happens for complicated jsr/ret structures 875 return false; // BAILOUT in caller 876 } 877 878 // copy state because it is altered 879 new_state = new_state->copy(ValueStack::BlockBeginState, bci()); 880 881 // Use method liveness to invalidate dead locals 882 MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci()); 883 if (liveness.is_valid()) { 884 assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness"); 885 886 for_each_local_value(new_state, index, new_value) { 887 if (!liveness.at(index) || new_value->type()->is_illegal()) { 888 new_state->invalidate_local(index); 889 TRACE_PHI(tty->print_cr("invalidating dead local %d", index)); 890 } 891 } 892 } 893 894 if (is_set(BlockBegin::parser_loop_header_flag)) { 895 TRACE_PHI(tty->print_cr("loop header block, initializing phi functions")); 896 897 for_each_stack_value(new_state, index, new_value) { 898 new_state->setup_phi_for_stack(this, index, NULL, new_value); 899 TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index)); 900 } 901 902 BitMap& requires_phi_function = new_state->scope()->requires_phi_function(); 903 904 for_each_local_value(new_state, index, new_value) { 905 bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1)); 906 if (requires_phi || !SelectivePhiFunctions) { 907 new_state->setup_phi_for_local(this, index, NULL, new_value); 908 TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index)); 909 } 910 } 911 } 912 913 // initialize state of block 914 set_state(new_state); 915 916 } else if (existing_state->is_same(new_state)) { 917 TRACE_PHI(tty->print_cr("exisiting state found")); 918 919 assert(existing_state->scope() == new_state->scope(), "not matching"); 920 assert(existing_state->locals_size() == new_state->locals_size(), "not matching"); 921 assert(existing_state->stack_size() == new_state->stack_size(), "not matching"); 922 923 if (is_set(BlockBegin::was_visited_flag)) { 924 TRACE_PHI(tty->print_cr("loop header block, phis must be present")); 925 926 if (!is_set(BlockBegin::parser_loop_header_flag)) { 927 // this actually happens for complicated jsr/ret structures 928 return false; // BAILOUT in caller 929 } 930 931 for_each_local_value(existing_state, index, existing_value) { 932 Value new_value = new_state->local_at(index); 933 if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) { 934 Phi* existing_phi = existing_value->as_Phi(); 935 if (existing_phi == NULL) { 936 return false; // BAILOUT in caller 937 } 938 // Invalidate the phi function here. This case is very rare except for 939 // JVMTI capability "can_access_local_variables". 940 // In really rare cases we will bail out in LIRGenerator::move_to_phi. 941 existing_phi->make_illegal(); 942 existing_state->invalidate_local(index); 943 TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index)); 944 } 945 } 946 947 #ifdef ASSERT 948 // check that all necessary phi functions are present 949 for_each_stack_value(existing_state, index, existing_value) { 950 assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required"); 951 } 952 for_each_local_value(existing_state, index, existing_value) { 953 assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required"); 954 } 955 #endif 956 957 } else { 958 TRACE_PHI(tty->print_cr("creating phi functions on demand")); 959 960 // create necessary phi functions for stack 961 for_each_stack_value(existing_state, index, existing_value) { 962 Value new_value = new_state->stack_at(index); 963 Phi* existing_phi = existing_value->as_Phi(); 964 965 if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) { 966 existing_state->setup_phi_for_stack(this, index, existing_value, new_value); 967 TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index)); 968 } 969 } 970 971 // create necessary phi functions for locals 972 for_each_local_value(existing_state, index, existing_value) { 973 Value new_value = new_state->local_at(index); 974 Phi* existing_phi = existing_value->as_Phi(); 975 976 if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) { 977 existing_state->invalidate_local(index); 978 TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index)); 979 } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) { 980 existing_state->setup_phi_for_local(this, index, existing_value, new_value); 981 TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index)); 982 } 983 } 984 } 985 986 assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal"); 987 988 } else { 989 assert(false, "stack or locks not matching (invalid bytecodes)"); 990 return false; 991 } 992 993 TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id())); 994 995 return true; 996 } 997 998 999 #ifndef PRODUCT 1000 void BlockBegin::print_block() { 1001 InstructionPrinter ip; 1002 print_block(ip, false); 1003 } 1004 1005 1006 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) { 1007 ip.print_instr(this); tty->cr(); 1008 ip.print_stack(this->state()); tty->cr(); 1009 ip.print_inline_level(this); 1010 ip.print_head(); 1011 for (Instruction* n = next(); n != NULL; n = n->next()) { 1012 if (!live_only || n->is_pinned() || n->use_count() > 0) { 1013 ip.print_line(n); 1014 } 1015 } 1016 tty->cr(); 1017 } 1018 #endif // PRODUCT 1019 1020 1021 // Implementation of BlockList 1022 1023 void BlockList::iterate_forward (BlockClosure* closure) { 1024 const int l = length(); 1025 for (int i = 0; i < l; i++) closure->block_do(at(i)); 1026 } 1027 1028 1029 void BlockList::iterate_backward(BlockClosure* closure) { 1030 for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i)); 1031 } 1032 1033 1034 void BlockList::blocks_do(void f(BlockBegin*)) { 1035 for (int i = length() - 1; i >= 0; i--) f(at(i)); 1036 } 1037 1038 1039 void BlockList::values_do(ValueVisitor* f) { 1040 for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f); 1041 } 1042 1043 1044 #ifndef PRODUCT 1045 void BlockList::print(bool cfg_only, bool live_only) { 1046 InstructionPrinter ip; 1047 for (int i = 0; i < length(); i++) { 1048 BlockBegin* block = at(i); 1049 if (cfg_only) { 1050 ip.print_instr(block); tty->cr(); 1051 } else { 1052 block->print_block(ip, live_only); 1053 } 1054 } 1055 } 1056 #endif // PRODUCT 1057 1058 1059 // Implementation of BlockEnd 1060 1061 void BlockEnd::set_begin(BlockBegin* begin) { 1062 BlockList* sux = NULL; 1063 if (begin != NULL) { 1064 sux = begin->successors(); 1065 } else if (this->begin() != NULL) { 1066 // copy our sux list 1067 BlockList* sux = new BlockList(this->begin()->number_of_sux()); 1068 for (int i = 0; i < this->begin()->number_of_sux(); i++) { 1069 sux->append(this->begin()->sux_at(i)); 1070 } 1071 } 1072 _sux = sux; 1073 } 1074 1075 1076 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) { 1077 substitute(*_sux, old_sux, new_sux); 1078 } 1079 1080 1081 // Implementation of Phi 1082 1083 // Normal phi functions take their operands from the last instruction of the 1084 // predecessor. Special handling is needed for xhanlder entries because there 1085 // the state of arbitrary instructions are needed. 1086 1087 Value Phi::operand_at(int i) const { 1088 ValueStack* state; 1089 if (_block->is_set(BlockBegin::exception_entry_flag)) { 1090 state = _block->exception_state_at(i); 1091 } else { 1092 state = _block->pred_at(i)->end()->state(); 1093 } 1094 assert(state != NULL, ""); 1095 1096 if (is_local()) { 1097 return state->local_at(local_index()); 1098 } else { 1099 return state->stack_at(stack_index()); 1100 } 1101 } 1102 1103 1104 int Phi::operand_count() const { 1105 if (_block->is_set(BlockBegin::exception_entry_flag)) { 1106 return _block->number_of_exception_states(); 1107 } else { 1108 return _block->number_of_preds(); 1109 } 1110 } 1111 1112 #ifdef ASSERT 1113 // Constructor of Assert 1114 Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType) 1115 , _x(x) 1116 , _cond(cond) 1117 , _y(y) 1118 { 1119 set_flag(UnorderedIsTrueFlag, unordered_is_true); 1120 assert(x->type()->tag() == y->type()->tag(), "types must match"); 1121 pin(); 1122 1123 stringStream strStream; 1124 Compilation::current()->method()->print_name(&strStream); 1125 1126 stringStream strStream1; 1127 InstructionPrinter ip1(1, &strStream1); 1128 ip1.print_instr(x); 1129 1130 stringStream strStream2; 1131 InstructionPrinter ip2(1, &strStream2); 1132 ip2.print_instr(y); 1133 1134 stringStream ss; 1135 ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string()); 1136 1137 _message = ss.as_string(); 1138 } 1139 #endif 1140 1141 void RangeCheckPredicate::check_state() { 1142 assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state"); 1143 } 1144 1145 void ProfileInvoke::state_values_do(ValueVisitor* f) { 1146 if (state() != NULL) state()->values_do(f); 1147 } --- EOF ---