1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VM_VERSION_X86_HPP
  27 
  28 #include "runtime/globals_extension.hpp"
  29 #include "runtime/vm_version.hpp"
  30 
  31 class VM_Version : public Abstract_VM_Version {
  32   friend class VMStructs;
  33   friend class JVMCIVMStructs;
  34 
  35  public:
  36   // cpuid result register layouts.  These are all unions of a uint32_t
  37   // (in case anyone wants access to the register as a whole) and a bitfield.
  38 
  39   union StdCpuid1Eax {
  40     uint32_t value;
  41     struct {
  42       uint32_t stepping   : 4,
  43                model      : 4,
  44                family     : 4,
  45                proc_type  : 2,
  46                           : 2,
  47                ext_model  : 4,
  48                ext_family : 8,
  49                           : 4;
  50     } bits;
  51   };
  52 
  53   union StdCpuid1Ebx { // example, unused
  54     uint32_t value;
  55     struct {
  56       uint32_t brand_id         : 8,
  57                clflush_size     : 8,
  58                threads_per_cpu  : 8,
  59                apic_id          : 8;
  60     } bits;
  61   };
  62 
  63   union StdCpuid1Ecx {
  64     uint32_t value;
  65     struct {
  66       uint32_t sse3     : 1,
  67                clmul    : 1,
  68                         : 1,
  69                monitor  : 1,
  70                         : 1,
  71                vmx      : 1,
  72                         : 1,
  73                est      : 1,
  74                         : 1,
  75                ssse3    : 1,
  76                cid      : 1,
  77                         : 2,
  78                cmpxchg16: 1,
  79                         : 4,
  80                dca      : 1,
  81                sse4_1   : 1,
  82                sse4_2   : 1,
  83                         : 2,
  84                popcnt   : 1,
  85                         : 1,
  86                aes      : 1,
  87                         : 1,
  88                osxsave  : 1,
  89                avx      : 1,
  90                         : 3;
  91     } bits;
  92   };
  93 
  94   union StdCpuid1Edx {
  95     uint32_t value;
  96     struct {
  97       uint32_t          : 4,
  98                tsc      : 1,
  99                         : 3,
 100                cmpxchg8 : 1,
 101                         : 6,
 102                cmov     : 1,
 103                         : 3,
 104                clflush  : 1,
 105                         : 3,
 106                mmx      : 1,
 107                fxsr     : 1,
 108                sse      : 1,
 109                sse2     : 1,
 110                         : 1,
 111                ht       : 1,
 112                         : 3;
 113     } bits;
 114   };
 115 
 116   union DcpCpuid4Eax {
 117     uint32_t value;
 118     struct {
 119       uint32_t cache_type    : 5,
 120                              : 21,
 121                cores_per_cpu : 6;
 122     } bits;
 123   };
 124 
 125   union DcpCpuid4Ebx {
 126     uint32_t value;
 127     struct {
 128       uint32_t L1_line_size  : 12,
 129                partitions    : 10,
 130                associativity : 10;
 131     } bits;
 132   };
 133 
 134   union TplCpuidBEbx {
 135     uint32_t value;
 136     struct {
 137       uint32_t logical_cpus : 16,
 138                             : 16;
 139     } bits;
 140   };
 141 
 142   union ExtCpuid1Ecx {
 143     uint32_t value;
 144     struct {
 145       uint32_t LahfSahf     : 1,
 146                CmpLegacy    : 1,
 147                             : 3,
 148                lzcnt_intel  : 1,
 149                lzcnt        : 1,
 150                sse4a        : 1,
 151                misalignsse  : 1,
 152                prefetchw    : 1,
 153                             : 22;
 154     } bits;
 155   };
 156 
 157   union ExtCpuid1Edx {
 158     uint32_t value;
 159     struct {
 160       uint32_t           : 22,
 161                mmx_amd   : 1,
 162                mmx       : 1,
 163                fxsr      : 1,
 164                          : 4,
 165                long_mode : 1,
 166                tdnow2    : 1,
 167                tdnow     : 1;
 168     } bits;
 169   };
 170 
 171   union ExtCpuid5Ex {
 172     uint32_t value;
 173     struct {
 174       uint32_t L1_line_size : 8,
 175                L1_tag_lines : 8,
 176                L1_assoc     : 8,
 177                L1_size      : 8;
 178     } bits;
 179   };
 180 
 181   union ExtCpuid7Edx {
 182     uint32_t value;
 183     struct {
 184       uint32_t               : 8,
 185               tsc_invariance : 1,
 186                              : 23;
 187     } bits;
 188   };
 189 
 190   union ExtCpuid8Ecx {
 191     uint32_t value;
 192     struct {
 193       uint32_t cores_per_cpu : 8,
 194                              : 24;
 195     } bits;
 196   };
 197 
 198   union SefCpuid7Eax {
 199     uint32_t value;
 200   };
 201 
 202   union SefCpuid7Ebx {
 203     uint32_t value;
 204     struct {
 205       uint32_t fsgsbase : 1,
 206                         : 2,
 207                    bmi1 : 1,
 208                         : 1,
 209                    avx2 : 1,
 210                         : 2,
 211                    bmi2 : 1,
 212                    erms : 1,
 213                         : 1,
 214                     rtm : 1,
 215                         : 4,
 216                 avx512f : 1,
 217                avx512dq : 1,
 218                         : 1,
 219                     adx : 1,
 220                         : 6,
 221                avx512pf : 1,
 222                avx512er : 1,
 223                avx512cd : 1,
 224                         : 1,
 225                avx512bw : 1,
 226                avx512vl : 1;
 227     } bits;
 228   };
 229 
 230   union XemXcr0Eax {
 231     uint32_t value;
 232     struct {
 233       uint32_t x87     : 1,
 234                sse     : 1,
 235                ymm     : 1,
 236                bndregs : 1,
 237                bndcsr  : 1,
 238                opmask  : 1,
 239                zmm512  : 1,
 240                zmm32   : 1,
 241                        : 24;
 242     } bits;
 243   };
 244 
 245 protected:
 246   static int _cpu;
 247   static int _model;
 248   static int _stepping;
 249 
 250   static address   _cpuinfo_segv_addr; // address of instruction which causes SEGV
 251   static address   _cpuinfo_cont_addr; // address of instruction after the one which causes SEGV
 252 
 253   enum Feature_Flag {
 254     CPU_CX8      = (1 << 0), // next bits are from cpuid 1 (EDX)
 255     CPU_CMOV     = (1 << 1),
 256     CPU_FXSR     = (1 << 2),
 257     CPU_HT       = (1 << 3),
 258     CPU_MMX      = (1 << 4),
 259     CPU_3DNOW_PREFETCH = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 260                                    // may not necessarily support other 3dnow instructions
 261     CPU_SSE      = (1 << 6),
 262     CPU_SSE2     = (1 << 7),
 263     CPU_SSE3     = (1 << 8),  // SSE3 comes from cpuid 1 (ECX)
 264     CPU_SSSE3    = (1 << 9),
 265     CPU_SSE4A    = (1 << 10),
 266     CPU_SSE4_1   = (1 << 11),
 267     CPU_SSE4_2   = (1 << 12),
 268     CPU_POPCNT   = (1 << 13),
 269     CPU_LZCNT    = (1 << 14),
 270     CPU_TSC      = (1 << 15),
 271     CPU_TSCINV   = (1 << 16),
 272     CPU_AVX      = (1 << 17),
 273     CPU_AVX2     = (1 << 18),
 274     CPU_AES      = (1 << 19),
 275     CPU_ERMS     = (1 << 20), // enhanced 'rep movsb/stosb' instructions
 276     CPU_CLMUL    = (1 << 21), // carryless multiply for CRC
 277     CPU_BMI1     = (1 << 22),
 278     CPU_BMI2     = (1 << 23),
 279     CPU_RTM      = (1 << 24), // Restricted Transactional Memory instructions
 280     CPU_ADX      = (1 << 25),
 281     CPU_AVX512F  = (1 << 26), // AVX 512bit foundation instructions
 282     CPU_AVX512DQ = (1 << 27),
 283     CPU_AVX512PF = (1 << 28),
 284     CPU_AVX512ER = (1 << 29),
 285     CPU_AVX512CD = (1 << 30),
 286     CPU_AVX512BW = (1 << 31)
 287   };
 288 
 289 #define CPU_AVX512VL UCONST64(0x100000000) // EVEX instructions with smaller vector length : enums are limited to 32bit
 290 
 291   enum Extended_Family {
 292     // AMD
 293     CPU_FAMILY_AMD_11H       = 0x11,
 294     // Intel
 295     CPU_FAMILY_INTEL_CORE    = 6,
 296     CPU_MODEL_NEHALEM        = 0x1e,
 297     CPU_MODEL_NEHALEM_EP     = 0x1a,
 298     CPU_MODEL_NEHALEM_EX     = 0x2e,
 299     CPU_MODEL_WESTMERE       = 0x25,
 300     CPU_MODEL_WESTMERE_EP    = 0x2c,
 301     CPU_MODEL_WESTMERE_EX    = 0x2f,
 302     CPU_MODEL_SANDYBRIDGE    = 0x2a,
 303     CPU_MODEL_SANDYBRIDGE_EP = 0x2d,
 304     CPU_MODEL_IVYBRIDGE_EP   = 0x3a,
 305     CPU_MODEL_HASWELL_E3     = 0x3c,
 306     CPU_MODEL_HASWELL_E7     = 0x3f,
 307     CPU_MODEL_BROADWELL      = 0x3d,
 308     CPU_MODEL_SKYLAKE        = CPU_MODEL_HASWELL_E3
 309   };
 310 
 311   // cpuid information block.  All info derived from executing cpuid with
 312   // various function numbers is stored here.  Intel and AMD info is
 313   // merged in this block: accessor methods disentangle it.
 314   //
 315   // The info block is laid out in subblocks of 4 dwords corresponding to
 316   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 317   struct CpuidInfo {
 318     // cpuid function 0
 319     uint32_t std_max_function;
 320     uint32_t std_vendor_name_0;
 321     uint32_t std_vendor_name_1;
 322     uint32_t std_vendor_name_2;
 323 
 324     // cpuid function 1
 325     StdCpuid1Eax std_cpuid1_eax;
 326     StdCpuid1Ebx std_cpuid1_ebx;
 327     StdCpuid1Ecx std_cpuid1_ecx;
 328     StdCpuid1Edx std_cpuid1_edx;
 329 
 330     // cpuid function 4 (deterministic cache parameters)
 331     DcpCpuid4Eax dcp_cpuid4_eax;
 332     DcpCpuid4Ebx dcp_cpuid4_ebx;
 333     uint32_t     dcp_cpuid4_ecx; // unused currently
 334     uint32_t     dcp_cpuid4_edx; // unused currently
 335 
 336     // cpuid function 7 (structured extended features)
 337     SefCpuid7Eax sef_cpuid7_eax;
 338     SefCpuid7Ebx sef_cpuid7_ebx;
 339     uint32_t     sef_cpuid7_ecx; // unused currently
 340     uint32_t     sef_cpuid7_edx; // unused currently
 341 
 342     // cpuid function 0xB (processor topology)
 343     // ecx = 0
 344     uint32_t     tpl_cpuidB0_eax;
 345     TplCpuidBEbx tpl_cpuidB0_ebx;
 346     uint32_t     tpl_cpuidB0_ecx; // unused currently
 347     uint32_t     tpl_cpuidB0_edx; // unused currently
 348 
 349     // ecx = 1
 350     uint32_t     tpl_cpuidB1_eax;
 351     TplCpuidBEbx tpl_cpuidB1_ebx;
 352     uint32_t     tpl_cpuidB1_ecx; // unused currently
 353     uint32_t     tpl_cpuidB1_edx; // unused currently
 354 
 355     // ecx = 2
 356     uint32_t     tpl_cpuidB2_eax;
 357     TplCpuidBEbx tpl_cpuidB2_ebx;
 358     uint32_t     tpl_cpuidB2_ecx; // unused currently
 359     uint32_t     tpl_cpuidB2_edx; // unused currently
 360 
 361     // cpuid function 0x80000000 // example, unused
 362     uint32_t ext_max_function;
 363     uint32_t ext_vendor_name_0;
 364     uint32_t ext_vendor_name_1;
 365     uint32_t ext_vendor_name_2;
 366 
 367     // cpuid function 0x80000001
 368     uint32_t     ext_cpuid1_eax; // reserved
 369     uint32_t     ext_cpuid1_ebx; // reserved
 370     ExtCpuid1Ecx ext_cpuid1_ecx;
 371     ExtCpuid1Edx ext_cpuid1_edx;
 372 
 373     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 374     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 375     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 376     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 377 
 378     // cpuid function 0x80000005 // AMD L1, Intel reserved
 379     uint32_t     ext_cpuid5_eax; // unused currently
 380     uint32_t     ext_cpuid5_ebx; // reserved
 381     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 382     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 383 
 384     // cpuid function 0x80000007
 385     uint32_t     ext_cpuid7_eax; // reserved
 386     uint32_t     ext_cpuid7_ebx; // reserved
 387     uint32_t     ext_cpuid7_ecx; // reserved
 388     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 389 
 390     // cpuid function 0x80000008
 391     uint32_t     ext_cpuid8_eax; // unused currently
 392     uint32_t     ext_cpuid8_ebx; // reserved
 393     ExtCpuid8Ecx ext_cpuid8_ecx;
 394     uint32_t     ext_cpuid8_edx; // reserved
 395 
 396     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 397     XemXcr0Eax   xem_xcr0_eax;
 398     uint32_t     xem_xcr0_edx; // reserved
 399 
 400     // Space to save ymm registers after signal handle
 401     int          ymm_save[8*4]; // Save ymm0, ymm7, ymm8, ymm15
 402 
 403     // Space to save zmm registers after signal handle
 404     int          zmm_save[16*4]; // Save zmm0, zmm7, zmm8, zmm31
 405   };
 406 
 407   // The actual cpuid info block
 408   static CpuidInfo _cpuid_info;
 409 
 410   // Extractors and predicates
 411   static uint32_t extended_cpu_family() {
 412     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 413     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 414     return result;
 415   }
 416 
 417   static uint32_t extended_cpu_model() {
 418     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 419     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 420     return result;
 421   }
 422 
 423   static uint32_t cpu_stepping() {
 424     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 425     return result;
 426   }
 427 
 428   static uint logical_processor_count() {
 429     uint result = threads_per_core();
 430     return result;
 431   }
 432 
 433   static uint64_t feature_flags() {
 434     uint64_t result = 0;
 435     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 436       result |= CPU_CX8;
 437     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 438       result |= CPU_CMOV;
 439     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 440         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 441       result |= CPU_FXSR;
 442     // HT flag is set for multi-core processors also.
 443     if (threads_per_core() > 1)
 444       result |= CPU_HT;
 445     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 446         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 447       result |= CPU_MMX;
 448     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 449       result |= CPU_SSE;
 450     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 451       result |= CPU_SSE2;
 452     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 453       result |= CPU_SSE3;
 454     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 455       result |= CPU_SSSE3;
 456     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 457       result |= CPU_SSE4_1;
 458     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 459       result |= CPU_SSE4_2;
 460     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 461       result |= CPU_POPCNT;
 462     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 463         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 464         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 465         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 466       result |= CPU_AVX;
 467       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 468         result |= CPU_AVX2;
 469       if (_cpuid_info.sef_cpuid7_ebx.bits.avx512f != 0 &&
 470           _cpuid_info.xem_xcr0_eax.bits.opmask != 0 &&
 471           _cpuid_info.xem_xcr0_eax.bits.zmm512 != 0 &&
 472           _cpuid_info.xem_xcr0_eax.bits.zmm32 != 0) {
 473         result |= CPU_AVX512F;
 474         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512cd != 0)
 475           result |= CPU_AVX512CD;
 476         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512dq != 0)
 477           result |= CPU_AVX512DQ;
 478         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512pf != 0)
 479           result |= CPU_AVX512PF;
 480         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512er != 0)
 481           result |= CPU_AVX512ER;
 482         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512bw != 0)
 483           result |= CPU_AVX512BW;
 484         if (_cpuid_info.sef_cpuid7_ebx.bits.avx512vl != 0)
 485           result |= CPU_AVX512VL;
 486       }
 487     }
 488     if(_cpuid_info.sef_cpuid7_ebx.bits.bmi1 != 0)
 489       result |= CPU_BMI1;
 490     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 491       result |= CPU_TSC;
 492     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 493       result |= CPU_TSCINV;
 494     if (_cpuid_info.std_cpuid1_ecx.bits.aes != 0)
 495       result |= CPU_AES;
 496     if (_cpuid_info.sef_cpuid7_ebx.bits.erms != 0)
 497       result |= CPU_ERMS;
 498     if (_cpuid_info.std_cpuid1_ecx.bits.clmul != 0)
 499       result |= CPU_CLMUL;
 500     if (_cpuid_info.sef_cpuid7_ebx.bits.rtm != 0)
 501       result |= CPU_RTM;
 502 
 503     // AMD features.
 504     if (is_amd()) {
 505       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 506           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 507         result |= CPU_3DNOW_PREFETCH;
 508       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 509         result |= CPU_LZCNT;
 510       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 511         result |= CPU_SSE4A;
 512     }
 513     // Intel features.
 514     if(is_intel()) {
 515       if(_cpuid_info.sef_cpuid7_ebx.bits.adx != 0)
 516          result |= CPU_ADX;
 517       if(_cpuid_info.sef_cpuid7_ebx.bits.bmi2 != 0)
 518         result |= CPU_BMI2;
 519       if(_cpuid_info.ext_cpuid1_ecx.bits.lzcnt_intel != 0)
 520         result |= CPU_LZCNT;
 521       // for Intel, ecx.bits.misalignsse bit (bit 8) indicates support for prefetchw
 522       if (_cpuid_info.ext_cpuid1_ecx.bits.misalignsse != 0) {
 523         result |= CPU_3DNOW_PREFETCH;
 524       }
 525     }
 526 
 527     return result;
 528   }
 529 
 530   static bool os_supports_avx_vectors() {
 531     bool retVal = false;
 532     if (supports_evex()) {
 533       // Verify that OS save/restore all bits of EVEX registers
 534       // during signal processing.
 535       int nreg = 2 LP64_ONLY(+2);
 536       retVal = true;
 537       for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 538         if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 539           retVal = false;
 540           break;
 541         }
 542       }
 543     } else if (supports_avx()) {
 544       // Verify that OS save/restore all bits of AVX registers
 545       // during signal processing.
 546       int nreg = 2 LP64_ONLY(+2);
 547       retVal = true;
 548       for (int i = 0; i < 8 * nreg; i++) { // 32 bytes per ymm register
 549         if (_cpuid_info.ymm_save[i] != ymm_test_value()) {
 550           retVal = false;
 551           break;
 552         }
 553       }
 554       // zmm_save will be set on a EVEX enabled machine even if we choose AVX code gen
 555       if (retVal == false) {
 556         // Verify that OS save/restore all bits of EVEX registers
 557         // during signal processing.
 558         int nreg = 2 LP64_ONLY(+2);
 559         retVal = true;
 560         for (int i = 0; i < 16 * nreg; i++) { // 64 bytes per zmm register
 561           if (_cpuid_info.zmm_save[i] != ymm_test_value()) {
 562             retVal = false;
 563             break;
 564           }
 565         }
 566       }
 567     }
 568     return retVal;
 569   }
 570 
 571   static void get_processor_features();
 572 
 573 public:
 574   // Offsets for cpuid asm stub
 575   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 576   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 577   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 578   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 579   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 580   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 581   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 582   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 583   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 584   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 585   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 586   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 587   static ByteSize ymm_save_offset() { return byte_offset_of(CpuidInfo, ymm_save); }
 588   static ByteSize zmm_save_offset() { return byte_offset_of(CpuidInfo, zmm_save); }
 589 
 590   // The value used to check ymm register after signal handle
 591   static int ymm_test_value()    { return 0xCAFEBABE; }
 592 
 593   static void get_cpu_info_wrapper();
 594   static void set_cpuinfo_segv_addr(address pc) { _cpuinfo_segv_addr = pc; }
 595   static bool  is_cpuinfo_segv_addr(address pc) { return _cpuinfo_segv_addr == pc; }
 596   static void set_cpuinfo_cont_addr(address pc) { _cpuinfo_cont_addr = pc; }
 597   static address  cpuinfo_cont_addr()           { return _cpuinfo_cont_addr; }
 598 
 599   static void clean_cpuFeatures()   { _features = 0; }
 600   static void set_avx_cpuFeatures() { _features = (CPU_SSE | CPU_SSE2 | CPU_AVX); }
 601   static void set_evex_cpuFeatures() { _features = (CPU_AVX512F | CPU_SSE | CPU_SSE2 ); }
 602 
 603 
 604   // Initialization
 605   static void initialize();
 606 
 607   // Override Abstract_VM_Version implementation
 608   static bool use_biased_locking();
 609 
 610   // Asserts
 611   static void assert_is_initialized() {
 612     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 613   }
 614 
 615   //
 616   // Processor family:
 617   //       3   -  386
 618   //       4   -  486
 619   //       5   -  Pentium
 620   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 621   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 622   //    family 6 model:   9,        13,       14,        15
 623   //    0x0f   -  Pentium 4, Opteron
 624   //
 625   // Note: The cpu family should be used to select between
 626   //       instruction sequences which are valid on all Intel
 627   //       processors.  Use the feature test functions below to
 628   //       determine whether a particular instruction is supported.
 629   //
 630   static int  cpu_family()        { return _cpu;}
 631   static bool is_P6()             { return cpu_family() >= 6; }
 632   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 633   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 634 
 635   static bool supports_processor_topology() {
 636     return (_cpuid_info.std_max_function >= 0xB) &&
 637            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 638            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 639            (((_cpuid_info.tpl_cpuidB0_eax & 0x1f) | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 640   }
 641 
 642   static uint cores_per_cpu()  {
 643     uint result = 1;
 644     if (is_intel()) {
 645       bool supports_topology = supports_processor_topology();
 646       if (supports_topology) {
 647         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 648                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 649       }
 650       if (!supports_topology || result == 0) {
 651         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 652       }
 653     } else if (is_amd()) {
 654       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 655     }
 656     return result;
 657   }
 658 
 659   static uint threads_per_core()  {
 660     uint result = 1;
 661     if (is_intel() && supports_processor_topology()) {
 662       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 663     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 664       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 665                cores_per_cpu();
 666     }
 667     return (result == 0 ? 1 : result);
 668   }
 669 
 670   static intx L1_line_size()  {
 671     intx result = 0;
 672     if (is_intel()) {
 673       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 674     } else if (is_amd()) {
 675       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 676     }
 677     if (result < 32) // not defined ?
 678       result = 32;   // 32 bytes by default on x86 and other x64
 679     return result;
 680   }
 681 
 682   static intx prefetch_data_size()  {
 683     return L1_line_size();
 684   }
 685 
 686   //
 687   // Feature identification
 688   //
 689   static bool supports_cpuid()    { return _features  != 0; }
 690   static bool supports_cmpxchg8() { return (_features & CPU_CX8) != 0; }
 691   static bool supports_cmov()     { return (_features & CPU_CMOV) != 0; }
 692   static bool supports_fxsr()     { return (_features & CPU_FXSR) != 0; }
 693   static bool supports_ht()       { return (_features & CPU_HT) != 0; }
 694   static bool supports_mmx()      { return (_features & CPU_MMX) != 0; }
 695   static bool supports_sse()      { return (_features & CPU_SSE) != 0; }
 696   static bool supports_sse2()     { return (_features & CPU_SSE2) != 0; }
 697   static bool supports_sse3()     { return (_features & CPU_SSE3) != 0; }
 698   static bool supports_ssse3()    { return (_features & CPU_SSSE3)!= 0; }
 699   static bool supports_sse4_1()   { return (_features & CPU_SSE4_1) != 0; }
 700   static bool supports_sse4_2()   { return (_features & CPU_SSE4_2) != 0; }
 701   static bool supports_popcnt()   { return (_features & CPU_POPCNT) != 0; }
 702   static bool supports_avx()      { return (_features & CPU_AVX) != 0; }
 703   static bool supports_avx2()     { return (_features & CPU_AVX2) != 0; }
 704   static bool supports_tsc()      { return (_features & CPU_TSC)    != 0; }
 705   static bool supports_aes()      { return (_features & CPU_AES) != 0; }
 706   static bool supports_erms()     { return (_features & CPU_ERMS) != 0; }
 707   static bool supports_clmul()    { return (_features & CPU_CLMUL) != 0; }
 708   static bool supports_rtm()      { return (_features & CPU_RTM) != 0; }
 709   static bool supports_bmi1()     { return (_features & CPU_BMI1) != 0; }
 710   static bool supports_bmi2()     { return (_features & CPU_BMI2) != 0; }
 711   static bool supports_adx()      { return (_features & CPU_ADX) != 0; }
 712   static bool supports_evex()     { return (_features & CPU_AVX512F) != 0; }
 713   static bool supports_avx512dq() { return (_features & CPU_AVX512DQ) != 0; }
 714   static bool supports_avx512pf() { return (_features & CPU_AVX512PF) != 0; }
 715   static bool supports_avx512er() { return (_features & CPU_AVX512ER) != 0; }
 716   static bool supports_avx512cd() { return (_features & CPU_AVX512CD) != 0; }
 717   static bool supports_avx512bw() { return (_features & CPU_AVX512BW) != 0; }
 718   static bool supports_avx512vl() { return (_features & CPU_AVX512VL) != 0; }
 719   static bool supports_avx512vlbw() { return (supports_avx512bw() && supports_avx512vl()); }
 720   static bool supports_avx512novl() { return (supports_evex() && !supports_avx512vl()); }
 721   static bool supports_avx512nobw() { return (supports_evex() && !supports_avx512bw()); }
 722   static bool supports_avx256only() { return (supports_avx2() && !supports_evex()); }
 723   static bool supports_avxonly()    { return ((supports_avx2() || supports_avx()) && !supports_evex()); }
 724   // Intel features
 725   static bool is_intel_family_core() { return is_intel() &&
 726                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 727 
 728   static bool is_intel_tsc_synched_at_init()  {
 729     if (is_intel_family_core()) {
 730       uint32_t ext_model = extended_cpu_model();
 731       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 732           ext_model == CPU_MODEL_WESTMERE_EP    ||
 733           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 734           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 735         // <= 2-socket invariant tsc support. EX versions are usually used
 736         // in > 2-socket systems and likely don't synchronize tscs at
 737         // initialization.
 738         // Code that uses tsc values must be prepared for them to arbitrarily
 739         // jump forward or backward.
 740         return true;
 741       }
 742     }
 743     return false;
 744   }
 745 
 746   // AMD features
 747   static bool supports_3dnow_prefetch()    { return (_features & CPU_3DNOW_PREFETCH) != 0; }
 748   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 749   static bool supports_lzcnt()    { return (_features & CPU_LZCNT) != 0; }
 750   static bool supports_sse4a()    { return (_features & CPU_SSE4A) != 0; }
 751 
 752   static bool is_amd_Barcelona()  { return is_amd() &&
 753                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
 754 
 755   // Intel and AMD newer cores support fast timestamps well
 756   static bool supports_tscinv_bit() {
 757     return (_features & CPU_TSCINV) != 0;
 758   }
 759   static bool supports_tscinv() {
 760     return supports_tscinv_bit() &&
 761            ( (is_amd() && !is_amd_Barcelona()) ||
 762              is_intel_tsc_synched_at_init() );
 763   }
 764 
 765   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 766   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 767                                            supports_sse3() && _model != 0x1C; }
 768 
 769   static bool supports_compare_and_exchange() { return true; }
 770 
 771   static intx allocate_prefetch_distance() {
 772     // This method should be called before allocate_prefetch_style().
 773     //
 774     // Hardware prefetching (distance/size in bytes):
 775     // Pentium 3 -  64 /  32
 776     // Pentium 4 - 256 / 128
 777     // Athlon    -  64 /  32 ????
 778     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 779     // Core      - 128 /  64
 780     //
 781     // Software prefetching (distance in bytes / instruction with best score):
 782     // Pentium 3 - 128 / prefetchnta
 783     // Pentium 4 - 512 / prefetchnta
 784     // Athlon    - 128 / prefetchnta
 785     // Opteron   - 256 / prefetchnta
 786     // Core      - 256 / prefetchnta
 787     // It will be used only when AllocatePrefetchStyle > 0
 788 
 789     intx count = AllocatePrefetchDistance;
 790     if (count < 0) {   // default ?
 791       if (is_amd()) {  // AMD
 792         if (supports_sse2())
 793           count = 256; // Opteron
 794         else
 795           count = 128; // Athlon
 796       } else {         // Intel
 797         if (supports_sse2())
 798           if (cpu_family() == 6) {
 799             count = 256; // Pentium M, Core, Core2
 800           } else {
 801             count = 512; // Pentium 4
 802           }
 803         else
 804           count = 128; // Pentium 3 (and all other old CPUs)
 805       }
 806     }
 807     return count;
 808   }
 809   static intx allocate_prefetch_style() {
 810     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
 811     // Return 0 if AllocatePrefetchDistance was not defined.
 812     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
 813   }
 814 
 815   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
 816   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
 817   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
 818   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
 819 
 820   // gc copy/scan is disabled if prefetchw isn't supported, because
 821   // Prefetch::write emits an inlined prefetchw on Linux.
 822   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
 823   // The used prefetcht0 instruction works for both amd64 and em64t.
 824   static intx prefetch_copy_interval_in_bytes() {
 825     intx interval = PrefetchCopyIntervalInBytes;
 826     return interval >= 0 ? interval : 576;
 827   }
 828   static intx prefetch_scan_interval_in_bytes() {
 829     intx interval = PrefetchScanIntervalInBytes;
 830     return interval >= 0 ? interval : 576;
 831   }
 832   static intx prefetch_fields_ahead() {
 833     intx count = PrefetchFieldsAhead;
 834     return count >= 0 ? count : 1;
 835   }
 836   static uint32_t get_xsave_header_lower_segment() {
 837     return _cpuid_info.xem_xcr0_eax.value;
 838   }
 839   static uint32_t get_xsave_header_upper_segment() {
 840     return _cpuid_info.xem_xcr0_edx;
 841   }
 842   
 843   // SSE2 and later processors implement a 'pause' instruction 
 844   // that can be used for efficient implementation of 
 845   // the intrinsic for java.lang.Runtime.onSpinWait() 
 846   static bool supports_on_spin_wait() { return supports_sse2(); }
 847 };
 848 
 849 #endif // CPU_X86_VM_VM_VERSION_X86_HPP