1 /*
   2  * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "ci/ciValueArrayKlass.hpp"
  38 #include "ci/ciValueKlass.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/c1/barrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 
  48 #ifdef ASSERT
  49 #define __ gen()->lir(__FILE__, __LINE__)->
  50 #else
  51 #define __ gen()->lir()->
  52 #endif
  53 
  54 #ifndef PATCHED_ADDR
  55 #define PATCHED_ADDR  (max_jint)
  56 #endif
  57 
  58 void PhiResolverState::reset() {
  59   _virtual_operands.clear();
  60   _other_operands.clear();
  61   _vreg_table.clear();
  62 }
  63 
  64 
  65 //--------------------------------------------------------------
  66 // PhiResolver
  67 
  68 // Resolves cycles:
  69 //
  70 //  r1 := r2  becomes  temp := r1
  71 //  r2 := r1           r1 := r2
  72 //                     r2 := temp
  73 // and orders moves:
  74 //
  75 //  r2 := r3  becomes  r1 := r2
  76 //  r1 := r2           r2 := r3
  77 
  78 PhiResolver::PhiResolver(LIRGenerator* gen)
  79  : _gen(gen)
  80  , _state(gen->resolver_state())
  81  , _temp(LIR_OprFact::illegalOpr)
  82 {
  83   // reinitialize the shared state arrays
  84   _state.reset();
  85 }
  86 
  87 
  88 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  89   assert(src->is_valid(), "");
  90   assert(dest->is_valid(), "");
  91   __ move(src, dest);
  92 }
  93 
  94 
  95 void PhiResolver::move_temp_to(LIR_Opr dest) {
  96   assert(_temp->is_valid(), "");
  97   emit_move(_temp, dest);
  98   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  99 }
 100 
 101 
 102 void PhiResolver::move_to_temp(LIR_Opr src) {
 103   assert(_temp->is_illegal(), "");
 104   _temp = _gen->new_register(src->type());
 105   emit_move(src, _temp);
 106 }
 107 
 108 
 109 // Traverse assignment graph in depth first order and generate moves in post order
 110 // ie. two assignments: b := c, a := b start with node c:
 111 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 112 // Generates moves in this order: move b to a and move c to b
 113 // ie. cycle a := b, b := a start with node a
 114 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 115 // Generates moves in this order: move b to temp, move a to b, move temp to a
 116 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 117   if (!dest->visited()) {
 118     dest->set_visited();
 119     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 120       move(dest, dest->destination_at(i));
 121     }
 122   } else if (!dest->start_node()) {
 123     // cylce in graph detected
 124     assert(_loop == NULL, "only one loop valid!");
 125     _loop = dest;
 126     move_to_temp(src->operand());
 127     return;
 128   } // else dest is a start node
 129 
 130   if (!dest->assigned()) {
 131     if (_loop == dest) {
 132       move_temp_to(dest->operand());
 133       dest->set_assigned();
 134     } else if (src != NULL) {
 135       emit_move(src->operand(), dest->operand());
 136       dest->set_assigned();
 137     }
 138   }
 139 }
 140 
 141 
 142 PhiResolver::~PhiResolver() {
 143   int i;
 144   // resolve any cycles in moves from and to virtual registers
 145   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 146     ResolveNode* node = virtual_operands().at(i);
 147     if (!node->visited()) {
 148       _loop = NULL;
 149       move(NULL, node);
 150       node->set_start_node();
 151       assert(_temp->is_illegal(), "move_temp_to() call missing");
 152     }
 153   }
 154 
 155   // generate move for move from non virtual register to abitrary destination
 156   for (i = other_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = other_operands().at(i);
 158     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 159       emit_move(node->operand(), node->destination_at(j)->operand());
 160     }
 161   }
 162 }
 163 
 164 
 165 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 166   ResolveNode* node;
 167   if (opr->is_virtual()) {
 168     int vreg_num = opr->vreg_number();
 169     node = vreg_table().at_grow(vreg_num, NULL);
 170     assert(node == NULL || node->operand() == opr, "");
 171     if (node == NULL) {
 172       node = new ResolveNode(opr);
 173       vreg_table().at_put(vreg_num, node);
 174     }
 175     // Make sure that all virtual operands show up in the list when
 176     // they are used as the source of a move.
 177     if (source && !virtual_operands().contains(node)) {
 178       virtual_operands().append(node);
 179     }
 180   } else {
 181     assert(source, "");
 182     node = new ResolveNode(opr);
 183     other_operands().append(node);
 184   }
 185   return node;
 186 }
 187 
 188 
 189 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 190   assert(dest->is_virtual(), "");
 191   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 192   assert(src->is_valid(), "");
 193   assert(dest->is_valid(), "");
 194   ResolveNode* source = source_node(src);
 195   source->append(destination_node(dest));
 196 }
 197 
 198 
 199 //--------------------------------------------------------------
 200 // LIRItem
 201 
 202 void LIRItem::set_result(LIR_Opr opr) {
 203   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 204   value()->set_operand(opr);
 205 
 206   if (opr->is_virtual()) {
 207     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 208   }
 209 
 210   _result = opr;
 211 }
 212 
 213 void LIRItem::load_item() {
 214   if (result()->is_illegal()) {
 215     // update the items result
 216     _result = value()->operand();
 217   }
 218   if (!result()->is_register()) {
 219     LIR_Opr reg = _gen->new_register(value()->type());
 220     __ move(result(), reg);
 221     if (result()->is_constant()) {
 222       _result = reg;
 223     } else {
 224       set_result(reg);
 225     }
 226   }
 227 }
 228 
 229 
 230 void LIRItem::load_for_store(BasicType type) {
 231   if (_gen->can_store_as_constant(value(), type)) {
 232     _result = value()->operand();
 233     if (!_result->is_constant()) {
 234       _result = LIR_OprFact::value_type(value()->type());
 235     }
 236   } else if (type == T_BYTE || type == T_BOOLEAN) {
 237     load_byte_item();
 238   } else {
 239     load_item();
 240   }
 241 }
 242 
 243 void LIRItem::load_item_force(LIR_Opr reg) {
 244   LIR_Opr r = result();
 245   if (r != reg) {
 246 #if !defined(ARM) && !defined(E500V2)
 247     if (r->type() != reg->type()) {
 248       // moves between different types need an intervening spill slot
 249       r = _gen->force_to_spill(r, reg->type());
 250     }
 251 #endif
 252     __ move(r, reg);
 253     _result = reg;
 254   }
 255 }
 256 
 257 ciObject* LIRItem::get_jobject_constant() const {
 258   ObjectType* oc = type()->as_ObjectType();
 259   if (oc) {
 260     return oc->constant_value();
 261   }
 262   return NULL;
 263 }
 264 
 265 
 266 jint LIRItem::get_jint_constant() const {
 267   assert(is_constant() && value() != NULL, "");
 268   assert(type()->as_IntConstant() != NULL, "type check");
 269   return type()->as_IntConstant()->value();
 270 }
 271 
 272 
 273 jint LIRItem::get_address_constant() const {
 274   assert(is_constant() && value() != NULL, "");
 275   assert(type()->as_AddressConstant() != NULL, "type check");
 276   return type()->as_AddressConstant()->value();
 277 }
 278 
 279 
 280 jfloat LIRItem::get_jfloat_constant() const {
 281   assert(is_constant() && value() != NULL, "");
 282   assert(type()->as_FloatConstant() != NULL, "type check");
 283   return type()->as_FloatConstant()->value();
 284 }
 285 
 286 
 287 jdouble LIRItem::get_jdouble_constant() const {
 288   assert(is_constant() && value() != NULL, "");
 289   assert(type()->as_DoubleConstant() != NULL, "type check");
 290   return type()->as_DoubleConstant()->value();
 291 }
 292 
 293 
 294 jlong LIRItem::get_jlong_constant() const {
 295   assert(is_constant() && value() != NULL, "");
 296   assert(type()->as_LongConstant() != NULL, "type check");
 297   return type()->as_LongConstant()->value();
 298 }
 299 
 300 
 301 
 302 //--------------------------------------------------------------
 303 
 304 
 305 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 306 #ifndef PRODUCT
 307   if (PrintIRWithLIR) {
 308     block->print();
 309   }
 310 #endif
 311 
 312   // set up the list of LIR instructions
 313   assert(block->lir() == NULL, "LIR list already computed for this block");
 314   _lir = new LIR_List(compilation(), block);
 315   block->set_lir(_lir);
 316 
 317   __ branch_destination(block->label());
 318 
 319   if (LIRTraceExecution &&
 320       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 321       !block->is_set(BlockBegin::exception_entry_flag)) {
 322     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 323     trace_block_entry(block);
 324   }
 325 }
 326 
 327 
 328 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 329 #ifndef PRODUCT
 330   if (PrintIRWithLIR) {
 331     tty->cr();
 332   }
 333 #endif
 334 
 335   // LIR_Opr for unpinned constants shouldn't be referenced by other
 336   // blocks so clear them out after processing the block.
 337   for (int i = 0; i < _unpinned_constants.length(); i++) {
 338     _unpinned_constants.at(i)->clear_operand();
 339   }
 340   _unpinned_constants.trunc_to(0);
 341 
 342   // clear our any registers for other local constants
 343   _constants.trunc_to(0);
 344   _reg_for_constants.trunc_to(0);
 345 }
 346 
 347 
 348 void LIRGenerator::block_do(BlockBegin* block) {
 349   CHECK_BAILOUT();
 350 
 351   block_do_prolog(block);
 352   set_block(block);
 353 
 354   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 355     if (instr->is_pinned()) do_root(instr);
 356   }
 357 
 358   set_block(NULL);
 359   block_do_epilog(block);
 360 }
 361 
 362 
 363 //-------------------------LIRGenerator-----------------------------
 364 
 365 // This is where the tree-walk starts; instr must be root;
 366 void LIRGenerator::do_root(Value instr) {
 367   CHECK_BAILOUT();
 368 
 369   InstructionMark im(compilation(), instr);
 370 
 371   assert(instr->is_pinned(), "use only with roots");
 372   assert(instr->subst() == instr, "shouldn't have missed substitution");
 373 
 374   instr->visit(this);
 375 
 376   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 377          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 378 }
 379 
 380 
 381 // This is called for each node in tree; the walk stops if a root is reached
 382 void LIRGenerator::walk(Value instr) {
 383   InstructionMark im(compilation(), instr);
 384   //stop walk when encounter a root
 385   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 386     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 387   } else {
 388     assert(instr->subst() == instr, "shouldn't have missed substitution");
 389     instr->visit(this);
 390     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 391   }
 392 }
 393 
 394 
 395 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 396   assert(state != NULL, "state must be defined");
 397 
 398 #ifndef PRODUCT
 399   state->verify();
 400 #endif
 401 
 402   ValueStack* s = state;
 403   for_each_state(s) {
 404     if (s->kind() == ValueStack::EmptyExceptionState) {
 405       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 406       continue;
 407     }
 408 
 409     int index;
 410     Value value;
 411     for_each_stack_value(s, index, value) {
 412       assert(value->subst() == value, "missed substitution");
 413       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 414         walk(value);
 415         assert(value->operand()->is_valid(), "must be evaluated now");
 416       }
 417     }
 418 
 419     int bci = s->bci();
 420     IRScope* scope = s->scope();
 421     ciMethod* method = scope->method();
 422 
 423     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 424     if (bci == SynchronizationEntryBCI) {
 425       if (x->as_ExceptionObject() || x->as_Throw()) {
 426         // all locals are dead on exit from the synthetic unlocker
 427         liveness.clear();
 428       } else {
 429         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 430       }
 431     }
 432     if (!liveness.is_valid()) {
 433       // Degenerate or breakpointed method.
 434       bailout("Degenerate or breakpointed method");
 435     } else {
 436       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 437       for_each_local_value(s, index, value) {
 438         assert(value->subst() == value, "missed substition");
 439         if (liveness.at(index) && !value->type()->is_illegal()) {
 440           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 441             walk(value);
 442             assert(value->operand()->is_valid(), "must be evaluated now");
 443           }
 444         } else {
 445           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 446           s->invalidate_local(index);
 447         }
 448       }
 449     }
 450   }
 451 
 452   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 453 }
 454 
 455 
 456 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 457   return state_for(x, x->exception_state());
 458 }
 459 
 460 
 461 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 462   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 463    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 464    * the class. */
 465   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ klass2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ metadata2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           jint c = right->as_jint();
 540           if (c > 0 && is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597 
 598   if (TwoOperandLIRForm && value != result_op
 599       // Only 32bit right shifts require two operand form on S390.
 600       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 601     assert(count != result_op, "malformed");
 602     __ move(value, result_op);
 603     value = result_op;
 604   }
 605 
 606   assert(count->is_constant() || count->is_register(), "must be");
 607   switch(code) {
 608   case Bytecodes::_ishl:
 609   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 610   case Bytecodes::_ishr:
 611   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 612   case Bytecodes::_iushr:
 613   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 614   default: ShouldNotReachHere();
 615   }
 616 }
 617 
 618 
 619 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 620   if (TwoOperandLIRForm && left_op != result_op) {
 621     assert(right_op != result_op, "malformed");
 622     __ move(left_op, result_op);
 623     left_op = result_op;
 624   }
 625 
 626   switch(code) {
 627     case Bytecodes::_iand:
 628     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 629 
 630     case Bytecodes::_ior:
 631     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 632 
 633     case Bytecodes::_ixor:
 634     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 635 
 636     default: ShouldNotReachHere();
 637   }
 638 }
 639 
 640 
 641 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no,
 642                                  CodeEmitInfo* info_for_exception, CodeEmitInfo* info, CodeStub* throw_imse_stub) {
 643   if (!GenerateSynchronizationCode) return;
 644   // for slow path, use debug info for state after successful locking
 645   CodeStub* slow_path = new MonitorEnterStub(object, lock, info, throw_imse_stub, scratch);
 646   __ load_stack_address_monitor(monitor_no, lock);
 647   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 648   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception, throw_imse_stub);
 649 }
 650 
 651 
 652 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 653   if (!GenerateSynchronizationCode) return;
 654   // setup registers
 655   LIR_Opr hdr = lock;
 656   lock = new_hdr;
 657   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 658   __ load_stack_address_monitor(monitor_no, lock);
 659   __ unlock_object(hdr, object, lock, scratch, slow_path);
 660 }
 661 
 662 #ifndef PRODUCT
 663 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 664   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 665     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 666   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 667     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 668   }
 669 }
 670 #endif
 671 
 672 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 673   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 674   // If klass is not loaded we do not know if the klass has finalizers:
 675   if (UseFastNewInstance && klass->is_loaded()
 676       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 677 
 678     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 679 
 680     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 681 
 682     assert(klass->is_loaded(), "must be loaded");
 683     // allocate space for instance
 684     assert(klass->size_helper() >= 0, "illegal instance size");
 685     const int instance_size = align_object_size(klass->size_helper());
 686     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 687                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 688   } else {
 689     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 690     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 691     __ branch_destination(slow_path->continuation());
 692   }
 693 }
 694 
 695 
 696 static bool is_constant_zero(Instruction* inst) {
 697   IntConstant* c = inst->type()->as_IntConstant();
 698   if (c) {
 699     return (c->value() == 0);
 700   }
 701   return false;
 702 }
 703 
 704 
 705 static bool positive_constant(Instruction* inst) {
 706   IntConstant* c = inst->type()->as_IntConstant();
 707   if (c) {
 708     return (c->value() >= 0);
 709   }
 710   return false;
 711 }
 712 
 713 
 714 static ciArrayKlass* as_array_klass(ciType* type) {
 715   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 716     return (ciArrayKlass*)type;
 717   } else {
 718     return NULL;
 719   }
 720 }
 721 
 722 static ciType* phi_declared_type(Phi* phi) {
 723   ciType* t = phi->operand_at(0)->declared_type();
 724   if (t == NULL) {
 725     return NULL;
 726   }
 727   for(int i = 1; i < phi->operand_count(); i++) {
 728     if (t != phi->operand_at(i)->declared_type()) {
 729       return NULL;
 730     }
 731   }
 732   return t;
 733 }
 734 
 735 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 736   Instruction* src     = x->argument_at(0);
 737   Instruction* src_pos = x->argument_at(1);
 738   Instruction* dst     = x->argument_at(2);
 739   Instruction* dst_pos = x->argument_at(3);
 740   Instruction* length  = x->argument_at(4);
 741 
 742   // first try to identify the likely type of the arrays involved
 743   ciArrayKlass* expected_type = NULL;
 744   bool is_exact = false, src_objarray = false, dst_objarray = false;
 745   {
 746     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 747     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 748     Phi* phi;
 749     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 750       src_declared_type = as_array_klass(phi_declared_type(phi));
 751     }
 752     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 753     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 754     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 755       dst_declared_type = as_array_klass(phi_declared_type(phi));
 756     }
 757 
 758     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 759       // the types exactly match so the type is fully known
 760       is_exact = true;
 761       expected_type = src_exact_type;
 762     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 763       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 764       ciArrayKlass* src_type = NULL;
 765       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 766         src_type = (ciArrayKlass*) src_exact_type;
 767       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 768         src_type = (ciArrayKlass*) src_declared_type;
 769       }
 770       if (src_type != NULL) {
 771         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 772           is_exact = true;
 773           expected_type = dst_type;
 774         }
 775       }
 776     }
 777     // at least pass along a good guess
 778     if (expected_type == NULL) expected_type = dst_exact_type;
 779     if (expected_type == NULL) expected_type = src_declared_type;
 780     if (expected_type == NULL) expected_type = dst_declared_type;
 781 
 782     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 783     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 784   }
 785 
 786   // if a probable array type has been identified, figure out if any
 787   // of the required checks for a fast case can be elided.
 788   int flags = LIR_OpArrayCopy::all_flags;
 789 
 790   if (!src->is_loaded_flattened_array() && !dst->is_loaded_flattened_array()) {
 791     flags &= ~LIR_OpArrayCopy::always_slow_path;
 792   }
 793   if (!src->maybe_flattened_array()) {
 794     flags &= ~LIR_OpArrayCopy::src_valuetype_check;
 795   }
 796   if (!dst->maybe_flattened_array() && !dst->maybe_null_free_array()) {
 797     flags &= ~LIR_OpArrayCopy::dst_valuetype_check;
 798   }
 799 
 800   if (!src_objarray)
 801     flags &= ~LIR_OpArrayCopy::src_objarray;
 802   if (!dst_objarray)
 803     flags &= ~LIR_OpArrayCopy::dst_objarray;
 804 
 805   if (!x->arg_needs_null_check(0))
 806     flags &= ~LIR_OpArrayCopy::src_null_check;
 807   if (!x->arg_needs_null_check(2))
 808     flags &= ~LIR_OpArrayCopy::dst_null_check;
 809 
 810 
 811   if (expected_type != NULL) {
 812     Value length_limit = NULL;
 813 
 814     IfOp* ifop = length->as_IfOp();
 815     if (ifop != NULL) {
 816       // look for expressions like min(v, a.length) which ends up as
 817       //   x > y ? y : x  or  x >= y ? y : x
 818       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 819           ifop->x() == ifop->fval() &&
 820           ifop->y() == ifop->tval()) {
 821         length_limit = ifop->y();
 822       }
 823     }
 824 
 825     // try to skip null checks and range checks
 826     NewArray* src_array = src->as_NewArray();
 827     if (src_array != NULL) {
 828       flags &= ~LIR_OpArrayCopy::src_null_check;
 829       if (length_limit != NULL &&
 830           src_array->length() == length_limit &&
 831           is_constant_zero(src_pos)) {
 832         flags &= ~LIR_OpArrayCopy::src_range_check;
 833       }
 834     }
 835 
 836     NewArray* dst_array = dst->as_NewArray();
 837     if (dst_array != NULL) {
 838       flags &= ~LIR_OpArrayCopy::dst_null_check;
 839       if (length_limit != NULL &&
 840           dst_array->length() == length_limit &&
 841           is_constant_zero(dst_pos)) {
 842         flags &= ~LIR_OpArrayCopy::dst_range_check;
 843       }
 844     }
 845 
 846     // check from incoming constant values
 847     if (positive_constant(src_pos))
 848       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 849     if (positive_constant(dst_pos))
 850       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 851     if (positive_constant(length))
 852       flags &= ~LIR_OpArrayCopy::length_positive_check;
 853 
 854     // see if the range check can be elided, which might also imply
 855     // that src or dst is non-null.
 856     ArrayLength* al = length->as_ArrayLength();
 857     if (al != NULL) {
 858       if (al->array() == src) {
 859         // it's the length of the source array
 860         flags &= ~LIR_OpArrayCopy::length_positive_check;
 861         flags &= ~LIR_OpArrayCopy::src_null_check;
 862         if (is_constant_zero(src_pos))
 863           flags &= ~LIR_OpArrayCopy::src_range_check;
 864       }
 865       if (al->array() == dst) {
 866         // it's the length of the destination array
 867         flags &= ~LIR_OpArrayCopy::length_positive_check;
 868         flags &= ~LIR_OpArrayCopy::dst_null_check;
 869         if (is_constant_zero(dst_pos))
 870           flags &= ~LIR_OpArrayCopy::dst_range_check;
 871       }
 872     }
 873     if (is_exact) {
 874       flags &= ~LIR_OpArrayCopy::type_check;
 875     }
 876   }
 877 
 878   IntConstant* src_int = src_pos->type()->as_IntConstant();
 879   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 880   if (src_int && dst_int) {
 881     int s_offs = src_int->value();
 882     int d_offs = dst_int->value();
 883     if (src_int->value() >= dst_int->value()) {
 884       flags &= ~LIR_OpArrayCopy::overlapping;
 885     }
 886     if (expected_type != NULL) {
 887       BasicType t = expected_type->element_type()->basic_type();
 888       int element_size = type2aelembytes(t);
 889       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 890           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 891         flags &= ~LIR_OpArrayCopy::unaligned;
 892       }
 893     }
 894   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 895     // src and dest positions are the same, or dst is zero so assume
 896     // nonoverlapping copy.
 897     flags &= ~LIR_OpArrayCopy::overlapping;
 898   }
 899 
 900   if (src == dst) {
 901     // moving within a single array so no type checks are needed
 902     if (flags & LIR_OpArrayCopy::type_check) {
 903       flags &= ~LIR_OpArrayCopy::type_check;
 904     }
 905   }
 906   *flagsp = flags;
 907   *expected_typep = (ciArrayKlass*)expected_type;
 908 }
 909 
 910 
 911 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 912   assert(opr->is_register(), "why spill if item is not register?");
 913 
 914   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 915     LIR_Opr result = new_register(T_FLOAT);
 916     set_vreg_flag(result, must_start_in_memory);
 917     assert(opr->is_register(), "only a register can be spilled");
 918     assert(opr->value_type()->is_float(), "rounding only for floats available");
 919     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 920     return result;
 921   }
 922   return opr;
 923 }
 924 
 925 
 926 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 927   assert(type2size[t] == type2size[value->type()],
 928          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 929   if (!value->is_register()) {
 930     // force into a register
 931     LIR_Opr r = new_register(value->type());
 932     __ move(value, r);
 933     value = r;
 934   }
 935 
 936   // create a spill location
 937   LIR_Opr tmp = new_register(t);
 938   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 939 
 940   // move from register to spill
 941   __ move(value, tmp);
 942   return tmp;
 943 }
 944 
 945 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 946   if (if_instr->should_profile()) {
 947     ciMethod* method = if_instr->profiled_method();
 948     assert(method != NULL, "method should be set if branch is profiled");
 949     ciMethodData* md = method->method_data_or_null();
 950     assert(md != NULL, "Sanity");
 951     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 952     assert(data != NULL, "must have profiling data");
 953     assert(data->is_BranchData(), "need BranchData for two-way branches");
 954     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 955     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 956     if (if_instr->is_swapped()) {
 957       int t = taken_count_offset;
 958       taken_count_offset = not_taken_count_offset;
 959       not_taken_count_offset = t;
 960     }
 961 
 962     LIR_Opr md_reg = new_register(T_METADATA);
 963     __ metadata2reg(md->constant_encoding(), md_reg);
 964 
 965     LIR_Opr data_offset_reg = new_pointer_register();
 966     __ cmove(lir_cond(cond),
 967              LIR_OprFact::intptrConst(taken_count_offset),
 968              LIR_OprFact::intptrConst(not_taken_count_offset),
 969              data_offset_reg, as_BasicType(if_instr->x()->type()));
 970 
 971     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 972     LIR_Opr data_reg = new_pointer_register();
 973     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 974     __ move(data_addr, data_reg);
 975     // Use leal instead of add to avoid destroying condition codes on x86
 976     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 977     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 978     __ move(data_reg, data_addr);
 979   }
 980 }
 981 
 982 // Phi technique:
 983 // This is about passing live values from one basic block to the other.
 984 // In code generated with Java it is rather rare that more than one
 985 // value is on the stack from one basic block to the other.
 986 // We optimize our technique for efficient passing of one value
 987 // (of type long, int, double..) but it can be extended.
 988 // When entering or leaving a basic block, all registers and all spill
 989 // slots are release and empty. We use the released registers
 990 // and spill slots to pass the live values from one block
 991 // to the other. The topmost value, i.e., the value on TOS of expression
 992 // stack is passed in registers. All other values are stored in spilling
 993 // area. Every Phi has an index which designates its spill slot
 994 // At exit of a basic block, we fill the register(s) and spill slots.
 995 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 996 // and locks necessary registers and spilling slots.
 997 
 998 
 999 // move current value to referenced phi function
1000 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1001   Phi* phi = sux_val->as_Phi();
1002   // cur_val can be null without phi being null in conjunction with inlining
1003   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1004     Phi* cur_phi = cur_val->as_Phi();
1005     if (cur_phi != NULL && cur_phi->is_illegal()) {
1006       // Phi and local would need to get invalidated
1007       // (which is unexpected for Linear Scan).
1008       // But this case is very rare so we simply bail out.
1009       bailout("propagation of illegal phi");
1010       return;
1011     }
1012     LIR_Opr operand = cur_val->operand();
1013     if (operand->is_illegal()) {
1014       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1015              "these can be produced lazily");
1016       operand = operand_for_instruction(cur_val);
1017     }
1018     resolver->move(operand, operand_for_instruction(phi));
1019   }
1020 }
1021 
1022 
1023 // Moves all stack values into their PHI position
1024 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1025   BlockBegin* bb = block();
1026   if (bb->number_of_sux() == 1) {
1027     BlockBegin* sux = bb->sux_at(0);
1028     assert(sux->number_of_preds() > 0, "invalid CFG");
1029 
1030     // a block with only one predecessor never has phi functions
1031     if (sux->number_of_preds() > 1) {
1032       PhiResolver resolver(this);
1033 
1034       ValueStack* sux_state = sux->state();
1035       Value sux_value;
1036       int index;
1037 
1038       assert(cur_state->scope() == sux_state->scope(), "not matching");
1039       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1040       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1041 
1042       for_each_stack_value(sux_state, index, sux_value) {
1043         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1044       }
1045 
1046       for_each_local_value(sux_state, index, sux_value) {
1047         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1048       }
1049 
1050       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1051     }
1052   }
1053 }
1054 
1055 
1056 LIR_Opr LIRGenerator::new_register(BasicType type) {
1057   int vreg = _virtual_register_number;
1058   // add a little fudge factor for the bailout, since the bailout is
1059   // only checked periodically.  This gives a few extra registers to
1060   // hand out before we really run out, which helps us keep from
1061   // tripping over assertions.
1062   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1063     bailout("out of virtual registers");
1064     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1065       // wrap it around
1066       _virtual_register_number = LIR_OprDesc::vreg_base;
1067     }
1068   }
1069   _virtual_register_number += 1;
1070   return LIR_OprFact::virtual_register(vreg, type);
1071 }
1072 
1073 
1074 // Try to lock using register in hint
1075 LIR_Opr LIRGenerator::rlock(Value instr) {
1076   return new_register(instr->type());
1077 }
1078 
1079 
1080 // does an rlock and sets result
1081 LIR_Opr LIRGenerator::rlock_result(Value x) {
1082   LIR_Opr reg = rlock(x);
1083   set_result(x, reg);
1084   return reg;
1085 }
1086 
1087 
1088 // does an rlock and sets result
1089 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1090   LIR_Opr reg;
1091   switch (type) {
1092   case T_BYTE:
1093   case T_BOOLEAN:
1094     reg = rlock_byte(type);
1095     break;
1096   default:
1097     reg = rlock(x);
1098     break;
1099   }
1100 
1101   set_result(x, reg);
1102   return reg;
1103 }
1104 
1105 
1106 //---------------------------------------------------------------------
1107 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1108   ObjectType* oc = value->type()->as_ObjectType();
1109   if (oc) {
1110     return oc->constant_value();
1111   }
1112   return NULL;
1113 }
1114 
1115 
1116 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1117   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1118   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1119 
1120   // no moves are created for phi functions at the begin of exception
1121   // handlers, so assign operands manually here
1122   for_each_phi_fun(block(), phi,
1123                    if (!phi->is_illegal()) { operand_for_instruction(phi); });
1124 
1125   LIR_Opr thread_reg = getThreadPointer();
1126   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1127                exceptionOopOpr());
1128   __ move_wide(LIR_OprFact::oopConst(NULL),
1129                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1130   __ move_wide(LIR_OprFact::oopConst(NULL),
1131                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1132 
1133   LIR_Opr result = new_register(T_OBJECT);
1134   __ move(exceptionOopOpr(), result);
1135   set_result(x, result);
1136 }
1137 
1138 
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //----------------------------------------------------------------------
1142 //----------------------------------------------------------------------
1143 //                        visitor functions
1144 //----------------------------------------------------------------------
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 
1149 void LIRGenerator::do_Phi(Phi* x) {
1150   // phi functions are never visited directly
1151   ShouldNotReachHere();
1152 }
1153 
1154 
1155 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1156 void LIRGenerator::do_Constant(Constant* x) {
1157   if (x->state_before() != NULL) {
1158     // Any constant with a ValueStack requires patching so emit the patch here
1159     LIR_Opr reg = rlock_result(x);
1160     CodeEmitInfo* info = state_for(x, x->state_before());
1161     __ oop2reg_patch(NULL, reg, info);
1162   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1163     if (!x->is_pinned()) {
1164       // unpinned constants are handled specially so that they can be
1165       // put into registers when they are used multiple times within a
1166       // block.  After the block completes their operand will be
1167       // cleared so that other blocks can't refer to that register.
1168       set_result(x, load_constant(x));
1169     } else {
1170       LIR_Opr res = x->operand();
1171       if (!res->is_valid()) {
1172         res = LIR_OprFact::value_type(x->type());
1173       }
1174       if (res->is_constant()) {
1175         LIR_Opr reg = rlock_result(x);
1176         __ move(res, reg);
1177       } else {
1178         set_result(x, res);
1179       }
1180     }
1181   } else {
1182     set_result(x, LIR_OprFact::value_type(x->type()));
1183   }
1184 }
1185 
1186 
1187 void LIRGenerator::do_Local(Local* x) {
1188   // operand_for_instruction has the side effect of setting the result
1189   // so there's no need to do it here.
1190   operand_for_instruction(x);
1191 }
1192 
1193 
1194 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1195   Unimplemented();
1196 }
1197 
1198 
1199 void LIRGenerator::do_Return(Return* x) {
1200   if (compilation()->env()->dtrace_method_probes()) {
1201     BasicTypeList signature;
1202     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1203     signature.append(T_METADATA); // Method*
1204     LIR_OprList* args = new LIR_OprList();
1205     args->append(getThreadPointer());
1206     LIR_Opr meth = new_register(T_METADATA);
1207     __ metadata2reg(method()->constant_encoding(), meth);
1208     args->append(meth);
1209     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1210   }
1211 
1212   if (x->type()->is_void()) {
1213     __ return_op(LIR_OprFact::illegalOpr);
1214   } else {
1215     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1216     LIRItem result(x->result(), this);
1217 
1218     result.load_item_force(reg);
1219     __ return_op(result.result());
1220   }
1221   set_no_result(x);
1222 }
1223 
1224 // Examble: ref.get()
1225 // Combination of LoadField and g1 pre-write barrier
1226 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1227 
1228   const int referent_offset = java_lang_ref_Reference::referent_offset;
1229   guarantee(referent_offset > 0, "referent offset not initialized");
1230 
1231   assert(x->number_of_arguments() == 1, "wrong type");
1232 
1233   LIRItem reference(x->argument_at(0), this);
1234   reference.load_item();
1235 
1236   // need to perform the null check on the reference objecy
1237   CodeEmitInfo* info = NULL;
1238   if (x->needs_null_check()) {
1239     info = state_for(x);
1240   }
1241 
1242   LIR_Opr result = rlock_result(x, T_OBJECT);
1243   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1244                  reference, LIR_OprFact::intConst(referent_offset), result);
1245 }
1246 
1247 // Example: clazz.isInstance(object)
1248 void LIRGenerator::do_isInstance(Intrinsic* x) {
1249   assert(x->number_of_arguments() == 2, "wrong type");
1250 
1251   // TODO could try to substitute this node with an equivalent InstanceOf
1252   // if clazz is known to be a constant Class. This will pick up newly found
1253   // constants after HIR construction. I'll leave this to a future change.
1254 
1255   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1256   // could follow the aastore example in a future change.
1257 
1258   LIRItem clazz(x->argument_at(0), this);
1259   LIRItem object(x->argument_at(1), this);
1260   clazz.load_item();
1261   object.load_item();
1262   LIR_Opr result = rlock_result(x);
1263 
1264   // need to perform null check on clazz
1265   if (x->needs_null_check()) {
1266     CodeEmitInfo* info = state_for(x);
1267     __ null_check(clazz.result(), info);
1268   }
1269 
1270   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1271                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1272                                      x->type(),
1273                                      NULL); // NULL CodeEmitInfo results in a leaf call
1274   __ move(call_result, result);
1275 }
1276 
1277 // Example: object.getClass ()
1278 void LIRGenerator::do_getClass(Intrinsic* x) {
1279   assert(x->number_of_arguments() == 1, "wrong type");
1280 
1281   LIRItem rcvr(x->argument_at(0), this);
1282   rcvr.load_item();
1283   LIR_Opr temp = new_register(T_METADATA);
1284   LIR_Opr result = rlock_result(x);
1285 
1286   // need to perform the null check on the rcvr
1287   CodeEmitInfo* info = NULL;
1288   if (x->needs_null_check()) {
1289     info = state_for(x);
1290   }
1291 
1292   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1293   // meaning of these two is mixed up (see JDK-8026837).
1294   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1295   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1296   // mirror = ((OopHandle)mirror)->resolve();
1297   access_load(IN_NATIVE, T_OBJECT,
1298               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1299 }
1300 
1301 // java.lang.Class::isPrimitive()
1302 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1303   assert(x->number_of_arguments() == 1, "wrong type");
1304 
1305   LIRItem rcvr(x->argument_at(0), this);
1306   rcvr.load_item();
1307   LIR_Opr temp = new_register(T_METADATA);
1308   LIR_Opr result = rlock_result(x);
1309 
1310   CodeEmitInfo* info = NULL;
1311   if (x->needs_null_check()) {
1312     info = state_for(x);
1313   }
1314 
1315   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1316   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1317   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1318 }
1319 
1320 
1321 // Example: Thread.currentThread()
1322 void LIRGenerator::do_currentThread(Intrinsic* x) {
1323   assert(x->number_of_arguments() == 0, "wrong type");
1324   LIR_Opr reg = rlock_result(x);
1325   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1326 }
1327 
1328 
1329 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1330   assert(x->number_of_arguments() == 1, "wrong type");
1331   LIRItem receiver(x->argument_at(0), this);
1332 
1333   receiver.load_item();
1334   BasicTypeList signature;
1335   signature.append(T_OBJECT); // receiver
1336   LIR_OprList* args = new LIR_OprList();
1337   args->append(receiver.result());
1338   CodeEmitInfo* info = state_for(x, x->state());
1339   call_runtime(&signature, args,
1340                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1341                voidType, info);
1342 
1343   set_no_result(x);
1344 }
1345 
1346 
1347 //------------------------local access--------------------------------------
1348 
1349 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1350   if (x->operand()->is_illegal()) {
1351     Constant* c = x->as_Constant();
1352     if (c != NULL) {
1353       x->set_operand(LIR_OprFact::value_type(c->type()));
1354     } else {
1355       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1356       // allocate a virtual register for this local or phi
1357       x->set_operand(rlock(x));
1358       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1359     }
1360   }
1361   return x->operand();
1362 }
1363 
1364 
1365 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1366   if (opr->is_virtual()) {
1367     return instruction_for_vreg(opr->vreg_number());
1368   }
1369   return NULL;
1370 }
1371 
1372 
1373 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1374   if (reg_num < _instruction_for_operand.length()) {
1375     return _instruction_for_operand.at(reg_num);
1376   }
1377   return NULL;
1378 }
1379 
1380 
1381 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1382   if (_vreg_flags.size_in_bits() == 0) {
1383     BitMap2D temp(100, num_vreg_flags);
1384     _vreg_flags = temp;
1385   }
1386   _vreg_flags.at_put_grow(vreg_num, f, true);
1387 }
1388 
1389 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1390   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1391     return false;
1392   }
1393   return _vreg_flags.at(vreg_num, f);
1394 }
1395 
1396 
1397 // Block local constant handling.  This code is useful for keeping
1398 // unpinned constants and constants which aren't exposed in the IR in
1399 // registers.  Unpinned Constant instructions have their operands
1400 // cleared when the block is finished so that other blocks can't end
1401 // up referring to their registers.
1402 
1403 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1404   assert(!x->is_pinned(), "only for unpinned constants");
1405   _unpinned_constants.append(x);
1406   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1407 }
1408 
1409 
1410 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1411   BasicType t = c->type();
1412   for (int i = 0; i < _constants.length(); i++) {
1413     LIR_Const* other = _constants.at(i);
1414     if (t == other->type()) {
1415       switch (t) {
1416       case T_INT:
1417       case T_FLOAT:
1418         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1419         break;
1420       case T_LONG:
1421       case T_DOUBLE:
1422         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1423         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1424         break;
1425       case T_OBJECT:
1426         if (c->as_jobject() != other->as_jobject()) continue;
1427         break;
1428       default:
1429         break;
1430       }
1431       return _reg_for_constants.at(i);
1432     }
1433   }
1434 
1435   LIR_Opr result = new_register(t);
1436   __ move((LIR_Opr)c, result);
1437   _constants.append(c);
1438   _reg_for_constants.append(result);
1439   return result;
1440 }
1441 
1442 //------------------------field access--------------------------------------
1443 
1444 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1445   assert(x->number_of_arguments() == 4, "wrong type");
1446   LIRItem obj   (x->argument_at(0), this);  // object
1447   LIRItem offset(x->argument_at(1), this);  // offset of field
1448   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1449   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1450   assert(obj.type()->tag() == objectTag, "invalid type");
1451 
1452   // In 64bit the type can be long, sparc doesn't have this assert
1453   // assert(offset.type()->tag() == intTag, "invalid type");
1454 
1455   assert(cmp.type()->tag() == type->tag(), "invalid type");
1456   assert(val.type()->tag() == type->tag(), "invalid type");
1457 
1458   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1459                                             obj, offset, cmp, val);
1460   set_result(x, result);
1461 }
1462 
1463 // Comment copied form templateTable_i486.cpp
1464 // ----------------------------------------------------------------------------
1465 // Volatile variables demand their effects be made known to all CPU's in
1466 // order.  Store buffers on most chips allow reads & writes to reorder; the
1467 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1468 // memory barrier (i.e., it's not sufficient that the interpreter does not
1469 // reorder volatile references, the hardware also must not reorder them).
1470 //
1471 // According to the new Java Memory Model (JMM):
1472 // (1) All volatiles are serialized wrt to each other.
1473 // ALSO reads & writes act as aquire & release, so:
1474 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1475 // the read float up to before the read.  It's OK for non-volatile memory refs
1476 // that happen before the volatile read to float down below it.
1477 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1478 // that happen BEFORE the write float down to after the write.  It's OK for
1479 // non-volatile memory refs that happen after the volatile write to float up
1480 // before it.
1481 //
1482 // We only put in barriers around volatile refs (they are expensive), not
1483 // _between_ memory refs (that would require us to track the flavor of the
1484 // previous memory refs).  Requirements (2) and (3) require some barriers
1485 // before volatile stores and after volatile loads.  These nearly cover
1486 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1487 // case is placed after volatile-stores although it could just as well go
1488 // before volatile-loads.
1489 
1490 
1491 void LIRGenerator::do_StoreField(StoreField* x) {
1492   bool needs_patching = x->needs_patching();
1493   bool is_volatile = x->field()->is_volatile();
1494   BasicType field_type = x->field_type();
1495 
1496   CodeEmitInfo* info = NULL;
1497   if (needs_patching) {
1498     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1499     info = state_for(x, x->state_before());
1500   } else if (x->needs_null_check()) {
1501     NullCheck* nc = x->explicit_null_check();
1502     if (nc == NULL) {
1503       info = state_for(x);
1504     } else {
1505       info = state_for(nc);
1506     }
1507   }
1508 
1509   LIRItem object(x->obj(), this);
1510   LIRItem value(x->value(),  this);
1511 
1512   object.load_item();
1513 
1514   if (is_volatile || needs_patching) {
1515     // load item if field is volatile (fewer special cases for volatiles)
1516     // load item if field not initialized
1517     // load item if field not constant
1518     // because of code patching we cannot inline constants
1519     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1520       value.load_byte_item();
1521     } else  {
1522       value.load_item();
1523     }
1524   } else {
1525     value.load_for_store(field_type);
1526   }
1527 
1528   set_no_result(x);
1529 
1530 #ifndef PRODUCT
1531   if (PrintNotLoaded && needs_patching) {
1532     tty->print_cr("   ###class not loaded at store_%s bci %d",
1533                   x->is_static() ?  "static" : "field", x->printable_bci());
1534   }
1535 #endif
1536 
1537   if (x->needs_null_check() &&
1538       (needs_patching ||
1539        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1540     if (needs_patching && x->field()->is_flattenable()) {
1541       // We are storing a field of type "QT;" into holder class H, but H is not yet
1542       // loaded. (If H had been loaded, then T must also have already been loaded
1543       // due to the "Q" signature, and needs_patching would be false).
1544       assert(!x->field()->holder()->is_loaded(), "must be");
1545       // We don't know the offset of this field. Let's deopt and recompile.
1546       CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1547                                           Deoptimization::Reason_unloaded,
1548                                           Deoptimization::Action_make_not_entrant);
1549       __ branch(lir_cond_always, T_ILLEGAL, stub);
1550     } else {
1551       // Emit an explicit null check because the offset is too large.
1552       // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1553       // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1554       __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1555     }
1556   }
1557 
1558   DecoratorSet decorators = IN_HEAP;
1559   if (is_volatile) {
1560     decorators |= MO_SEQ_CST;
1561   }
1562   if (needs_patching) {
1563     decorators |= C1_NEEDS_PATCHING;
1564   }
1565 
1566   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1567                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1568 }
1569 
1570 // FIXME -- I can't find any other way to pass an address to access_load_at().
1571 class TempResolvedAddress: public Instruction {
1572  public:
1573   TempResolvedAddress(ValueType* type, LIR_Opr addr) : Instruction(type) {
1574     set_operand(addr);
1575   }
1576   virtual void input_values_do(ValueVisitor*) {}
1577   virtual void visit(InstructionVisitor* v)   {}
1578   virtual const char* name() const  { return "TempResolvedAddress"; }
1579 };
1580 
1581 void LIRGenerator::access_flattened_array(bool is_load, LIRItem& array, LIRItem& index, LIRItem& obj_item) {
1582   // Find the starting address of the source (inside the array)
1583   ciType* array_type = array.value()->declared_type();
1584   ciValueArrayKlass* value_array_klass = array_type->as_value_array_klass();
1585   assert(value_array_klass->is_loaded(), "must be");
1586 
1587   ciValueKlass* elem_klass = value_array_klass->element_klass()->as_value_klass();
1588   int array_header_size = value_array_klass->array_header_in_bytes();
1589   int shift = value_array_klass->log2_element_size();
1590 
1591 #ifndef _LP64
1592   LIR_Opr index_op = new_register(T_INT);
1593   // FIXME -- on 32-bit, the shift below can overflow, so we need to check that
1594   // the top (shift+1) bits of index_op must be zero, or
1595   // else throw ArrayIndexOutOfBoundsException
1596   if (index.result()->is_constant()) {
1597     jint const_index = index.result()->as_jint();
1598     __ move(LIR_OprFact::intConst(const_index << shift), index_op);
1599   } else {
1600     __ shift_left(index_op, shift, index.result());
1601   }
1602 #else
1603   LIR_Opr index_op = new_register(T_LONG);
1604   if (index.result()->is_constant()) {
1605     jint const_index = index.result()->as_jint();
1606     __ move(LIR_OprFact::longConst(const_index << shift), index_op);
1607   } else {
1608     __ convert(Bytecodes::_i2l, index.result(), index_op);
1609     // Need to shift manually, as LIR_Address can scale only up to 3.
1610     __ shift_left(index_op, shift, index_op);
1611   }
1612 #endif
1613 
1614   LIR_Opr elm_op = new_pointer_register();
1615   LIR_Address* elm_address = new LIR_Address(array.result(), index_op, array_header_size, T_ADDRESS);
1616   __ leal(LIR_OprFact::address(elm_address), elm_op);
1617 
1618   for (int i = 0; i < elem_klass->nof_nonstatic_fields(); i++) {
1619     ciField* inner_field = elem_klass->nonstatic_field_at(i);
1620     assert(!inner_field->is_flattened(), "flattened fields must have been expanded");
1621     int obj_offset = inner_field->offset();
1622     int elm_offset = obj_offset - elem_klass->first_field_offset(); // object header is not stored in array.
1623 
1624     BasicType field_type = inner_field->type()->basic_type();
1625     switch (field_type) {
1626     case T_BYTE:
1627     case T_BOOLEAN:
1628     case T_SHORT:
1629     case T_CHAR:
1630      field_type = T_INT;
1631       break;
1632     default:
1633       break;
1634     }
1635 
1636     LIR_Opr temp = new_register(field_type);
1637     TempResolvedAddress* elm_resolved_addr = new TempResolvedAddress(as_ValueType(field_type), elm_op);
1638     LIRItem elm_item(elm_resolved_addr, this);
1639 
1640     DecoratorSet decorators = IN_HEAP;
1641     if (is_load) {
1642       access_load_at(decorators, field_type,
1643                      elm_item, LIR_OprFact::intConst(elm_offset), temp,
1644                      NULL, NULL);
1645       access_store_at(decorators, field_type,
1646                       obj_item, LIR_OprFact::intConst(obj_offset), temp,
1647                       NULL, NULL);
1648     } else {
1649       access_load_at(decorators, field_type,
1650                      obj_item, LIR_OprFact::intConst(obj_offset), temp,
1651                      NULL, NULL);
1652       access_store_at(decorators, field_type,
1653                       elm_item, LIR_OprFact::intConst(elm_offset), temp,
1654                       NULL, NULL);
1655     }
1656   }
1657 }
1658 
1659 void LIRGenerator::check_flattened_array(LIR_Opr array, LIR_Opr value, CodeStub* slow_path) {
1660   LIR_Opr tmp = new_register(T_METADATA);
1661   __ check_flattened_array(array, value, tmp, slow_path);
1662 }
1663 
1664 void LIRGenerator::check_null_free_array(LIRItem& array, LIRItem& value, CodeEmitInfo* info) {
1665   LabelObj* L_end = new LabelObj();
1666   LIR_Opr tmp = new_register(T_METADATA);
1667   __ check_null_free_array(array.result(), tmp);
1668   __ branch(lir_cond_equal, T_ILLEGAL, L_end->label());
1669   __ null_check(value.result(), info);
1670   __ branch_destination(L_end->label());
1671 }
1672 
1673 bool LIRGenerator::needs_flattened_array_store_check(StoreIndexed* x) {
1674   if (ValueArrayFlatten && x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
1675     ciType* type = x->value()->declared_type();
1676     if (type != NULL && type->is_klass()) {
1677       ciKlass* klass = type->as_klass();
1678       if (klass->is_loaded() &&
1679           !(klass->is_valuetype() && klass->as_value_klass()->flatten_array()) &&
1680           !klass->is_java_lang_Object() &&
1681           !klass->is_interface()) {
1682         // This is known to be a non-flattenable object. If the array is flattened,
1683         // it will be caught by the code generated by array_store_check().
1684         return false;
1685       }
1686     }
1687     // We're not 100% sure, so let's do the flattened_array_store_check.
1688     return true;
1689   }
1690   return false;
1691 }
1692 
1693 bool LIRGenerator::needs_null_free_array_store_check(StoreIndexed* x) {
1694   return x->elt_type() == T_OBJECT && x->array()->maybe_null_free_array();
1695 }
1696 
1697 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1698   assert(x->is_pinned(),"");
1699   assert(x->elt_type() != T_ARRAY, "never used");
1700   bool is_loaded_flattened_array = x->array()->is_loaded_flattened_array();
1701   bool needs_range_check = x->compute_needs_range_check();
1702   bool use_length = x->length() != NULL;
1703   bool obj_store = x->elt_type() == T_OBJECT;
1704   bool needs_store_check = obj_store && !(is_loaded_flattened_array && x->is_exact_flattened_array_store()) &&
1705                                         (x->value()->as_Constant() == NULL ||
1706                                          !get_jobject_constant(x->value())->is_null_object() ||
1707                                          x->should_profile());
1708 
1709   LIRItem array(x->array(), this);
1710   LIRItem index(x->index(), this);
1711   LIRItem value(x->value(), this);
1712   LIRItem length(this);
1713 
1714   array.load_item();
1715   index.load_nonconstant();
1716 
1717   if (use_length && needs_range_check) {
1718     length.set_instruction(x->length());
1719     length.load_item();
1720   }
1721 
1722   if (needs_store_check || x->check_boolean()
1723       || is_loaded_flattened_array || needs_flattened_array_store_check(x) || needs_null_free_array_store_check(x)) {
1724     value.load_item();
1725   } else {
1726     value.load_for_store(x->elt_type());
1727   }
1728 
1729   set_no_result(x);
1730 
1731   // the CodeEmitInfo must be duplicated for each different
1732   // LIR-instruction because spilling can occur anywhere between two
1733   // instructions and so the debug information must be different
1734   CodeEmitInfo* range_check_info = state_for(x);
1735   CodeEmitInfo* null_check_info = NULL;
1736   if (x->needs_null_check()) {
1737     null_check_info = new CodeEmitInfo(range_check_info);
1738   }
1739 
1740   if (GenerateRangeChecks && needs_range_check) {
1741     if (use_length) {
1742       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1743       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1744     } else {
1745       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1746       // range_check also does the null check
1747       null_check_info = NULL;
1748     }
1749   }
1750 
1751   if (GenerateArrayStoreCheck && needs_store_check) {
1752     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1753     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1754   }
1755 
1756   if (is_loaded_flattened_array) {
1757     if (!x->value()->is_never_null()) {
1758       __ null_check(value.result(), new CodeEmitInfo(range_check_info));
1759     }
1760     access_flattened_array(false, array, index, value);
1761   } else {
1762     StoreFlattenedArrayStub* slow_path = NULL;
1763 
1764     if (needs_flattened_array_store_check(x)) {
1765       // Check if we indeed have a flattened array
1766       index.load_item();
1767       slow_path = new StoreFlattenedArrayStub(array.result(), index.result(), value.result(), state_for(x));
1768       check_flattened_array(array.result(), value.result(), slow_path);
1769     } else if (needs_null_free_array_store_check(x)) {
1770       CodeEmitInfo* info = new CodeEmitInfo(range_check_info);
1771       check_null_free_array(array, value, info);
1772     }
1773 
1774     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1775     if (x->check_boolean()) {
1776       decorators |= C1_MASK_BOOLEAN;
1777     }
1778 
1779     access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1780                     NULL, null_check_info);
1781     if (slow_path != NULL) {
1782       __ branch_destination(slow_path->continuation());
1783     }
1784   }
1785 }
1786 
1787 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1788                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1789                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1790   decorators |= ACCESS_READ;
1791   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1792   if (access.is_raw()) {
1793     _barrier_set->BarrierSetC1::load_at(access, result);
1794   } else {
1795     _barrier_set->load_at(access, result);
1796   }
1797 }
1798 
1799 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1800                                LIR_Opr addr, LIR_Opr result) {
1801   decorators |= ACCESS_READ;
1802   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1803   access.set_resolved_addr(addr);
1804   if (access.is_raw()) {
1805     _barrier_set->BarrierSetC1::load(access, result);
1806   } else {
1807     _barrier_set->load(access, result);
1808   }
1809 }
1810 
1811 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1812                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1813                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1814   decorators |= ACCESS_WRITE;
1815   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1816   if (access.is_raw()) {
1817     _barrier_set->BarrierSetC1::store_at(access, value);
1818   } else {
1819     _barrier_set->store_at(access, value);
1820   }
1821 }
1822 
1823 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1824                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1825   decorators |= ACCESS_READ;
1826   decorators |= ACCESS_WRITE;
1827   // Atomic operations are SEQ_CST by default
1828   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1829   LIRAccess access(this, decorators, base, offset, type);
1830   if (access.is_raw()) {
1831     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1832   } else {
1833     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1834   }
1835 }
1836 
1837 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1838                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1839   decorators |= ACCESS_READ;
1840   decorators |= ACCESS_WRITE;
1841   // Atomic operations are SEQ_CST by default
1842   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1843   LIRAccess access(this, decorators, base, offset, type);
1844   if (access.is_raw()) {
1845     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1846   } else {
1847     return _barrier_set->atomic_xchg_at(access, value);
1848   }
1849 }
1850 
1851 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1852                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1853   decorators |= ACCESS_READ;
1854   decorators |= ACCESS_WRITE;
1855   // Atomic operations are SEQ_CST by default
1856   decorators |= ((decorators & MO_DECORATOR_MASK) == 0) ? MO_SEQ_CST : 0;
1857   LIRAccess access(this, decorators, base, offset, type);
1858   if (access.is_raw()) {
1859     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1860   } else {
1861     return _barrier_set->atomic_add_at(access, value);
1862   }
1863 }
1864 
1865 LIR_Opr LIRGenerator::access_resolve(DecoratorSet decorators, LIR_Opr obj) {
1866   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1867   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1868     decorators |= ACCESS_READ | ACCESS_WRITE;
1869   }
1870 
1871   return _barrier_set->resolve(this, decorators, obj);
1872 }
1873 
1874 Value LIRGenerator::flattenable_load_field_prolog(LoadField* x, CodeEmitInfo* info) {
1875   ciField* field = x->field();
1876   ciInstanceKlass* holder = field->holder();
1877   Value default_value = NULL;
1878 
1879   // Unloaded "QV;" klasses are represented by a ciInstanceKlass
1880   bool field_type_unloaded = field->type()->is_instance_klass() && !field->type()->as_instance_klass()->is_loaded();
1881 
1882   // Check for edge cases (1), (2) and (3) for getstatic and getfield
1883   bool deopt = false;
1884   bool need_default = false;
1885   if (field->is_static()) {
1886       // (1) holder is unloaded -- no problem: it will be loaded by patching, and field offset will be determined.
1887       // No check needed here.
1888 
1889     if (field_type_unloaded) {
1890       // (2) field type is unloaded -- problem: we don't know what the default value is. Let's deopt.
1891       //                               FIXME: consider getting the default value in patching code.
1892       deopt = true;
1893     } else {
1894       need_default = true;
1895     }
1896 
1897       // (3) field is not flattened -- we don't care: static fields are never flattened.
1898       // No check needed here.
1899   } else {
1900     if (!holder->is_loaded()) {
1901       // (1) holder is unloaded -- problem: we needed the field offset back in GraphBuilder::access_field()
1902       //                           FIXME: consider getting field offset in patching code (but only if the field
1903       //                           type was loaded at compilation time).
1904       deopt = true;
1905     } else if (field_type_unloaded) {
1906       // (2) field type is unloaded -- problem: we don't know whether it's flattened or not. Let's deopt
1907       deopt = true;
1908     } else if (!field->is_flattened()) {
1909       // (3) field is not flattened -- need default value in cases of uninitialized field
1910       need_default = true;
1911     }
1912   }
1913 
1914   if (deopt) {
1915     assert(!need_default, "deopt and need_default cannot both be true");
1916     assert(x->needs_patching(), "must be");
1917     assert(info != NULL, "must be");
1918     CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
1919                                         Deoptimization::Reason_unloaded,
1920                                         Deoptimization::Action_make_not_entrant);
1921     __ branch(lir_cond_always, T_ILLEGAL, stub);
1922   } else if (need_default) {
1923     assert(!field_type_unloaded, "must be");
1924     assert(field->type()->is_valuetype(), "must be");
1925     ciValueKlass* value_klass = field->type()->as_value_klass();
1926     assert(value_klass->is_loaded(), "must be");
1927 
1928     if (field->is_static() && holder->is_loaded()) {
1929       ciInstance* mirror = field->holder()->java_mirror();
1930       ciObject* val = mirror->field_value(field).as_object();
1931       if (val->is_null_object()) {
1932         // This is a non-nullable static field, but it's not initialized.
1933         // We need to do a null check, and replace it with the default value.
1934       } else {
1935         // No need to perform null check on this static field
1936         need_default = false;
1937       }
1938     }
1939 
1940     if (need_default) {
1941       default_value = new Constant(new InstanceConstant(value_klass->default_value_instance()));
1942     }
1943   }
1944 
1945   return default_value;
1946 }
1947 
1948 void LIRGenerator::do_LoadField(LoadField* x) {
1949   bool needs_patching = x->needs_patching();
1950   bool is_volatile = x->field()->is_volatile();
1951   BasicType field_type = x->field_type();
1952 
1953   CodeEmitInfo* info = NULL;
1954   if (needs_patching) {
1955     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1956     info = state_for(x, x->state_before());
1957   } else if (x->needs_null_check()) {
1958     NullCheck* nc = x->explicit_null_check();
1959     if (nc == NULL) {
1960       info = state_for(x);
1961     } else {
1962       info = state_for(nc);
1963     }
1964   }
1965 
1966   LIRItem object(x->obj(), this);
1967 
1968   object.load_item();
1969 
1970 #ifndef PRODUCT
1971   if (PrintNotLoaded && needs_patching) {
1972     tty->print_cr("   ###class not loaded at load_%s bci %d",
1973                   x->is_static() ?  "static" : "field", x->printable_bci());
1974   }
1975 #endif
1976 
1977   Value default_value = NULL;
1978   if (x->field()->is_flattenable()) {
1979     default_value = flattenable_load_field_prolog(x, info);
1980   }
1981 
1982   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1983   if (x->needs_null_check() &&
1984       (needs_patching ||
1985        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1986        stress_deopt)) {
1987     LIR_Opr obj = object.result();
1988     if (stress_deopt) {
1989       obj = new_register(T_OBJECT);
1990       __ move(LIR_OprFact::oopConst(NULL), obj);
1991     }
1992     // Emit an explicit null check because the offset is too large.
1993     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1994     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1995     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1996   }
1997 
1998   DecoratorSet decorators = IN_HEAP;
1999   if (is_volatile) {
2000     decorators |= MO_SEQ_CST;
2001   }
2002   if (needs_patching) {
2003     decorators |= C1_NEEDS_PATCHING;
2004   }
2005 
2006   LIR_Opr result = rlock_result(x, field_type);
2007   access_load_at(decorators, field_type,
2008                  object, LIR_OprFact::intConst(x->offset()), result,
2009                  info ? new CodeEmitInfo(info) : NULL, info);
2010 
2011   if (default_value != NULL) {
2012     LabelObj* L_end = new LabelObj();
2013     __ cmp(lir_cond_notEqual, result, LIR_OprFact::oopConst(NULL));
2014     __ branch(lir_cond_notEqual, T_OBJECT, L_end->label());
2015 
2016     LIRItem dv(default_value, this);
2017     dv.load_item();
2018     __ move(dv.result(), result);
2019 
2020     __ branch_destination(L_end->label());
2021   }
2022 }
2023 
2024 
2025 //------------------------java.nio.Buffer.checkIndex------------------------
2026 
2027 // int java.nio.Buffer.checkIndex(int)
2028 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
2029   // NOTE: by the time we are in checkIndex() we are guaranteed that
2030   // the buffer is non-null (because checkIndex is package-private and
2031   // only called from within other methods in the buffer).
2032   assert(x->number_of_arguments() == 2, "wrong type");
2033   LIRItem buf  (x->argument_at(0), this);
2034   LIRItem index(x->argument_at(1), this);
2035   buf.load_item();
2036   index.load_item();
2037 
2038   LIR_Opr result = rlock_result(x);
2039   if (GenerateRangeChecks) {
2040     CodeEmitInfo* info = state_for(x);
2041     CodeStub* stub = new RangeCheckStub(info, index.result());
2042     LIR_Opr buf_obj = access_resolve(IS_NOT_NULL | ACCESS_READ, buf.result());
2043     if (index.result()->is_constant()) {
2044       cmp_mem_int(lir_cond_belowEqual, buf_obj, java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
2045       __ branch(lir_cond_belowEqual, T_INT, stub);
2046     } else {
2047       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf_obj,
2048                   java_nio_Buffer::limit_offset(), T_INT, info);
2049       __ branch(lir_cond_aboveEqual, T_INT, stub);
2050     }
2051     __ move(index.result(), result);
2052   } else {
2053     // Just load the index into the result register
2054     __ move(index.result(), result);
2055   }
2056 }
2057 
2058 
2059 //------------------------array access--------------------------------------
2060 
2061 
2062 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
2063   LIRItem array(x->array(), this);
2064   array.load_item();
2065   LIR_Opr reg = rlock_result(x);
2066 
2067   CodeEmitInfo* info = NULL;
2068   if (x->needs_null_check()) {
2069     NullCheck* nc = x->explicit_null_check();
2070     if (nc == NULL) {
2071       info = state_for(x);
2072     } else {
2073       info = state_for(nc);
2074     }
2075     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
2076       LIR_Opr obj = new_register(T_OBJECT);
2077       __ move(LIR_OprFact::oopConst(NULL), obj);
2078       __ null_check(obj, new CodeEmitInfo(info));
2079     }
2080   }
2081   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
2082 }
2083 
2084 
2085 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
2086   bool use_length = x->length() != NULL;
2087   LIRItem array(x->array(), this);
2088   LIRItem index(x->index(), this);
2089   LIRItem length(this);
2090   bool needs_range_check = x->compute_needs_range_check();
2091 
2092   if (use_length && needs_range_check) {
2093     length.set_instruction(x->length());
2094     length.load_item();
2095   }
2096 
2097   array.load_item();
2098   if (index.is_constant() && can_inline_as_constant(x->index())) {
2099     // let it be a constant
2100     index.dont_load_item();
2101   } else {
2102     index.load_item();
2103   }
2104 
2105   CodeEmitInfo* range_check_info = state_for(x);
2106   CodeEmitInfo* null_check_info = NULL;
2107   if (x->needs_null_check()) {
2108     NullCheck* nc = x->explicit_null_check();
2109     if (nc != NULL) {
2110       null_check_info = state_for(nc);
2111     } else {
2112       null_check_info = range_check_info;
2113     }
2114     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
2115       LIR_Opr obj = new_register(T_OBJECT);
2116       __ move(LIR_OprFact::oopConst(NULL), obj);
2117       __ null_check(obj, new CodeEmitInfo(null_check_info));
2118     }
2119   }
2120 
2121   if (GenerateRangeChecks && needs_range_check) {
2122     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
2123       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
2124     } else if (use_length) {
2125       // TODO: use a (modified) version of array_range_check that does not require a
2126       //       constant length to be loaded to a register
2127       __ cmp(lir_cond_belowEqual, length.result(), index.result());
2128       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
2129     } else {
2130       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
2131       // The range check performs the null check, so clear it out for the load
2132       null_check_info = NULL;
2133     }
2134   }
2135 
2136   if (x->vt() != NULL) {
2137     assert(x->array()->is_loaded_flattened_array(), "must be");
2138     // Find the destination address (of the NewValueTypeInstance).
2139     LIR_Opr obj = x->vt()->operand();
2140     LIRItem obj_item(x->vt(), this);
2141 
2142     access_flattened_array(true, array, index, obj_item);
2143     set_no_result(x);
2144   } else {
2145     LIR_Opr result = rlock_result(x, x->elt_type());
2146     LoadFlattenedArrayStub* slow_path = NULL;
2147 
2148     if (x->elt_type() == T_OBJECT && x->array()->maybe_flattened_array()) {
2149       index.load_item();
2150       // if we are loading from flattened array, load it using a runtime call
2151       slow_path = new LoadFlattenedArrayStub(array.result(), index.result(), result, state_for(x));
2152       check_flattened_array(array.result(), LIR_OprFact::illegalOpr, slow_path);
2153     }
2154 
2155     DecoratorSet decorators = IN_HEAP | IS_ARRAY;
2156     access_load_at(decorators, x->elt_type(),
2157                    array, index.result(), result,
2158                    NULL, null_check_info);
2159 
2160     if (slow_path != NULL) {
2161       __ branch_destination(slow_path->continuation());
2162     }
2163   }
2164 }
2165 
2166 void LIRGenerator::do_WithField(WithField* x) {
2167   // This happens only when a class X uses the withfield bytecode to refer to
2168   // an inline class V, where V has not yet been loaded. This is not a common
2169   // case. Let's just deoptimize.
2170   CodeEmitInfo* info = state_for(x, x->state_before());
2171   CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
2172                                       Deoptimization::Reason_unloaded,
2173                                       Deoptimization::Action_make_not_entrant);
2174   __ branch(lir_cond_always, T_ILLEGAL, stub);
2175   LIR_Opr reg = rlock_result(x, T_OBJECT);
2176   __ move(LIR_OprFact::oopConst(NULL), reg);
2177 }
2178 
2179 void LIRGenerator::do_DefaultValue(DefaultValue* x) {
2180   // Same as withfield above. Let's deoptimize.
2181   CodeEmitInfo* info = state_for(x, x->state_before());
2182   CodeStub* stub = new DeoptimizeStub(new CodeEmitInfo(info),
2183                                       Deoptimization::Reason_unloaded,
2184                                       Deoptimization::Action_make_not_entrant);
2185   __ branch(lir_cond_always, T_ILLEGAL, stub);
2186   LIR_Opr reg = rlock_result(x, T_OBJECT);
2187   __ move(LIR_OprFact::oopConst(NULL), reg);
2188 }
2189 
2190 void LIRGenerator::do_NullCheck(NullCheck* x) {
2191   if (x->can_trap()) {
2192     LIRItem value(x->obj(), this);
2193     value.load_item();
2194     CodeEmitInfo* info = state_for(x);
2195     __ null_check(value.result(), info);
2196   }
2197 }
2198 
2199 
2200 void LIRGenerator::do_TypeCast(TypeCast* x) {
2201   LIRItem value(x->obj(), this);
2202   value.load_item();
2203   // the result is the same as from the node we are casting
2204   set_result(x, value.result());
2205 }
2206 
2207 
2208 void LIRGenerator::do_Throw(Throw* x) {
2209   LIRItem exception(x->exception(), this);
2210   exception.load_item();
2211   set_no_result(x);
2212   LIR_Opr exception_opr = exception.result();
2213   CodeEmitInfo* info = state_for(x, x->state());
2214 
2215 #ifndef PRODUCT
2216   if (PrintC1Statistics) {
2217     increment_counter(Runtime1::throw_count_address(), T_INT);
2218   }
2219 #endif
2220 
2221   // check if the instruction has an xhandler in any of the nested scopes
2222   bool unwind = false;
2223   if (info->exception_handlers()->length() == 0) {
2224     // this throw is not inside an xhandler
2225     unwind = true;
2226   } else {
2227     // get some idea of the throw type
2228     bool type_is_exact = true;
2229     ciType* throw_type = x->exception()->exact_type();
2230     if (throw_type == NULL) {
2231       type_is_exact = false;
2232       throw_type = x->exception()->declared_type();
2233     }
2234     if (throw_type != NULL && throw_type->is_instance_klass()) {
2235       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2236       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2237     }
2238   }
2239 
2240   // do null check before moving exception oop into fixed register
2241   // to avoid a fixed interval with an oop during the null check.
2242   // Use a copy of the CodeEmitInfo because debug information is
2243   // different for null_check and throw.
2244   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2245     // if the exception object wasn't created using new then it might be null.
2246     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2247   }
2248 
2249   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2250     // we need to go through the exception lookup path to get JVMTI
2251     // notification done
2252     unwind = false;
2253   }
2254 
2255   // move exception oop into fixed register
2256   __ move(exception_opr, exceptionOopOpr());
2257 
2258   if (unwind) {
2259     __ unwind_exception(exceptionOopOpr());
2260   } else {
2261     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2262   }
2263 }
2264 
2265 
2266 void LIRGenerator::do_RoundFP(RoundFP* x) {
2267   LIRItem input(x->input(), this);
2268   input.load_item();
2269   LIR_Opr input_opr = input.result();
2270   assert(input_opr->is_register(), "why round if value is not in a register?");
2271   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2272   if (input_opr->is_single_fpu()) {
2273     set_result(x, round_item(input_opr)); // This code path not currently taken
2274   } else {
2275     LIR_Opr result = new_register(T_DOUBLE);
2276     set_vreg_flag(result, must_start_in_memory);
2277     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2278     set_result(x, result);
2279   }
2280 }
2281 
2282 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2283 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2284 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2285   LIRItem base(x->base(), this);
2286   LIRItem idx(this);
2287 
2288   base.load_item();
2289   if (x->has_index()) {
2290     idx.set_instruction(x->index());
2291     idx.load_nonconstant();
2292   }
2293 
2294   LIR_Opr reg = rlock_result(x, x->basic_type());
2295 
2296   int   log2_scale = 0;
2297   if (x->has_index()) {
2298     log2_scale = x->log2_scale();
2299   }
2300 
2301   assert(!x->has_index() || idx.value() == x->index(), "should match");
2302 
2303   LIR_Opr base_op = base.result();
2304   LIR_Opr index_op = idx.result();
2305 #ifndef _LP64
2306   if (base_op->type() == T_LONG) {
2307     base_op = new_register(T_INT);
2308     __ convert(Bytecodes::_l2i, base.result(), base_op);
2309   }
2310   if (x->has_index()) {
2311     if (index_op->type() == T_LONG) {
2312       LIR_Opr long_index_op = index_op;
2313       if (index_op->is_constant()) {
2314         long_index_op = new_register(T_LONG);
2315         __ move(index_op, long_index_op);
2316       }
2317       index_op = new_register(T_INT);
2318       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2319     } else {
2320       assert(x->index()->type()->tag() == intTag, "must be");
2321     }
2322   }
2323   // At this point base and index should be all ints.
2324   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2325   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2326 #else
2327   if (x->has_index()) {
2328     if (index_op->type() == T_INT) {
2329       if (!index_op->is_constant()) {
2330         index_op = new_register(T_LONG);
2331         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2332       }
2333     } else {
2334       assert(index_op->type() == T_LONG, "must be");
2335       if (index_op->is_constant()) {
2336         index_op = new_register(T_LONG);
2337         __ move(idx.result(), index_op);
2338       }
2339     }
2340   }
2341   // At this point base is a long non-constant
2342   // Index is a long register or a int constant.
2343   // We allow the constant to stay an int because that would allow us a more compact encoding by
2344   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2345   // move it into a register first.
2346   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2347   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2348                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2349 #endif
2350 
2351   BasicType dst_type = x->basic_type();
2352 
2353   LIR_Address* addr;
2354   if (index_op->is_constant()) {
2355     assert(log2_scale == 0, "must not have a scale");
2356     assert(index_op->type() == T_INT, "only int constants supported");
2357     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2358   } else {
2359 #ifdef X86
2360     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2361 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2362     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2363 #else
2364     if (index_op->is_illegal() || log2_scale == 0) {
2365       addr = new LIR_Address(base_op, index_op, dst_type);
2366     } else {
2367       LIR_Opr tmp = new_pointer_register();
2368       __ shift_left(index_op, log2_scale, tmp);
2369       addr = new LIR_Address(base_op, tmp, dst_type);
2370     }
2371 #endif
2372   }
2373 
2374   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2375     __ unaligned_move(addr, reg);
2376   } else {
2377     if (dst_type == T_OBJECT && x->is_wide()) {
2378       __ move_wide(addr, reg);
2379     } else {
2380       __ move(addr, reg);
2381     }
2382   }
2383 }
2384 
2385 
2386 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2387   int  log2_scale = 0;
2388   BasicType type = x->basic_type();
2389 
2390   if (x->has_index()) {
2391     log2_scale = x->log2_scale();
2392   }
2393 
2394   LIRItem base(x->base(), this);
2395   LIRItem value(x->value(), this);
2396   LIRItem idx(this);
2397 
2398   base.load_item();
2399   if (x->has_index()) {
2400     idx.set_instruction(x->index());
2401     idx.load_item();
2402   }
2403 
2404   if (type == T_BYTE || type == T_BOOLEAN) {
2405     value.load_byte_item();
2406   } else {
2407     value.load_item();
2408   }
2409 
2410   set_no_result(x);
2411 
2412   LIR_Opr base_op = base.result();
2413   LIR_Opr index_op = idx.result();
2414 
2415 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2416   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2417 #else
2418 #ifndef _LP64
2419   if (base_op->type() == T_LONG) {
2420     base_op = new_register(T_INT);
2421     __ convert(Bytecodes::_l2i, base.result(), base_op);
2422   }
2423   if (x->has_index()) {
2424     if (index_op->type() == T_LONG) {
2425       index_op = new_register(T_INT);
2426       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2427     }
2428   }
2429   // At this point base and index should be all ints and not constants
2430   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2431   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2432 #else
2433   if (x->has_index()) {
2434     if (index_op->type() == T_INT) {
2435       index_op = new_register(T_LONG);
2436       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2437     }
2438   }
2439   // At this point base and index are long and non-constant
2440   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2441   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2442 #endif
2443 
2444   if (log2_scale != 0) {
2445     // temporary fix (platform dependent code without shift on Intel would be better)
2446     // TODO: ARM also allows embedded shift in the address
2447     LIR_Opr tmp = new_pointer_register();
2448     if (TwoOperandLIRForm) {
2449       __ move(index_op, tmp);
2450       index_op = tmp;
2451     }
2452     __ shift_left(index_op, log2_scale, tmp);
2453     if (!TwoOperandLIRForm) {
2454       index_op = tmp;
2455     }
2456   }
2457 
2458   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2459 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2460   __ move(value.result(), addr);
2461 }
2462 
2463 
2464 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2465   BasicType type = x->basic_type();
2466   LIRItem src(x->object(), this);
2467   LIRItem off(x->offset(), this);
2468 
2469   off.load_item();
2470   src.load_item();
2471 
2472   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2473 
2474   if (x->is_volatile()) {
2475     decorators |= MO_SEQ_CST;
2476   }
2477   if (type == T_BOOLEAN) {
2478     decorators |= C1_MASK_BOOLEAN;
2479   }
2480   if (type == T_ARRAY || type == T_OBJECT) {
2481     decorators |= ON_UNKNOWN_OOP_REF;
2482   }
2483 
2484   LIR_Opr result = rlock_result(x, type);
2485   access_load_at(decorators, type,
2486                  src, off.result(), result);
2487 }
2488 
2489 
2490 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2491   BasicType type = x->basic_type();
2492   LIRItem src(x->object(), this);
2493   LIRItem off(x->offset(), this);
2494   LIRItem data(x->value(), this);
2495 
2496   src.load_item();
2497   if (type == T_BOOLEAN || type == T_BYTE) {
2498     data.load_byte_item();
2499   } else {
2500     data.load_item();
2501   }
2502   off.load_item();
2503 
2504   set_no_result(x);
2505 
2506   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS;
2507   if (type == T_ARRAY || type == T_OBJECT) {
2508     decorators |= ON_UNKNOWN_OOP_REF;
2509   }
2510   if (x->is_volatile()) {
2511     decorators |= MO_SEQ_CST;
2512   }
2513   access_store_at(decorators, type, src, off.result(), data.result());
2514 }
2515 
2516 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2517   BasicType type = x->basic_type();
2518   LIRItem src(x->object(), this);
2519   LIRItem off(x->offset(), this);
2520   LIRItem value(x->value(), this);
2521 
2522   DecoratorSet decorators = IN_HEAP | C1_UNSAFE_ACCESS | MO_SEQ_CST;
2523 
2524   if (type == T_ARRAY || type == T_OBJECT) {
2525     decorators |= ON_UNKNOWN_OOP_REF;
2526   }
2527 
2528   LIR_Opr result;
2529   if (x->is_add()) {
2530     result = access_atomic_add_at(decorators, type, src, off, value);
2531   } else {
2532     result = access_atomic_xchg_at(decorators, type, src, off, value);
2533   }
2534   set_result(x, result);
2535 }
2536 
2537 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2538   int lng = x->length();
2539 
2540   for (int i = 0; i < lng; i++) {
2541     SwitchRange* one_range = x->at(i);
2542     int low_key = one_range->low_key();
2543     int high_key = one_range->high_key();
2544     BlockBegin* dest = one_range->sux();
2545     if (low_key == high_key) {
2546       __ cmp(lir_cond_equal, value, low_key);
2547       __ branch(lir_cond_equal, T_INT, dest);
2548     } else if (high_key - low_key == 1) {
2549       __ cmp(lir_cond_equal, value, low_key);
2550       __ branch(lir_cond_equal, T_INT, dest);
2551       __ cmp(lir_cond_equal, value, high_key);
2552       __ branch(lir_cond_equal, T_INT, dest);
2553     } else {
2554       LabelObj* L = new LabelObj();
2555       __ cmp(lir_cond_less, value, low_key);
2556       __ branch(lir_cond_less, T_INT, L->label());
2557       __ cmp(lir_cond_lessEqual, value, high_key);
2558       __ branch(lir_cond_lessEqual, T_INT, dest);
2559       __ branch_destination(L->label());
2560     }
2561   }
2562   __ jump(default_sux);
2563 }
2564 
2565 
2566 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2567   SwitchRangeList* res = new SwitchRangeList();
2568   int len = x->length();
2569   if (len > 0) {
2570     BlockBegin* sux = x->sux_at(0);
2571     int key = x->lo_key();
2572     BlockBegin* default_sux = x->default_sux();
2573     SwitchRange* range = new SwitchRange(key, sux);
2574     for (int i = 0; i < len; i++, key++) {
2575       BlockBegin* new_sux = x->sux_at(i);
2576       if (sux == new_sux) {
2577         // still in same range
2578         range->set_high_key(key);
2579       } else {
2580         // skip tests which explicitly dispatch to the default
2581         if (sux != default_sux) {
2582           res->append(range);
2583         }
2584         range = new SwitchRange(key, new_sux);
2585       }
2586       sux = new_sux;
2587     }
2588     if (res->length() == 0 || res->last() != range)  res->append(range);
2589   }
2590   return res;
2591 }
2592 
2593 
2594 // we expect the keys to be sorted by increasing value
2595 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2596   SwitchRangeList* res = new SwitchRangeList();
2597   int len = x->length();
2598   if (len > 0) {
2599     BlockBegin* default_sux = x->default_sux();
2600     int key = x->key_at(0);
2601     BlockBegin* sux = x->sux_at(0);
2602     SwitchRange* range = new SwitchRange(key, sux);
2603     for (int i = 1; i < len; i++) {
2604       int new_key = x->key_at(i);
2605       BlockBegin* new_sux = x->sux_at(i);
2606       if (key+1 == new_key && sux == new_sux) {
2607         // still in same range
2608         range->set_high_key(new_key);
2609       } else {
2610         // skip tests which explicitly dispatch to the default
2611         if (range->sux() != default_sux) {
2612           res->append(range);
2613         }
2614         range = new SwitchRange(new_key, new_sux);
2615       }
2616       key = new_key;
2617       sux = new_sux;
2618     }
2619     if (res->length() == 0 || res->last() != range)  res->append(range);
2620   }
2621   return res;
2622 }
2623 
2624 
2625 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2626   LIRItem tag(x->tag(), this);
2627   tag.load_item();
2628   set_no_result(x);
2629 
2630   if (x->is_safepoint()) {
2631     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2632   }
2633 
2634   // move values into phi locations
2635   move_to_phi(x->state());
2636 
2637   int lo_key = x->lo_key();
2638   int len = x->length();
2639   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2640   LIR_Opr value = tag.result();
2641 
2642   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2643     ciMethod* method = x->state()->scope()->method();
2644     ciMethodData* md = method->method_data_or_null();
2645     assert(md != NULL, "Sanity");
2646     ciProfileData* data = md->bci_to_data(x->state()->bci());
2647     assert(data != NULL, "must have profiling data");
2648     assert(data->is_MultiBranchData(), "bad profile data?");
2649     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2650     LIR_Opr md_reg = new_register(T_METADATA);
2651     __ metadata2reg(md->constant_encoding(), md_reg);
2652     LIR_Opr data_offset_reg = new_pointer_register();
2653     LIR_Opr tmp_reg = new_pointer_register();
2654 
2655     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2656     for (int i = 0; i < len; i++) {
2657       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2658       __ cmp(lir_cond_equal, value, i + lo_key);
2659       __ move(data_offset_reg, tmp_reg);
2660       __ cmove(lir_cond_equal,
2661                LIR_OprFact::intptrConst(count_offset),
2662                tmp_reg,
2663                data_offset_reg, T_INT);
2664     }
2665 
2666     LIR_Opr data_reg = new_pointer_register();
2667     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2668     __ move(data_addr, data_reg);
2669     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2670     __ move(data_reg, data_addr);
2671   }
2672 
2673   if (UseTableRanges) {
2674     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2675   } else {
2676     for (int i = 0; i < len; i++) {
2677       __ cmp(lir_cond_equal, value, i + lo_key);
2678       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2679     }
2680     __ jump(x->default_sux());
2681   }
2682 }
2683 
2684 
2685 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2686   LIRItem tag(x->tag(), this);
2687   tag.load_item();
2688   set_no_result(x);
2689 
2690   if (x->is_safepoint()) {
2691     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2692   }
2693 
2694   // move values into phi locations
2695   move_to_phi(x->state());
2696 
2697   LIR_Opr value = tag.result();
2698   int len = x->length();
2699 
2700   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2701     ciMethod* method = x->state()->scope()->method();
2702     ciMethodData* md = method->method_data_or_null();
2703     assert(md != NULL, "Sanity");
2704     ciProfileData* data = md->bci_to_data(x->state()->bci());
2705     assert(data != NULL, "must have profiling data");
2706     assert(data->is_MultiBranchData(), "bad profile data?");
2707     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2708     LIR_Opr md_reg = new_register(T_METADATA);
2709     __ metadata2reg(md->constant_encoding(), md_reg);
2710     LIR_Opr data_offset_reg = new_pointer_register();
2711     LIR_Opr tmp_reg = new_pointer_register();
2712 
2713     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2714     for (int i = 0; i < len; i++) {
2715       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2716       __ cmp(lir_cond_equal, value, x->key_at(i));
2717       __ move(data_offset_reg, tmp_reg);
2718       __ cmove(lir_cond_equal,
2719                LIR_OprFact::intptrConst(count_offset),
2720                tmp_reg,
2721                data_offset_reg, T_INT);
2722     }
2723 
2724     LIR_Opr data_reg = new_pointer_register();
2725     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2726     __ move(data_addr, data_reg);
2727     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2728     __ move(data_reg, data_addr);
2729   }
2730 
2731   if (UseTableRanges) {
2732     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2733   } else {
2734     int len = x->length();
2735     for (int i = 0; i < len; i++) {
2736       __ cmp(lir_cond_equal, value, x->key_at(i));
2737       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2738     }
2739     __ jump(x->default_sux());
2740   }
2741 }
2742 
2743 
2744 void LIRGenerator::do_Goto(Goto* x) {
2745   set_no_result(x);
2746 
2747   if (block()->next()->as_OsrEntry()) {
2748     // need to free up storage used for OSR entry point
2749     LIR_Opr osrBuffer = block()->next()->operand();
2750     BasicTypeList signature;
2751     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2752     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2753     __ move(osrBuffer, cc->args()->at(0));
2754     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2755                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2756   }
2757 
2758   if (x->is_safepoint()) {
2759     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2760 
2761     // increment backedge counter if needed
2762     CodeEmitInfo* info = state_for(x, state);
2763     increment_backedge_counter(info, x->profiled_bci());
2764     CodeEmitInfo* safepoint_info = state_for(x, state);
2765     __ safepoint(safepoint_poll_register(), safepoint_info);
2766   }
2767 
2768   // Gotos can be folded Ifs, handle this case.
2769   if (x->should_profile()) {
2770     ciMethod* method = x->profiled_method();
2771     assert(method != NULL, "method should be set if branch is profiled");
2772     ciMethodData* md = method->method_data_or_null();
2773     assert(md != NULL, "Sanity");
2774     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2775     assert(data != NULL, "must have profiling data");
2776     int offset;
2777     if (x->direction() == Goto::taken) {
2778       assert(data->is_BranchData(), "need BranchData for two-way branches");
2779       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2780     } else if (x->direction() == Goto::not_taken) {
2781       assert(data->is_BranchData(), "need BranchData for two-way branches");
2782       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2783     } else {
2784       assert(data->is_JumpData(), "need JumpData for branches");
2785       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2786     }
2787     LIR_Opr md_reg = new_register(T_METADATA);
2788     __ metadata2reg(md->constant_encoding(), md_reg);
2789 
2790     increment_counter(new LIR_Address(md_reg, offset,
2791                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2792   }
2793 
2794   // emit phi-instruction move after safepoint since this simplifies
2795   // describing the state as the safepoint.
2796   move_to_phi(x->state());
2797 
2798   __ jump(x->default_sux());
2799 }
2800 
2801 /**
2802  * Emit profiling code if needed for arguments, parameters, return value types
2803  *
2804  * @param md                    MDO the code will update at runtime
2805  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2806  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2807  * @param profiled_k            current profile
2808  * @param obj                   IR node for the object to be profiled
2809  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2810  *                              Set once we find an update to make and use for next ones.
2811  * @param not_null              true if we know obj cannot be null
2812  * @param signature_at_call_k   signature at call for obj
2813  * @param callee_signature_k    signature of callee for obj
2814  *                              at call and callee signatures differ at method handle call
2815  * @return                      the only klass we know will ever be seen at this profile point
2816  */
2817 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2818                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2819                                     ciKlass* callee_signature_k) {
2820   ciKlass* result = NULL;
2821   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2822   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2823   // known not to be null or null bit already set and already set to
2824   // unknown: nothing we can do to improve profiling
2825   if (!do_null && !do_update) {
2826     return result;
2827   }
2828 
2829   ciKlass* exact_klass = NULL;
2830   Compilation* comp = Compilation::current();
2831   if (do_update) {
2832     // try to find exact type, using CHA if possible, so that loading
2833     // the klass from the object can be avoided
2834     ciType* type = obj->exact_type();
2835     if (type == NULL) {
2836       type = obj->declared_type();
2837       type = comp->cha_exact_type(type);
2838     }
2839     assert(type == NULL || type->is_klass(), "type should be class");
2840     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2841 
2842     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2843   }
2844 
2845   if (!do_null && !do_update) {
2846     return result;
2847   }
2848 
2849   ciKlass* exact_signature_k = NULL;
2850   if (do_update) {
2851     // Is the type from the signature exact (the only one possible)?
2852     exact_signature_k = signature_at_call_k->exact_klass();
2853     if (exact_signature_k == NULL) {
2854       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2855     } else {
2856       result = exact_signature_k;
2857       // Known statically. No need to emit any code: prevent
2858       // LIR_Assembler::emit_profile_type() from emitting useless code
2859       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2860     }
2861     // exact_klass and exact_signature_k can be both non NULL but
2862     // different if exact_klass is loaded after the ciObject for
2863     // exact_signature_k is created.
2864     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2865       // sometimes the type of the signature is better than the best type
2866       // the compiler has
2867       exact_klass = exact_signature_k;
2868     }
2869     if (callee_signature_k != NULL &&
2870         callee_signature_k != signature_at_call_k) {
2871       ciKlass* improved_klass = callee_signature_k->exact_klass();
2872       if (improved_klass == NULL) {
2873         improved_klass = comp->cha_exact_type(callee_signature_k);
2874       }
2875       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2876         exact_klass = exact_signature_k;
2877       }
2878     }
2879     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2880   }
2881 
2882   if (!do_null && !do_update) {
2883     return result;
2884   }
2885 
2886   if (mdp == LIR_OprFact::illegalOpr) {
2887     mdp = new_register(T_METADATA);
2888     __ metadata2reg(md->constant_encoding(), mdp);
2889     if (md_base_offset != 0) {
2890       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2891       mdp = new_pointer_register();
2892       __ leal(LIR_OprFact::address(base_type_address), mdp);
2893     }
2894   }
2895   LIRItem value(obj, this);
2896   value.load_item();
2897   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2898                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2899   return result;
2900 }
2901 
2902 // profile parameters on entry to the root of the compilation
2903 void LIRGenerator::profile_parameters(Base* x) {
2904   if (compilation()->profile_parameters()) {
2905     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2906     ciMethodData* md = scope()->method()->method_data_or_null();
2907     assert(md != NULL, "Sanity");
2908 
2909     if (md->parameters_type_data() != NULL) {
2910       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2911       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2912       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2913       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2914         LIR_Opr src = args->at(i);
2915         assert(!src->is_illegal(), "check");
2916         BasicType t = src->type();
2917         if (t == T_OBJECT || t == T_ARRAY) {
2918           intptr_t profiled_k = parameters->type(j);
2919           Local* local = x->state()->local_at(java_index)->as_Local();
2920           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2921                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2922                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2923           // If the profile is known statically set it once for all and do not emit any code
2924           if (exact != NULL) {
2925             md->set_parameter_type(j, exact);
2926           }
2927           j++;
2928         }
2929         java_index += type2size[t];
2930       }
2931     }
2932   }
2933 }
2934 
2935 void LIRGenerator::do_Base(Base* x) {
2936   __ std_entry(LIR_OprFact::illegalOpr);
2937   // Emit moves from physical registers / stack slots to virtual registers
2938   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2939   IRScope* irScope = compilation()->hir()->top_scope();
2940   int java_index = 0;
2941   for (int i = 0; i < args->length(); i++) {
2942     LIR_Opr src = args->at(i);
2943     assert(!src->is_illegal(), "check");
2944     BasicType t = src->type();
2945 
2946     // Types which are smaller than int are passed as int, so
2947     // correct the type which passed.
2948     switch (t) {
2949     case T_BYTE:
2950     case T_BOOLEAN:
2951     case T_SHORT:
2952     case T_CHAR:
2953       t = T_INT;
2954       break;
2955     default:
2956       break;
2957     }
2958 
2959     LIR_Opr dest = new_register(t);
2960     __ move(src, dest);
2961 
2962     // Assign new location to Local instruction for this local
2963     Local* local = x->state()->local_at(java_index)->as_Local();
2964     assert(local != NULL, "Locals for incoming arguments must have been created");
2965 #ifndef __SOFTFP__
2966     // The java calling convention passes double as long and float as int.
2967     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2968 #endif // __SOFTFP__
2969     local->set_operand(dest);
2970     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2971     java_index += type2size[t];
2972   }
2973 
2974   if (compilation()->env()->dtrace_method_probes()) {
2975     BasicTypeList signature;
2976     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2977     signature.append(T_METADATA); // Method*
2978     LIR_OprList* args = new LIR_OprList();
2979     args->append(getThreadPointer());
2980     LIR_Opr meth = new_register(T_METADATA);
2981     __ metadata2reg(method()->constant_encoding(), meth);
2982     args->append(meth);
2983     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2984   }
2985 
2986   if (method()->is_synchronized()) {
2987     LIR_Opr obj;
2988     if (method()->is_static()) {
2989       obj = new_register(T_OBJECT);
2990       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2991     } else {
2992       Local* receiver = x->state()->local_at(0)->as_Local();
2993       assert(receiver != NULL, "must already exist");
2994       obj = receiver->operand();
2995     }
2996     assert(obj->is_valid(), "must be valid");
2997 
2998     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2999       LIR_Opr lock = syncLockOpr();
3000       __ load_stack_address_monitor(0, lock);
3001 
3002       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
3003       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
3004 
3005       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
3006       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
3007     }
3008   }
3009   if (compilation()->age_code()) {
3010     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
3011     decrement_age(info);
3012   }
3013   // increment invocation counters if needed
3014   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
3015     profile_parameters(x);
3016     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
3017     increment_invocation_counter(info);
3018   }
3019 
3020   // all blocks with a successor must end with an unconditional jump
3021   // to the successor even if they are consecutive
3022   __ jump(x->default_sux());
3023 }
3024 
3025 
3026 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
3027   // construct our frame and model the production of incoming pointer
3028   // to the OSR buffer.
3029   __ osr_entry(LIR_Assembler::osrBufferPointer());
3030   LIR_Opr result = rlock_result(x);
3031   __ move(LIR_Assembler::osrBufferPointer(), result);
3032 }
3033 
3034 void LIRGenerator::invoke_load_one_argument(LIRItem* param, LIR_Opr loc) {
3035   if (loc->is_register()) {
3036     param->load_item_force(loc);
3037   } else {
3038     LIR_Address* addr = loc->as_address_ptr();
3039     param->load_for_store(addr->type());
3040     assert(addr->type() != T_VALUETYPE, "not supported yet");
3041     if (addr->type() == T_OBJECT) {
3042       __ move_wide(param->result(), addr);
3043     } else {
3044       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3045         __ unaligned_move(param->result(), addr);
3046       } else {
3047         __ move(param->result(), addr);
3048       }
3049     }
3050   }
3051 }
3052 
3053 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
3054   assert(args->length() == arg_list->length(),
3055          "args=%d, arg_list=%d", args->length(), arg_list->length());
3056   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
3057     LIRItem* param = args->at(i);
3058     LIR_Opr loc = arg_list->at(i);
3059     invoke_load_one_argument(param, loc);
3060   }
3061 
3062   if (x->has_receiver()) {
3063     LIRItem* receiver = args->at(0);
3064     LIR_Opr loc = arg_list->at(0);
3065     if (loc->is_register()) {
3066       receiver->load_item_force(loc);
3067     } else {
3068       assert(loc->is_address(), "just checking");
3069       receiver->load_for_store(T_OBJECT);
3070       __ move_wide(receiver->result(), loc->as_address_ptr());
3071     }
3072   }
3073 }
3074 
3075 
3076 // Visits all arguments, returns appropriate items without loading them
3077 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
3078   LIRItemList* argument_items = new LIRItemList();
3079   if (x->has_receiver()) {
3080     LIRItem* receiver = new LIRItem(x->receiver(), this);
3081     argument_items->append(receiver);
3082   }
3083   for (int i = 0; i < x->number_of_arguments(); i++) {
3084     LIRItem* param = new LIRItem(x->argument_at(i), this);
3085     argument_items->append(param);
3086   }
3087   return argument_items;
3088 }
3089 
3090 
3091 // The invoke with receiver has following phases:
3092 //   a) traverse and load/lock receiver;
3093 //   b) traverse all arguments -> item-array (invoke_visit_argument)
3094 //   c) push receiver on stack
3095 //   d) load each of the items and push on stack
3096 //   e) unlock receiver
3097 //   f) move receiver into receiver-register %o0
3098 //   g) lock result registers and emit call operation
3099 //
3100 // Before issuing a call, we must spill-save all values on stack
3101 // that are in caller-save register. "spill-save" moves those registers
3102 // either in a free callee-save register or spills them if no free
3103 // callee save register is available.
3104 //
3105 // The problem is where to invoke spill-save.
3106 // - if invoked between e) and f), we may lock callee save
3107 //   register in "spill-save" that destroys the receiver register
3108 //   before f) is executed
3109 // - if we rearrange f) to be earlier (by loading %o0) it
3110 //   may destroy a value on the stack that is currently in %o0
3111 //   and is waiting to be spilled
3112 // - if we keep the receiver locked while doing spill-save,
3113 //   we cannot spill it as it is spill-locked
3114 //
3115 void LIRGenerator::do_Invoke(Invoke* x) {
3116   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
3117 
3118   LIR_OprList* arg_list = cc->args();
3119   LIRItemList* args = invoke_visit_arguments(x);
3120   LIR_Opr receiver = LIR_OprFact::illegalOpr;
3121 
3122   // setup result register
3123   LIR_Opr result_register = LIR_OprFact::illegalOpr;
3124   if (x->type() != voidType) {
3125     result_register = result_register_for(x->type());
3126   }
3127 
3128   CodeEmitInfo* info = state_for(x, x->state());
3129 
3130   invoke_load_arguments(x, args, arg_list);
3131 
3132   if (x->has_receiver()) {
3133     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
3134     receiver = args->at(0)->result();
3135   }
3136 
3137   // emit invoke code
3138   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
3139 
3140   // JSR 292
3141   // Preserve the SP over MethodHandle call sites, if needed.
3142   ciMethod* target = x->target();
3143   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
3144                                   target->is_method_handle_intrinsic() ||
3145                                   target->is_compiled_lambda_form());
3146   if (is_method_handle_invoke) {
3147     info->set_is_method_handle_invoke(true);
3148     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3149         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
3150     }
3151   }
3152 
3153   switch (x->code()) {
3154     case Bytecodes::_invokestatic:
3155       __ call_static(target, result_register,
3156                      SharedRuntime::get_resolve_static_call_stub(),
3157                      arg_list, info);
3158       break;
3159     case Bytecodes::_invokespecial:
3160     case Bytecodes::_invokevirtual:
3161     case Bytecodes::_invokeinterface:
3162       // for loaded and final (method or class) target we still produce an inline cache,
3163       // in order to be able to call mixed mode
3164       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3165         __ call_opt_virtual(target, receiver, result_register,
3166                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3167                             arg_list, info);
3168       } else if (x->vtable_index() < 0) {
3169         __ call_icvirtual(target, receiver, result_register,
3170                           SharedRuntime::get_resolve_virtual_call_stub(),
3171                           arg_list, info);
3172       } else {
3173         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3174         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3175         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3176       }
3177       break;
3178     case Bytecodes::_invokedynamic: {
3179       __ call_dynamic(target, receiver, result_register,
3180                       SharedRuntime::get_resolve_static_call_stub(),
3181                       arg_list, info);
3182       break;
3183     }
3184     default:
3185       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3186       break;
3187   }
3188 
3189   // JSR 292
3190   // Restore the SP after MethodHandle call sites, if needed.
3191   if (is_method_handle_invoke
3192       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3193     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3194   }
3195 
3196   if (x->type()->is_float() || x->type()->is_double()) {
3197     // Force rounding of results from non-strictfp when in strictfp
3198     // scope (or when we don't know the strictness of the callee, to
3199     // be safe.)
3200     if (method()->is_strict()) {
3201       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3202         result_register = round_item(result_register);
3203       }
3204     }
3205   }
3206 
3207   if (result_register->is_valid()) {
3208     LIR_Opr result = rlock_result(x);
3209     __ move(result_register, result);
3210   }
3211 }
3212 
3213 
3214 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3215   assert(x->number_of_arguments() == 1, "wrong type");
3216   LIRItem value       (x->argument_at(0), this);
3217   LIR_Opr reg = rlock_result(x);
3218   value.load_item();
3219   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3220   __ move(tmp, reg);
3221 }
3222 
3223 
3224 
3225 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3226 void LIRGenerator::do_IfOp(IfOp* x) {
3227 #ifdef ASSERT
3228   {
3229     ValueTag xtag = x->x()->type()->tag();
3230     ValueTag ttag = x->tval()->type()->tag();
3231     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3232     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3233     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3234   }
3235 #endif
3236 
3237   LIRItem left(x->x(), this);
3238   LIRItem right(x->y(), this);
3239   left.load_item();
3240   if (can_inline_as_constant(right.value()) && !x->substitutability_check()) {
3241     right.dont_load_item();
3242   } else {
3243     // substitutability_check() needs to use right as a base register.
3244     right.load_item();
3245   }
3246 
3247   LIRItem t_val(x->tval(), this);
3248   LIRItem f_val(x->fval(), this);
3249   t_val.dont_load_item();
3250   f_val.dont_load_item();
3251 
3252   if (x->substitutability_check()) {
3253     substitutability_check(x, left, right, t_val, f_val);
3254   } else {
3255     LIR_Opr reg = rlock_result(x);
3256     __ cmp(lir_cond(x->cond()), left.result(), right.result());
3257     __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3258   }
3259 }
3260 
3261 void LIRGenerator::substitutability_check(IfOp* x, LIRItem& left, LIRItem& right, LIRItem& t_val, LIRItem& f_val) {
3262   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3263   bool is_acmpeq = (x->cond() == If::eql);
3264   LIR_Opr equal_result     = is_acmpeq ? t_val.result() : f_val.result();
3265   LIR_Opr not_equal_result = is_acmpeq ? f_val.result() : t_val.result();
3266   LIR_Opr result = rlock_result(x);
3267   CodeEmitInfo* info = state_for(x, x->state_before());
3268 
3269   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3270 }
3271 
3272 void LIRGenerator::substitutability_check(If* x, LIRItem& left, LIRItem& right) {
3273   LIR_Opr equal_result     = LIR_OprFact::intConst(1);
3274   LIR_Opr not_equal_result = LIR_OprFact::intConst(0);
3275   LIR_Opr result = new_register(T_INT);
3276   CodeEmitInfo* info = state_for(x, x->state_before());
3277 
3278   substitutability_check_common(x->x(), x->y(), left, right, equal_result, not_equal_result, result, info);
3279 
3280   assert(x->cond() == If::eql || x->cond() == If::neq, "must be");
3281   __ cmp(lir_cond(x->cond()), result, equal_result);
3282 }
3283 
3284 void LIRGenerator::substitutability_check_common(Value left_val, Value right_val, LIRItem& left, LIRItem& right,
3285                                                  LIR_Opr equal_result, LIR_Opr not_equal_result, LIR_Opr result,
3286                                                  CodeEmitInfo* info) {
3287   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
3288   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
3289   LIR_Opr left_klass_op = LIR_OprFact::illegalOpr;
3290   LIR_Opr right_klass_op = LIR_OprFact::illegalOpr;
3291 
3292   ciKlass* left_klass  = left_val ->as_loaded_klass_or_null();
3293   ciKlass* right_klass = right_val->as_loaded_klass_or_null();
3294 
3295   if ((left_klass == NULL || right_klass == NULL) ||// The klass is still unloaded, or came from a Phi node.
3296       !left_klass->is_valuetype() || !right_klass->is_valuetype()) {
3297     init_temps_for_substitutability_check(tmp1, tmp2);
3298   }
3299 
3300   if (left_klass != NULL && left_klass->is_valuetype() && left_klass == right_klass) {
3301     // No need to load klass -- the operands are statically known to be the same value klass.
3302   } else {
3303     BasicType t_klass = UseCompressedOops ? T_INT : T_METADATA;
3304     left_klass_op = new_register(t_klass);
3305     right_klass_op = new_register(t_klass);
3306   }
3307 
3308   CodeStub* slow_path = new SubstitutabilityCheckStub(left.result(), right.result(), result, info);
3309   __ substitutability_check(result, left.result(), right.result(), equal_result, not_equal_result,
3310                             tmp1, tmp2,
3311                             left_klass, right_klass, left_klass_op, right_klass_op, info, slow_path);
3312 }
3313 
3314 #ifdef JFR_HAVE_INTRINSICS
3315 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3316   CodeEmitInfo* info = state_for(x);
3317   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3318 
3319   assert(info != NULL, "must have info");
3320   LIRItem arg(x->argument_at(0), this);
3321 
3322   arg.load_item();
3323   LIR_Opr klass = new_register(T_METADATA);
3324   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3325   LIR_Opr id = new_register(T_LONG);
3326   ByteSize offset = KLASS_TRACE_ID_OFFSET;
3327   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3328 
3329   __ move(trace_id_addr, id);
3330   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3331   __ store(id, trace_id_addr);
3332 
3333 #ifdef TRACE_ID_META_BITS
3334   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3335 #endif
3336 #ifdef TRACE_ID_SHIFT
3337   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
3338 #endif
3339 
3340   __ move(id, rlock_result(x));
3341 }
3342 
3343 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
3344   LabelObj* L_end = new LabelObj();
3345 
3346   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3347                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
3348                                            T_OBJECT);
3349   LIR_Opr result = rlock_result(x);
3350   __ move_wide(jobj_addr, result);
3351   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3352   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3353 
3354   LIR_Opr jobj = new_register(T_OBJECT);
3355   __ move(result, jobj);
3356   access_load(IN_NATIVE, T_OBJECT, LIR_OprFact::address(new LIR_Address(jobj, T_OBJECT)), result);
3357 
3358   __ branch_destination(L_end->label());
3359 }
3360 
3361 #endif
3362 
3363 
3364 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3365   assert(x->number_of_arguments() == 0, "wrong type");
3366   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3367   BasicTypeList signature;
3368   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3369   LIR_Opr reg = result_register_for(x->type());
3370   __ call_runtime_leaf(routine, getThreadTemp(),
3371                        reg, new LIR_OprList());
3372   LIR_Opr result = rlock_result(x);
3373   __ move(reg, result);
3374 }
3375 
3376 
3377 
3378 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3379   switch (x->id()) {
3380   case vmIntrinsics::_intBitsToFloat      :
3381   case vmIntrinsics::_doubleToRawLongBits :
3382   case vmIntrinsics::_longBitsToDouble    :
3383   case vmIntrinsics::_floatToRawIntBits   : {
3384     do_FPIntrinsics(x);
3385     break;
3386   }
3387 
3388 #ifdef JFR_HAVE_INTRINSICS
3389   case vmIntrinsics::_getClassId:
3390     do_ClassIDIntrinsic(x);
3391     break;
3392   case vmIntrinsics::_getEventWriter:
3393     do_getEventWriter(x);
3394     break;
3395   case vmIntrinsics::_counterTime:
3396     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3397     break;
3398 #endif
3399 
3400   case vmIntrinsics::_currentTimeMillis:
3401     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3402     break;
3403 
3404   case vmIntrinsics::_nanoTime:
3405     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3406     break;
3407 
3408   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3409   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3410   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3411   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3412   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3413 
3414   case vmIntrinsics::_dlog:           // fall through
3415   case vmIntrinsics::_dlog10:         // fall through
3416   case vmIntrinsics::_dabs:           // fall through
3417   case vmIntrinsics::_dsqrt:          // fall through
3418   case vmIntrinsics::_dtan:           // fall through
3419   case vmIntrinsics::_dsin :          // fall through
3420   case vmIntrinsics::_dcos :          // fall through
3421   case vmIntrinsics::_dexp :          // fall through
3422   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3423   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3424 
3425   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3426   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3427 
3428   // java.nio.Buffer.checkIndex
3429   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3430 
3431   case vmIntrinsics::_compareAndSetReference:
3432     do_CompareAndSwap(x, objectType);
3433     break;
3434   case vmIntrinsics::_compareAndSetInt:
3435     do_CompareAndSwap(x, intType);
3436     break;
3437   case vmIntrinsics::_compareAndSetLong:
3438     do_CompareAndSwap(x, longType);
3439     break;
3440 
3441   case vmIntrinsics::_loadFence :
3442     __ membar_acquire();
3443     break;
3444   case vmIntrinsics::_storeFence:
3445     __ membar_release();
3446     break;
3447   case vmIntrinsics::_fullFence :
3448     __ membar();
3449     break;
3450   case vmIntrinsics::_onSpinWait:
3451     __ on_spin_wait();
3452     break;
3453   case vmIntrinsics::_Reference_get:
3454     do_Reference_get(x);
3455     break;
3456 
3457   case vmIntrinsics::_updateCRC32:
3458   case vmIntrinsics::_updateBytesCRC32:
3459   case vmIntrinsics::_updateByteBufferCRC32:
3460     do_update_CRC32(x);
3461     break;
3462 
3463   case vmIntrinsics::_updateBytesCRC32C:
3464   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3465     do_update_CRC32C(x);
3466     break;
3467 
3468   case vmIntrinsics::_vectorizedMismatch:
3469     do_vectorizedMismatch(x);
3470     break;
3471 
3472   default: ShouldNotReachHere(); break;
3473   }
3474 }
3475 
3476 void LIRGenerator::profile_arguments(ProfileCall* x) {
3477   if (compilation()->profile_arguments()) {
3478     int bci = x->bci_of_invoke();
3479     ciMethodData* md = x->method()->method_data_or_null();
3480     assert(md != NULL, "Sanity");
3481     ciProfileData* data = md->bci_to_data(bci);
3482     if (data != NULL) {
3483       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3484           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3485         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3486         int base_offset = md->byte_offset_of_slot(data, extra);
3487         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3488         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3489 
3490         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3491         int start = 0;
3492         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3493         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3494           // first argument is not profiled at call (method handle invoke)
3495           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3496           start = 1;
3497         }
3498         ciSignature* callee_signature = x->callee()->signature();
3499         // method handle call to virtual method
3500         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3501         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3502 
3503         bool ignored_will_link;
3504         ciSignature* signature_at_call = NULL;
3505         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3506         ciSignatureStream signature_at_call_stream(signature_at_call);
3507 
3508         // if called through method handle invoke, some arguments may have been popped
3509         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3510           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3511           ciKlass* exact = profile_type(md, base_offset, off,
3512               args->type(i), x->profiled_arg_at(i+start), mdp,
3513               !x->arg_needs_null_check(i+start),
3514               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3515           if (exact != NULL) {
3516             md->set_argument_type(bci, i, exact);
3517           }
3518         }
3519       } else {
3520 #ifdef ASSERT
3521         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3522         int n = x->nb_profiled_args();
3523         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3524             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3525             "only at JSR292 bytecodes");
3526 #endif
3527       }
3528     }
3529   }
3530 }
3531 
3532 // profile parameters on entry to an inlined method
3533 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3534   if (compilation()->profile_parameters() && x->inlined()) {
3535     ciMethodData* md = x->callee()->method_data_or_null();
3536     if (md != NULL) {
3537       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3538       if (parameters_type_data != NULL) {
3539         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3540         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3541         bool has_receiver = !x->callee()->is_static();
3542         ciSignature* sig = x->callee()->signature();
3543         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3544         int i = 0; // to iterate on the Instructions
3545         Value arg = x->recv();
3546         bool not_null = false;
3547         int bci = x->bci_of_invoke();
3548         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3549         // The first parameter is the receiver so that's what we start
3550         // with if it exists. One exception is method handle call to
3551         // virtual method: the receiver is in the args list
3552         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3553           i = 1;
3554           arg = x->profiled_arg_at(0);
3555           not_null = !x->arg_needs_null_check(0);
3556         }
3557         int k = 0; // to iterate on the profile data
3558         for (;;) {
3559           intptr_t profiled_k = parameters->type(k);
3560           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3561                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3562                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3563           // If the profile is known statically set it once for all and do not emit any code
3564           if (exact != NULL) {
3565             md->set_parameter_type(k, exact);
3566           }
3567           k++;
3568           if (k >= parameters_type_data->number_of_parameters()) {
3569 #ifdef ASSERT
3570             int extra = 0;
3571             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3572                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3573                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3574               extra += 1;
3575             }
3576             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3577 #endif
3578             break;
3579           }
3580           arg = x->profiled_arg_at(i);
3581           not_null = !x->arg_needs_null_check(i);
3582           i++;
3583         }
3584       }
3585     }
3586   }
3587 }
3588 
3589 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3590   // Need recv in a temporary register so it interferes with the other temporaries
3591   LIR_Opr recv = LIR_OprFact::illegalOpr;
3592   LIR_Opr mdo = new_register(T_METADATA);
3593   // tmp is used to hold the counters on SPARC
3594   LIR_Opr tmp = new_pointer_register();
3595 
3596   if (x->nb_profiled_args() > 0) {
3597     profile_arguments(x);
3598   }
3599 
3600   // profile parameters on inlined method entry including receiver
3601   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3602     profile_parameters_at_call(x);
3603   }
3604 
3605   if (x->recv() != NULL) {
3606     LIRItem value(x->recv(), this);
3607     value.load_item();
3608     recv = new_register(T_OBJECT);
3609     __ move(value.result(), recv);
3610   }
3611   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3612 }
3613 
3614 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3615   int bci = x->bci_of_invoke();
3616   ciMethodData* md = x->method()->method_data_or_null();
3617   assert(md != NULL, "Sanity");
3618   ciProfileData* data = md->bci_to_data(bci);
3619   if (data != NULL) {
3620     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3621     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3622     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3623 
3624     bool ignored_will_link;
3625     ciSignature* signature_at_call = NULL;
3626     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3627 
3628     // The offset within the MDO of the entry to update may be too large
3629     // to be used in load/store instructions on some platforms. So have
3630     // profile_type() compute the address of the profile in a register.
3631     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3632         ret->type(), x->ret(), mdp,
3633         !x->needs_null_check(),
3634         signature_at_call->return_type()->as_klass(),
3635         x->callee()->signature()->return_type()->as_klass());
3636     if (exact != NULL) {
3637       md->set_return_type(bci, exact);
3638     }
3639   }
3640 }
3641 
3642 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3643   // We can safely ignore accessors here, since c2 will inline them anyway,
3644   // accessors are also always mature.
3645   if (!x->inlinee()->is_accessor()) {
3646     CodeEmitInfo* info = state_for(x, x->state(), true);
3647     // Notify the runtime very infrequently only to take care of counter overflows
3648     int freq_log = Tier23InlineeNotifyFreqLog;
3649     double scale;
3650     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3651       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3652     }
3653     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3654   }
3655 }
3656 
3657 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3658   if (compilation()->count_backedges()) {
3659 #if defined(X86) && !defined(_LP64)
3660     // BEWARE! On 32-bit x86 cmp clobbers its left argument so we need a temp copy.
3661     LIR_Opr left_copy = new_register(left->type());
3662     __ move(left, left_copy);
3663     __ cmp(cond, left_copy, right);
3664 #else
3665     __ cmp(cond, left, right);
3666 #endif
3667     LIR_Opr step = new_register(T_INT);
3668     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3669     LIR_Opr zero = LIR_OprFact::intConst(0);
3670     __ cmove(cond,
3671         (left_bci < bci) ? plus_one : zero,
3672         (right_bci < bci) ? plus_one : zero,
3673         step, left->type());
3674     increment_backedge_counter(info, step, bci);
3675   }
3676 }
3677 
3678 
3679 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3680   int freq_log = 0;
3681   int level = compilation()->env()->comp_level();
3682   if (level == CompLevel_limited_profile) {
3683     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3684   } else if (level == CompLevel_full_profile) {
3685     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3686   } else {
3687     ShouldNotReachHere();
3688   }
3689   // Increment the appropriate invocation/backedge counter and notify the runtime.
3690   double scale;
3691   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3692     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3693   }
3694   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3695 }
3696 
3697 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3698   ciMethod* method = info->scope()->method();
3699   MethodCounters* mc_adr = method->ensure_method_counters();
3700   if (mc_adr != NULL) {
3701     LIR_Opr mc = new_pointer_register();
3702     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3703     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3704     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3705     LIR_Opr result = new_register(T_INT);
3706     __ load(counter, result);
3707     __ sub(result, LIR_OprFact::intConst(1), result);
3708     __ store(result, counter);
3709     // DeoptimizeStub will reexecute from the current state in code info.
3710     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3711                                          Deoptimization::Action_make_not_entrant);
3712     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3713     __ branch(lir_cond_lessEqual, T_INT, deopt);
3714   }
3715 }
3716 
3717 
3718 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3719                                                 ciMethod *method, LIR_Opr step, int frequency,
3720                                                 int bci, bool backedge, bool notify) {
3721   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3722   int level = _compilation->env()->comp_level();
3723   assert(level > CompLevel_simple, "Shouldn't be here");
3724 
3725   int offset = -1;
3726   LIR_Opr counter_holder = NULL;
3727   if (level == CompLevel_limited_profile) {
3728     MethodCounters* counters_adr = method->ensure_method_counters();
3729     if (counters_adr == NULL) {
3730       bailout("method counters allocation failed");
3731       return;
3732     }
3733     counter_holder = new_pointer_register();
3734     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3735     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3736                                  MethodCounters::invocation_counter_offset());
3737   } else if (level == CompLevel_full_profile) {
3738     counter_holder = new_register(T_METADATA);
3739     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3740                                  MethodData::invocation_counter_offset());
3741     ciMethodData* md = method->method_data_or_null();
3742     assert(md != NULL, "Sanity");
3743     __ metadata2reg(md->constant_encoding(), counter_holder);
3744   } else {
3745     ShouldNotReachHere();
3746   }
3747   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3748   LIR_Opr result = new_register(T_INT);
3749   __ load(counter, result);
3750   __ add(result, step, result);
3751   __ store(result, counter);
3752   if (notify && (!backedge || UseOnStackReplacement)) {
3753     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3754     // The bci for info can point to cmp for if's we want the if bci
3755     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3756     int freq = frequency << InvocationCounter::count_shift;
3757     if (freq == 0) {
3758       if (!step->is_constant()) {
3759         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3760         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3761       } else {
3762         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3763       }
3764     } else {
3765       LIR_Opr mask = load_immediate(freq, T_INT);
3766       if (!step->is_constant()) {
3767         // If step is 0, make sure the overflow check below always fails
3768         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3769         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3770       }
3771       __ logical_and(result, mask, result);
3772       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3773       __ branch(lir_cond_equal, T_INT, overflow);
3774     }
3775     __ branch_destination(overflow->continuation());
3776   }
3777 }
3778 
3779 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3780   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3781   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3782 
3783   if (x->pass_thread()) {
3784     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3785     args->append(getThreadPointer());
3786   }
3787 
3788   for (int i = 0; i < x->number_of_arguments(); i++) {
3789     Value a = x->argument_at(i);
3790     LIRItem* item = new LIRItem(a, this);
3791     item->load_item();
3792     args->append(item->result());
3793     signature->append(as_BasicType(a->type()));
3794   }
3795 
3796   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3797   if (x->type() == voidType) {
3798     set_no_result(x);
3799   } else {
3800     __ move(result, rlock_result(x));
3801   }
3802 }
3803 
3804 #ifdef ASSERT
3805 void LIRGenerator::do_Assert(Assert *x) {
3806   ValueTag tag = x->x()->type()->tag();
3807   If::Condition cond = x->cond();
3808 
3809   LIRItem xitem(x->x(), this);
3810   LIRItem yitem(x->y(), this);
3811   LIRItem* xin = &xitem;
3812   LIRItem* yin = &yitem;
3813 
3814   assert(tag == intTag, "Only integer assertions are valid!");
3815 
3816   xin->load_item();
3817   yin->dont_load_item();
3818 
3819   set_no_result(x);
3820 
3821   LIR_Opr left = xin->result();
3822   LIR_Opr right = yin->result();
3823 
3824   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3825 }
3826 #endif
3827 
3828 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3829 
3830 
3831   Instruction *a = x->x();
3832   Instruction *b = x->y();
3833   if (!a || StressRangeCheckElimination) {
3834     assert(!b || StressRangeCheckElimination, "B must also be null");
3835 
3836     CodeEmitInfo *info = state_for(x, x->state());
3837     CodeStub* stub = new PredicateFailedStub(info);
3838 
3839     __ jump(stub);
3840   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3841     int a_int = a->type()->as_IntConstant()->value();
3842     int b_int = b->type()->as_IntConstant()->value();
3843 
3844     bool ok = false;
3845 
3846     switch(x->cond()) {
3847       case Instruction::eql: ok = (a_int == b_int); break;
3848       case Instruction::neq: ok = (a_int != b_int); break;
3849       case Instruction::lss: ok = (a_int < b_int); break;
3850       case Instruction::leq: ok = (a_int <= b_int); break;
3851       case Instruction::gtr: ok = (a_int > b_int); break;
3852       case Instruction::geq: ok = (a_int >= b_int); break;
3853       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3854       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3855       default: ShouldNotReachHere();
3856     }
3857 
3858     if (ok) {
3859 
3860       CodeEmitInfo *info = state_for(x, x->state());
3861       CodeStub* stub = new PredicateFailedStub(info);
3862 
3863       __ jump(stub);
3864     }
3865   } else {
3866 
3867     ValueTag tag = x->x()->type()->tag();
3868     If::Condition cond = x->cond();
3869     LIRItem xitem(x->x(), this);
3870     LIRItem yitem(x->y(), this);
3871     LIRItem* xin = &xitem;
3872     LIRItem* yin = &yitem;
3873 
3874     assert(tag == intTag, "Only integer deoptimizations are valid!");
3875 
3876     xin->load_item();
3877     yin->dont_load_item();
3878     set_no_result(x);
3879 
3880     LIR_Opr left = xin->result();
3881     LIR_Opr right = yin->result();
3882 
3883     CodeEmitInfo *info = state_for(x, x->state());
3884     CodeStub* stub = new PredicateFailedStub(info);
3885 
3886     __ cmp(lir_cond(cond), left, right);
3887     __ branch(lir_cond(cond), right->type(), stub);
3888   }
3889 }
3890 
3891 
3892 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3893   LIRItemList args(1);
3894   LIRItem value(arg1, this);
3895   args.append(&value);
3896   BasicTypeList signature;
3897   signature.append(as_BasicType(arg1->type()));
3898 
3899   return call_runtime(&signature, &args, entry, result_type, info);
3900 }
3901 
3902 
3903 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3904   LIRItemList args(2);
3905   LIRItem value1(arg1, this);
3906   LIRItem value2(arg2, this);
3907   args.append(&value1);
3908   args.append(&value2);
3909   BasicTypeList signature;
3910   signature.append(as_BasicType(arg1->type()));
3911   signature.append(as_BasicType(arg2->type()));
3912 
3913   return call_runtime(&signature, &args, entry, result_type, info);
3914 }
3915 
3916 
3917 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3918                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3919   // get a result register
3920   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3921   LIR_Opr result = LIR_OprFact::illegalOpr;
3922   if (result_type->tag() != voidTag) {
3923     result = new_register(result_type);
3924     phys_reg = result_register_for(result_type);
3925   }
3926 
3927   // move the arguments into the correct location
3928   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3929   assert(cc->length() == args->length(), "argument mismatch");
3930   for (int i = 0; i < args->length(); i++) {
3931     LIR_Opr arg = args->at(i);
3932     LIR_Opr loc = cc->at(i);
3933     if (loc->is_register()) {
3934       __ move(arg, loc);
3935     } else {
3936       LIR_Address* addr = loc->as_address_ptr();
3937 //           if (!can_store_as_constant(arg)) {
3938 //             LIR_Opr tmp = new_register(arg->type());
3939 //             __ move(arg, tmp);
3940 //             arg = tmp;
3941 //           }
3942       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3943         __ unaligned_move(arg, addr);
3944       } else {
3945         __ move(arg, addr);
3946       }
3947     }
3948   }
3949 
3950   if (info) {
3951     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3952   } else {
3953     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3954   }
3955   if (result->is_valid()) {
3956     __ move(phys_reg, result);
3957   }
3958   return result;
3959 }
3960 
3961 
3962 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3963                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3964   // get a result register
3965   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3966   LIR_Opr result = LIR_OprFact::illegalOpr;
3967   if (result_type->tag() != voidTag) {
3968     result = new_register(result_type);
3969     phys_reg = result_register_for(result_type);
3970   }
3971 
3972   // move the arguments into the correct location
3973   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3974 
3975   assert(cc->length() == args->length(), "argument mismatch");
3976   for (int i = 0; i < args->length(); i++) {
3977     LIRItem* arg = args->at(i);
3978     LIR_Opr loc = cc->at(i);
3979     if (loc->is_register()) {
3980       arg->load_item_force(loc);
3981     } else {
3982       LIR_Address* addr = loc->as_address_ptr();
3983       arg->load_for_store(addr->type());
3984       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3985         __ unaligned_move(arg->result(), addr);
3986       } else {
3987         __ move(arg->result(), addr);
3988       }
3989     }
3990   }
3991 
3992   if (info) {
3993     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3994   } else {
3995     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3996   }
3997   if (result->is_valid()) {
3998     __ move(phys_reg, result);
3999   }
4000   return result;
4001 }
4002 
4003 void LIRGenerator::do_MemBar(MemBar* x) {
4004   LIR_Code code = x->code();
4005   switch(code) {
4006   case lir_membar_acquire   : __ membar_acquire(); break;
4007   case lir_membar_release   : __ membar_release(); break;
4008   case lir_membar           : __ membar(); break;
4009   case lir_membar_loadload  : __ membar_loadload(); break;
4010   case lir_membar_storestore: __ membar_storestore(); break;
4011   case lir_membar_loadstore : __ membar_loadstore(); break;
4012   case lir_membar_storeload : __ membar_storeload(); break;
4013   default                   : ShouldNotReachHere(); break;
4014   }
4015 }
4016 
4017 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
4018   LIR_Opr value_fixed = rlock_byte(T_BYTE);
4019   if (TwoOperandLIRForm) {
4020     __ move(value, value_fixed);
4021     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
4022   } else {
4023     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
4024   }
4025   LIR_Opr klass = new_register(T_METADATA);
4026   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
4027   null_check_info = NULL;
4028   LIR_Opr layout = new_register(T_INT);
4029   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
4030   int diffbit = Klass::layout_helper_boolean_diffbit();
4031   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
4032   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
4033   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
4034   value = value_fixed;
4035   return value;
4036 }
4037 
4038 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
4039   if (x->check_boolean()) {
4040     value = mask_boolean(array, value, null_check_info);
4041   }
4042   return value;
4043 }