1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_IR.hpp"
  27 #include "c1/c1_Instruction.hpp"
  28 #include "c1/c1_InstructionPrinter.hpp"
  29 #include "c1/c1_ValueStack.hpp"
  30 #include "ci/ciObjArrayKlass.hpp"
  31 #include "ci/ciTypeArrayKlass.hpp"
  32 #include "ci/ciValueArrayKlass.hpp"
  33 #include "ci/ciValueKlass.hpp"
  34 
  35 
  36 // Implementation of Instruction
  37 
  38 
  39 int Instruction::dominator_depth() {
  40   int result = -1;
  41   if (block()) {
  42     result = block()->dominator_depth();
  43   }
  44   assert(result != -1 || this->as_Local(), "Only locals have dominator depth -1");
  45   return result;
  46 }
  47 
  48 Instruction::Condition Instruction::mirror(Condition cond) {
  49   switch (cond) {
  50     case eql: return eql;
  51     case neq: return neq;
  52     case lss: return gtr;
  53     case leq: return geq;
  54     case gtr: return lss;
  55     case geq: return leq;
  56     case aeq: return beq;
  57     case beq: return aeq;
  58   }
  59   ShouldNotReachHere();
  60   return eql;
  61 }
  62 
  63 
  64 Instruction::Condition Instruction::negate(Condition cond) {
  65   switch (cond) {
  66     case eql: return neq;
  67     case neq: return eql;
  68     case lss: return geq;
  69     case leq: return gtr;
  70     case gtr: return leq;
  71     case geq: return lss;
  72     case aeq: assert(false, "Above equal cannot be negated");
  73     case beq: assert(false, "Below equal cannot be negated");
  74   }
  75   ShouldNotReachHere();
  76   return eql;
  77 }
  78 
  79 void Instruction::update_exception_state(ValueStack* state) {
  80   if (state != NULL && (state->kind() == ValueStack::EmptyExceptionState || state->kind() == ValueStack::ExceptionState)) {
  81     assert(state->kind() == ValueStack::EmptyExceptionState || Compilation::current()->env()->should_retain_local_variables(), "unexpected state kind");
  82     _exception_state = state;
  83   } else {
  84     _exception_state = NULL;
  85   }
  86 }
  87 
  88 // Prev without need to have BlockBegin
  89 Instruction* Instruction::prev() {
  90   Instruction* p = NULL;
  91   Instruction* q = block();
  92   while (q != this) {
  93     assert(q != NULL, "this is not in the block's instruction list");
  94     p = q; q = q->next();
  95   }
  96   return p;
  97 }
  98 
  99 
 100 void Instruction::state_values_do(ValueVisitor* f) {
 101   if (state_before() != NULL) {
 102     state_before()->values_do(f);
 103   }
 104   if (exception_state() != NULL){
 105     exception_state()->values_do(f);
 106   }
 107 }
 108 
 109 ciType* Instruction::exact_type() const {
 110   ciType* t =  declared_type();
 111   if (t != NULL && t->is_klass()) {
 112     return t->as_klass()->exact_klass();
 113   }
 114   return NULL;
 115 }
 116 
 117 bool Instruction::is_flattened_array() const {
 118   if (ValueArrayFlatten) {
 119     ciType* type = declared_type();
 120     if (type != NULL &&
 121         type->is_value_array_klass() &&
 122         type->as_value_array_klass()->element_klass()->as_value_klass()->flatten_array()) {
 123     return true;
 124     }
 125   }
 126 
 127   return false;
 128 }
 129 
 130 #ifndef PRODUCT
 131 void Instruction::check_state(ValueStack* state) {
 132   if (state != NULL) {
 133     state->verify();
 134   }
 135 }
 136 
 137 
 138 void Instruction::print() {
 139   InstructionPrinter ip;
 140   print(ip);
 141 }
 142 
 143 
 144 void Instruction::print_line() {
 145   InstructionPrinter ip;
 146   ip.print_line(this);
 147 }
 148 
 149 
 150 void Instruction::print(InstructionPrinter& ip) {
 151   ip.print_head();
 152   ip.print_line(this);
 153   tty->cr();
 154 }
 155 #endif // PRODUCT
 156 
 157 
 158 // perform constant and interval tests on index value
 159 bool AccessIndexed::compute_needs_range_check() {
 160   if (length()) {
 161     Constant* clength = length()->as_Constant();
 162     Constant* cindex = index()->as_Constant();
 163     if (clength && cindex) {
 164       IntConstant* l = clength->type()->as_IntConstant();
 165       IntConstant* i = cindex->type()->as_IntConstant();
 166       if (l && i && i->value() < l->value() && i->value() >= 0) {
 167         return false;
 168       }
 169     }
 170   }
 171 
 172   if (!this->check_flag(NeedsRangeCheckFlag)) {
 173     return false;
 174   }
 175 
 176   return true;
 177 }
 178 
 179 
 180 ciType* Constant::exact_type() const {
 181   if (type()->is_object() && type()->as_ObjectType()->is_loaded()) {
 182     return type()->as_ObjectType()->exact_type();
 183   }
 184   return NULL;
 185 }
 186 
 187 ciType* LoadIndexed::exact_type() const {
 188   ciType* array_type = array()->exact_type();
 189   if (array_type != NULL) {
 190     assert(array_type->is_array_klass(), "what else?");
 191     ciArrayKlass* ak = (ciArrayKlass*)array_type;
 192 
 193     if (ak->element_type()->is_instance_klass()) {
 194       ciInstanceKlass* ik = (ciInstanceKlass*)ak->element_type();
 195       if (ik->is_loaded() && ik->is_final()) {
 196         return ik;
 197       }
 198     }
 199   }
 200   return Instruction::exact_type();
 201 }
 202 
 203 
 204 ciType* LoadIndexed::declared_type() const {
 205   ciType* array_type = array()->declared_type();
 206   if (array_type == NULL || !array_type->is_loaded()) {
 207     return NULL;
 208   }
 209   assert(array_type->is_array_klass(), "what else?");
 210   ciArrayKlass* ak = (ciArrayKlass*)array_type;
 211   return ak->element_type();
 212 }
 213 
 214 
 215 ciType* LoadField::declared_type() const {
 216   return field()->type();
 217 }
 218 
 219 
 220 ciType* NewTypeArray::exact_type() const {
 221   return ciTypeArrayKlass::make(elt_type());
 222 }
 223 
 224 ciType* NewObjectArray::exact_type() const {
 225   return ciObjArrayKlass::make(klass());
 226 }
 227 
 228 ciType* NewArray::declared_type() const {
 229   return exact_type();
 230 }
 231 
 232 ciType* NewInstance::exact_type() const {
 233   return klass();
 234 }
 235 
 236 ciType* NewInstance::declared_type() const {
 237   return exact_type();
 238 }
 239 
 240 Value NewValueTypeInstance::depends_on() {
 241   if (_depends_on != this) {
 242     if (_depends_on->as_NewValueTypeInstance() != NULL) {
 243       return _depends_on->as_NewValueTypeInstance()->depends_on();
 244     }
 245   }
 246   return _depends_on;
 247 }
 248 
 249 ciType* NewValueTypeInstance::exact_type() const {
 250   return klass();
 251 }
 252 
 253 ciType* NewValueTypeInstance::declared_type() const {
 254   return exact_type();
 255 }
 256 
 257 ciType* CheckCast::declared_type() const {
 258   return klass();
 259 }
 260 
 261 // Implementation of ArithmeticOp
 262 
 263 bool ArithmeticOp::is_commutative() const {
 264   switch (op()) {
 265     case Bytecodes::_iadd: // fall through
 266     case Bytecodes::_ladd: // fall through
 267     case Bytecodes::_fadd: // fall through
 268     case Bytecodes::_dadd: // fall through
 269     case Bytecodes::_imul: // fall through
 270     case Bytecodes::_lmul: // fall through
 271     case Bytecodes::_fmul: // fall through
 272     case Bytecodes::_dmul: return true;
 273     default              : return false;
 274   }
 275 }
 276 
 277 
 278 bool ArithmeticOp::can_trap() const {
 279   switch (op()) {
 280     case Bytecodes::_idiv: // fall through
 281     case Bytecodes::_ldiv: // fall through
 282     case Bytecodes::_irem: // fall through
 283     case Bytecodes::_lrem: return true;
 284     default              : return false;
 285   }
 286 }
 287 
 288 
 289 // Implementation of LogicOp
 290 
 291 bool LogicOp::is_commutative() const {
 292 #ifdef ASSERT
 293   switch (op()) {
 294     case Bytecodes::_iand: // fall through
 295     case Bytecodes::_land: // fall through
 296     case Bytecodes::_ior : // fall through
 297     case Bytecodes::_lor : // fall through
 298     case Bytecodes::_ixor: // fall through
 299     case Bytecodes::_lxor: break;
 300     default              : ShouldNotReachHere(); break;
 301   }
 302 #endif
 303   // all LogicOps are commutative
 304   return true;
 305 }
 306 
 307 
 308 // Implementation of IfOp
 309 
 310 bool IfOp::is_commutative() const {
 311   return cond() == eql || cond() == neq;
 312 }
 313 
 314 
 315 // Implementation of StateSplit
 316 
 317 void StateSplit::substitute(BlockList& list, BlockBegin* old_block, BlockBegin* new_block) {
 318   NOT_PRODUCT(bool assigned = false;)
 319   for (int i = 0; i < list.length(); i++) {
 320     BlockBegin** b = list.adr_at(i);
 321     if (*b == old_block) {
 322       *b = new_block;
 323       NOT_PRODUCT(assigned = true;)
 324     }
 325   }
 326   assert(assigned == true, "should have assigned at least once");
 327 }
 328 
 329 
 330 IRScope* StateSplit::scope() const {
 331   return _state->scope();
 332 }
 333 
 334 
 335 void StateSplit::state_values_do(ValueVisitor* f) {
 336   Instruction::state_values_do(f);
 337   if (state() != NULL) state()->values_do(f);
 338 }
 339 
 340 
 341 void BlockBegin::state_values_do(ValueVisitor* f) {
 342   StateSplit::state_values_do(f);
 343 
 344   if (is_set(BlockBegin::exception_entry_flag)) {
 345     for (int i = 0; i < number_of_exception_states(); i++) {
 346       exception_state_at(i)->values_do(f);
 347     }
 348   }
 349 }
 350 
 351 
 352 // Implementation of Invoke
 353 
 354 
 355 Invoke::Invoke(Bytecodes::Code code, ValueType* result_type, Value recv, Values* args,
 356                int vtable_index, ciMethod* target, ValueStack* state_before)
 357   : StateSplit(result_type, state_before)
 358   , _code(code)
 359   , _recv(recv)
 360   , _args(args)
 361   , _vtable_index(vtable_index)
 362   , _target(target)
 363 {
 364   set_flag(TargetIsLoadedFlag,   target->is_loaded());
 365   set_flag(TargetIsFinalFlag,    target_is_loaded() && target->is_final_method());
 366   set_flag(TargetIsStrictfpFlag, target_is_loaded() && target->is_strict());
 367 
 368   assert(args != NULL, "args must exist");
 369 #ifdef ASSERT
 370   AssertValues assert_value;
 371   values_do(&assert_value);
 372 #endif
 373 
 374   // provide an initial guess of signature size.
 375   _signature = new BasicTypeList(number_of_arguments() + (has_receiver() ? 1 : 0));
 376   if (has_receiver()) {
 377     _signature->append(as_BasicType(receiver()->type()));
 378   }
 379   for (int i = 0; i < number_of_arguments(); i++) {
 380     ValueType* t = argument_at(i)->type();
 381     BasicType bt = as_BasicType(t);
 382     _signature->append(bt);
 383   }
 384 }
 385 
 386 
 387 void Invoke::state_values_do(ValueVisitor* f) {
 388   StateSplit::state_values_do(f);
 389   if (state_before() != NULL) state_before()->values_do(f);
 390   if (state()        != NULL) state()->values_do(f);
 391 }
 392 
 393 ciType* Invoke::declared_type() const {
 394   ciSignature* declared_signature = state()->scope()->method()->get_declared_signature_at_bci(state()->bci());
 395   ciType *t = declared_signature->return_type();
 396   assert(t->basic_type() != T_VOID, "need return value of void method?");
 397   return t;
 398 }
 399 
 400 // Implementation of Contant
 401 intx Constant::hash() const {
 402   if (state_before() == NULL) {
 403     switch (type()->tag()) {
 404     case intTag:
 405       return HASH2(name(), type()->as_IntConstant()->value());
 406     case addressTag:
 407       return HASH2(name(), type()->as_AddressConstant()->value());
 408     case longTag:
 409       {
 410         jlong temp = type()->as_LongConstant()->value();
 411         return HASH3(name(), high(temp), low(temp));
 412       }
 413     case floatTag:
 414       return HASH2(name(), jint_cast(type()->as_FloatConstant()->value()));
 415     case doubleTag:
 416       {
 417         jlong temp = jlong_cast(type()->as_DoubleConstant()->value());
 418         return HASH3(name(), high(temp), low(temp));
 419       }
 420     case objectTag:
 421       assert(type()->as_ObjectType()->is_loaded(), "can't handle unloaded values");
 422       return HASH2(name(), type()->as_ObjectType()->constant_value());
 423     case metaDataTag:
 424       assert(type()->as_MetadataType()->is_loaded(), "can't handle unloaded values");
 425       return HASH2(name(), type()->as_MetadataType()->constant_value());
 426     default:
 427       ShouldNotReachHere();
 428     }
 429   }
 430   return 0;
 431 }
 432 
 433 bool Constant::is_equal(Value v) const {
 434   if (v->as_Constant() == NULL) return false;
 435 
 436   switch (type()->tag()) {
 437     case intTag:
 438       {
 439         IntConstant* t1 =    type()->as_IntConstant();
 440         IntConstant* t2 = v->type()->as_IntConstant();
 441         return (t1 != NULL && t2 != NULL &&
 442                 t1->value() == t2->value());
 443       }
 444     case longTag:
 445       {
 446         LongConstant* t1 =    type()->as_LongConstant();
 447         LongConstant* t2 = v->type()->as_LongConstant();
 448         return (t1 != NULL && t2 != NULL &&
 449                 t1->value() == t2->value());
 450       }
 451     case floatTag:
 452       {
 453         FloatConstant* t1 =    type()->as_FloatConstant();
 454         FloatConstant* t2 = v->type()->as_FloatConstant();
 455         return (t1 != NULL && t2 != NULL &&
 456                 jint_cast(t1->value()) == jint_cast(t2->value()));
 457       }
 458     case doubleTag:
 459       {
 460         DoubleConstant* t1 =    type()->as_DoubleConstant();
 461         DoubleConstant* t2 = v->type()->as_DoubleConstant();
 462         return (t1 != NULL && t2 != NULL &&
 463                 jlong_cast(t1->value()) == jlong_cast(t2->value()));
 464       }
 465     case objectTag:
 466       {
 467         ObjectType* t1 =    type()->as_ObjectType();
 468         ObjectType* t2 = v->type()->as_ObjectType();
 469         return (t1 != NULL && t2 != NULL &&
 470                 t1->is_loaded() && t2->is_loaded() &&
 471                 t1->constant_value() == t2->constant_value());
 472       }
 473     case metaDataTag:
 474       {
 475         MetadataType* t1 =    type()->as_MetadataType();
 476         MetadataType* t2 = v->type()->as_MetadataType();
 477         return (t1 != NULL && t2 != NULL &&
 478                 t1->is_loaded() && t2->is_loaded() &&
 479                 t1->constant_value() == t2->constant_value());
 480       }
 481     default:
 482       return false;
 483   }
 484 }
 485 
 486 Constant::CompareResult Constant::compare(Instruction::Condition cond, Value right) const {
 487   Constant* rc = right->as_Constant();
 488   // other is not a constant
 489   if (rc == NULL) return not_comparable;
 490 
 491   ValueType* lt = type();
 492   ValueType* rt = rc->type();
 493   // different types
 494   if (lt->base() != rt->base()) return not_comparable;
 495   switch (lt->tag()) {
 496   case intTag: {
 497     int x = lt->as_IntConstant()->value();
 498     int y = rt->as_IntConstant()->value();
 499     switch (cond) {
 500     case If::eql: return x == y ? cond_true : cond_false;
 501     case If::neq: return x != y ? cond_true : cond_false;
 502     case If::lss: return x <  y ? cond_true : cond_false;
 503     case If::leq: return x <= y ? cond_true : cond_false;
 504     case If::gtr: return x >  y ? cond_true : cond_false;
 505     case If::geq: return x >= y ? cond_true : cond_false;
 506     default     : break;
 507     }
 508     break;
 509   }
 510   case longTag: {
 511     jlong x = lt->as_LongConstant()->value();
 512     jlong y = rt->as_LongConstant()->value();
 513     switch (cond) {
 514     case If::eql: return x == y ? cond_true : cond_false;
 515     case If::neq: return x != y ? cond_true : cond_false;
 516     case If::lss: return x <  y ? cond_true : cond_false;
 517     case If::leq: return x <= y ? cond_true : cond_false;
 518     case If::gtr: return x >  y ? cond_true : cond_false;
 519     case If::geq: return x >= y ? cond_true : cond_false;
 520     default     : break;
 521     }
 522     break;
 523   }
 524   case objectTag: {
 525     ciObject* xvalue = lt->as_ObjectType()->constant_value();
 526     ciObject* yvalue = rt->as_ObjectType()->constant_value();
 527     assert(xvalue != NULL && yvalue != NULL, "not constants");
 528     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 529       switch (cond) {
 530       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 531       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 532       default     : break;
 533       }
 534     }
 535     break;
 536   }
 537   case metaDataTag: {
 538     ciMetadata* xvalue = lt->as_MetadataType()->constant_value();
 539     ciMetadata* yvalue = rt->as_MetadataType()->constant_value();
 540     assert(xvalue != NULL && yvalue != NULL, "not constants");
 541     if (xvalue->is_loaded() && yvalue->is_loaded()) {
 542       switch (cond) {
 543       case If::eql: return xvalue == yvalue ? cond_true : cond_false;
 544       case If::neq: return xvalue != yvalue ? cond_true : cond_false;
 545       default     : break;
 546       }
 547     }
 548     break;
 549   }
 550   default:
 551     break;
 552   }
 553   return not_comparable;
 554 }
 555 
 556 
 557 // Implementation of BlockBegin
 558 
 559 void BlockBegin::set_end(BlockEnd* end) {
 560   assert(end != NULL, "should not reset block end to NULL");
 561   if (end == _end) {
 562     return;
 563   }
 564   clear_end();
 565 
 566   // Set the new end
 567   _end = end;
 568 
 569   _successors.clear();
 570   // Now reset successors list based on BlockEnd
 571   for (int i = 0; i < end->number_of_sux(); i++) {
 572     BlockBegin* sux = end->sux_at(i);
 573     _successors.append(sux);
 574     sux->_predecessors.append(this);
 575   }
 576   _end->set_begin(this);
 577 }
 578 
 579 
 580 void BlockBegin::clear_end() {
 581   // Must make the predecessors/successors match up with the
 582   // BlockEnd's notion.
 583   if (_end != NULL) {
 584     // disconnect from the old end
 585     _end->set_begin(NULL);
 586 
 587     // disconnect this block from it's current successors
 588     for (int i = 0; i < _successors.length(); i++) {
 589       _successors.at(i)->remove_predecessor(this);
 590     }
 591     _end = NULL;
 592   }
 593 }
 594 
 595 
 596 void BlockBegin::disconnect_edge(BlockBegin* from, BlockBegin* to) {
 597   // disconnect any edges between from and to
 598 #ifndef PRODUCT
 599   if (PrintIR && Verbose) {
 600     tty->print_cr("Disconnected edge B%d -> B%d", from->block_id(), to->block_id());
 601   }
 602 #endif
 603   for (int s = 0; s < from->number_of_sux();) {
 604     BlockBegin* sux = from->sux_at(s);
 605     if (sux == to) {
 606       int index = sux->_predecessors.find(from);
 607       if (index >= 0) {
 608         sux->_predecessors.remove_at(index);
 609       }
 610       from->_successors.remove_at(s);
 611     } else {
 612       s++;
 613     }
 614   }
 615 }
 616 
 617 
 618 void BlockBegin::disconnect_from_graph() {
 619   // disconnect this block from all other blocks
 620   for (int p = 0; p < number_of_preds(); p++) {
 621     pred_at(p)->remove_successor(this);
 622   }
 623   for (int s = 0; s < number_of_sux(); s++) {
 624     sux_at(s)->remove_predecessor(this);
 625   }
 626 }
 627 
 628 void BlockBegin::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
 629   // modify predecessors before substituting successors
 630   for (int i = 0; i < number_of_sux(); i++) {
 631     if (sux_at(i) == old_sux) {
 632       // remove old predecessor before adding new predecessor
 633       // otherwise there is a dead predecessor in the list
 634       new_sux->remove_predecessor(old_sux);
 635       new_sux->add_predecessor(this);
 636     }
 637   }
 638   old_sux->remove_predecessor(this);
 639   end()->substitute_sux(old_sux, new_sux);
 640 }
 641 
 642 
 643 
 644 // In general it is not possible to calculate a value for the field "depth_first_number"
 645 // of the inserted block, without recomputing the values of the other blocks
 646 // in the CFG. Therefore the value of "depth_first_number" in BlockBegin becomes meaningless.
 647 BlockBegin* BlockBegin::insert_block_between(BlockBegin* sux) {
 648   int bci = sux->bci();
 649   // critical edge splitting may introduce a goto after a if and array
 650   // bound check elimination may insert a predicate between the if and
 651   // goto. The bci of the goto can't be the one of the if otherwise
 652   // the state and bci are inconsistent and a deoptimization triggered
 653   // by the predicate would lead to incorrect execution/a crash.
 654   BlockBegin* new_sux = new BlockBegin(bci);
 655 
 656   // mark this block (special treatment when block order is computed)
 657   new_sux->set(critical_edge_split_flag);
 658 
 659   // This goto is not a safepoint.
 660   Goto* e = new Goto(sux, false);
 661   new_sux->set_next(e, bci);
 662   new_sux->set_end(e);
 663   // setup states
 664   ValueStack* s = end()->state();
 665   new_sux->set_state(s->copy(s->kind(), bci));
 666   e->set_state(s->copy(s->kind(), bci));
 667   assert(new_sux->state()->locals_size() == s->locals_size(), "local size mismatch!");
 668   assert(new_sux->state()->stack_size() == s->stack_size(), "stack size mismatch!");
 669   assert(new_sux->state()->locks_size() == s->locks_size(), "locks size mismatch!");
 670 
 671   // link predecessor to new block
 672   end()->substitute_sux(sux, new_sux);
 673 
 674   // The ordering needs to be the same, so remove the link that the
 675   // set_end call above added and substitute the new_sux for this
 676   // block.
 677   sux->remove_predecessor(new_sux);
 678 
 679   // the successor could be the target of a switch so it might have
 680   // multiple copies of this predecessor, so substitute the new_sux
 681   // for the first and delete the rest.
 682   bool assigned = false;
 683   BlockList& list = sux->_predecessors;
 684   for (int i = 0; i < list.length(); i++) {
 685     BlockBegin** b = list.adr_at(i);
 686     if (*b == this) {
 687       if (assigned) {
 688         list.remove_at(i);
 689         // reprocess this index
 690         i--;
 691       } else {
 692         assigned = true;
 693         *b = new_sux;
 694       }
 695       // link the new block back to it's predecessors.
 696       new_sux->add_predecessor(this);
 697     }
 698   }
 699   assert(assigned == true, "should have assigned at least once");
 700   return new_sux;
 701 }
 702 
 703 
 704 void BlockBegin::remove_successor(BlockBegin* pred) {
 705   int idx;
 706   while ((idx = _successors.find(pred)) >= 0) {
 707     _successors.remove_at(idx);
 708   }
 709 }
 710 
 711 
 712 void BlockBegin::add_predecessor(BlockBegin* pred) {
 713   _predecessors.append(pred);
 714 }
 715 
 716 
 717 void BlockBegin::remove_predecessor(BlockBegin* pred) {
 718   int idx;
 719   while ((idx = _predecessors.find(pred)) >= 0) {
 720     _predecessors.remove_at(idx);
 721   }
 722 }
 723 
 724 
 725 void BlockBegin::add_exception_handler(BlockBegin* b) {
 726   assert(b != NULL && (b->is_set(exception_entry_flag)), "exception handler must exist");
 727   // add only if not in the list already
 728   if (!_exception_handlers.contains(b)) _exception_handlers.append(b);
 729 }
 730 
 731 int BlockBegin::add_exception_state(ValueStack* state) {
 732   assert(is_set(exception_entry_flag), "only for xhandlers");
 733   if (_exception_states == NULL) {
 734     _exception_states = new ValueStackStack(4);
 735   }
 736   _exception_states->append(state);
 737   return _exception_states->length() - 1;
 738 }
 739 
 740 
 741 void BlockBegin::iterate_preorder(boolArray& mark, BlockClosure* closure) {
 742   if (!mark.at(block_id())) {
 743     mark.at_put(block_id(), true);
 744     closure->block_do(this);
 745     BlockEnd* e = end(); // must do this after block_do because block_do may change it!
 746     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_preorder(mark, closure); }
 747     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_preorder(mark, closure); }
 748   }
 749 }
 750 
 751 
 752 void BlockBegin::iterate_postorder(boolArray& mark, BlockClosure* closure) {
 753   if (!mark.at(block_id())) {
 754     mark.at_put(block_id(), true);
 755     BlockEnd* e = end();
 756     { for (int i = number_of_exception_handlers() - 1; i >= 0; i--) exception_handler_at(i)->iterate_postorder(mark, closure); }
 757     { for (int i = e->number_of_sux            () - 1; i >= 0; i--) e->sux_at           (i)->iterate_postorder(mark, closure); }
 758     closure->block_do(this);
 759   }
 760 }
 761 
 762 
 763 void BlockBegin::iterate_preorder(BlockClosure* closure) {
 764   int mark_len = number_of_blocks();
 765   boolArray mark(mark_len, mark_len, false);
 766   iterate_preorder(mark, closure);
 767 }
 768 
 769 
 770 void BlockBegin::iterate_postorder(BlockClosure* closure) {
 771   int mark_len = number_of_blocks();
 772   boolArray mark(mark_len, mark_len, false);
 773   iterate_postorder(mark, closure);
 774 }
 775 
 776 
 777 void BlockBegin::block_values_do(ValueVisitor* f) {
 778   for (Instruction* n = this; n != NULL; n = n->next()) n->values_do(f);
 779 }
 780 
 781 
 782 #ifndef PRODUCT
 783    #define TRACE_PHI(code) if (PrintPhiFunctions) { code; }
 784 #else
 785    #define TRACE_PHI(coce)
 786 #endif
 787 
 788 
 789 bool BlockBegin::try_merge(ValueStack* new_state) {
 790   TRACE_PHI(tty->print_cr("********** try_merge for block B%d", block_id()));
 791 
 792   // local variables used for state iteration
 793   int index;
 794   Value new_value, existing_value;
 795 
 796   ValueStack* existing_state = state();
 797   if (existing_state == NULL) {
 798     TRACE_PHI(tty->print_cr("first call of try_merge for this block"));
 799 
 800     if (is_set(BlockBegin::was_visited_flag)) {
 801       // this actually happens for complicated jsr/ret structures
 802       return false; // BAILOUT in caller
 803     }
 804 
 805     // copy state because it is altered
 806     new_state = new_state->copy(ValueStack::BlockBeginState, bci());
 807 
 808     // Use method liveness to invalidate dead locals
 809     MethodLivenessResult liveness = new_state->scope()->method()->liveness_at_bci(bci());
 810     if (liveness.is_valid()) {
 811       assert((int)liveness.size() == new_state->locals_size(), "error in use of liveness");
 812 
 813       for_each_local_value(new_state, index, new_value) {
 814         if (!liveness.at(index) || new_value->type()->is_illegal()) {
 815           new_state->invalidate_local(index);
 816           TRACE_PHI(tty->print_cr("invalidating dead local %d", index));
 817         }
 818       }
 819     }
 820 
 821     if (is_set(BlockBegin::parser_loop_header_flag)) {
 822       TRACE_PHI(tty->print_cr("loop header block, initializing phi functions"));
 823 
 824       for_each_stack_value(new_state, index, new_value) {
 825         new_state->setup_phi_for_stack(this, index);
 826         TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", new_state->stack_at(index)->type()->tchar(), new_state->stack_at(index)->id(), index));
 827       }
 828 
 829       BitMap& requires_phi_function = new_state->scope()->requires_phi_function();
 830 
 831       for_each_local_value(new_state, index, new_value) {
 832         bool requires_phi = requires_phi_function.at(index) || (new_value->type()->is_double_word() && requires_phi_function.at(index + 1));
 833         if (requires_phi || !SelectivePhiFunctions) {
 834           new_state->setup_phi_for_local(this, index);
 835           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", new_state->local_at(index)->type()->tchar(), new_state->local_at(index)->id(), index));
 836         }
 837       }
 838     }
 839 
 840     // initialize state of block
 841     set_state(new_state);
 842 
 843   } else if (existing_state->is_same(new_state)) {
 844     TRACE_PHI(tty->print_cr("exisiting state found"));
 845 
 846     assert(existing_state->scope() == new_state->scope(), "not matching");
 847     assert(existing_state->locals_size() == new_state->locals_size(), "not matching");
 848     assert(existing_state->stack_size() == new_state->stack_size(), "not matching");
 849 
 850     if (is_set(BlockBegin::was_visited_flag)) {
 851       TRACE_PHI(tty->print_cr("loop header block, phis must be present"));
 852 
 853       if (!is_set(BlockBegin::parser_loop_header_flag)) {
 854         // this actually happens for complicated jsr/ret structures
 855         return false; // BAILOUT in caller
 856       }
 857 
 858       for_each_local_value(existing_state, index, existing_value) {
 859         Value new_value = new_state->local_at(index);
 860         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
 861           // The old code invalidated the phi function here
 862           // Because dead locals are replaced with NULL, this is a very rare case now, so simply bail out
 863           return false; // BAILOUT in caller
 864         }
 865       }
 866 
 867 #ifdef ASSERT
 868       // check that all necessary phi functions are present
 869       for_each_stack_value(existing_state, index, existing_value) {
 870         assert(existing_value->as_Phi() != NULL && existing_value->as_Phi()->block() == this, "phi function required");
 871       }
 872       for_each_local_value(existing_state, index, existing_value) {
 873         assert(existing_value == new_state->local_at(index) || (existing_value->as_Phi() != NULL && existing_value->as_Phi()->as_Phi()->block() == this), "phi function required");
 874       }
 875 #endif
 876 
 877     } else {
 878       TRACE_PHI(tty->print_cr("creating phi functions on demand"));
 879 
 880       // create necessary phi functions for stack
 881       for_each_stack_value(existing_state, index, existing_value) {
 882         Value new_value = new_state->stack_at(index);
 883         Phi* existing_phi = existing_value->as_Phi();
 884 
 885         if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
 886           existing_state->setup_phi_for_stack(this, index);
 887           TRACE_PHI(tty->print_cr("creating phi-function %c%d for stack %d", existing_state->stack_at(index)->type()->tchar(), existing_state->stack_at(index)->id(), index));
 888         }
 889       }
 890 
 891       // create necessary phi functions for locals
 892       for_each_local_value(existing_state, index, existing_value) {
 893         Value new_value = new_state->local_at(index);
 894         Phi* existing_phi = existing_value->as_Phi();
 895 
 896         if (new_value == NULL || new_value->type()->tag() != existing_value->type()->tag()) {
 897           existing_state->invalidate_local(index);
 898           TRACE_PHI(tty->print_cr("invalidating local %d because of type mismatch", index));
 899         } else if (new_value != existing_value && (existing_phi == NULL || existing_phi->block() != this)) {
 900           existing_state->setup_phi_for_local(this, index);
 901           TRACE_PHI(tty->print_cr("creating phi-function %c%d for local %d", existing_state->local_at(index)->type()->tchar(), existing_state->local_at(index)->id(), index));
 902         }
 903       }
 904     }
 905 
 906     assert(existing_state->caller_state() == new_state->caller_state(), "caller states must be equal");
 907 
 908   } else {
 909     assert(false, "stack or locks not matching (invalid bytecodes)");
 910     return false;
 911   }
 912 
 913   TRACE_PHI(tty->print_cr("********** try_merge for block B%d successful", block_id()));
 914 
 915   return true;
 916 }
 917 
 918 
 919 #ifndef PRODUCT
 920 void BlockBegin::print_block() {
 921   InstructionPrinter ip;
 922   print_block(ip, false);
 923 }
 924 
 925 
 926 void BlockBegin::print_block(InstructionPrinter& ip, bool live_only) {
 927   ip.print_instr(this); tty->cr();
 928   ip.print_stack(this->state()); tty->cr();
 929   ip.print_inline_level(this);
 930   ip.print_head();
 931   for (Instruction* n = next(); n != NULL; n = n->next()) {
 932     if (!live_only || n->is_pinned() || n->use_count() > 0) {
 933       ip.print_line(n);
 934     }
 935   }
 936   tty->cr();
 937 }
 938 #endif // PRODUCT
 939 
 940 
 941 // Implementation of BlockList
 942 
 943 void BlockList::iterate_forward (BlockClosure* closure) {
 944   const int l = length();
 945   for (int i = 0; i < l; i++) closure->block_do(at(i));
 946 }
 947 
 948 
 949 void BlockList::iterate_backward(BlockClosure* closure) {
 950   for (int i = length() - 1; i >= 0; i--) closure->block_do(at(i));
 951 }
 952 
 953 
 954 void BlockList::blocks_do(void f(BlockBegin*)) {
 955   for (int i = length() - 1; i >= 0; i--) f(at(i));
 956 }
 957 
 958 
 959 void BlockList::values_do(ValueVisitor* f) {
 960   for (int i = length() - 1; i >= 0; i--) at(i)->block_values_do(f);
 961 }
 962 
 963 
 964 #ifndef PRODUCT
 965 void BlockList::print(bool cfg_only, bool live_only) {
 966   InstructionPrinter ip;
 967   for (int i = 0; i < length(); i++) {
 968     BlockBegin* block = at(i);
 969     if (cfg_only) {
 970       ip.print_instr(block); tty->cr();
 971     } else {
 972       block->print_block(ip, live_only);
 973     }
 974   }
 975 }
 976 #endif // PRODUCT
 977 
 978 
 979 // Implementation of BlockEnd
 980 
 981 void BlockEnd::set_begin(BlockBegin* begin) {
 982   BlockList* sux = NULL;
 983   if (begin != NULL) {
 984     sux = begin->successors();
 985   } else if (this->begin() != NULL) {
 986     // copy our sux list
 987     BlockList* sux = new BlockList(this->begin()->number_of_sux());
 988     for (int i = 0; i < this->begin()->number_of_sux(); i++) {
 989       sux->append(this->begin()->sux_at(i));
 990     }
 991   }
 992   _sux = sux;
 993 }
 994 
 995 
 996 void BlockEnd::substitute_sux(BlockBegin* old_sux, BlockBegin* new_sux) {
 997   substitute(*_sux, old_sux, new_sux);
 998 }
 999 
1000 
1001 // Implementation of Phi
1002 
1003 // Normal phi functions take their operands from the last instruction of the
1004 // predecessor. Special handling is needed for xhanlder entries because there
1005 // the state of arbitrary instructions are needed.
1006 
1007 Value Phi::operand_at(int i) const {
1008   ValueStack* state;
1009   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1010     state = _block->exception_state_at(i);
1011   } else {
1012     state = _block->pred_at(i)->end()->state();
1013   }
1014   assert(state != NULL, "");
1015 
1016   if (is_local()) {
1017     return state->local_at(local_index());
1018   } else {
1019     return state->stack_at(stack_index());
1020   }
1021 }
1022 
1023 
1024 int Phi::operand_count() const {
1025   if (_block->is_set(BlockBegin::exception_entry_flag)) {
1026     return _block->number_of_exception_states();
1027   } else {
1028     return _block->number_of_preds();
1029   }
1030 }
1031 
1032 #ifdef ASSERT
1033 // Constructor of Assert
1034 Assert::Assert(Value x, Condition cond, bool unordered_is_true, Value y) : Instruction(illegalType)
1035   , _x(x)
1036   , _cond(cond)
1037   , _y(y)
1038 {
1039   set_flag(UnorderedIsTrueFlag, unordered_is_true);
1040   assert(x->type()->tag() == y->type()->tag(), "types must match");
1041   pin();
1042 
1043   stringStream strStream;
1044   Compilation::current()->method()->print_name(&strStream);
1045 
1046   stringStream strStream1;
1047   InstructionPrinter ip1(1, &strStream1);
1048   ip1.print_instr(x);
1049 
1050   stringStream strStream2;
1051   InstructionPrinter ip2(1, &strStream2);
1052   ip2.print_instr(y);
1053 
1054   stringStream ss;
1055   ss.print("Assertion %s %s %s in method %s", strStream1.as_string(), ip2.cond_name(cond), strStream2.as_string(), strStream.as_string());
1056 
1057   _message = ss.as_string();
1058 }
1059 #endif
1060 
1061 void RangeCheckPredicate::check_state() {
1062   assert(state()->kind() != ValueStack::EmptyExceptionState && state()->kind() != ValueStack::ExceptionState, "will deopt with empty state");
1063 }
1064 
1065 void ProfileInvoke::state_values_do(ValueVisitor* f) {
1066   if (state() != NULL) state()->values_do(f);
1067 }