1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 #include "runtime/signature.hpp"
  32 
  33 class ciValueKlass;
  34 
  35 // MacroAssembler extends Assembler by frequently used macros.
  36 //
  37 // Instructions for which a 'better' code sequence exists depending
  38 // on arguments should also go in here.
  39 
  40 class MacroAssembler: public Assembler {
  41   friend class LIR_Assembler;
  42   friend class Runtime1;      // as_Address()
  43 
  44  public:
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50 
  51   virtual void call_VM_leaf_base(
  52     address entry_point,               // the entry point
  53     int     number_of_arguments        // the number of arguments to pop after the call
  54   );
  55 
  56  protected:
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   Address as_Address(AddressLiteral adr);
  91   Address as_Address(ArrayAddress adr);
  92 
  93   // Support for NULL-checks
  94   //
  95   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  96   // If the accessed location is M[reg + offset] and the offset is known, provide the
  97   // offset. No explicit code generation is needed if the offset is within a certain
  98   // range (0 <= offset <= page_size).
  99 
 100   void null_check(Register reg, int offset = -1);
 101   static bool needs_explicit_null_check(intptr_t offset);
 102   static bool uses_implicit_null_check(void* address);
 103 
 104   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 105 
 106   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 107   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 108   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 109 
 110   // Check oops array storage properties, i.e. flattened and/or null-free
 111   void test_flattened_array_oop(Register oop, Register temp_reg, Label&is_flattened_array);
 112   void test_null_free_array_oop(Register oop, Register temp_reg, Label&is_null_free_array);
 113 
 114   // Required platform-specific helpers for Label::patch_instructions.
 115   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 116   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 117     unsigned char op = branch[0];
 118     assert(op == 0xE8 /* call */ ||
 119         op == 0xE9 /* jmp */ ||
 120         op == 0xEB /* short jmp */ ||
 121         (op & 0xF0) == 0x70 /* short jcc */ ||
 122         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 123         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 124         "Invalid opcode at patch point");
 125 
 126     if (op == 0xEB || (op & 0xF0) == 0x70) {
 127       // short offset operators (jmp and jcc)
 128       char* disp = (char*) &branch[1];
 129       int imm8 = target - (address) &disp[1];
 130       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d", file, line);
 131       *disp = imm8;
 132     } else {
 133       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 134       int imm32 = target - (address) &disp[1];
 135       *disp = imm32;
 136     }
 137   }
 138 
 139   // The following 4 methods return the offset of the appropriate move instruction
 140 
 141   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 142   int load_unsigned_byte(Register dst, Address src);
 143   int load_unsigned_short(Register dst, Address src);
 144 
 145   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 146   int load_signed_byte(Register dst, Address src);
 147   int load_signed_short(Register dst, Address src);
 148 
 149   // Support for sign-extension (hi:lo = extend_sign(lo))
 150   void extend_sign(Register hi, Register lo);
 151 
 152   // Load and store values by size and signed-ness
 153   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 154   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 155 
 156   // Support for inc/dec with optimal instruction selection depending on value
 157 
 158   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 159   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 160 
 161   void decrementl(Address dst, int value = 1);
 162   void decrementl(Register reg, int value = 1);
 163 
 164   void decrementq(Register reg, int value = 1);
 165   void decrementq(Address dst, int value = 1);
 166 
 167   void incrementl(Address dst, int value = 1);
 168   void incrementl(Register reg, int value = 1);
 169 
 170   void incrementq(Register reg, int value = 1);
 171   void incrementq(Address dst, int value = 1);
 172 
 173 #ifdef COMPILER2
 174   // special instructions for EVEX
 175   void setvectmask(Register dst, Register src);
 176   void restorevectmask();
 177 #endif
 178 
 179   // Support optimal SSE move instructions.
 180   void movflt(XMMRegister dst, XMMRegister src) {
 181     if (dst-> encoding() == src->encoding()) return;
 182     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 183     else                       { movss (dst, src); return; }
 184   }
 185   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 186   void movflt(XMMRegister dst, AddressLiteral src);
 187   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 188 
 189   void movdbl(XMMRegister dst, XMMRegister src) {
 190     if (dst-> encoding() == src->encoding()) return;
 191     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 192     else                       { movsd (dst, src); return; }
 193   }
 194 
 195   void movdbl(XMMRegister dst, AddressLiteral src);
 196 
 197   void movdbl(XMMRegister dst, Address src) {
 198     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 199     else                         { movlpd(dst, src); return; }
 200   }
 201   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 202 
 203   void incrementl(AddressLiteral dst);
 204   void incrementl(ArrayAddress dst);
 205 
 206   void incrementq(AddressLiteral dst);
 207 
 208   // Alignment
 209   void align(int modulus);
 210   void align(int modulus, int target);
 211 
 212   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 213   void fat_nop();
 214 
 215   // Stack frame creation/removal
 216   void enter();
 217   void leave();
 218 
 219   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 220   // The pointer will be loaded into the thread register.
 221   void get_thread(Register thread);
 222 
 223 
 224   // Support for VM calls
 225   //
 226   // It is imperative that all calls into the VM are handled via the call_VM macros.
 227   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 228   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 229 
 230 
 231   void call_VM(Register oop_result,
 232                address entry_point,
 233                bool check_exceptions = true);
 234   void call_VM(Register oop_result,
 235                address entry_point,
 236                Register arg_1,
 237                bool check_exceptions = true);
 238   void call_VM(Register oop_result,
 239                address entry_point,
 240                Register arg_1, Register arg_2,
 241                bool check_exceptions = true);
 242   void call_VM(Register oop_result,
 243                address entry_point,
 244                Register arg_1, Register arg_2, Register arg_3,
 245                bool check_exceptions = true);
 246 
 247   // Overloadings with last_Java_sp
 248   void call_VM(Register oop_result,
 249                Register last_java_sp,
 250                address entry_point,
 251                int number_of_arguments = 0,
 252                bool check_exceptions = true);
 253   void call_VM(Register oop_result,
 254                Register last_java_sp,
 255                address entry_point,
 256                Register arg_1, bool
 257                check_exceptions = true);
 258   void call_VM(Register oop_result,
 259                Register last_java_sp,
 260                address entry_point,
 261                Register arg_1, Register arg_2,
 262                bool check_exceptions = true);
 263   void call_VM(Register oop_result,
 264                Register last_java_sp,
 265                address entry_point,
 266                Register arg_1, Register arg_2, Register arg_3,
 267                bool check_exceptions = true);
 268 
 269   void get_vm_result  (Register oop_result, Register thread);
 270   void get_vm_result_2(Register metadata_result, Register thread);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_base
 273   // bypassing the virtual implementation
 274   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 275   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 276   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 277   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 278   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 279 
 280   void call_VM_leaf0(address entry_point);
 281   void call_VM_leaf(address entry_point,
 282                     int number_of_arguments = 0);
 283   void call_VM_leaf(address entry_point,
 284                     Register arg_1);
 285   void call_VM_leaf(address entry_point,
 286                     Register arg_1, Register arg_2);
 287   void call_VM_leaf(address entry_point,
 288                     Register arg_1, Register arg_2, Register arg_3);
 289 
 290   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 291   // bypassing the virtual implementation
 292   void super_call_VM_leaf(address entry_point);
 293   void super_call_VM_leaf(address entry_point, Register arg_1);
 294   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 295   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 296   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 297 
 298   // last Java Frame (fills frame anchor)
 299   void set_last_Java_frame(Register thread,
 300                            Register last_java_sp,
 301                            Register last_java_fp,
 302                            address last_java_pc);
 303 
 304   // thread in the default location (r15_thread on 64bit)
 305   void set_last_Java_frame(Register last_java_sp,
 306                            Register last_java_fp,
 307                            address last_java_pc);
 308 
 309   void reset_last_Java_frame(Register thread, bool clear_fp);
 310 
 311   // thread in the default location (r15_thread on 64bit)
 312   void reset_last_Java_frame(bool clear_fp);
 313 
 314   // jobjects
 315   void clear_jweak_tag(Register possibly_jweak);
 316   void resolve_jobject(Register value, Register thread, Register tmp);
 317 
 318   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 319   void c2bool(Register x);
 320 
 321   // C++ bool manipulation
 322 
 323   void movbool(Register dst, Address src);
 324   void movbool(Address dst, bool boolconst);
 325   void movbool(Address dst, Register src);
 326   void testbool(Register dst);
 327 
 328   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 329   void resolve_weak_handle(Register result, Register tmp);
 330   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 331   void load_method_holder_cld(Register rresult, Register rmethod);
 332 
 333   void load_method_holder(Register holder, Register method);
 334 
 335   // oop manipulations
 336   void load_metadata(Register dst, Register src);
 337   void load_storage_props(Register dst, Register src);
 338   void load_klass(Register dst, Register src);
 339   void store_klass(Register dst, Register src);
 340 
 341   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 342                       Register tmp1, Register thread_tmp);
 343   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 344                        Register tmp1, Register tmp2, Register tmp3 = noreg);
 345 
 346   // Resolves obj access. Result is placed in the same register.
 347   // All other registers are preserved.
 348   void resolve(DecoratorSet decorators, Register obj);
 349 
 350   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 351                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 352   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 353                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 354   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 355                       Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 356 
 357   // Used for storing NULL. All other oop constants should be
 358   // stored using routines that take a jobject.
 359   void store_heap_oop_null(Address dst);
 360 
 361   void load_prototype_header(Register dst, Register src);
 362 
 363 #ifdef _LP64
 364   void store_klass_gap(Register dst, Register src);
 365 
 366   // This dummy is to prevent a call to store_heap_oop from
 367   // converting a zero (like NULL) into a Register by giving
 368   // the compiler two choices it can't resolve
 369 
 370   void store_heap_oop(Address dst, void* dummy);
 371 
 372   void encode_heap_oop(Register r);
 373   void decode_heap_oop(Register r);
 374   void encode_heap_oop_not_null(Register r);
 375   void decode_heap_oop_not_null(Register r);
 376   void encode_heap_oop_not_null(Register dst, Register src);
 377   void decode_heap_oop_not_null(Register dst, Register src);
 378 
 379   void set_narrow_oop(Register dst, jobject obj);
 380   void set_narrow_oop(Address dst, jobject obj);
 381   void cmp_narrow_oop(Register dst, jobject obj);
 382   void cmp_narrow_oop(Address dst, jobject obj);
 383 
 384   void encode_klass_not_null(Register r);
 385   void decode_klass_not_null(Register r);
 386   void encode_klass_not_null(Register dst, Register src);
 387   void decode_klass_not_null(Register dst, Register src);
 388   void set_narrow_klass(Register dst, Klass* k);
 389   void set_narrow_klass(Address dst, Klass* k);
 390   void cmp_narrow_klass(Register dst, Klass* k);
 391   void cmp_narrow_klass(Address dst, Klass* k);
 392 
 393   // Returns the byte size of the instructions generated by decode_klass_not_null()
 394   // when compressed klass pointers are being used.
 395   static int instr_size_for_decode_klass_not_null();
 396 
 397   // if heap base register is used - reinit it with the correct value
 398   void reinit_heapbase();
 399 
 400   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 401 
 402 #endif // _LP64
 403 
 404   // Int division/remainder for Java
 405   // (as idivl, but checks for special case as described in JVM spec.)
 406   // returns idivl instruction offset for implicit exception handling
 407   int corrected_idivl(Register reg);
 408 
 409   // Long division/remainder for Java
 410   // (as idivq, but checks for special case as described in JVM spec.)
 411   // returns idivq instruction offset for implicit exception handling
 412   int corrected_idivq(Register reg);
 413 
 414   void int3();
 415 
 416   // Long operation macros for a 32bit cpu
 417   // Long negation for Java
 418   void lneg(Register hi, Register lo);
 419 
 420   // Long multiplication for Java
 421   // (destroys contents of eax, ebx, ecx and edx)
 422   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 423 
 424   // Long shifts for Java
 425   // (semantics as described in JVM spec.)
 426   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 427   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 428 
 429   // Long compare for Java
 430   // (semantics as described in JVM spec.)
 431   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 432 
 433 
 434   // misc
 435 
 436   // Sign extension
 437   void sign_extend_short(Register reg);
 438   void sign_extend_byte(Register reg);
 439 
 440   // Division by power of 2, rounding towards 0
 441   void division_with_shift(Register reg, int shift_value);
 442 
 443   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 444   //
 445   // CF (corresponds to C0) if x < y
 446   // PF (corresponds to C2) if unordered
 447   // ZF (corresponds to C3) if x = y
 448   //
 449   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 450   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 451   void fcmp(Register tmp);
 452   // Variant of the above which allows y to be further down the stack
 453   // and which only pops x and y if specified. If pop_right is
 454   // specified then pop_left must also be specified.
 455   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 456 
 457   // Floating-point comparison for Java
 458   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 459   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 460   // (semantics as described in JVM spec.)
 461   void fcmp2int(Register dst, bool unordered_is_less);
 462   // Variant of the above which allows y to be further down the stack
 463   // and which only pops x and y if specified. If pop_right is
 464   // specified then pop_left must also be specified.
 465   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 466 
 467   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 468   // tmp is a temporary register, if none is available use noreg
 469   void fremr(Register tmp);
 470 
 471   // dst = c = a * b + c
 472   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 473   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 474 
 475   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 476   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 477   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 478   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 479 
 480 
 481   // same as fcmp2int, but using SSE2
 482   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 483   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 484 
 485   // branch to L if FPU flag C2 is set/not set
 486   // tmp is a temporary register, if none is available use noreg
 487   void jC2 (Register tmp, Label& L);
 488   void jnC2(Register tmp, Label& L);
 489 
 490   // Pop ST (ffree & fincstp combined)
 491   void fpop();
 492 
 493   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 494   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 495   void load_float(Address src);
 496 
 497   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 498   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 499   void store_float(Address dst);
 500 
 501   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 502   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 503   void load_double(Address src);
 504 
 505   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 506   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 507   void store_double(Address dst);
 508 
 509   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 510   void push_fTOS();
 511 
 512   // pops double TOS element from CPU stack and pushes on FPU stack
 513   void pop_fTOS();
 514 
 515   void empty_FPU_stack();
 516 
 517   void push_IU_state();
 518   void pop_IU_state();
 519 
 520   void push_FPU_state();
 521   void pop_FPU_state();
 522 
 523   void push_CPU_state();
 524   void pop_CPU_state();
 525 
 526   // Round up to a power of two
 527   void round_to(Register reg, int modulus);
 528 
 529   // Callee saved registers handling
 530   void push_callee_saved_registers();
 531   void pop_callee_saved_registers();
 532 
 533   // allocation
 534   void eden_allocate(
 535     Register thread,                   // Current thread
 536     Register obj,                      // result: pointer to object after successful allocation
 537     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 538     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 539     Register t1,                       // temp register
 540     Label&   slow_case                 // continuation point if fast allocation fails
 541   );
 542   void tlab_allocate(
 543     Register thread,                   // Current thread
 544     Register obj,                      // result: pointer to object after successful allocation
 545     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 546     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 547     Register t1,                       // temp register
 548     Register t2,                       // temp register
 549     Label&   slow_case                 // continuation point if fast allocation fails
 550   );
 551   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 552 
 553   // interface method calling
 554   void lookup_interface_method(Register recv_klass,
 555                                Register intf_klass,
 556                                RegisterOrConstant itable_index,
 557                                Register method_result,
 558                                Register scan_temp,
 559                                Label& no_such_interface,
 560                                bool return_method = true);
 561 
 562   // virtual method calling
 563   void lookup_virtual_method(Register recv_klass,
 564                              RegisterOrConstant vtable_index,
 565                              Register method_result);
 566 
 567   // Test sub_klass against super_klass, with fast and slow paths.
 568 
 569   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 570   // One of the three labels can be NULL, meaning take the fall-through.
 571   // If super_check_offset is -1, the value is loaded up from super_klass.
 572   // No registers are killed, except temp_reg.
 573   void check_klass_subtype_fast_path(Register sub_klass,
 574                                      Register super_klass,
 575                                      Register temp_reg,
 576                                      Label* L_success,
 577                                      Label* L_failure,
 578                                      Label* L_slow_path,
 579                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 580 
 581   // The rest of the type check; must be wired to a corresponding fast path.
 582   // It does not repeat the fast path logic, so don't use it standalone.
 583   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 584   // Updates the sub's secondary super cache as necessary.
 585   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 586   void check_klass_subtype_slow_path(Register sub_klass,
 587                                      Register super_klass,
 588                                      Register temp_reg,
 589                                      Register temp2_reg,
 590                                      Label* L_success,
 591                                      Label* L_failure,
 592                                      bool set_cond_codes = false);
 593 
 594   // Simplified, combined version, good for typical uses.
 595   // Falls through on failure.
 596   void check_klass_subtype(Register sub_klass,
 597                            Register super_klass,
 598                            Register temp_reg,
 599                            Label& L_success);
 600 
 601   void clinit_barrier(Register klass,
 602                       Register thread,
 603                       Label* L_fast_path = NULL,
 604                       Label* L_slow_path = NULL);
 605 
 606   // method handles (JSR 292)
 607   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 608 
 609   //----
 610   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 611 
 612   // Debugging
 613 
 614   // only if +VerifyOops
 615   // TODO: Make these macros with file and line like sparc version!
 616   void verify_oop(Register reg, const char* s = "broken oop");
 617   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 618 
 619   // TODO: verify method and klass metadata (compare against vptr?)
 620   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 621   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 622 
 623 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 624 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 625 
 626   // only if +VerifyFPU
 627   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 628 
 629   // Verify or restore cpu control state after JNI call
 630   void restore_cpu_control_state_after_jni();
 631 
 632   // prints msg, dumps registers and stops execution
 633   void stop(const char* msg);
 634 
 635   // prints msg and continues
 636   void warn(const char* msg);
 637 
 638   // dumps registers and other state
 639   void print_state();
 640 
 641   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 642   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 643   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 644   static void print_state64(int64_t pc, int64_t regs[]);
 645 
 646   void os_breakpoint();
 647 
 648   void untested()                                { stop("untested"); }
 649 
 650   void unimplemented(const char* what = "");
 651 
 652   void should_not_reach_here()                   { stop("should not reach here"); }
 653 
 654   void print_CPU_state();
 655 
 656   // Stack overflow checking
 657   void bang_stack_with_offset(int offset) {
 658     // stack grows down, caller passes positive offset
 659     assert(offset > 0, "must bang with negative offset");
 660     movl(Address(rsp, (-offset)), rax);
 661   }
 662 
 663   // Writes to stack successive pages until offset reached to check for
 664   // stack overflow + shadow pages.  Also, clobbers tmp
 665   void bang_stack_size(Register size, Register tmp);
 666 
 667   // Check for reserved stack access in method being exited (for JIT)
 668   void reserved_stack_check();
 669 
 670   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 671                                                 Register tmp,
 672                                                 int offset);
 673 
 674   // If thread_reg is != noreg the code assumes the register passed contains
 675   // the thread (required on 64 bit).
 676   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 677 
 678   void verify_tlab();
 679 
 680   // Biased locking support
 681   // lock_reg and obj_reg must be loaded up with the appropriate values.
 682   // swap_reg must be rax, and is killed.
 683   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 684   // be killed; if not supplied, push/pop will be used internally to
 685   // allocate a temporary (inefficient, avoid if possible).
 686   // Optional slow case is for implementations (interpreter and C1) which branch to
 687   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 688   // Returns offset of first potentially-faulting instruction for null
 689   // check info (currently consumed only by C1). If
 690   // swap_reg_contains_mark is true then returns -1 as it is assumed
 691   // the calling code has already passed any potential faults.
 692   int biased_locking_enter(Register lock_reg, Register obj_reg,
 693                            Register swap_reg, Register tmp_reg,
 694                            bool swap_reg_contains_mark,
 695                            Label& done, Label* slow_case = NULL,
 696                            BiasedLockingCounters* counters = NULL);
 697   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 698 #ifdef COMPILER2
 699   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 700   // See full desription in macroAssembler_x86.cpp.
 701   void fast_lock(Register obj, Register box, Register tmp,
 702                  Register scr, Register cx1, Register cx2,
 703                  BiasedLockingCounters* counters,
 704                  RTMLockingCounters* rtm_counters,
 705                  RTMLockingCounters* stack_rtm_counters,
 706                  Metadata* method_data,
 707                  bool use_rtm, bool profile_rtm);
 708   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 709 #if INCLUDE_RTM_OPT
 710   void rtm_counters_update(Register abort_status, Register rtm_counters);
 711   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 712   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 713                                    RTMLockingCounters* rtm_counters,
 714                                    Metadata* method_data);
 715   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 716                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 717   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 718   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 719   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 720                          Register retry_on_abort_count,
 721                          RTMLockingCounters* stack_rtm_counters,
 722                          Metadata* method_data, bool profile_rtm,
 723                          Label& DONE_LABEL, Label& IsInflated);
 724   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 725                             Register scr, Register retry_on_busy_count,
 726                             Register retry_on_abort_count,
 727                             RTMLockingCounters* rtm_counters,
 728                             Metadata* method_data, bool profile_rtm,
 729                             Label& DONE_LABEL);
 730 #endif
 731 #endif
 732 
 733   Condition negate_condition(Condition cond);
 734 
 735   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 736   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 737   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 738   // here in MacroAssembler. The major exception to this rule is call
 739 
 740   // Arithmetics
 741 
 742 
 743   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 744   void addptr(Address dst, Register src);
 745 
 746   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 747   void addptr(Register dst, int32_t src);
 748   void addptr(Register dst, Register src);
 749   void addptr(Register dst, RegisterOrConstant src) {
 750     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 751     else                   addptr(dst,       src.as_register());
 752   }
 753 
 754   void andptr(Register dst, int32_t src);
 755   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 756 
 757   void cmp8(AddressLiteral src1, int imm);
 758 
 759   // renamed to drag out the casting of address to int32_t/intptr_t
 760   void cmp32(Register src1, int32_t imm);
 761 
 762   void cmp32(AddressLiteral src1, int32_t imm);
 763   // compare reg - mem, or reg - &mem
 764   void cmp32(Register src1, AddressLiteral src2);
 765 
 766   void cmp32(Register src1, Address src2);
 767 
 768 #ifndef _LP64
 769   void cmpklass(Address dst, Metadata* obj);
 770   void cmpklass(Register dst, Metadata* obj);
 771   void cmpoop(Address dst, jobject obj);
 772   void cmpoop_raw(Address dst, jobject obj);
 773 #endif // _LP64
 774 
 775   void cmpoop(Register src1, Register src2);
 776   void cmpoop(Register src1, Address src2);
 777   void cmpoop(Register dst, jobject obj);
 778   void cmpoop_raw(Register dst, jobject obj);
 779 
 780   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 781   void cmpptr(Address src1, AddressLiteral src2);
 782 
 783   void cmpptr(Register src1, AddressLiteral src2);
 784 
 785   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 786   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 787   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 788 
 789   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 790   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 791 
 792   // cmp64 to avoild hiding cmpq
 793   void cmp64(Register src1, AddressLiteral src);
 794 
 795   void cmpxchgptr(Register reg, Address adr);
 796 
 797   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 798 
 799 
 800   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 801   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 802 
 803 
 804   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 805 
 806   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 807 
 808   void shlptr(Register dst, int32_t shift);
 809   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 810 
 811   void shrptr(Register dst, int32_t shift);
 812   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 813 
 814   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 815   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 816 
 817   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 818 
 819   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 820   void subptr(Register dst, int32_t src);
 821   // Force generation of a 4 byte immediate value even if it fits into 8bit
 822   void subptr_imm32(Register dst, int32_t src);
 823   void subptr(Register dst, Register src);
 824   void subptr(Register dst, RegisterOrConstant src) {
 825     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 826     else                   subptr(dst,       src.as_register());
 827   }
 828 
 829   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 830   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 831 
 832   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 833   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 834 
 835   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 836 
 837 
 838 
 839   // Helper functions for statistics gathering.
 840   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 841   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 842   // Unconditional atomic increment.
 843   void atomic_incl(Address counter_addr);
 844   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 845 #ifdef _LP64
 846   void atomic_incq(Address counter_addr);
 847   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 848 #endif
 849   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 850   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 851 
 852   void lea(Register dst, AddressLiteral adr);
 853   void lea(Address dst, AddressLiteral adr);
 854   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 855 
 856   void leal32(Register dst, Address src) { leal(dst, src); }
 857 
 858   // Import other testl() methods from the parent class or else
 859   // they will be hidden by the following overriding declaration.
 860   using Assembler::testl;
 861   void testl(Register dst, AddressLiteral src);
 862 
 863   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 864   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 865   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 866   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 867 
 868   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 869   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 870   void testptr(Register src1, Register src2);
 871 
 872   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 873   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 874 
 875   // Calls
 876 
 877   void call(Label& L, relocInfo::relocType rtype);
 878   void call(Register entry);
 879 
 880   // NOTE: this call transfers to the effective address of entry NOT
 881   // the address contained by entry. This is because this is more natural
 882   // for jumps/calls.
 883   void call(AddressLiteral entry);
 884 
 885   // Emit the CompiledIC call idiom
 886   void ic_call(address entry, jint method_index = 0);
 887 
 888   // Jumps
 889 
 890   // NOTE: these jumps tranfer to the effective address of dst NOT
 891   // the address contained by dst. This is because this is more natural
 892   // for jumps/calls.
 893   void jump(AddressLiteral dst);
 894   void jump_cc(Condition cc, AddressLiteral dst);
 895 
 896   // 32bit can do a case table jump in one instruction but we no longer allow the base
 897   // to be installed in the Address class. This jump will tranfers to the address
 898   // contained in the location described by entry (not the address of entry)
 899   void jump(ArrayAddress entry);
 900 
 901   // Floating
 902 
 903   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 904   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 905   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 906 
 907   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 908   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 909   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 910 
 911   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 912   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 913   void comiss(XMMRegister dst, AddressLiteral src);
 914 
 915   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 916   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 917   void comisd(XMMRegister dst, AddressLiteral src);
 918 
 919   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 920   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 921 
 922   void fldcw(Address src) { Assembler::fldcw(src); }
 923   void fldcw(AddressLiteral src);
 924 
 925   void fld_s(int index)   { Assembler::fld_s(index); }
 926   void fld_s(Address src) { Assembler::fld_s(src); }
 927   void fld_s(AddressLiteral src);
 928 
 929   void fld_d(Address src) { Assembler::fld_d(src); }
 930   void fld_d(AddressLiteral src);
 931 
 932   void fld_x(Address src) { Assembler::fld_x(src); }
 933   void fld_x(AddressLiteral src);
 934 
 935   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 936   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 937 
 938   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 939   void ldmxcsr(AddressLiteral src);
 940 
 941 #ifdef _LP64
 942  private:
 943   void sha256_AVX2_one_round_compute(
 944     Register  reg_old_h,
 945     Register  reg_a,
 946     Register  reg_b,
 947     Register  reg_c,
 948     Register  reg_d,
 949     Register  reg_e,
 950     Register  reg_f,
 951     Register  reg_g,
 952     Register  reg_h,
 953     int iter);
 954   void sha256_AVX2_four_rounds_compute_first(int start);
 955   void sha256_AVX2_four_rounds_compute_last(int start);
 956   void sha256_AVX2_one_round_and_sched(
 957         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 958         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 959         XMMRegister xmm_2,     /* ymm6 */
 960         XMMRegister xmm_3,     /* ymm7 */
 961         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 962         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 963         Register    reg_c,      /* edi */
 964         Register    reg_d,      /* esi */
 965         Register    reg_e,      /* r8d */
 966         Register    reg_f,      /* r9d */
 967         Register    reg_g,      /* r10d */
 968         Register    reg_h,      /* r11d */
 969         int iter);
 970 
 971   void addm(int disp, Register r1, Register r2);
 972   void gfmul(XMMRegister tmp0, XMMRegister t);
 973   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 974                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 975   void generateHtbl_one_block(Register htbl);
 976   void generateHtbl_eight_blocks(Register htbl);
 977  public:
 978   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 979                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 980                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 981                    bool multi_block, XMMRegister shuf_mask);
 982   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 983 #endif
 984 
 985 #ifdef _LP64
 986  private:
 987   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 988                                      Register e, Register f, Register g, Register h, int iteration);
 989 
 990   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 991                                           Register a, Register b, Register c, Register d, Register e, Register f,
 992                                           Register g, Register h, int iteration);
 993 
 994   void addmq(int disp, Register r1, Register r2);
 995  public:
 996   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 997                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 998                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 999                    XMMRegister shuf_mask);
1000 #endif
1001 
1002   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
1003                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
1004                  Register buf, Register state, Register ofs, Register limit, Register rsp,
1005                  bool multi_block);
1006 
1007 #ifdef _LP64
1008   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1009                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1010                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1011                    bool multi_block, XMMRegister shuf_mask);
1012 #else
1013   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
1014                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1015                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1016                    bool multi_block);
1017 #endif
1018 
1019   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1020                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1021                 Register rax, Register rcx, Register rdx, Register tmp);
1022 
1023 #ifdef _LP64
1024   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1025                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1026                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1027 
1028   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1029                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1030                   Register rax, Register rcx, Register rdx, Register r11);
1031 
1032   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1033                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1034                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1035 
1036   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1037                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1038                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1039                 Register tmp3, Register tmp4);
1040 
1041   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1042                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1043                 Register rax, Register rcx, Register rdx, Register tmp1,
1044                 Register tmp2, Register tmp3, Register tmp4);
1045   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1046                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1047                 Register rax, Register rcx, Register rdx, Register tmp1,
1048                 Register tmp2, Register tmp3, Register tmp4);
1049 #else
1050   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1051                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1052                 Register rax, Register rcx, Register rdx, Register tmp1);
1053 
1054   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1055                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1056                 Register rax, Register rcx, Register rdx, Register tmp);
1057 
1058   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1059                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1060                 Register rdx, Register tmp);
1061 
1062   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1063                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1064                 Register rax, Register rbx, Register rdx);
1065 
1066   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1067                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1068                 Register rax, Register rcx, Register rdx, Register tmp);
1069 
1070   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1071                         Register edx, Register ebx, Register esi, Register edi,
1072                         Register ebp, Register esp);
1073 
1074   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1075                          Register esi, Register edi, Register ebp, Register esp);
1076 
1077   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1078                         Register edx, Register ebx, Register esi, Register edi,
1079                         Register ebp, Register esp);
1080 
1081   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1082                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1083                 Register rax, Register rcx, Register rdx, Register tmp);
1084 #endif
1085 
1086   void increase_precision();
1087   void restore_precision();
1088 
1089 private:
1090 
1091   // these are private because users should be doing movflt/movdbl
1092 
1093   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1094   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1095   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1096   void movss(XMMRegister dst, AddressLiteral src);
1097 
1098   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1099   void movlpd(XMMRegister dst, AddressLiteral src);
1100 
1101 public:
1102 
1103   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1104   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1105   void addsd(XMMRegister dst, AddressLiteral src);
1106 
1107   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1108   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1109   void addss(XMMRegister dst, AddressLiteral src);
1110 
1111   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1112   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1113   void addpd(XMMRegister dst, AddressLiteral src);
1114 
1115   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1116   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1117   void divsd(XMMRegister dst, AddressLiteral src);
1118 
1119   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1120   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1121   void divss(XMMRegister dst, AddressLiteral src);
1122 
1123   // Move Unaligned Double Quadword
1124   void movdqu(Address     dst, XMMRegister src);
1125   void movdqu(XMMRegister dst, Address src);
1126   void movdqu(XMMRegister dst, XMMRegister src);
1127   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1128   // AVX Unaligned forms
1129   void vmovdqu(Address     dst, XMMRegister src);
1130   void vmovdqu(XMMRegister dst, Address src);
1131   void vmovdqu(XMMRegister dst, XMMRegister src);
1132   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1133   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1134   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1135   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1136   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1137 
1138   // Move Aligned Double Quadword
1139   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1140   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1141   void movdqa(XMMRegister dst, AddressLiteral src);
1142 
1143   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1144   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1145   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1146   void movsd(XMMRegister dst, AddressLiteral src);
1147 
1148   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1149   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1150   void mulpd(XMMRegister dst, AddressLiteral src);
1151 
1152   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1153   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1154   void mulsd(XMMRegister dst, AddressLiteral src);
1155 
1156   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1157   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1158   void mulss(XMMRegister dst, AddressLiteral src);
1159 
1160   // Carry-Less Multiplication Quadword
1161   void pclmulldq(XMMRegister dst, XMMRegister src) {
1162     // 0x00 - multiply lower 64 bits [0:63]
1163     Assembler::pclmulqdq(dst, src, 0x00);
1164   }
1165   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1166     // 0x11 - multiply upper 64 bits [64:127]
1167     Assembler::pclmulqdq(dst, src, 0x11);
1168   }
1169 
1170   void pcmpeqb(XMMRegister dst, XMMRegister src);
1171   void pcmpeqw(XMMRegister dst, XMMRegister src);
1172 
1173   void pcmpestri(XMMRegister dst, Address src, int imm8);
1174   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1175 
1176   void pmovzxbw(XMMRegister dst, XMMRegister src);
1177   void pmovzxbw(XMMRegister dst, Address src);
1178 
1179   void pmovmskb(Register dst, XMMRegister src);
1180 
1181   void ptest(XMMRegister dst, XMMRegister src);
1182 
1183   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1184   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1185   void sqrtsd(XMMRegister dst, AddressLiteral src);
1186 
1187   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1188   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1189   void sqrtss(XMMRegister dst, AddressLiteral src);
1190 
1191   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1192   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1193   void subsd(XMMRegister dst, AddressLiteral src);
1194 
1195   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1196   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1197   void subss(XMMRegister dst, AddressLiteral src);
1198 
1199   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1200   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1201   void ucomiss(XMMRegister dst, AddressLiteral src);
1202 
1203   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1204   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1205   void ucomisd(XMMRegister dst, AddressLiteral src);
1206 
1207   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1208   void xorpd(XMMRegister dst, XMMRegister src);
1209   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1210   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1211 
1212   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1213   void xorps(XMMRegister dst, XMMRegister src);
1214   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1215   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1216 
1217   // Shuffle Bytes
1218   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1219   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1220   void pshufb(XMMRegister dst, AddressLiteral src);
1221   // AVX 3-operands instructions
1222 
1223   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1224   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1225   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1226 
1227   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1228   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1229   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1230 
1231   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1232   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1233 
1234   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1235   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1236 
1237   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1238   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1239 
1240   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1241   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1242   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1243 
1244   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1245   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1246 
1247   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1248 
1249   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1250 
1251   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1252   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1253 
1254   void vpmovmskb(Register dst, XMMRegister src);
1255 
1256   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1257   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1258 
1259   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1260   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1261 
1262   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1263   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1264 
1265   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1266   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1267 
1268   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1269   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1270 
1271   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1272   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1273 
1274   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1275   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1276 
1277   void vptest(XMMRegister dst, XMMRegister src);
1278 
1279   void punpcklbw(XMMRegister dst, XMMRegister src);
1280   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1281 
1282   void pshufd(XMMRegister dst, Address src, int mode);
1283   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1284 
1285   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1286   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1287 
1288   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1289   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1290   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1291 
1292   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1293   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1294   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1295 
1296   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1297   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1298   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1299 
1300   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1301   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1302   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1303 
1304   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1305   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1306   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1307 
1308   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1309   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1310   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1311 
1312   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1313   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1314   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1315 
1316   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1317   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1318   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1319 
1320   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1321   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1322 
1323   // AVX Vector instructions
1324 
1325   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1326   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1327   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1328 
1329   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1330   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1331   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1332 
1333   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1334     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1335       Assembler::vpxor(dst, nds, src, vector_len);
1336     else
1337       Assembler::vxorpd(dst, nds, src, vector_len);
1338   }
1339   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1340     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1341       Assembler::vpxor(dst, nds, src, vector_len);
1342     else
1343       Assembler::vxorpd(dst, nds, src, vector_len);
1344   }
1345   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1346 
1347   // Simple version for AVX2 256bit vectors
1348   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1349   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1350 
1351   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1352     if (UseAVX > 2) {
1353       Assembler::vinserti32x4(dst, dst, src, imm8);
1354     } else if (UseAVX > 1) {
1355       // vinserti128 is available only in AVX2
1356       Assembler::vinserti128(dst, nds, src, imm8);
1357     } else {
1358       Assembler::vinsertf128(dst, nds, src, imm8);
1359     }
1360   }
1361 
1362   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1363     if (UseAVX > 2) {
1364       Assembler::vinserti32x4(dst, dst, src, imm8);
1365     } else if (UseAVX > 1) {
1366       // vinserti128 is available only in AVX2
1367       Assembler::vinserti128(dst, nds, src, imm8);
1368     } else {
1369       Assembler::vinsertf128(dst, nds, src, imm8);
1370     }
1371   }
1372 
1373   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1374     if (UseAVX > 2) {
1375       Assembler::vextracti32x4(dst, src, imm8);
1376     } else if (UseAVX > 1) {
1377       // vextracti128 is available only in AVX2
1378       Assembler::vextracti128(dst, src, imm8);
1379     } else {
1380       Assembler::vextractf128(dst, src, imm8);
1381     }
1382   }
1383 
1384   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1385     if (UseAVX > 2) {
1386       Assembler::vextracti32x4(dst, src, imm8);
1387     } else if (UseAVX > 1) {
1388       // vextracti128 is available only in AVX2
1389       Assembler::vextracti128(dst, src, imm8);
1390     } else {
1391       Assembler::vextractf128(dst, src, imm8);
1392     }
1393   }
1394 
1395   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1396   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1397     vinserti128(dst, dst, src, 1);
1398   }
1399   void vinserti128_high(XMMRegister dst, Address src) {
1400     vinserti128(dst, dst, src, 1);
1401   }
1402   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1403     vextracti128(dst, src, 1);
1404   }
1405   void vextracti128_high(Address dst, XMMRegister src) {
1406     vextracti128(dst, src, 1);
1407   }
1408 
1409   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1410     if (UseAVX > 2) {
1411       Assembler::vinsertf32x4(dst, dst, src, 1);
1412     } else {
1413       Assembler::vinsertf128(dst, dst, src, 1);
1414     }
1415   }
1416 
1417   void vinsertf128_high(XMMRegister dst, Address src) {
1418     if (UseAVX > 2) {
1419       Assembler::vinsertf32x4(dst, dst, src, 1);
1420     } else {
1421       Assembler::vinsertf128(dst, dst, src, 1);
1422     }
1423   }
1424 
1425   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1426     if (UseAVX > 2) {
1427       Assembler::vextractf32x4(dst, src, 1);
1428     } else {
1429       Assembler::vextractf128(dst, src, 1);
1430     }
1431   }
1432 
1433   void vextractf128_high(Address dst, XMMRegister src) {
1434     if (UseAVX > 2) {
1435       Assembler::vextractf32x4(dst, src, 1);
1436     } else {
1437       Assembler::vextractf128(dst, src, 1);
1438     }
1439   }
1440 
1441   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1442   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1443     Assembler::vinserti64x4(dst, dst, src, 1);
1444   }
1445   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1446     Assembler::vinsertf64x4(dst, dst, src, 1);
1447   }
1448   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1449     Assembler::vextracti64x4(dst, src, 1);
1450   }
1451   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1452     Assembler::vextractf64x4(dst, src, 1);
1453   }
1454   void vextractf64x4_high(Address dst, XMMRegister src) {
1455     Assembler::vextractf64x4(dst, src, 1);
1456   }
1457   void vinsertf64x4_high(XMMRegister dst, Address src) {
1458     Assembler::vinsertf64x4(dst, dst, src, 1);
1459   }
1460 
1461   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1462   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1463     vinserti128(dst, dst, src, 0);
1464   }
1465   void vinserti128_low(XMMRegister dst, Address src) {
1466     vinserti128(dst, dst, src, 0);
1467   }
1468   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1469     vextracti128(dst, src, 0);
1470   }
1471   void vextracti128_low(Address dst, XMMRegister src) {
1472     vextracti128(dst, src, 0);
1473   }
1474 
1475   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1476     if (UseAVX > 2) {
1477       Assembler::vinsertf32x4(dst, dst, src, 0);
1478     } else {
1479       Assembler::vinsertf128(dst, dst, src, 0);
1480     }
1481   }
1482 
1483   void vinsertf128_low(XMMRegister dst, Address src) {
1484     if (UseAVX > 2) {
1485       Assembler::vinsertf32x4(dst, dst, src, 0);
1486     } else {
1487       Assembler::vinsertf128(dst, dst, src, 0);
1488     }
1489   }
1490 
1491   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1492     if (UseAVX > 2) {
1493       Assembler::vextractf32x4(dst, src, 0);
1494     } else {
1495       Assembler::vextractf128(dst, src, 0);
1496     }
1497   }
1498 
1499   void vextractf128_low(Address dst, XMMRegister src) {
1500     if (UseAVX > 2) {
1501       Assembler::vextractf32x4(dst, src, 0);
1502     } else {
1503       Assembler::vextractf128(dst, src, 0);
1504     }
1505   }
1506 
1507   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1508   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1509     Assembler::vinserti64x4(dst, dst, src, 0);
1510   }
1511   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1512     Assembler::vinsertf64x4(dst, dst, src, 0);
1513   }
1514   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1515     Assembler::vextracti64x4(dst, src, 0);
1516   }
1517   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1518     Assembler::vextractf64x4(dst, src, 0);
1519   }
1520   void vextractf64x4_low(Address dst, XMMRegister src) {
1521     Assembler::vextractf64x4(dst, src, 0);
1522   }
1523   void vinsertf64x4_low(XMMRegister dst, Address src) {
1524     Assembler::vinsertf64x4(dst, dst, src, 0);
1525   }
1526 
1527   // Carry-Less Multiplication Quadword
1528   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1529     // 0x00 - multiply lower 64 bits [0:63]
1530     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1531   }
1532   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1533     // 0x11 - multiply upper 64 bits [64:127]
1534     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1535   }
1536   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1537     // 0x10 - multiply nds[0:63] and src[64:127]
1538     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1539   }
1540   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1541     //0x01 - multiply nds[64:127] and src[0:63]
1542     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1543   }
1544 
1545   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1546     // 0x00 - multiply lower 64 bits [0:63]
1547     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1548   }
1549   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1550     // 0x11 - multiply upper 64 bits [64:127]
1551     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1552   }
1553 
1554   // Data
1555 
1556   void cmov32( Condition cc, Register dst, Address  src);
1557   void cmov32( Condition cc, Register dst, Register src);
1558 
1559   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1560 
1561   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1562   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1563 
1564   void movoop(Register dst, jobject obj);
1565   void movoop(Address dst, jobject obj);
1566 
1567   void mov_metadata(Register dst, Metadata* obj);
1568   void mov_metadata(Address dst, Metadata* obj);
1569 
1570   void movptr(ArrayAddress dst, Register src);
1571   // can this do an lea?
1572   void movptr(Register dst, ArrayAddress src);
1573 
1574   void movptr(Register dst, Address src);
1575 
1576 #ifdef _LP64
1577   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1578 #else
1579   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1580 #endif
1581 
1582   void movptr(Register dst, intptr_t src);
1583   void movptr(Register dst, Register src);
1584   void movptr(Address dst, intptr_t src);
1585 
1586   void movptr(Address dst, Register src);
1587 
1588   void movptr(Register dst, RegisterOrConstant src) {
1589     if (src.is_constant()) movptr(dst, src.as_constant());
1590     else                   movptr(dst, src.as_register());
1591   }
1592 
1593 #ifdef _LP64
1594   // Generally the next two are only used for moving NULL
1595   // Although there are situations in initializing the mark word where
1596   // they could be used. They are dangerous.
1597 
1598   // They only exist on LP64 so that int32_t and intptr_t are not the same
1599   // and we have ambiguous declarations.
1600 
1601   void movptr(Address dst, int32_t imm32);
1602   void movptr(Register dst, int32_t imm32);
1603 #endif // _LP64
1604 
1605   // to avoid hiding movl
1606   void mov32(AddressLiteral dst, Register src);
1607   void mov32(Register dst, AddressLiteral src);
1608 
1609   // to avoid hiding movb
1610   void movbyte(ArrayAddress dst, int src);
1611 
1612   // Import other mov() methods from the parent class or else
1613   // they will be hidden by the following overriding declaration.
1614   using Assembler::movdl;
1615   using Assembler::movq;
1616   void movdl(XMMRegister dst, AddressLiteral src);
1617   void movq(XMMRegister dst, AddressLiteral src);
1618 
1619   // Can push value or effective address
1620   void pushptr(AddressLiteral src);
1621 
1622   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1623   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1624 
1625   void pushoop(jobject obj);
1626   void pushklass(Metadata* obj);
1627 
1628   // sign extend as need a l to ptr sized element
1629   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1630   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1631 
1632 #ifdef COMPILER2
1633   // Generic instructions support for use in .ad files C2 code generation
1634   void vabsnegd(int opcode, XMMRegister dst, Register scr);
1635   void vabsnegd(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1636   void vabsnegf(int opcode, XMMRegister dst, Register scr);
1637   void vabsnegf(int opcode, XMMRegister dst, XMMRegister src, int vector_len, Register scr);
1638   void vextendbw(bool sign, XMMRegister dst, XMMRegister src, int vector_len);
1639   void vextendbw(bool sign, XMMRegister dst, XMMRegister src);
1640   void vshiftd(int opcode, XMMRegister dst, XMMRegister src);
1641   void vshiftd(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1642   void vshiftw(int opcode, XMMRegister dst, XMMRegister src);
1643   void vshiftw(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1644   void vshiftq(int opcode, XMMRegister dst, XMMRegister src);
1645   void vshiftq(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1646 #endif
1647 
1648   // C2 compiled method's prolog code.
1649   void verified_entry(Compile* C, int sp_inc = 0);
1650 
1651   enum RegState {
1652     reg_readonly,
1653     reg_writable,
1654     reg_written
1655   };
1656 
1657   int store_value_type_fields_to_buf(ciValueKlass* vk, bool from_interpreter = true);
1658 
1659   // Unpack all value type arguments passed as oops
1660   void unpack_value_args(Compile* C, bool receiver_only);
1661   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[], int ret_off, int extra_stack_offset);
1662   bool unpack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, VMReg from, VMRegPair* regs_to, int& to_index,
1663                            RegState reg_state[], int ret_off, int extra_stack_offset);
1664   bool pack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, int vtarg_index,
1665                          VMReg to, VMRegPair* regs_from, int regs_from_count, int& from_index, RegState reg_state[],
1666                          int ret_off, int extra_stack_offset);
1667   void restore_stack(Compile* C);
1668 
1669   int shuffle_value_args(bool is_packing, bool receiver_only, int extra_stack_offset,
1670                          BasicType* sig_bt, const GrowableArray<SigEntry>* sig_cc,
1671                          int args_passed, int args_on_stack, VMRegPair* regs,
1672                          int args_passed_to, int args_on_stack_to, VMRegPair* regs_to);
1673   bool shuffle_value_args_spill(bool is_packing,  const GrowableArray<SigEntry>* sig_cc, int sig_cc_index,
1674                                 VMRegPair* regs_from, int from_index, int regs_from_count,
1675                                 RegState* reg_state, int sp_inc, int extra_stack_offset);
1676   VMReg spill_reg_for(VMReg reg);
1677 
1678   // clear memory of size 'cnt' qwords, starting at 'base';
1679   // if 'is_large' is set, do not try to produce short loop
1680   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only);
1681 
1682   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1683   void xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp);
1684 
1685 #ifdef COMPILER2
1686   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1687                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1688 
1689   // IndexOf strings.
1690   // Small strings are loaded through stack if they cross page boundary.
1691   void string_indexof(Register str1, Register str2,
1692                       Register cnt1, Register cnt2,
1693                       int int_cnt2,  Register result,
1694                       XMMRegister vec, Register tmp,
1695                       int ae);
1696 
1697   // IndexOf for constant substrings with size >= 8 elements
1698   // which don't need to be loaded through stack.
1699   void string_indexofC8(Register str1, Register str2,
1700                       Register cnt1, Register cnt2,
1701                       int int_cnt2,  Register result,
1702                       XMMRegister vec, Register tmp,
1703                       int ae);
1704 
1705     // Smallest code: we don't need to load through stack,
1706     // check string tail.
1707 
1708   // helper function for string_compare
1709   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1710                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1711                           Address::ScaleFactor scale2, Register index, int ae);
1712   // Compare strings.
1713   void string_compare(Register str1, Register str2,
1714                       Register cnt1, Register cnt2, Register result,
1715                       XMMRegister vec1, int ae);
1716 
1717   // Search for Non-ASCII character (Negative byte value) in a byte array,
1718   // return true if it has any and false otherwise.
1719   void has_negatives(Register ary1, Register len,
1720                      Register result, Register tmp1,
1721                      XMMRegister vec1, XMMRegister vec2);
1722 
1723   // Compare char[] or byte[] arrays.
1724   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1725                      Register limit, Register result, Register chr,
1726                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1727 
1728 #endif
1729 
1730   // Fill primitive arrays
1731   void generate_fill(BasicType t, bool aligned,
1732                      Register to, Register value, Register count,
1733                      Register rtmp, XMMRegister xtmp);
1734 
1735   void encode_iso_array(Register src, Register dst, Register len,
1736                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1737                         XMMRegister tmp4, Register tmp5, Register result);
1738 
1739 #ifdef _LP64
1740   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1741   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1742                              Register y, Register y_idx, Register z,
1743                              Register carry, Register product,
1744                              Register idx, Register kdx);
1745   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1746                               Register yz_idx, Register idx,
1747                               Register carry, Register product, int offset);
1748   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1749                                     Register carry, Register carry2,
1750                                     Register idx, Register jdx,
1751                                     Register yz_idx1, Register yz_idx2,
1752                                     Register tmp, Register tmp3, Register tmp4);
1753   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1754                                Register yz_idx, Register idx, Register jdx,
1755                                Register carry, Register product,
1756                                Register carry2);
1757   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1758                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1759   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1760                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1761   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1762                             Register tmp2);
1763   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1764                        Register rdxReg, Register raxReg);
1765   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1766   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1767                        Register tmp3, Register tmp4);
1768   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1769                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1770 
1771   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1772                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1773                Register raxReg);
1774   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1775                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1776                Register raxReg);
1777   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1778                            Register result, Register tmp1, Register tmp2,
1779                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1780 #endif
1781 
1782   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1783   void update_byte_crc32(Register crc, Register val, Register table);
1784   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1785   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1786   // Note on a naming convention:
1787   // Prefix w = register only used on a Westmere+ architecture
1788   // Prefix n = register only used on a Nehalem architecture
1789 #ifdef _LP64
1790   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1791                        Register tmp1, Register tmp2, Register tmp3);
1792 #else
1793   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1794                        Register tmp1, Register tmp2, Register tmp3,
1795                        XMMRegister xtmp1, XMMRegister xtmp2);
1796 #endif
1797   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1798                         Register in_out,
1799                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1800                         XMMRegister w_xtmp2,
1801                         Register tmp1,
1802                         Register n_tmp2, Register n_tmp3);
1803   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1804                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1805                        Register tmp1, Register tmp2,
1806                        Register n_tmp3);
1807   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1808                          Register in_out1, Register in_out2, Register in_out3,
1809                          Register tmp1, Register tmp2, Register tmp3,
1810                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1811                          Register tmp4, Register tmp5,
1812                          Register n_tmp6);
1813   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1814                             Register tmp1, Register tmp2, Register tmp3,
1815                             Register tmp4, Register tmp5, Register tmp6,
1816                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1817                             bool is_pclmulqdq_supported);
1818   // Fold 128-bit data chunk
1819   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1820   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1821   // Fold 8-bit data
1822   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1823   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1824   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1825 
1826   // Compress char[] array to byte[].
1827   void char_array_compress(Register src, Register dst, Register len,
1828                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1829                            XMMRegister tmp4, Register tmp5, Register result);
1830 
1831   // Inflate byte[] array to char[].
1832   void byte_array_inflate(Register src, Register dst, Register len,
1833                           XMMRegister tmp1, Register tmp2);
1834 
1835 #include "asm/macroAssembler_common.hpp"
1836 
1837 
1838 };
1839 
1840 /**
1841  * class SkipIfEqual:
1842  *
1843  * Instantiating this class will result in assembly code being output that will
1844  * jump around any code emitted between the creation of the instance and it's
1845  * automatic destruction at the end of a scope block, depending on the value of
1846  * the flag passed to the constructor, which will be checked at run-time.
1847  */
1848 class SkipIfEqual {
1849  private:
1850   MacroAssembler* _masm;
1851   Label _label;
1852 
1853  public:
1854    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1855    ~SkipIfEqual();
1856 };
1857 
1858 #endif // CPU_X86_MACROASSEMBLER_X86_HPP