1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "assembler_sparc.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_sparc.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/methodOop.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/top.hpp"
  41 #ifdef TARGET_OS_FAMILY_linux
  42 # include "thread_linux.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_FAMILY_solaris
  45 # include "thread_solaris.inline.hpp"
  46 #endif
  47 #ifdef COMPILER2
  48 #include "opto/runtime.hpp"
  49 #endif
  50 
  51 // Declaration and definition of StubGenerator (no .hpp file).
  52 // For a more detailed description of the stub routine structure
  53 // see the comment in stubRoutines.hpp.
  54 
  55 #define __ _masm->
  56 
  57 #ifdef PRODUCT
  58 #define BLOCK_COMMENT(str) /* nothing */
  59 #else
  60 #define BLOCK_COMMENT(str) __ block_comment(str)
  61 #endif
  62 
  63 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  64 
  65 // Note:  The register L7 is used as L7_thread_cache, and may not be used
  66 //        any other way within this module.
  67 
  68 
  69 static const Register& Lstub_temp = L2;
  70 
  71 // -------------------------------------------------------------------------------------------------------------------------
  72 // Stub Code definitions
  73 
  74 static address handle_unsafe_access() {
  75   JavaThread* thread = JavaThread::current();
  76   address pc  = thread->saved_exception_pc();
  77   address npc = thread->saved_exception_npc();
  78   // pc is the instruction which we must emulate
  79   // doing a no-op is fine:  return garbage from the load
  80 
  81   // request an async exception
  82   thread->set_pending_unsafe_access_error();
  83 
  84   // return address of next instruction to execute
  85   return npc;
  86 }
  87 
  88 class StubGenerator: public StubCodeGenerator {
  89  private:
  90 
  91 #ifdef PRODUCT
  92 #define inc_counter_np(a,b,c) (0)
  93 #else
  94 #define inc_counter_np(counter, t1, t2) \
  95   BLOCK_COMMENT("inc_counter " #counter); \
  96   __ inc_counter(&counter, t1, t2);
  97 #endif
  98 
  99   //----------------------------------------------------------------------------------------------------
 100   // Call stubs are used to call Java from C
 101 
 102   address generate_call_stub(address& return_pc) {
 103     StubCodeMark mark(this, "StubRoutines", "call_stub");
 104     address start = __ pc();
 105 
 106     // Incoming arguments:
 107     //
 108     // o0         : call wrapper address
 109     // o1         : result (address)
 110     // o2         : result type
 111     // o3         : method
 112     // o4         : (interpreter) entry point
 113     // o5         : parameters (address)
 114     // [sp + 0x5c]: parameter size (in words)
 115     // [sp + 0x60]: thread
 116     //
 117     // +---------------+ <--- sp + 0
 118     // |               |
 119     // . reg save area .
 120     // |               |
 121     // +---------------+ <--- sp + 0x40
 122     // |               |
 123     // . extra 7 slots .
 124     // |               |
 125     // +---------------+ <--- sp + 0x5c
 126     // |  param. size  |
 127     // +---------------+ <--- sp + 0x60
 128     // |    thread     |
 129     // +---------------+
 130     // |               |
 131 
 132     // note: if the link argument position changes, adjust
 133     //       the code in frame::entry_frame_call_wrapper()
 134 
 135     const Argument link           = Argument(0, false); // used only for GC
 136     const Argument result         = Argument(1, false);
 137     const Argument result_type    = Argument(2, false);
 138     const Argument method         = Argument(3, false);
 139     const Argument entry_point    = Argument(4, false);
 140     const Argument parameters     = Argument(5, false);
 141     const Argument parameter_size = Argument(6, false);
 142     const Argument thread         = Argument(7, false);
 143 
 144     // setup thread register
 145     __ ld_ptr(thread.as_address(), G2_thread);
 146     __ reinit_heapbase();
 147 
 148 #ifdef ASSERT
 149     // make sure we have no pending exceptions
 150     { const Register t = G3_scratch;
 151       Label L;
 152       __ ld_ptr(G2_thread, in_bytes(Thread::pending_exception_offset()), t);
 153       __ br_null(t, false, Assembler::pt, L);
 154       __ delayed()->nop();
 155       __ stop("StubRoutines::call_stub: entered with pending exception");
 156       __ bind(L);
 157     }
 158 #endif
 159 
 160     // create activation frame & allocate space for parameters
 161     { const Register t = G3_scratch;
 162       __ ld_ptr(parameter_size.as_address(), t);                // get parameter size (in words)
 163       __ add(t, frame::memory_parameter_word_sp_offset, t);     // add space for save area (in words)
 164       __ round_to(t, WordsPerLong);                             // make sure it is multiple of 2 (in words)
 165       __ sll(t, Interpreter::logStackElementSize, t);           // compute number of bytes
 166       __ neg(t);                                                // negate so it can be used with save
 167       __ save(SP, t, SP);                                       // setup new frame
 168     }
 169 
 170     // +---------------+ <--- sp + 0
 171     // |               |
 172     // . reg save area .
 173     // |               |
 174     // +---------------+ <--- sp + 0x40
 175     // |               |
 176     // . extra 7 slots .
 177     // |               |
 178     // +---------------+ <--- sp + 0x5c
 179     // |  empty slot   |      (only if parameter size is even)
 180     // +---------------+
 181     // |               |
 182     // .  parameters   .
 183     // |               |
 184     // +---------------+ <--- fp + 0
 185     // |               |
 186     // . reg save area .
 187     // |               |
 188     // +---------------+ <--- fp + 0x40
 189     // |               |
 190     // . extra 7 slots .
 191     // |               |
 192     // +---------------+ <--- fp + 0x5c
 193     // |  param. size  |
 194     // +---------------+ <--- fp + 0x60
 195     // |    thread     |
 196     // +---------------+
 197     // |               |
 198 
 199     // pass parameters if any
 200     BLOCK_COMMENT("pass parameters if any");
 201     { const Register src = parameters.as_in().as_register();
 202       const Register dst = Lentry_args;
 203       const Register tmp = G3_scratch;
 204       const Register cnt = G4_scratch;
 205 
 206       // test if any parameters & setup of Lentry_args
 207       Label exit;
 208       __ ld_ptr(parameter_size.as_in().as_address(), cnt);      // parameter counter
 209       __ add( FP, STACK_BIAS, dst );
 210       __ tst(cnt);
 211       __ br(Assembler::zero, false, Assembler::pn, exit);
 212       __ delayed()->sub(dst, BytesPerWord, dst);                 // setup Lentry_args
 213 
 214       // copy parameters if any
 215       Label loop;
 216       __ BIND(loop);
 217       // Store parameter value
 218       __ ld_ptr(src, 0, tmp);
 219       __ add(src, BytesPerWord, src);
 220       __ st_ptr(tmp, dst, 0);
 221       __ deccc(cnt);
 222       __ br(Assembler::greater, false, Assembler::pt, loop);
 223       __ delayed()->sub(dst, Interpreter::stackElementSize, dst);
 224 
 225       // done
 226       __ BIND(exit);
 227     }
 228 
 229     // setup parameters, method & call Java function
 230 #ifdef ASSERT
 231     // layout_activation_impl checks it's notion of saved SP against
 232     // this register, so if this changes update it as well.
 233     const Register saved_SP = Lscratch;
 234     __ mov(SP, saved_SP);                               // keep track of SP before call
 235 #endif
 236 
 237     // setup parameters
 238     const Register t = G3_scratch;
 239     __ ld_ptr(parameter_size.as_in().as_address(), t); // get parameter size (in words)
 240     __ sll(t, Interpreter::logStackElementSize, t);    // compute number of bytes
 241     __ sub(FP, t, Gargs);                              // setup parameter pointer
 242 #ifdef _LP64
 243     __ add( Gargs, STACK_BIAS, Gargs );                // Account for LP64 stack bias
 244 #endif
 245     __ mov(SP, O5_savedSP);
 246 
 247 
 248     // do the call
 249     //
 250     // the following register must be setup:
 251     //
 252     // G2_thread
 253     // G5_method
 254     // Gargs
 255     BLOCK_COMMENT("call Java function");
 256     __ jmpl(entry_point.as_in().as_register(), G0, O7);
 257     __ delayed()->mov(method.as_in().as_register(), G5_method);   // setup method
 258 
 259     BLOCK_COMMENT("call_stub_return_address:");
 260     return_pc = __ pc();
 261 
 262     // The callee, if it wasn't interpreted, can return with SP changed so
 263     // we can no longer assert of change of SP.
 264 
 265     // store result depending on type
 266     // (everything that is not T_OBJECT, T_LONG, T_FLOAT, or T_DOUBLE
 267     //  is treated as T_INT)
 268     { const Register addr = result     .as_in().as_register();
 269       const Register type = result_type.as_in().as_register();
 270       Label is_long, is_float, is_double, is_object, exit;
 271       __            cmp(type, T_OBJECT);  __ br(Assembler::equal, false, Assembler::pn, is_object);
 272       __ delayed()->cmp(type, T_FLOAT);   __ br(Assembler::equal, false, Assembler::pn, is_float);
 273       __ delayed()->cmp(type, T_DOUBLE);  __ br(Assembler::equal, false, Assembler::pn, is_double);
 274       __ delayed()->cmp(type, T_LONG);    __ br(Assembler::equal, false, Assembler::pn, is_long);
 275       __ delayed()->nop();
 276 
 277       // store int result
 278       __ st(O0, addr, G0);
 279 
 280       __ BIND(exit);
 281       __ ret();
 282       __ delayed()->restore();
 283 
 284       __ BIND(is_object);
 285       __ ba(false, exit);
 286       __ delayed()->st_ptr(O0, addr, G0);
 287 
 288       __ BIND(is_float);
 289       __ ba(false, exit);
 290       __ delayed()->stf(FloatRegisterImpl::S, F0, addr, G0);
 291 
 292       __ BIND(is_double);
 293       __ ba(false, exit);
 294       __ delayed()->stf(FloatRegisterImpl::D, F0, addr, G0);
 295 
 296       __ BIND(is_long);
 297 #ifdef _LP64
 298       __ ba(false, exit);
 299       __ delayed()->st_long(O0, addr, G0);      // store entire long
 300 #else
 301 #if defined(COMPILER2)
 302   // All return values are where we want them, except for Longs.  C2 returns
 303   // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
 304   // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
 305   // build we simply always use G1.
 306   // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
 307   // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
 308   // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
 309 
 310       __ ba(false, exit);
 311       __ delayed()->stx(G1, addr, G0);  // store entire long
 312 #else
 313       __ st(O1, addr, BytesPerInt);
 314       __ ba(false, exit);
 315       __ delayed()->st(O0, addr, G0);
 316 #endif /* COMPILER2 */
 317 #endif /* _LP64 */
 318      }
 319      return start;
 320   }
 321 
 322 
 323   //----------------------------------------------------------------------------------------------------
 324   // Return point for a Java call if there's an exception thrown in Java code.
 325   // The exception is caught and transformed into a pending exception stored in
 326   // JavaThread that can be tested from within the VM.
 327   //
 328   // Oexception: exception oop
 329 
 330   address generate_catch_exception() {
 331     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 332 
 333     address start = __ pc();
 334     // verify that thread corresponds
 335     __ verify_thread();
 336 
 337     const Register& temp_reg = Gtemp;
 338     Address pending_exception_addr    (G2_thread, Thread::pending_exception_offset());
 339     Address exception_file_offset_addr(G2_thread, Thread::exception_file_offset   ());
 340     Address exception_line_offset_addr(G2_thread, Thread::exception_line_offset   ());
 341 
 342     // set pending exception
 343     __ verify_oop(Oexception);
 344     __ st_ptr(Oexception, pending_exception_addr);
 345     __ set((intptr_t)__FILE__, temp_reg);
 346     __ st_ptr(temp_reg, exception_file_offset_addr);
 347     __ set((intptr_t)__LINE__, temp_reg);
 348     __ st(temp_reg, exception_line_offset_addr);
 349 
 350     // complete return to VM
 351     assert(StubRoutines::_call_stub_return_address != NULL, "must have been generated before");
 352 
 353     AddressLiteral stub_ret(StubRoutines::_call_stub_return_address);
 354     __ jump_to(stub_ret, temp_reg);
 355     __ delayed()->nop();
 356 
 357     return start;
 358   }
 359 
 360 
 361   //----------------------------------------------------------------------------------------------------
 362   // Continuation point for runtime calls returning with a pending exception
 363   // The pending exception check happened in the runtime or native call stub
 364   // The pending exception in Thread is converted into a Java-level exception
 365   //
 366   // Contract with Java-level exception handler: O0 = exception
 367   //                                             O1 = throwing pc
 368 
 369   address generate_forward_exception() {
 370     StubCodeMark mark(this, "StubRoutines", "forward_exception");
 371     address start = __ pc();
 372 
 373     // Upon entry, O7 has the return address returning into Java
 374     // (interpreted or compiled) code; i.e. the return address
 375     // becomes the throwing pc.
 376 
 377     const Register& handler_reg = Gtemp;
 378 
 379     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 380 
 381 #ifdef ASSERT
 382     // make sure that this code is only executed if there is a pending exception
 383     { Label L;
 384       __ ld_ptr(exception_addr, Gtemp);
 385       __ br_notnull(Gtemp, false, Assembler::pt, L);
 386       __ delayed()->nop();
 387       __ stop("StubRoutines::forward exception: no pending exception (1)");
 388       __ bind(L);
 389     }
 390 #endif
 391 
 392     // compute exception handler into handler_reg
 393     __ get_thread();
 394     __ ld_ptr(exception_addr, Oexception);
 395     __ verify_oop(Oexception);
 396     __ save_frame(0);             // compensates for compiler weakness
 397     __ add(O7->after_save(), frame::pc_return_offset, Lscratch); // save the issuing PC
 398     BLOCK_COMMENT("call exception_handler_for_return_address");
 399     __ call_VM_leaf(L7_thread_cache, CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), G2_thread, Lscratch);
 400     __ mov(O0, handler_reg);
 401     __ restore();                 // compensates for compiler weakness
 402 
 403     __ ld_ptr(exception_addr, Oexception);
 404     __ add(O7, frame::pc_return_offset, Oissuing_pc); // save the issuing PC
 405 
 406 #ifdef ASSERT
 407     // make sure exception is set
 408     { Label L;
 409       __ br_notnull(Oexception, false, Assembler::pt, L);
 410       __ delayed()->nop();
 411       __ stop("StubRoutines::forward exception: no pending exception (2)");
 412       __ bind(L);
 413     }
 414 #endif
 415     // jump to exception handler
 416     __ jmp(handler_reg, 0);
 417     // clear pending exception
 418     __ delayed()->st_ptr(G0, exception_addr);
 419 
 420     return start;
 421   }
 422 
 423 
 424   //------------------------------------------------------------------------------------------------------------------------
 425   // Continuation point for throwing of implicit exceptions that are not handled in
 426   // the current activation. Fabricates an exception oop and initiates normal
 427   // exception dispatching in this frame. Only callee-saved registers are preserved
 428   // (through the normal register window / RegisterMap handling).
 429   // If the compiler needs all registers to be preserved between the fault
 430   // point and the exception handler then it must assume responsibility for that in
 431   // AbstractCompiler::continuation_for_implicit_null_exception or
 432   // continuation_for_implicit_division_by_zero_exception. All other implicit
 433   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
 434   // either at call sites or otherwise assume that stack unwinding will be initiated,
 435   // so caller saved registers were assumed volatile in the compiler.
 436 
 437   // Note that we generate only this stub into a RuntimeStub, because it needs to be
 438   // properly traversed and ignored during GC, so we change the meaning of the "__"
 439   // macro within this method.
 440 #undef __
 441 #define __ masm->
 442 
 443   address generate_throw_exception(const char* name, address runtime_entry, bool restore_saved_exception_pc) {
 444 #ifdef ASSERT
 445     int insts_size = VerifyThread ? 1 * K : 600;
 446 #else
 447     int insts_size = VerifyThread ? 1 * K : 256;
 448 #endif /* ASSERT */
 449     int locs_size  = 32;
 450 
 451     CodeBuffer      code(name, insts_size, locs_size);
 452     MacroAssembler* masm = new MacroAssembler(&code);
 453 
 454     __ verify_thread();
 455 
 456     // This is an inlined and slightly modified version of call_VM
 457     // which has the ability to fetch the return PC out of thread-local storage
 458     __ assert_not_delayed();
 459 
 460     // Note that we always push a frame because on the SPARC
 461     // architecture, for all of our implicit exception kinds at call
 462     // sites, the implicit exception is taken before the callee frame
 463     // is pushed.
 464     __ save_frame(0);
 465 
 466     int frame_complete = __ offset();
 467 
 468     if (restore_saved_exception_pc) {
 469       __ ld_ptr(G2_thread, JavaThread::saved_exception_pc_offset(), I7);
 470       __ sub(I7, frame::pc_return_offset, I7);
 471     }
 472 
 473     // Note that we always have a runtime stub frame on the top of stack by this point
 474     Register last_java_sp = SP;
 475     // 64-bit last_java_sp is biased!
 476     __ set_last_Java_frame(last_java_sp, G0);
 477     if (VerifyThread)  __ mov(G2_thread, O0); // about to be smashed; pass early
 478     __ save_thread(noreg);
 479     // do the call
 480     BLOCK_COMMENT("call runtime_entry");
 481     __ call(runtime_entry, relocInfo::runtime_call_type);
 482     if (!VerifyThread)
 483       __ delayed()->mov(G2_thread, O0);  // pass thread as first argument
 484     else
 485       __ delayed()->nop();             // (thread already passed)
 486     __ restore_thread(noreg);
 487     __ reset_last_Java_frame();
 488 
 489     // check for pending exceptions. use Gtemp as scratch register.
 490 #ifdef ASSERT
 491     Label L;
 492 
 493     Address exception_addr(G2_thread, Thread::pending_exception_offset());
 494     Register scratch_reg = Gtemp;
 495     __ ld_ptr(exception_addr, scratch_reg);
 496     __ br_notnull(scratch_reg, false, Assembler::pt, L);
 497     __ delayed()->nop();
 498     __ should_not_reach_here();
 499     __ bind(L);
 500 #endif // ASSERT
 501     BLOCK_COMMENT("call forward_exception_entry");
 502     __ call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
 503     // we use O7 linkage so that forward_exception_entry has the issuing PC
 504     __ delayed()->restore();
 505 
 506     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, masm->total_frame_size_in_bytes(0), NULL, false);
 507     return stub->entry_point();
 508   }
 509 
 510 #undef __
 511 #define __ _masm->
 512 
 513 
 514   // Generate a routine that sets all the registers so we
 515   // can tell if the stop routine prints them correctly.
 516   address generate_test_stop() {
 517     StubCodeMark mark(this, "StubRoutines", "test_stop");
 518     address start = __ pc();
 519 
 520     int i;
 521 
 522     __ save_frame(0);
 523 
 524     static jfloat zero = 0.0, one = 1.0;
 525 
 526     // put addr in L0, then load through L0 to F0
 527     __ set((intptr_t)&zero, L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F0);
 528     __ set((intptr_t)&one,  L0);  __ ldf( FloatRegisterImpl::S, L0, 0, F1); // 1.0 to F1
 529 
 530     // use add to put 2..18 in F2..F18
 531     for ( i = 2;  i <= 18;  ++i ) {
 532       __ fadd( FloatRegisterImpl::S, F1, as_FloatRegister(i-1),  as_FloatRegister(i));
 533     }
 534 
 535     // Now put double 2 in F16, double 18 in F18
 536     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F2, F16 );
 537     __ ftof( FloatRegisterImpl::S, FloatRegisterImpl::D, F18, F18 );
 538 
 539     // use add to put 20..32 in F20..F32
 540     for (i = 20; i < 32; i += 2) {
 541       __ fadd( FloatRegisterImpl::D, F16, as_FloatRegister(i-2),  as_FloatRegister(i));
 542     }
 543 
 544     // put 0..7 in i's, 8..15 in l's, 16..23 in o's, 24..31 in g's
 545     for ( i = 0; i < 8; ++i ) {
 546       if (i < 6) {
 547         __ set(     i, as_iRegister(i));
 548         __ set(16 + i, as_oRegister(i));
 549         __ set(24 + i, as_gRegister(i));
 550       }
 551       __ set( 8 + i, as_lRegister(i));
 552     }
 553 
 554     __ stop("testing stop");
 555 
 556 
 557     __ ret();
 558     __ delayed()->restore();
 559 
 560     return start;
 561   }
 562 
 563 
 564   address generate_stop_subroutine() {
 565     StubCodeMark mark(this, "StubRoutines", "stop_subroutine");
 566     address start = __ pc();
 567 
 568     __ stop_subroutine();
 569 
 570     return start;
 571   }
 572 
 573   address generate_flush_callers_register_windows() {
 574     StubCodeMark mark(this, "StubRoutines", "flush_callers_register_windows");
 575     address start = __ pc();
 576 
 577     __ flush_windows();
 578     __ retl(false);
 579     __ delayed()->add( FP, STACK_BIAS, O0 );
 580     // The returned value must be a stack pointer whose register save area
 581     // is flushed, and will stay flushed while the caller executes.
 582 
 583     return start;
 584   }
 585 
 586   // Helper functions for v8 atomic operations.
 587   //
 588   void get_v8_oop_lock_ptr(Register lock_ptr_reg, Register mark_oop_reg, Register scratch_reg) {
 589     if (mark_oop_reg == noreg) {
 590       address lock_ptr = (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr();
 591       __ set((intptr_t)lock_ptr, lock_ptr_reg);
 592     } else {
 593       assert(scratch_reg != noreg, "just checking");
 594       address lock_ptr = (address)StubRoutines::Sparc::_v8_oop_lock_cache;
 595       __ set((intptr_t)lock_ptr, lock_ptr_reg);
 596       __ and3(mark_oop_reg, StubRoutines::Sparc::v8_oop_lock_mask_in_place, scratch_reg);
 597       __ add(lock_ptr_reg, scratch_reg, lock_ptr_reg);
 598     }
 599   }
 600 
 601   void generate_v8_lock_prologue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
 602 
 603     get_v8_oop_lock_ptr(lock_ptr_reg, mark_oop_reg, scratch_reg);
 604     __ set(StubRoutines::Sparc::locked, lock_reg);
 605     // Initialize yield counter
 606     __ mov(G0,yield_reg);
 607 
 608     __ BIND(retry);
 609     __ cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
 610     __ br(Assembler::less, false, Assembler::pt, dontyield);
 611     __ delayed()->nop();
 612 
 613     // This code can only be called from inside the VM, this
 614     // stub is only invoked from Atomic::add().  We do not
 615     // want to use call_VM, because _last_java_sp and such
 616     // must already be set.
 617     //
 618     // Save the regs and make space for a C call
 619     __ save(SP, -96, SP);
 620     __ save_all_globals_into_locals();
 621     BLOCK_COMMENT("call os::naked_sleep");
 622     __ call(CAST_FROM_FN_PTR(address, os::naked_sleep));
 623     __ delayed()->nop();
 624     __ restore_globals_from_locals();
 625     __ restore();
 626     // reset the counter
 627     __ mov(G0,yield_reg);
 628 
 629     __ BIND(dontyield);
 630 
 631     // try to get lock
 632     __ swap(lock_ptr_reg, 0, lock_reg);
 633 
 634     // did we get the lock?
 635     __ cmp(lock_reg, StubRoutines::Sparc::unlocked);
 636     __ br(Assembler::notEqual, true, Assembler::pn, retry);
 637     __ delayed()->add(yield_reg,1,yield_reg);
 638 
 639     // yes, got lock. do the operation here.
 640   }
 641 
 642   void generate_v8_lock_epilogue(Register lock_reg, Register lock_ptr_reg, Register yield_reg, Label& retry, Label& dontyield, Register mark_oop_reg = noreg, Register scratch_reg = noreg) {
 643     __ st(lock_reg, lock_ptr_reg, 0); // unlock
 644   }
 645 
 646   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest).
 647   //
 648   // Arguments :
 649   //
 650   //      exchange_value: O0
 651   //      dest:           O1
 652   //
 653   // Results:
 654   //
 655   //     O0: the value previously stored in dest
 656   //
 657   address generate_atomic_xchg() {
 658     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 659     address start = __ pc();
 660 
 661     if (UseCASForSwap) {
 662       // Use CAS instead of swap, just in case the MP hardware
 663       // prefers to work with just one kind of synch. instruction.
 664       Label retry;
 665       __ BIND(retry);
 666       __ mov(O0, O3);       // scratch copy of exchange value
 667       __ ld(O1, 0, O2);     // observe the previous value
 668       // try to replace O2 with O3
 669       __ cas_under_lock(O1, O2, O3,
 670       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
 671       __ cmp(O2, O3);
 672       __ br(Assembler::notEqual, false, Assembler::pn, retry);
 673       __ delayed()->nop();
 674 
 675       __ retl(false);
 676       __ delayed()->mov(O2, O0);  // report previous value to caller
 677 
 678     } else {
 679       if (VM_Version::v9_instructions_work()) {
 680         __ retl(false);
 681         __ delayed()->swap(O1, 0, O0);
 682       } else {
 683         const Register& lock_reg = O2;
 684         const Register& lock_ptr_reg = O3;
 685         const Register& yield_reg = O4;
 686 
 687         Label retry;
 688         Label dontyield;
 689 
 690         generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
 691         // got the lock, do the swap
 692         __ swap(O1, 0, O0);
 693 
 694         generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
 695         __ retl(false);
 696         __ delayed()->nop();
 697       }
 698     }
 699 
 700     return start;
 701   }
 702 
 703 
 704   // Support for jint Atomic::cmpxchg(jint exchange_value, volatile jint* dest, jint compare_value)
 705   //
 706   // Arguments :
 707   //
 708   //      exchange_value: O0
 709   //      dest:           O1
 710   //      compare_value:  O2
 711   //
 712   // Results:
 713   //
 714   //     O0: the value previously stored in dest
 715   //
 716   // Overwrites (v8): O3,O4,O5
 717   //
 718   address generate_atomic_cmpxchg() {
 719     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg");
 720     address start = __ pc();
 721 
 722     // cmpxchg(dest, compare_value, exchange_value)
 723     __ cas_under_lock(O1, O2, O0,
 724       (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr(),false);
 725     __ retl(false);
 726     __ delayed()->nop();
 727 
 728     return start;
 729   }
 730 
 731   // Support for jlong Atomic::cmpxchg(jlong exchange_value, volatile jlong *dest, jlong compare_value)
 732   //
 733   // Arguments :
 734   //
 735   //      exchange_value: O1:O0
 736   //      dest:           O2
 737   //      compare_value:  O4:O3
 738   //
 739   // Results:
 740   //
 741   //     O1:O0: the value previously stored in dest
 742   //
 743   // This only works on V9, on V8 we don't generate any
 744   // code and just return NULL.
 745   //
 746   // Overwrites: G1,G2,G3
 747   //
 748   address generate_atomic_cmpxchg_long() {
 749     StubCodeMark mark(this, "StubRoutines", "atomic_cmpxchg_long");
 750     address start = __ pc();
 751 
 752     if (!VM_Version::supports_cx8())
 753         return NULL;;
 754     __ sllx(O0, 32, O0);
 755     __ srl(O1, 0, O1);
 756     __ or3(O0,O1,O0);      // O0 holds 64-bit value from compare_value
 757     __ sllx(O3, 32, O3);
 758     __ srl(O4, 0, O4);
 759     __ or3(O3,O4,O3);     // O3 holds 64-bit value from exchange_value
 760     __ casx(O2, O3, O0);
 761     __ srl(O0, 0, O1);    // unpacked return value in O1:O0
 762     __ retl(false);
 763     __ delayed()->srlx(O0, 32, O0);
 764 
 765     return start;
 766   }
 767 
 768 
 769   // Support for jint Atomic::add(jint add_value, volatile jint* dest).
 770   //
 771   // Arguments :
 772   //
 773   //      add_value: O0   (e.g., +1 or -1)
 774   //      dest:      O1
 775   //
 776   // Results:
 777   //
 778   //     O0: the new value stored in dest
 779   //
 780   // Overwrites (v9): O3
 781   // Overwrites (v8): O3,O4,O5
 782   //
 783   address generate_atomic_add() {
 784     StubCodeMark mark(this, "StubRoutines", "atomic_add");
 785     address start = __ pc();
 786     __ BIND(_atomic_add_stub);
 787 
 788     if (VM_Version::v9_instructions_work()) {
 789       Label(retry);
 790       __ BIND(retry);
 791 
 792       __ lduw(O1, 0, O2);
 793       __ add(O0,   O2, O3);
 794       __ cas(O1,   O2, O3);
 795       __ cmp(      O2, O3);
 796       __ br(Assembler::notEqual, false, Assembler::pn, retry);
 797       __ delayed()->nop();
 798       __ retl(false);
 799       __ delayed()->add(O0, O2, O0); // note that cas made O2==O3
 800     } else {
 801       const Register& lock_reg = O2;
 802       const Register& lock_ptr_reg = O3;
 803       const Register& value_reg = O4;
 804       const Register& yield_reg = O5;
 805 
 806       Label(retry);
 807       Label(dontyield);
 808 
 809       generate_v8_lock_prologue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
 810       // got lock, do the increment
 811       __ ld(O1, 0, value_reg);
 812       __ add(O0, value_reg, value_reg);
 813       __ st(value_reg, O1, 0);
 814 
 815       // %%% only for RMO and PSO
 816       __ membar(Assembler::StoreStore);
 817 
 818       generate_v8_lock_epilogue(lock_reg, lock_ptr_reg, yield_reg, retry, dontyield);
 819 
 820       __ retl(false);
 821       __ delayed()->mov(value_reg, O0);
 822     }
 823 
 824     return start;
 825   }
 826   Label _atomic_add_stub;  // called from other stubs
 827 
 828 
 829   //------------------------------------------------------------------------------------------------------------------------
 830   // The following routine generates a subroutine to throw an asynchronous
 831   // UnknownError when an unsafe access gets a fault that could not be
 832   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
 833   //
 834   // Arguments :
 835   //
 836   //      trapping PC:    O7
 837   //
 838   // Results:
 839   //     posts an asynchronous exception, skips the trapping instruction
 840   //
 841 
 842   address generate_handler_for_unsafe_access() {
 843     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 844     address start = __ pc();
 845 
 846     const int preserve_register_words = (64 * 2);
 847     Address preserve_addr(FP, (-preserve_register_words * wordSize) + STACK_BIAS);
 848 
 849     Register Lthread = L7_thread_cache;
 850     int i;
 851 
 852     __ save_frame(0);
 853     __ mov(G1, L1);
 854     __ mov(G2, L2);
 855     __ mov(G3, L3);
 856     __ mov(G4, L4);
 857     __ mov(G5, L5);
 858     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
 859       __ stf(FloatRegisterImpl::D, as_FloatRegister(i), preserve_addr, i * wordSize);
 860     }
 861 
 862     address entry_point = CAST_FROM_FN_PTR(address, handle_unsafe_access);
 863     BLOCK_COMMENT("call handle_unsafe_access");
 864     __ call(entry_point, relocInfo::runtime_call_type);
 865     __ delayed()->nop();
 866 
 867     __ mov(L1, G1);
 868     __ mov(L2, G2);
 869     __ mov(L3, G3);
 870     __ mov(L4, G4);
 871     __ mov(L5, G5);
 872     for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
 873       __ ldf(FloatRegisterImpl::D, preserve_addr, as_FloatRegister(i), i * wordSize);
 874     }
 875 
 876     __ verify_thread();
 877 
 878     __ jmp(O0, 0);
 879     __ delayed()->restore();
 880 
 881     return start;
 882   }
 883 
 884 
 885   // Support for uint StubRoutine::Sparc::partial_subtype_check( Klass sub, Klass super );
 886   // Arguments :
 887   //
 888   //      ret  : O0, returned
 889   //      icc/xcc: set as O0 (depending on wordSize)
 890   //      sub  : O1, argument, not changed
 891   //      super: O2, argument, not changed
 892   //      raddr: O7, blown by call
 893   address generate_partial_subtype_check() {
 894     __ align(CodeEntryAlignment);
 895     StubCodeMark mark(this, "StubRoutines", "partial_subtype_check");
 896     address start = __ pc();
 897     Label miss;
 898 
 899 #if defined(COMPILER2) && !defined(_LP64)
 900     // Do not use a 'save' because it blows the 64-bit O registers.
 901     __ add(SP,-4*wordSize,SP);  // Make space for 4 temps (stack must be 2 words aligned)
 902     __ st_ptr(L0,SP,(frame::register_save_words+0)*wordSize);
 903     __ st_ptr(L1,SP,(frame::register_save_words+1)*wordSize);
 904     __ st_ptr(L2,SP,(frame::register_save_words+2)*wordSize);
 905     __ st_ptr(L3,SP,(frame::register_save_words+3)*wordSize);
 906     Register Rret   = O0;
 907     Register Rsub   = O1;
 908     Register Rsuper = O2;
 909 #else
 910     __ save_frame(0);
 911     Register Rret   = I0;
 912     Register Rsub   = I1;
 913     Register Rsuper = I2;
 914 #endif
 915 
 916     Register L0_ary_len = L0;
 917     Register L1_ary_ptr = L1;
 918     Register L2_super   = L2;
 919     Register L3_index   = L3;
 920 
 921     __ check_klass_subtype_slow_path(Rsub, Rsuper,
 922                                      L0, L1, L2, L3,
 923                                      NULL, &miss);
 924 
 925     // Match falls through here.
 926     __ addcc(G0,0,Rret);        // set Z flags, Z result
 927 
 928 #if defined(COMPILER2) && !defined(_LP64)
 929     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
 930     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
 931     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
 932     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
 933     __ retl();                  // Result in Rret is zero; flags set to Z
 934     __ delayed()->add(SP,4*wordSize,SP);
 935 #else
 936     __ ret();                   // Result in Rret is zero; flags set to Z
 937     __ delayed()->restore();
 938 #endif
 939 
 940     __ BIND(miss);
 941     __ addcc(G0,1,Rret);        // set NZ flags, NZ result
 942 
 943 #if defined(COMPILER2) && !defined(_LP64)
 944     __ ld_ptr(SP,(frame::register_save_words+0)*wordSize,L0);
 945     __ ld_ptr(SP,(frame::register_save_words+1)*wordSize,L1);
 946     __ ld_ptr(SP,(frame::register_save_words+2)*wordSize,L2);
 947     __ ld_ptr(SP,(frame::register_save_words+3)*wordSize,L3);
 948     __ retl();                  // Result in Rret is != 0; flags set to NZ
 949     __ delayed()->add(SP,4*wordSize,SP);
 950 #else
 951     __ ret();                   // Result in Rret is != 0; flags set to NZ
 952     __ delayed()->restore();
 953 #endif
 954 
 955     return start;
 956   }
 957 
 958 
 959   // Called from MacroAssembler::verify_oop
 960   //
 961   address generate_verify_oop_subroutine() {
 962     StubCodeMark mark(this, "StubRoutines", "verify_oop_stub");
 963 
 964     address start = __ pc();
 965 
 966     __ verify_oop_subroutine();
 967 
 968     return start;
 969   }
 970 
 971 
 972   //
 973   // Verify that a register contains clean 32-bits positive value
 974   // (high 32-bits are 0) so it could be used in 64-bits shifts (sllx, srax).
 975   //
 976   //  Input:
 977   //    Rint  -  32-bits value
 978   //    Rtmp  -  scratch
 979   //
 980   void assert_clean_int(Register Rint, Register Rtmp) {
 981 #if defined(ASSERT) && defined(_LP64)
 982     __ signx(Rint, Rtmp);
 983     __ cmp(Rint, Rtmp);
 984     __ breakpoint_trap(Assembler::notEqual, Assembler::xcc);
 985 #endif
 986   }
 987 
 988   //
 989   //  Generate overlap test for array copy stubs
 990   //
 991   //  Input:
 992   //    O0    -  array1
 993   //    O1    -  array2
 994   //    O2    -  element count
 995   //
 996   //  Kills temps:  O3, O4
 997   //
 998   void array_overlap_test(address no_overlap_target, int log2_elem_size) {
 999     assert(no_overlap_target != NULL, "must be generated");
1000     array_overlap_test(no_overlap_target, NULL, log2_elem_size);
1001   }
1002   void array_overlap_test(Label& L_no_overlap, int log2_elem_size) {
1003     array_overlap_test(NULL, &L_no_overlap, log2_elem_size);
1004   }
1005   void array_overlap_test(address no_overlap_target, Label* NOLp, int log2_elem_size) {
1006     const Register from       = O0;
1007     const Register to         = O1;
1008     const Register count      = O2;
1009     const Register to_from    = O3; // to - from
1010     const Register byte_count = O4; // count << log2_elem_size
1011 
1012       __ subcc(to, from, to_from);
1013       __ sll_ptr(count, log2_elem_size, byte_count);
1014       if (NOLp == NULL)
1015         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, no_overlap_target);
1016       else
1017         __ brx(Assembler::lessEqualUnsigned, false, Assembler::pt, (*NOLp));
1018       __ delayed()->cmp(to_from, byte_count);
1019       if (NOLp == NULL)
1020         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, no_overlap_target);
1021       else
1022         __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, (*NOLp));
1023       __ delayed()->nop();
1024   }
1025 
1026   //
1027   //  Generate pre-write barrier for array.
1028   //
1029   //  Input:
1030   //     addr     - register containing starting address
1031   //     count    - register containing element count
1032   //     tmp      - scratch register
1033   //
1034   //  The input registers are overwritten.
1035   //
1036   void gen_write_ref_array_pre_barrier(Register addr, Register count) {
1037     BarrierSet* bs = Universe::heap()->barrier_set();
1038     if (bs->has_write_ref_pre_barrier()) {
1039       assert(bs->has_write_ref_array_pre_opt(),
1040              "Else unsupported barrier set.");
1041 
1042       __ save_frame(0);
1043       // Save the necessary global regs... will be used after.
1044       if (addr->is_global()) {
1045         __ mov(addr, L0);
1046       }
1047       if (count->is_global()) {
1048         __ mov(count, L1);
1049       }
1050       __ mov(addr->after_save(), O0);
1051       // Get the count into O1
1052       __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre));
1053       __ delayed()->mov(count->after_save(), O1);
1054       if (addr->is_global()) {
1055         __ mov(L0, addr);
1056       }
1057       if (count->is_global()) {
1058         __ mov(L1, count);
1059       }
1060       __ restore();
1061     }
1062   }
1063   //
1064   //  Generate post-write barrier for array.
1065   //
1066   //  Input:
1067   //     addr     - register containing starting address
1068   //     count    - register containing element count
1069   //     tmp      - scratch register
1070   //
1071   //  The input registers are overwritten.
1072   //
1073   void gen_write_ref_array_post_barrier(Register addr, Register count,
1074                                    Register tmp) {
1075     BarrierSet* bs = Universe::heap()->barrier_set();
1076 
1077     switch (bs->kind()) {
1078       case BarrierSet::G1SATBCT:
1079       case BarrierSet::G1SATBCTLogging:
1080         {
1081           // Get some new fresh output registers.
1082           __ save_frame(0);
1083           __ mov(addr->after_save(), O0);
1084           __ call(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post));
1085           __ delayed()->mov(count->after_save(), O1);
1086           __ restore();
1087         }
1088         break;
1089       case BarrierSet::CardTableModRef:
1090       case BarrierSet::CardTableExtension:
1091         {
1092           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1093           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1094           assert_different_registers(addr, count, tmp);
1095 
1096           Label L_loop;
1097 
1098           __ sll_ptr(count, LogBytesPerHeapOop, count);
1099           __ sub(count, BytesPerHeapOop, count);
1100           __ add(count, addr, count);
1101           // Use two shifts to clear out those low order two bits! (Cannot opt. into 1.)
1102           __ srl_ptr(addr, CardTableModRefBS::card_shift, addr);
1103           __ srl_ptr(count, CardTableModRefBS::card_shift, count);
1104           __ sub(count, addr, count);
1105           AddressLiteral rs(ct->byte_map_base);
1106           __ set(rs, tmp);
1107         __ BIND(L_loop);
1108           __ stb(G0, tmp, addr);
1109           __ subcc(count, 1, count);
1110           __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
1111           __ delayed()->add(addr, 1, addr);
1112         }
1113         break;
1114       case BarrierSet::ModRef:
1115         break;
1116       default:
1117         ShouldNotReachHere();
1118     }
1119   }
1120 
1121 
1122   // Copy big chunks forward with shift
1123   //
1124   // Inputs:
1125   //   from      - source arrays
1126   //   to        - destination array aligned to 8-bytes
1127   //   count     - elements count to copy >= the count equivalent to 16 bytes
1128   //   count_dec - elements count's decrement equivalent to 16 bytes
1129   //   L_copy_bytes - copy exit label
1130   //
1131   void copy_16_bytes_forward_with_shift(Register from, Register to,
1132                      Register count, int count_dec, Label& L_copy_bytes) {
1133     Label L_loop, L_aligned_copy, L_copy_last_bytes;
1134 
1135     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
1136       __ andcc(from, 7, G1); // misaligned bytes
1137       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
1138       __ delayed()->nop();
1139 
1140     const Register left_shift  = G1; // left  shift bit counter
1141     const Register right_shift = G5; // right shift bit counter
1142 
1143       __ sll(G1, LogBitsPerByte, left_shift);
1144       __ mov(64, right_shift);
1145       __ sub(right_shift, left_shift, right_shift);
1146 
1147     //
1148     // Load 2 aligned 8-bytes chunks and use one from previous iteration
1149     // to form 2 aligned 8-bytes chunks to store.
1150     //
1151       __ deccc(count, count_dec); // Pre-decrement 'count'
1152       __ andn(from, 7, from);     // Align address
1153       __ ldx(from, 0, O3);
1154       __ inc(from, 8);
1155       __ align(OptoLoopAlignment);
1156     __ BIND(L_loop);
1157       __ ldx(from, 0, O4);
1158       __ deccc(count, count_dec); // Can we do next iteration after this one?
1159       __ ldx(from, 8, G4);
1160       __ inc(to, 16);
1161       __ inc(from, 16);
1162       __ sllx(O3, left_shift,  O3);
1163       __ srlx(O4, right_shift, G3);
1164       __ bset(G3, O3);
1165       __ stx(O3, to, -16);
1166       __ sllx(O4, left_shift,  O4);
1167       __ srlx(G4, right_shift, G3);
1168       __ bset(G3, O4);
1169       __ stx(O4, to, -8);
1170       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
1171       __ delayed()->mov(G4, O3);
1172 
1173       __ inccc(count, count_dec>>1 ); // + 8 bytes
1174       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
1175       __ delayed()->inc(count, count_dec>>1); // restore 'count'
1176 
1177       // copy 8 bytes, part of them already loaded in O3
1178       __ ldx(from, 0, O4);
1179       __ inc(to, 8);
1180       __ inc(from, 8);
1181       __ sllx(O3, left_shift,  O3);
1182       __ srlx(O4, right_shift, G3);
1183       __ bset(O3, G3);
1184       __ stx(G3, to, -8);
1185 
1186     __ BIND(L_copy_last_bytes);
1187       __ srl(right_shift, LogBitsPerByte, right_shift); // misaligned bytes
1188       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
1189       __ delayed()->sub(from, right_shift, from);       // restore address
1190 
1191     __ BIND(L_aligned_copy);
1192   }
1193 
1194   // Copy big chunks backward with shift
1195   //
1196   // Inputs:
1197   //   end_from  - source arrays end address
1198   //   end_to    - destination array end address aligned to 8-bytes
1199   //   count     - elements count to copy >= the count equivalent to 16 bytes
1200   //   count_dec - elements count's decrement equivalent to 16 bytes
1201   //   L_aligned_copy - aligned copy exit label
1202   //   L_copy_bytes   - copy exit label
1203   //
1204   void copy_16_bytes_backward_with_shift(Register end_from, Register end_to,
1205                      Register count, int count_dec,
1206                      Label& L_aligned_copy, Label& L_copy_bytes) {
1207     Label L_loop, L_copy_last_bytes;
1208 
1209     // if both arrays have the same alignment mod 8, do 8 bytes aligned copy
1210       __ andcc(end_from, 7, G1); // misaligned bytes
1211       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
1212       __ delayed()->deccc(count, count_dec); // Pre-decrement 'count'
1213 
1214     const Register left_shift  = G1; // left  shift bit counter
1215     const Register right_shift = G5; // right shift bit counter
1216 
1217       __ sll(G1, LogBitsPerByte, left_shift);
1218       __ mov(64, right_shift);
1219       __ sub(right_shift, left_shift, right_shift);
1220 
1221     //
1222     // Load 2 aligned 8-bytes chunks and use one from previous iteration
1223     // to form 2 aligned 8-bytes chunks to store.
1224     //
1225       __ andn(end_from, 7, end_from);     // Align address
1226       __ ldx(end_from, 0, O3);
1227       __ align(OptoLoopAlignment);
1228     __ BIND(L_loop);
1229       __ ldx(end_from, -8, O4);
1230       __ deccc(count, count_dec); // Can we do next iteration after this one?
1231       __ ldx(end_from, -16, G4);
1232       __ dec(end_to, 16);
1233       __ dec(end_from, 16);
1234       __ srlx(O3, right_shift, O3);
1235       __ sllx(O4, left_shift,  G3);
1236       __ bset(G3, O3);
1237       __ stx(O3, end_to, 8);
1238       __ srlx(O4, right_shift, O4);
1239       __ sllx(G4, left_shift,  G3);
1240       __ bset(G3, O4);
1241       __ stx(O4, end_to, 0);
1242       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_loop);
1243       __ delayed()->mov(G4, O3);
1244 
1245       __ inccc(count, count_dec>>1 ); // + 8 bytes
1246       __ brx(Assembler::negative, true, Assembler::pn, L_copy_last_bytes);
1247       __ delayed()->inc(count, count_dec>>1); // restore 'count'
1248 
1249       // copy 8 bytes, part of them already loaded in O3
1250       __ ldx(end_from, -8, O4);
1251       __ dec(end_to, 8);
1252       __ dec(end_from, 8);
1253       __ srlx(O3, right_shift, O3);
1254       __ sllx(O4, left_shift,  G3);
1255       __ bset(O3, G3);
1256       __ stx(G3, end_to, 0);
1257 
1258     __ BIND(L_copy_last_bytes);
1259       __ srl(left_shift, LogBitsPerByte, left_shift);    // misaligned bytes
1260       __ br(Assembler::always, false, Assembler::pt, L_copy_bytes);
1261       __ delayed()->add(end_from, left_shift, end_from); // restore address
1262   }
1263 
1264   //
1265   //  Generate stub for disjoint byte copy.  If "aligned" is true, the
1266   //  "from" and "to" addresses are assumed to be heapword aligned.
1267   //
1268   // Arguments for generated stub:
1269   //      from:  O0
1270   //      to:    O1
1271   //      count: O2 treated as signed
1272   //
1273   address generate_disjoint_byte_copy(bool aligned, address *entry, const char *name) {
1274     __ align(CodeEntryAlignment);
1275     StubCodeMark mark(this, "StubRoutines", name);
1276     address start = __ pc();
1277 
1278     Label L_skip_alignment, L_align;
1279     Label L_copy_byte, L_copy_byte_loop, L_exit;
1280 
1281     const Register from      = O0;   // source array address
1282     const Register to        = O1;   // destination array address
1283     const Register count     = O2;   // elements count
1284     const Register offset    = O5;   // offset from start of arrays
1285     // O3, O4, G3, G4 are used as temp registers
1286 
1287     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1288 
1289     if (entry != NULL) {
1290       *entry = __ pc();
1291       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1292       BLOCK_COMMENT("Entry:");
1293     }
1294 
1295     // for short arrays, just do single element copy
1296     __ cmp(count, 23); // 16 + 7
1297     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
1298     __ delayed()->mov(G0, offset);
1299 
1300     if (aligned) {
1301       // 'aligned' == true when it is known statically during compilation
1302       // of this arraycopy call site that both 'from' and 'to' addresses
1303       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
1304       //
1305       // Aligned arrays have 4 bytes alignment in 32-bits VM
1306       // and 8 bytes - in 64-bits VM. So we do it only for 32-bits VM
1307       //
1308 #ifndef _LP64
1309       // copy a 4-bytes word if necessary to align 'to' to 8 bytes
1310       __ andcc(to, 7, G0);
1311       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment);
1312       __ delayed()->ld(from, 0, O3);
1313       __ inc(from, 4);
1314       __ inc(to, 4);
1315       __ dec(count, 4);
1316       __ st(O3, to, -4);
1317     __ BIND(L_skip_alignment);
1318 #endif
1319     } else {
1320       // copy bytes to align 'to' on 8 byte boundary
1321       __ andcc(to, 7, G1); // misaligned bytes
1322       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1323       __ delayed()->neg(G1);
1324       __ inc(G1, 8);       // bytes need to copy to next 8-bytes alignment
1325       __ sub(count, G1, count);
1326     __ BIND(L_align);
1327       __ ldub(from, 0, O3);
1328       __ deccc(G1);
1329       __ inc(from);
1330       __ stb(O3, to, 0);
1331       __ br(Assembler::notZero, false, Assembler::pt, L_align);
1332       __ delayed()->inc(to);
1333     __ BIND(L_skip_alignment);
1334     }
1335 #ifdef _LP64
1336     if (!aligned)
1337 #endif
1338     {
1339       // Copy with shift 16 bytes per iteration if arrays do not have
1340       // the same alignment mod 8, otherwise fall through to the next
1341       // code for aligned copy.
1342       // The compare above (count >= 23) guarantes 'count' >= 16 bytes.
1343       // Also jump over aligned copy after the copy with shift completed.
1344 
1345       copy_16_bytes_forward_with_shift(from, to, count, 16, L_copy_byte);
1346     }
1347 
1348     // Both array are 8 bytes aligned, copy 16 bytes at a time
1349       __ and3(count, 7, G4); // Save count
1350       __ srl(count, 3, count);
1351      generate_disjoint_long_copy_core(aligned);
1352       __ mov(G4, count);     // Restore count
1353 
1354     // copy tailing bytes
1355     __ BIND(L_copy_byte);
1356       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
1357       __ delayed()->nop();
1358       __ align(OptoLoopAlignment);
1359     __ BIND(L_copy_byte_loop);
1360       __ ldub(from, offset, O3);
1361       __ deccc(count);
1362       __ stb(O3, to, offset);
1363       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_byte_loop);
1364       __ delayed()->inc(offset);
1365 
1366     __ BIND(L_exit);
1367       // O3, O4 are used as temp registers
1368       inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
1369       __ retl();
1370       __ delayed()->mov(G0, O0); // return 0
1371     return start;
1372   }
1373 
1374   //
1375   //  Generate stub for conjoint byte copy.  If "aligned" is true, the
1376   //  "from" and "to" addresses are assumed to be heapword aligned.
1377   //
1378   // Arguments for generated stub:
1379   //      from:  O0
1380   //      to:    O1
1381   //      count: O2 treated as signed
1382   //
1383   address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
1384                                       address *entry, const char *name) {
1385     // Do reverse copy.
1386 
1387     __ align(CodeEntryAlignment);
1388     StubCodeMark mark(this, "StubRoutines", name);
1389     address start = __ pc();
1390 
1391     Label L_skip_alignment, L_align, L_aligned_copy;
1392     Label L_copy_byte, L_copy_byte_loop, L_exit;
1393 
1394     const Register from      = O0;   // source array address
1395     const Register to        = O1;   // destination array address
1396     const Register count     = O2;   // elements count
1397     const Register end_from  = from; // source array end address
1398     const Register end_to    = to;   // destination array end address
1399 
1400     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1401 
1402     if (entry != NULL) {
1403       *entry = __ pc();
1404       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1405       BLOCK_COMMENT("Entry:");
1406     }
1407 
1408     array_overlap_test(nooverlap_target, 0);
1409 
1410     __ add(to, count, end_to);       // offset after last copied element
1411 
1412     // for short arrays, just do single element copy
1413     __ cmp(count, 23); // 16 + 7
1414     __ brx(Assembler::less, false, Assembler::pn, L_copy_byte);
1415     __ delayed()->add(from, count, end_from);
1416 
1417     {
1418       // Align end of arrays since they could be not aligned even
1419       // when arrays itself are aligned.
1420 
1421       // copy bytes to align 'end_to' on 8 byte boundary
1422       __ andcc(end_to, 7, G1); // misaligned bytes
1423       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1424       __ delayed()->nop();
1425       __ sub(count, G1, count);
1426     __ BIND(L_align);
1427       __ dec(end_from);
1428       __ dec(end_to);
1429       __ ldub(end_from, 0, O3);
1430       __ deccc(G1);
1431       __ brx(Assembler::notZero, false, Assembler::pt, L_align);
1432       __ delayed()->stb(O3, end_to, 0);
1433     __ BIND(L_skip_alignment);
1434     }
1435 #ifdef _LP64
1436     if (aligned) {
1437       // Both arrays are aligned to 8-bytes in 64-bits VM.
1438       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
1439       // in unaligned case.
1440       __ dec(count, 16);
1441     } else
1442 #endif
1443     {
1444       // Copy with shift 16 bytes per iteration if arrays do not have
1445       // the same alignment mod 8, otherwise jump to the next
1446       // code for aligned copy (and substracting 16 from 'count' before jump).
1447       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
1448       // Also jump over aligned copy after the copy with shift completed.
1449 
1450       copy_16_bytes_backward_with_shift(end_from, end_to, count, 16,
1451                                         L_aligned_copy, L_copy_byte);
1452     }
1453     // copy 4 elements (16 bytes) at a time
1454       __ align(OptoLoopAlignment);
1455     __ BIND(L_aligned_copy);
1456       __ dec(end_from, 16);
1457       __ ldx(end_from, 8, O3);
1458       __ ldx(end_from, 0, O4);
1459       __ dec(end_to, 16);
1460       __ deccc(count, 16);
1461       __ stx(O3, end_to, 8);
1462       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
1463       __ delayed()->stx(O4, end_to, 0);
1464       __ inc(count, 16);
1465 
1466     // copy 1 element (2 bytes) at a time
1467     __ BIND(L_copy_byte);
1468       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
1469       __ delayed()->nop();
1470       __ align(OptoLoopAlignment);
1471     __ BIND(L_copy_byte_loop);
1472       __ dec(end_from);
1473       __ dec(end_to);
1474       __ ldub(end_from, 0, O4);
1475       __ deccc(count);
1476       __ brx(Assembler::greater, false, Assembler::pt, L_copy_byte_loop);
1477       __ delayed()->stb(O4, end_to, 0);
1478 
1479     __ BIND(L_exit);
1480     // O3, O4 are used as temp registers
1481     inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr, O3, O4);
1482     __ retl();
1483     __ delayed()->mov(G0, O0); // return 0
1484     return start;
1485   }
1486 
1487   //
1488   //  Generate stub for disjoint short copy.  If "aligned" is true, the
1489   //  "from" and "to" addresses are assumed to be heapword aligned.
1490   //
1491   // Arguments for generated stub:
1492   //      from:  O0
1493   //      to:    O1
1494   //      count: O2 treated as signed
1495   //
1496   address generate_disjoint_short_copy(bool aligned, address *entry, const char * name) {
1497     __ align(CodeEntryAlignment);
1498     StubCodeMark mark(this, "StubRoutines", name);
1499     address start = __ pc();
1500 
1501     Label L_skip_alignment, L_skip_alignment2;
1502     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
1503 
1504     const Register from      = O0;   // source array address
1505     const Register to        = O1;   // destination array address
1506     const Register count     = O2;   // elements count
1507     const Register offset    = O5;   // offset from start of arrays
1508     // O3, O4, G3, G4 are used as temp registers
1509 
1510     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1511 
1512     if (entry != NULL) {
1513       *entry = __ pc();
1514       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1515       BLOCK_COMMENT("Entry:");
1516     }
1517 
1518     // for short arrays, just do single element copy
1519     __ cmp(count, 11); // 8 + 3  (22 bytes)
1520     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
1521     __ delayed()->mov(G0, offset);
1522 
1523     if (aligned) {
1524       // 'aligned' == true when it is known statically during compilation
1525       // of this arraycopy call site that both 'from' and 'to' addresses
1526       // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
1527       //
1528       // Aligned arrays have 4 bytes alignment in 32-bits VM
1529       // and 8 bytes - in 64-bits VM.
1530       //
1531 #ifndef _LP64
1532       // copy a 2-elements word if necessary to align 'to' to 8 bytes
1533       __ andcc(to, 7, G0);
1534       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1535       __ delayed()->ld(from, 0, O3);
1536       __ inc(from, 4);
1537       __ inc(to, 4);
1538       __ dec(count, 2);
1539       __ st(O3, to, -4);
1540     __ BIND(L_skip_alignment);
1541 #endif
1542     } else {
1543       // copy 1 element if necessary to align 'to' on an 4 bytes
1544       __ andcc(to, 3, G0);
1545       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1546       __ delayed()->lduh(from, 0, O3);
1547       __ inc(from, 2);
1548       __ inc(to, 2);
1549       __ dec(count);
1550       __ sth(O3, to, -2);
1551     __ BIND(L_skip_alignment);
1552 
1553       // copy 2 elements to align 'to' on an 8 byte boundary
1554       __ andcc(to, 7, G0);
1555       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
1556       __ delayed()->lduh(from, 0, O3);
1557       __ dec(count, 2);
1558       __ lduh(from, 2, O4);
1559       __ inc(from, 4);
1560       __ inc(to, 4);
1561       __ sth(O3, to, -4);
1562       __ sth(O4, to, -2);
1563     __ BIND(L_skip_alignment2);
1564     }
1565 #ifdef _LP64
1566     if (!aligned)
1567 #endif
1568     {
1569       // Copy with shift 16 bytes per iteration if arrays do not have
1570       // the same alignment mod 8, otherwise fall through to the next
1571       // code for aligned copy.
1572       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
1573       // Also jump over aligned copy after the copy with shift completed.
1574 
1575       copy_16_bytes_forward_with_shift(from, to, count, 8, L_copy_2_bytes);
1576     }
1577 
1578     // Both array are 8 bytes aligned, copy 16 bytes at a time
1579       __ and3(count, 3, G4); // Save
1580       __ srl(count, 2, count);
1581      generate_disjoint_long_copy_core(aligned);
1582       __ mov(G4, count); // restore
1583 
1584     // copy 1 element at a time
1585     __ BIND(L_copy_2_bytes);
1586       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
1587       __ delayed()->nop();
1588       __ align(OptoLoopAlignment);
1589     __ BIND(L_copy_2_bytes_loop);
1590       __ lduh(from, offset, O3);
1591       __ deccc(count);
1592       __ sth(O3, to, offset);
1593       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_2_bytes_loop);
1594       __ delayed()->inc(offset, 2);
1595 
1596     __ BIND(L_exit);
1597       // O3, O4 are used as temp registers
1598       inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
1599       __ retl();
1600       __ delayed()->mov(G0, O0); // return 0
1601     return start;
1602   }
1603 
1604   //
1605   //  Generate stub for disjoint short fill.  If "aligned" is true, the
1606   //  "to" address is assumed to be heapword aligned.
1607   //
1608   // Arguments for generated stub:
1609   //      to:    O0
1610   //      value: O1
1611   //      count: O2 treated as signed
1612   //
1613   address generate_fill(BasicType t, bool aligned, const char* name) {
1614     __ align(CodeEntryAlignment);
1615     StubCodeMark mark(this, "StubRoutines", name);
1616     address start = __ pc();
1617 
1618     const Register to        = O0;   // source array address
1619     const Register value     = O1;   // fill value
1620     const Register count     = O2;   // elements count
1621     // O3 is used as a temp register
1622 
1623     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1624 
1625     Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
1626     Label L_fill_2_bytes, L_fill_elements, L_fill_32_bytes;
1627 
1628     int shift = -1;
1629     switch (t) {
1630        case T_BYTE:
1631         shift = 2;
1632         break;
1633        case T_SHORT:
1634         shift = 1;
1635         break;
1636       case T_INT:
1637          shift = 0;
1638         break;
1639       default: ShouldNotReachHere();
1640     }
1641 
1642     BLOCK_COMMENT("Entry:");
1643 
1644     if (t == T_BYTE) {
1645       // Zero extend value
1646       __ and3(value, 0xff, value);
1647       __ sllx(value, 8, O3);
1648       __ or3(value, O3, value);
1649     }
1650     if (t == T_SHORT) {
1651       // Zero extend value
1652       __ sllx(value, 48, value);
1653       __ srlx(value, 48, value);
1654     }
1655     if (t == T_BYTE || t == T_SHORT) {
1656       __ sllx(value, 16, O3);
1657       __ or3(value, O3, value);
1658     }
1659 
1660     __ cmp(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
1661     __ brx(Assembler::lessUnsigned, false, Assembler::pn, L_fill_elements); // use unsigned cmp
1662     __ delayed()->andcc(count, 1, G0);
1663 
1664     if (!aligned && (t == T_BYTE || t == T_SHORT)) {
1665       // align source address at 4 bytes address boundary
1666       if (t == T_BYTE) {
1667         // One byte misalignment happens only for byte arrays
1668         __ andcc(to, 1, G0);
1669         __ br(Assembler::zero, false, Assembler::pt, L_skip_align1);
1670         __ delayed()->nop();
1671         __ stb(value, to, 0);
1672         __ inc(to, 1);
1673         __ dec(count, 1);
1674         __ BIND(L_skip_align1);
1675       }
1676       // Two bytes misalignment happens only for byte and short (char) arrays
1677       __ andcc(to, 2, G0);
1678       __ br(Assembler::zero, false, Assembler::pt, L_skip_align2);
1679       __ delayed()->nop();
1680       __ sth(value, to, 0);
1681       __ inc(to, 2);
1682       __ dec(count, 1 << (shift - 1));
1683       __ BIND(L_skip_align2);
1684     }
1685 #ifdef _LP64
1686     if (!aligned) {
1687 #endif
1688     // align to 8 bytes, we know we are 4 byte aligned to start
1689     __ andcc(to, 7, G0);
1690     __ br(Assembler::zero, false, Assembler::pt, L_fill_32_bytes);
1691     __ delayed()->nop();
1692     __ stw(value, to, 0);
1693     __ inc(to, 4);
1694     __ dec(count, 1 << shift);
1695     __ BIND(L_fill_32_bytes);
1696 #ifdef _LP64
1697     }
1698 #endif
1699 
1700     if (t == T_INT) {
1701       // Zero extend value
1702       __ srl(value, 0, value);
1703     }
1704     if (t == T_BYTE || t == T_SHORT || t == T_INT) {
1705       __ sllx(value, 32, O3);
1706       __ or3(value, O3, value);
1707     }
1708 
1709     Label L_check_fill_8_bytes;
1710     // Fill 32-byte chunks
1711     __ subcc(count, 8 << shift, count);
1712     __ brx(Assembler::less, false, Assembler::pt, L_check_fill_8_bytes);
1713     __ delayed()->nop();
1714 
1715     Label L_fill_32_bytes_loop, L_fill_4_bytes;
1716     __ align(16);
1717     __ BIND(L_fill_32_bytes_loop);
1718 
1719     __ stx(value, to, 0);
1720     __ stx(value, to, 8);
1721     __ stx(value, to, 16);
1722     __ stx(value, to, 24);
1723 
1724     __ subcc(count, 8 << shift, count);
1725     __ brx(Assembler::greaterEqual, false, Assembler::pt, L_fill_32_bytes_loop);
1726     __ delayed()->add(to, 32, to);
1727 
1728     __ BIND(L_check_fill_8_bytes);
1729     __ addcc(count, 8 << shift, count);
1730     __ brx(Assembler::zero, false, Assembler::pn, L_exit);
1731     __ delayed()->subcc(count, 1 << (shift + 1), count);
1732     __ brx(Assembler::less, false, Assembler::pn, L_fill_4_bytes);
1733     __ delayed()->andcc(count, 1<<shift, G0);
1734 
1735     //
1736     // length is too short, just fill 8 bytes at a time
1737     //
1738     Label L_fill_8_bytes_loop;
1739     __ BIND(L_fill_8_bytes_loop);
1740     __ stx(value, to, 0);
1741     __ subcc(count, 1 << (shift + 1), count);
1742     __ brx(Assembler::greaterEqual, false, Assembler::pn, L_fill_8_bytes_loop);
1743     __ delayed()->add(to, 8, to);
1744 
1745     // fill trailing 4 bytes
1746     __ andcc(count, 1<<shift, G0);  // in delay slot of branches
1747     if (t == T_INT) {
1748       __ BIND(L_fill_elements);
1749     }
1750     __ BIND(L_fill_4_bytes);
1751     __ brx(Assembler::zero, false, Assembler::pt, L_fill_2_bytes);
1752     if (t == T_BYTE || t == T_SHORT) {
1753       __ delayed()->andcc(count, 1<<(shift-1), G0);
1754     } else {
1755       __ delayed()->nop();
1756     }
1757     __ stw(value, to, 0);
1758     if (t == T_BYTE || t == T_SHORT) {
1759       __ inc(to, 4);
1760       // fill trailing 2 bytes
1761       __ andcc(count, 1<<(shift-1), G0); // in delay slot of branches
1762       __ BIND(L_fill_2_bytes);
1763       __ brx(Assembler::zero, false, Assembler::pt, L_fill_byte);
1764       __ delayed()->andcc(count, 1, count);
1765       __ sth(value, to, 0);
1766       if (t == T_BYTE) {
1767         __ inc(to, 2);
1768         // fill trailing byte
1769         __ andcc(count, 1, count);  // in delay slot of branches
1770         __ BIND(L_fill_byte);
1771         __ brx(Assembler::zero, false, Assembler::pt, L_exit);
1772         __ delayed()->nop();
1773         __ stb(value, to, 0);
1774       } else {
1775         __ BIND(L_fill_byte);
1776       }
1777     } else {
1778       __ BIND(L_fill_2_bytes);
1779     }
1780     __ BIND(L_exit);
1781     __ retl();
1782     __ delayed()->nop();
1783 
1784     // Handle copies less than 8 bytes.  Int is handled elsewhere.
1785     if (t == T_BYTE) {
1786       __ BIND(L_fill_elements);
1787       Label L_fill_2, L_fill_4;
1788       // in delay slot __ andcc(count, 1, G0);
1789       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
1790       __ delayed()->andcc(count, 2, G0);
1791       __ stb(value, to, 0);
1792       __ inc(to, 1);
1793       __ BIND(L_fill_2);
1794       __ brx(Assembler::zero, false, Assembler::pt, L_fill_4);
1795       __ delayed()->andcc(count, 4, G0);
1796       __ stb(value, to, 0);
1797       __ stb(value, to, 1);
1798       __ inc(to, 2);
1799       __ BIND(L_fill_4);
1800       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
1801       __ delayed()->nop();
1802       __ stb(value, to, 0);
1803       __ stb(value, to, 1);
1804       __ stb(value, to, 2);
1805       __ retl();
1806       __ delayed()->stb(value, to, 3);
1807     }
1808 
1809     if (t == T_SHORT) {
1810       Label L_fill_2;
1811       __ BIND(L_fill_elements);
1812       // in delay slot __ andcc(count, 1, G0);
1813       __ brx(Assembler::zero, false, Assembler::pt, L_fill_2);
1814       __ delayed()->andcc(count, 2, G0);
1815       __ sth(value, to, 0);
1816       __ inc(to, 2);
1817       __ BIND(L_fill_2);
1818       __ brx(Assembler::zero, false, Assembler::pt, L_exit);
1819       __ delayed()->nop();
1820       __ sth(value, to, 0);
1821       __ retl();
1822       __ delayed()->sth(value, to, 2);
1823     }
1824     return start;
1825   }
1826 
1827   //
1828   //  Generate stub for conjoint short copy.  If "aligned" is true, the
1829   //  "from" and "to" addresses are assumed to be heapword aligned.
1830   //
1831   // Arguments for generated stub:
1832   //      from:  O0
1833   //      to:    O1
1834   //      count: O2 treated as signed
1835   //
1836   address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
1837                                        address *entry, const char *name) {
1838     // Do reverse copy.
1839 
1840     __ align(CodeEntryAlignment);
1841     StubCodeMark mark(this, "StubRoutines", name);
1842     address start = __ pc();
1843 
1844     Label L_skip_alignment, L_skip_alignment2, L_aligned_copy;
1845     Label L_copy_2_bytes, L_copy_2_bytes_loop, L_exit;
1846 
1847     const Register from      = O0;   // source array address
1848     const Register to        = O1;   // destination array address
1849     const Register count     = O2;   // elements count
1850     const Register end_from  = from; // source array end address
1851     const Register end_to    = to;   // destination array end address
1852 
1853     const Register byte_count = O3;  // bytes count to copy
1854 
1855     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
1856 
1857     if (entry != NULL) {
1858       *entry = __ pc();
1859       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
1860       BLOCK_COMMENT("Entry:");
1861     }
1862 
1863     array_overlap_test(nooverlap_target, 1);
1864 
1865     __ sllx(count, LogBytesPerShort, byte_count);
1866     __ add(to, byte_count, end_to);  // offset after last copied element
1867 
1868     // for short arrays, just do single element copy
1869     __ cmp(count, 11); // 8 + 3  (22 bytes)
1870     __ brx(Assembler::less, false, Assembler::pn, L_copy_2_bytes);
1871     __ delayed()->add(from, byte_count, end_from);
1872 
1873     {
1874       // Align end of arrays since they could be not aligned even
1875       // when arrays itself are aligned.
1876 
1877       // copy 1 element if necessary to align 'end_to' on an 4 bytes
1878       __ andcc(end_to, 3, G0);
1879       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1880       __ delayed()->lduh(end_from, -2, O3);
1881       __ dec(end_from, 2);
1882       __ dec(end_to, 2);
1883       __ dec(count);
1884       __ sth(O3, end_to, 0);
1885     __ BIND(L_skip_alignment);
1886 
1887       // copy 2 elements to align 'end_to' on an 8 byte boundary
1888       __ andcc(end_to, 7, G0);
1889       __ br(Assembler::zero, false, Assembler::pn, L_skip_alignment2);
1890       __ delayed()->lduh(end_from, -2, O3);
1891       __ dec(count, 2);
1892       __ lduh(end_from, -4, O4);
1893       __ dec(end_from, 4);
1894       __ dec(end_to, 4);
1895       __ sth(O3, end_to, 2);
1896       __ sth(O4, end_to, 0);
1897     __ BIND(L_skip_alignment2);
1898     }
1899 #ifdef _LP64
1900     if (aligned) {
1901       // Both arrays are aligned to 8-bytes in 64-bits VM.
1902       // The 'count' is decremented in copy_16_bytes_backward_with_shift()
1903       // in unaligned case.
1904       __ dec(count, 8);
1905     } else
1906 #endif
1907     {
1908       // Copy with shift 16 bytes per iteration if arrays do not have
1909       // the same alignment mod 8, otherwise jump to the next
1910       // code for aligned copy (and substracting 8 from 'count' before jump).
1911       // The compare above (count >= 11) guarantes 'count' >= 16 bytes.
1912       // Also jump over aligned copy after the copy with shift completed.
1913 
1914       copy_16_bytes_backward_with_shift(end_from, end_to, count, 8,
1915                                         L_aligned_copy, L_copy_2_bytes);
1916     }
1917     // copy 4 elements (16 bytes) at a time
1918       __ align(OptoLoopAlignment);
1919     __ BIND(L_aligned_copy);
1920       __ dec(end_from, 16);
1921       __ ldx(end_from, 8, O3);
1922       __ ldx(end_from, 0, O4);
1923       __ dec(end_to, 16);
1924       __ deccc(count, 8);
1925       __ stx(O3, end_to, 8);
1926       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
1927       __ delayed()->stx(O4, end_to, 0);
1928       __ inc(count, 8);
1929 
1930     // copy 1 element (2 bytes) at a time
1931     __ BIND(L_copy_2_bytes);
1932       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
1933       __ delayed()->nop();
1934     __ BIND(L_copy_2_bytes_loop);
1935       __ dec(end_from, 2);
1936       __ dec(end_to, 2);
1937       __ lduh(end_from, 0, O4);
1938       __ deccc(count);
1939       __ brx(Assembler::greater, false, Assembler::pt, L_copy_2_bytes_loop);
1940       __ delayed()->sth(O4, end_to, 0);
1941 
1942     __ BIND(L_exit);
1943     // O3, O4 are used as temp registers
1944     inc_counter_np(SharedRuntime::_jshort_array_copy_ctr, O3, O4);
1945     __ retl();
1946     __ delayed()->mov(G0, O0); // return 0
1947     return start;
1948   }
1949 
1950   //
1951   //  Generate core code for disjoint int copy (and oop copy on 32-bit).
1952   //  If "aligned" is true, the "from" and "to" addresses are assumed
1953   //  to be heapword aligned.
1954   //
1955   // Arguments:
1956   //      from:  O0
1957   //      to:    O1
1958   //      count: O2 treated as signed
1959   //
1960   void generate_disjoint_int_copy_core(bool aligned) {
1961 
1962     Label L_skip_alignment, L_aligned_copy;
1963     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
1964 
1965     const Register from      = O0;   // source array address
1966     const Register to        = O1;   // destination array address
1967     const Register count     = O2;   // elements count
1968     const Register offset    = O5;   // offset from start of arrays
1969     // O3, O4, G3, G4 are used as temp registers
1970 
1971     // 'aligned' == true when it is known statically during compilation
1972     // of this arraycopy call site that both 'from' and 'to' addresses
1973     // are HeapWordSize aligned (see LibraryCallKit::basictype2arraycopy()).
1974     //
1975     // Aligned arrays have 4 bytes alignment in 32-bits VM
1976     // and 8 bytes - in 64-bits VM.
1977     //
1978 #ifdef _LP64
1979     if (!aligned)
1980 #endif
1981     {
1982       // The next check could be put under 'ifndef' since the code in
1983       // generate_disjoint_long_copy_core() has own checks and set 'offset'.
1984 
1985       // for short arrays, just do single element copy
1986       __ cmp(count, 5); // 4 + 1 (20 bytes)
1987       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
1988       __ delayed()->mov(G0, offset);
1989 
1990       // copy 1 element to align 'to' on an 8 byte boundary
1991       __ andcc(to, 7, G0);
1992       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
1993       __ delayed()->ld(from, 0, O3);
1994       __ inc(from, 4);
1995       __ inc(to, 4);
1996       __ dec(count);
1997       __ st(O3, to, -4);
1998     __ BIND(L_skip_alignment);
1999 
2000     // if arrays have same alignment mod 8, do 4 elements copy
2001       __ andcc(from, 7, G0);
2002       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
2003       __ delayed()->ld(from, 0, O3);
2004 
2005     //
2006     // Load 2 aligned 8-bytes chunks and use one from previous iteration
2007     // to form 2 aligned 8-bytes chunks to store.
2008     //
2009     // copy_16_bytes_forward_with_shift() is not used here since this
2010     // code is more optimal.
2011 
2012     // copy with shift 4 elements (16 bytes) at a time
2013       __ dec(count, 4);   // The cmp at the beginning guaranty count >= 4
2014 
2015       __ align(OptoLoopAlignment);
2016     __ BIND(L_copy_16_bytes);
2017       __ ldx(from, 4, O4);
2018       __ deccc(count, 4); // Can we do next iteration after this one?
2019       __ ldx(from, 12, G4);
2020       __ inc(to, 16);
2021       __ inc(from, 16);
2022       __ sllx(O3, 32, O3);
2023       __ srlx(O4, 32, G3);
2024       __ bset(G3, O3);
2025       __ stx(O3, to, -16);
2026       __ sllx(O4, 32, O4);
2027       __ srlx(G4, 32, G3);
2028       __ bset(G3, O4);
2029       __ stx(O4, to, -8);
2030       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
2031       __ delayed()->mov(G4, O3);
2032 
2033       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
2034       __ delayed()->inc(count, 4); // restore 'count'
2035 
2036     __ BIND(L_aligned_copy);
2037     }
2038     // copy 4 elements (16 bytes) at a time
2039       __ and3(count, 1, G4); // Save
2040       __ srl(count, 1, count);
2041      generate_disjoint_long_copy_core(aligned);
2042       __ mov(G4, count);     // Restore
2043 
2044     // copy 1 element at a time
2045     __ BIND(L_copy_4_bytes);
2046       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
2047       __ delayed()->nop();
2048     __ BIND(L_copy_4_bytes_loop);
2049       __ ld(from, offset, O3);
2050       __ deccc(count);
2051       __ st(O3, to, offset);
2052       __ brx(Assembler::notZero, false, Assembler::pt, L_copy_4_bytes_loop);
2053       __ delayed()->inc(offset, 4);
2054     __ BIND(L_exit);
2055   }
2056 
2057   //
2058   //  Generate stub for disjoint int copy.  If "aligned" is true, the
2059   //  "from" and "to" addresses are assumed to be heapword aligned.
2060   //
2061   // Arguments for generated stub:
2062   //      from:  O0
2063   //      to:    O1
2064   //      count: O2 treated as signed
2065   //
2066   address generate_disjoint_int_copy(bool aligned, address *entry, const char *name) {
2067     __ align(CodeEntryAlignment);
2068     StubCodeMark mark(this, "StubRoutines", name);
2069     address start = __ pc();
2070 
2071     const Register count = O2;
2072     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2073 
2074     if (entry != NULL) {
2075       *entry = __ pc();
2076       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2077       BLOCK_COMMENT("Entry:");
2078     }
2079 
2080     generate_disjoint_int_copy_core(aligned);
2081 
2082     // O3, O4 are used as temp registers
2083     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
2084     __ retl();
2085     __ delayed()->mov(G0, O0); // return 0
2086     return start;
2087   }
2088 
2089   //
2090   //  Generate core code for conjoint int copy (and oop copy on 32-bit).
2091   //  If "aligned" is true, the "from" and "to" addresses are assumed
2092   //  to be heapword aligned.
2093   //
2094   // Arguments:
2095   //      from:  O0
2096   //      to:    O1
2097   //      count: O2 treated as signed
2098   //
2099   void generate_conjoint_int_copy_core(bool aligned) {
2100     // Do reverse copy.
2101 
2102     Label L_skip_alignment, L_aligned_copy;
2103     Label L_copy_16_bytes,  L_copy_4_bytes, L_copy_4_bytes_loop, L_exit;
2104 
2105     const Register from      = O0;   // source array address
2106     const Register to        = O1;   // destination array address
2107     const Register count     = O2;   // elements count
2108     const Register end_from  = from; // source array end address
2109     const Register end_to    = to;   // destination array end address
2110     // O3, O4, O5, G3 are used as temp registers
2111 
2112     const Register byte_count = O3;  // bytes count to copy
2113 
2114       __ sllx(count, LogBytesPerInt, byte_count);
2115       __ add(to, byte_count, end_to); // offset after last copied element
2116 
2117       __ cmp(count, 5); // for short arrays, just do single element copy
2118       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_4_bytes);
2119       __ delayed()->add(from, byte_count, end_from);
2120 
2121     // copy 1 element to align 'to' on an 8 byte boundary
2122       __ andcc(end_to, 7, G0);
2123       __ br(Assembler::zero, false, Assembler::pt, L_skip_alignment);
2124       __ delayed()->nop();
2125       __ dec(count);
2126       __ dec(end_from, 4);
2127       __ dec(end_to,   4);
2128       __ ld(end_from, 0, O4);
2129       __ st(O4, end_to, 0);
2130     __ BIND(L_skip_alignment);
2131 
2132     // Check if 'end_from' and 'end_to' has the same alignment.
2133       __ andcc(end_from, 7, G0);
2134       __ br(Assembler::zero, false, Assembler::pt, L_aligned_copy);
2135       __ delayed()->dec(count, 4); // The cmp at the start guaranty cnt >= 4
2136 
2137     // copy with shift 4 elements (16 bytes) at a time
2138     //
2139     // Load 2 aligned 8-bytes chunks and use one from previous iteration
2140     // to form 2 aligned 8-bytes chunks to store.
2141     //
2142       __ ldx(end_from, -4, O3);
2143       __ align(OptoLoopAlignment);
2144     __ BIND(L_copy_16_bytes);
2145       __ ldx(end_from, -12, O4);
2146       __ deccc(count, 4);
2147       __ ldx(end_from, -20, O5);
2148       __ dec(end_to, 16);
2149       __ dec(end_from, 16);
2150       __ srlx(O3, 32, O3);
2151       __ sllx(O4, 32, G3);
2152       __ bset(G3, O3);
2153       __ stx(O3, end_to, 8);
2154       __ srlx(O4, 32, O4);
2155       __ sllx(O5, 32, G3);
2156       __ bset(O4, G3);
2157       __ stx(G3, end_to, 0);
2158       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
2159       __ delayed()->mov(O5, O3);
2160 
2161       __ br(Assembler::always, false, Assembler::pt, L_copy_4_bytes);
2162       __ delayed()->inc(count, 4);
2163 
2164     // copy 4 elements (16 bytes) at a time
2165       __ align(OptoLoopAlignment);
2166     __ BIND(L_aligned_copy);
2167       __ dec(end_from, 16);
2168       __ ldx(end_from, 8, O3);
2169       __ ldx(end_from, 0, O4);
2170       __ dec(end_to, 16);
2171       __ deccc(count, 4);
2172       __ stx(O3, end_to, 8);
2173       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_aligned_copy);
2174       __ delayed()->stx(O4, end_to, 0);
2175       __ inc(count, 4);
2176 
2177     // copy 1 element (4 bytes) at a time
2178     __ BIND(L_copy_4_bytes);
2179       __ br_zero(Assembler::zero, false, Assembler::pt, count, L_exit);
2180       __ delayed()->nop();
2181     __ BIND(L_copy_4_bytes_loop);
2182       __ dec(end_from, 4);
2183       __ dec(end_to, 4);
2184       __ ld(end_from, 0, O4);
2185       __ deccc(count);
2186       __ brx(Assembler::greater, false, Assembler::pt, L_copy_4_bytes_loop);
2187       __ delayed()->st(O4, end_to, 0);
2188     __ BIND(L_exit);
2189   }
2190 
2191   //
2192   //  Generate stub for conjoint int copy.  If "aligned" is true, the
2193   //  "from" and "to" addresses are assumed to be heapword aligned.
2194   //
2195   // Arguments for generated stub:
2196   //      from:  O0
2197   //      to:    O1
2198   //      count: O2 treated as signed
2199   //
2200   address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
2201                                      address *entry, const char *name) {
2202     __ align(CodeEntryAlignment);
2203     StubCodeMark mark(this, "StubRoutines", name);
2204     address start = __ pc();
2205 
2206     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
2207 
2208     if (entry != NULL) {
2209       *entry = __ pc();
2210       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2211       BLOCK_COMMENT("Entry:");
2212     }
2213 
2214     array_overlap_test(nooverlap_target, 2);
2215 
2216     generate_conjoint_int_copy_core(aligned);
2217 
2218     // O3, O4 are used as temp registers
2219     inc_counter_np(SharedRuntime::_jint_array_copy_ctr, O3, O4);
2220     __ retl();
2221     __ delayed()->mov(G0, O0); // return 0
2222     return start;
2223   }
2224 
2225   //
2226   //  Generate core code for disjoint long copy (and oop copy on 64-bit).
2227   //  "aligned" is ignored, because we must make the stronger
2228   //  assumption that both addresses are always 64-bit aligned.
2229   //
2230   // Arguments:
2231   //      from:  O0
2232   //      to:    O1
2233   //      count: O2 treated as signed
2234   //
2235   // count -= 2;
2236   // if ( count >= 0 ) { // >= 2 elements
2237   //   if ( count > 6) { // >= 8 elements
2238   //     count -= 6; // original count - 8
2239   //     do {
2240   //       copy_8_elements;
2241   //       count -= 8;
2242   //     } while ( count >= 0 );
2243   //     count += 6;
2244   //   }
2245   //   if ( count >= 0 ) { // >= 2 elements
2246   //     do {
2247   //       copy_2_elements;
2248   //     } while ( (count=count-2) >= 0 );
2249   //   }
2250   // }
2251   // count += 2;
2252   // if ( count != 0 ) { // 1 element left
2253   //   copy_1_element;
2254   // }
2255   //
2256   void generate_disjoint_long_copy_core(bool aligned) {
2257     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
2258     const Register from    = O0;  // source array address
2259     const Register to      = O1;  // destination array address
2260     const Register count   = O2;  // elements count
2261     const Register offset0 = O4;  // element offset
2262     const Register offset8 = O5;  // next element offset
2263 
2264       __ deccc(count, 2);
2265       __ mov(G0, offset0);   // offset from start of arrays (0)
2266       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
2267       __ delayed()->add(offset0, 8, offset8);
2268 
2269     // Copy by 64 bytes chunks
2270     Label L_copy_64_bytes;
2271     const Register from64 = O3;  // source address
2272     const Register to64   = G3;  // destination address
2273       __ subcc(count, 6, O3);
2274       __ brx(Assembler::negative, false, Assembler::pt, L_copy_16_bytes );
2275       __ delayed()->mov(to,   to64);
2276       // Now we can use O4(offset0), O5(offset8) as temps
2277       __ mov(O3, count);
2278       __ mov(from, from64);
2279 
2280       __ align(OptoLoopAlignment);
2281     __ BIND(L_copy_64_bytes);
2282       for( int off = 0; off < 64; off += 16 ) {
2283         __ ldx(from64,  off+0, O4);
2284         __ ldx(from64,  off+8, O5);
2285         __ stx(O4, to64,  off+0);
2286         __ stx(O5, to64,  off+8);
2287       }
2288       __ deccc(count, 8);
2289       __ inc(from64, 64);
2290       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_64_bytes);
2291       __ delayed()->inc(to64, 64);
2292 
2293       // Restore O4(offset0), O5(offset8)
2294       __ sub(from64, from, offset0);
2295       __ inccc(count, 6);
2296       __ brx(Assembler::negative, false, Assembler::pn, L_copy_8_bytes );
2297       __ delayed()->add(offset0, 8, offset8);
2298 
2299       // Copy by 16 bytes chunks
2300       __ align(OptoLoopAlignment);
2301     __ BIND(L_copy_16_bytes);
2302       __ ldx(from, offset0, O3);
2303       __ ldx(from, offset8, G3);
2304       __ deccc(count, 2);
2305       __ stx(O3, to, offset0);
2306       __ inc(offset0, 16);
2307       __ stx(G3, to, offset8);
2308       __ brx(Assembler::greaterEqual, false, Assembler::pt, L_copy_16_bytes);
2309       __ delayed()->inc(offset8, 16);
2310 
2311       // Copy last 8 bytes
2312     __ BIND(L_copy_8_bytes);
2313       __ inccc(count, 2);
2314       __ brx(Assembler::zero, true, Assembler::pn, L_exit );
2315       __ delayed()->mov(offset0, offset8); // Set O5 used by other stubs
2316       __ ldx(from, offset0, O3);
2317       __ stx(O3, to, offset0);
2318     __ BIND(L_exit);
2319   }
2320 
2321   //
2322   //  Generate stub for disjoint long copy.
2323   //  "aligned" is ignored, because we must make the stronger
2324   //  assumption that both addresses are always 64-bit aligned.
2325   //
2326   // Arguments for generated stub:
2327   //      from:  O0
2328   //      to:    O1
2329   //      count: O2 treated as signed
2330   //
2331   address generate_disjoint_long_copy(bool aligned, address *entry, const char *name) {
2332     __ align(CodeEntryAlignment);
2333     StubCodeMark mark(this, "StubRoutines", name);
2334     address start = __ pc();
2335 
2336     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
2337 
2338     if (entry != NULL) {
2339       *entry = __ pc();
2340       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2341       BLOCK_COMMENT("Entry:");
2342     }
2343 
2344     generate_disjoint_long_copy_core(aligned);
2345 
2346     // O3, O4 are used as temp registers
2347     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
2348     __ retl();
2349     __ delayed()->mov(G0, O0); // return 0
2350     return start;
2351   }
2352 
2353   //
2354   //  Generate core code for conjoint long copy (and oop copy on 64-bit).
2355   //  "aligned" is ignored, because we must make the stronger
2356   //  assumption that both addresses are always 64-bit aligned.
2357   //
2358   // Arguments:
2359   //      from:  O0
2360   //      to:    O1
2361   //      count: O2 treated as signed
2362   //
2363   void generate_conjoint_long_copy_core(bool aligned) {
2364     // Do reverse copy.
2365     Label L_copy_8_bytes, L_copy_16_bytes, L_exit;
2366     const Register from    = O0;  // source array address
2367     const Register to      = O1;  // destination array address
2368     const Register count   = O2;  // elements count
2369     const Register offset8 = O4;  // element offset
2370     const Register offset0 = O5;  // previous element offset
2371 
2372       __ subcc(count, 1, count);
2373       __ brx(Assembler::lessEqual, false, Assembler::pn, L_copy_8_bytes );
2374       __ delayed()->sllx(count, LogBytesPerLong, offset8);
2375       __ sub(offset8, 8, offset0);
2376       __ align(OptoLoopAlignment);
2377     __ BIND(L_copy_16_bytes);
2378       __ ldx(from, offset8, O2);
2379       __ ldx(from, offset0, O3);
2380       __ stx(O2, to, offset8);
2381       __ deccc(offset8, 16);      // use offset8 as counter
2382       __ stx(O3, to, offset0);
2383       __ brx(Assembler::greater, false, Assembler::pt, L_copy_16_bytes);
2384       __ delayed()->dec(offset0, 16);
2385 
2386     __ BIND(L_copy_8_bytes);
2387       __ brx(Assembler::negative, false, Assembler::pn, L_exit );
2388       __ delayed()->nop();
2389       __ ldx(from, 0, O3);
2390       __ stx(O3, to, 0);
2391     __ BIND(L_exit);
2392   }
2393 
2394   //  Generate stub for conjoint long copy.
2395   //  "aligned" is ignored, because we must make the stronger
2396   //  assumption that both addresses are always 64-bit aligned.
2397   //
2398   // Arguments for generated stub:
2399   //      from:  O0
2400   //      to:    O1
2401   //      count: O2 treated as signed
2402   //
2403   address generate_conjoint_long_copy(bool aligned, address nooverlap_target,
2404                                       address *entry, const char *name) {
2405     __ align(CodeEntryAlignment);
2406     StubCodeMark mark(this, "StubRoutines", name);
2407     address start = __ pc();
2408 
2409     assert(aligned, "Should always be aligned");
2410 
2411     assert_clean_int(O2, O3);     // Make sure 'count' is clean int.
2412 
2413     if (entry != NULL) {
2414       *entry = __ pc();
2415       // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
2416       BLOCK_COMMENT("Entry:");
2417     }
2418 
2419     array_overlap_test(nooverlap_target, 3);
2420 
2421     generate_conjoint_long_copy_core(aligned);
2422 
2423     // O3, O4 are used as temp registers
2424     inc_counter_np(SharedRuntime::_jlong_array_copy_ctr, O3, O4);
2425     __ retl();
2426     __ delayed()->mov(G0, O0); // return 0
2427     return start;
2428   }
2429 
2430   //  Generate stub for disjoint oop copy.  If "aligned" is true, the
2431   //  "from" and "to" addresses are assumed to be heapword aligned.
2432   //
2433   // Arguments for generated stub:
2434   //      from:  O0
2435   //      to:    O1
2436   //      count: O2 treated as signed
2437   //
2438   address generate_disjoint_oop_copy(bool aligned, address *entry, const char *name,
2439                                      bool need_pre_barrier = true) {
2440 
2441     const Register from  = O0;  // source array address
2442     const Register to    = O1;  // destination array address
2443     const Register count = O2;  // elements count
2444 
2445     __ align(CodeEntryAlignment);
2446     StubCodeMark mark(this, "StubRoutines", name);
2447     address start = __ pc();
2448 
2449     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2450 
2451     if (entry != NULL) {
2452       *entry = __ pc();
2453       // caller can pass a 64-bit byte count here
2454       BLOCK_COMMENT("Entry:");
2455     }
2456 
2457     // save arguments for barrier generation
2458     __ mov(to, G1);
2459     __ mov(count, G5);
2460     if (need_pre_barrier) {
2461       gen_write_ref_array_pre_barrier(G1, G5);
2462     }
2463   #ifdef _LP64
2464     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2465     if (UseCompressedOops) {
2466       generate_disjoint_int_copy_core(aligned);
2467     } else {
2468       generate_disjoint_long_copy_core(aligned);
2469     }
2470   #else
2471     generate_disjoint_int_copy_core(aligned);
2472   #endif
2473     // O0 is used as temp register
2474     gen_write_ref_array_post_barrier(G1, G5, O0);
2475 
2476     // O3, O4 are used as temp registers
2477     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
2478     __ retl();
2479     __ delayed()->mov(G0, O0); // return 0
2480     return start;
2481   }
2482 
2483   //  Generate stub for conjoint oop copy.  If "aligned" is true, the
2484   //  "from" and "to" addresses are assumed to be heapword aligned.
2485   //
2486   // Arguments for generated stub:
2487   //      from:  O0
2488   //      to:    O1
2489   //      count: O2 treated as signed
2490   //
2491   address generate_conjoint_oop_copy(bool aligned, address nooverlap_target,
2492                                      address *entry, const char *name,
2493                                      bool need_pre_barrier = true) {
2494 
2495     const Register from  = O0;  // source array address
2496     const Register to    = O1;  // destination array address
2497     const Register count = O2;  // elements count
2498 
2499     __ align(CodeEntryAlignment);
2500     StubCodeMark mark(this, "StubRoutines", name);
2501     address start = __ pc();
2502 
2503     assert_clean_int(count, O3);     // Make sure 'count' is clean int.
2504 
2505     if (entry != NULL) {
2506       *entry = __ pc();
2507       // caller can pass a 64-bit byte count here
2508       BLOCK_COMMENT("Entry:");
2509     }
2510 
2511     array_overlap_test(nooverlap_target, LogBytesPerHeapOop);
2512 
2513     // save arguments for barrier generation
2514     __ mov(to, G1);
2515     __ mov(count, G5);
2516     if (need_pre_barrier) {
2517       gen_write_ref_array_pre_barrier(G1, G5);
2518     }
2519 
2520   #ifdef _LP64
2521     if (UseCompressedOops) {
2522       generate_conjoint_int_copy_core(aligned);
2523     } else {
2524       generate_conjoint_long_copy_core(aligned);
2525     }
2526   #else
2527     generate_conjoint_int_copy_core(aligned);
2528   #endif
2529 
2530     // O0 is used as temp register
2531     gen_write_ref_array_post_barrier(G1, G5, O0);
2532 
2533     // O3, O4 are used as temp registers
2534     inc_counter_np(SharedRuntime::_oop_array_copy_ctr, O3, O4);
2535     __ retl();
2536     __ delayed()->mov(G0, O0); // return 0
2537     return start;
2538   }
2539 
2540 
2541   // Helper for generating a dynamic type check.
2542   // Smashes only the given temp registers.
2543   void generate_type_check(Register sub_klass,
2544                            Register super_check_offset,
2545                            Register super_klass,
2546                            Register temp,
2547                            Label& L_success) {
2548     assert_different_registers(sub_klass, super_check_offset, super_klass, temp);
2549 
2550     BLOCK_COMMENT("type_check:");
2551 
2552     Label L_miss, L_pop_to_miss;
2553 
2554     assert_clean_int(super_check_offset, temp);
2555 
2556     __ check_klass_subtype_fast_path(sub_klass, super_klass, temp, noreg,
2557                                      &L_success, &L_miss, NULL,
2558                                      super_check_offset);
2559 
2560     BLOCK_COMMENT("type_check_slow_path:");
2561     __ save_frame(0);
2562     __ check_klass_subtype_slow_path(sub_klass->after_save(),
2563                                      super_klass->after_save(),
2564                                      L0, L1, L2, L4,
2565                                      NULL, &L_pop_to_miss);
2566     __ ba(false, L_success);
2567     __ delayed()->restore();
2568 
2569     __ bind(L_pop_to_miss);
2570     __ restore();
2571 
2572     // Fall through on failure!
2573     __ BIND(L_miss);
2574   }
2575 
2576 
2577   //  Generate stub for checked oop copy.
2578   //
2579   // Arguments for generated stub:
2580   //      from:  O0
2581   //      to:    O1
2582   //      count: O2 treated as signed
2583   //      ckoff: O3 (super_check_offset)
2584   //      ckval: O4 (super_klass)
2585   //      ret:   O0 zero for success; (-1^K) where K is partial transfer count
2586   //
2587   address generate_checkcast_copy(const char *name, address *entry, bool need_pre_barrier = true) {
2588 
2589     const Register O0_from   = O0;      // source array address
2590     const Register O1_to     = O1;      // destination array address
2591     const Register O2_count  = O2;      // elements count
2592     const Register O3_ckoff  = O3;      // super_check_offset
2593     const Register O4_ckval  = O4;      // super_klass
2594 
2595     const Register O5_offset = O5;      // loop var, with stride wordSize
2596     const Register G1_remain = G1;      // loop var, with stride -1
2597     const Register G3_oop    = G3;      // actual oop copied
2598     const Register G4_klass  = G4;      // oop._klass
2599     const Register G5_super  = G5;      // oop._klass._primary_supers[ckval]
2600 
2601     __ align(CodeEntryAlignment);
2602     StubCodeMark mark(this, "StubRoutines", name);
2603     address start = __ pc();
2604 
2605 #ifdef ASSERT
2606     // We sometimes save a frame (see generate_type_check below).
2607     // If this will cause trouble, let's fail now instead of later.
2608     __ save_frame(0);
2609     __ restore();
2610 #endif
2611 
2612     assert_clean_int(O2_count, G1);     // Make sure 'count' is clean int.
2613 
2614 #ifdef ASSERT
2615     // caller guarantees that the arrays really are different
2616     // otherwise, we would have to make conjoint checks
2617     { Label L;
2618       __ mov(O3, G1);           // spill: overlap test smashes O3
2619       __ mov(O4, G4);           // spill: overlap test smashes O4
2620       array_overlap_test(L, LogBytesPerHeapOop);
2621       __ stop("checkcast_copy within a single array");
2622       __ bind(L);
2623       __ mov(G1, O3);
2624       __ mov(G4, O4);
2625     }
2626 #endif //ASSERT
2627 
2628     if (entry != NULL) {
2629       *entry = __ pc();
2630       // caller can pass a 64-bit byte count here (from generic stub)
2631       BLOCK_COMMENT("Entry:");
2632     }
2633 
2634     gen_write_ref_array_pre_barrier(O1_to, O2_count);
2635 
2636     Label load_element, store_element, do_card_marks, fail, done;
2637     __ addcc(O2_count, 0, G1_remain);   // initialize loop index, and test it
2638     __ brx(Assembler::notZero, false, Assembler::pt, load_element);
2639     __ delayed()->mov(G0, O5_offset);   // offset from start of arrays
2640 
2641     // Empty array:  Nothing to do.
2642     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
2643     __ retl();
2644     __ delayed()->set(0, O0);           // return 0 on (trivial) success
2645 
2646     // ======== begin loop ========
2647     // (Loop is rotated; its entry is load_element.)
2648     // Loop variables:
2649     //   (O5 = 0; ; O5 += wordSize) --- offset from src, dest arrays
2650     //   (O2 = len; O2 != 0; O2--) --- number of oops *remaining*
2651     //   G3, G4, G5 --- current oop, oop.klass, oop.klass.super
2652     __ align(OptoLoopAlignment);
2653 
2654     __ BIND(store_element);
2655     __ deccc(G1_remain);                // decrement the count
2656     __ store_heap_oop(G3_oop, O1_to, O5_offset); // store the oop
2657     __ inc(O5_offset, heapOopSize);     // step to next offset
2658     __ brx(Assembler::zero, true, Assembler::pt, do_card_marks);
2659     __ delayed()->set(0, O0);           // return -1 on success
2660 
2661     // ======== loop entry is here ========
2662     __ BIND(load_element);
2663     __ load_heap_oop(O0_from, O5_offset, G3_oop);  // load the oop
2664     __ br_null(G3_oop, true, Assembler::pt, store_element);
2665     __ delayed()->nop();
2666 
2667     __ load_klass(G3_oop, G4_klass); // query the object klass
2668 
2669     generate_type_check(G4_klass, O3_ckoff, O4_ckval, G5_super,
2670                         // branch to this on success:
2671                         store_element);
2672     // ======== end loop ========
2673 
2674     // It was a real error; we must depend on the caller to finish the job.
2675     // Register G1 has number of *remaining* oops, O2 number of *total* oops.
2676     // Emit GC store barriers for the oops we have copied (O2 minus G1),
2677     // and report their number to the caller.
2678     __ BIND(fail);
2679     __ subcc(O2_count, G1_remain, O2_count);
2680     __ brx(Assembler::zero, false, Assembler::pt, done);
2681     __ delayed()->not1(O2_count, O0);   // report (-1^K) to caller
2682 
2683     __ BIND(do_card_marks);
2684     gen_write_ref_array_post_barrier(O1_to, O2_count, O3);   // store check on O1[0..O2]
2685 
2686     __ BIND(done);
2687     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr, O3, O4);
2688     __ retl();
2689     __ delayed()->nop();             // return value in 00
2690 
2691     return start;
2692   }
2693 
2694 
2695   //  Generate 'unsafe' array copy stub
2696   //  Though just as safe as the other stubs, it takes an unscaled
2697   //  size_t argument instead of an element count.
2698   //
2699   // Arguments for generated stub:
2700   //      from:  O0
2701   //      to:    O1
2702   //      count: O2 byte count, treated as ssize_t, can be zero
2703   //
2704   // Examines the alignment of the operands and dispatches
2705   // to a long, int, short, or byte copy loop.
2706   //
2707   address generate_unsafe_copy(const char* name,
2708                                address byte_copy_entry,
2709                                address short_copy_entry,
2710                                address int_copy_entry,
2711                                address long_copy_entry) {
2712 
2713     const Register O0_from   = O0;      // source array address
2714     const Register O1_to     = O1;      // destination array address
2715     const Register O2_count  = O2;      // elements count
2716 
2717     const Register G1_bits   = G1;      // test copy of low bits
2718 
2719     __ align(CodeEntryAlignment);
2720     StubCodeMark mark(this, "StubRoutines", name);
2721     address start = __ pc();
2722 
2723     // bump this on entry, not on exit:
2724     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr, G1, G3);
2725 
2726     __ or3(O0_from, O1_to, G1_bits);
2727     __ or3(O2_count,       G1_bits, G1_bits);
2728 
2729     __ btst(BytesPerLong-1, G1_bits);
2730     __ br(Assembler::zero, true, Assembler::pt,
2731           long_copy_entry, relocInfo::runtime_call_type);
2732     // scale the count on the way out:
2733     __ delayed()->srax(O2_count, LogBytesPerLong, O2_count);
2734 
2735     __ btst(BytesPerInt-1, G1_bits);
2736     __ br(Assembler::zero, true, Assembler::pt,
2737           int_copy_entry, relocInfo::runtime_call_type);
2738     // scale the count on the way out:
2739     __ delayed()->srax(O2_count, LogBytesPerInt, O2_count);
2740 
2741     __ btst(BytesPerShort-1, G1_bits);
2742     __ br(Assembler::zero, true, Assembler::pt,
2743           short_copy_entry, relocInfo::runtime_call_type);
2744     // scale the count on the way out:
2745     __ delayed()->srax(O2_count, LogBytesPerShort, O2_count);
2746 
2747     __ br(Assembler::always, false, Assembler::pt,
2748           byte_copy_entry, relocInfo::runtime_call_type);
2749     __ delayed()->nop();
2750 
2751     return start;
2752   }
2753 
2754 
2755   // Perform range checks on the proposed arraycopy.
2756   // Kills the two temps, but nothing else.
2757   // Also, clean the sign bits of src_pos and dst_pos.
2758   void arraycopy_range_checks(Register src,     // source array oop (O0)
2759                               Register src_pos, // source position (O1)
2760                               Register dst,     // destination array oo (O2)
2761                               Register dst_pos, // destination position (O3)
2762                               Register length,  // length of copy (O4)
2763                               Register temp1, Register temp2,
2764                               Label& L_failed) {
2765     BLOCK_COMMENT("arraycopy_range_checks:");
2766 
2767     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
2768 
2769     const Register array_length = temp1;  // scratch
2770     const Register end_pos      = temp2;  // scratch
2771 
2772     // Note:  This next instruction may be in the delay slot of a branch:
2773     __ add(length, src_pos, end_pos);  // src_pos + length
2774     __ lduw(src, arrayOopDesc::length_offset_in_bytes(), array_length);
2775     __ cmp(end_pos, array_length);
2776     __ br(Assembler::greater, false, Assembler::pn, L_failed);
2777 
2778     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
2779     __ delayed()->add(length, dst_pos, end_pos); // dst_pos + length
2780     __ lduw(dst, arrayOopDesc::length_offset_in_bytes(), array_length);
2781     __ cmp(end_pos, array_length);
2782     __ br(Assembler::greater, false, Assembler::pn, L_failed);
2783 
2784     // Have to clean up high 32-bits of 'src_pos' and 'dst_pos'.
2785     // Move with sign extension can be used since they are positive.
2786     __ delayed()->signx(src_pos, src_pos);
2787     __ signx(dst_pos, dst_pos);
2788 
2789     BLOCK_COMMENT("arraycopy_range_checks done");
2790   }
2791 
2792 
2793   //
2794   //  Generate generic array copy stubs
2795   //
2796   //  Input:
2797   //    O0    -  src oop
2798   //    O1    -  src_pos
2799   //    O2    -  dst oop
2800   //    O3    -  dst_pos
2801   //    O4    -  element count
2802   //
2803   //  Output:
2804   //    O0 ==  0  -  success
2805   //    O0 == -1  -  need to call System.arraycopy
2806   //
2807   address generate_generic_copy(const char *name,
2808                                 address entry_jbyte_arraycopy,
2809                                 address entry_jshort_arraycopy,
2810                                 address entry_jint_arraycopy,
2811                                 address entry_oop_arraycopy,
2812                                 address entry_jlong_arraycopy,
2813                                 address entry_checkcast_arraycopy) {
2814     Label L_failed, L_objArray;
2815 
2816     // Input registers
2817     const Register src      = O0;  // source array oop
2818     const Register src_pos  = O1;  // source position
2819     const Register dst      = O2;  // destination array oop
2820     const Register dst_pos  = O3;  // destination position
2821     const Register length   = O4;  // elements count
2822 
2823     // registers used as temp
2824     const Register G3_src_klass = G3; // source array klass
2825     const Register G4_dst_klass = G4; // destination array klass
2826     const Register G5_lh        = G5; // layout handler
2827     const Register O5_temp      = O5;
2828 
2829     __ align(CodeEntryAlignment);
2830     StubCodeMark mark(this, "StubRoutines", name);
2831     address start = __ pc();
2832 
2833     // bump this on entry, not on exit:
2834     inc_counter_np(SharedRuntime::_generic_array_copy_ctr, G1, G3);
2835 
2836     // In principle, the int arguments could be dirty.
2837     //assert_clean_int(src_pos, G1);
2838     //assert_clean_int(dst_pos, G1);
2839     //assert_clean_int(length, G1);
2840 
2841     //-----------------------------------------------------------------------
2842     // Assembler stubs will be used for this call to arraycopy
2843     // if the following conditions are met:
2844     //
2845     // (1) src and dst must not be null.
2846     // (2) src_pos must not be negative.
2847     // (3) dst_pos must not be negative.
2848     // (4) length  must not be negative.
2849     // (5) src klass and dst klass should be the same and not NULL.
2850     // (6) src and dst should be arrays.
2851     // (7) src_pos + length must not exceed length of src.
2852     // (8) dst_pos + length must not exceed length of dst.
2853     BLOCK_COMMENT("arraycopy initial argument checks");
2854 
2855     //  if (src == NULL) return -1;
2856     __ br_null(src, false, Assembler::pn, L_failed);
2857 
2858     //  if (src_pos < 0) return -1;
2859     __ delayed()->tst(src_pos);
2860     __ br(Assembler::negative, false, Assembler::pn, L_failed);
2861     __ delayed()->nop();
2862 
2863     //  if (dst == NULL) return -1;
2864     __ br_null(dst, false, Assembler::pn, L_failed);
2865 
2866     //  if (dst_pos < 0) return -1;
2867     __ delayed()->tst(dst_pos);
2868     __ br(Assembler::negative, false, Assembler::pn, L_failed);
2869 
2870     //  if (length < 0) return -1;
2871     __ delayed()->tst(length);
2872     __ br(Assembler::negative, false, Assembler::pn, L_failed);
2873 
2874     BLOCK_COMMENT("arraycopy argument klass checks");
2875     //  get src->klass()
2876     if (UseCompressedOops) {
2877       __ delayed()->nop(); // ??? not good
2878       __ load_klass(src, G3_src_klass);
2879     } else {
2880       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), G3_src_klass);
2881     }
2882 
2883 #ifdef ASSERT
2884     //  assert(src->klass() != NULL);
2885     BLOCK_COMMENT("assert klasses not null");
2886     { Label L_a, L_b;
2887       __ br_notnull(G3_src_klass, false, Assembler::pt, L_b); // it is broken if klass is NULL
2888       __ delayed()->nop();
2889       __ bind(L_a);
2890       __ stop("broken null klass");
2891       __ bind(L_b);
2892       __ load_klass(dst, G4_dst_klass);
2893       __ br_null(G4_dst_klass, false, Assembler::pn, L_a); // this would be broken also
2894       __ delayed()->mov(G0, G4_dst_klass);      // scribble the temp
2895       BLOCK_COMMENT("assert done");
2896     }
2897 #endif
2898 
2899     // Load layout helper
2900     //
2901     //  |array_tag|     | header_size | element_type |     |log2_element_size|
2902     // 32        30    24            16              8     2                 0
2903     //
2904     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
2905     //
2906 
2907     int lh_offset = klassOopDesc::header_size() * HeapWordSize +
2908                     Klass::layout_helper_offset_in_bytes();
2909 
2910     // Load 32-bits signed value. Use br() instruction with it to check icc.
2911     __ lduw(G3_src_klass, lh_offset, G5_lh);
2912 
2913     if (UseCompressedOops) {
2914       __ load_klass(dst, G4_dst_klass);
2915     }
2916     // Handle objArrays completely differently...
2917     juint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2918     __ set(objArray_lh, O5_temp);
2919     __ cmp(G5_lh,       O5_temp);
2920     __ br(Assembler::equal, false, Assembler::pt, L_objArray);
2921     if (UseCompressedOops) {
2922       __ delayed()->nop();
2923     } else {
2924       __ delayed()->ld_ptr(dst, oopDesc::klass_offset_in_bytes(), G4_dst_klass);
2925     }
2926 
2927     //  if (src->klass() != dst->klass()) return -1;
2928     __ cmp(G3_src_klass, G4_dst_klass);
2929     __ brx(Assembler::notEqual, false, Assembler::pn, L_failed);
2930     __ delayed()->nop();
2931 
2932     //  if (!src->is_Array()) return -1;
2933     __ cmp(G5_lh, Klass::_lh_neutral_value); // < 0
2934     __ br(Assembler::greaterEqual, false, Assembler::pn, L_failed);
2935 
2936     // At this point, it is known to be a typeArray (array_tag 0x3).
2937 #ifdef ASSERT
2938     __ delayed()->nop();
2939     { Label L;
2940       jint lh_prim_tag_in_place = (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift);
2941       __ set(lh_prim_tag_in_place, O5_temp);
2942       __ cmp(G5_lh,                O5_temp);
2943       __ br(Assembler::greaterEqual, false, Assembler::pt, L);
2944       __ delayed()->nop();
2945       __ stop("must be a primitive array");
2946       __ bind(L);
2947     }
2948 #else
2949     __ delayed();                               // match next insn to prev branch
2950 #endif
2951 
2952     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
2953                            O5_temp, G4_dst_klass, L_failed);
2954 
2955     // typeArrayKlass
2956     //
2957     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
2958     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
2959     //
2960 
2961     const Register G4_offset = G4_dst_klass;    // array offset
2962     const Register G3_elsize = G3_src_klass;    // log2 element size
2963 
2964     __ srl(G5_lh, Klass::_lh_header_size_shift, G4_offset);
2965     __ and3(G4_offset, Klass::_lh_header_size_mask, G4_offset); // array_offset
2966     __ add(src, G4_offset, src);       // src array offset
2967     __ add(dst, G4_offset, dst);       // dst array offset
2968     __ and3(G5_lh, Klass::_lh_log2_element_size_mask, G3_elsize); // log2 element size
2969 
2970     // next registers should be set before the jump to corresponding stub
2971     const Register from     = O0;  // source array address
2972     const Register to       = O1;  // destination array address
2973     const Register count    = O2;  // elements count
2974 
2975     // 'from', 'to', 'count' registers should be set in this order
2976     // since they are the same as 'src', 'src_pos', 'dst'.
2977 
2978     BLOCK_COMMENT("scale indexes to element size");
2979     __ sll_ptr(src_pos, G3_elsize, src_pos);
2980     __ sll_ptr(dst_pos, G3_elsize, dst_pos);
2981     __ add(src, src_pos, from);       // src_addr
2982     __ add(dst, dst_pos, to);         // dst_addr
2983 
2984     BLOCK_COMMENT("choose copy loop based on element size");
2985     __ cmp(G3_elsize, 0);
2986     __ br(Assembler::equal, true, Assembler::pt, entry_jbyte_arraycopy);
2987     __ delayed()->signx(length, count); // length
2988 
2989     __ cmp(G3_elsize, LogBytesPerShort);
2990     __ br(Assembler::equal, true, Assembler::pt, entry_jshort_arraycopy);
2991     __ delayed()->signx(length, count); // length
2992 
2993     __ cmp(G3_elsize, LogBytesPerInt);
2994     __ br(Assembler::equal, true, Assembler::pt, entry_jint_arraycopy);
2995     __ delayed()->signx(length, count); // length
2996 #ifdef ASSERT
2997     { Label L;
2998       __ cmp(G3_elsize, LogBytesPerLong);
2999       __ br(Assembler::equal, false, Assembler::pt, L);
3000       __ delayed()->nop();
3001       __ stop("must be long copy, but elsize is wrong");
3002       __ bind(L);
3003     }
3004 #endif
3005     __ br(Assembler::always, false, Assembler::pt, entry_jlong_arraycopy);
3006     __ delayed()->signx(length, count); // length
3007 
3008     // objArrayKlass
3009   __ BIND(L_objArray);
3010     // live at this point:  G3_src_klass, G4_dst_klass, src[_pos], dst[_pos], length
3011 
3012     Label L_plain_copy, L_checkcast_copy;
3013     //  test array classes for subtyping
3014     __ cmp(G3_src_klass, G4_dst_klass);         // usual case is exact equality
3015     __ brx(Assembler::notEqual, true, Assembler::pn, L_checkcast_copy);
3016     __ delayed()->lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted from below
3017 
3018     // Identically typed arrays can be copied without element-wise checks.
3019     arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3020                            O5_temp, G5_lh, L_failed);
3021 
3022     __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
3023     __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
3024     __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
3025     __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
3026     __ add(src, src_pos, from);       // src_addr
3027     __ add(dst, dst_pos, to);         // dst_addr
3028   __ BIND(L_plain_copy);
3029     __ br(Assembler::always, false, Assembler::pt, entry_oop_arraycopy);
3030     __ delayed()->signx(length, count); // length
3031 
3032   __ BIND(L_checkcast_copy);
3033     // live at this point:  G3_src_klass, G4_dst_klass
3034     {
3035       // Before looking at dst.length, make sure dst is also an objArray.
3036       // lduw(G4_dst_klass, lh_offset, O5_temp); // hoisted to delay slot
3037       __ cmp(G5_lh,                    O5_temp);
3038       __ br(Assembler::notEqual, false, Assembler::pn, L_failed);
3039 
3040       // It is safe to examine both src.length and dst.length.
3041       __ delayed();                             // match next insn to prev branch
3042       arraycopy_range_checks(src, src_pos, dst, dst_pos, length,
3043                              O5_temp, G5_lh, L_failed);
3044 
3045       // Marshal the base address arguments now, freeing registers.
3046       __ add(src, arrayOopDesc::base_offset_in_bytes(T_OBJECT), src); //src offset
3047       __ add(dst, arrayOopDesc::base_offset_in_bytes(T_OBJECT), dst); //dst offset
3048       __ sll_ptr(src_pos, LogBytesPerHeapOop, src_pos);
3049       __ sll_ptr(dst_pos, LogBytesPerHeapOop, dst_pos);
3050       __ add(src, src_pos, from);               // src_addr
3051       __ add(dst, dst_pos, to);                 // dst_addr
3052       __ signx(length, count);                  // length (reloaded)
3053 
3054       Register sco_temp = O3;                   // this register is free now
3055       assert_different_registers(from, to, count, sco_temp,
3056                                  G4_dst_klass, G3_src_klass);
3057 
3058       // Generate the type check.
3059       int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
3060                         Klass::super_check_offset_offset_in_bytes());
3061       __ lduw(G4_dst_klass, sco_offset, sco_temp);
3062       generate_type_check(G3_src_klass, sco_temp, G4_dst_klass,
3063                           O5_temp, L_plain_copy);
3064 
3065       // Fetch destination element klass from the objArrayKlass header.
3066       int ek_offset = (klassOopDesc::header_size() * HeapWordSize +
3067                        objArrayKlass::element_klass_offset_in_bytes());
3068 
3069       // the checkcast_copy loop needs two extra arguments:
3070       __ ld_ptr(G4_dst_klass, ek_offset, O4);   // dest elem klass
3071       // lduw(O4, sco_offset, O3);              // sco of elem klass
3072 
3073       __ br(Assembler::always, false, Assembler::pt, entry_checkcast_arraycopy);
3074       __ delayed()->lduw(O4, sco_offset, O3);
3075     }
3076 
3077   __ BIND(L_failed);
3078     __ retl();
3079     __ delayed()->sub(G0, 1, O0); // return -1
3080     return start;
3081   }
3082 
3083   void generate_arraycopy_stubs() {
3084     address entry;
3085     address entry_jbyte_arraycopy;
3086     address entry_jshort_arraycopy;
3087     address entry_jint_arraycopy;
3088     address entry_oop_arraycopy;
3089     address entry_jlong_arraycopy;
3090     address entry_checkcast_arraycopy;
3091 
3092     //*** jbyte
3093     // Always need alinged and unaligned versions
3094     StubRoutines::_jbyte_disjoint_arraycopy         = generate_disjoint_byte_copy(false, &entry,
3095                                                                                   "jbyte_disjoint_arraycopy");
3096     StubRoutines::_jbyte_arraycopy                  = generate_conjoint_byte_copy(false, entry,
3097                                                                                   &entry_jbyte_arraycopy,
3098                                                                                   "jbyte_arraycopy");
3099     StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
3100                                                                                   "arrayof_jbyte_disjoint_arraycopy");
3101     StubRoutines::_arrayof_jbyte_arraycopy          = generate_conjoint_byte_copy(true, entry, NULL,
3102                                                                                   "arrayof_jbyte_arraycopy");
3103 
3104     //*** jshort
3105     // Always need alinged and unaligned versions
3106     StubRoutines::_jshort_disjoint_arraycopy         = generate_disjoint_short_copy(false, &entry,
3107                                                                                     "jshort_disjoint_arraycopy");
3108     StubRoutines::_jshort_arraycopy                  = generate_conjoint_short_copy(false, entry,
3109                                                                                     &entry_jshort_arraycopy,
3110                                                                                     "jshort_arraycopy");
3111     StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
3112                                                                                     "arrayof_jshort_disjoint_arraycopy");
3113     StubRoutines::_arrayof_jshort_arraycopy          = generate_conjoint_short_copy(true, entry, NULL,
3114                                                                                     "arrayof_jshort_arraycopy");
3115 
3116     //*** jint
3117     // Aligned versions
3118     StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
3119                                                                                 "arrayof_jint_disjoint_arraycopy");
3120     StubRoutines::_arrayof_jint_arraycopy          = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
3121                                                                                 "arrayof_jint_arraycopy");
3122 #ifdef _LP64
3123     // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
3124     // entry_jint_arraycopy always points to the unaligned version (notice that we overwrite it).
3125     StubRoutines::_jint_disjoint_arraycopy         = generate_disjoint_int_copy(false, &entry,
3126                                                                                 "jint_disjoint_arraycopy");
3127     StubRoutines::_jint_arraycopy                  = generate_conjoint_int_copy(false, entry,
3128                                                                                 &entry_jint_arraycopy,
3129                                                                                 "jint_arraycopy");
3130 #else
3131     // In 32 bit jints are always HeapWordSize aligned, so always use the aligned version
3132     // (in fact in 32bit we always have a pre-loop part even in the aligned version,
3133     //  because it uses 64-bit loads/stores, so the aligned flag is actually ignored).
3134     StubRoutines::_jint_disjoint_arraycopy = StubRoutines::_arrayof_jint_disjoint_arraycopy;
3135     StubRoutines::_jint_arraycopy          = StubRoutines::_arrayof_jint_arraycopy;
3136 #endif
3137 
3138 
3139     //*** jlong
3140     // It is always aligned
3141     StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
3142                                                                                   "arrayof_jlong_disjoint_arraycopy");
3143     StubRoutines::_arrayof_jlong_arraycopy          = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
3144                                                                                   "arrayof_jlong_arraycopy");
3145     StubRoutines::_jlong_disjoint_arraycopy         = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
3146     StubRoutines::_jlong_arraycopy                  = StubRoutines::_arrayof_jlong_arraycopy;
3147 
3148 
3149     //*** oops
3150     // Aligned versions
3151     StubRoutines::_arrayof_oop_disjoint_arraycopy        = generate_disjoint_oop_copy(true, &entry,
3152                                                                                       "arrayof_oop_disjoint_arraycopy");
3153     StubRoutines::_arrayof_oop_arraycopy                 = generate_conjoint_oop_copy(true, entry, &entry_oop_arraycopy,
3154                                                                                       "arrayof_oop_arraycopy");
3155     // Aligned versions without pre-barriers
3156     StubRoutines::_arrayof_oop_disjoint_arraycopy_no_pre = generate_disjoint_oop_copy(true, &entry,
3157                                                                                       "arrayof_oop_disjoint_arraycopy_no_pre", false);
3158     StubRoutines::_arrayof_oop_arraycopy_no_pre          = generate_conjoint_oop_copy(true, entry, NULL,
3159                                                                                       "arrayof_oop_arraycopy_no_pre", false);
3160 #ifdef _LP64
3161     if (UseCompressedOops) {
3162       // With compressed oops we need unalinged versions, notice that we overwrite entry_oop_arraycopy.
3163       StubRoutines::_oop_disjoint_arraycopy            = generate_disjoint_oop_copy(false, &entry,
3164                                                                                     "oop_disjoint_arraycopy");
3165       StubRoutines::_oop_arraycopy                     = generate_conjoint_oop_copy(false, entry, &entry_oop_arraycopy,
3166                                                                                     "oop_arraycopy");
3167       // Unaligned versions without pre-barriers
3168       StubRoutines::_oop_disjoint_arraycopy_no_pre     = generate_disjoint_oop_copy(false, &entry,
3169                                                                                     "oop_disjoint_arraycopy_no_pre", false);
3170       StubRoutines::_oop_arraycopy_no_pre              = generate_conjoint_oop_copy(false, entry, NULL,
3171                                                                                     "oop_arraycopy_no_pre", false);
3172     } else
3173 #endif
3174     {
3175       // oop arraycopy is always aligned on 32bit and 64bit without compressed oops
3176       StubRoutines::_oop_disjoint_arraycopy            = StubRoutines::_arrayof_oop_disjoint_arraycopy;
3177       StubRoutines::_oop_arraycopy                     = StubRoutines::_arrayof_oop_arraycopy;
3178       StubRoutines::_oop_disjoint_arraycopy_no_pre     = StubRoutines::_arrayof_oop_disjoint_arraycopy_no_pre;
3179       StubRoutines::_oop_arraycopy_no_pre              = StubRoutines::_arrayof_oop_arraycopy_no_pre;
3180     }
3181 
3182     StubRoutines::_checkcast_arraycopy        = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
3183     StubRoutines::_checkcast_arraycopy_no_pre = generate_checkcast_copy("checkcast_arraycopy_no_pre", NULL, false);
3184 
3185     StubRoutines::_unsafe_arraycopy    = generate_unsafe_copy("unsafe_arraycopy",
3186                                                               entry_jbyte_arraycopy,
3187                                                               entry_jshort_arraycopy,
3188                                                               entry_jint_arraycopy,
3189                                                               entry_jlong_arraycopy);
3190     StubRoutines::_generic_arraycopy   = generate_generic_copy("generic_arraycopy",
3191                                                                entry_jbyte_arraycopy,
3192                                                                entry_jshort_arraycopy,
3193                                                                entry_jint_arraycopy,
3194                                                                entry_oop_arraycopy,
3195                                                                entry_jlong_arraycopy,
3196                                                                entry_checkcast_arraycopy);
3197 
3198     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
3199     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
3200     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
3201     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
3202     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
3203     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
3204   }
3205 
3206   void generate_initial() {
3207     // Generates all stubs and initializes the entry points
3208 
3209     //------------------------------------------------------------------------------------------------------------------------
3210     // entry points that exist in all platforms
3211     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
3212     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
3213     StubRoutines::_forward_exception_entry                 = generate_forward_exception();
3214 
3215     StubRoutines::_call_stub_entry                         = generate_call_stub(StubRoutines::_call_stub_return_address);
3216     StubRoutines::_catch_exception_entry                   = generate_catch_exception();
3217 
3218     //------------------------------------------------------------------------------------------------------------------------
3219     // entry points that are platform specific
3220     StubRoutines::Sparc::_test_stop_entry                  = generate_test_stop();
3221 
3222     StubRoutines::Sparc::_stop_subroutine_entry            = generate_stop_subroutine();
3223     StubRoutines::Sparc::_flush_callers_register_windows_entry = generate_flush_callers_register_windows();
3224 
3225 #if !defined(COMPILER2) && !defined(_LP64)
3226     StubRoutines::_atomic_xchg_entry         = generate_atomic_xchg();
3227     StubRoutines::_atomic_cmpxchg_entry      = generate_atomic_cmpxchg();
3228     StubRoutines::_atomic_add_entry          = generate_atomic_add();
3229     StubRoutines::_atomic_xchg_ptr_entry     = StubRoutines::_atomic_xchg_entry;
3230     StubRoutines::_atomic_cmpxchg_ptr_entry  = StubRoutines::_atomic_cmpxchg_entry;
3231     StubRoutines::_atomic_cmpxchg_long_entry = generate_atomic_cmpxchg_long();
3232     StubRoutines::_atomic_add_ptr_entry      = StubRoutines::_atomic_add_entry;
3233 #endif  // COMPILER2 !=> _LP64
3234   }
3235 
3236 
3237   void generate_all() {
3238     // Generates all stubs and initializes the entry points
3239 
3240     // Generate partial_subtype_check first here since its code depends on
3241     // UseZeroBaseCompressedOops which is defined after heap initialization.
3242     StubRoutines::Sparc::_partial_subtype_check                = generate_partial_subtype_check();
3243     // These entry points require SharedInfo::stack0 to be set up in non-core builds
3244     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError),  false);
3245     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError),  false);
3246     StubRoutines::_throw_ArithmeticException_entry         = generate_throw_exception("ArithmeticException throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_ArithmeticException),  true);
3247     StubRoutines::_throw_NullPointerException_entry        = generate_throw_exception("NullPointerException throw_exception",         CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException), true);
3248     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call), false);
3249     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError),   false);
3250 
3251     StubRoutines::_handler_for_unsafe_access_entry =
3252       generate_handler_for_unsafe_access();
3253 
3254     // support for verify_oop (must happen after universe_init)
3255     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop_subroutine();
3256 
3257     // arraycopy stubs used by compilers
3258     generate_arraycopy_stubs();
3259 
3260     // Don't initialize the platform math functions since sparc
3261     // doesn't have intrinsics for these operations.
3262   }
3263 
3264 
3265  public:
3266   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3267     // replace the standard masm with a special one:
3268     _masm = new MacroAssembler(code);
3269 
3270     _stub_count = !all ? 0x100 : 0x200;
3271     if (all) {
3272       generate_all();
3273     } else {
3274       generate_initial();
3275     }
3276 
3277     // make sure this stub is available for all local calls
3278     if (_atomic_add_stub.is_unbound()) {
3279       // generate a second time, if necessary
3280       (void) generate_atomic_add();
3281     }
3282   }
3283 
3284 
3285  private:
3286   int _stub_count;
3287   void stub_prolog(StubCodeDesc* cdesc) {
3288     # ifdef ASSERT
3289       // put extra information in the stub code, to make it more readable
3290 #ifdef _LP64
3291 // Write the high part of the address
3292 // [RGV] Check if there is a dependency on the size of this prolog
3293       __ emit_data((intptr_t)cdesc >> 32,    relocInfo::none);
3294 #endif
3295       __ emit_data((intptr_t)cdesc,    relocInfo::none);
3296       __ emit_data(++_stub_count, relocInfo::none);
3297     # endif
3298     align(true);
3299   }
3300 
3301   void align(bool at_header = false) {
3302     // %%%%% move this constant somewhere else
3303     // UltraSPARC cache line size is 8 instructions:
3304     const unsigned int icache_line_size = 32;
3305     const unsigned int icache_half_line_size = 16;
3306 
3307     if (at_header) {
3308       while ((intptr_t)(__ pc()) % icache_line_size != 0) {
3309         __ emit_data(0, relocInfo::none);
3310       }
3311     } else {
3312       while ((intptr_t)(__ pc()) % icache_half_line_size != 0) {
3313         __ nop();
3314       }
3315     }
3316   }
3317 
3318 }; // end class declaration
3319 
3320 void StubGenerator_generate(CodeBuffer* code, bool all) {
3321   StubGenerator g(code, all);
3322 }