1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_BARRIERSET_HPP
  26 #define SHARE_VM_MEMORY_BARRIERSET_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "oops/oopsHierarchy.hpp"
  30 
  31 // This class provides the interface between a barrier implementation and
  32 // the rest of the system.
  33 
  34 class BarrierSet: public CHeapObj {
  35   friend class VMStructs;
  36 public:
  37   enum Name {
  38     ModRef,
  39     CardTableModRef,
  40     CardTableExtension,
  41     G1SATBCT,
  42     G1SATBCTLogging,
  43     Other,
  44     Uninit
  45   };
  46 
  47 protected:
  48   int _max_covered_regions;
  49   Name _kind;
  50 
  51 public:
  52 
  53   BarrierSet() { _kind = Uninit; }
  54   // To get around prohibition on RTTI.
  55   BarrierSet::Name kind() { return _kind; }
  56   virtual bool is_a(BarrierSet::Name bsn) = 0;
  57 
  58   // These operations indicate what kind of barriers the BarrierSet has.
  59   virtual bool has_read_ref_barrier() = 0;
  60   virtual bool has_read_prim_barrier() = 0;
  61   virtual bool has_write_ref_barrier() = 0;
  62   virtual bool has_write_ref_pre_barrier() = 0;
  63   virtual bool has_write_prim_barrier() = 0;
  64 
  65   // These functions indicate whether a particular access of the given
  66   // kinds requires a barrier.
  67   virtual bool read_ref_needs_barrier(void* field) = 0;
  68   virtual bool read_prim_needs_barrier(HeapWord* field, size_t bytes) = 0;
  69   virtual bool write_ref_needs_barrier(void* field, oop new_val) = 0;
  70   virtual bool write_prim_needs_barrier(HeapWord* field, size_t bytes,
  71                                         juint val1, juint val2) = 0;
  72 
  73   // The first four operations provide a direct implementation of the
  74   // barrier set.  An interpreter loop, for example, could call these
  75   // directly, as appropriate.
  76 
  77   // Invoke the barrier, if any, necessary when reading the given ref field.
  78   virtual void read_ref_field(void* field) = 0;
  79 
  80   // Invoke the barrier, if any, necessary when reading the given primitive
  81   // "field" of "bytes" bytes in "obj".
  82   virtual void read_prim_field(HeapWord* field, size_t bytes) = 0;
  83 
  84   // Invoke the barrier, if any, necessary when writing "new_val" into the
  85   // ref field at "offset" in "obj".
  86   // (For efficiency reasons, this operation is specialized for certain
  87   // barrier types.  Semantically, it should be thought of as a call to the
  88   // virtual "_work" function below, which must implement the barrier.)
  89   // First the pre-write versions...
  90   template <class T> inline void write_ref_field_pre(T* field, oop new_val);
  91 private:
  92   // Keep this private so as to catch violations at build time.
  93   virtual void write_ref_field_pre_work(     void* field, oop new_val) { guarantee(false, "Not needed"); };
  94 protected:
  95   virtual void write_ref_field_pre_work(      oop* field, oop new_val) {};
  96   virtual void write_ref_field_pre_work(narrowOop* field, oop new_val) {};
  97 public:
  98 
  99   // ...then the post-write version.
 100   inline void write_ref_field(void* field, oop new_val);
 101 protected:
 102   virtual void write_ref_field_work(void* field, oop new_val) = 0;
 103 public:
 104 
 105   // Invoke the barrier, if any, necessary when writing the "bytes"-byte
 106   // value(s) "val1" (and "val2") into the primitive "field".
 107   virtual void write_prim_field(HeapWord* field, size_t bytes,
 108                                 juint val1, juint val2) = 0;
 109 
 110   // Operations on arrays, or general regions (e.g., for "clone") may be
 111   // optimized by some barriers.
 112 
 113   // The first six operations tell whether such an optimization exists for
 114   // the particular barrier.
 115   virtual bool has_read_ref_array_opt() = 0;
 116   virtual bool has_read_prim_array_opt() = 0;
 117   virtual bool has_write_ref_array_pre_opt() { return true; }
 118   virtual bool has_write_ref_array_opt() = 0;
 119   virtual bool has_write_prim_array_opt() = 0;
 120 
 121   virtual bool has_read_region_opt() = 0;
 122   virtual bool has_write_region_opt() = 0;
 123 
 124   // These operations should assert false unless the correponding operation
 125   // above returns true.  Otherwise, they should perform an appropriate
 126   // barrier for an array whose elements are all in the given memory region.
 127   virtual void read_ref_array(MemRegion mr) = 0;
 128   virtual void read_prim_array(MemRegion mr) = 0;
 129 
 130   // Below length is the # array elements being written
 131   virtual void write_ref_array_pre(      oop* dst, int length) {}
 132   virtual void write_ref_array_pre(narrowOop* dst, int length) {}
 133   // Below count is the # array elements being written, starting
 134   // at the address "start", which may not necessarily be HeapWord-aligned
 135   inline void write_ref_array(HeapWord* start, size_t count);
 136 
 137   // Static versions, suitable for calling from generated code;
 138   // count is # array elements being written, starting with "start",
 139   // which may not necessarily be HeapWord-aligned.
 140   static void static_write_ref_array_pre(HeapWord* start, size_t count);
 141   static void static_write_ref_array_post(HeapWord* start, size_t count);
 142 
 143 protected:
 144   virtual void write_ref_array_work(MemRegion mr) = 0;
 145 public:
 146   virtual void write_prim_array(MemRegion mr) = 0;
 147 
 148   virtual void read_region(MemRegion mr) = 0;
 149 
 150   // (For efficiency reasons, this operation is specialized for certain
 151   // barrier types.  Semantically, it should be thought of as a call to the
 152   // virtual "_work" function below, which must implement the barrier.)
 153   inline void write_region(MemRegion mr);
 154 protected:
 155   virtual void write_region_work(MemRegion mr) = 0;
 156 public:
 157 
 158   // Some barrier sets create tables whose elements correspond to parts of
 159   // the heap; the CardTableModRefBS is an example.  Such barrier sets will
 160   // normally reserve space for such tables, and commit parts of the table
 161   // "covering" parts of the heap that are committed.  The constructor is
 162   // passed the maximum number of independently committable subregions to
 163   // be covered, and the "resize_covoered_region" function allows the
 164   // sub-parts of the heap to inform the barrier set of changes of their
 165   // sizes.
 166   BarrierSet(int max_covered_regions) :
 167     _max_covered_regions(max_covered_regions) {}
 168 
 169   // Inform the BarrierSet that the the covered heap region that starts
 170   // with "base" has been changed to have the given size (possibly from 0,
 171   // for initialization.)
 172   virtual void resize_covered_region(MemRegion new_region) = 0;
 173 
 174   // If the barrier set imposes any alignment restrictions on boundaries
 175   // within the heap, this function tells whether they are met.
 176   virtual bool is_aligned(HeapWord* addr) = 0;
 177 
 178 };
 179 
 180 #endif // SHARE_VM_MEMORY_BARRIERSET_HPP