1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset() {
  59   _virtual_operands.clear();
  60   _other_operands.clear();
  61   _vreg_table.clear();
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 // PhiResolver
  67 
  68 // Resolves cycles:
  69 //
  70 //  r1 := r2  becomes  temp := r1
  71 //  r2 := r1           r1 := r2
  72 //                     r2 := temp
  73 // and orders moves:
  74 //
  75 //  r2 := r3  becomes  r1 := r2
  76 //  r1 := r2           r2 := r3
  77 
  78 PhiResolver::PhiResolver(LIRGenerator* gen)
  79  : _gen(gen)
  80  , _state(gen->resolver_state())
  81  , _temp(LIR_OprFact::illegalOpr)
  82 {
  83   // reinitialize the shared state arrays
  84   _state.reset();
  85 }
  86 
  87 
  88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  89   assert(src->is_valid(), "");
  90   assert(dest->is_valid(), "");
  91   __ move(src, dest);
  92 }
  93 
  94 
  95 void PhiResolver::move_temp_to(LIR_Opr dest) {
  96   assert(_temp->is_valid(), "");
  97   emit_move(_temp, dest);
  98   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  99 }
 100 
 101 
 102 void PhiResolver::move_to_temp(LIR_Opr src) {
 103   assert(_temp->is_illegal(), "");
 104   _temp = _gen->new_register(src->type());
 105   emit_move(src, _temp);
 106 }
 107 
 108 
 109 // Traverse assignment graph in depth first order and generate moves in post order
 110 // ie. two assignments: b := c, a := b start with node c:
 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 112 // Generates moves in this order: move b to a and move c to b
 113 // ie. cycle a := b, b := a start with node a
 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 115 // Generates moves in this order: move b to temp, move a to b, move temp to a
 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 117   if (!dest->visited()) {
 118     dest->set_visited();
 119     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 120       move(dest, dest->destination_at(i));
 121     }
 122   } else if (!dest->start_node()) {
 123     // cylce in graph detected
 124     assert(_loop == NULL, "only one loop valid!");
 125     _loop = dest;
 126     move_to_temp(src->operand());
 127     return;
 128   } // else dest is a start node
 129 
 130   if (!dest->assigned()) {
 131     if (_loop == dest) {
 132       move_temp_to(dest->operand());
 133       dest->set_assigned();
 134     } else if (src != NULL) {
 135       emit_move(src->operand(), dest->operand());
 136       dest->set_assigned();
 137     }
 138   }
 139 }
 140 
 141 
 142 PhiResolver::~PhiResolver() {
 143   int i;
 144   // resolve any cycles in moves from and to virtual registers
 145   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 146     ResolveNode* node = virtual_operands().at(i);
 147     if (!node->visited()) {
 148       _loop = NULL;
 149       move(NULL, node);
 150       node->set_start_node();
 151       assert(_temp->is_illegal(), "move_temp_to() call missing");
 152     }
 153   }
 154 
 155   // generate move for move from non virtual register to abitrary destination
 156   for (i = other_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = other_operands().at(i);
 158     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 159       emit_move(node->operand(), node->destination_at(j)->operand());
 160     }
 161   }
 162 }
 163 
 164 
 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 166   ResolveNode* node;
 167   if (opr->is_virtual()) {
 168     int vreg_num = opr->vreg_number();
 169     node = vreg_table().at_grow(vreg_num, NULL);
 170     assert(node == NULL || node->operand() == opr, "");
 171     if (node == NULL) {
 172       node = new ResolveNode(opr);
 173       vreg_table().at_put(vreg_num, node);
 174     }
 175     // Make sure that all virtual operands show up in the list when
 176     // they are used as the source of a move.
 177     if (source && !virtual_operands().contains(node)) {
 178       virtual_operands().append(node);
 179     }
 180   } else {
 181     assert(source, "");
 182     node = new ResolveNode(opr);
 183     other_operands().append(node);
 184   }
 185   return node;
 186 }
 187 
 188 
 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 190   assert(dest->is_virtual(), "");
 191   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 192   assert(src->is_valid(), "");
 193   assert(dest->is_valid(), "");
 194   ResolveNode* source = source_node(src);
 195   source->append(destination_node(dest));
 196 }
 197 
 198 
 199 //--------------------------------------------------------------
 200 // LIRItem
 201 
 202 void LIRItem::set_result(LIR_Opr opr) {
 203   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 204   value()->set_operand(opr);
 205 
 206   if (opr->is_virtual()) {
 207     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 208   }
 209 
 210   _result = opr;
 211 }
 212 
 213 void LIRItem::load_item() {
 214   if (result()->is_illegal()) {
 215     // update the items result
 216     _result = value()->operand();
 217   }
 218   if (!result()->is_register()) {
 219     LIR_Opr reg = _gen->new_register(value()->type());
 220     __ move(result(), reg);
 221     if (result()->is_constant()) {
 222       _result = reg;
 223     } else {
 224       set_result(reg);
 225     }
 226   }
 227 }
 228 
 229 
 230 void LIRItem::load_for_store(BasicType type) {
 231   if (_gen->can_store_as_constant(value(), type)) {
 232     _result = value()->operand();
 233     if (!_result->is_constant()) {
 234       _result = LIR_OprFact::value_type(value()->type());
 235     }
 236   } else if (type == T_BYTE || type == T_BOOLEAN) {
 237     load_byte_item();
 238   } else {
 239     load_item();
 240   }
 241 }
 242 
 243 void LIRItem::load_item_force(LIR_Opr reg) {
 244   LIR_Opr r = result();
 245   if (r != reg) {
 246 #if !defined(ARM) && !defined(E500V2)
 247     if (r->type() != reg->type()) {
 248       // moves between different types need an intervening spill slot
 249       r = _gen->force_to_spill(r, reg->type());
 250     }
 251 #endif
 252     __ move(r, reg);
 253     _result = reg;
 254   }
 255 }
 256 
 257 ciObject* LIRItem::get_jobject_constant() const {
 258   ObjectType* oc = type()->as_ObjectType();
 259   if (oc) {
 260     return oc->constant_value();
 261   }
 262   return NULL;
 263 }
 264 
 265 
 266 jint LIRItem::get_jint_constant() const {
 267   assert(is_constant() && value() != NULL, "");
 268   assert(type()->as_IntConstant() != NULL, "type check");
 269   return type()->as_IntConstant()->value();
 270 }
 271 
 272 
 273 jint LIRItem::get_address_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_AddressConstant() != NULL, "type check");
 276   return type()->as_AddressConstant()->value();
 277 }
 278 
 279 
 280 jfloat LIRItem::get_jfloat_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_FloatConstant() != NULL, "type check");
 283   return type()->as_FloatConstant()->value();
 284 }
 285 
 286 
 287 jdouble LIRItem::get_jdouble_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_DoubleConstant() != NULL, "type check");
 290   return type()->as_DoubleConstant()->value();
 291 }
 292 
 293 
 294 jlong LIRItem::get_jlong_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_LongConstant() != NULL, "type check");
 297   return type()->as_LongConstant()->value();
 298 }
 299 
 300 
 301 
 302 //--------------------------------------------------------------
 303 
 304 
 305 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 306 #ifndef PRODUCT
 307   if (PrintIRWithLIR) {
 308     block->print();
 309   }
 310 #endif
 311 
 312   // set up the list of LIR instructions
 313   assert(block->lir() == NULL, "LIR list already computed for this block");
 314   _lir = new LIR_List(compilation(), block);
 315   block->set_lir(_lir);
 316 
 317   __ branch_destination(block->label());
 318 
 319   if (LIRTraceExecution &&
 320       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 321       !block->is_set(BlockBegin::exception_entry_flag)) {
 322     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 323     trace_block_entry(block);
 324   }
 325 }
 326 
 327 
 328 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 329 #ifndef PRODUCT
 330   if (PrintIRWithLIR) {
 331     tty->cr();
 332   }
 333 #endif
 334 
 335   // LIR_Opr for unpinned constants shouldn't be referenced by other
 336   // blocks so clear them out after processing the block.
 337   for (int i = 0; i < _unpinned_constants.length(); i++) {
 338     _unpinned_constants.at(i)->clear_operand();
 339   }
 340   _unpinned_constants.trunc_to(0);
 341 
 342   // clear our any registers for other local constants
 343   _constants.trunc_to(0);
 344   _reg_for_constants.trunc_to(0);
 345 }
 346 
 347 
 348 void LIRGenerator::block_do(BlockBegin* block) {
 349   CHECK_BAILOUT();
 350 
 351   block_do_prolog(block);
 352   set_block(block);
 353 
 354   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 355     if (instr->is_pinned()) do_root(instr);
 356   }
 357 
 358   set_block(NULL);
 359   block_do_epilog(block);
 360 }
 361 
 362 
 363 //-------------------------LIRGenerator-----------------------------
 364 
 365 // This is where the tree-walk starts; instr must be root;
 366 void LIRGenerator::do_root(Value instr) {
 367   CHECK_BAILOUT();
 368 
 369   InstructionMark im(compilation(), instr);
 370 
 371   assert(instr->is_pinned(), "use only with roots");
 372   assert(instr->subst() == instr, "shouldn't have missed substitution");
 373 
 374   instr->visit(this);
 375 
 376   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 377          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 378 }
 379 
 380 
 381 // This is called for each node in tree; the walk stops if a root is reached
 382 void LIRGenerator::walk(Value instr) {
 383   InstructionMark im(compilation(), instr);
 384   //stop walk when encounter a root
 385   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 386     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 387   } else {
 388     assert(instr->subst() == instr, "shouldn't have missed substitution");
 389     instr->visit(this);
 390     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 391   }
 392 }
 393 
 394 
 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 396   assert(state != NULL, "state must be defined");
 397 
 398 #ifndef PRODUCT
 399   state->verify();
 400 #endif
 401 
 402   ValueStack* s = state;
 403   for_each_state(s) {
 404     if (s->kind() == ValueStack::EmptyExceptionState) {
 405       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 406       continue;
 407     }
 408 
 409     int index;
 410     Value value;
 411     for_each_stack_value(s, index, value) {
 412       assert(value->subst() == value, "missed substitution");
 413       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 414         walk(value);
 415         assert(value->operand()->is_valid(), "must be evaluated now");
 416       }
 417     }
 418 
 419     int bci = s->bci();
 420     IRScope* scope = s->scope();
 421     ciMethod* method = scope->method();
 422 
 423     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 424     if (bci == SynchronizationEntryBCI) {
 425       if (x->as_ExceptionObject() || x->as_Throw()) {
 426         // all locals are dead on exit from the synthetic unlocker
 427         liveness.clear();
 428       } else {
 429         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 430       }
 431     }
 432     if (!liveness.is_valid()) {
 433       // Degenerate or breakpointed method.
 434       bailout("Degenerate or breakpointed method");
 435     } else {
 436       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 437       for_each_local_value(s, index, value) {
 438         assert(value->subst() == value, "missed substition");
 439         if (liveness.at(index) && !value->type()->is_illegal()) {
 440           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 441             walk(value);
 442             assert(value->operand()->is_valid(), "must be evaluated now");
 443           }
 444         } else {
 445           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 446           s->invalidate_local(index);
 447         }
 448       }
 449     }
 450   }
 451 
 452   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 453 }
 454 
 455 
 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 457   return state_for(x, x->exception_state());
 458 }
 459 
 460 
 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 462   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 463    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 464    * the class. */
 465   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ klass2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ metadata2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           jint c = right->as_jint();
 540           if (c > 0 && is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597 
 598   if (TwoOperandLIRForm && value != result_op
 599       // Only 32bit right shifts require two operand form on S390.
 600       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 601     assert(count != result_op, "malformed");
 602     __ move(value, result_op);
 603     value = result_op;
 604   }
 605 
 606   assert(count->is_constant() || count->is_register(), "must be");
 607   switch(code) {
 608   case Bytecodes::_ishl:
 609   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 610   case Bytecodes::_ishr:
 611   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 612   case Bytecodes::_iushr:
 613   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 614   default: ShouldNotReachHere();
 615   }
 616 }
 617 
 618 
 619 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 620   if (TwoOperandLIRForm && left_op != result_op) {
 621     assert(right_op != result_op, "malformed");
 622     __ move(left_op, result_op);
 623     left_op = result_op;
 624   }
 625 
 626   switch(code) {
 627     case Bytecodes::_iand:
 628     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 629 
 630     case Bytecodes::_ior:
 631     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 632 
 633     case Bytecodes::_ixor:
 634     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 635 
 636     default: ShouldNotReachHere();
 637   }
 638 }
 639 
 640 
 641 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 642                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 643   if (!GenerateSynchronizationCode) return;
 644   // for slow path, use debug info for state after successful locking
 645   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 646   __ load_stack_address_monitor(monitor_no, lock);
 647   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 648   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 649 }
 650 
 651 
 652 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 653   if (!GenerateSynchronizationCode) return;
 654   // setup registers
 655   LIR_Opr hdr = lock;
 656   lock = new_hdr;
 657   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 658   __ load_stack_address_monitor(monitor_no, lock);
 659   __ unlock_object(hdr, object, lock, scratch, slow_path);
 660 }
 661 
 662 #ifndef PRODUCT
 663 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 664   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 665     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 666   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 667     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 668   }
 669 }
 670 #endif
 671 
 672 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 673   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 674   // If klass is not loaded we do not know if the klass has finalizers:
 675   if (UseFastNewInstance && klass->is_loaded()
 676       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 677 
 678     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 679 
 680     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 681 
 682     assert(klass->is_loaded(), "must be loaded");
 683     // allocate space for instance
 684     assert(klass->size_helper() >= 0, "illegal instance size");
 685     const int instance_size = align_object_size(klass->size_helper());
 686     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 687                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 688   } else {
 689     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 690     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 691     __ branch_destination(slow_path->continuation());
 692   }
 693 }
 694 
 695 
 696 static bool is_constant_zero(Instruction* inst) {
 697   IntConstant* c = inst->type()->as_IntConstant();
 698   if (c) {
 699     return (c->value() == 0);
 700   }
 701   return false;
 702 }
 703 
 704 
 705 static bool positive_constant(Instruction* inst) {
 706   IntConstant* c = inst->type()->as_IntConstant();
 707   if (c) {
 708     return (c->value() >= 0);
 709   }
 710   return false;
 711 }
 712 
 713 
 714 static ciArrayKlass* as_array_klass(ciType* type) {
 715   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 716     return (ciArrayKlass*)type;
 717   } else {
 718     return NULL;
 719   }
 720 }
 721 
 722 static ciType* phi_declared_type(Phi* phi) {
 723   ciType* t = phi->operand_at(0)->declared_type();
 724   if (t == NULL) {
 725     return NULL;
 726   }
 727   for(int i = 1; i < phi->operand_count(); i++) {
 728     if (t != phi->operand_at(i)->declared_type()) {
 729       return NULL;
 730     }
 731   }
 732   return t;
 733 }
 734 
 735 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 736   Instruction* src     = x->argument_at(0);
 737   Instruction* src_pos = x->argument_at(1);
 738   Instruction* dst     = x->argument_at(2);
 739   Instruction* dst_pos = x->argument_at(3);
 740   Instruction* length  = x->argument_at(4);
 741 
 742   // first try to identify the likely type of the arrays involved
 743   ciArrayKlass* expected_type = NULL;
 744   bool is_exact = false, src_objarray = false, dst_objarray = false;
 745   {
 746     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 747     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 748     Phi* phi;
 749     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 750       src_declared_type = as_array_klass(phi_declared_type(phi));
 751     }
 752     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 753     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 754     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 755       dst_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757 
 758     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 759       // the types exactly match so the type is fully known
 760       is_exact = true;
 761       expected_type = src_exact_type;
 762     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 763       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 764       ciArrayKlass* src_type = NULL;
 765       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 766         src_type = (ciArrayKlass*) src_exact_type;
 767       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 768         src_type = (ciArrayKlass*) src_declared_type;
 769       }
 770       if (src_type != NULL) {
 771         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 772           is_exact = true;
 773           expected_type = dst_type;
 774         }
 775       }
 776     }
 777     // at least pass along a good guess
 778     if (expected_type == NULL) expected_type = dst_exact_type;
 779     if (expected_type == NULL) expected_type = src_declared_type;
 780     if (expected_type == NULL) expected_type = dst_declared_type;
 781 
 782     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 783     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 784   }
 785 
 786   // if a probable array type has been identified, figure out if any
 787   // of the required checks for a fast case can be elided.
 788   int flags = LIR_OpArrayCopy::all_flags;
 789 
 790   if (!src->is_loaded_flattened_array() && !dst->is_loaded_flattened_array()) {
 791     flags &= ~LIR_OpArrayCopy::always_slow_path;
 792   }
 793   if (!src->maybe_flattened_array()) {
 794     flags &= ~LIR_OpArrayCopy::src_valuetype_check;
 795   }
 796   if (!dst->maybe_flattened_array() && !dst->maybe_null_free_array()) {
 797     flags &= ~LIR_OpArrayCopy::dst_valuetype_check;
 798   }
 799 
 800   if (!src_objarray)
 801     flags &= ~LIR_OpArrayCopy::src_objarray;
 802   if (!dst_objarray)
 803     flags &= ~LIR_OpArrayCopy::dst_objarray;
 804 
 805   if (!x->arg_needs_null_check(0))
 806     flags &= ~LIR_OpArrayCopy::src_null_check;
 807   if (!x->arg_needs_null_check(2))
 808     flags &= ~LIR_OpArrayCopy::dst_null_check;
 809 
 810 
 811   if (expected_type != NULL) {
 812     Value length_limit = NULL;
 813 
 814     IfOp* ifop = length->as_IfOp();
 815     if (ifop != NULL) {
 816       // look for expressions like min(v, a.length) which ends up as
 817       //   x > y ? y : x  or  x >= y ? y : x
 818       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 819           ifop->x() == ifop->fval() &&
 820           ifop->y() == ifop->tval()) {
 821         length_limit = ifop->y();
 822       }
 823     }
 824 
 825     // try to skip null checks and range checks
 826     NewArray* src_array = src->as_NewArray();
 827     if (src_array != NULL) {
 828       flags &= ~LIR_OpArrayCopy::src_null_check;
 829       if (length_limit != NULL &&
 830           src_array->length() == length_limit &&
 831           is_constant_zero(src_pos)) {
 832         flags &= ~LIR_OpArrayCopy::src_range_check;
 833       }
 834     }
 835 
 836     NewArray* dst_array = dst->as_NewArray();
 837     if (dst_array != NULL) {
 838       flags &= ~LIR_OpArrayCopy::dst_null_check;
 839       if (length_limit != NULL &&
 840           dst_array->length() == length_limit &&
 841           is_constant_zero(dst_pos)) {
 842         flags &= ~LIR_OpArrayCopy::dst_range_check;
 843       }
 844     }
 845 
 846     // check from incoming constant values
 847     if (positive_constant(src_pos))
 848       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 849     if (positive_constant(dst_pos))
 850       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 851     if (positive_constant(length))
 852       flags &= ~LIR_OpArrayCopy::length_positive_check;
 853 
 854     // see if the range check can be elided, which might also imply
 855     // that src or dst is non-null.
 856     ArrayLength* al = length->as_ArrayLength();
 857     if (al != NULL) {
 858       if (al->array() == src) {
 859         // it's the length of the source array
 860         flags &= ~LIR_OpArrayCopy::length_positive_check;
 861         flags &= ~LIR_OpArrayCopy::src_null_check;
 862         if (is_constant_zero(src_pos))
 863           flags &= ~LIR_OpArrayCopy::src_range_check;
 864       }
 865       if (al->array() == dst) {
 866         // it's the length of the destination array
 867         flags &= ~LIR_OpArrayCopy::length_positive_check;
 868         flags &= ~LIR_OpArrayCopy::dst_null_check;
 869         if (is_constant_zero(dst_pos))
 870           flags &= ~LIR_OpArrayCopy::dst_range_check;
 871       }
 872     }
 873     if (is_exact) {
 874       flags &= ~LIR_OpArrayCopy::type_check;
 875     }
 876   }
 877 
 878   IntConstant* src_int = src_pos->type()->as_IntConstant();
 879   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 880   if (src_int && dst_int) {
 881     int s_offs = src_int->value();
 882     int d_offs = dst_int->value();
 883     if (src_int->value() >= dst_int->value()) {
 884       flags &= ~LIR_OpArrayCopy::overlapping;
 885     }
 886     if (expected_type != NULL) {
 887       BasicType t = expected_type->element_type()->basic_type();
 888       int element_size = type2aelembytes(t);
 889       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 890           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 891         flags &= ~LIR_OpArrayCopy::unaligned;
 892       }
 893     }
 894   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 895     // src and dest positions are the same, or dst is zero so assume
 896     // nonoverlapping copy.
 897     flags &= ~LIR_OpArrayCopy::overlapping;
 898   }
 899 
 900   if (src == dst) {
 901     // moving within a single array so no type checks are needed
 902     if (flags & LIR_OpArrayCopy::type_check) {
 903       flags &= ~LIR_OpArrayCopy::type_check;
 904     }
 905   }
 906   *flagsp = flags;
 907   *expected_typep = (ciArrayKlass*)expected_type;
 908 }
 909 
 910 
 911 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 912   assert(opr->is_register(), "why spill if item is not register?");
 913 
 914   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 915     LIR_Opr result = new_register(T_FLOAT);
 916     set_vreg_flag(result, must_start_in_memory);
 917     assert(opr->is_register(), "only a register can be spilled");
 918     assert(opr->value_type()->is_float(), "rounding only for floats available");
 919     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 920     return result;
 921   }
 922   return opr;
 923 }
 924 
 925 
 926 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 927   assert(type2size[t] == type2size[value->type()],
 928          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 929   if (!value->is_register()) {
 930     // force into a register
 931     LIR_Opr r = new_register(value->type());
 932     __ move(value, r);
 933     value = r;
 934   }
 935 
 936   // create a spill location
 937   LIR_Opr tmp = new_register(t);
 938   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 939 
 940   // move from register to spill
 941   __ move(value, tmp);
 942   return tmp;
 943 }
 944 
 945 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 946   if (if_instr->should_profile()) {
 947     ciMethod* method = if_instr->profiled_method();
 948     assert(method != NULL, "method should be set if branch is profiled");
 949     ciMethodData* md = method->method_data_or_null();
 950     assert(md != NULL, "Sanity");
 951     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 952     assert(data != NULL, "must have profiling data");
 953     assert(data->is_BranchData(), "need BranchData for two-way branches");
 954     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 955     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 956     if (if_instr->is_swapped()) {
 957       int t = taken_count_offset;
 958       taken_count_offset = not_taken_count_offset;
 959       not_taken_count_offset = t;
 960     }
 961 
 962     LIR_Opr md_reg = new_register(T_METADATA);
 963     __ metadata2reg(md->constant_encoding(), md_reg);
 964 
 965     LIR_Opr data_offset_reg = new_pointer_register();
 966     __ cmove(lir_cond(cond),
 967              LIR_OprFact::intptrConst(taken_count_offset),
 968              LIR_OprFact::intptrConst(not_taken_count_offset),
 969              data_offset_reg, as_BasicType(if_instr->x()->type()));
 970 
 971     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 972     LIR_Opr data_reg = new_pointer_register();
 973     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 974     __ move(data_addr, data_reg);
 975     // Use leal instead of add to avoid destroying condition codes on x86
 976     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 977     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 978     __ move(data_reg, data_addr);
 979   }
 980 }
 981 
 982 // Phi technique:
 983 // This is about passing live values from one basic block to the other.
 984 // In code generated with Java it is rather rare that more than one
 985 // value is on the stack from one basic block to the other.
 986 // We optimize our technique for efficient passing of one value
 987 // (of type long, int, double..) but it can be extended.
 988 // When entering or leaving a basic block, all registers and all spill
 989 // slots are release and empty. We use the released registers
 990 // and spill slots to pass the live values from one block
 991 // to the other. The topmost value, i.e., the value on TOS of expression
 992 // stack is passed in registers. All other values are stored in spilling
 993 // area. Every Phi has an index which designates its spill slot
 994 // At exit of a basic block, we fill the register(s) and spill slots.
 995 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 996 // and locks necessary registers and spilling slots.
 997 
 998 
 999 // move current value to referenced phi function
1000 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1001   Phi* phi = sux_val->as_Phi();
1002   // cur_val can be null without phi being null in conjunction with inlining
1003   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1004     Phi* cur_phi = cur_val->as_Phi();
1005     if (cur_phi != NULL && cur_phi->is_illegal()) {
1006       // Phi and local would need to get invalidated
1007       // (which is unexpected for Linear Scan).
1008       // But this case is very rare so we simply bail out.
1009       bailout("propagation of illegal phi");
1010       return;
1011     }
1012     LIR_Opr operand = cur_val->operand();
1013     if (operand->is_illegal()) {
1014       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1015              "these can be produced lazily");
1016       operand = operand_for_instruction(cur_val);
1017     }
1018     resolver->move(operand, operand_for_instruction(phi));
1019   }
1020 }
1021 
1022 
1023 // Moves all stack values into their PHI position
1024 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1025   BlockBegin* bb = block();
1026   if (bb->number_of_sux() == 1) {
1027     BlockBegin* sux = bb->sux_at(0);
1028     assert(sux->number_of_preds() > 0, "invalid CFG");
1029 
1030     // a block with only one predecessor never has phi functions
1031     if (sux->number_of_preds() > 1) {
1032       PhiResolver resolver(this);
1033 
1034       ValueStack* sux_state = sux->state();
1035       Value sux_value;
1036       int index;
1037 
1038       assert(cur_state->scope() == sux_state->scope(), "not matching");
1039       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1040       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1041 
1042       for_each_stack_value(sux_state, index, sux_value) {
1043         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1044       }
1045 
1046       for_each_local_value(sux_state, index, sux_value) {
1047         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1048       }
1049 
1050       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1051     }
1052   }
1053 }
1054 
1055 
1056 LIR_Opr LIRGenerator::new_register(BasicType type) {
1057   int vreg = _virtual_register_number;
1058   // add a little fudge factor for the bailout, since the bailout is
1059   // only checked periodically.  This gives a few extra registers to
1060   // hand out before we really run out, which helps us keep from
1061   // tripping over assertions.
1062   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1063     bailout("out of virtual registers");
1064     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1065       // wrap it around
1066       _virtual_register_number = LIR_OprDesc::vreg_base;
1067     }
1068   }
1069   _virtual_register_number += 1;
1070   return LIR_OprFact::virtual_register(vreg, type);
1071 }
1072 
1073 
1074 // Try to lock using register in hint
1075 LIR_Opr LIRGenerator::rlock(Value instr) {
1076   return new_register(instr->type());
1077 }
1078 
1079 
1080 // does an rlock and sets result
1081 LIR_Opr LIRGenerator::rlock_result(Value x) {
1082   LIR_Opr reg = rlock(x);
1083   set_result(x, reg);
1084   return reg;
1085 }
1086 
1087 
1088 // does an rlock and sets result
1089 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1090   LIR_Opr reg;
1091   switch (type) {
1092   case T_BYTE:
1093   case T_BOOLEAN:
1094     reg = rlock_byte(type);
1095     break;
1096   default:
1097     reg = rlock(x);
1098     break;
1099   }
1100 
1101   set_result(x, reg);
1102   return reg;
1103 }
1104 
1105 
1106 //---------------------------------------------------------------------
1107 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1108   ObjectType* oc = value->type()->as_ObjectType();
1109   if (oc) {
1110     return oc->constant_value();
1111   }
1112   return NULL;
1113 }
1114 
1115 
1116 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1117   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1118   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1119 
1120   // no moves are created for phi functions at the begin of exception
1121   // handlers, so assign operands manually here
1122   for_each_phi_fun(block(), phi,
1123                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1124 
1125   LIR_Opr thread_reg = getThreadPointer();
1126   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1127                exceptionOopOpr());
1128   __ move_wide(LIR_OprFact::oopConst(NULL),
1129                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1130   __ move_wide(LIR_OprFact::oopConst(NULL),
1131                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1132 
1133   LIR_Opr result = new_register(T_OBJECT);
1134   __ move(exceptionOopOpr(), result);
1135   set_result(x, result);
1136 }
1137 
1138 
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //                        visitor functions
1144 //----------------------------------------------------------------------
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 
1149 void LIRGenerator::do_Phi(Phi* x) {
1150   // phi functions are never visited directly
1151   ShouldNotReachHere();
1152 }
1153 
1154 
1155 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1156 void LIRGenerator::do_Constant(Constant* x) {
1157   if (x->state_before() != NULL) {
1158     // Any constant with a ValueStack requires patching so emit the patch here
1159     LIR_Opr reg = rlock_result(x);
1160     CodeEmitInfo* info = state_for(x, x->state_before());
1161     __ oop2reg_patch(NULL, reg, info);
1162   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1163     if (!x->is_pinned()) {
1164       // unpinned constants are handled specially so that they can be
1165       // put into registers when they are used multiple times within a
1166       // block.  After the block completes their operand will be
1167       // cleared so that other blocks can't refer to that register.
1168       set_result(x, load_constant(x));
1169     } else {
1170       LIR_Opr res = x->operand();
1171       if (!res->is_valid()) {
1172         res = LIR_OprFact::value_type(x->type());
1173       }
1174       if (res->is_constant()) {
1175         LIR_Opr reg = rlock_result(x);
1176         __ move(res, reg);
1177       } else {
1178         set_result(x, res);
1179       }
1180     }
1181   } else {
1182     set_result(x, LIR_OprFact::value_type(x->type()));
1183   }
1184 }
1185 
1186 
1187 void LIRGenerator::do_Local(Local* x) {
1188   // operand_for_instruction has the side effect of setting the result
1189   // so there's no need to do it here.
1190   operand_for_instruction(x);
1191 }
1192 
1193 
1194 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1195   Unimplemented();
1196 }
1197 
1198 
1199 void LIRGenerator::do_Return(Return* x) {
1200   if (compilation()->env()->dtrace_method_probes()) {
1201     BasicTypeList signature;
1202     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1203     signature.append(T_METADATA); // Method*
1204     LIR_OprList* args = new LIR_OprList();
1205     args->append(getThreadPointer());
1206     LIR_Opr meth = new_register(T_METADATA);
1207     __ metadata2reg(method()->constant_encoding(), meth);
1208     args->append(meth);
1209     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1210   }
1211 
1212   if (x->type()->is_void()) {
1213     __ return_op(LIR_OprFact::illegalOpr);
1214   } else {
1215     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1216     LIRItem result(x->result(), this);
1217 
1218     result.load_item_force(reg);
1219     __ return_op(result.result());
1220   }
1221   set_no_result(x);
1222 }
1223 
1224 // Examble: ref.get()
1225 // Combination of LoadField and g1 pre-write barrier
1226 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1227 
1228   const int referent_offset = java_lang_ref_Reference::referent_offset;
1229   guarantee(referent_offset > 0, "referent offset not initialized");
1230 
1231   assert(x->number_of_arguments() == 1, "wrong type");
1232 
1233   LIRItem reference(x->argument_at(0), this);
1234   reference.load_item();
1235 
1236   // need to perform the null check on the reference objecy
1237   CodeEmitInfo* info = NULL;
1238   if (x->needs_null_check()) {
1239     info = state_for(x);
1240   }
1241 
1242   LIR_Opr result = rlock_result(x, T_OBJECT);
1243   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1244                  reference, LIR_OprFact::intConst(referent_offset), result);
1245 }
1246 
1247 // Example: clazz.isInstance(object)
1248 void LIRGenerator::do_isInstance(Intrinsic* x) {
1249   assert(x->number_of_arguments() == 2, "wrong type");
1250 
1251   // TODO could try to substitute this node with an equivalent InstanceOf
1252   // if clazz is known to be a constant Class. This will pick up newly found
1253   // constants after HIR construction. I'll leave this to a future change.
1254 
1255   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1256   // could follow the aastore example in a future change.
1257 
1258   LIRItem clazz(x->argument_at(0), this);
1259   LIRItem object(x->argument_at(1), this);
1260   clazz.load_item();
1261   object.load_item();
1262   LIR_Opr result = rlock_result(x);
1263 
1264   // need to perform null check on clazz
1265   if (x->needs_null_check()) {
1266     CodeEmitInfo* info = state_for(x);
1267     __ null_check(clazz.result(), info);
1268   }
1269 
1270   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1271                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1272                                      x->type(),
1273                                      NULL); // NULL CodeEmitInfo results in a leaf call
1274   __ move(call_result, result);
1275 }
1276 
1277 // Example: object.getClass ()
1278 void LIRGenerator::do_getClass(Intrinsic* x) {
1279   assert(x->number_of_arguments() == 1, "wrong type");
1280 
1281   LIRItem rcvr(x->argument_at(0), this);
1282   rcvr.load_item();
1283   LIR_Opr temp = new_register(T_METADATA);
1284   LIR_Opr result = rlock_result(x);
1285 
1286   // need to perform the null check on the rcvr
1287   CodeEmitInfo* info = NULL;
1288   if (x->needs_null_check()) {
1289     info = state_for(x);
1290   }
1291 
1292   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1293   // meaning of these two is mixed up (see JDK-8026837).
1294   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1295   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1296   // mirror = ((OopHandle)mirror)->resolve();
1297   access_load(IN_NATIVE, T_OBJECT,
1298               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1299 }
1300 
1301 // java.lang.Class::isPrimitive()
1302 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1303   assert(x->number_of_arguments() == 1, "wrong type");
1304 
1305   LIRItem rcvr(x->argument_at(0), this);
1306   rcvr.load_item();
1307   LIR_Opr temp = new_register(T_METADATA);
1308   LIR_Opr result = rlock_result(x);
1309 
1310   CodeEmitInfo* info = NULL;
1311   if (x->needs_null_check()) {
1312     info = state_for(x);
1313   }
1314 
1315   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1316   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1317   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1318 }
1319 
1320 
1321 // Example: Thread.currentThread()
1322 void LIRGenerator::do_currentThread(Intrinsic* x) {
1323   assert(x->number_of_arguments() == 0, "wrong type");
1324   LIR_Opr reg = rlock_result(x);
1325   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1326 }
1327 
1328 
1329 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1330   assert(x->number_of_arguments() == 1, "wrong type");
1331   LIRItem receiver(x->argument_at(0), this);
1332 
1333   receiver.load_item();
1334   BasicTypeList signature;
1335   signature.append(T_OBJECT); // receiver
1336   LIR_OprList* args = new LIR_OprList();
1337   args->append(receiver.result());
1338   CodeEmitInfo* info = state_for(x, x->state());
1339   call_runtime(&signature, args,
1340                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1341                voidType, info);
1342 
1343   set_no_result(x);
1344 }
1345 
1346 
1347 //------------------------local access--------------------------------------
1348 
1349 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1350   if (x->operand()->is_illegal()) {
1351     Constant* c = x->as_Constant();
1352     if (c != NULL) {
1353       x->set_operand(LIR_OprFact::value_type(c->type()));
1354     } else {
1355       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1356       // allocate a virtual register for this local or phi
1357       x->set_operand(rlock(x));
1358       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1359     }
1360   }
1361   return x->operand();
1362 }
1363 
1364 
1365 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1366   if (opr->is_virtual()) {
1367     return instruction_for_vreg(opr->vreg_number());
1368   }
1369   return NULL;
1370 }
1371 
1372 
1373 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1374   if (reg_num < _instruction_for_operand.length()) {
1375     return _instruction_for_operand.at(reg_num);
1376   }
1377   return NULL;
1378 }
1379 
1380 
1381 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1382   if (_vreg_flags.size_in_bits() == 0) {
1383     BitMap2D temp(100, num_vreg_flags);
1384     _vreg_flags = temp;
1385   }
1386   _vreg_flags.at_put_grow(vreg_num, f, true);
1387 }
1388 
1389 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1390   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1391     return false;
1392   }
1393   return _vreg_flags.at(vreg_num, f);
1394 }
1395 
1396 
1397 // Block local constant handling.  This code is useful for keeping
1398 // unpinned constants and constants which aren't exposed in the IR in
1399 // registers.  Unpinned Constant instructions have their operands
1400 // cleared when the block is finished so that other blocks can't end
1401 // up referring to their registers.
1402 
1403 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1404   assert(!x->is_pinned(), "only for unpinned constants");
1405   _unpinned_constants.append(x);
1406   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1407 }
1408 
1409 
1410 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1411   BasicType t = c->type();
1412   for (int i = 0; i < _constants.length(); i++) {
1413     LIR_Const* other = _constants.at(i);
1414     if (t == other->type()) {
1415       switch (t) {
1416       case T_INT:
1417       case T_FLOAT:
1418         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1419         break;
1420       case T_LONG:
1421       case T_DOUBLE:
1422         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1423         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1424         break;
1425       case T_OBJECT:
1426         if (c->as_jobject() != other->as_jobject()) continue;
1427         break;
1428       default:
1429         break;
1430       }
1431       return _reg_for_constants.at(i);
1432     }
1433   }
1434 
1435   LIR_Opr result = new_register(t);
1436   __ move((LIR_Opr)c, result);
1437   _constants.append(c);
1438   _reg_for_constants.append(result);
1439   return result;
1440 }
1441 
1442 //------------------------field access--------------------------------------
1443 
1444 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1445   assert(x->number_of_arguments() == 4, "wrong type");
1446   LIRItem obj   (x->argument_at(0), this);  // object
1447   LIRItem offset(x->argument_at(1), this);  // offset of field
1448   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1449   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1450   assert(obj.type()->tag() == objectTag, "invalid type");
1451 
1452   // In 64bit the type can be long, sparc doesn't have this assert
1453   // assert(offset.type()->tag() == intTag, "invalid type");
1454 
1455   assert(cmp.type()->tag() == type->tag(), "invalid type");
1456   assert(val.type()->tag() == type->tag(), "invalid type");
1457 
1458   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1459                                             obj, offset, cmp, val);
1460   set_result(x, result);
1461 }
1462 
1463 // Comment copied form templateTable_i486.cpp
1464 // ----------------------------------------------------------------------------
1465 // Volatile variables demand their effects be made known to all CPU's in
1466 // order.  Store buffers on most chips allow reads & writes to reorder; the
1467 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1468 // memory barrier (i.e., it's not sufficient that the interpreter does not
1469 // reorder volatile references, the hardware also must not reorder them).
1470 //
1471 // According to the new Java Memory Model (JMM):
1472 // (1) All volatiles are serialized wrt to each other.
1473 // ALSO reads & writes act as aquire & release, so:
1474 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1475 // the read float up to before the read.  It's OK for non-volatile memory refs
1476 // that happen before the volatile read to float down below it.
1477 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1478 // that happen BEFORE the write float down to after the write.  It's OK for
1479 // non-volatile memory refs that happen after the volatile write to float up
1480 // before it.
1481 //
1482 // We only put in barriers around volatile refs (they are expensive), not
1483 // _between_ memory refs (that would require us to track the flavor of the
1484 // previous memory refs).  Requirements (2) and (3) require some barriers
1485 // before volatile stores and after volatile loads.  These nearly cover
1486 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1487 // case is placed after volatile-stores although it could just as well go
1488 // before volatile-loads.
1489 
1490 
1491 void LIRGenerator::do_StoreField(StoreField* x) {
1492   bool needs_patching = x->needs_patching();
1493   bool is_volatile = x->field()->is_volatile();
1494   BasicType field_type = x->field_type();
1495 
1496   CodeEmitInfo* info = NULL;
1497   if (needs_patching) {
1498     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1499     info = state_for(x, x->state_before());
1500   } else if (x->needs_null_check()) {
1501     NullCheck* nc = x->explicit_null_check();
1502     if (nc == NULL) {
1503       info = state_for(x);
1504     } else {
1505       info = state_for(nc);
1506     }
1507   }
1508 
1509   LIRItem object(x->obj(), this);
1510   LIRItem value(x->value(),  this);
1511 
1512   object.load_item();
1513 
1514   if (is_volatile || needs_patching) {
1515     // load item if field is volatile (fewer special cases for volatiles)
1516     // load item if field not initialized
1517     // load item if field not constant
1518     // because of code patching we cannot inline constants
1519     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1520       value.load_byte_item();
1521     } else  {
1522       value.load_item();
1523     }
1524   } else {
1525     value.load_for_store(field_type);
1526   }
1527 
1528   set_no_result(x);
1529 
1530 #ifndef PRODUCT
1531   if (PrintNotLoaded && needs_patching) {
1532     tty->print_cr("   ###class not loaded at store_%s bci %d",
1533                   x->is_static() ?  "static" : "field", x->printable_bci());
1534   }
1535 #endif
1536 
1537   if (x->needs_null_check() &&
1538       (needs_patching ||
1539        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1540     if (needs_patching && x->field()->is_flattenable()) {
1541       // We are storing a field of type "QT;" into holder class H, but H is not yet
1542       // loaded. (If H had been loaded, then T must also have already been loaded
1543       // due to the "Q" signature, and needs_patching would be false).
1544       assert(!x->field()->holder()->is_loaded(), "must be");
1545       // We don't know the offset of this field. Let's deopt and recompile.
1546       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1547                                           Deoptimization::Reason_unloaded,
1548                                           Deoptimization::Action_make_not_entrant);
1549       __ branch(lir_cond_always, T_ILLEGAL, stub);
1550     } else {
1551       // Emit an explicit null check because the offset is too large.
1552       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1553       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1554       __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1555     }
1556   }
1557 
1558   DecoratorSet decorators = IN_HEAP;
1559   if (is_volatile) {
1560     decorators |= MO_SEQ_CST;
1561   }
1562   if (needs_patching) {
1563     decorators |= C1_NEEDS_PATCHING;
1564   }
1565 
1566   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1567                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1568 }
1569 
1570 // FIXME -- I can't find any other way to pass an address to access_load_at().
1571 class TempResolvedAddress: public Instruction {
1572  public:
1573   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1574     set_operand(addr);
1575   }
1576   virtual void input_values_do(ValueVisitor*) {}
1577   virtual void visit(InstructionVisitor* v)   {}
1578   virtual const char* name() const  { return "TempResolvedAddress"; }
1579 };
1580 
1581 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1582   // Find the starting address of the source (inside the array)
1583   ciType* array_type = array.value()->declared_type();
1584   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1585   assert(value_array_klass->is_loaded(), "must be");
1586 
1587   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1588   int array_header_size = value_array_klass->array_header_in_bytes();
1589   int shift = value_array_klass->log2_element_size();
1590 
1591 #ifndef _LP64
1592   LIR_Opr index_op = new_register(T_INT);
1593   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1594   // the top (shift+1) bits of index_op must be zero, or
1595   // else throw ArrayIndexOutOfBoundsException
1596   if (index.result()->is_constant()) {
1597     jint const_index = index.result()->as_jint();
1598     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1599   } else {
1600     __ shift_left(index_op, shift, index.result());
1601   }
1602 #else
1603   LIR_Opr index_op = new_register(T_LONG);
1604   if (index.result()->is_constant()) {
1605     jint const_index = index.result()->as_jint();
1606     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1607   } else {
1608     __ convert(Bytecodes::_i2l, index.result(), index_op);
1609     // Need to shift manually, as LIR_Address can scale only up to 3.
1610     __ shift_left(index_op, shift, index_op);
1611   }
1612 #endif
1613 
1614   LIR_Opr elm_op = new_pointer_register();
1615   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1616   __ leal(LIR_OprFact::address(elm_address), elm_op);
1617 
1618   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1619     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1620     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1621     int obj_offset = inner_field->offset();
1622     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1623 
1624     BasicType field_type = inner_field->type()->basic_type();
1625     switch (field_type) {
1626     case T_BYTE:
1627     case T_BOOLEAN:
1628     case T_SHORT:
1629     case T_CHAR:
1630      field_type = T_INT;
1631       break;
1632     default:
1633       break;
1634     }
1635 
1636     LIR_Opr temp = new_register(field_type);
1637     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1638     LIRItem elm_item(elm_resolved_addr, this);
1639 
1640     DecoratorSet decorators = IN_HEAP;
1641     if (is_load) {
1642       access_load_at(decorators, field_type,
1643                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1644                      NULL, NULL);
1645       access_store_at(decorators, field_type,
1646                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1647                       NULL, NULL);
1648     } else {
1649       access_load_at(decorators, field_type,
1650                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1651                      NULL, NULL);
1652       access_store_at(decorators, field_type,
1653                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1654                       NULL, NULL);
1655     }
1656   }
1657 }
1658 
1659 void LIRGenerator::check_flattened_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1660   LIR_Opr tmp = new_register(T_METADATA);
1661   __ check_flattened_array(array, value, tmp, slow_path);
1662 }
1663 
1664 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1665   LabelObj* L_end = new LabelObj();
1666   LIR_Opr tmp = new_register(T_METADATA);
1667   __ check_null_free_array(array.result(), tmp);
1668   __ branch(lir_cond_equal, T_ILLEGAL, L_end->label());
1669   __ null_check(value.result(), info);
1670   __ branch_destination(L_end->label());
1671 }
1672 
1673 bool LIRGenerator::needs_flattened_array_store_check(StoreIndexed* x) {
1674   if (ValueArrayFlatten && x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
1675     ciType* type = x->value()->declared_type();
1676     if (type != NULL && type->is_klass()) {
1677       ciKlass* klass = type->as_klass();
1678       if (klass->is_loaded() &&
1679           !(klass->is_valuetype() && klass->as_value_klass()->flatten_array()) &&
1680           !klass->is_java_lang_Object() &&
1681           !klass->is_interface()) {
1682         // This is known to be a non-flattenable object. If the array is flattened,
1683         // it will be caught by the code generated by array_store_check().
1684         return false;
1685       }
1686     }
1687     // We're not 100% sure, so let's do the flattened_array_store_check.
1688     return true;
1689   }
1690   return false;
1691 }
1692 
1693 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1694   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1695 }
1696 
1697 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1698   assert(x->is_pinned(),"");
1699   assert(x->elt_type() != T_ARRAY, "never used");
1700   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1701   bool needs_range_check = x->compute_needs_range_check();
1702   bool use_length = x->length() != NULL;
1703   bool obj_store = x->elt_type() == T_OBJECT;
1704   bool needs_store_check = obj_store && !(is_loaded_flattened_array && x->is_exact_flattened_array_store()) &&
1705                                         (x->value()->as_Constant() == NULL ||
1706                                          !get_jobject_constant(x->value())->is_null_object() ||
1707                                          x->should_profile());
1708 
1709   LIRItem array(x->array(), this);
1710   LIRItem index(x->index(), this);
1711   LIRItem value(x->value(), this);
1712   LIRItem length(this);
1713 
1714   array.load_item();
1715   index.load_nonconstant();
1716 
1717   if (use_length && needs_range_check) {
1718     length.set_instruction(x->length());
1719     length.load_item();
1720   }
1721 
1722   if (needs_store_check || x->check_boolean()
1723       || is_loaded_flattened_array || needs_flattened_array_store_check(x) || needs_null_free_array_store_check(x)) {
1724     value.load_item();
1725   } else {
1726     value.load_for_store(x->elt_type());
1727   }
1728 
1729   set_no_result(x);
1730 
1731   // the CodeEmitInfo must be duplicated for each different
1732   // LIR-instruction because spilling can occur anywhere between two
1733   // instructions and so the debug information must be different
1734   CodeEmitInfo* range_check_info = state_for(x);
1735   CodeEmitInfo* null_check_info = NULL;
1736   if (x->needs_null_check()) {
1737     null_check_info = new CodeEmitInfo(range_check_info);
1738   }
1739 
1740   if (GenerateRangeChecks && needs_range_check) {
1741     if (use_length) {
1742       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1743       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1744     } else {
1745       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1746       // range_check also does the null check
1747       null_check_info = NULL;
1748     }
1749   }
1750 
1751   if (GenerateArrayStoreCheck && needs_store_check) {
1752     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1753     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1754   }
1755 
1756   if (is_loaded_flattened_array) {
1757     if (!x->value()->is_never_null()) {
1758       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1759     }
1760     access_flattened_array(false, array, index, value);
1761   } else {
1762     StoreFlattenedArrayStub* slow_path = NULL;
1763 
1764     if (needs_flattened_array_store_check(x)) {
1765       // Check if we indeed have a flattened array
1766       index.load_item();
1767       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x));
1768       check_flattened_array(array.result(), value.result(), slow_path);
1769     } else if (needs_null_free_array_store_check(x)) {
1770       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1771       check_null_free_array(array, value, info);
1772     }
1773 
1774     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1775     if (x->check_boolean()) {
1776       decorators |= C1_MASK_BOOLEAN;
1777     }
1778 
1779     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1780                     NULL, null_check_info);
1781     if (slow_path != NULL) {
1782       __ branch_destination(slow_path->continuation());
1783     }
1784   }
1785 }
1786 
1787 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1788                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1789                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1790   decorators |= ACCESS_READ;
1791   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1792   if (access.is_raw()) {
1793     _barrier_set->BarrierSetC1::load_at(access, result);
1794   } else {
1795     _barrier_set->load_at(access, result);
1796   }
1797 }
1798 
1799 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1800                                LIR_Opr addr, LIR_Opr result) {
1801   decorators |= ACCESS_READ;
1802   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1803   access.set_resolved_addr(addr);
1804   if (access.is_raw()) {
1805     _barrier_set->BarrierSetC1::load(access, result);
1806   } else {
1807     _barrier_set->load(access, result);
1808   }
1809 }
1810 
1811 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1812                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1813                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1814   decorators |= ACCESS_WRITE;
1815   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1816   if (access.is_raw()) {
1817     _barrier_set->BarrierSetC1::store_at(access, value);
1818   } else {
1819     _barrier_set->store_at(access, value);
1820   }
1821 }
1822 
1823 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1824                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1825   decorators |= ACCESS_READ;
1826   decorators |= ACCESS_WRITE;
1827   // Atomic operations are SEQ_CST by default
1828   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1829   LIRAccess access(this, decorators, base, offset, type);
1830   if (access.is_raw()) {
1831     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1832   } else {
1833     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1834   }
1835 }
1836 
1837 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1838                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1839   decorators |= ACCESS_READ;
1840   decorators |= ACCESS_WRITE;
1841   // Atomic operations are SEQ_CST by default
1842   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1843   LIRAccess access(this, decorators, base, offset, type);
1844   if (access.is_raw()) {
1845     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1846   } else {
1847     return _barrier_set->atomic_xchg_at(access, value);
1848   }
1849 }
1850 
1851 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1852                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1853   decorators |= ACCESS_READ;
1854   decorators |= ACCESS_WRITE;
1855   // Atomic operations are SEQ_CST by default
1856   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1857   LIRAccess access(this, decorators, base, offset, type);
1858   if (access.is_raw()) {
1859     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1860   } else {
1861     return _barrier_set->atomic_add_at(access, value);
1862   }
1863 }
1864 
1865 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1866   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1867   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1868     decorators |= ACCESS_READ | ACCESS_WRITE;
1869   }
1870 
1871   return _barrier_set->resolve(this, decorators, obj);
1872 }
1873 
1874 Value LIRGenerator::flattenable_load_field_prolog(LoadField* x, CodeEmitInfo* info) {
1875   ciField* field = x->field();
1876   ciInstanceKlass* holder = field->holder();
1877   Value default_value = NULL;
1878 
1879   // Unloaded "QV;" klasses are represented by a ciInstanceKlass
1880   bool field_type_unloaded = field->type()->is_instance_klass() && !field->type()->as_instance_klass()->is_loaded();
1881 
1882   // Check for edge cases (1), (2) and (3) for getstatic and getfield
1883   bool deopt = false;
1884   bool need_default = false;
1885   if (field->is_static()) {
1886       // (1) holder is unloaded -- no problem: it will be loaded by patching, and field offset will be determined.
1887       // No check needed here.
1888 
1889     if (field_type_unloaded) {
1890       // (2) field type is unloaded -- problem: we don't know what the default value is. Let's deopt.
1891       //                               FIXME: consider getting the default value in patching code.
1892       deopt = true;
1893     } else {
1894       need_default = true;
1895     }
1896 
1897       // (3) field is not flattened -- we don't care: static fields are never flattened.
1898       // No check needed here.
1899   } else {
1900     if (!holder->is_loaded()) {
1901       // (1) holder is unloaded -- problem: we needed the field offset back in GraphBuilder::access_field()
1902       //                           FIXME: consider getting field offset in patching code (but only if the field
1903       //                           type was loaded at compilation time).
1904       deopt = true;
1905     } else if (field_type_unloaded) {
1906       // (2) field type is unloaded -- problem: we don't know whether it's flattened or not. Let's deopt
1907       deopt = true;
1908     } else if (!field->is_flattened()) {
1909       // (3) field is not flattened -- need default value in cases of uninitialized field
1910       need_default = true;
1911     }
1912   }
1913 
1914   if (deopt) {
1915     assert(!need_default, "deopt and need_default cannot both be true");
1916     assert(x->needs_patching(), "must be");
1917     assert(info != NULL, "must be");
1918     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1919                                         Deoptimization::Reason_unloaded,
1920                                         Deoptimization::Action_make_not_entrant);
1921     __ branch(lir_cond_always, T_ILLEGAL, stub);
1922   } else if (need_default) {
1923     assert(!field_type_unloaded, "must be");
1924     assert(field->type()->is_valuetype(), "must be");
1925     ciValueKlass* value_klass = field->type()->as_value_klass();
1926     assert(value_klass->is_loaded(), "must be");
1927 
1928     if (field->is_static() && holder->is_loaded()) {
1929       ciInstance* mirror = field->holder()->java_mirror();
1930       ciObject* val = mirror->field_value(field).as_object();
1931       if (val->is_null_object()) {
1932         // This is a non-nullable static field, but it's not initialized.
1933         // We need to do a null check, and replace it with the default value.
1934       } else {
1935         // No need to perform null check on this static field
1936         need_default = false;
1937       }
1938     }
1939 
1940     if (need_default) {
1941       default_value = new Constant(new InstanceConstant(value_klass->default_value_instance()));
1942     }
1943   }
1944 
1945   return default_value;
1946 }
1947 
1948 void LIRGenerator::do_LoadField(LoadField* x) {
1949   bool needs_patching = x->needs_patching();
1950   bool is_volatile = x->field()->is_volatile();
1951   BasicType field_type = x->field_type();
1952 
1953   CodeEmitInfo* info = NULL;
1954   if (needs_patching) {
1955     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1956     info = state_for(x, x->state_before());
1957   } else if (x->needs_null_check()) {
1958     NullCheck* nc = x->explicit_null_check();
1959     if (nc == NULL) {
1960       info = state_for(x);
1961     } else {
1962       info = state_for(nc);
1963     }
1964   }
1965 
1966   LIRItem object(x->obj(), this);
1967 
1968   object.load_item();
1969 
1970 #ifndef PRODUCT
1971   if (PrintNotLoaded && needs_patching) {
1972     tty->print_cr("   ###class not loaded at load_%s bci %d",
1973                   x->is_static() ?  "static" : "field", x->printable_bci());
1974   }
1975 #endif
1976 
1977   Value default_value = NULL;
1978   if (x->field()->is_flattenable()) {
1979     default_value = flattenable_load_field_prolog(x, info);
1980   }
1981 
1982   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1983   if (x->needs_null_check() &&
1984       (needs_patching ||
1985        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1986        stress_deopt)) {
1987     LIR_Opr obj = object.result();
1988     if (stress_deopt) {
1989       obj = new_register(T_OBJECT);
1990       __ move(LIR_OprFact::oopConst(NULL), obj);
1991     }
1992     // Emit an explicit null check because the offset is too large.
1993     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1994     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1995     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1996   }
1997 
1998   DecoratorSet decorators = IN_HEAP;
1999   if (is_volatile) {
2000     decorators |= MO_SEQ_CST;
2001   }
2002   if (needs_patching) {
2003     decorators |= C1_NEEDS_PATCHING;
2004   }
2005 
2006   LIR_Opr result = rlock_result(x, field_type);
2007   access_load_at(decorators, field_type,
2008                  object, LIR_OprFact::intConst(x->offset()), result,
2009                  info ? new CodeEmitInfo(info) : NULL, info);
2010 
2011   if (default_value != NULL) {
2012     LabelObj* L_end = new LabelObj();
2013     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
2014     __ branch(lir_cond_notEqual, T_OBJECT, L_end->label());
2015 
2016     LIRItem dv(default_value, this);
2017     dv.load_item();
2018     __ move(dv.result(), result);
2019 
2020     __ branch_destination(L_end->label());
2021   }
2022 }
2023 
2024 
2025 //------------------------java.nio.Buffer.checkIndex------------------------
2026 
2027 // int java.nio.Buffer.checkIndex(int)
2028 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
2029   // NOTE: by the time we are in checkIndex() we are guaranteed that
2030   // the buffer is non-null (because checkIndex is package-private and
2031   // only called from within other methods in the buffer).
2032   assert(x->number_of_arguments() == 2, "wrong type");
2033   LIRItem buf  (x->argument_at(0), this);
2034   LIRItem index(x->argument_at(1), this);
2035   buf.load_item();
2036   index.load_item();
2037 
2038   LIR_Opr result = rlock_result(x);
2039   if (GenerateRangeChecks) {
2040     CodeEmitInfo* info = state_for(x);
2041     CodeStub* stub = new RangeCheckStub(info, index.result());
2042     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
2043     if (index.result()->is_constant()) {
2044       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
2045       __ branch(lir_cond_belowEqual, T_INT, stub);
2046     } else {
2047       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
2048                   java_nio_Buffer::limit_offset(), T_INT, info);
2049       __ branch(lir_cond_aboveEqual, T_INT, stub);
2050     }
2051     __ move(index.result(), result);
2052   } else {
2053     // Just load the index into the result register
2054     __ move(index.result(), result);
2055   }
2056 }
2057 
2058 
2059 //------------------------array access--------------------------------------
2060 
2061 
2062 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2063   LIRItem array(x->array(), this);
2064   array.load_item();
2065   LIR_Opr reg = rlock_result(x);
2066 
2067   CodeEmitInfo* info = NULL;
2068   if (x->needs_null_check()) {
2069     NullCheck* nc = x->explicit_null_check();
2070     if (nc == NULL) {
2071       info = state_for(x);
2072     } else {
2073       info = state_for(nc);
2074     }
2075     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2076       LIR_Opr obj = new_register(T_OBJECT);
2077       __ move(LIR_OprFact::oopConst(NULL), obj);
2078       __ null_check(obj, new CodeEmitInfo(info));
2079     }
2080   }
2081   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2082 }
2083 
2084 
2085 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2086   bool use_length = x->length() != NULL;
2087   LIRItem array(x->array(), this);
2088   LIRItem index(x->index(), this);
2089   LIRItem length(this);
2090   bool needs_range_check = x->compute_needs_range_check();
2091 
2092   if (use_length && needs_range_check) {
2093     length.set_instruction(x->length());
2094     length.load_item();
2095   }
2096 
2097   array.load_item();
2098   if (index.is_constant() && can_inline_as_constant(x->index())) {
2099     // let it be a constant
2100     index.dont_load_item();
2101   } else {
2102     index.load_item();
2103   }
2104 
2105   CodeEmitInfo* range_check_info = state_for(x);
2106   CodeEmitInfo* null_check_info = NULL;
2107   if (x->needs_null_check()) {
2108     NullCheck* nc = x->explicit_null_check();
2109     if (nc != NULL) {
2110       null_check_info = state_for(nc);
2111     } else {
2112       null_check_info = range_check_info;
2113     }
2114     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2115       LIR_Opr obj = new_register(T_OBJECT);
2116       __ move(LIR_OprFact::oopConst(NULL), obj);
2117       __ null_check(obj, new CodeEmitInfo(null_check_info));
2118     }
2119   }
2120 
2121   if (GenerateRangeChecks && needs_range_check) {
2122     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2123       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
2124     } else if (use_length) {
2125       // TODO: use a (modified) version of array_range_check that does not require a
2126       //       constant length to be loaded to a register
2127       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2128       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
2129     } else {
2130       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2131       // The range check performs the null check, so clear it out for the load
2132       null_check_info = NULL;
2133     }
2134   }
2135 
2136   if (x->vt() != NULL) {
2137     assert(x->array()->is_loaded_flattened_array(), "must be");
2138     // Find the destination address (of the NewValueTypeInstance).
2139     LIR_Opr obj = x->vt()->operand();
2140     LIRItem obj_item(x->vt(), this);
2141 
2142     access_flattened_array(true, array, index, obj_item);
2143     set_no_result(x);
2144   } else {
2145     LIR_Opr result = rlock_result(x, x->elt_type());
2146     LoadFlattenedArrayStub* slow_path = NULL;
2147 
2148     if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
2149       index.load_item();
2150       // if we are loading from flattened array, load it using a runtime call
2151       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x));
2152       check_flattened_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2153     }
2154 
2155     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2156     access_load_at(decorators, x->elt_type(),
2157                    array, index.result(), result,
2158                    NULL, null_check_info);
2159 
2160     if (slow_path != NULL) {
2161       __ branch_destination(slow_path->continuation());
2162     }
2163   }
2164 }
2165 
2166 
2167 void LIRGenerator::do_NullCheck(NullCheck* x) {
2168   if (x->can_trap()) {
2169     LIRItem value(x->obj(), this);
2170     value.load_item();
2171     CodeEmitInfo* info = state_for(x);
2172     __ null_check(value.result(), info);
2173   }
2174 }
2175 
2176 
2177 void LIRGenerator::do_TypeCast(TypeCast* x) {
2178   LIRItem value(x->obj(), this);
2179   value.load_item();
2180   // the result is the same as from the node we are casting
2181   set_result(x, value.result());
2182 }
2183 
2184 
2185 void LIRGenerator::do_Throw(Throw* x) {
2186   LIRItem exception(x->exception(), this);
2187   exception.load_item();
2188   set_no_result(x);
2189   LIR_Opr exception_opr = exception.result();
2190   CodeEmitInfo* info = state_for(x, x->state());
2191 
2192 #ifndef PRODUCT
2193   if (PrintC1Statistics) {
2194     increment_counter(Runtime1::throw_count_address(), T_INT);
2195   }
2196 #endif
2197 
2198   // check if the instruction has an xhandler in any of the nested scopes
2199   bool unwind = false;
2200   if (info->exception_handlers()->length() == 0) {
2201     // this throw is not inside an xhandler
2202     unwind = true;
2203   } else {
2204     // get some idea of the throw type
2205     bool type_is_exact = true;
2206     ciType* throw_type = x->exception()->exact_type();
2207     if (throw_type == NULL) {
2208       type_is_exact = false;
2209       throw_type = x->exception()->declared_type();
2210     }
2211     if (throw_type != NULL && throw_type->is_instance_klass()) {
2212       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2213       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2214     }
2215   }
2216 
2217   // do null check before moving exception oop into fixed register
2218   // to avoid a fixed interval with an oop during the null check.
2219   // Use a copy of the CodeEmitInfo because debug information is
2220   // different for null_check and throw.
2221   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2222     // if the exception object wasn't created using new then it might be null.
2223     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2224   }
2225 
2226   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2227     // we need to go through the exception lookup path to get JVMTI
2228     // notification done
2229     unwind = false;
2230   }
2231 
2232   // move exception oop into fixed register
2233   __ move(exception_opr, exceptionOopOpr());
2234 
2235   if (unwind) {
2236     __ unwind_exception(exceptionOopOpr());
2237   } else {
2238     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2239   }
2240 }
2241 
2242 
2243 void LIRGenerator::do_RoundFP(RoundFP* x) {
2244   LIRItem input(x->input(), this);
2245   input.load_item();
2246   LIR_Opr input_opr = input.result();
2247   assert(input_opr->is_register(), "why round if value is not in a register?");
2248   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2249   if (input_opr->is_single_fpu()) {
2250     set_result(x, round_item(input_opr)); // This code path not currently taken
2251   } else {
2252     LIR_Opr result = new_register(T_DOUBLE);
2253     set_vreg_flag(result, must_start_in_memory);
2254     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2255     set_result(x, result);
2256   }
2257 }
2258 
2259 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2260 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2261 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2262   LIRItem base(x->base(), this);
2263   LIRItem idx(this);
2264 
2265   base.load_item();
2266   if (x->has_index()) {
2267     idx.set_instruction(x->index());
2268     idx.load_nonconstant();
2269   }
2270 
2271   LIR_Opr reg = rlock_result(x, x->basic_type());
2272 
2273   int   log2_scale = 0;
2274   if (x->has_index()) {
2275     log2_scale = x->log2_scale();
2276   }
2277 
2278   assert(!x->has_index() || idx.value() == x->index(), "should match");
2279 
2280   LIR_Opr base_op = base.result();
2281   LIR_Opr index_op = idx.result();
2282 #ifndef _LP64
2283   if (base_op->type() == T_LONG) {
2284     base_op = new_register(T_INT);
2285     __ convert(Bytecodes::_l2i, base.result(), base_op);
2286   }
2287   if (x->has_index()) {
2288     if (index_op->type() == T_LONG) {
2289       LIR_Opr long_index_op = index_op;
2290       if (index_op->is_constant()) {
2291         long_index_op = new_register(T_LONG);
2292         __ move(index_op, long_index_op);
2293       }
2294       index_op = new_register(T_INT);
2295       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2296     } else {
2297       assert(x->index()->type()->tag() == intTag, "must be");
2298     }
2299   }
2300   // At this point base and index should be all ints.
2301   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2302   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2303 #else
2304   if (x->has_index()) {
2305     if (index_op->type() == T_INT) {
2306       if (!index_op->is_constant()) {
2307         index_op = new_register(T_LONG);
2308         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2309       }
2310     } else {
2311       assert(index_op->type() == T_LONG, "must be");
2312       if (index_op->is_constant()) {
2313         index_op = new_register(T_LONG);
2314         __ move(idx.result(), index_op);
2315       }
2316     }
2317   }
2318   // At this point base is a long non-constant
2319   // Index is a long register or a int constant.
2320   // We allow the constant to stay an int because that would allow us a more compact encoding by
2321   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2322   // move it into a register first.
2323   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2324   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2325                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2326 #endif
2327 
2328   BasicType dst_type = x->basic_type();
2329 
2330   LIR_Address* addr;
2331   if (index_op->is_constant()) {
2332     assert(log2_scale == 0, "must not have a scale");
2333     assert(index_op->type() == T_INT, "only int constants supported");
2334     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2335   } else {
2336 #ifdef X86
2337     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2338 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2339     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2340 #else
2341     if (index_op->is_illegal() || log2_scale == 0) {
2342       addr = new LIR_Address(base_op, index_op, dst_type);
2343     } else {
2344       LIR_Opr tmp = new_pointer_register();
2345       __ shift_left(index_op, log2_scale, tmp);
2346       addr = new LIR_Address(base_op, tmp, dst_type);
2347     }
2348 #endif
2349   }
2350 
2351   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2352     __ unaligned_move(addr, reg);
2353   } else {
2354     if (dst_type == T_OBJECT && x->is_wide()) {
2355       __ move_wide(addr, reg);
2356     } else {
2357       __ move(addr, reg);
2358     }
2359   }
2360 }
2361 
2362 
2363 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2364   int  log2_scale = 0;
2365   BasicType type = x->basic_type();
2366 
2367   if (x->has_index()) {
2368     log2_scale = x->log2_scale();
2369   }
2370 
2371   LIRItem base(x->base(), this);
2372   LIRItem value(x->value(), this);
2373   LIRItem idx(this);
2374 
2375   base.load_item();
2376   if (x->has_index()) {
2377     idx.set_instruction(x->index());
2378     idx.load_item();
2379   }
2380 
2381   if (type == T_BYTE || type == T_BOOLEAN) {
2382     value.load_byte_item();
2383   } else {
2384     value.load_item();
2385   }
2386 
2387   set_no_result(x);
2388 
2389   LIR_Opr base_op = base.result();
2390   LIR_Opr index_op = idx.result();
2391 
2392 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2393   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2394 #else
2395 #ifndef _LP64
2396   if (base_op->type() == T_LONG) {
2397     base_op = new_register(T_INT);
2398     __ convert(Bytecodes::_l2i, base.result(), base_op);
2399   }
2400   if (x->has_index()) {
2401     if (index_op->type() == T_LONG) {
2402       index_op = new_register(T_INT);
2403       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2404     }
2405   }
2406   // At this point base and index should be all ints and not constants
2407   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2408   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2409 #else
2410   if (x->has_index()) {
2411     if (index_op->type() == T_INT) {
2412       index_op = new_register(T_LONG);
2413       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2414     }
2415   }
2416   // At this point base and index are long and non-constant
2417   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2418   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2419 #endif
2420 
2421   if (log2_scale != 0) {
2422     // temporary fix (platform dependent code without shift on Intel would be better)
2423     // TODO: ARM also allows embedded shift in the address
2424     LIR_Opr tmp = new_pointer_register();
2425     if (TwoOperandLIRForm) {
2426       __ move(index_op, tmp);
2427       index_op = tmp;
2428     }
2429     __ shift_left(index_op, log2_scale, tmp);
2430     if (!TwoOperandLIRForm) {
2431       index_op = tmp;
2432     }
2433   }
2434 
2435   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2436 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2437   __ move(value.result(), addr);
2438 }
2439 
2440 
2441 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2442   BasicType type = x->basic_type();
2443   LIRItem src(x->object(), this);
2444   LIRItem off(x->offset(), this);
2445 
2446   off.load_item();
2447   src.load_item();
2448 
2449   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2450 
2451   if (x->is_volatile()) {
2452     decorators |= MO_SEQ_CST;
2453   }
2454   if (type == T_BOOLEAN) {
2455     decorators |= C1_MASK_BOOLEAN;
2456   }
2457   if (type == T_ARRAY || type == T_OBJECT) {
2458     decorators |= ON_UNKNOWN_OOP_REF;
2459   }
2460 
2461   LIR_Opr result = rlock_result(x, type);
2462   access_load_at(decorators, type,
2463                  src, off.result(), result);
2464 }
2465 
2466 
2467 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2468   BasicType type = x->basic_type();
2469   LIRItem src(x->object(), this);
2470   LIRItem off(x->offset(), this);
2471   LIRItem data(x->value(), this);
2472 
2473   src.load_item();
2474   if (type == T_BOOLEAN || type == T_BYTE) {
2475     data.load_byte_item();
2476   } else {
2477     data.load_item();
2478   }
2479   off.load_item();
2480 
2481   set_no_result(x);
2482 
2483   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2484   if (type == T_ARRAY || type == T_OBJECT) {
2485     decorators |= ON_UNKNOWN_OOP_REF;
2486   }
2487   if (x->is_volatile()) {
2488     decorators |= MO_SEQ_CST;
2489   }
2490   access_store_at(decorators, type, src, off.result(), data.result());
2491 }
2492 
2493 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2494   BasicType type = x->basic_type();
2495   LIRItem src(x->object(), this);
2496   LIRItem off(x->offset(), this);
2497   LIRItem value(x->value(), this);
2498 
2499   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2500 
2501   if (type == T_ARRAY || type == T_OBJECT) {
2502     decorators |= ON_UNKNOWN_OOP_REF;
2503   }
2504 
2505   LIR_Opr result;
2506   if (x->is_add()) {
2507     result = access_atomic_add_at(decorators, type, src, off, value);
2508   } else {
2509     result = access_atomic_xchg_at(decorators, type, src, off, value);
2510   }
2511   set_result(x, result);
2512 }
2513 
2514 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2515   int lng = x->length();
2516 
2517   for (int i = 0; i < lng; i++) {
2518     SwitchRange* one_range = x->at(i);
2519     int low_key = one_range->low_key();
2520     int high_key = one_range->high_key();
2521     BlockBegin* dest = one_range->sux();
2522     if (low_key == high_key) {
2523       __ cmp(lir_cond_equal, value, low_key);
2524       __ branch(lir_cond_equal, T_INT, dest);
2525     } else if (high_key - low_key == 1) {
2526       __ cmp(lir_cond_equal, value, low_key);
2527       __ branch(lir_cond_equal, T_INT, dest);
2528       __ cmp(lir_cond_equal, value, high_key);
2529       __ branch(lir_cond_equal, T_INT, dest);
2530     } else {
2531       LabelObj* L = new LabelObj();
2532       __ cmp(lir_cond_less, value, low_key);
2533       __ branch(lir_cond_less, T_INT, L->label());
2534       __ cmp(lir_cond_lessEqual, value, high_key);
2535       __ branch(lir_cond_lessEqual, T_INT, dest);
2536       __ branch_destination(L->label());
2537     }
2538   }
2539   __ jump(default_sux);
2540 }
2541 
2542 
2543 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2544   SwitchRangeList* res = new SwitchRangeList();
2545   int len = x->length();
2546   if (len > 0) {
2547     BlockBegin* sux = x->sux_at(0);
2548     int key = x->lo_key();
2549     BlockBegin* default_sux = x->default_sux();
2550     SwitchRange* range = new SwitchRange(key, sux);
2551     for (int i = 0; i < len; i++, key++) {
2552       BlockBegin* new_sux = x->sux_at(i);
2553       if (sux == new_sux) {
2554         // still in same range
2555         range->set_high_key(key);
2556       } else {
2557         // skip tests which explicitly dispatch to the default
2558         if (sux != default_sux) {
2559           res->append(range);
2560         }
2561         range = new SwitchRange(key, new_sux);
2562       }
2563       sux = new_sux;
2564     }
2565     if (res->length() == 0 || res->last() != range)  res->append(range);
2566   }
2567   return res;
2568 }
2569 
2570 
2571 // we expect the keys to be sorted by increasing value
2572 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2573   SwitchRangeList* res = new SwitchRangeList();
2574   int len = x->length();
2575   if (len > 0) {
2576     BlockBegin* default_sux = x->default_sux();
2577     int key = x->key_at(0);
2578     BlockBegin* sux = x->sux_at(0);
2579     SwitchRange* range = new SwitchRange(key, sux);
2580     for (int i = 1; i < len; i++) {
2581       int new_key = x->key_at(i);
2582       BlockBegin* new_sux = x->sux_at(i);
2583       if (key+1 == new_key && sux == new_sux) {
2584         // still in same range
2585         range->set_high_key(new_key);
2586       } else {
2587         // skip tests which explicitly dispatch to the default
2588         if (range->sux() != default_sux) {
2589           res->append(range);
2590         }
2591         range = new SwitchRange(new_key, new_sux);
2592       }
2593       key = new_key;
2594       sux = new_sux;
2595     }
2596     if (res->length() == 0 || res->last() != range)  res->append(range);
2597   }
2598   return res;
2599 }
2600 
2601 
2602 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2603   LIRItem tag(x->tag(), this);
2604   tag.load_item();
2605   set_no_result(x);
2606 
2607   if (x->is_safepoint()) {
2608     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2609   }
2610 
2611   // move values into phi locations
2612   move_to_phi(x->state());
2613 
2614   int lo_key = x->lo_key();
2615   int len = x->length();
2616   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2617   LIR_Opr value = tag.result();
2618 
2619   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2620     ciMethod* method = x->state()->scope()->method();
2621     ciMethodData* md = method->method_data_or_null();
2622     assert(md != NULL, "Sanity");
2623     ciProfileData* data = md->bci_to_data(x->state()->bci());
2624     assert(data != NULL, "must have profiling data");
2625     assert(data->is_MultiBranchData(), "bad profile data?");
2626     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2627     LIR_Opr md_reg = new_register(T_METADATA);
2628     __ metadata2reg(md->constant_encoding(), md_reg);
2629     LIR_Opr data_offset_reg = new_pointer_register();
2630     LIR_Opr tmp_reg = new_pointer_register();
2631 
2632     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2633     for (int i = 0; i < len; i++) {
2634       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2635       __ cmp(lir_cond_equal, value, i + lo_key);
2636       __ move(data_offset_reg, tmp_reg);
2637       __ cmove(lir_cond_equal,
2638                LIR_OprFact::intptrConst(count_offset),
2639                tmp_reg,
2640                data_offset_reg, T_INT);
2641     }
2642 
2643     LIR_Opr data_reg = new_pointer_register();
2644     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2645     __ move(data_addr, data_reg);
2646     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2647     __ move(data_reg, data_addr);
2648   }
2649 
2650   if (UseTableRanges) {
2651     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2652   } else {
2653     for (int i = 0; i < len; i++) {
2654       __ cmp(lir_cond_equal, value, i + lo_key);
2655       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2656     }
2657     __ jump(x->default_sux());
2658   }
2659 }
2660 
2661 
2662 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2663   LIRItem tag(x->tag(), this);
2664   tag.load_item();
2665   set_no_result(x);
2666 
2667   if (x->is_safepoint()) {
2668     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2669   }
2670 
2671   // move values into phi locations
2672   move_to_phi(x->state());
2673 
2674   LIR_Opr value = tag.result();
2675   int len = x->length();
2676 
2677   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2678     ciMethod* method = x->state()->scope()->method();
2679     ciMethodData* md = method->method_data_or_null();
2680     assert(md != NULL, "Sanity");
2681     ciProfileData* data = md->bci_to_data(x->state()->bci());
2682     assert(data != NULL, "must have profiling data");
2683     assert(data->is_MultiBranchData(), "bad profile data?");
2684     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2685     LIR_Opr md_reg = new_register(T_METADATA);
2686     __ metadata2reg(md->constant_encoding(), md_reg);
2687     LIR_Opr data_offset_reg = new_pointer_register();
2688     LIR_Opr tmp_reg = new_pointer_register();
2689 
2690     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2691     for (int i = 0; i < len; i++) {
2692       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2693       __ cmp(lir_cond_equal, value, x->key_at(i));
2694       __ move(data_offset_reg, tmp_reg);
2695       __ cmove(lir_cond_equal,
2696                LIR_OprFact::intptrConst(count_offset),
2697                tmp_reg,
2698                data_offset_reg, T_INT);
2699     }
2700 
2701     LIR_Opr data_reg = new_pointer_register();
2702     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2703     __ move(data_addr, data_reg);
2704     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2705     __ move(data_reg, data_addr);
2706   }
2707 
2708   if (UseTableRanges) {
2709     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2710   } else {
2711     int len = x->length();
2712     for (int i = 0; i < len; i++) {
2713       __ cmp(lir_cond_equal, value, x->key_at(i));
2714       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2715     }
2716     __ jump(x->default_sux());
2717   }
2718 }
2719 
2720 
2721 void LIRGenerator::do_Goto(Goto* x) {
2722   set_no_result(x);
2723 
2724   if (block()->next()->as_OsrEntry()) {
2725     // need to free up storage used for OSR entry point
2726     LIR_Opr osrBuffer = block()->next()->operand();
2727     BasicTypeList signature;
2728     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2729     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2730     __ move(osrBuffer, cc->args()->at(0));
2731     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2732                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2733   }
2734 
2735   if (x->is_safepoint()) {
2736     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2737 
2738     // increment backedge counter if needed
2739     CodeEmitInfo* info = state_for(x, state);
2740     increment_backedge_counter(info, x->profiled_bci());
2741     CodeEmitInfo* safepoint_info = state_for(x, state);
2742     __ safepoint(safepoint_poll_register(), safepoint_info);
2743   }
2744 
2745   // Gotos can be folded Ifs, handle this case.
2746   if (x->should_profile()) {
2747     ciMethod* method = x->profiled_method();
2748     assert(method != NULL, "method should be set if branch is profiled");
2749     ciMethodData* md = method->method_data_or_null();
2750     assert(md != NULL, "Sanity");
2751     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2752     assert(data != NULL, "must have profiling data");
2753     int offset;
2754     if (x->direction() == Goto::taken) {
2755       assert(data->is_BranchData(), "need BranchData for two-way branches");
2756       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2757     } else if (x->direction() == Goto::not_taken) {
2758       assert(data->is_BranchData(), "need BranchData for two-way branches");
2759       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2760     } else {
2761       assert(data->is_JumpData(), "need JumpData for branches");
2762       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2763     }
2764     LIR_Opr md_reg = new_register(T_METADATA);
2765     __ metadata2reg(md->constant_encoding(), md_reg);
2766 
2767     increment_counter(new LIR_Address(md_reg, offset,
2768                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2769   }
2770 
2771   // emit phi-instruction move after safepoint since this simplifies
2772   // describing the state as the safepoint.
2773   move_to_phi(x->state());
2774 
2775   __ jump(x->default_sux());
2776 }
2777 
2778 /**
2779  * Emit profiling code if needed for arguments, parameters, return value types
2780  *
2781  * @param md                    MDO the code will update at runtime
2782  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2783  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2784  * @param profiled_k            current profile
2785  * @param obj                   IR node for the object to be profiled
2786  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2787  *                              Set once we find an update to make and use for next ones.
2788  * @param not_null              true if we know obj cannot be null
2789  * @param signature_at_call_k   signature at call for obj
2790  * @param callee_signature_k    signature of callee for obj
2791  *                              at call and callee signatures differ at method handle call
2792  * @return                      the only klass we know will ever be seen at this profile point
2793  */
2794 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2795                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2796                                     ciKlass* callee_signature_k) {
2797   ciKlass* result = NULL;
2798   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2799   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2800   // known not to be null or null bit already set and already set to
2801   // unknown: nothing we can do to improve profiling
2802   if (!do_null && !do_update) {
2803     return result;
2804   }
2805 
2806   ciKlass* exact_klass = NULL;
2807   Compilation* comp = Compilation::current();
2808   if (do_update) {
2809     // try to find exact type, using CHA if possible, so that loading
2810     // the klass from the object can be avoided
2811     ciType* type = obj->exact_type();
2812     if (type == NULL) {
2813       type = obj->declared_type();
2814       type = comp->cha_exact_type(type);
2815     }
2816     assert(type == NULL || type->is_klass(), "type should be class");
2817     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2818 
2819     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2820   }
2821 
2822   if (!do_null && !do_update) {
2823     return result;
2824   }
2825 
2826   ciKlass* exact_signature_k = NULL;
2827   if (do_update) {
2828     // Is the type from the signature exact (the only one possible)?
2829     exact_signature_k = signature_at_call_k->exact_klass();
2830     if (exact_signature_k == NULL) {
2831       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2832     } else {
2833       result = exact_signature_k;
2834       // Known statically. No need to emit any code: prevent
2835       // LIR_Assembler::emit_profile_type() from emitting useless code
2836       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2837     }
2838     // exact_klass and exact_signature_k can be both non NULL but
2839     // different if exact_klass is loaded after the ciObject for
2840     // exact_signature_k is created.
2841     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2842       // sometimes the type of the signature is better than the best type
2843       // the compiler has
2844       exact_klass = exact_signature_k;
2845     }
2846     if (callee_signature_k != NULL &&
2847         callee_signature_k != signature_at_call_k) {
2848       ciKlass* improved_klass = callee_signature_k->exact_klass();
2849       if (improved_klass == NULL) {
2850         improved_klass = comp->cha_exact_type(callee_signature_k);
2851       }
2852       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2853         exact_klass = exact_signature_k;
2854       }
2855     }
2856     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2857   }
2858 
2859   if (!do_null && !do_update) {
2860     return result;
2861   }
2862 
2863   if (mdp == LIR_OprFact::illegalOpr) {
2864     mdp = new_register(T_METADATA);
2865     __ metadata2reg(md->constant_encoding(), mdp);
2866     if (md_base_offset != 0) {
2867       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2868       mdp = new_pointer_register();
2869       __ leal(LIR_OprFact::address(base_type_address), mdp);
2870     }
2871   }
2872   LIRItem value(obj, this);
2873   value.load_item();
2874   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2875                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2876   return result;
2877 }
2878 
2879 // profile parameters on entry to the root of the compilation
2880 void LIRGenerator::profile_parameters(Base* x) {
2881   if (compilation()->profile_parameters()) {
2882     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2883     ciMethodData* md = scope()->method()->method_data_or_null();
2884     assert(md != NULL, "Sanity");
2885 
2886     if (md->parameters_type_data() != NULL) {
2887       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2888       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2889       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2890       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2891         LIR_Opr src = args->at(i);
2892         assert(!src->is_illegal(), "check");
2893         BasicType t = src->type();
2894         if (t == T_OBJECT || t == T_ARRAY) {
2895           intptr_t profiled_k = parameters->type(j);
2896           Local* local = x->state()->local_at(java_index)->as_Local();
2897           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2898                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2899                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2900           // If the profile is known statically set it once for all and do not emit any code
2901           if (exact != NULL) {
2902             md->set_parameter_type(j, exact);
2903           }
2904           j++;
2905         }
2906         java_index += type2size[t];
2907       }
2908     }
2909   }
2910 }
2911 
2912 void LIRGenerator::do_Base(Base* x) {
2913   __ std_entry(LIR_OprFact::illegalOpr);
2914   // Emit moves from physical registers / stack slots to virtual registers
2915   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2916   IRScope* irScope = compilation()->hir()->top_scope();
2917   int java_index = 0;
2918   for (int i = 0; i < args->length(); i++) {
2919     LIR_Opr src = args->at(i);
2920     assert(!src->is_illegal(), "check");
2921     BasicType t = src->type();
2922 
2923     // Types which are smaller than int are passed as int, so
2924     // correct the type which passed.
2925     switch (t) {
2926     case T_BYTE:
2927     case T_BOOLEAN:
2928     case T_SHORT:
2929     case T_CHAR:
2930       t = T_INT;
2931       break;
2932     default:
2933       break;
2934     }
2935 
2936     LIR_Opr dest = new_register(t);
2937     __ move(src, dest);
2938 
2939     // Assign new location to Local instruction for this local
2940     Local* local = x->state()->local_at(java_index)->as_Local();
2941     assert(local != NULL, "Locals for incoming arguments must have been created");
2942 #ifndef __SOFTFP__
2943     // The java calling convention passes double as long and float as int.
2944     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2945 #endif // __SOFTFP__
2946     local->set_operand(dest);
2947     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2948     java_index += type2size[t];
2949   }
2950 
2951   if (compilation()->env()->dtrace_method_probes()) {
2952     BasicTypeList signature;
2953     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2954     signature.append(T_METADATA); // Method*
2955     LIR_OprList* args = new LIR_OprList();
2956     args->append(getThreadPointer());
2957     LIR_Opr meth = new_register(T_METADATA);
2958     __ metadata2reg(method()->constant_encoding(), meth);
2959     args->append(meth);
2960     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2961   }
2962 
2963   if (method()->is_synchronized()) {
2964     LIR_Opr obj;
2965     if (method()->is_static()) {
2966       obj = new_register(T_OBJECT);
2967       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2968     } else {
2969       Local* receiver = x->state()->local_at(0)->as_Local();
2970       assert(receiver != NULL, "must already exist");
2971       obj = receiver->operand();
2972     }
2973     assert(obj->is_valid(), "must be valid");
2974 
2975     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2976       LIR_Opr lock = syncLockOpr();
2977       __ load_stack_address_monitor(0, lock);
2978 
2979       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2980       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2981 
2982       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2983       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2984     }
2985   }
2986   if (compilation()->age_code()) {
2987     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2988     decrement_age(info);
2989   }
2990   // increment invocation counters if needed
2991   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2992     profile_parameters(x);
2993     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2994     increment_invocation_counter(info);
2995   }
2996 
2997   // all blocks with a successor must end with an unconditional jump
2998   // to the successor even if they are consecutive
2999   __ jump(x->default_sux());
3000 }
3001 
3002 
3003 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3004   // construct our frame and model the production of incoming pointer
3005   // to the OSR buffer.
3006   __ osr_entry(LIR_Assembler::osrBufferPointer());
3007   LIR_Opr result = rlock_result(x);
3008   __ move(LIR_Assembler::osrBufferPointer(), result);
3009 }
3010 
3011 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3012   if (loc->is_register()) {
3013     param->load_item_force(loc);
3014   } else {
3015     LIR_Address* addr = loc->as_address_ptr();
3016     param->load_for_store(addr->type());
3017     assert(addr->type() != T_VALUETYPE, "not supported yet");
3018     if (addr->type() == T_OBJECT) {
3019       __ move_wide(param->result(), addr);
3020     } else {
3021       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3022         __ unaligned_move(param->result(), addr);
3023       } else {
3024         __ move(param->result(), addr);
3025       }
3026     }
3027   }
3028 }
3029 
3030 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3031   assert(args->length() == arg_list->length(),
3032          "args=%d, arg_list=%d", args->length(), arg_list->length());
3033   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3034     LIRItem* param = args->at(i);
3035     LIR_Opr loc = arg_list->at(i);
3036     invoke_load_one_argument(param, loc);
3037   }
3038 
3039   if (x->has_receiver()) {
3040     LIRItem* receiver = args->at(0);
3041     LIR_Opr loc = arg_list->at(0);
3042     if (loc->is_register()) {
3043       receiver->load_item_force(loc);
3044     } else {
3045       assert(loc->is_address(), "just checking");
3046       receiver->load_for_store(T_OBJECT);
3047       __ move_wide(receiver->result(), loc->as_address_ptr());
3048     }
3049   }
3050 }
3051 
3052 
3053 // Visits all arguments, returns appropriate items without loading them
3054 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3055   LIRItemList* argument_items = new LIRItemList();
3056   if (x->has_receiver()) {
3057     LIRItem* receiver = new LIRItem(x->receiver(), this);
3058     argument_items->append(receiver);
3059   }
3060   for (int i = 0; i < x->number_of_arguments(); i++) {
3061     LIRItem* param = new LIRItem(x->argument_at(i), this);
3062     argument_items->append(param);
3063   }
3064   return argument_items;
3065 }
3066 
3067 
3068 // The invoke with receiver has following phases:
3069 //   a) traverse and load/lock receiver;
3070 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3071 //   c) push receiver on stack
3072 //   d) load each of the items and push on stack
3073 //   e) unlock receiver
3074 //   f) move receiver into receiver-register %o0
3075 //   g) lock result registers and emit call operation
3076 //
3077 // Before issuing a call, we must spill-save all values on stack
3078 // that are in caller-save register. "spill-save" moves those registers
3079 // either in a free callee-save register or spills them if no free
3080 // callee save register is available.
3081 //
3082 // The problem is where to invoke spill-save.
3083 // - if invoked between e) and f), we may lock callee save
3084 //   register in "spill-save" that destroys the receiver register
3085 //   before f) is executed
3086 // - if we rearrange f) to be earlier (by loading %o0) it
3087 //   may destroy a value on the stack that is currently in %o0
3088 //   and is waiting to be spilled
3089 // - if we keep the receiver locked while doing spill-save,
3090 //   we cannot spill it as it is spill-locked
3091 //
3092 void LIRGenerator::do_Invoke(Invoke* x) {
3093   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3094 
3095   LIR_OprList* arg_list = cc->args();
3096   LIRItemList* args = invoke_visit_arguments(x);
3097   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3098 
3099   // setup result register
3100   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3101   if (x->type() != voidType) {
3102     result_register = result_register_for(x->type());
3103   }
3104 
3105   CodeEmitInfo* info = state_for(x, x->state());
3106 
3107   invoke_load_arguments(x, args, arg_list);
3108 
3109   if (x->has_receiver()) {
3110     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3111     receiver = args->at(0)->result();
3112   }
3113 
3114   // emit invoke code
3115   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3116 
3117   // JSR 292
3118   // Preserve the SP over MethodHandle call sites, if needed.
3119   ciMethod* target = x->target();
3120   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3121                                   target->is_method_handle_intrinsic() ||
3122                                   target->is_compiled_lambda_form());
3123   if (is_method_handle_invoke) {
3124     info->set_is_method_handle_invoke(true);
3125     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3126         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3127     }
3128   }
3129 
3130   switch (x->code()) {
3131     case Bytecodes::_invokestatic:
3132       __ call_static(target, result_register,
3133                      SharedRuntime::get_resolve_static_call_stub(),
3134                      arg_list, info);
3135       break;
3136     case Bytecodes::_invokespecial:
3137     case Bytecodes::_invokevirtual:
3138     case Bytecodes::_invokeinterface:
3139       // for loaded and final (method or class) target we still produce an inline cache,
3140       // in order to be able to call mixed mode
3141       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3142         __ call_opt_virtual(target, receiver, result_register,
3143                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3144                             arg_list, info);
3145       } else if (x->vtable_index() < 0) {
3146         __ call_icvirtual(target, receiver, result_register,
3147                           SharedRuntime::get_resolve_virtual_call_stub(),
3148                           arg_list, info);
3149       } else {
3150         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3151         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3152         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3153       }
3154       break;
3155     case Bytecodes::_invokedynamic: {
3156       __ call_dynamic(target, receiver, result_register,
3157                       SharedRuntime::get_resolve_static_call_stub(),
3158                       arg_list, info);
3159       break;
3160     }
3161     default:
3162       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3163       break;
3164   }
3165 
3166   // JSR 292
3167   // Restore the SP after MethodHandle call sites, if needed.
3168   if (is_method_handle_invoke
3169       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3170     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3171   }
3172 
3173   if (x->type()->is_float() || x->type()->is_double()) {
3174     // Force rounding of results from non-strictfp when in strictfp
3175     // scope (or when we don't know the strictness of the callee, to
3176     // be safe.)
3177     if (method()->is_strict()) {
3178       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3179         result_register = round_item(result_register);
3180       }
3181     }
3182   }
3183 
3184   if (result_register->is_valid()) {
3185     LIR_Opr result = rlock_result(x);
3186     __ move(result_register, result);
3187   }
3188 }
3189 
3190 
3191 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3192   assert(x->number_of_arguments() == 1, "wrong type");
3193   LIRItem value       (x->argument_at(0), this);
3194   LIR_Opr reg = rlock_result(x);
3195   value.load_item();
3196   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3197   __ move(tmp, reg);
3198 }
3199 
3200 
3201 
3202 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3203 void LIRGenerator::do_IfOp(IfOp* x) {
3204 #ifdef ASSERT
3205   {
3206     ValueTag xtag = x->x()->type()->tag();
3207     ValueTag ttag = x->tval()->type()->tag();
3208     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3209     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3210     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3211   }
3212 #endif
3213 
3214   LIRItem left(x->x(), this);
3215   LIRItem right(x->y(), this);
3216   left.load_item();
3217   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3218     right.dont_load_item();
3219   } else {
3220     // substitutability_check() needs to use right as a base register.
3221     right.load_item();
3222   }
3223 
3224   LIRItem t_val(x->tval(), this);
3225   LIRItem f_val(x->fval(), this);
3226   t_val.dont_load_item();
3227   f_val.dont_load_item();
3228 
3229   if (x->substitutability_check()) {
3230     substitutability_check(x, left, right, t_val, f_val);
3231   } else {
3232     LIR_Opr reg = rlock_result(x);
3233     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3234     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3235   }
3236 }
3237 
3238 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3239   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3240   bool is_acmpeq = (x->cond() == If::eql);
3241   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3242   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3243   LIR_Opr result = rlock_result(x);
3244   CodeEmitInfo* info = state_for(x, x->state_before());
3245 
3246   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3247 }
3248 
3249 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3250   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3251   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3252   LIR_Opr result = new_register(T_INT);
3253   CodeEmitInfo* info = state_for(x, x->state_before());
3254 
3255   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3256 
3257   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3258   __ cmp(lir_cond(x->cond()), result, equal_result);
3259 }
3260 
3261 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3262                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3263                                                  CodeEmitInfo* info) {
3264   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3265   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3266   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3267   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3268 
3269   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3270   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3271 
3272   if ((left_klass == NULL || right_klass == NULL) ||// The klass is still unloaded, or came from a Phi node.
3273       !left_klass->is_valuetype() || !right_klass->is_valuetype()) {
3274     init_temps_for_substitutability_check(tmp1, tmp2);
3275   }
3276 
3277   if (left_klass != NULL && left_klass->is_valuetype() && left_klass == right_klass) {
3278     // No need to load klass -- the operands are statically known to be the same value klass.
3279   } else {
3280     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3281     left_klass_op = new_register(t_klass);
3282     right_klass_op = new_register(t_klass);
3283   }
3284 
3285   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), result, info);
3286   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3287                             tmp1, tmp2,
3288                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3289 }
3290 
3291 #ifdef JFR_HAVE_INTRINSICS
3292 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3293   CodeEmitInfo* info = state_for(x);
3294   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3295 
3296   assert(info != NULL, "must have info");
3297   LIRItem arg(x->argument_at(0), this);
3298 
3299   arg.load_item();
3300   LIR_Opr klass = new_register(T_METADATA);
3301   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3302   LIR_Opr id = new_register(T_LONG);
3303   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3304   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3305 
3306   __ move(trace_id_addr, id);
3307   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3308   __ store(id, trace_id_addr);
3309 
3310 #ifdef TRACE_ID_META_BITS
3311   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3312 #endif
3313 #ifdef TRACE_ID_SHIFT
3314   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3315 #endif
3316 
3317   __ move(id, rlock_result(x));
3318 }
3319 
3320 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3321   LabelObj* L_end = new LabelObj();
3322 
3323   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3324                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3325                                            T_OBJECT);
3326   LIR_Opr result = rlock_result(x);
3327   __ move_wide(jobj_addr, result);
3328   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3329   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3330 
3331   LIR_Opr jobj = new_register(T_OBJECT);
3332   __ move(result, jobj);
3333   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3334 
3335   __ branch_destination(L_end->label());
3336 }
3337 
3338 #endif
3339 
3340 
3341 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3342   assert(x->number_of_arguments() == 0, "wrong type");
3343   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3344   BasicTypeList signature;
3345   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3346   LIR_Opr reg = result_register_for(x->type());
3347   __ call_runtime_leaf(routine, getThreadTemp(),
3348                        reg, new LIR_OprList());
3349   LIR_Opr result = rlock_result(x);
3350   __ move(reg, result);
3351 }
3352 
3353 
3354 
3355 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3356   switch (x->id()) {
3357   case vmIntrinsics::_intBitsToFloat      :
3358   case vmIntrinsics::_doubleToRawLongBits :
3359   case vmIntrinsics::_longBitsToDouble    :
3360   case vmIntrinsics::_floatToRawIntBits   : {
3361     do_FPIntrinsics(x);
3362     break;
3363   }
3364 
3365 #ifdef JFR_HAVE_INTRINSICS
3366   case vmIntrinsics::_getClassId:
3367     do_ClassIDIntrinsic(x);
3368     break;
3369   case vmIntrinsics::_getEventWriter:
3370     do_getEventWriter(x);
3371     break;
3372   case vmIntrinsics::_counterTime:
3373     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3374     break;
3375 #endif
3376 
3377   case vmIntrinsics::_currentTimeMillis:
3378     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3379     break;
3380 
3381   case vmIntrinsics::_nanoTime:
3382     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3383     break;
3384 
3385   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3386   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3387   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3388   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3389   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3390 
3391   case vmIntrinsics::_dlog:           // fall through
3392   case vmIntrinsics::_dlog10:         // fall through
3393   case vmIntrinsics::_dabs:           // fall through
3394   case vmIntrinsics::_dsqrt:          // fall through
3395   case vmIntrinsics::_dtan:           // fall through
3396   case vmIntrinsics::_dsin :          // fall through
3397   case vmIntrinsics::_dcos :          // fall through
3398   case vmIntrinsics::_dexp :          // fall through
3399   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3400   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3401 
3402   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3403   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3404 
3405   // java.nio.Buffer.checkIndex
3406   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3407 
3408   case vmIntrinsics::_compareAndSetReference:
3409     do_CompareAndSwap(x, objectType);
3410     break;
3411   case vmIntrinsics::_compareAndSetInt:
3412     do_CompareAndSwap(x, intType);
3413     break;
3414   case vmIntrinsics::_compareAndSetLong:
3415     do_CompareAndSwap(x, longType);
3416     break;
3417 
3418   case vmIntrinsics::_loadFence :
3419     __ membar_acquire();
3420     break;
3421   case vmIntrinsics::_storeFence:
3422     __ membar_release();
3423     break;
3424   case vmIntrinsics::_fullFence :
3425     __ membar();
3426     break;
3427   case vmIntrinsics::_onSpinWait:
3428     __ on_spin_wait();
3429     break;
3430   case vmIntrinsics::_Reference_get:
3431     do_Reference_get(x);
3432     break;
3433 
3434   case vmIntrinsics::_updateCRC32:
3435   case vmIntrinsics::_updateBytesCRC32:
3436   case vmIntrinsics::_updateByteBufferCRC32:
3437     do_update_CRC32(x);
3438     break;
3439 
3440   case vmIntrinsics::_updateBytesCRC32C:
3441   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3442     do_update_CRC32C(x);
3443     break;
3444 
3445   case vmIntrinsics::_vectorizedMismatch:
3446     do_vectorizedMismatch(x);
3447     break;
3448 
3449   default: ShouldNotReachHere(); break;
3450   }
3451 }
3452 
3453 void LIRGenerator::profile_arguments(ProfileCall* x) {
3454   if (compilation()->profile_arguments()) {
3455     int bci = x->bci_of_invoke();
3456     ciMethodData* md = x->method()->method_data_or_null();
3457     assert(md != NULL, "Sanity");
3458     ciProfileData* data = md->bci_to_data(bci);
3459     if (data != NULL) {
3460       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3461           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3462         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3463         int base_offset = md->byte_offset_of_slot(data, extra);
3464         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3465         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3466 
3467         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3468         int start = 0;
3469         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3470         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3471           // first argument is not profiled at call (method handle invoke)
3472           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3473           start = 1;
3474         }
3475         ciSignature* callee_signature = x->callee()->signature();
3476         // method handle call to virtual method
3477         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3478         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3479 
3480         bool ignored_will_link;
3481         ciSignature* signature_at_call = NULL;
3482         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3483         ciSignatureStream signature_at_call_stream(signature_at_call);
3484 
3485         // if called through method handle invoke, some arguments may have been popped
3486         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3487           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3488           ciKlass* exact = profile_type(md, base_offset, off,
3489               args->type(i), x->profiled_arg_at(i+start), mdp,
3490               !x->arg_needs_null_check(i+start),
3491               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3492           if (exact != NULL) {
3493             md->set_argument_type(bci, i, exact);
3494           }
3495         }
3496       } else {
3497 #ifdef ASSERT
3498         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3499         int n = x->nb_profiled_args();
3500         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3501             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3502             "only at JSR292 bytecodes");
3503 #endif
3504       }
3505     }
3506   }
3507 }
3508 
3509 // profile parameters on entry to an inlined method
3510 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3511   if (compilation()->profile_parameters() && x->inlined()) {
3512     ciMethodData* md = x->callee()->method_data_or_null();
3513     if (md != NULL) {
3514       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3515       if (parameters_type_data != NULL) {
3516         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3517         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3518         bool has_receiver = !x->callee()->is_static();
3519         ciSignature* sig = x->callee()->signature();
3520         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3521         int i = 0; // to iterate on the Instructions
3522         Value arg = x->recv();
3523         bool not_null = false;
3524         int bci = x->bci_of_invoke();
3525         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3526         // The first parameter is the receiver so that's what we start
3527         // with if it exists. One exception is method handle call to
3528         // virtual method: the receiver is in the args list
3529         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3530           i = 1;
3531           arg = x->profiled_arg_at(0);
3532           not_null = !x->arg_needs_null_check(0);
3533         }
3534         int k = 0; // to iterate on the profile data
3535         for (;;) {
3536           intptr_t profiled_k = parameters->type(k);
3537           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3538                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3539                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3540           // If the profile is known statically set it once for all and do not emit any code
3541           if (exact != NULL) {
3542             md->set_parameter_type(k, exact);
3543           }
3544           k++;
3545           if (k >= parameters_type_data->number_of_parameters()) {
3546 #ifdef ASSERT
3547             int extra = 0;
3548             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3549                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3550                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3551               extra += 1;
3552             }
3553             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3554 #endif
3555             break;
3556           }
3557           arg = x->profiled_arg_at(i);
3558           not_null = !x->arg_needs_null_check(i);
3559           i++;
3560         }
3561       }
3562     }
3563   }
3564 }
3565 
3566 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3567   // Need recv in a temporary register so it interferes with the other temporaries
3568   LIR_Opr recv = LIR_OprFact::illegalOpr;
3569   LIR_Opr mdo = new_register(T_METADATA);
3570   // tmp is used to hold the counters on SPARC
3571   LIR_Opr tmp = new_pointer_register();
3572 
3573   if (x->nb_profiled_args() > 0) {
3574     profile_arguments(x);
3575   }
3576 
3577   // profile parameters on inlined method entry including receiver
3578   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3579     profile_parameters_at_call(x);
3580   }
3581 
3582   if (x->recv() != NULL) {
3583     LIRItem value(x->recv(), this);
3584     value.load_item();
3585     recv = new_register(T_OBJECT);
3586     __ move(value.result(), recv);
3587   }
3588   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3589 }
3590 
3591 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3592   int bci = x->bci_of_invoke();
3593   ciMethodData* md = x->method()->method_data_or_null();
3594   assert(md != NULL, "Sanity");
3595   ciProfileData* data = md->bci_to_data(bci);
3596   if (data != NULL) {
3597     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3598     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3599     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3600 
3601     bool ignored_will_link;
3602     ciSignature* signature_at_call = NULL;
3603     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3604 
3605     // The offset within the MDO of the entry to update may be too large
3606     // to be used in load/store instructions on some platforms. So have
3607     // profile_type() compute the address of the profile in a register.
3608     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3609         ret->type(), x->ret(), mdp,
3610         !x->needs_null_check(),
3611         signature_at_call->return_type()->as_klass(),
3612         x->callee()->signature()->return_type()->as_klass());
3613     if (exact != NULL) {
3614       md->set_return_type(bci, exact);
3615     }
3616   }
3617 }
3618 
3619 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3620   // We can safely ignore accessors here, since c2 will inline them anyway,
3621   // accessors are also always mature.
3622   if (!x->inlinee()->is_accessor()) {
3623     CodeEmitInfo* info = state_for(x, x->state(), true);
3624     // Notify the runtime very infrequently only to take care of counter overflows
3625     int freq_log = Tier23InlineeNotifyFreqLog;
3626     double scale;
3627     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3628       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3629     }
3630     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3631   }
3632 }
3633 
3634 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3635   if (compilation()->count_backedges()) {
3636 #if defined(X86) && !defined(_LP64)
3637     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3638     LIR_Opr left_copy = new_register(left->type());
3639     __ move(left, left_copy);
3640     __ cmp(cond, left_copy, right);
3641 #else
3642     __ cmp(cond, left, right);
3643 #endif
3644     LIR_Opr step = new_register(T_INT);
3645     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3646     LIR_Opr zero = LIR_OprFact::intConst(0);
3647     __ cmove(cond,
3648         (left_bci < bci) ? plus_one : zero,
3649         (right_bci < bci) ? plus_one : zero,
3650         step, left->type());
3651     increment_backedge_counter(info, step, bci);
3652   }
3653 }
3654 
3655 
3656 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3657   int freq_log = 0;
3658   int level = compilation()->env()->comp_level();
3659   if (level == CompLevel_limited_profile) {
3660     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3661   } else if (level == CompLevel_full_profile) {
3662     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3663   } else {
3664     ShouldNotReachHere();
3665   }
3666   // Increment the appropriate invocation/backedge counter and notify the runtime.
3667   double scale;
3668   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3669     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3670   }
3671   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3672 }
3673 
3674 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3675   ciMethod* method = info->scope()->method();
3676   MethodCounters* mc_adr = method->ensure_method_counters();
3677   if (mc_adr != NULL) {
3678     LIR_Opr mc = new_pointer_register();
3679     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3680     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3681     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3682     LIR_Opr result = new_register(T_INT);
3683     __ load(counter, result);
3684     __ sub(result, LIR_OprFact::intConst(1), result);
3685     __ store(result, counter);
3686     // DeoptimizeStub will reexecute from the current state in code info.
3687     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3688                                          Deoptimization::Action_make_not_entrant);
3689     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3690     __ branch(lir_cond_lessEqual, T_INT, deopt);
3691   }
3692 }
3693 
3694 
3695 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3696                                                 ciMethod *method, LIR_Opr step, int frequency,
3697                                                 int bci, bool backedge, bool notify) {
3698   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3699   int level = _compilation->env()->comp_level();
3700   assert(level > CompLevel_simple, "Shouldn't be here");
3701 
3702   int offset = -1;
3703   LIR_Opr counter_holder = NULL;
3704   if (level == CompLevel_limited_profile) {
3705     MethodCounters* counters_adr = method->ensure_method_counters();
3706     if (counters_adr == NULL) {
3707       bailout("method counters allocation failed");
3708       return;
3709     }
3710     counter_holder = new_pointer_register();
3711     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3712     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3713                                  MethodCounters::invocation_counter_offset());
3714   } else if (level == CompLevel_full_profile) {
3715     counter_holder = new_register(T_METADATA);
3716     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3717                                  MethodData::invocation_counter_offset());
3718     ciMethodData* md = method->method_data_or_null();
3719     assert(md != NULL, "Sanity");
3720     __ metadata2reg(md->constant_encoding(), counter_holder);
3721   } else {
3722     ShouldNotReachHere();
3723   }
3724   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3725   LIR_Opr result = new_register(T_INT);
3726   __ load(counter, result);
3727   __ add(result, step, result);
3728   __ store(result, counter);
3729   if (notify && (!backedge || UseOnStackReplacement)) {
3730     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3731     // The bci for info can point to cmp for if's we want the if bci
3732     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3733     int freq = frequency << InvocationCounter::count_shift;
3734     if (freq == 0) {
3735       if (!step->is_constant()) {
3736         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3737         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3738       } else {
3739         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3740       }
3741     } else {
3742       LIR_Opr mask = load_immediate(freq, T_INT);
3743       if (!step->is_constant()) {
3744         // If step is 0, make sure the overflow check below always fails
3745         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3746         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3747       }
3748       __ logical_and(result, mask, result);
3749       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3750       __ branch(lir_cond_equal, T_INT, overflow);
3751     }
3752     __ branch_destination(overflow->continuation());
3753   }
3754 }
3755 
3756 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3757   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3758   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3759 
3760   if (x->pass_thread()) {
3761     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3762     args->append(getThreadPointer());
3763   }
3764 
3765   for (int i = 0; i < x->number_of_arguments(); i++) {
3766     Value a = x->argument_at(i);
3767     LIRItem* item = new LIRItem(a, this);
3768     item->load_item();
3769     args->append(item->result());
3770     signature->append(as_BasicType(a->type()));
3771   }
3772 
3773   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3774   if (x->type() == voidType) {
3775     set_no_result(x);
3776   } else {
3777     __ move(result, rlock_result(x));
3778   }
3779 }
3780 
3781 #ifdef ASSERT
3782 void LIRGenerator::do_Assert(Assert *x) {
3783   ValueTag tag = x->x()->type()->tag();
3784   If::Condition cond = x->cond();
3785 
3786   LIRItem xitem(x->x(), this);
3787   LIRItem yitem(x->y(), this);
3788   LIRItem* xin = &xitem;
3789   LIRItem* yin = &yitem;
3790 
3791   assert(tag == intTag, "Only integer assertions are valid!");
3792 
3793   xin->load_item();
3794   yin->dont_load_item();
3795 
3796   set_no_result(x);
3797 
3798   LIR_Opr left = xin->result();
3799   LIR_Opr right = yin->result();
3800 
3801   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3802 }
3803 #endif
3804 
3805 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3806 
3807 
3808   Instruction *a = x->x();
3809   Instruction *b = x->y();
3810   if (!a || StressRangeCheckElimination) {
3811     assert(!b || StressRangeCheckElimination, "B must also be null");
3812 
3813     CodeEmitInfo *info = state_for(x, x->state());
3814     CodeStub* stub = new PredicateFailedStub(info);
3815 
3816     __ jump(stub);
3817   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3818     int a_int = a->type()->as_IntConstant()->value();
3819     int b_int = b->type()->as_IntConstant()->value();
3820 
3821     bool ok = false;
3822 
3823     switch(x->cond()) {
3824       case Instruction::eql: ok = (a_int == b_int); break;
3825       case Instruction::neq: ok = (a_int != b_int); break;
3826       case Instruction::lss: ok = (a_int < b_int); break;
3827       case Instruction::leq: ok = (a_int <= b_int); break;
3828       case Instruction::gtr: ok = (a_int > b_int); break;
3829       case Instruction::geq: ok = (a_int >= b_int); break;
3830       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3831       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3832       default: ShouldNotReachHere();
3833     }
3834 
3835     if (ok) {
3836 
3837       CodeEmitInfo *info = state_for(x, x->state());
3838       CodeStub* stub = new PredicateFailedStub(info);
3839 
3840       __ jump(stub);
3841     }
3842   } else {
3843 
3844     ValueTag tag = x->x()->type()->tag();
3845     If::Condition cond = x->cond();
3846     LIRItem xitem(x->x(), this);
3847     LIRItem yitem(x->y(), this);
3848     LIRItem* xin = &xitem;
3849     LIRItem* yin = &yitem;
3850 
3851     assert(tag == intTag, "Only integer deoptimizations are valid!");
3852 
3853     xin->load_item();
3854     yin->dont_load_item();
3855     set_no_result(x);
3856 
3857     LIR_Opr left = xin->result();
3858     LIR_Opr right = yin->result();
3859 
3860     CodeEmitInfo *info = state_for(x, x->state());
3861     CodeStub* stub = new PredicateFailedStub(info);
3862 
3863     __ cmp(lir_cond(cond), left, right);
3864     __ branch(lir_cond(cond), right->type(), stub);
3865   }
3866 }
3867 
3868 
3869 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3870   LIRItemList args(1);
3871   LIRItem value(arg1, this);
3872   args.append(&value);
3873   BasicTypeList signature;
3874   signature.append(as_BasicType(arg1->type()));
3875 
3876   return call_runtime(&signature, &args, entry, result_type, info);
3877 }
3878 
3879 
3880 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3881   LIRItemList args(2);
3882   LIRItem value1(arg1, this);
3883   LIRItem value2(arg2, this);
3884   args.append(&value1);
3885   args.append(&value2);
3886   BasicTypeList signature;
3887   signature.append(as_BasicType(arg1->type()));
3888   signature.append(as_BasicType(arg2->type()));
3889 
3890   return call_runtime(&signature, &args, entry, result_type, info);
3891 }
3892 
3893 
3894 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3895                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3896   // get a result register
3897   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3898   LIR_Opr result = LIR_OprFact::illegalOpr;
3899   if (result_type->tag() != voidTag) {
3900     result = new_register(result_type);
3901     phys_reg = result_register_for(result_type);
3902   }
3903 
3904   // move the arguments into the correct location
3905   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3906   assert(cc->length() == args->length(), "argument mismatch");
3907   for (int i = 0; i < args->length(); i++) {
3908     LIR_Opr arg = args->at(i);
3909     LIR_Opr loc = cc->at(i);
3910     if (loc->is_register()) {
3911       __ move(arg, loc);
3912     } else {
3913       LIR_Address* addr = loc->as_address_ptr();
3914 //           if (!can_store_as_constant(arg)) {
3915 //             LIR_Opr tmp = new_register(arg->type());
3916 //             __ move(arg, tmp);
3917 //             arg = tmp;
3918 //           }
3919       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3920         __ unaligned_move(arg, addr);
3921       } else {
3922         __ move(arg, addr);
3923       }
3924     }
3925   }
3926 
3927   if (info) {
3928     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3929   } else {
3930     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3931   }
3932   if (result->is_valid()) {
3933     __ move(phys_reg, result);
3934   }
3935   return result;
3936 }
3937 
3938 
3939 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3940                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3941   // get a result register
3942   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3943   LIR_Opr result = LIR_OprFact::illegalOpr;
3944   if (result_type->tag() != voidTag) {
3945     result = new_register(result_type);
3946     phys_reg = result_register_for(result_type);
3947   }
3948 
3949   // move the arguments into the correct location
3950   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3951 
3952   assert(cc->length() == args->length(), "argument mismatch");
3953   for (int i = 0; i < args->length(); i++) {
3954     LIRItem* arg = args->at(i);
3955     LIR_Opr loc = cc->at(i);
3956     if (loc->is_register()) {
3957       arg->load_item_force(loc);
3958     } else {
3959       LIR_Address* addr = loc->as_address_ptr();
3960       arg->load_for_store(addr->type());
3961       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3962         __ unaligned_move(arg->result(), addr);
3963       } else {
3964         __ move(arg->result(), addr);
3965       }
3966     }
3967   }
3968 
3969   if (info) {
3970     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3971   } else {
3972     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3973   }
3974   if (result->is_valid()) {
3975     __ move(phys_reg, result);
3976   }
3977   return result;
3978 }
3979 
3980 void LIRGenerator::do_MemBar(MemBar* x) {
3981   LIR_Code code = x->code();
3982   switch(code) {
3983   case lir_membar_acquire   : __ membar_acquire(); break;
3984   case lir_membar_release   : __ membar_release(); break;
3985   case lir_membar           : __ membar(); break;
3986   case lir_membar_loadload  : __ membar_loadload(); break;
3987   case lir_membar_storestore: __ membar_storestore(); break;
3988   case lir_membar_loadstore : __ membar_loadstore(); break;
3989   case lir_membar_storeload : __ membar_storeload(); break;
3990   default                   : ShouldNotReachHere(); break;
3991   }
3992 }
3993 
3994 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3995   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3996   if (TwoOperandLIRForm) {
3997     __ move(value, value_fixed);
3998     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3999   } else {
4000     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
4001   }
4002   LIR_Opr klass = new_register(T_METADATA);
4003   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
4004   null_check_info = NULL;
4005   LIR_Opr layout = new_register(T_INT);
4006   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
4007   int diffbit = Klass::layout_helper_boolean_diffbit();
4008   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
4009   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
4010   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
4011   value = value_fixed;
4012   return value;
4013 }
4014 
4015 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
4016   if (x->check_boolean()) {
4017     value = mask_boolean(array, value, null_check_info);
4018   }
4019   return value;
4020 }