1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 #include "utilities/globalDefinitions.hpp"
  32 
  33 class BlockBegin;
  34 class BlockList;
  35 class LIR_Assembler;
  36 class CodeEmitInfo;
  37 class CodeStub;
  38 class CodeStubList;
  39 class ArrayCopyStub;
  40 class LIR_Op;
  41 class ciType;
  42 class ValueType;
  43 class LIR_OpVisitState;
  44 class FpuStackSim;
  45 
  46 //---------------------------------------------------------------------
  47 //                 LIR Operands
  48 //  LIR_OprDesc
  49 //    LIR_OprPtr
  50 //      LIR_Const
  51 //      LIR_Address
  52 //---------------------------------------------------------------------
  53 class LIR_OprDesc;
  54 class LIR_OprPtr;
  55 class LIR_Const;
  56 class LIR_Address;
  57 class LIR_OprVisitor;
  58 
  59 
  60 typedef LIR_OprDesc* LIR_Opr;
  61 typedef int          RegNr;
  62 
  63 typedef GrowableArray<LIR_Opr> LIR_OprList;
  64 typedef GrowableArray<LIR_Op*> LIR_OpArray;
  65 typedef GrowableArray<LIR_Op*> LIR_OpList;
  66 
  67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  68 class LIR_OprPtr: public CompilationResourceObj {
  69  public:
  70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  72 
  73   virtual LIR_Const*  as_constant()              { return NULL; }
  74   virtual LIR_Address* as_address()              { return NULL; }
  75   virtual BasicType type() const                 = 0;
  76   virtual void print_value_on(outputStream* out) const = 0;
  77 };
  78 
  79 
  80 
  81 // LIR constants
  82 class LIR_Const: public LIR_OprPtr {
  83  private:
  84   JavaValue _value;
  85 
  86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  88   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  89 
  90  public:
  91   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  92   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  93   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  94   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  95   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  96   LIR_Const(void* p) {
  97 #ifdef _LP64
  98     assert(sizeof(jlong) >= sizeof(p), "too small");;
  99     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 100 #else
 101     assert(sizeof(jint) >= sizeof(p), "too small");;
 102     _value.set_type(T_INT);     _value.set_jint((jint)p);
 103 #endif
 104   }
 105   LIR_Const(Metadata* m) {
 106     _value.set_type(T_METADATA);
 107 #ifdef _LP64
 108     _value.set_jlong((jlong)m);
 109 #else
 110     _value.set_jint((jint)m);
 111 #endif // _LP64
 112   }
 113 
 114   virtual BasicType type()       const { return _value.get_type(); }
 115   virtual LIR_Const* as_constant()     { return this; }
 116 
 117   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 118   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 119   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 120   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 121   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 122   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 123   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 124 
 125 #ifdef _LP64
 126   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 127   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 128 #else
 129   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 130   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 131 #endif
 132 
 133 
 134   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 135   jint      as_jint_lo_bits() const    {
 136     if (type() == T_DOUBLE) {
 137       return low(jlong_cast(_value.get_jdouble()));
 138     } else {
 139       return as_jint_lo();
 140     }
 141   }
 142   jint      as_jint_hi_bits() const    {
 143     if (type() == T_DOUBLE) {
 144       return high(jlong_cast(_value.get_jdouble()));
 145     } else {
 146       return as_jint_hi();
 147     }
 148   }
 149   jlong      as_jlong_bits() const    {
 150     if (type() == T_DOUBLE) {
 151       return jlong_cast(_value.get_jdouble());
 152     } else {
 153       return as_jlong();
 154     }
 155   }
 156 
 157   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 158 
 159 
 160   bool is_zero_float() {
 161     jfloat f = as_jfloat();
 162     jfloat ok = 0.0f;
 163     return jint_cast(f) == jint_cast(ok);
 164   }
 165 
 166   bool is_one_float() {
 167     jfloat f = as_jfloat();
 168     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 169   }
 170 
 171   bool is_zero_double() {
 172     jdouble d = as_jdouble();
 173     jdouble ok = 0.0;
 174     return jlong_cast(d) == jlong_cast(ok);
 175   }
 176 
 177   bool is_one_double() {
 178     jdouble d = as_jdouble();
 179     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 180   }
 181 };
 182 
 183 
 184 //---------------------LIR Operand descriptor------------------------------------
 185 //
 186 // The class LIR_OprDesc represents a LIR instruction operand;
 187 // it can be a register (ALU/FPU), stack location or a constant;
 188 // Constants and addresses are represented as resource area allocated
 189 // structures (see above).
 190 // Registers and stack locations are inlined into the this pointer
 191 // (see value function).
 192 
 193 class LIR_OprDesc: public CompilationResourceObj {
 194  public:
 195   // value structure:
 196   //     data       opr-type opr-kind
 197   // +--------------+-------+-------+
 198   // [max...........|7 6 5 4|3 2 1 0]
 199   //                               ^
 200   //                         is_pointer bit
 201   //
 202   // lowest bit cleared, means it is a structure pointer
 203   // we need  4 bits to represent types
 204 
 205  private:
 206   friend class LIR_OprFact;
 207 
 208   // Conversion
 209   intptr_t value() const                         { return (intptr_t) this; }
 210 
 211   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 212     return (value() & mask) == masked_value;
 213   }
 214 
 215   enum OprKind {
 216       pointer_value      = 0
 217     , stack_value        = 1
 218     , cpu_register       = 3
 219     , fpu_register       = 5
 220     , illegal_value      = 7
 221   };
 222 
 223   enum OprBits {
 224       pointer_bits   = 1
 225     , kind_bits      = 3
 226     , type_bits      = 4
 227     , size_bits      = 2
 228     , destroys_bits  = 1
 229     , virtual_bits   = 1
 230     , is_xmm_bits    = 1
 231     , last_use_bits  = 1
 232     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 233     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 234                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 235     , data_bits      = BitsPerInt - non_data_bits
 236     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 237   };
 238 
 239   enum OprShift {
 240       kind_shift     = 0
 241     , type_shift     = kind_shift     + kind_bits
 242     , size_shift     = type_shift     + type_bits
 243     , destroys_shift = size_shift     + size_bits
 244     , last_use_shift = destroys_shift + destroys_bits
 245     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 246     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 247     , is_xmm_shift   = virtual_shift + virtual_bits
 248     , data_shift     = is_xmm_shift + is_xmm_bits
 249     , reg1_shift = data_shift
 250     , reg2_shift = data_shift + reg_bits
 251 
 252   };
 253 
 254   enum OprSize {
 255       single_size = 0 << size_shift
 256     , double_size = 1 << size_shift
 257   };
 258 
 259   enum OprMask {
 260       kind_mask      = right_n_bits(kind_bits)
 261     , type_mask      = right_n_bits(type_bits) << type_shift
 262     , size_mask      = right_n_bits(size_bits) << size_shift
 263     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 264     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 265     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 266     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 267     , pointer_mask   = right_n_bits(pointer_bits)
 268     , lower_reg_mask = right_n_bits(reg_bits)
 269     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 270   };
 271 
 272   uintptr_t data() const                         { return value() >> data_shift; }
 273   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 274   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 275   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 276   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 277 
 278   static char type_char(BasicType t);
 279 
 280  public:
 281   enum {
 282     vreg_base = ConcreteRegisterImpl::number_of_registers,
 283     vreg_max = (1 << data_bits) - 1
 284   };
 285 
 286   static inline LIR_Opr illegalOpr();
 287 
 288   enum OprType {
 289       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 290     , int_type      = 1 << type_shift
 291     , long_type     = 2 << type_shift
 292     , object_type   = 3 << type_shift
 293     , address_type  = 4 << type_shift
 294     , float_type    = 5 << type_shift
 295     , double_type   = 6 << type_shift
 296     , metadata_type = 7 << type_shift
 297   };
 298   friend OprType as_OprType(BasicType t);
 299   friend BasicType as_BasicType(OprType t);
 300 
 301   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 302   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 303 
 304   static OprSize size_for(BasicType t) {
 305     switch (t) {
 306       case T_LONG:
 307       case T_DOUBLE:
 308         return double_size;
 309         break;
 310 
 311       case T_FLOAT:
 312       case T_BOOLEAN:
 313       case T_CHAR:
 314       case T_BYTE:
 315       case T_SHORT:
 316       case T_INT:
 317       case T_ADDRESS:
 318       case T_OBJECT:
 319       case T_VALUETYPE:
 320       case T_ARRAY:
 321       case T_METADATA:
 322         return single_size;
 323         break;
 324 
 325       default:
 326         ShouldNotReachHere();
 327         return single_size;
 328       }
 329   }
 330 
 331 
 332   void validate_type() const PRODUCT_RETURN;
 333 
 334   BasicType type() const {
 335     if (is_pointer()) {
 336       return pointer()->type();
 337     }
 338     return as_BasicType(type_field());
 339   }
 340 
 341 
 342   ValueType* value_type() const                  { return as_ValueType(type()); }
 343 
 344   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 345 
 346   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 347   // checks whether types are same
 348   bool is_same_type(LIR_Opr opr) const     {
 349     assert(type_field() != unknown_type &&
 350            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 351     return type_field() == opr->type_field();
 352   }
 353   bool is_same_register(LIR_Opr opr) {
 354     return (is_register() && opr->is_register() &&
 355             kind_field() == opr->kind_field() &&
 356             (value() & no_type_mask) == (opr->value() & no_type_mask));
 357   }
 358 
 359   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 360   bool is_illegal() const      { return kind_field() == illegal_value; }
 361   bool is_valid() const        { return kind_field() != illegal_value; }
 362 
 363   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 364   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 365 
 366   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 367   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 368 
 369   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 370   bool is_oop() const;
 371 
 372   // semantic for fpu- and xmm-registers:
 373   // * is_float and is_double return true for xmm_registers
 374   //   (so is_single_fpu and is_single_xmm are true)
 375   // * So you must always check for is_???_xmm prior to is_???_fpu to
 376   //   distinguish between fpu- and xmm-registers
 377 
 378   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 379   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 380   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 381 
 382   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 383   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 384   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 385   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 386   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 387 
 388   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 389   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 390   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 391   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 392   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 393 
 394   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 395   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 396   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 397 
 398   // fast accessor functions for special bits that do not work for pointers
 399   // (in this functions, the check for is_pointer() is omitted)
 400   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 401   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 402   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 403   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 404   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 405 
 406   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 407   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 408   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 409   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 410 
 411 
 412   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 413   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 414   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 415   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 416   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 417   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 418   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 419   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 420   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 421   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 422   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 423   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 424 
 425   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 426   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 427   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 428 
 429   Register as_register()    const;
 430   Register as_register_lo() const;
 431   Register as_register_hi() const;
 432 
 433   Register as_pointer_register() {
 434 #ifdef _LP64
 435     if (is_double_cpu()) {
 436       assert(as_register_lo() == as_register_hi(), "should be a single register");
 437       return as_register_lo();
 438     }
 439 #endif
 440     return as_register();
 441   }
 442 
 443   FloatRegister as_float_reg   () const;
 444   FloatRegister as_double_reg  () const;
 445 #ifdef X86
 446   XMMRegister as_xmm_float_reg () const;
 447   XMMRegister as_xmm_double_reg() const;
 448   // for compatibility with RInfo
 449   int fpu() const { return lo_reg_half(); }
 450 #endif
 451 
 452   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 453   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 454   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 455   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 456   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 457 
 458   void print() const PRODUCT_RETURN;
 459   void print(outputStream* out) const PRODUCT_RETURN;
 460 };
 461 
 462 
 463 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 464   switch (type) {
 465   case T_INT:      return LIR_OprDesc::int_type;
 466   case T_LONG:     return LIR_OprDesc::long_type;
 467   case T_FLOAT:    return LIR_OprDesc::float_type;
 468   case T_DOUBLE:   return LIR_OprDesc::double_type;
 469   case T_OBJECT:
 470   case T_VALUETYPE:
 471   case T_ARRAY:    return LIR_OprDesc::object_type;
 472   case T_ADDRESS:  return LIR_OprDesc::address_type;
 473   case T_METADATA: return LIR_OprDesc::metadata_type;
 474   case T_ILLEGAL:  // fall through
 475   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 476   }
 477 }
 478 
 479 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 480   switch (t) {
 481   case LIR_OprDesc::int_type:     return T_INT;
 482   case LIR_OprDesc::long_type:    return T_LONG;
 483   case LIR_OprDesc::float_type:   return T_FLOAT;
 484   case LIR_OprDesc::double_type:  return T_DOUBLE;
 485   case LIR_OprDesc::object_type:  return T_OBJECT;
 486   case LIR_OprDesc::address_type: return T_ADDRESS;
 487   case LIR_OprDesc::metadata_type:return T_METADATA;
 488   case LIR_OprDesc::unknown_type: // fall through
 489   default: ShouldNotReachHere();  return T_ILLEGAL;
 490   }
 491 }
 492 
 493 
 494 // LIR_Address
 495 class LIR_Address: public LIR_OprPtr {
 496  friend class LIR_OpVisitState;
 497 
 498  public:
 499   // NOTE: currently these must be the log2 of the scale factor (and
 500   // must also be equivalent to the ScaleFactor enum in
 501   // assembler_i486.hpp)
 502   enum Scale {
 503     times_1  =  0,
 504     times_2  =  1,
 505     times_4  =  2,
 506     times_8  =  3
 507   };
 508 
 509  private:
 510   LIR_Opr   _base;
 511   LIR_Opr   _index;
 512   Scale     _scale;
 513   intx      _disp;
 514   BasicType _type;
 515 
 516  public:
 517   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 518        _base(base)
 519      , _index(index)
 520      , _scale(times_1)
 521      , _disp(0)
 522      , _type(type) { verify(); }
 523 
 524   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 525        _base(base)
 526      , _index(LIR_OprDesc::illegalOpr())
 527      , _scale(times_1)
 528      , _disp(disp)
 529      , _type(type) { verify(); }
 530 
 531   LIR_Address(LIR_Opr base, BasicType type):
 532        _base(base)
 533      , _index(LIR_OprDesc::illegalOpr())
 534      , _scale(times_1)
 535      , _disp(0)
 536      , _type(type) { verify(); }
 537 
 538   LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
 539        _base(base)
 540      , _index(index)
 541      , _scale(times_1)
 542      , _disp(disp)
 543      , _type(type) { verify(); }
 544 
 545   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 546        _base(base)
 547      , _index(index)
 548      , _scale(scale)
 549      , _disp(disp)
 550      , _type(type) { verify(); }
 551 
 552   LIR_Opr base()  const                          { return _base;  }
 553   LIR_Opr index() const                          { return _index; }
 554   Scale   scale() const                          { return _scale; }
 555   intx    disp()  const                          { return _disp;  }
 556 
 557   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 558 
 559   virtual LIR_Address* as_address()              { return this;   }
 560   virtual BasicType type() const                 { return _type; }
 561   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 562 
 563   void verify() const PRODUCT_RETURN;
 564 
 565   static Scale scale(BasicType type);
 566 };
 567 
 568 
 569 // operand factory
 570 class LIR_OprFact: public AllStatic {
 571  public:
 572 
 573   static LIR_Opr illegalOpr;
 574 
 575   static LIR_Opr single_cpu(int reg) {
 576     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 577                                LIR_OprDesc::int_type             |
 578                                LIR_OprDesc::cpu_register         |
 579                                LIR_OprDesc::single_size);
 580   }
 581   static LIR_Opr single_cpu_oop(int reg) {
 582     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 583                                LIR_OprDesc::object_type          |
 584                                LIR_OprDesc::cpu_register         |
 585                                LIR_OprDesc::single_size);
 586   }
 587   static LIR_Opr single_cpu_address(int reg) {
 588     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 589                                LIR_OprDesc::address_type         |
 590                                LIR_OprDesc::cpu_register         |
 591                                LIR_OprDesc::single_size);
 592   }
 593   static LIR_Opr single_cpu_metadata(int reg) {
 594     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 595                                LIR_OprDesc::metadata_type        |
 596                                LIR_OprDesc::cpu_register         |
 597                                LIR_OprDesc::single_size);
 598   }
 599   static LIR_Opr double_cpu(int reg1, int reg2) {
 600     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 601     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 602                                (reg2 << LIR_OprDesc::reg2_shift) |
 603                                LIR_OprDesc::long_type            |
 604                                LIR_OprDesc::cpu_register         |
 605                                LIR_OprDesc::double_size);
 606   }
 607 
 608   static LIR_Opr single_fpu(int reg) {
 609     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 610                                LIR_OprDesc::float_type           |
 611                                LIR_OprDesc::fpu_register         |
 612                                LIR_OprDesc::single_size);
 613   }
 614 
 615   // Platform dependant.
 616   static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
 617 
 618 #ifdef ARM32
 619   static LIR_Opr single_softfp(int reg) {
 620     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 621                                LIR_OprDesc::float_type           |
 622                                LIR_OprDesc::cpu_register         |
 623                                LIR_OprDesc::single_size);
 624   }
 625   static LIR_Opr double_softfp(int reg1, int reg2) {
 626     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 627                                (reg2 << LIR_OprDesc::reg2_shift) |
 628                                LIR_OprDesc::double_type          |
 629                                LIR_OprDesc::cpu_register         |
 630                                LIR_OprDesc::double_size);
 631   }
 632 #endif // ARM32
 633 
 634 #if defined(X86)
 635   static LIR_Opr single_xmm(int reg) {
 636     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 637                                LIR_OprDesc::float_type          |
 638                                LIR_OprDesc::fpu_register        |
 639                                LIR_OprDesc::single_size         |
 640                                LIR_OprDesc::is_xmm_mask);
 641   }
 642   static LIR_Opr double_xmm(int reg) {
 643     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 644                                (reg << LIR_OprDesc::reg2_shift) |
 645                                LIR_OprDesc::double_type         |
 646                                LIR_OprDesc::fpu_register        |
 647                                LIR_OprDesc::double_size         |
 648                                LIR_OprDesc::is_xmm_mask);
 649   }
 650 #endif // X86
 651 
 652   static LIR_Opr virtual_register(int index, BasicType type) {
 653     LIR_Opr res;
 654     switch (type) {
 655       case T_OBJECT: // fall through
 656       case T_VALUETYPE: // fall through
 657       case T_ARRAY:
 658         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 659                                             LIR_OprDesc::object_type  |
 660                                             LIR_OprDesc::cpu_register |
 661                                             LIR_OprDesc::single_size  |
 662                                             LIR_OprDesc::virtual_mask);
 663         break;
 664 
 665       case T_METADATA:
 666         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 667                                             LIR_OprDesc::metadata_type|
 668                                             LIR_OprDesc::cpu_register |
 669                                             LIR_OprDesc::single_size  |
 670                                             LIR_OprDesc::virtual_mask);
 671         break;
 672 
 673       case T_INT:
 674         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 675                                   LIR_OprDesc::int_type              |
 676                                   LIR_OprDesc::cpu_register          |
 677                                   LIR_OprDesc::single_size           |
 678                                   LIR_OprDesc::virtual_mask);
 679         break;
 680 
 681       case T_ADDRESS:
 682         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 683                                   LIR_OprDesc::address_type          |
 684                                   LIR_OprDesc::cpu_register          |
 685                                   LIR_OprDesc::single_size           |
 686                                   LIR_OprDesc::virtual_mask);
 687         break;
 688 
 689       case T_LONG:
 690         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 691                                   LIR_OprDesc::long_type             |
 692                                   LIR_OprDesc::cpu_register          |
 693                                   LIR_OprDesc::double_size           |
 694                                   LIR_OprDesc::virtual_mask);
 695         break;
 696 
 697 #ifdef __SOFTFP__
 698       case T_FLOAT:
 699         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 700                                   LIR_OprDesc::float_type  |
 701                                   LIR_OprDesc::cpu_register |
 702                                   LIR_OprDesc::single_size |
 703                                   LIR_OprDesc::virtual_mask);
 704         break;
 705       case T_DOUBLE:
 706         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 707                                   LIR_OprDesc::double_type |
 708                                   LIR_OprDesc::cpu_register |
 709                                   LIR_OprDesc::double_size |
 710                                   LIR_OprDesc::virtual_mask);
 711         break;
 712 #else // __SOFTFP__
 713       case T_FLOAT:
 714         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 715                                   LIR_OprDesc::float_type           |
 716                                   LIR_OprDesc::fpu_register         |
 717                                   LIR_OprDesc::single_size          |
 718                                   LIR_OprDesc::virtual_mask);
 719         break;
 720 
 721       case
 722         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 723                                             LIR_OprDesc::double_type           |
 724                                             LIR_OprDesc::fpu_register          |
 725                                             LIR_OprDesc::double_size           |
 726                                             LIR_OprDesc::virtual_mask);
 727         break;
 728 #endif // __SOFTFP__
 729       default:       ShouldNotReachHere(); res = illegalOpr;
 730     }
 731 
 732 #ifdef ASSERT
 733     res->validate_type();
 734     assert(res->vreg_number() == index, "conversion check");
 735     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 736     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 737 
 738     // old-style calculation; check if old and new method are equal
 739     LIR_OprDesc::OprType t = as_OprType(type);
 740 #ifdef __SOFTFP__
 741     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 742                                t |
 743                                LIR_OprDesc::cpu_register |
 744                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 745 #else // __SOFTFP__
 746     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 747                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 748                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 749     assert(res == old_res, "old and new method not equal");
 750 #endif // __SOFTFP__
 751 #endif // ASSERT
 752 
 753     return res;
 754   }
 755 
 756   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 757   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 758   // index 2.
 759   static LIR_Opr stack(int index, BasicType type) {
 760     LIR_Opr res;
 761     switch (type) {
 762       case T_VALUETYPE: // fall through
 763       case T_OBJECT: // fall through
 764       case T_ARRAY:
 765         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 766                                   LIR_OprDesc::object_type           |
 767                                   LIR_OprDesc::stack_value           |
 768                                   LIR_OprDesc::single_size);
 769         break;
 770 
 771       case T_METADATA:
 772         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 773                                   LIR_OprDesc::metadata_type         |
 774                                   LIR_OprDesc::stack_value           |
 775                                   LIR_OprDesc::single_size);
 776         break;
 777       case T_INT:
 778         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 779                                   LIR_OprDesc::int_type              |
 780                                   LIR_OprDesc::stack_value           |
 781                                   LIR_OprDesc::single_size);
 782         break;
 783 
 784       case T_ADDRESS:
 785         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 786                                   LIR_OprDesc::address_type          |
 787                                   LIR_OprDesc::stack_value           |
 788                                   LIR_OprDesc::single_size);
 789         break;
 790 
 791       case T_LONG:
 792         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 793                                   LIR_OprDesc::long_type             |
 794                                   LIR_OprDesc::stack_value           |
 795                                   LIR_OprDesc::double_size);
 796         break;
 797 
 798       case T_FLOAT:
 799         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 800                                   LIR_OprDesc::float_type            |
 801                                   LIR_OprDesc::stack_value           |
 802                                   LIR_OprDesc::single_size);
 803         break;
 804       case T_DOUBLE:
 805         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 806                                   LIR_OprDesc::double_type           |
 807                                   LIR_OprDesc::stack_value           |
 808                                   LIR_OprDesc::double_size);
 809         break;
 810 
 811       default:       ShouldNotReachHere(); res = illegalOpr;
 812     }
 813 
 814 #ifdef ASSERT
 815     assert(index >= 0, "index must be positive");
 816     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 817 
 818     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 819                                           LIR_OprDesc::stack_value           |
 820                                           as_OprType(type)                   |
 821                                           LIR_OprDesc::size_for(type));
 822     assert(res == old_res, "old and new method not equal");
 823 #endif
 824 
 825     return res;
 826   }
 827 
 828   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 829   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 830   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 831   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 832   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 833   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 834   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 835   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 836   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 837   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 838   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 839 
 840   static LIR_Opr value_type(ValueType* type);
 841   static LIR_Opr dummy_value_type(ValueType* type);
 842 };
 843 
 844 
 845 //-------------------------------------------------------------------------------
 846 //                   LIR Instructions
 847 //-------------------------------------------------------------------------------
 848 //
 849 // Note:
 850 //  - every instruction has a result operand
 851 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 852 //  - every instruction has a LIR_OpCode operand
 853 //  - LIR_OpN, means an instruction that has N input operands
 854 //
 855 // class hierarchy:
 856 //
 857 class  LIR_Op;
 858 class    LIR_Op0;
 859 class      LIR_OpLabel;
 860 class    LIR_Op1;
 861 class      LIR_OpBranch;
 862 class      LIR_OpConvert;
 863 class      LIR_OpAllocObj;
 864 class      LIR_OpRoundFP;
 865 class    LIR_Op2;
 866 class    LIR_OpDelay;
 867 class    LIR_Op3;
 868 class      LIR_OpAllocArray;
 869 class    LIR_OpCall;
 870 class      LIR_OpJavaCall;
 871 class      LIR_OpRTCall;
 872 class    LIR_OpArrayCopy;
 873 class    LIR_OpUpdateCRC32;
 874 class    LIR_OpLock;
 875 class    LIR_OpTypeCheck;
 876 class    LIR_OpCompareAndSwap;
 877 class    LIR_OpProfileCall;
 878 class    LIR_OpProfileType;
 879 #ifdef ASSERT
 880 class    LIR_OpAssert;
 881 #endif
 882 
 883 // LIR operation codes
 884 enum LIR_Code {
 885     lir_none
 886   , begin_op0
 887       , lir_word_align
 888       , lir_label
 889       , lir_nop
 890       , lir_backwardbranch_target
 891       , lir_std_entry
 892       , lir_osr_entry
 893       , lir_build_frame
 894       , lir_fpop_raw
 895       , lir_24bit_FPU
 896       , lir_reset_FPU
 897       , lir_breakpoint
 898       , lir_rtcall
 899       , lir_membar
 900       , lir_membar_acquire
 901       , lir_membar_release
 902       , lir_membar_loadload
 903       , lir_membar_storestore
 904       , lir_membar_loadstore
 905       , lir_membar_storeload
 906       , lir_get_thread
 907       , lir_on_spin_wait
 908   , end_op0
 909   , begin_op1
 910       , lir_fxch
 911       , lir_fld
 912       , lir_ffree
 913       , lir_push
 914       , lir_pop
 915       , lir_null_check
 916       , lir_return
 917       , lir_leal
 918       , lir_neg
 919       , lir_branch
 920       , lir_cond_float_branch
 921       , lir_move
 922       , lir_convert
 923       , lir_alloc_object
 924       , lir_monaddr
 925       , lir_roundfp
 926       , lir_safepoint
 927       , lir_pack64
 928       , lir_unpack64
 929       , lir_unwind
 930   , end_op1
 931   , begin_op2
 932       , lir_cmp
 933       , lir_cmp_l2i
 934       , lir_ucmp_fd2i
 935       , lir_cmp_fd2i
 936       , lir_cmove
 937       , lir_add
 938       , lir_sub
 939       , lir_mul
 940       , lir_mul_strictfp
 941       , lir_div
 942       , lir_div_strictfp
 943       , lir_rem
 944       , lir_sqrt
 945       , lir_abs
 946       , lir_tan
 947       , lir_log10
 948       , lir_logic_and
 949       , lir_logic_or
 950       , lir_logic_xor
 951       , lir_shl
 952       , lir_shr
 953       , lir_ushr
 954       , lir_alloc_array
 955       , lir_throw
 956       , lir_compare_to
 957       , lir_xadd
 958       , lir_xchg
 959   , end_op2
 960   , begin_op3
 961       , lir_idiv
 962       , lir_irem
 963       , lir_fmad
 964       , lir_fmaf
 965   , end_op3
 966   , begin_opJavaCall
 967       , lir_static_call
 968       , lir_optvirtual_call
 969       , lir_icvirtual_call
 970       , lir_virtual_call
 971       , lir_dynamic_call
 972   , end_opJavaCall
 973   , begin_opArrayCopy
 974       , lir_arraycopy
 975   , end_opArrayCopy
 976   , begin_opUpdateCRC32
 977       , lir_updatecrc32
 978   , end_opUpdateCRC32
 979   , begin_opLock
 980     , lir_lock
 981     , lir_unlock
 982   , end_opLock
 983   , begin_delay_slot
 984     , lir_delay_slot
 985   , end_delay_slot
 986   , begin_opTypeCheck
 987     , lir_instanceof
 988     , lir_checkcast
 989     , lir_store_check
 990   , end_opTypeCheck
 991   , begin_opCompareAndSwap
 992     , lir_cas_long
 993     , lir_cas_obj
 994     , lir_cas_int
 995   , end_opCompareAndSwap
 996   , begin_opMDOProfile
 997     , lir_profile_call
 998     , lir_profile_type
 999   , end_opMDOProfile
1000   , begin_opAssert
1001     , lir_assert
1002   , end_opAssert
1003 };
1004 
1005 
1006 enum LIR_Condition {
1007     lir_cond_equal
1008   , lir_cond_notEqual
1009   , lir_cond_less
1010   , lir_cond_lessEqual
1011   , lir_cond_greaterEqual
1012   , lir_cond_greater
1013   , lir_cond_belowEqual
1014   , lir_cond_aboveEqual
1015   , lir_cond_always
1016   , lir_cond_unknown = -1
1017 };
1018 
1019 
1020 enum LIR_PatchCode {
1021   lir_patch_none,
1022   lir_patch_low,
1023   lir_patch_high,
1024   lir_patch_normal
1025 };
1026 
1027 
1028 enum LIR_MoveKind {
1029   lir_move_normal,
1030   lir_move_volatile,
1031   lir_move_unaligned,
1032   lir_move_wide,
1033   lir_move_max_flag
1034 };
1035 
1036 
1037 // --------------------------------------------------
1038 // LIR_Op
1039 // --------------------------------------------------
1040 class LIR_Op: public CompilationResourceObj {
1041  friend class LIR_OpVisitState;
1042 
1043 #ifdef ASSERT
1044  private:
1045   const char *  _file;
1046   int           _line;
1047 #endif
1048 
1049  protected:
1050   LIR_Opr       _result;
1051   unsigned short _code;
1052   unsigned short _flags;
1053   CodeEmitInfo* _info;
1054   int           _id;     // value id for register allocation
1055   int           _fpu_pop_count;
1056   Instruction*  _source; // for debugging
1057 
1058   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1059 
1060  protected:
1061   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1062 
1063  public:
1064   LIR_Op()
1065     :
1066 #ifdef ASSERT
1067       _file(NULL)
1068     , _line(0),
1069 #endif
1070       _result(LIR_OprFact::illegalOpr)
1071     , _code(lir_none)
1072     , _flags(0)
1073     , _info(NULL)
1074     , _id(-1)
1075     , _fpu_pop_count(0)
1076     , _source(NULL) {}
1077 
1078   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1079     :
1080 #ifdef ASSERT
1081       _file(NULL)
1082     , _line(0),
1083 #endif
1084       _result(result)
1085     , _code(code)
1086     , _flags(0)
1087     , _info(info)
1088     , _id(-1)
1089     , _fpu_pop_count(0)
1090     , _source(NULL) {}
1091 
1092   CodeEmitInfo* info() const                  { return _info;   }
1093   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1094   LIR_Opr result_opr() const                  { return _result; }
1095   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1096 
1097 #ifdef ASSERT
1098   void set_file_and_line(const char * file, int line) {
1099     _file = file;
1100     _line = line;
1101   }
1102 #endif
1103 
1104   virtual const char * name() const PRODUCT_RETURN0;
1105   virtual void visit(LIR_OpVisitState* state);
1106 
1107   int id()             const                  { return _id;     }
1108   void set_id(int id)                         { _id = id; }
1109 
1110   // FPU stack simulation helpers -- only used on Intel
1111   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1112   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1113   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1114 
1115   Instruction* source() const                 { return _source; }
1116   void set_source(Instruction* ins)           { _source = ins; }
1117 
1118   virtual void emit_code(LIR_Assembler* masm) = 0;
1119   virtual void print_instr(outputStream* out) const   = 0;
1120   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1121 
1122   virtual bool is_patching() { return false; }
1123   virtual LIR_OpCall* as_OpCall() { return NULL; }
1124   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1125   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1126   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1127   virtual LIR_OpLock* as_OpLock() { return NULL; }
1128   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1129   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1130   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1131   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1132   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1133   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1134   virtual LIR_Op0* as_Op0() { return NULL; }
1135   virtual LIR_Op1* as_Op1() { return NULL; }
1136   virtual LIR_Op2* as_Op2() { return NULL; }
1137   virtual LIR_Op3* as_Op3() { return NULL; }
1138   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1139   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1140   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1141   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1142   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1143   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1144 #ifdef ASSERT
1145   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1146 #endif
1147 
1148   virtual void verify() const {}
1149 };
1150 
1151 // for calls
1152 class LIR_OpCall: public LIR_Op {
1153  friend class LIR_OpVisitState;
1154 
1155  protected:
1156   address      _addr;
1157   LIR_OprList* _arguments;
1158  protected:
1159   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1160              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1161     : LIR_Op(code, result, info)
1162     , _addr(addr)
1163     , _arguments(arguments) {}
1164 
1165  public:
1166   address addr() const                           { return _addr; }
1167   const LIR_OprList* arguments() const           { return _arguments; }
1168   virtual LIR_OpCall* as_OpCall()                { return this; }
1169 };
1170 
1171 
1172 // --------------------------------------------------
1173 // LIR_OpJavaCall
1174 // --------------------------------------------------
1175 class LIR_OpJavaCall: public LIR_OpCall {
1176  friend class LIR_OpVisitState;
1177 
1178  private:
1179   ciMethod* _method;
1180   LIR_Opr   _receiver;
1181   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1182 
1183  public:
1184   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1185                  LIR_Opr receiver, LIR_Opr result,
1186                  address addr, LIR_OprList* arguments,
1187                  CodeEmitInfo* info)
1188   : LIR_OpCall(code, addr, result, arguments, info)
1189   , _method(method)
1190   , _receiver(receiver)
1191   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1192   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1193 
1194   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1195                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1196                  LIR_OprList* arguments, CodeEmitInfo* info)
1197   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1198   , _method(method)
1199   , _receiver(receiver)
1200   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1201   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1202 
1203   LIR_Opr receiver() const                       { return _receiver; }
1204   ciMethod* method() const                       { return _method;   }
1205 
1206   // JSR 292 support.
1207   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1208   bool is_method_handle_invoke() const {
1209     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1210            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1211   }
1212 
1213   intptr_t vtable_offset() const {
1214     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1215     return (intptr_t) addr();
1216   }
1217 
1218   virtual void emit_code(LIR_Assembler* masm);
1219   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1220   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1221 };
1222 
1223 // --------------------------------------------------
1224 // LIR_OpLabel
1225 // --------------------------------------------------
1226 // Location where a branch can continue
1227 class LIR_OpLabel: public LIR_Op {
1228  friend class LIR_OpVisitState;
1229 
1230  private:
1231   Label* _label;
1232  public:
1233   LIR_OpLabel(Label* lbl)
1234    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1235    , _label(lbl)                                 {}
1236   Label* label() const                           { return _label; }
1237 
1238   virtual void emit_code(LIR_Assembler* masm);
1239   virtual LIR_OpLabel* as_OpLabel() { return this; }
1240   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1241 };
1242 
1243 // LIR_OpArrayCopy
1244 class LIR_OpArrayCopy: public LIR_Op {
1245  friend class LIR_OpVisitState;
1246 
1247  private:
1248   ArrayCopyStub*  _stub;
1249   LIR_Opr   _src;
1250   LIR_Opr   _src_pos;
1251   LIR_Opr   _dst;
1252   LIR_Opr   _dst_pos;
1253   LIR_Opr   _length;
1254   LIR_Opr   _tmp;
1255   ciArrayKlass* _expected_type;
1256   int       _flags;
1257 
1258 public:
1259   enum Flags {
1260     src_null_check         = 1 << 0,
1261     dst_null_check         = 1 << 1,
1262     src_pos_positive_check = 1 << 2,
1263     dst_pos_positive_check = 1 << 3,
1264     length_positive_check  = 1 << 4,
1265     src_range_check        = 1 << 5,
1266     dst_range_check        = 1 << 6,
1267     type_check             = 1 << 7,
1268     overlapping            = 1 << 8,
1269     unaligned              = 1 << 9,
1270     src_objarray           = 1 << 10,
1271     dst_objarray           = 1 << 11,
1272     all_flags              = (1 << 12) - 1
1273   };
1274 
1275   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1276                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1277 
1278   LIR_Opr src() const                            { return _src; }
1279   LIR_Opr src_pos() const                        { return _src_pos; }
1280   LIR_Opr dst() const                            { return _dst; }
1281   LIR_Opr dst_pos() const                        { return _dst_pos; }
1282   LIR_Opr length() const                         { return _length; }
1283   LIR_Opr tmp() const                            { return _tmp; }
1284   int flags() const                              { return _flags; }
1285   ciArrayKlass* expected_type() const            { return _expected_type; }
1286   ArrayCopyStub* stub() const                    { return _stub; }
1287 
1288   virtual void emit_code(LIR_Assembler* masm);
1289   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1290   void print_instr(outputStream* out) const PRODUCT_RETURN;
1291 };
1292 
1293 // LIR_OpUpdateCRC32
1294 class LIR_OpUpdateCRC32: public LIR_Op {
1295   friend class LIR_OpVisitState;
1296 
1297 private:
1298   LIR_Opr   _crc;
1299   LIR_Opr   _val;
1300 
1301 public:
1302 
1303   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1304 
1305   LIR_Opr crc() const                            { return _crc; }
1306   LIR_Opr val() const                            { return _val; }
1307 
1308   virtual void emit_code(LIR_Assembler* masm);
1309   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1310   void print_instr(outputStream* out) const PRODUCT_RETURN;
1311 };
1312 
1313 // --------------------------------------------------
1314 // LIR_Op0
1315 // --------------------------------------------------
1316 class LIR_Op0: public LIR_Op {
1317  friend class LIR_OpVisitState;
1318 
1319  public:
1320   LIR_Op0(LIR_Code code)
1321    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1322   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1323    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1324 
1325   virtual void emit_code(LIR_Assembler* masm);
1326   virtual LIR_Op0* as_Op0() { return this; }
1327   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1328 };
1329 
1330 
1331 // --------------------------------------------------
1332 // LIR_Op1
1333 // --------------------------------------------------
1334 
1335 class LIR_Op1: public LIR_Op {
1336  friend class LIR_OpVisitState;
1337 
1338  protected:
1339   LIR_Opr         _opr;   // input operand
1340   BasicType       _type;  // Operand types
1341   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1342 
1343   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1344 
1345   void set_kind(LIR_MoveKind kind) {
1346     assert(code() == lir_move, "must be");
1347     _flags = kind;
1348   }
1349 
1350  public:
1351   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1352     : LIR_Op(code, result, info)
1353     , _opr(opr)
1354     , _type(type)
1355     , _patch(patch)                    { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1356 
1357   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1358     : LIR_Op(code, result, info)
1359     , _opr(opr)
1360     , _type(type)
1361     , _patch(patch)                    {
1362     assert(code == lir_move, "must be");
1363     set_kind(kind);
1364   }
1365 
1366   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1367     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1368     , _opr(opr)
1369     , _type(T_ILLEGAL)
1370     , _patch(lir_patch_none)           { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1371 
1372   LIR_Opr in_opr()           const               { return _opr;   }
1373   LIR_PatchCode patch_code() const               { return _patch; }
1374   BasicType type()           const               { return _type;  }
1375 
1376   LIR_MoveKind move_kind() const {
1377     assert(code() == lir_move, "must be");
1378     return (LIR_MoveKind)_flags;
1379   }
1380 
1381   virtual bool is_patching() { return _patch != lir_patch_none; }
1382   virtual void emit_code(LIR_Assembler* masm);
1383   virtual LIR_Op1* as_Op1() { return this; }
1384   virtual const char * name() const PRODUCT_RETURN0;
1385 
1386   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1387 
1388   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1389   virtual void verify() const;
1390 };
1391 
1392 
1393 // for runtime calls
1394 class LIR_OpRTCall: public LIR_OpCall {
1395  friend class LIR_OpVisitState;
1396 
1397  private:
1398   LIR_Opr _tmp;
1399  public:
1400   LIR_OpRTCall(address addr, LIR_Opr tmp,
1401                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1402     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1403     , _tmp(tmp) {}
1404 
1405   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1406   virtual void emit_code(LIR_Assembler* masm);
1407   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1408 
1409   LIR_Opr tmp() const                            { return _tmp; }
1410 
1411   virtual void verify() const;
1412 };
1413 
1414 
1415 class LIR_OpBranch: public LIR_Op {
1416  friend class LIR_OpVisitState;
1417 
1418  private:
1419   LIR_Condition _cond;
1420   BasicType     _type;
1421   Label*        _label;
1422   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1423   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1424   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1425 
1426  public:
1427   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1428     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1429     , _cond(cond)
1430     , _type(type)
1431     , _label(lbl)
1432     , _block(NULL)
1433     , _ublock(NULL)
1434     , _stub(NULL) { }
1435 
1436   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1437   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1438 
1439   // for unordered comparisons
1440   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1441 
1442   LIR_Condition cond()        const              { return _cond;        }
1443   BasicType     type()        const              { return _type;        }
1444   Label*        label()       const              { return _label;       }
1445   BlockBegin*   block()       const              { return _block;       }
1446   BlockBegin*   ublock()      const              { return _ublock;      }
1447   CodeStub*     stub()        const              { return _stub;       }
1448 
1449   void          change_block(BlockBegin* b);
1450   void          change_ublock(BlockBegin* b);
1451   void          negate_cond();
1452 
1453   virtual void emit_code(LIR_Assembler* masm);
1454   virtual LIR_OpBranch* as_OpBranch() { return this; }
1455   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1456 };
1457 
1458 
1459 class ConversionStub;
1460 
1461 class LIR_OpConvert: public LIR_Op1 {
1462  friend class LIR_OpVisitState;
1463 
1464  private:
1465    Bytecodes::Code _bytecode;
1466    ConversionStub* _stub;
1467 
1468  public:
1469    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1470      : LIR_Op1(lir_convert, opr, result)
1471      , _bytecode(code)
1472      , _stub(stub)                               {}
1473 
1474   Bytecodes::Code bytecode() const               { return _bytecode; }
1475   ConversionStub* stub() const                   { return _stub; }
1476 
1477   virtual void emit_code(LIR_Assembler* masm);
1478   virtual LIR_OpConvert* as_OpConvert() { return this; }
1479   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1480 
1481   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1482 };
1483 
1484 
1485 // LIR_OpAllocObj
1486 class LIR_OpAllocObj : public LIR_Op1 {
1487  friend class LIR_OpVisitState;
1488 
1489  private:
1490   LIR_Opr _tmp1;
1491   LIR_Opr _tmp2;
1492   LIR_Opr _tmp3;
1493   LIR_Opr _tmp4;
1494   int     _hdr_size;
1495   int     _obj_size;
1496   CodeStub* _stub;
1497   bool    _init_check;
1498 
1499  public:
1500   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1501                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1502                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1503     : LIR_Op1(lir_alloc_object, klass, result)
1504     , _tmp1(t1)
1505     , _tmp2(t2)
1506     , _tmp3(t3)
1507     , _tmp4(t4)
1508     , _hdr_size(hdr_size)
1509     , _obj_size(obj_size)
1510     , _stub(stub)
1511     , _init_check(init_check)                    { }
1512 
1513   LIR_Opr klass()        const                   { return in_opr();     }
1514   LIR_Opr obj()          const                   { return result_opr(); }
1515   LIR_Opr tmp1()         const                   { return _tmp1;        }
1516   LIR_Opr tmp2()         const                   { return _tmp2;        }
1517   LIR_Opr tmp3()         const                   { return _tmp3;        }
1518   LIR_Opr tmp4()         const                   { return _tmp4;        }
1519   int     header_size()  const                   { return _hdr_size;    }
1520   int     object_size()  const                   { return _obj_size;    }
1521   bool    init_check()   const                   { return _init_check;  }
1522   CodeStub* stub()       const                   { return _stub;        }
1523 
1524   virtual void emit_code(LIR_Assembler* masm);
1525   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1526   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1527 };
1528 
1529 
1530 // LIR_OpRoundFP
1531 class LIR_OpRoundFP : public LIR_Op1 {
1532  friend class LIR_OpVisitState;
1533 
1534  private:
1535   LIR_Opr _tmp;
1536 
1537  public:
1538   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1539     : LIR_Op1(lir_roundfp, reg, result)
1540     , _tmp(stack_loc_temp) {}
1541 
1542   LIR_Opr tmp() const                            { return _tmp; }
1543   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1544   void print_instr(outputStream* out) const PRODUCT_RETURN;
1545 };
1546 
1547 // LIR_OpTypeCheck
1548 class LIR_OpTypeCheck: public LIR_Op {
1549  friend class LIR_OpVisitState;
1550 
1551  private:
1552   LIR_Opr       _object;
1553   LIR_Opr       _array;
1554   ciKlass*      _klass;
1555   LIR_Opr       _tmp1;
1556   LIR_Opr       _tmp2;
1557   LIR_Opr       _tmp3;
1558   bool          _fast_check;
1559   CodeEmitInfo* _info_for_patch;
1560   CodeEmitInfo* _info_for_exception;
1561   CodeStub*     _stub;
1562   ciMethod*     _profiled_method;
1563   int           _profiled_bci;
1564   bool          _should_profile;
1565 
1566 public:
1567   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1568                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1569                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1570   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1571                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1572 
1573   LIR_Opr object() const                         { return _object;         }
1574   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1575   LIR_Opr tmp1() const                           { return _tmp1;           }
1576   LIR_Opr tmp2() const                           { return _tmp2;           }
1577   LIR_Opr tmp3() const                           { return _tmp3;           }
1578   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1579   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1580   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1581   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1582   CodeStub* stub() const                         { return _stub;           }
1583 
1584   // MethodData* profiling
1585   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1586   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1587   void set_should_profile(bool b)                { _should_profile = b;       }
1588   ciMethod* profiled_method() const              { return _profiled_method;   }
1589   int       profiled_bci() const                 { return _profiled_bci;      }
1590   bool      should_profile() const               { return _should_profile;    }
1591 
1592   virtual bool is_patching() { return _info_for_patch != NULL; }
1593   virtual void emit_code(LIR_Assembler* masm);
1594   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1595   void print_instr(outputStream* out) const PRODUCT_RETURN;
1596 };
1597 
1598 // LIR_Op2
1599 class LIR_Op2: public LIR_Op {
1600  friend class LIR_OpVisitState;
1601 
1602   int  _fpu_stack_size; // for sin/cos implementation on Intel
1603 
1604  protected:
1605   LIR_Opr   _opr1;
1606   LIR_Opr   _opr2;
1607   BasicType _type;
1608   LIR_Opr   _tmp1;
1609   LIR_Opr   _tmp2;
1610   LIR_Opr   _tmp3;
1611   LIR_Opr   _tmp4;
1612   LIR_Opr   _tmp5;
1613   LIR_Condition _condition;
1614 
1615   void verify() const;
1616 
1617  public:
1618   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1619     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1620     , _fpu_stack_size(0)
1621     , _opr1(opr1)
1622     , _opr2(opr2)
1623     , _type(T_ILLEGAL)
1624     , _tmp1(LIR_OprFact::illegalOpr)
1625     , _tmp2(LIR_OprFact::illegalOpr)
1626     , _tmp3(LIR_OprFact::illegalOpr)
1627     , _tmp4(LIR_OprFact::illegalOpr)
1628     , _tmp5(LIR_OprFact::illegalOpr)
1629     , _condition(condition) {
1630     assert(code == lir_cmp || code == lir_assert, "code check");
1631   }
1632 
1633   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1634     : LIR_Op(code, result, NULL)
1635     , _fpu_stack_size(0)
1636     , _opr1(opr1)
1637     , _opr2(opr2)
1638     , _type(type)
1639     , _tmp1(LIR_OprFact::illegalOpr)
1640     , _tmp2(LIR_OprFact::illegalOpr)
1641     , _tmp3(LIR_OprFact::illegalOpr)
1642     , _tmp4(LIR_OprFact::illegalOpr)
1643     , _tmp5(LIR_OprFact::illegalOpr)
1644     , _condition(condition) {
1645     assert(code == lir_cmove, "code check");
1646     assert(type != T_ILLEGAL, "cmove should have type");
1647   }
1648 
1649   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1650           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1651     : LIR_Op(code, result, info)
1652     , _fpu_stack_size(0)
1653     , _opr1(opr1)
1654     , _opr2(opr2)
1655     , _type(type)
1656     , _tmp1(LIR_OprFact::illegalOpr)
1657     , _tmp2(LIR_OprFact::illegalOpr)
1658     , _tmp3(LIR_OprFact::illegalOpr)
1659     , _tmp4(LIR_OprFact::illegalOpr)
1660     , _tmp5(LIR_OprFact::illegalOpr)
1661     , _condition(lir_cond_unknown) {
1662     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1663   }
1664 
1665   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1666           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1667     : LIR_Op(code, result, NULL)
1668     , _fpu_stack_size(0)
1669     , _opr1(opr1)
1670     , _opr2(opr2)
1671     , _type(T_ILLEGAL)
1672     , _tmp1(tmp1)
1673     , _tmp2(tmp2)
1674     , _tmp3(tmp3)
1675     , _tmp4(tmp4)
1676     , _tmp5(tmp5)
1677     , _condition(lir_cond_unknown) {
1678     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1679   }
1680 
1681   LIR_Opr in_opr1() const                        { return _opr1; }
1682   LIR_Opr in_opr2() const                        { return _opr2; }
1683   BasicType type()  const                        { return _type; }
1684   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1685   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1686   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1687   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1688   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1689   LIR_Condition condition() const  {
1690     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1691   }
1692   void set_condition(LIR_Condition condition) {
1693     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1694   }
1695 
1696   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1697   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1698 
1699   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1700   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1701 
1702   virtual void emit_code(LIR_Assembler* masm);
1703   virtual LIR_Op2* as_Op2() { return this; }
1704   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1705 };
1706 
1707 class LIR_OpAllocArray : public LIR_Op {
1708  friend class LIR_OpVisitState;
1709 
1710  private:
1711   LIR_Opr   _klass;
1712   LIR_Opr   _len;
1713   LIR_Opr   _tmp1;
1714   LIR_Opr   _tmp2;
1715   LIR_Opr   _tmp3;
1716   LIR_Opr   _tmp4;
1717   BasicType _type;
1718   CodeStub* _stub;
1719 
1720  public:
1721   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1722     : LIR_Op(lir_alloc_array, result, NULL)
1723     , _klass(klass)
1724     , _len(len)
1725     , _tmp1(t1)
1726     , _tmp2(t2)
1727     , _tmp3(t3)
1728     , _tmp4(t4)
1729     , _type(type)
1730     , _stub(stub) {}
1731 
1732   LIR_Opr   klass()   const                      { return _klass;       }
1733   LIR_Opr   len()     const                      { return _len;         }
1734   LIR_Opr   obj()     const                      { return result_opr(); }
1735   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1736   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1737   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1738   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1739   BasicType type()    const                      { return _type;        }
1740   CodeStub* stub()    const                      { return _stub;        }
1741 
1742   virtual void emit_code(LIR_Assembler* masm);
1743   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1744   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1745 };
1746 
1747 
1748 class LIR_Op3: public LIR_Op {
1749  friend class LIR_OpVisitState;
1750 
1751  private:
1752   LIR_Opr _opr1;
1753   LIR_Opr _opr2;
1754   LIR_Opr _opr3;
1755  public:
1756   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1757     : LIR_Op(code, result, info)
1758     , _opr1(opr1)
1759     , _opr2(opr2)
1760     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1761   LIR_Opr in_opr1() const                        { return _opr1; }
1762   LIR_Opr in_opr2() const                        { return _opr2; }
1763   LIR_Opr in_opr3() const                        { return _opr3; }
1764 
1765   virtual void emit_code(LIR_Assembler* masm);
1766   virtual LIR_Op3* as_Op3() { return this; }
1767   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1768 };
1769 
1770 
1771 //--------------------------------
1772 class LabelObj: public CompilationResourceObj {
1773  private:
1774   Label _label;
1775  public:
1776   LabelObj()                                     {}
1777   Label* label()                                 { return &_label; }
1778 };
1779 
1780 
1781 class LIR_OpLock: public LIR_Op {
1782  friend class LIR_OpVisitState;
1783 
1784  private:
1785   LIR_Opr _hdr;
1786   LIR_Opr _obj;
1787   LIR_Opr _lock;
1788   LIR_Opr _scratch;
1789   CodeStub* _stub;
1790  public:
1791   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1792     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1793     , _hdr(hdr)
1794     , _obj(obj)
1795     , _lock(lock)
1796     , _scratch(scratch)
1797     , _stub(stub)                      {}
1798 
1799   LIR_Opr hdr_opr() const                        { return _hdr; }
1800   LIR_Opr obj_opr() const                        { return _obj; }
1801   LIR_Opr lock_opr() const                       { return _lock; }
1802   LIR_Opr scratch_opr() const                    { return _scratch; }
1803   CodeStub* stub() const                         { return _stub; }
1804 
1805   virtual void emit_code(LIR_Assembler* masm);
1806   virtual LIR_OpLock* as_OpLock() { return this; }
1807   void print_instr(outputStream* out) const PRODUCT_RETURN;
1808 };
1809 
1810 
1811 class LIR_OpDelay: public LIR_Op {
1812  friend class LIR_OpVisitState;
1813 
1814  private:
1815   LIR_Op* _op;
1816 
1817  public:
1818   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1819     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1820     _op(op) {
1821     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1822   }
1823   virtual void emit_code(LIR_Assembler* masm);
1824   virtual LIR_OpDelay* as_OpDelay() { return this; }
1825   void print_instr(outputStream* out) const PRODUCT_RETURN;
1826   LIR_Op* delay_op() const { return _op; }
1827   CodeEmitInfo* call_info() const { return info(); }
1828 };
1829 
1830 #ifdef ASSERT
1831 // LIR_OpAssert
1832 class LIR_OpAssert : public LIR_Op2 {
1833  friend class LIR_OpVisitState;
1834 
1835  private:
1836   const char* _msg;
1837   bool        _halt;
1838 
1839  public:
1840   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1841     : LIR_Op2(lir_assert, condition, opr1, opr2)
1842     , _msg(msg)
1843     , _halt(halt) {
1844   }
1845 
1846   const char* msg() const                        { return _msg; }
1847   bool        halt() const                       { return _halt; }
1848 
1849   virtual void emit_code(LIR_Assembler* masm);
1850   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1851   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1852 };
1853 #endif
1854 
1855 // LIR_OpCompareAndSwap
1856 class LIR_OpCompareAndSwap : public LIR_Op {
1857  friend class LIR_OpVisitState;
1858 
1859  private:
1860   LIR_Opr _addr;
1861   LIR_Opr _cmp_value;
1862   LIR_Opr _new_value;
1863   LIR_Opr _tmp1;
1864   LIR_Opr _tmp2;
1865 
1866  public:
1867   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1868                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1869     : LIR_Op(code, result, NULL)  // no result, no info
1870     , _addr(addr)
1871     , _cmp_value(cmp_value)
1872     , _new_value(new_value)
1873     , _tmp1(t1)
1874     , _tmp2(t2)                                  { }
1875 
1876   LIR_Opr addr()        const                    { return _addr;  }
1877   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1878   LIR_Opr new_value()   const                    { return _new_value; }
1879   LIR_Opr tmp1()        const                    { return _tmp1;      }
1880   LIR_Opr tmp2()        const                    { return _tmp2;      }
1881 
1882   virtual void emit_code(LIR_Assembler* masm);
1883   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1884   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1885 };
1886 
1887 // LIR_OpProfileCall
1888 class LIR_OpProfileCall : public LIR_Op {
1889  friend class LIR_OpVisitState;
1890 
1891  private:
1892   ciMethod* _profiled_method;
1893   int       _profiled_bci;
1894   ciMethod* _profiled_callee;
1895   LIR_Opr   _mdo;
1896   LIR_Opr   _recv;
1897   LIR_Opr   _tmp1;
1898   ciKlass*  _known_holder;
1899 
1900  public:
1901   // Destroys recv
1902   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1903     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1904     , _profiled_method(profiled_method)
1905     , _profiled_bci(profiled_bci)
1906     , _profiled_callee(profiled_callee)
1907     , _mdo(mdo)
1908     , _recv(recv)
1909     , _tmp1(t1)
1910     , _known_holder(known_holder)                { }
1911 
1912   ciMethod* profiled_method() const              { return _profiled_method;  }
1913   int       profiled_bci()    const              { return _profiled_bci;     }
1914   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1915   LIR_Opr   mdo()             const              { return _mdo;              }
1916   LIR_Opr   recv()            const              { return _recv;             }
1917   LIR_Opr   tmp1()            const              { return _tmp1;             }
1918   ciKlass*  known_holder()    const              { return _known_holder;     }
1919 
1920   virtual void emit_code(LIR_Assembler* masm);
1921   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1922   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1923   bool should_profile_receiver_type() const {
1924     bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
1925     Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
1926     bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface;
1927     return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
1928   }
1929 };
1930 
1931 // LIR_OpProfileType
1932 class LIR_OpProfileType : public LIR_Op {
1933  friend class LIR_OpVisitState;
1934 
1935  private:
1936   LIR_Opr      _mdp;
1937   LIR_Opr      _obj;
1938   LIR_Opr      _tmp;
1939   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1940   intptr_t     _current_klass; // what the profiling currently reports
1941   bool         _not_null;      // true if we know statically that _obj cannot be null
1942   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1943                                // _exact_klass it the only possible type for this parameter in any context.
1944 
1945  public:
1946   // Destroys recv
1947   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1948     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1949     , _mdp(mdp)
1950     , _obj(obj)
1951     , _tmp(tmp)
1952     , _exact_klass(exact_klass)
1953     , _current_klass(current_klass)
1954     , _not_null(not_null)
1955     , _no_conflict(no_conflict) { }
1956 
1957   LIR_Opr      mdp()              const             { return _mdp;              }
1958   LIR_Opr      obj()              const             { return _obj;              }
1959   LIR_Opr      tmp()              const             { return _tmp;              }
1960   ciKlass*     exact_klass()      const             { return _exact_klass;      }
1961   intptr_t     current_klass()    const             { return _current_klass;    }
1962   bool         not_null()         const             { return _not_null;         }
1963   bool         no_conflict()      const             { return _no_conflict;      }
1964 
1965   virtual void emit_code(LIR_Assembler* masm);
1966   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1967   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1968 };
1969 
1970 class LIR_InsertionBuffer;
1971 
1972 //--------------------------------LIR_List---------------------------------------------------
1973 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1974 // The LIR instructions are appended by the LIR_List class itself;
1975 //
1976 // Notes:
1977 // - all offsets are(should be) in bytes
1978 // - local positions are specified with an offset, with offset 0 being local 0
1979 
1980 class LIR_List: public CompilationResourceObj {
1981  private:
1982   LIR_OpList  _operations;
1983 
1984   Compilation*  _compilation;
1985 #ifndef PRODUCT
1986   BlockBegin*   _block;
1987 #endif
1988 #ifdef ASSERT
1989   const char *  _file;
1990   int           _line;
1991 #endif
1992 
1993  public:
1994   void append(LIR_Op* op) {
1995     if (op->source() == NULL)
1996       op->set_source(_compilation->current_instruction());
1997 #ifndef PRODUCT
1998     if (PrintIRWithLIR) {
1999       _compilation->maybe_print_current_instruction();
2000       op->print(); tty->cr();
2001     }
2002 #endif // PRODUCT
2003 
2004     _operations.append(op);
2005 
2006 #ifdef ASSERT
2007     op->verify();
2008     op->set_file_and_line(_file, _line);
2009     _file = NULL;
2010     _line = 0;
2011 #endif
2012   }
2013 
2014   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2015 
2016 #ifdef ASSERT
2017   void set_file_and_line(const char * file, int line);
2018 #endif
2019 
2020   //---------- accessors ---------------
2021   LIR_OpList* instructions_list()                { return &_operations; }
2022   int         length() const                     { return _operations.length(); }
2023   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2024 
2025   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2026 
2027   // insert LIR_Ops in buffer to right places in LIR_List
2028   void append(LIR_InsertionBuffer* buffer);
2029 
2030   //---------- mutators ---------------
2031   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2032   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2033   void remove_at(int i)                          { _operations.remove_at(i); }
2034 
2035   //---------- printing -------------
2036   void print_instructions() PRODUCT_RETURN;
2037 
2038 
2039   //---------- instructions -------------
2040   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2041                         address dest, LIR_OprList* arguments,
2042                         CodeEmitInfo* info) {
2043     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2044   }
2045   void call_static(ciMethod* method, LIR_Opr result,
2046                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2047     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2048   }
2049   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2050                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2051     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2052   }
2053   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2054                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2055     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2056   }
2057   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2058                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2059     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2060   }
2061 
2062   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2063   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2064   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2065   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2066   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2067   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2068   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2069   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2070   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2071 
2072   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2073   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2074 
2075   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2076   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2077 
2078   void on_spin_wait()                            { append(new LIR_Op0(lir_on_spin_wait)); }
2079 
2080   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2081 
2082   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2083   void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2084 
2085   // result is a stack location for old backend and vreg for UseLinearScan
2086   // stack_loc_temp is an illegal register for old backend
2087   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2088   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2089   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2090   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2091   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2092   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2093   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2094   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2095     if (UseCompressedOops) {
2096       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2097     } else {
2098       move(src, dst, info);
2099     }
2100   }
2101   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2102     if (UseCompressedOops) {
2103       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2104     } else {
2105       move(src, dst, info);
2106     }
2107   }
2108   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2109 
2110   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2111   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2112 
2113   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2114   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2115 
2116   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2117 
2118   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2119 
2120   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2121 
2122   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2123   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2124   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2125 
2126   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2127   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2128 
2129   void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2130   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2131     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2132   }
2133   void unwind_exception(LIR_Opr exceptionOop) {
2134     append(new LIR_Op1(lir_unwind, exceptionOop));
2135   }
2136 
2137   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2138     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2139   }
2140 
2141   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2142   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2143 
2144   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2145     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2146   }
2147   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2148     cmp(condition, left, LIR_OprFact::intConst(right), info);
2149   }
2150 
2151   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2152   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2153 
2154   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2155     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2156   }
2157 
2158   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2159                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2160   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2161                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2162   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2163                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2164 
2165   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2166   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2167   void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2168   void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2169   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2170   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2171 
2172   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2173   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2174   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2175   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2176   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2177   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2178   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2179 
2180   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2181   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2182 
2183   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2184 
2185   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2186   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2187   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2188   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2189   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2190 
2191   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2192   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2193   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2194   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2195 
2196   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2197   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2198 
2199   // jump is an unconditional branch
2200   void jump(BlockBegin* block) {
2201     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2202   }
2203   void jump(CodeStub* stub) {
2204     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2205   }
2206   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2207   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2208     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2209     append(new LIR_OpBranch(cond, type, block));
2210   }
2211   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2212     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2213     append(new LIR_OpBranch(cond, type, stub));
2214   }
2215   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2216     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2217     append(new LIR_OpBranch(cond, type, block, unordered));
2218   }
2219 
2220   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2221   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2222   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2223 
2224   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2225   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2226   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2227 
2228   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2229   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2230 
2231   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2232     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2233   }
2234 
2235   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2236                     LIR_OprList* arguments, CodeEmitInfo* info) {
2237     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2238   }
2239 
2240   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2241   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2242   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2243 
2244   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2245   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2246   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2247 
2248   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2249 
2250   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2251 
2252   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2253 
2254   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2255   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2256 
2257   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2258                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2259                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2260                   ciMethod* profiled_method, int profiled_bci);
2261   // MethodData* profiling
2262   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2263     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2264   }
2265   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2266     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2267   }
2268 
2269   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2270   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2271 #ifdef ASSERT
2272   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2273 #endif
2274 };
2275 
2276 void print_LIR(BlockList* blocks);
2277 
2278 class LIR_InsertionBuffer : public CompilationResourceObj {
2279  private:
2280   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2281 
2282   // list of insertion points. index and count are stored alternately:
2283   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2284   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2285   intStack    _index_and_count;
2286 
2287   // the LIR_Ops to be inserted
2288   LIR_OpList  _ops;
2289 
2290   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2291   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2292   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2293 
2294 #ifdef ASSERT
2295   void verify();
2296 #endif
2297  public:
2298   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2299 
2300   // must be called before using the insertion buffer
2301   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2302   bool initialized() const  { return _lir != NULL; }
2303   // called automatically when the buffer is appended to the LIR_List
2304   void finish()             { _lir = NULL; }
2305 
2306   // accessors
2307   LIR_List*  lir_list() const             { return _lir; }
2308   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2309   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2310   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2311 
2312   int number_of_ops() const               { return _ops.length(); }
2313   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2314 
2315   // append an instruction to the buffer
2316   void append(int index, LIR_Op* op);
2317 
2318   // instruction
2319   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2320 };
2321 
2322 
2323 //
2324 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2325 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2326 // information about the input, output and temporaries used by the
2327 // op to be recorded.  It also records whether the op has call semantics
2328 // and also records all the CodeEmitInfos used by this op.
2329 //
2330 
2331 
2332 class LIR_OpVisitState: public StackObj {
2333  public:
2334   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2335 
2336   enum {
2337     maxNumberOfOperands = 20,
2338     maxNumberOfInfos = 4
2339   };
2340 
2341  private:
2342   LIR_Op*          _op;
2343 
2344   // optimization: the operands and infos are not stored in a variable-length
2345   //               list, but in a fixed-size array to save time of size checks and resizing
2346   int              _oprs_len[numModes];
2347   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2348   int _info_len;
2349   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2350 
2351   bool             _has_call;
2352   bool             _has_slow_case;
2353 
2354 
2355   // only include register operands
2356   // addresses are decomposed to the base and index registers
2357   // constants and stack operands are ignored
2358   void append(LIR_Opr& opr, OprMode mode) {
2359     assert(opr->is_valid(), "should not call this otherwise");
2360     assert(mode >= 0 && mode < numModes, "bad mode");
2361 
2362     if (opr->is_register()) {
2363        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2364       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2365 
2366     } else if (opr->is_pointer()) {
2367       LIR_Address* address = opr->as_address_ptr();
2368       if (address != NULL) {
2369         // special handling for addresses: add base and index register of the address
2370         // both are always input operands or temp if we want to extend
2371         // their liveness!
2372         if (mode == outputMode) {
2373           mode = inputMode;
2374         }
2375         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2376         if (address->_base->is_valid()) {
2377           assert(address->_base->is_register(), "must be");
2378           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2379           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2380         }
2381         if (address->_index->is_valid()) {
2382           assert(address->_index->is_register(), "must be");
2383           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2384           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2385         }
2386 
2387       } else {
2388         assert(opr->is_constant(), "constant operands are not processed");
2389       }
2390     } else {
2391       assert(opr->is_stack(), "stack operands are not processed");
2392     }
2393   }
2394 
2395   void append(CodeEmitInfo* info) {
2396     assert(info != NULL, "should not call this otherwise");
2397     assert(_info_len < maxNumberOfInfos, "array overflow");
2398     _info_new[_info_len++] = info;
2399   }
2400 
2401  public:
2402   LIR_OpVisitState()         { reset(); }
2403 
2404   LIR_Op* op() const         { return _op; }
2405   void set_op(LIR_Op* op)    { reset(); _op = op; }
2406 
2407   bool has_call() const      { return _has_call; }
2408   bool has_slow_case() const { return _has_slow_case; }
2409 
2410   void reset() {
2411     _op = NULL;
2412     _has_call = false;
2413     _has_slow_case = false;
2414 
2415     _oprs_len[inputMode] = 0;
2416     _oprs_len[tempMode] = 0;
2417     _oprs_len[outputMode] = 0;
2418     _info_len = 0;
2419   }
2420 
2421 
2422   int opr_count(OprMode mode) const {
2423     assert(mode >= 0 && mode < numModes, "bad mode");
2424     return _oprs_len[mode];
2425   }
2426 
2427   LIR_Opr opr_at(OprMode mode, int index) const {
2428     assert(mode >= 0 && mode < numModes, "bad mode");
2429     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2430     return *_oprs_new[mode][index];
2431   }
2432 
2433   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2434     assert(mode >= 0 && mode < numModes, "bad mode");
2435     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2436     *_oprs_new[mode][index] = opr;
2437   }
2438 
2439   int info_count() const {
2440     return _info_len;
2441   }
2442 
2443   CodeEmitInfo* info_at(int index) const {
2444     assert(index < _info_len, "index out of bounds");
2445     return _info_new[index];
2446   }
2447 
2448   XHandlers* all_xhandler();
2449 
2450   // collects all register operands of the instruction
2451   void visit(LIR_Op* op);
2452 
2453 #ifdef ASSERT
2454   // check that an operation has no operands
2455   bool no_operands(LIR_Op* op);
2456 #endif
2457 
2458   // LIR_Op visitor functions use these to fill in the state
2459   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2460   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2461   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2462   void do_info(CodeEmitInfo* info)        { append(info); }
2463 
2464   void do_stub(CodeStub* stub);
2465   void do_call()                          { _has_call = true; }
2466   void do_slow_case()                     { _has_slow_case = true; }
2467   void do_slow_case(CodeEmitInfo* info) {
2468     _has_slow_case = true;
2469     append(info);
2470   }
2471 };
2472 
2473 
2474 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2475 
2476 #endif // SHARE_VM_C1_C1_LIR_HPP