1 /*
   2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_g1CollectedHeap.cpp.incl"
  27 
  28 // turn it on so that the contents of the young list (scan-only /
  29 // to-be-collected) are printed at "strategic" points before / during
  30 // / after the collection --- this is useful for debugging
  31 #define SCAN_ONLY_VERBOSE 0
  32 // CURRENT STATUS
  33 // This file is under construction.  Search for "FIXME".
  34 
  35 // INVARIANTS/NOTES
  36 //
  37 // All allocation activity covered by the G1CollectedHeap interface is
  38 //   serialized by acquiring the HeapLock.  This happens in
  39 //   mem_allocate_work, which all such allocation functions call.
  40 //   (Note that this does not apply to TLAB allocation, which is not part
  41 //   of this interface: it is done by clients of this interface.)
  42 
  43 // Local to this file.
  44 
  45 // Finds the first HeapRegion.
  46 // No longer used, but might be handy someday.
  47 
  48 class FindFirstRegionClosure: public HeapRegionClosure {
  49   HeapRegion* _a_region;
  50 public:
  51   FindFirstRegionClosure() : _a_region(NULL) {}
  52   bool doHeapRegion(HeapRegion* r) {
  53     _a_region = r;
  54     return true;
  55   }
  56   HeapRegion* result() { return _a_region; }
  57 };
  58 
  59 
  60 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  61   SuspendibleThreadSet* _sts;
  62   G1RemSet* _g1rs;
  63   ConcurrentG1Refine* _cg1r;
  64   bool _concurrent;
  65 public:
  66   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  67                               G1RemSet* g1rs,
  68                               ConcurrentG1Refine* cg1r) :
  69     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  70   {}
  71   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  72     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
  73     if (_concurrent && _sts->should_yield()) {
  74       // Caller will actually yield.
  75       return false;
  76     }
  77     // Otherwise, we finished successfully; return true.
  78     return true;
  79   }
  80   void set_concurrent(bool b) { _concurrent = b; }
  81 };
  82 
  83 
  84 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  85   int _calls;
  86   G1CollectedHeap* _g1h;
  87   CardTableModRefBS* _ctbs;
  88   int _histo[256];
  89 public:
  90   ClearLoggedCardTableEntryClosure() :
  91     _calls(0)
  92   {
  93     _g1h = G1CollectedHeap::heap();
  94     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  95     for (int i = 0; i < 256; i++) _histo[i] = 0;
  96   }
  97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  98     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
  99       _calls++;
 100       unsigned char* ujb = (unsigned char*)card_ptr;
 101       int ind = (int)(*ujb);
 102       _histo[ind]++;
 103       *card_ptr = -1;
 104     }
 105     return true;
 106   }
 107   int calls() { return _calls; }
 108   void print_histo() {
 109     gclog_or_tty->print_cr("Card table value histogram:");
 110     for (int i = 0; i < 256; i++) {
 111       if (_histo[i] != 0) {
 112         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 113       }
 114     }
 115   }
 116 };
 117 
 118 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 119   int _calls;
 120   G1CollectedHeap* _g1h;
 121   CardTableModRefBS* _ctbs;
 122 public:
 123   RedirtyLoggedCardTableEntryClosure() :
 124     _calls(0)
 125   {
 126     _g1h = G1CollectedHeap::heap();
 127     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 128   }
 129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 131       _calls++;
 132       *card_ptr = 0;
 133     }
 134     return true;
 135   }
 136   int calls() { return _calls; }
 137 };
 138 
 139 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 140 public:
 141   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 142     *card_ptr = CardTableModRefBS::dirty_card_val();
 143     return true;
 144   }
 145 };
 146 
 147 YoungList::YoungList(G1CollectedHeap* g1h)
 148   : _g1h(g1h), _head(NULL),
 149     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
 150     _length(0), _scan_only_length(0),
 151     _last_sampled_rs_lengths(0),
 152     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 153 {
 154   guarantee( check_list_empty(false), "just making sure..." );
 155 }
 156 
 157 void YoungList::push_region(HeapRegion *hr) {
 158   assert(!hr->is_young(), "should not already be young");
 159   assert(hr->get_next_young_region() == NULL, "cause it should!");
 160 
 161   hr->set_next_young_region(_head);
 162   _head = hr;
 163 
 164   hr->set_young();
 165   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
 166   ++_length;
 167 }
 168 
 169 void YoungList::add_survivor_region(HeapRegion* hr) {
 170   assert(hr->is_survivor(), "should be flagged as survivor region");
 171   assert(hr->get_next_young_region() == NULL, "cause it should!");
 172 
 173   hr->set_next_young_region(_survivor_head);
 174   if (_survivor_head == NULL) {
 175     _survivor_tail = hr;
 176   }
 177   _survivor_head = hr;
 178 
 179   ++_survivor_length;
 180 }
 181 
 182 HeapRegion* YoungList::pop_region() {
 183   while (_head != NULL) {
 184     assert( length() > 0, "list should not be empty" );
 185     HeapRegion* ret = _head;
 186     _head = ret->get_next_young_region();
 187     ret->set_next_young_region(NULL);
 188     --_length;
 189     assert(ret->is_young(), "region should be very young");
 190 
 191     // Replace 'Survivor' region type with 'Young'. So the region will
 192     // be treated as a young region and will not be 'confused' with
 193     // newly created survivor regions.
 194     if (ret->is_survivor()) {
 195       ret->set_young();
 196     }
 197 
 198     if (!ret->is_scan_only()) {
 199       return ret;
 200     }
 201 
 202     // scan-only, we'll add it to the scan-only list
 203     if (_scan_only_tail == NULL) {
 204       guarantee( _scan_only_head == NULL, "invariant" );
 205 
 206       _scan_only_head = ret;
 207       _curr_scan_only = ret;
 208     } else {
 209       guarantee( _scan_only_head != NULL, "invariant" );
 210       _scan_only_tail->set_next_young_region(ret);
 211     }
 212     guarantee( ret->get_next_young_region() == NULL, "invariant" );
 213     _scan_only_tail = ret;
 214 
 215     // no need to be tagged as scan-only any more
 216     ret->set_young();
 217 
 218     ++_scan_only_length;
 219   }
 220   assert( length() == 0, "list should be empty" );
 221   return NULL;
 222 }
 223 
 224 void YoungList::empty_list(HeapRegion* list) {
 225   while (list != NULL) {
 226     HeapRegion* next = list->get_next_young_region();
 227     list->set_next_young_region(NULL);
 228     list->uninstall_surv_rate_group();
 229     list->set_not_young();
 230     list = next;
 231   }
 232 }
 233 
 234 void YoungList::empty_list() {
 235   assert(check_list_well_formed(), "young list should be well formed");
 236 
 237   empty_list(_head);
 238   _head = NULL;
 239   _length = 0;
 240 
 241   empty_list(_scan_only_head);
 242   _scan_only_head = NULL;
 243   _scan_only_tail = NULL;
 244   _scan_only_length = 0;
 245   _curr_scan_only = NULL;
 246 
 247   empty_list(_survivor_head);
 248   _survivor_head = NULL;
 249   _survivor_tail = NULL;
 250   _survivor_length = 0;
 251 
 252   _last_sampled_rs_lengths = 0;
 253 
 254   assert(check_list_empty(false), "just making sure...");
 255 }
 256 
 257 bool YoungList::check_list_well_formed() {
 258   bool ret = true;
 259 
 260   size_t length = 0;
 261   HeapRegion* curr = _head;
 262   HeapRegion* last = NULL;
 263   while (curr != NULL) {
 264     if (!curr->is_young() || curr->is_scan_only()) {
 265       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 266                              "incorrectly tagged (%d, %d)",
 267                              curr->bottom(), curr->end(),
 268                              curr->is_young(), curr->is_scan_only());
 269       ret = false;
 270     }
 271     ++length;
 272     last = curr;
 273     curr = curr->get_next_young_region();
 274   }
 275   ret = ret && (length == _length);
 276 
 277   if (!ret) {
 278     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 279     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 280                            length, _length);
 281   }
 282 
 283   bool scan_only_ret = true;
 284   length = 0;
 285   curr = _scan_only_head;
 286   last = NULL;
 287   while (curr != NULL) {
 288     if (!curr->is_young() || curr->is_scan_only()) {
 289       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
 290                              "incorrectly tagged (%d, %d)",
 291                              curr->bottom(), curr->end(),
 292                              curr->is_young(), curr->is_scan_only());
 293       scan_only_ret = false;
 294     }
 295     ++length;
 296     last = curr;
 297     curr = curr->get_next_young_region();
 298   }
 299   scan_only_ret = scan_only_ret && (length == _scan_only_length);
 300 
 301   if ( (last != _scan_only_tail) ||
 302        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
 303        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
 304      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
 305      scan_only_ret = false;
 306   }
 307 
 308   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
 309     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
 310     scan_only_ret = false;
 311    }
 312 
 313   if (!scan_only_ret) {
 314     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
 315     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
 316                   length, _scan_only_length);
 317   }
 318 
 319   return ret && scan_only_ret;
 320 }
 321 
 322 bool YoungList::check_list_empty(bool ignore_scan_only_list,
 323                                  bool check_sample) {
 324   bool ret = true;
 325 
 326   if (_length != 0) {
 327     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 328                   _length);
 329     ret = false;
 330   }
 331   if (check_sample && _last_sampled_rs_lengths != 0) {
 332     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 333     ret = false;
 334   }
 335   if (_head != NULL) {
 336     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 337     ret = false;
 338   }
 339   if (!ret) {
 340     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 341   }
 342 
 343   if (ignore_scan_only_list)
 344     return ret;
 345 
 346   bool scan_only_ret = true;
 347   if (_scan_only_length != 0) {
 348     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
 349                   _scan_only_length);
 350     scan_only_ret = false;
 351   }
 352   if (_scan_only_head != NULL) {
 353     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
 354      scan_only_ret = false;
 355   }
 356   if (_scan_only_tail != NULL) {
 357     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
 358     scan_only_ret = false;
 359   }
 360   if (!scan_only_ret) {
 361     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
 362   }
 363 
 364   return ret && scan_only_ret;
 365 }
 366 
 367 void
 368 YoungList::rs_length_sampling_init() {
 369   _sampled_rs_lengths = 0;
 370   _curr               = _head;
 371 }
 372 
 373 bool
 374 YoungList::rs_length_sampling_more() {
 375   return _curr != NULL;
 376 }
 377 
 378 void
 379 YoungList::rs_length_sampling_next() {
 380   assert( _curr != NULL, "invariant" );
 381   _sampled_rs_lengths += _curr->rem_set()->occupied();
 382   _curr = _curr->get_next_young_region();
 383   if (_curr == NULL) {
 384     _last_sampled_rs_lengths = _sampled_rs_lengths;
 385     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 386   }
 387 }
 388 
 389 void
 390 YoungList::reset_auxilary_lists() {
 391   // We could have just "moved" the scan-only list to the young list.
 392   // However, the scan-only list is ordered according to the region
 393   // age in descending order, so, by moving one entry at a time, we
 394   // ensure that it is recreated in ascending order.
 395 
 396   guarantee( is_empty(), "young list should be empty" );
 397   assert(check_list_well_formed(), "young list should be well formed");
 398 
 399   // Add survivor regions to SurvRateGroup.
 400   _g1h->g1_policy()->note_start_adding_survivor_regions();
 401   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 402   for (HeapRegion* curr = _survivor_head;
 403        curr != NULL;
 404        curr = curr->get_next_young_region()) {
 405     _g1h->g1_policy()->set_region_survivors(curr);
 406   }
 407   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 408 
 409   if (_survivor_head != NULL) {
 410     _head           = _survivor_head;
 411     _length         = _survivor_length + _scan_only_length;
 412     _survivor_tail->set_next_young_region(_scan_only_head);
 413   } else {
 414     _head           = _scan_only_head;
 415     _length         = _scan_only_length;
 416   }
 417 
 418   for (HeapRegion* curr = _scan_only_head;
 419        curr != NULL;
 420        curr = curr->get_next_young_region()) {
 421     curr->recalculate_age_in_surv_rate_group();
 422   }
 423   _scan_only_head   = NULL;
 424   _scan_only_tail   = NULL;
 425   _scan_only_length = 0;
 426   _curr_scan_only   = NULL;
 427 
 428   _survivor_head    = NULL;
 429   _survivor_tail   = NULL;
 430   _survivor_length  = 0;
 431   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 432 
 433   assert(check_list_well_formed(), "young list should be well formed");
 434 }
 435 
 436 void YoungList::print() {
 437   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
 438   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
 439 
 440   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 441     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 442     HeapRegion *curr = lists[list];
 443     if (curr == NULL)
 444       gclog_or_tty->print_cr("  empty");
 445     while (curr != NULL) {
 446       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 447                              "age: %4d, y: %d, s-o: %d, surv: %d",
 448                              curr->bottom(), curr->end(),
 449                              curr->top(),
 450                              curr->prev_top_at_mark_start(),
 451                              curr->next_top_at_mark_start(),
 452                              curr->top_at_conc_mark_count(),
 453                              curr->age_in_surv_rate_group_cond(),
 454                              curr->is_young(),
 455                              curr->is_scan_only(),
 456                              curr->is_survivor());
 457       curr = curr->get_next_young_region();
 458     }
 459   }
 460 
 461   gclog_or_tty->print_cr("");
 462 }
 463 
 464 void G1CollectedHeap::stop_conc_gc_threads() {
 465   _cg1r->cg1rThread()->stop();
 466   _czft->stop();
 467   _cmThread->stop();
 468 }
 469 
 470 
 471 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 472   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 473   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 474 
 475   // Count the dirty cards at the start.
 476   CountNonCleanMemRegionClosure count1(this);
 477   ct_bs->mod_card_iterate(&count1);
 478   int orig_count = count1.n();
 479 
 480   // First clear the logged cards.
 481   ClearLoggedCardTableEntryClosure clear;
 482   dcqs.set_closure(&clear);
 483   dcqs.apply_closure_to_all_completed_buffers();
 484   dcqs.iterate_closure_all_threads(false);
 485   clear.print_histo();
 486 
 487   // Now ensure that there's no dirty cards.
 488   CountNonCleanMemRegionClosure count2(this);
 489   ct_bs->mod_card_iterate(&count2);
 490   if (count2.n() != 0) {
 491     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 492                            count2.n(), orig_count);
 493   }
 494   guarantee(count2.n() == 0, "Card table should be clean.");
 495 
 496   RedirtyLoggedCardTableEntryClosure redirty;
 497   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 498   dcqs.apply_closure_to_all_completed_buffers();
 499   dcqs.iterate_closure_all_threads(false);
 500   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 501                          clear.calls(), orig_count);
 502   guarantee(redirty.calls() == clear.calls(),
 503             "Or else mechanism is broken.");
 504 
 505   CountNonCleanMemRegionClosure count3(this);
 506   ct_bs->mod_card_iterate(&count3);
 507   if (count3.n() != orig_count) {
 508     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 509                            orig_count, count3.n());
 510     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 511   }
 512 
 513   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 514 }
 515 
 516 // Private class members.
 517 
 518 G1CollectedHeap* G1CollectedHeap::_g1h;
 519 
 520 // Private methods.
 521 
 522 // Finds a HeapRegion that can be used to allocate a given size of block.
 523 
 524 
 525 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
 526                                                  bool do_expand,
 527                                                  bool zero_filled) {
 528   ConcurrentZFThread::note_region_alloc();
 529   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
 530   if (res == NULL && do_expand) {
 531     expand(word_size * HeapWordSize);
 532     res = alloc_free_region_from_lists(zero_filled);
 533     assert(res == NULL ||
 534            (!res->isHumongous() &&
 535             (!zero_filled ||
 536              res->zero_fill_state() == HeapRegion::Allocated)),
 537            "Alloc Regions must be zero filled (and non-H)");
 538   }
 539   if (res != NULL && res->is_empty()) _free_regions--;
 540   assert(res == NULL ||
 541          (!res->isHumongous() &&
 542           (!zero_filled ||
 543            res->zero_fill_state() == HeapRegion::Allocated)),
 544          "Non-young alloc Regions must be zero filled (and non-H)");
 545 
 546   if (G1TraceRegions) {
 547     if (res != NULL) {
 548       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
 549                              "top "PTR_FORMAT,
 550                              res->hrs_index(), res->bottom(), res->end(), res->top());
 551     }
 552   }
 553 
 554   return res;
 555 }
 556 
 557 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
 558                                                          size_t word_size,
 559                                                          bool zero_filled) {
 560   HeapRegion* alloc_region = NULL;
 561   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
 562     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
 563     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
 564       alloc_region->set_survivor();
 565     }
 566     ++_gc_alloc_region_counts[purpose];
 567   } else {
 568     g1_policy()->note_alloc_region_limit_reached(purpose);
 569   }
 570   return alloc_region;
 571 }
 572 
 573 // If could fit into free regions w/o expansion, try.
 574 // Otherwise, if can expand, do so.
 575 // Otherwise, if using ex regions might help, try with ex given back.
 576 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
 577   assert(regions_accounted_for(), "Region leakage!");
 578 
 579   // We can't allocate H regions while cleanupComplete is running, since
 580   // some of the regions we find to be empty might not yet be added to the
 581   // unclean list.  (If we're already at a safepoint, this call is
 582   // unnecessary, not to mention wrong.)
 583   if (!SafepointSynchronize::is_at_safepoint())
 584     wait_for_cleanup_complete();
 585 
 586   size_t num_regions =
 587     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 588 
 589   // Special case if < one region???
 590 
 591   // Remember the ft size.
 592   size_t x_size = expansion_regions();
 593 
 594   HeapWord* res = NULL;
 595   bool eliminated_allocated_from_lists = false;
 596 
 597   // Can the allocation potentially fit in the free regions?
 598   if (free_regions() >= num_regions) {
 599     res = _hrs->obj_allocate(word_size);
 600   }
 601   if (res == NULL) {
 602     // Try expansion.
 603     size_t fs = _hrs->free_suffix();
 604     if (fs + x_size >= num_regions) {
 605       expand((num_regions - fs) * HeapRegion::GrainBytes);
 606       res = _hrs->obj_allocate(word_size);
 607       assert(res != NULL, "This should have worked.");
 608     } else {
 609       // Expansion won't help.  Are there enough free regions if we get rid
 610       // of reservations?
 611       size_t avail = free_regions();
 612       if (avail >= num_regions) {
 613         res = _hrs->obj_allocate(word_size);
 614         if (res != NULL) {
 615           remove_allocated_regions_from_lists();
 616           eliminated_allocated_from_lists = true;
 617         }
 618       }
 619     }
 620   }
 621   if (res != NULL) {
 622     // Increment by the number of regions allocated.
 623     // FIXME: Assumes regions all of size GrainBytes.
 624 #ifndef PRODUCT
 625     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
 626                                            HeapRegion::GrainWords));
 627 #endif
 628     if (!eliminated_allocated_from_lists)
 629       remove_allocated_regions_from_lists();
 630     _summary_bytes_used += word_size * HeapWordSize;
 631     _free_regions -= num_regions;
 632     _num_humongous_regions += (int) num_regions;
 633   }
 634   assert(regions_accounted_for(), "Region Leakage");
 635   return res;
 636 }
 637 
 638 HeapWord*
 639 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 640                                          bool permit_collection_pause) {
 641   HeapWord* res = NULL;
 642   HeapRegion* allocated_young_region = NULL;
 643 
 644   assert( SafepointSynchronize::is_at_safepoint() ||
 645           Heap_lock->owned_by_self(), "pre condition of the call" );
 646 
 647   if (isHumongous(word_size)) {
 648     // Allocation of a humongous object can, in a sense, complete a
 649     // partial region, if the previous alloc was also humongous, and
 650     // caused the test below to succeed.
 651     if (permit_collection_pause)
 652       do_collection_pause_if_appropriate(word_size);
 653     res = humongousObjAllocate(word_size);
 654     assert(_cur_alloc_region == NULL
 655            || !_cur_alloc_region->isHumongous(),
 656            "Prevent a regression of this bug.");
 657 
 658   } else {
 659     // We may have concurrent cleanup working at the time. Wait for it
 660     // to complete. In the future we would probably want to make the
 661     // concurrent cleanup truly concurrent by decoupling it from the
 662     // allocation.
 663     if (!SafepointSynchronize::is_at_safepoint())
 664       wait_for_cleanup_complete();
 665     // If we do a collection pause, this will be reset to a non-NULL
 666     // value.  If we don't, nulling here ensures that we allocate a new
 667     // region below.
 668     if (_cur_alloc_region != NULL) {
 669       // We're finished with the _cur_alloc_region.
 670       _summary_bytes_used += _cur_alloc_region->used();
 671       _cur_alloc_region = NULL;
 672     }
 673     assert(_cur_alloc_region == NULL, "Invariant.");
 674     // Completion of a heap region is perhaps a good point at which to do
 675     // a collection pause.
 676     if (permit_collection_pause)
 677       do_collection_pause_if_appropriate(word_size);
 678     // Make sure we have an allocation region available.
 679     if (_cur_alloc_region == NULL) {
 680       if (!SafepointSynchronize::is_at_safepoint())
 681         wait_for_cleanup_complete();
 682       bool next_is_young = should_set_young_locked();
 683       // If the next region is not young, make sure it's zero-filled.
 684       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
 685       if (_cur_alloc_region != NULL) {
 686         _summary_bytes_used -= _cur_alloc_region->used();
 687         if (next_is_young) {
 688           set_region_short_lived_locked(_cur_alloc_region);
 689           allocated_young_region = _cur_alloc_region;
 690         }
 691       }
 692     }
 693     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
 694            "Prevent a regression of this bug.");
 695 
 696     // Now retry the allocation.
 697     if (_cur_alloc_region != NULL) {
 698       res = _cur_alloc_region->allocate(word_size);
 699     }
 700   }
 701 
 702   // NOTE: fails frequently in PRT
 703   assert(regions_accounted_for(), "Region leakage!");
 704 
 705   if (res != NULL) {
 706     if (!SafepointSynchronize::is_at_safepoint()) {
 707       assert( permit_collection_pause, "invariant" );
 708       assert( Heap_lock->owned_by_self(), "invariant" );
 709       Heap_lock->unlock();
 710     }
 711 
 712     if (allocated_young_region != NULL) {
 713       HeapRegion* hr = allocated_young_region;
 714       HeapWord* bottom = hr->bottom();
 715       HeapWord* end = hr->end();
 716       MemRegion mr(bottom, end);
 717       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
 718     }
 719   }
 720 
 721   assert( SafepointSynchronize::is_at_safepoint() ||
 722           (res == NULL && Heap_lock->owned_by_self()) ||
 723           (res != NULL && !Heap_lock->owned_by_self()),
 724           "post condition of the call" );
 725 
 726   return res;
 727 }
 728 
 729 HeapWord*
 730 G1CollectedHeap::mem_allocate(size_t word_size,
 731                               bool   is_noref,
 732                               bool   is_tlab,
 733                               bool* gc_overhead_limit_was_exceeded) {
 734   debug_only(check_for_valid_allocation_state());
 735   assert(no_gc_in_progress(), "Allocation during gc not allowed");
 736   HeapWord* result = NULL;
 737 
 738   // Loop until the allocation is satisified,
 739   // or unsatisfied after GC.
 740   for (int try_count = 1; /* return or throw */; try_count += 1) {
 741     int gc_count_before;
 742     {
 743       Heap_lock->lock();
 744       result = attempt_allocation(word_size);
 745       if (result != NULL) {
 746         // attempt_allocation should have unlocked the heap lock
 747         assert(is_in(result), "result not in heap");
 748         return result;
 749       }
 750       // Read the gc count while the heap lock is held.
 751       gc_count_before = SharedHeap::heap()->total_collections();
 752       Heap_lock->unlock();
 753     }
 754 
 755     // Create the garbage collection operation...
 756     VM_G1CollectForAllocation op(word_size,
 757                                  gc_count_before);
 758 
 759     // ...and get the VM thread to execute it.
 760     VMThread::execute(&op);
 761     if (op.prologue_succeeded()) {
 762       result = op.result();
 763       assert(result == NULL || is_in(result), "result not in heap");
 764       return result;
 765     }
 766 
 767     // Give a warning if we seem to be looping forever.
 768     if ((QueuedAllocationWarningCount > 0) &&
 769         (try_count % QueuedAllocationWarningCount == 0)) {
 770       warning("G1CollectedHeap::mem_allocate_work retries %d times",
 771               try_count);
 772     }
 773   }
 774 }
 775 
 776 void G1CollectedHeap::abandon_cur_alloc_region() {
 777   if (_cur_alloc_region != NULL) {
 778     // We're finished with the _cur_alloc_region.
 779     if (_cur_alloc_region->is_empty()) {
 780       _free_regions++;
 781       free_region(_cur_alloc_region);
 782     } else {
 783       _summary_bytes_used += _cur_alloc_region->used();
 784     }
 785     _cur_alloc_region = NULL;
 786   }
 787 }
 788 
 789 class PostMCRemSetClearClosure: public HeapRegionClosure {
 790   ModRefBarrierSet* _mr_bs;
 791 public:
 792   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
 793   bool doHeapRegion(HeapRegion* r) {
 794     r->reset_gc_time_stamp();
 795     if (r->continuesHumongous())
 796       return false;
 797     HeapRegionRemSet* hrrs = r->rem_set();
 798     if (hrrs != NULL) hrrs->clear();
 799     // You might think here that we could clear just the cards
 800     // corresponding to the used region.  But no: if we leave a dirty card
 801     // in a region we might allocate into, then it would prevent that card
 802     // from being enqueued, and cause it to be missed.
 803     // Re: the performance cost: we shouldn't be doing full GC anyway!
 804     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
 805     return false;
 806   }
 807 };
 808 
 809 
 810 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
 811   ModRefBarrierSet* _mr_bs;
 812 public:
 813   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
 814   bool doHeapRegion(HeapRegion* r) {
 815     if (r->continuesHumongous()) return false;
 816     if (r->used_region().word_size() != 0) {
 817       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
 818     }
 819     return false;
 820   }
 821 };
 822 
 823 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
 824   G1CollectedHeap*   _g1h;
 825   UpdateRSOopClosure _cl;
 826   int                _worker_i;
 827 public:
 828   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
 829     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
 830     _worker_i(worker_i),
 831     _g1h(g1)
 832   { }
 833   bool doHeapRegion(HeapRegion* r) {
 834     if (!r->continuesHumongous()) {
 835       _cl.set_from(r);
 836       r->oop_iterate(&_cl);
 837     }
 838     return false;
 839   }
 840 };
 841 
 842 class ParRebuildRSTask: public AbstractGangTask {
 843   G1CollectedHeap* _g1;
 844 public:
 845   ParRebuildRSTask(G1CollectedHeap* g1)
 846     : AbstractGangTask("ParRebuildRSTask"),
 847       _g1(g1)
 848   { }
 849 
 850   void work(int i) {
 851     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
 852     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
 853                                          HeapRegion::RebuildRSClaimValue);
 854   }
 855 };
 856 
 857 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
 858                                     size_t word_size) {
 859   ResourceMark rm;
 860 
 861   if (full && DisableExplicitGC) {
 862     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
 863     return;
 864   }
 865 
 866   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 867   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
 868 
 869   if (GC_locker::is_active()) {
 870     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 871   }
 872 
 873   {
 874     IsGCActiveMark x;
 875 
 876     // Timing
 877     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 878     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 879     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
 880 
 881     double start = os::elapsedTime();
 882     GCOverheadReporter::recordSTWStart(start);
 883     g1_policy()->record_full_collection_start();
 884 
 885     gc_prologue(true);
 886     increment_total_collections();
 887 
 888     size_t g1h_prev_used = used();
 889     assert(used() == recalculate_used(), "Should be equal");
 890 
 891     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
 892       HandleMark hm;  // Discard invalid handles created during verification
 893       prepare_for_verify();
 894       gclog_or_tty->print(" VerifyBeforeGC:");
 895       Universe::verify(true);
 896     }
 897     assert(regions_accounted_for(), "Region leakage!");
 898 
 899     COMPILER2_PRESENT(DerivedPointerTable::clear());
 900 
 901     // We want to discover references, but not process them yet.
 902     // This mode is disabled in
 903     // instanceRefKlass::process_discovered_references if the
 904     // generation does some collection work, or
 905     // instanceRefKlass::enqueue_discovered_references if the
 906     // generation returns without doing any work.
 907     ref_processor()->disable_discovery();
 908     ref_processor()->abandon_partial_discovery();
 909     ref_processor()->verify_no_references_recorded();
 910 
 911     // Abandon current iterations of concurrent marking and concurrent
 912     // refinement, if any are in progress.
 913     concurrent_mark()->abort();
 914 
 915     // Make sure we'll choose a new allocation region afterwards.
 916     abandon_cur_alloc_region();
 917     assert(_cur_alloc_region == NULL, "Invariant.");
 918     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
 919     tear_down_region_lists();
 920     set_used_regions_to_need_zero_fill();
 921     if (g1_policy()->in_young_gc_mode()) {
 922       empty_young_list();
 923       g1_policy()->set_full_young_gcs(true);
 924     }
 925 
 926     // Temporarily make reference _discovery_ single threaded (non-MT).
 927     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
 928 
 929     // Temporarily make refs discovery atomic
 930     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
 931 
 932     // Temporarily clear _is_alive_non_header
 933     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
 934 
 935     ref_processor()->enable_discovery();
 936     ref_processor()->setup_policy(clear_all_soft_refs);
 937 
 938     // Do collection work
 939     {
 940       HandleMark hm;  // Discard invalid handles created during gc
 941       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
 942     }
 943     // Because freeing humongous regions may have added some unclean
 944     // regions, it is necessary to tear down again before rebuilding.
 945     tear_down_region_lists();
 946     rebuild_region_lists();
 947 
 948     _summary_bytes_used = recalculate_used();
 949 
 950     ref_processor()->enqueue_discovered_references();
 951 
 952     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 953 
 954     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
 955       HandleMark hm;  // Discard invalid handles created during verification
 956       gclog_or_tty->print(" VerifyAfterGC:");
 957       prepare_for_verify();
 958       Universe::verify(false);
 959     }
 960     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 961 
 962     reset_gc_time_stamp();
 963     // Since everything potentially moved, we will clear all remembered
 964     // sets, and clear all cards.  Later we will rebuild remebered
 965     // sets. We will also reset the GC time stamps of the regions.
 966     PostMCRemSetClearClosure rs_clear(mr_bs());
 967     heap_region_iterate(&rs_clear);
 968 
 969     // Resize the heap if necessary.
 970     resize_if_necessary_after_full_collection(full ? 0 : word_size);
 971 
 972     if (_cg1r->use_cache()) {
 973       _cg1r->clear_and_record_card_counts();
 974       _cg1r->clear_hot_cache();
 975     }
 976 
 977     // Rebuild remembered sets of all regions.
 978     if (ParallelGCThreads > 0) {
 979       ParRebuildRSTask rebuild_rs_task(this);
 980       assert(check_heap_region_claim_values(
 981              HeapRegion::InitialClaimValue), "sanity check");
 982       set_par_threads(workers()->total_workers());
 983       workers()->run_task(&rebuild_rs_task);
 984       set_par_threads(0);
 985       assert(check_heap_region_claim_values(
 986              HeapRegion::RebuildRSClaimValue), "sanity check");
 987       reset_heap_region_claim_values();
 988     } else {
 989       RebuildRSOutOfRegionClosure rebuild_rs(this);
 990       heap_region_iterate(&rebuild_rs);
 991     }
 992 
 993     if (PrintGC) {
 994       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
 995     }
 996 
 997     if (true) { // FIXME
 998       // Ask the permanent generation to adjust size for full collections
 999       perm()->compute_new_size();
1000     }
1001 
1002     double end = os::elapsedTime();
1003     GCOverheadReporter::recordSTWEnd(end);
1004     g1_policy()->record_full_collection_end();
1005 
1006 #ifdef TRACESPINNING
1007     ParallelTaskTerminator::print_termination_counts();
1008 #endif
1009 
1010     gc_epilogue(true);
1011 
1012     // Abandon concurrent refinement.  This must happen last: in the
1013     // dirty-card logging system, some cards may be dirty by weak-ref
1014     // processing, and may be enqueued.  But the whole card table is
1015     // dirtied, so this should abandon those logs, and set "do_traversal"
1016     // to true.
1017     concurrent_g1_refine()->set_pya_restart();
1018     assert(!G1DeferredRSUpdate
1019            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1020     assert(regions_accounted_for(), "Region leakage!");
1021   }
1022 
1023   if (g1_policy()->in_young_gc_mode()) {
1024     _young_list->reset_sampled_info();
1025     assert( check_young_list_empty(false, false),
1026             "young list should be empty at this point");
1027   }
1028 }
1029 
1030 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1031   do_collection(true, clear_all_soft_refs, 0);
1032 }
1033 
1034 // This code is mostly copied from TenuredGeneration.
1035 void
1036 G1CollectedHeap::
1037 resize_if_necessary_after_full_collection(size_t word_size) {
1038   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1039 
1040   // Include the current allocation, if any, and bytes that will be
1041   // pre-allocated to support collections, as "used".
1042   const size_t used_after_gc = used();
1043   const size_t capacity_after_gc = capacity();
1044   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1045 
1046   // We don't have floating point command-line arguments
1047   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
1048   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1049   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
1050   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1051 
1052   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
1053   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
1054 
1055   // Don't shrink less than the initial size.
1056   minimum_desired_capacity =
1057     MAX2(minimum_desired_capacity,
1058          collector_policy()->initial_heap_byte_size());
1059   maximum_desired_capacity =
1060     MAX2(maximum_desired_capacity,
1061          collector_policy()->initial_heap_byte_size());
1062 
1063   // We are failing here because minimum_desired_capacity is
1064   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
1065   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
1066 
1067   if (PrintGC && Verbose) {
1068     const double free_percentage = ((double)free_after_gc) / capacity();
1069     gclog_or_tty->print_cr("Computing new size after full GC ");
1070     gclog_or_tty->print_cr("  "
1071                            "  minimum_free_percentage: %6.2f",
1072                            minimum_free_percentage);
1073     gclog_or_tty->print_cr("  "
1074                            "  maximum_free_percentage: %6.2f",
1075                            maximum_free_percentage);
1076     gclog_or_tty->print_cr("  "
1077                            "  capacity: %6.1fK"
1078                            "  minimum_desired_capacity: %6.1fK"
1079                            "  maximum_desired_capacity: %6.1fK",
1080                            capacity() / (double) K,
1081                            minimum_desired_capacity / (double) K,
1082                            maximum_desired_capacity / (double) K);
1083     gclog_or_tty->print_cr("  "
1084                            "   free_after_gc   : %6.1fK"
1085                            "   used_after_gc   : %6.1fK",
1086                            free_after_gc / (double) K,
1087                            used_after_gc / (double) K);
1088     gclog_or_tty->print_cr("  "
1089                            "   free_percentage: %6.2f",
1090                            free_percentage);
1091   }
1092   if (capacity() < minimum_desired_capacity) {
1093     // Don't expand unless it's significant
1094     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1095     expand(expand_bytes);
1096     if (PrintGC && Verbose) {
1097       gclog_or_tty->print_cr("    expanding:"
1098                              "  minimum_desired_capacity: %6.1fK"
1099                              "  expand_bytes: %6.1fK",
1100                              minimum_desired_capacity / (double) K,
1101                              expand_bytes / (double) K);
1102     }
1103 
1104     // No expansion, now see if we want to shrink
1105   } else if (capacity() > maximum_desired_capacity) {
1106     // Capacity too large, compute shrinking size
1107     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1108     shrink(shrink_bytes);
1109     if (PrintGC && Verbose) {
1110       gclog_or_tty->print_cr("  "
1111                              "  shrinking:"
1112                              "  initSize: %.1fK"
1113                              "  maximum_desired_capacity: %.1fK",
1114                              collector_policy()->initial_heap_byte_size() / (double) K,
1115                              maximum_desired_capacity / (double) K);
1116       gclog_or_tty->print_cr("  "
1117                              "  shrink_bytes: %.1fK",
1118                              shrink_bytes / (double) K);
1119     }
1120   }
1121 }
1122 
1123 
1124 HeapWord*
1125 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
1126   HeapWord* result = NULL;
1127 
1128   // In a G1 heap, we're supposed to keep allocation from failing by
1129   // incremental pauses.  Therefore, at least for now, we'll favor
1130   // expansion over collection.  (This might change in the future if we can
1131   // do something smarter than full collection to satisfy a failed alloc.)
1132 
1133   result = expand_and_allocate(word_size);
1134   if (result != NULL) {
1135     assert(is_in(result), "result not in heap");
1136     return result;
1137   }
1138 
1139   // OK, I guess we have to try collection.
1140 
1141   do_collection(false, false, word_size);
1142 
1143   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
1144 
1145   if (result != NULL) {
1146     assert(is_in(result), "result not in heap");
1147     return result;
1148   }
1149 
1150   // Try collecting soft references.
1151   do_collection(false, true, word_size);
1152   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
1153   if (result != NULL) {
1154     assert(is_in(result), "result not in heap");
1155     return result;
1156   }
1157 
1158   // What else?  We might try synchronous finalization later.  If the total
1159   // space available is large enough for the allocation, then a more
1160   // complete compaction phase than we've tried so far might be
1161   // appropriate.
1162   return NULL;
1163 }
1164 
1165 // Attempting to expand the heap sufficiently
1166 // to support an allocation of the given "word_size".  If
1167 // successful, perform the allocation and return the address of the
1168 // allocated block, or else "NULL".
1169 
1170 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1171   size_t expand_bytes = word_size * HeapWordSize;
1172   if (expand_bytes < MinHeapDeltaBytes) {
1173     expand_bytes = MinHeapDeltaBytes;
1174   }
1175   expand(expand_bytes);
1176   assert(regions_accounted_for(), "Region leakage!");
1177   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
1178   return result;
1179 }
1180 
1181 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
1182   size_t pre_used = 0;
1183   size_t cleared_h_regions = 0;
1184   size_t freed_regions = 0;
1185   UncleanRegionList local_list;
1186   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
1187                                     freed_regions, &local_list);
1188 
1189   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
1190                           &local_list);
1191   return pre_used;
1192 }
1193 
1194 void
1195 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
1196                                                    size_t& pre_used,
1197                                                    size_t& cleared_h,
1198                                                    size_t& freed_regions,
1199                                                    UncleanRegionList* list,
1200                                                    bool par) {
1201   assert(!hr->continuesHumongous(), "should have filtered these out");
1202   size_t res = 0;
1203   if (!hr->popular() && hr->used() > 0 && hr->garbage_bytes() == hr->used()) {
1204     if (!hr->is_young()) {
1205       if (G1PolicyVerbose > 0)
1206         gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
1207                                " during cleanup", hr, hr->used());
1208       free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
1209     }
1210   }
1211 }
1212 
1213 // FIXME: both this and shrink could probably be more efficient by
1214 // doing one "VirtualSpace::expand_by" call rather than several.
1215 void G1CollectedHeap::expand(size_t expand_bytes) {
1216   size_t old_mem_size = _g1_storage.committed_size();
1217   // We expand by a minimum of 1K.
1218   expand_bytes = MAX2(expand_bytes, (size_t)K);
1219   size_t aligned_expand_bytes =
1220     ReservedSpace::page_align_size_up(expand_bytes);
1221   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1222                                        HeapRegion::GrainBytes);
1223   expand_bytes = aligned_expand_bytes;
1224   while (expand_bytes > 0) {
1225     HeapWord* base = (HeapWord*)_g1_storage.high();
1226     // Commit more storage.
1227     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
1228     if (!successful) {
1229         expand_bytes = 0;
1230     } else {
1231       expand_bytes -= HeapRegion::GrainBytes;
1232       // Expand the committed region.
1233       HeapWord* high = (HeapWord*) _g1_storage.high();
1234       _g1_committed.set_end(high);
1235       // Create a new HeapRegion.
1236       MemRegion mr(base, high);
1237       bool is_zeroed = !_g1_max_committed.contains(base);
1238       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
1239 
1240       // Now update max_committed if necessary.
1241       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
1242 
1243       // Add it to the HeapRegionSeq.
1244       _hrs->insert(hr);
1245       // Set the zero-fill state, according to whether it's already
1246       // zeroed.
1247       {
1248         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
1249         if (is_zeroed) {
1250           hr->set_zero_fill_complete();
1251           put_free_region_on_list_locked(hr);
1252         } else {
1253           hr->set_zero_fill_needed();
1254           put_region_on_unclean_list_locked(hr);
1255         }
1256       }
1257       _free_regions++;
1258       // And we used up an expansion region to create it.
1259       _expansion_regions--;
1260       // Tell the cardtable about it.
1261       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1262       // And the offset table as well.
1263       _bot_shared->resize(_g1_committed.word_size());
1264     }
1265   }
1266   if (Verbose && PrintGC) {
1267     size_t new_mem_size = _g1_storage.committed_size();
1268     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
1269                            old_mem_size/K, aligned_expand_bytes/K,
1270                            new_mem_size/K);
1271   }
1272 }
1273 
1274 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
1275 {
1276   size_t old_mem_size = _g1_storage.committed_size();
1277   size_t aligned_shrink_bytes =
1278     ReservedSpace::page_align_size_down(shrink_bytes);
1279   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1280                                          HeapRegion::GrainBytes);
1281   size_t num_regions_deleted = 0;
1282   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
1283 
1284   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1285   if (mr.byte_size() > 0)
1286     _g1_storage.shrink_by(mr.byte_size());
1287   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1288 
1289   _g1_committed.set_end(mr.start());
1290   _free_regions -= num_regions_deleted;
1291   _expansion_regions += num_regions_deleted;
1292 
1293   // Tell the cardtable about it.
1294   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1295 
1296   // And the offset table as well.
1297   _bot_shared->resize(_g1_committed.word_size());
1298 
1299   HeapRegionRemSet::shrink_heap(n_regions());
1300 
1301   if (Verbose && PrintGC) {
1302     size_t new_mem_size = _g1_storage.committed_size();
1303     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
1304                            old_mem_size/K, aligned_shrink_bytes/K,
1305                            new_mem_size/K);
1306   }
1307 }
1308 
1309 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1310   release_gc_alloc_regions();
1311   tear_down_region_lists();  // We will rebuild them in a moment.
1312   shrink_helper(shrink_bytes);
1313   rebuild_region_lists();
1314 }
1315 
1316 // Public methods.
1317 
1318 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1319 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1320 #endif // _MSC_VER
1321 
1322 
1323 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1324   SharedHeap(policy_),
1325   _g1_policy(policy_),
1326   _ref_processor(NULL),
1327   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1328   _bot_shared(NULL),
1329   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
1330   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1331   _evac_failure_scan_stack(NULL) ,
1332   _mark_in_progress(false),
1333   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
1334   _cur_alloc_region(NULL),
1335   _refine_cte_cl(NULL),
1336   _free_region_list(NULL), _free_region_list_size(0),
1337   _free_regions(0),
1338   _popular_object_boundary(NULL),
1339   _cur_pop_hr_index(0),
1340   _popular_regions_to_be_evacuated(NULL),
1341   _pop_obj_rc_at_copy(),
1342   _full_collection(false),
1343   _unclean_region_list(),
1344   _unclean_regions_coming(false),
1345   _young_list(new YoungList(this)),
1346   _gc_time_stamp(0),
1347   _surviving_young_words(NULL),
1348   _in_cset_fast_test(NULL),
1349   _in_cset_fast_test_base(NULL)
1350 {
1351   _g1h = this; // To catch bugs.
1352   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1353     vm_exit_during_initialization("Failed necessary allocation.");
1354   }
1355   int n_queues = MAX2((int)ParallelGCThreads, 1);
1356   _task_queues = new RefToScanQueueSet(n_queues);
1357 
1358   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1359   assert(n_rem_sets > 0, "Invariant.");
1360 
1361   HeapRegionRemSetIterator** iter_arr =
1362     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1363   for (int i = 0; i < n_queues; i++) {
1364     iter_arr[i] = new HeapRegionRemSetIterator();
1365   }
1366   _rem_set_iterator = iter_arr;
1367 
1368   for (int i = 0; i < n_queues; i++) {
1369     RefToScanQueue* q = new RefToScanQueue();
1370     q->initialize();
1371     _task_queues->register_queue(i, q);
1372   }
1373 
1374   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1375     _gc_alloc_regions[ap]       = NULL;
1376     _gc_alloc_region_counts[ap] = 0;
1377   }
1378   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1379 }
1380 
1381 jint G1CollectedHeap::initialize() {
1382   os::enable_vtime();
1383 
1384   // Necessary to satisfy locking discipline assertions.
1385 
1386   MutexLocker x(Heap_lock);
1387 
1388   // While there are no constraints in the GC code that HeapWordSize
1389   // be any particular value, there are multiple other areas in the
1390   // system which believe this to be true (e.g. oop->object_size in some
1391   // cases incorrectly returns the size in wordSize units rather than
1392   // HeapWordSize).
1393   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1394 
1395   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1396   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1397 
1398   // Ensure that the sizes are properly aligned.
1399   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1400   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1401 
1402   // We allocate this in any case, but only do no work if the command line
1403   // param is off.
1404   _cg1r = new ConcurrentG1Refine();
1405 
1406   // Reserve the maximum.
1407   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1408   // Includes the perm-gen.
1409   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
1410                         HeapRegion::GrainBytes,
1411                         false /*ism*/);
1412 
1413   if (!heap_rs.is_reserved()) {
1414     vm_exit_during_initialization("Could not reserve enough space for object heap");
1415     return JNI_ENOMEM;
1416   }
1417 
1418   // It is important to do this in a way such that concurrent readers can't
1419   // temporarily think somethings in the heap.  (I've actually seen this
1420   // happen in asserts: DLD.)
1421   _reserved.set_word_size(0);
1422   _reserved.set_start((HeapWord*)heap_rs.base());
1423   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1424 
1425   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1426 
1427   _num_humongous_regions = 0;
1428 
1429   // Create the gen rem set (and barrier set) for the entire reserved region.
1430   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1431   set_barrier_set(rem_set()->bs());
1432   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1433     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1434   } else {
1435     vm_exit_during_initialization("G1 requires a mod ref bs.");
1436     return JNI_ENOMEM;
1437   }
1438 
1439   // Also create a G1 rem set.
1440   if (G1UseHRIntoRS) {
1441     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1442       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
1443     } else {
1444       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1445       return JNI_ENOMEM;
1446     }
1447   } else {
1448     _g1_rem_set = new StupidG1RemSet(this);
1449   }
1450 
1451   // Carve out the G1 part of the heap.
1452 
1453   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1454   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1455                            g1_rs.size()/HeapWordSize);
1456   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1457 
1458   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
1459 
1460   _g1_storage.initialize(g1_rs, 0);
1461   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1462   _g1_max_committed = _g1_committed;
1463   _hrs = new HeapRegionSeq(_expansion_regions);
1464   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
1465   guarantee(_cur_alloc_region == NULL, "from constructor");
1466 
1467   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1468                                              heap_word_size(init_byte_size));
1469 
1470   _g1h = this;
1471 
1472   // Create the ConcurrentMark data structure and thread.
1473   // (Must do this late, so that "max_regions" is defined.)
1474   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
1475   _cmThread = _cm->cmThread();
1476 
1477   // ...and the concurrent zero-fill thread, if necessary.
1478   if (G1ConcZeroFill) {
1479     _czft = new ConcurrentZFThread();
1480   }
1481 
1482 
1483 
1484   // Allocate the popular regions; take them off free lists.
1485   size_t pop_byte_size = G1NumPopularRegions * HeapRegion::GrainBytes;
1486   expand(pop_byte_size);
1487   _popular_object_boundary =
1488     _g1_reserved.start() + (G1NumPopularRegions * HeapRegion::GrainWords);
1489   for (int i = 0; i < G1NumPopularRegions; i++) {
1490     HeapRegion* hr = newAllocRegion(HeapRegion::GrainWords);
1491     //    assert(hr != NULL && hr->bottom() < _popular_object_boundary,
1492     //     "Should be enough, and all should be below boundary.");
1493     hr->set_popular(true);
1494   }
1495   assert(_cur_pop_hr_index == 0, "Start allocating at the first region.");
1496 
1497   // Initialize the from_card cache structure of HeapRegionRemSet.
1498   HeapRegionRemSet::init_heap(max_regions());
1499 
1500   // Now expand into the rest of the initial heap size.
1501   expand(init_byte_size - pop_byte_size);
1502 
1503   // Perform any initialization actions delegated to the policy.
1504   g1_policy()->init();
1505 
1506   g1_policy()->note_start_of_mark_thread();
1507 
1508   _refine_cte_cl =
1509     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
1510                                     g1_rem_set(),
1511                                     concurrent_g1_refine());
1512   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
1513 
1514   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1515                                                SATB_Q_FL_lock,
1516                                                0,
1517                                                Shared_SATB_Q_lock);
1518   if (G1RSBarrierUseQueue) {
1519     JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1520                                                   DirtyCardQ_FL_lock,
1521                                                   G1DirtyCardQueueMax,
1522                                                   Shared_DirtyCardQ_lock);
1523   }
1524   if (G1DeferredRSUpdate) {
1525     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1526                                       DirtyCardQ_FL_lock,
1527                                       0,
1528                                       Shared_DirtyCardQ_lock,
1529                                       &JavaThread::dirty_card_queue_set());
1530   }
1531   // In case we're keeping closure specialization stats, initialize those
1532   // counts and that mechanism.
1533   SpecializationStats::clear();
1534 
1535   _gc_alloc_region_list = NULL;
1536 
1537   // Do later initialization work for concurrent refinement.
1538   _cg1r->init();
1539 
1540   const char* group_names[] = { "CR", "ZF", "CM", "CL" };
1541   GCOverheadReporter::initGCOverheadReporter(4, group_names);
1542 
1543   return JNI_OK;
1544 }
1545 
1546 void G1CollectedHeap::ref_processing_init() {
1547   SharedHeap::ref_processing_init();
1548   MemRegion mr = reserved_region();
1549   _ref_processor = ReferenceProcessor::create_ref_processor(
1550                                          mr,    // span
1551                                          false, // Reference discovery is not atomic
1552                                                 // (though it shouldn't matter here.)
1553                                          true,  // mt_discovery
1554                                          NULL,  // is alive closure: need to fill this in for efficiency
1555                                          ParallelGCThreads,
1556                                          ParallelRefProcEnabled,
1557                                          true); // Setting next fields of discovered
1558                                                 // lists requires a barrier.
1559 }
1560 
1561 size_t G1CollectedHeap::capacity() const {
1562   return _g1_committed.byte_size();
1563 }
1564 
1565 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
1566                                                  int worker_i) {
1567   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1568   int n_completed_buffers = 0;
1569   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
1570     n_completed_buffers++;
1571   }
1572   g1_policy()->record_update_rs_processed_buffers(worker_i,
1573                                                   (double) n_completed_buffers);
1574   dcqs.clear_n_completed_buffers();
1575   // Finish up the queue...
1576   if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
1577                                                             g1_rem_set());
1578   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1579 }
1580 
1581 
1582 // Computes the sum of the storage used by the various regions.
1583 
1584 size_t G1CollectedHeap::used() const {
1585   assert(Heap_lock->owner() != NULL,
1586          "Should be owned on this thread's behalf.");
1587   size_t result = _summary_bytes_used;
1588   if (_cur_alloc_region != NULL)
1589     result += _cur_alloc_region->used();
1590   return result;
1591 }
1592 
1593 class SumUsedClosure: public HeapRegionClosure {
1594   size_t _used;
1595 public:
1596   SumUsedClosure() : _used(0) {}
1597   bool doHeapRegion(HeapRegion* r) {
1598     if (!r->continuesHumongous()) {
1599       _used += r->used();
1600     }
1601     return false;
1602   }
1603   size_t result() { return _used; }
1604 };
1605 
1606 size_t G1CollectedHeap::recalculate_used() const {
1607   SumUsedClosure blk;
1608   _hrs->iterate(&blk);
1609   return blk.result();
1610 }
1611 
1612 #ifndef PRODUCT
1613 class SumUsedRegionsClosure: public HeapRegionClosure {
1614   size_t _num;
1615 public:
1616   // _num is set to 1 to account for the popular region
1617   SumUsedRegionsClosure() : _num(G1NumPopularRegions) {}
1618   bool doHeapRegion(HeapRegion* r) {
1619     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
1620       _num += 1;
1621     }
1622     return false;
1623   }
1624   size_t result() { return _num; }
1625 };
1626 
1627 size_t G1CollectedHeap::recalculate_used_regions() const {
1628   SumUsedRegionsClosure blk;
1629   _hrs->iterate(&blk);
1630   return blk.result();
1631 }
1632 #endif // PRODUCT
1633 
1634 size_t G1CollectedHeap::unsafe_max_alloc() {
1635   if (_free_regions > 0) return HeapRegion::GrainBytes;
1636   // otherwise, is there space in the current allocation region?
1637 
1638   // We need to store the current allocation region in a local variable
1639   // here. The problem is that this method doesn't take any locks and
1640   // there may be other threads which overwrite the current allocation
1641   // region field. attempt_allocation(), for example, sets it to NULL
1642   // and this can happen *after* the NULL check here but before the call
1643   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
1644   // to be a problem in the optimized build, since the two loads of the
1645   // current allocation region field are optimized away.
1646   HeapRegion* car = _cur_alloc_region;
1647 
1648   // FIXME: should iterate over all regions?
1649   if (car == NULL) {
1650     return 0;
1651   }
1652   return car->free();
1653 }
1654 
1655 void G1CollectedHeap::collect(GCCause::Cause cause) {
1656   // The caller doesn't have the Heap_lock
1657   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
1658   MutexLocker ml(Heap_lock);
1659   collect_locked(cause);
1660 }
1661 
1662 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
1663   assert(Thread::current()->is_VM_thread(), "Precondition#1");
1664   assert(Heap_lock->is_locked(), "Precondition#2");
1665   GCCauseSetter gcs(this, cause);
1666   switch (cause) {
1667     case GCCause::_heap_inspection:
1668     case GCCause::_heap_dump: {
1669       HandleMark hm;
1670       do_full_collection(false);         // don't clear all soft refs
1671       break;
1672     }
1673     default: // XXX FIX ME
1674       ShouldNotReachHere(); // Unexpected use of this function
1675   }
1676 }
1677 
1678 
1679 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
1680   // Don't want to do a GC until cleanup is completed.
1681   wait_for_cleanup_complete();
1682 
1683   // Read the GC count while holding the Heap_lock
1684   int gc_count_before = SharedHeap::heap()->total_collections();
1685   {
1686     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
1687     VM_G1CollectFull op(gc_count_before, cause);
1688     VMThread::execute(&op);
1689   }
1690 }
1691 
1692 bool G1CollectedHeap::is_in(const void* p) const {
1693   if (_g1_committed.contains(p)) {
1694     HeapRegion* hr = _hrs->addr_to_region(p);
1695     return hr->is_in(p);
1696   } else {
1697     return _perm_gen->as_gen()->is_in(p);
1698   }
1699 }
1700 
1701 // Iteration functions.
1702 
1703 // Iterates an OopClosure over all ref-containing fields of objects
1704 // within a HeapRegion.
1705 
1706 class IterateOopClosureRegionClosure: public HeapRegionClosure {
1707   MemRegion _mr;
1708   OopClosure* _cl;
1709 public:
1710   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
1711     : _mr(mr), _cl(cl) {}
1712   bool doHeapRegion(HeapRegion* r) {
1713     if (! r->continuesHumongous()) {
1714       r->oop_iterate(_cl);
1715     }
1716     return false;
1717   }
1718 };
1719 
1720 void G1CollectedHeap::oop_iterate(OopClosure* cl) {
1721   IterateOopClosureRegionClosure blk(_g1_committed, cl);
1722   _hrs->iterate(&blk);
1723 }
1724 
1725 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
1726   IterateOopClosureRegionClosure blk(mr, cl);
1727   _hrs->iterate(&blk);
1728 }
1729 
1730 // Iterates an ObjectClosure over all objects within a HeapRegion.
1731 
1732 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
1733   ObjectClosure* _cl;
1734 public:
1735   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
1736   bool doHeapRegion(HeapRegion* r) {
1737     if (! r->continuesHumongous()) {
1738       r->object_iterate(_cl);
1739     }
1740     return false;
1741   }
1742 };
1743 
1744 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
1745   IterateObjectClosureRegionClosure blk(cl);
1746   _hrs->iterate(&blk);
1747 }
1748 
1749 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
1750   // FIXME: is this right?
1751   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
1752 }
1753 
1754 // Calls a SpaceClosure on a HeapRegion.
1755 
1756 class SpaceClosureRegionClosure: public HeapRegionClosure {
1757   SpaceClosure* _cl;
1758 public:
1759   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
1760   bool doHeapRegion(HeapRegion* r) {
1761     _cl->do_space(r);
1762     return false;
1763   }
1764 };
1765 
1766 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
1767   SpaceClosureRegionClosure blk(cl);
1768   _hrs->iterate(&blk);
1769 }
1770 
1771 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
1772   _hrs->iterate(cl);
1773 }
1774 
1775 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
1776                                                HeapRegionClosure* cl) {
1777   _hrs->iterate_from(r, cl);
1778 }
1779 
1780 void
1781 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
1782   _hrs->iterate_from(idx, cl);
1783 }
1784 
1785 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
1786 
1787 void
1788 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
1789                                                  int worker,
1790                                                  jint claim_value) {
1791   const size_t regions = n_regions();
1792   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
1793   // try to spread out the starting points of the workers
1794   const size_t start_index = regions / worker_num * (size_t) worker;
1795 
1796   // each worker will actually look at all regions
1797   for (size_t count = 0; count < regions; ++count) {
1798     const size_t index = (start_index + count) % regions;
1799     assert(0 <= index && index < regions, "sanity");
1800     HeapRegion* r = region_at(index);
1801     // we'll ignore "continues humongous" regions (we'll process them
1802     // when we come across their corresponding "start humongous"
1803     // region) and regions already claimed
1804     if (r->claim_value() == claim_value || r->continuesHumongous()) {
1805       continue;
1806     }
1807     // OK, try to claim it
1808     if (r->claimHeapRegion(claim_value)) {
1809       // success!
1810       assert(!r->continuesHumongous(), "sanity");
1811       if (r->startsHumongous()) {
1812         // If the region is "starts humongous" we'll iterate over its
1813         // "continues humongous" first; in fact we'll do them
1814         // first. The order is important. In on case, calling the
1815         // closure on the "starts humongous" region might de-allocate
1816         // and clear all its "continues humongous" regions and, as a
1817         // result, we might end up processing them twice. So, we'll do
1818         // them first (notice: most closures will ignore them anyway) and
1819         // then we'll do the "starts humongous" region.
1820         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
1821           HeapRegion* chr = region_at(ch_index);
1822 
1823           // if the region has already been claimed or it's not
1824           // "continues humongous" we're done
1825           if (chr->claim_value() == claim_value ||
1826               !chr->continuesHumongous()) {
1827             break;
1828           }
1829 
1830           // Noone should have claimed it directly. We can given
1831           // that we claimed its "starts humongous" region.
1832           assert(chr->claim_value() != claim_value, "sanity");
1833           assert(chr->humongous_start_region() == r, "sanity");
1834 
1835           if (chr->claimHeapRegion(claim_value)) {
1836             // we should always be able to claim it; noone else should
1837             // be trying to claim this region
1838 
1839             bool res2 = cl->doHeapRegion(chr);
1840             assert(!res2, "Should not abort");
1841 
1842             // Right now, this holds (i.e., no closure that actually
1843             // does something with "continues humongous" regions
1844             // clears them). We might have to weaken it in the future,
1845             // but let's leave these two asserts here for extra safety.
1846             assert(chr->continuesHumongous(), "should still be the case");
1847             assert(chr->humongous_start_region() == r, "sanity");
1848           } else {
1849             guarantee(false, "we should not reach here");
1850           }
1851         }
1852       }
1853 
1854       assert(!r->continuesHumongous(), "sanity");
1855       bool res = cl->doHeapRegion(r);
1856       assert(!res, "Should not abort");
1857     }
1858   }
1859 }
1860 
1861 class ResetClaimValuesClosure: public HeapRegionClosure {
1862 public:
1863   bool doHeapRegion(HeapRegion* r) {
1864     r->set_claim_value(HeapRegion::InitialClaimValue);
1865     return false;
1866   }
1867 };
1868 
1869 void
1870 G1CollectedHeap::reset_heap_region_claim_values() {
1871   ResetClaimValuesClosure blk;
1872   heap_region_iterate(&blk);
1873 }
1874 
1875 #ifdef ASSERT
1876 // This checks whether all regions in the heap have the correct claim
1877 // value. I also piggy-backed on this a check to ensure that the
1878 // humongous_start_region() information on "continues humongous"
1879 // regions is correct.
1880 
1881 class CheckClaimValuesClosure : public HeapRegionClosure {
1882 private:
1883   jint _claim_value;
1884   size_t _failures;
1885   HeapRegion* _sh_region;
1886 public:
1887   CheckClaimValuesClosure(jint claim_value) :
1888     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
1889   bool doHeapRegion(HeapRegion* r) {
1890     if (r->claim_value() != _claim_value) {
1891       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
1892                              "claim value = %d, should be %d",
1893                              r->bottom(), r->end(), r->claim_value(),
1894                              _claim_value);
1895       ++_failures;
1896     }
1897     if (!r->isHumongous()) {
1898       _sh_region = NULL;
1899     } else if (r->startsHumongous()) {
1900       _sh_region = r;
1901     } else if (r->continuesHumongous()) {
1902       if (r->humongous_start_region() != _sh_region) {
1903         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
1904                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
1905                                r->bottom(), r->end(),
1906                                r->humongous_start_region(),
1907                                _sh_region);
1908         ++_failures;
1909       }
1910     }
1911     return false;
1912   }
1913   size_t failures() {
1914     return _failures;
1915   }
1916 };
1917 
1918 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
1919   CheckClaimValuesClosure cl(claim_value);
1920   heap_region_iterate(&cl);
1921   return cl.failures() == 0;
1922 }
1923 #endif // ASSERT
1924 
1925 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
1926   HeapRegion* r = g1_policy()->collection_set();
1927   while (r != NULL) {
1928     HeapRegion* next = r->next_in_collection_set();
1929     if (cl->doHeapRegion(r)) {
1930       cl->incomplete();
1931       return;
1932     }
1933     r = next;
1934   }
1935 }
1936 
1937 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
1938                                                   HeapRegionClosure *cl) {
1939   assert(r->in_collection_set(),
1940          "Start region must be a member of the collection set.");
1941   HeapRegion* cur = r;
1942   while (cur != NULL) {
1943     HeapRegion* next = cur->next_in_collection_set();
1944     if (cl->doHeapRegion(cur) && false) {
1945       cl->incomplete();
1946       return;
1947     }
1948     cur = next;
1949   }
1950   cur = g1_policy()->collection_set();
1951   while (cur != r) {
1952     HeapRegion* next = cur->next_in_collection_set();
1953     if (cl->doHeapRegion(cur) && false) {
1954       cl->incomplete();
1955       return;
1956     }
1957     cur = next;
1958   }
1959 }
1960 
1961 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
1962   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
1963 }
1964 
1965 
1966 Space* G1CollectedHeap::space_containing(const void* addr) const {
1967   Space* res = heap_region_containing(addr);
1968   if (res == NULL)
1969     res = perm_gen()->space_containing(addr);
1970   return res;
1971 }
1972 
1973 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
1974   Space* sp = space_containing(addr);
1975   if (sp != NULL) {
1976     return sp->block_start(addr);
1977   }
1978   return NULL;
1979 }
1980 
1981 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
1982   Space* sp = space_containing(addr);
1983   assert(sp != NULL, "block_size of address outside of heap");
1984   return sp->block_size(addr);
1985 }
1986 
1987 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
1988   Space* sp = space_containing(addr);
1989   return sp->block_is_obj(addr);
1990 }
1991 
1992 bool G1CollectedHeap::supports_tlab_allocation() const {
1993   return true;
1994 }
1995 
1996 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
1997   return HeapRegion::GrainBytes;
1998 }
1999 
2000 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2001   // Return the remaining space in the cur alloc region, but not less than
2002   // the min TLAB size.
2003   // Also, no more than half the region size, since we can't allow tlabs to
2004   // grow big enough to accomodate humongous objects.
2005 
2006   // We need to story it locally, since it might change between when we
2007   // test for NULL and when we use it later.
2008   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
2009   if (cur_alloc_space == NULL) {
2010     return HeapRegion::GrainBytes/2;
2011   } else {
2012     return MAX2(MIN2(cur_alloc_space->free(),
2013                      (size_t)(HeapRegion::GrainBytes/2)),
2014                 (size_t)MinTLABSize);
2015   }
2016 }
2017 
2018 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
2019   bool dummy;
2020   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
2021 }
2022 
2023 bool G1CollectedHeap::allocs_are_zero_filled() {
2024   return false;
2025 }
2026 
2027 size_t G1CollectedHeap::large_typearray_limit() {
2028   // FIXME
2029   return HeapRegion::GrainBytes/HeapWordSize;
2030 }
2031 
2032 size_t G1CollectedHeap::max_capacity() const {
2033   return _g1_committed.byte_size();
2034 }
2035 
2036 jlong G1CollectedHeap::millis_since_last_gc() {
2037   // assert(false, "NYI");
2038   return 0;
2039 }
2040 
2041 
2042 void G1CollectedHeap::prepare_for_verify() {
2043   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2044     ensure_parsability(false);
2045   }
2046   g1_rem_set()->prepare_for_verify();
2047 }
2048 
2049 class VerifyLivenessOopClosure: public OopClosure {
2050   G1CollectedHeap* g1h;
2051 public:
2052   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
2053     g1h = _g1h;
2054   }
2055   void do_oop(narrowOop *p) {
2056     guarantee(false, "NYI");
2057   }
2058   void do_oop(oop *p) {
2059     oop obj = *p;
2060     assert(obj == NULL || !g1h->is_obj_dead(obj),
2061            "Dead object referenced by a not dead object");
2062   }
2063 };
2064 
2065 class VerifyObjsInRegionClosure: public ObjectClosure {
2066   G1CollectedHeap* _g1h;
2067   size_t _live_bytes;
2068   HeapRegion *_hr;
2069 public:
2070   VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) {
2071     _g1h = G1CollectedHeap::heap();
2072   }
2073   void do_object(oop o) {
2074     VerifyLivenessOopClosure isLive(_g1h);
2075     assert(o != NULL, "Huh?");
2076     if (!_g1h->is_obj_dead(o)) {
2077       o->oop_iterate(&isLive);
2078       if (!_hr->obj_allocated_since_prev_marking(o))
2079         _live_bytes += (o->size() * HeapWordSize);
2080     }
2081   }
2082   size_t live_bytes() { return _live_bytes; }
2083 };
2084 
2085 class PrintObjsInRegionClosure : public ObjectClosure {
2086   HeapRegion *_hr;
2087   G1CollectedHeap *_g1;
2088 public:
2089   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2090     _g1 = G1CollectedHeap::heap();
2091   };
2092 
2093   void do_object(oop o) {
2094     if (o != NULL) {
2095       HeapWord *start = (HeapWord *) o;
2096       size_t word_sz = o->size();
2097       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2098                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2099                           (void*) o, word_sz,
2100                           _g1->isMarkedPrev(o),
2101                           _g1->isMarkedNext(o),
2102                           _hr->obj_allocated_since_prev_marking(o));
2103       HeapWord *end = start + word_sz;
2104       HeapWord *cur;
2105       int *val;
2106       for (cur = start; cur < end; cur++) {
2107         val = (int *) cur;
2108         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2109       }
2110     }
2111   }
2112 };
2113 
2114 class VerifyRegionClosure: public HeapRegionClosure {
2115 public:
2116   bool _allow_dirty;
2117   bool _par;
2118   VerifyRegionClosure(bool allow_dirty, bool par = false)
2119     : _allow_dirty(allow_dirty), _par(par) {}
2120   bool doHeapRegion(HeapRegion* r) {
2121     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2122               "Should be unclaimed at verify points.");
2123     if (!r->isHumongous() || (r->isHumongous() && r->startsHumongous())) {
2124       VerifyObjsInRegionClosure not_dead_yet_cl(r);
2125       r->verify(_allow_dirty);
2126       r->object_iterate(&not_dead_yet_cl);
2127       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
2128                 "More live objects than counted in last complete marking.");
2129     }
2130     return false;
2131   }
2132 };
2133 
2134 class VerifyRootsClosure: public OopsInGenClosure {
2135 private:
2136   G1CollectedHeap* _g1h;
2137   bool             _failures;
2138 
2139 public:
2140   VerifyRootsClosure() :
2141     _g1h(G1CollectedHeap::heap()), _failures(false) { }
2142 
2143   bool failures() { return _failures; }
2144 
2145   void do_oop(narrowOop* p) {
2146     guarantee(false, "NYI");
2147   }
2148 
2149   void do_oop(oop* p) {
2150     oop obj = *p;
2151     if (obj != NULL) {
2152       if (_g1h->is_obj_dead(obj)) {
2153         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2154                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
2155         obj->print_on(gclog_or_tty);
2156         _failures = true;
2157       }
2158     }
2159   }
2160 };
2161 
2162 // This is the task used for parallel heap verification.
2163 
2164 class G1ParVerifyTask: public AbstractGangTask {
2165 private:
2166   G1CollectedHeap* _g1h;
2167   bool _allow_dirty;
2168 
2169 public:
2170   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) :
2171     AbstractGangTask("Parallel verify task"),
2172     _g1h(g1h), _allow_dirty(allow_dirty) { }
2173 
2174   void work(int worker_i) {
2175     HandleMark hm;
2176     VerifyRegionClosure blk(_allow_dirty, true);
2177     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
2178                                           HeapRegion::ParVerifyClaimValue);
2179   }
2180 };
2181 
2182 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2183   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2184     if (!silent) { gclog_or_tty->print("roots "); }
2185     VerifyRootsClosure rootsCl;
2186     process_strong_roots(false,
2187                          SharedHeap::SO_AllClasses,
2188                          &rootsCl,
2189                          &rootsCl);
2190     rem_set()->invalidate(perm_gen()->used_region(), false);
2191     if (!silent) { gclog_or_tty->print("heapRegions "); }
2192     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
2193       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2194              "sanity check");
2195 
2196       G1ParVerifyTask task(this, allow_dirty);
2197       int n_workers = workers()->total_workers();
2198       set_par_threads(n_workers);
2199       workers()->run_task(&task);
2200       set_par_threads(0);
2201 
2202       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
2203              "sanity check");
2204 
2205       reset_heap_region_claim_values();
2206 
2207       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2208              "sanity check");
2209     } else {
2210       VerifyRegionClosure blk(allow_dirty);
2211       _hrs->iterate(&blk);
2212     }
2213     if (!silent) gclog_or_tty->print("remset ");
2214     rem_set()->verify();
2215     guarantee(!rootsCl.failures(), "should not have had failures");
2216   } else {
2217     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
2218   }
2219 }
2220 
2221 class PrintRegionClosure: public HeapRegionClosure {
2222   outputStream* _st;
2223 public:
2224   PrintRegionClosure(outputStream* st) : _st(st) {}
2225   bool doHeapRegion(HeapRegion* r) {
2226     r->print_on(_st);
2227     return false;
2228   }
2229 };
2230 
2231 void G1CollectedHeap::print() const { print_on(gclog_or_tty); }
2232 
2233 void G1CollectedHeap::print_on(outputStream* st) const {
2234   PrintRegionClosure blk(st);
2235   _hrs->iterate(&blk);
2236 }
2237 
2238 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2239   if (ParallelGCThreads > 0) {
2240     workers()->print_worker_threads();
2241   }
2242   st->print("\"G1 concurrent mark GC Thread\" ");
2243   _cmThread->print();
2244   st->cr();
2245   st->print("\"G1 concurrent refinement GC Thread\" ");
2246   _cg1r->cg1rThread()->print_on(st);
2247   st->cr();
2248   st->print("\"G1 zero-fill GC Thread\" ");
2249   _czft->print_on(st);
2250   st->cr();
2251 }
2252 
2253 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2254   if (ParallelGCThreads > 0) {
2255     workers()->threads_do(tc);
2256   }
2257   tc->do_thread(_cmThread);
2258   tc->do_thread(_cg1r->cg1rThread());
2259   tc->do_thread(_czft);
2260 }
2261 
2262 void G1CollectedHeap::print_tracing_info() const {
2263   concurrent_g1_refine()->print_final_card_counts();
2264 
2265   // We'll overload this to mean "trace GC pause statistics."
2266   if (TraceGen0Time || TraceGen1Time) {
2267     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
2268     // to that.
2269     g1_policy()->print_tracing_info();
2270   }
2271   if (SummarizeG1RSStats) {
2272     g1_rem_set()->print_summary_info();
2273   }
2274   if (SummarizeG1ConcMark) {
2275     concurrent_mark()->print_summary_info();
2276   }
2277   if (SummarizeG1ZFStats) {
2278     ConcurrentZFThread::print_summary_info();
2279   }
2280   if (G1SummarizePopularity) {
2281     print_popularity_summary_info();
2282   }
2283   g1_policy()->print_yg_surv_rate_info();
2284 
2285   GCOverheadReporter::printGCOverhead();
2286 
2287   SpecializationStats::print();
2288 }
2289 
2290 
2291 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
2292   HeapRegion* hr = heap_region_containing(addr);
2293   if (hr == NULL) {
2294     return 0;
2295   } else {
2296     return 1;
2297   }
2298 }
2299 
2300 G1CollectedHeap* G1CollectedHeap::heap() {
2301   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
2302          "not a garbage-first heap");
2303   return _g1h;
2304 }
2305 
2306 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2307   if (PrintHeapAtGC){
2308     gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections());
2309     Universe::print();
2310   }
2311   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2312   // Call allocation profiler
2313   AllocationProfiler::iterate_since_last_gc();
2314   // Fill TLAB's and such
2315   ensure_parsability(true);
2316 }
2317 
2318 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
2319   // FIXME: what is this about?
2320   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2321   // is set.
2322   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
2323                         "derived pointer present"));
2324 
2325   if (PrintHeapAtGC){
2326     gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections());
2327     Universe::print();
2328     gclog_or_tty->print("} ");
2329   }
2330 }
2331 
2332 void G1CollectedHeap::do_collection_pause() {
2333   // Read the GC count while holding the Heap_lock
2334   // we need to do this _before_ wait_for_cleanup_complete(), to
2335   // ensure that we do not give up the heap lock and potentially
2336   // pick up the wrong count
2337   int gc_count_before = SharedHeap::heap()->total_collections();
2338 
2339   // Don't want to do a GC pause while cleanup is being completed!
2340   wait_for_cleanup_complete();
2341 
2342   g1_policy()->record_stop_world_start();
2343   {
2344     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
2345     VM_G1IncCollectionPause op(gc_count_before);
2346     VMThread::execute(&op);
2347   }
2348 }
2349 
2350 void
2351 G1CollectedHeap::doConcurrentMark() {
2352   if (G1ConcMark) {
2353     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2354     if (!_cmThread->in_progress()) {
2355       _cmThread->set_started();
2356       CGC_lock->notify();
2357     }
2358   }
2359 }
2360 
2361 class VerifyMarkedObjsClosure: public ObjectClosure {
2362     G1CollectedHeap* _g1h;
2363     public:
2364     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
2365     void do_object(oop obj) {
2366       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
2367              "markandsweep mark should agree with concurrent deadness");
2368     }
2369 };
2370 
2371 void
2372 G1CollectedHeap::checkConcurrentMark() {
2373     VerifyMarkedObjsClosure verifycl(this);
2374     //    MutexLockerEx x(getMarkBitMapLock(),
2375     //              Mutex::_no_safepoint_check_flag);
2376     object_iterate(&verifycl);
2377 }
2378 
2379 void G1CollectedHeap::do_sync_mark() {
2380   _cm->checkpointRootsInitial();
2381   _cm->markFromRoots();
2382   _cm->checkpointRootsFinal(false);
2383 }
2384 
2385 // <NEW PREDICTION>
2386 
2387 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
2388                                                        bool young) {
2389   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
2390 }
2391 
2392 void G1CollectedHeap::check_if_region_is_too_expensive(double
2393                                                            predicted_time_ms) {
2394   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
2395 }
2396 
2397 size_t G1CollectedHeap::pending_card_num() {
2398   size_t extra_cards = 0;
2399   JavaThread *curr = Threads::first();
2400   while (curr != NULL) {
2401     DirtyCardQueue& dcq = curr->dirty_card_queue();
2402     extra_cards += dcq.size();
2403     curr = curr->next();
2404   }
2405   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2406   size_t buffer_size = dcqs.buffer_size();
2407   size_t buffer_num = dcqs.completed_buffers_num();
2408   return buffer_size * buffer_num + extra_cards;
2409 }
2410 
2411 size_t G1CollectedHeap::max_pending_card_num() {
2412   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2413   size_t buffer_size = dcqs.buffer_size();
2414   size_t buffer_num  = dcqs.completed_buffers_num();
2415   int thread_num  = Threads::number_of_threads();
2416   return (buffer_num + thread_num) * buffer_size;
2417 }
2418 
2419 size_t G1CollectedHeap::cards_scanned() {
2420   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
2421   return g1_rset->cardsScanned();
2422 }
2423 
2424 void
2425 G1CollectedHeap::setup_surviving_young_words() {
2426   guarantee( _surviving_young_words == NULL, "pre-condition" );
2427   size_t array_length = g1_policy()->young_cset_length();
2428   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
2429   if (_surviving_young_words == NULL) {
2430     vm_exit_out_of_memory(sizeof(size_t) * array_length,
2431                           "Not enough space for young surv words summary.");
2432   }
2433   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
2434   for (size_t i = 0;  i < array_length; ++i) {
2435     guarantee( _surviving_young_words[i] == 0, "invariant" );
2436   }
2437 }
2438 
2439 void
2440 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
2441   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
2442   size_t array_length = g1_policy()->young_cset_length();
2443   for (size_t i = 0; i < array_length; ++i)
2444     _surviving_young_words[i] += surv_young_words[i];
2445 }
2446 
2447 void
2448 G1CollectedHeap::cleanup_surviving_young_words() {
2449   guarantee( _surviving_young_words != NULL, "pre-condition" );
2450   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
2451   _surviving_young_words = NULL;
2452 }
2453 
2454 // </NEW PREDICTION>
2455 
2456 void
2457 G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
2458   char verbose_str[128];
2459   sprintf(verbose_str, "GC pause ");
2460   if (popular_region != NULL)
2461     strcat(verbose_str, "(popular)");
2462   else if (g1_policy()->in_young_gc_mode()) {
2463     if (g1_policy()->full_young_gcs())
2464       strcat(verbose_str, "(young)");
2465     else
2466       strcat(verbose_str, "(partial)");
2467   }
2468   bool reset_should_initiate_conc_mark = false;
2469   if (popular_region != NULL && g1_policy()->should_initiate_conc_mark()) {
2470     // we currently do not allow an initial mark phase to be piggy-backed
2471     // on a popular pause
2472     reset_should_initiate_conc_mark = true;
2473     g1_policy()->unset_should_initiate_conc_mark();
2474   }
2475   if (g1_policy()->should_initiate_conc_mark())
2476     strcat(verbose_str, " (initial-mark)");
2477 
2478   GCCauseSetter x(this, (popular_region == NULL ?
2479                          GCCause::_g1_inc_collection_pause :
2480                          GCCause::_g1_pop_region_collection_pause));
2481 
2482   // if PrintGCDetails is on, we'll print long statistics information
2483   // in the collector policy code, so let's not print this as the output
2484   // is messy if we do.
2485   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
2486   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2487   TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
2488 
2489   ResourceMark rm;
2490   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
2491   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
2492   guarantee(!is_gc_active(), "collection is not reentrant");
2493   assert(regions_accounted_for(), "Region leakage!");
2494 
2495   increment_gc_time_stamp();
2496 
2497   if (g1_policy()->in_young_gc_mode()) {
2498     assert(check_young_list_well_formed(),
2499                 "young list should be well formed");
2500   }
2501 
2502   if (GC_locker::is_active()) {
2503     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
2504   }
2505 
2506   bool abandoned = false;
2507   { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2508     IsGCActiveMark x;
2509 
2510     gc_prologue(false);
2511     increment_total_collections();
2512 
2513 #if G1_REM_SET_LOGGING
2514     gclog_or_tty->print_cr("\nJust chose CS, heap:");
2515     print();
2516 #endif
2517 
2518     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
2519       HandleMark hm;  // Discard invalid handles created during verification
2520       prepare_for_verify();
2521       gclog_or_tty->print(" VerifyBeforeGC:");
2522       Universe::verify(false);
2523     }
2524 
2525     COMPILER2_PRESENT(DerivedPointerTable::clear());
2526 
2527     // We want to turn off ref discovery, if necessary, and turn it back on
2528     // on again later if we do.
2529     bool was_enabled = ref_processor()->discovery_enabled();
2530     if (was_enabled) ref_processor()->disable_discovery();
2531 
2532     // Forget the current alloc region (we might even choose it to be part
2533     // of the collection set!).
2534     abandon_cur_alloc_region();
2535 
2536     // The elapsed time induced by the start time below deliberately elides
2537     // the possible verification above.
2538     double start_time_sec = os::elapsedTime();
2539     GCOverheadReporter::recordSTWStart(start_time_sec);
2540     size_t start_used_bytes = used();
2541     if (!G1ConcMark) {
2542       do_sync_mark();
2543     }
2544 
2545     g1_policy()->record_collection_pause_start(start_time_sec,
2546                                                start_used_bytes);
2547 
2548     guarantee(_in_cset_fast_test == NULL, "invariant");
2549     guarantee(_in_cset_fast_test_base == NULL, "invariant");
2550     _in_cset_fast_test_length = max_regions();
2551     _in_cset_fast_test_base =
2552                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
2553     memset(_in_cset_fast_test_base, false,
2554                                      _in_cset_fast_test_length * sizeof(bool));
2555     // We're biasing _in_cset_fast_test to avoid subtracting the
2556     // beginning of the heap every time we want to index; basically
2557     // it's the same with what we do with the card table.
2558     _in_cset_fast_test = _in_cset_fast_test_base -
2559               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2560 
2561 #if SCAN_ONLY_VERBOSE
2562     _young_list->print();
2563 #endif // SCAN_ONLY_VERBOSE
2564 
2565     if (g1_policy()->should_initiate_conc_mark()) {
2566       concurrent_mark()->checkpointRootsInitialPre();
2567     }
2568     save_marks();
2569 
2570     // We must do this before any possible evacuation that should propagate
2571     // marks, including evacuation of popular objects in a popular pause.
2572     if (mark_in_progress()) {
2573       double start_time_sec = os::elapsedTime();
2574 
2575       _cm->drainAllSATBBuffers();
2576       double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
2577       g1_policy()->record_satb_drain_time(finish_mark_ms);
2578 
2579     }
2580     // Record the number of elements currently on the mark stack, so we
2581     // only iterate over these.  (Since evacuation may add to the mark
2582     // stack, doing more exposes race conditions.)  If no mark is in
2583     // progress, this will be zero.
2584     _cm->set_oops_do_bound();
2585 
2586     assert(regions_accounted_for(), "Region leakage.");
2587 
2588     bool abandoned = false;
2589 
2590     if (mark_in_progress())
2591       concurrent_mark()->newCSet();
2592 
2593     // Now choose the CS.
2594     if (popular_region == NULL) {
2595       g1_policy()->choose_collection_set();
2596     } else {
2597       // We may be evacuating a single region (for popularity).
2598       g1_policy()->record_popular_pause_preamble_start();
2599       popularity_pause_preamble(popular_region);
2600       g1_policy()->record_popular_pause_preamble_end();
2601       abandoned = (g1_policy()->collection_set() == NULL);
2602       // Now we allow more regions to be added (we have to collect
2603       // all popular regions).
2604       if (!abandoned) {
2605         g1_policy()->choose_collection_set(popular_region);
2606       }
2607     }
2608     // We may abandon a pause if we find no region that will fit in the MMU
2609     // pause.
2610     abandoned = (g1_policy()->collection_set() == NULL);
2611 
2612     // Nothing to do if we were unable to choose a collection set.
2613     if (!abandoned) {
2614 #if G1_REM_SET_LOGGING
2615       gclog_or_tty->print_cr("\nAfter pause, heap:");
2616       print();
2617 #endif
2618 
2619       setup_surviving_young_words();
2620 
2621       // Set up the gc allocation regions.
2622       get_gc_alloc_regions();
2623 
2624       // Actually do the work...
2625       evacuate_collection_set();
2626       free_collection_set(g1_policy()->collection_set());
2627       g1_policy()->clear_collection_set();
2628 
2629       FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
2630       // this is more for peace of mind; we're nulling them here and
2631       // we're expecting them to be null at the beginning of the next GC
2632       _in_cset_fast_test = NULL;
2633       _in_cset_fast_test_base = NULL;
2634 
2635       if (popular_region != NULL) {
2636         // We have to wait until now, because we don't want the region to
2637         // be rescheduled for pop-evac during RS update.
2638         popular_region->set_popular_pending(false);
2639       }
2640 
2641       release_gc_alloc_regions();
2642 
2643       cleanup_surviving_young_words();
2644 
2645       if (g1_policy()->in_young_gc_mode()) {
2646         _young_list->reset_sampled_info();
2647         assert(check_young_list_empty(true),
2648                "young list should be empty");
2649 
2650 #if SCAN_ONLY_VERBOSE
2651         _young_list->print();
2652 #endif // SCAN_ONLY_VERBOSE
2653 
2654         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
2655                                              _young_list->first_survivor_region(),
2656                                              _young_list->last_survivor_region());
2657         _young_list->reset_auxilary_lists();
2658       }
2659     } else {
2660       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
2661     }
2662 
2663     if (evacuation_failed()) {
2664       _summary_bytes_used = recalculate_used();
2665     } else {
2666       // The "used" of the the collection set have already been subtracted
2667       // when they were freed.  Add in the bytes evacuated.
2668       _summary_bytes_used += g1_policy()->bytes_in_to_space();
2669     }
2670 
2671     if (g1_policy()->in_young_gc_mode() &&
2672         g1_policy()->should_initiate_conc_mark()) {
2673       concurrent_mark()->checkpointRootsInitialPost();
2674       set_marking_started();
2675       doConcurrentMark();
2676     }
2677 
2678 #if SCAN_ONLY_VERBOSE
2679     _young_list->print();
2680 #endif // SCAN_ONLY_VERBOSE
2681 
2682     double end_time_sec = os::elapsedTime();
2683     double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
2684     g1_policy()->record_pause_time_ms(pause_time_ms);
2685     GCOverheadReporter::recordSTWEnd(end_time_sec);
2686     g1_policy()->record_collection_pause_end(popular_region != NULL,
2687                                              abandoned);
2688 
2689     assert(regions_accounted_for(), "Region leakage.");
2690 
2691     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
2692       HandleMark hm;  // Discard invalid handles created during verification
2693       gclog_or_tty->print(" VerifyAfterGC:");
2694       prepare_for_verify();
2695       Universe::verify(false);
2696     }
2697 
2698     if (was_enabled) ref_processor()->enable_discovery();
2699 
2700     {
2701       size_t expand_bytes = g1_policy()->expansion_amount();
2702       if (expand_bytes > 0) {
2703         size_t bytes_before = capacity();
2704         expand(expand_bytes);
2705       }
2706     }
2707 
2708     if (mark_in_progress()) {
2709       concurrent_mark()->update_g1_committed();
2710     }
2711 
2712 #ifdef TRACESPINNING
2713     ParallelTaskTerminator::print_termination_counts();
2714 #endif
2715 
2716     gc_epilogue(false);
2717   }
2718 
2719   assert(verify_region_lists(), "Bad region lists.");
2720 
2721   if (reset_should_initiate_conc_mark)
2722     g1_policy()->set_should_initiate_conc_mark();
2723 
2724   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
2725     gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
2726     print_tracing_info();
2727     vm_exit(-1);
2728   }
2729 }
2730 
2731 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
2732   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
2733   HeapWord* original_top = NULL;
2734   if (r != NULL)
2735     original_top = r->top();
2736 
2737   // We will want to record the used space in r as being there before gc.
2738   // One we install it as a GC alloc region it's eligible for allocation.
2739   // So record it now and use it later.
2740   size_t r_used = 0;
2741   if (r != NULL) {
2742     r_used = r->used();
2743 
2744     if (ParallelGCThreads > 0) {
2745       // need to take the lock to guard against two threads calling
2746       // get_gc_alloc_region concurrently (very unlikely but...)
2747       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
2748       r->save_marks();
2749     }
2750   }
2751   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
2752   _gc_alloc_regions[purpose] = r;
2753   if (old_alloc_region != NULL) {
2754     // Replace aliases too.
2755     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2756       if (_gc_alloc_regions[ap] == old_alloc_region) {
2757         _gc_alloc_regions[ap] = r;
2758       }
2759     }
2760   }
2761   if (r != NULL) {
2762     push_gc_alloc_region(r);
2763     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
2764       // We are using a region as a GC alloc region after it has been used
2765       // as a mutator allocation region during the current marking cycle.
2766       // The mutator-allocated objects are currently implicitly marked, but
2767       // when we move hr->next_top_at_mark_start() forward at the the end
2768       // of the GC pause, they won't be.  We therefore mark all objects in
2769       // the "gap".  We do this object-by-object, since marking densely
2770       // does not currently work right with marking bitmap iteration.  This
2771       // means we rely on TLAB filling at the start of pauses, and no
2772       // "resuscitation" of filled TLAB's.  If we want to do this, we need
2773       // to fix the marking bitmap iteration.
2774       HeapWord* curhw = r->next_top_at_mark_start();
2775       HeapWord* t = original_top;
2776 
2777       while (curhw < t) {
2778         oop cur = (oop)curhw;
2779         // We'll assume parallel for generality.  This is rare code.
2780         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
2781         curhw = curhw + cur->size();
2782       }
2783       assert(curhw == t, "Should have parsed correctly.");
2784     }
2785     if (G1PolicyVerbose > 1) {
2786       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
2787                           "for survivors:", r->bottom(), original_top, r->end());
2788       r->print();
2789     }
2790     g1_policy()->record_before_bytes(r_used);
2791   }
2792 }
2793 
2794 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
2795   assert(Thread::current()->is_VM_thread() ||
2796          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
2797   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
2798          "Precondition.");
2799   hr->set_is_gc_alloc_region(true);
2800   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
2801   _gc_alloc_region_list = hr;
2802 }
2803 
2804 #ifdef G1_DEBUG
2805 class FindGCAllocRegion: public HeapRegionClosure {
2806 public:
2807   bool doHeapRegion(HeapRegion* r) {
2808     if (r->is_gc_alloc_region()) {
2809       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
2810                              r->hrs_index(), r->bottom());
2811     }
2812     return false;
2813   }
2814 };
2815 #endif // G1_DEBUG
2816 
2817 void G1CollectedHeap::forget_alloc_region_list() {
2818   assert(Thread::current()->is_VM_thread(), "Precondition");
2819   while (_gc_alloc_region_list != NULL) {
2820     HeapRegion* r = _gc_alloc_region_list;
2821     assert(r->is_gc_alloc_region(), "Invariant.");
2822     _gc_alloc_region_list = r->next_gc_alloc_region();
2823     r->set_next_gc_alloc_region(NULL);
2824     r->set_is_gc_alloc_region(false);
2825     if (r->is_survivor()) {
2826       if (r->is_empty()) {
2827         r->set_not_young();
2828       } else {
2829         _young_list->add_survivor_region(r);
2830       }
2831     }
2832     if (r->is_empty()) {
2833       ++_free_regions;
2834     }
2835   }
2836 #ifdef G1_DEBUG
2837   FindGCAllocRegion fa;
2838   heap_region_iterate(&fa);
2839 #endif // G1_DEBUG
2840 }
2841 
2842 
2843 bool G1CollectedHeap::check_gc_alloc_regions() {
2844   // TODO: allocation regions check
2845   return true;
2846 }
2847 
2848 void G1CollectedHeap::get_gc_alloc_regions() {
2849   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2850     // Create new GC alloc regions.
2851     HeapRegion* alloc_region = _gc_alloc_regions[ap];
2852     // Clear this alloc region, so that in case it turns out to be
2853     // unacceptable, we end up with no allocation region, rather than a bad
2854     // one.
2855     _gc_alloc_regions[ap] = NULL;
2856     if (alloc_region == NULL || alloc_region->in_collection_set()) {
2857       // Can't re-use old one.  Allocate a new one.
2858       alloc_region = newAllocRegionWithExpansion(ap, 0);
2859     }
2860     if (alloc_region != NULL) {
2861       set_gc_alloc_region(ap, alloc_region);
2862     }
2863   }
2864   // Set alternative regions for allocation purposes that have reached
2865   // thier limit.
2866   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2867     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
2868     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
2869       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
2870     }
2871   }
2872   assert(check_gc_alloc_regions(), "alloc regions messed up");
2873 }
2874 
2875 void G1CollectedHeap::release_gc_alloc_regions() {
2876   // We keep a separate list of all regions that have been alloc regions in
2877   // the current collection pause.  Forget that now.
2878   forget_alloc_region_list();
2879 
2880   // The current alloc regions contain objs that have survived
2881   // collection. Make them no longer GC alloc regions.
2882   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2883     HeapRegion* r = _gc_alloc_regions[ap];
2884     if (r != NULL && r->is_empty()) {
2885       {
2886         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
2887         r->set_zero_fill_complete();
2888         put_free_region_on_list_locked(r);
2889       }
2890     }
2891     // set_gc_alloc_region will also NULLify all aliases to the region
2892     set_gc_alloc_region(ap, NULL);
2893     _gc_alloc_region_counts[ap] = 0;
2894   }
2895 }
2896 
2897 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
2898   _drain_in_progress = false;
2899   set_evac_failure_closure(cl);
2900   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
2901 }
2902 
2903 void G1CollectedHeap::finalize_for_evac_failure() {
2904   assert(_evac_failure_scan_stack != NULL &&
2905          _evac_failure_scan_stack->length() == 0,
2906          "Postcondition");
2907   assert(!_drain_in_progress, "Postcondition");
2908   // Don't have to delete, since the scan stack is a resource object.
2909   _evac_failure_scan_stack = NULL;
2910 }
2911 
2912 
2913 
2914 // *** Sequential G1 Evacuation
2915 
2916 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
2917   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
2918   // let the caller handle alloc failure
2919   if (alloc_region == NULL) return NULL;
2920   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
2921          "Either the object is humongous or the region isn't");
2922   HeapWord* block = alloc_region->allocate(word_size);
2923   if (block == NULL) {
2924     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
2925   }
2926   return block;
2927 }
2928 
2929 class G1IsAliveClosure: public BoolObjectClosure {
2930   G1CollectedHeap* _g1;
2931 public:
2932   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
2933   void do_object(oop p) { assert(false, "Do not call."); }
2934   bool do_object_b(oop p) {
2935     // It is reachable if it is outside the collection set, or is inside
2936     // and forwarded.
2937 
2938 #ifdef G1_DEBUG
2939     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
2940                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
2941                            !_g1->obj_in_cs(p) || p->is_forwarded());
2942 #endif // G1_DEBUG
2943 
2944     return !_g1->obj_in_cs(p) || p->is_forwarded();
2945   }
2946 };
2947 
2948 class G1KeepAliveClosure: public OopClosure {
2949   G1CollectedHeap* _g1;
2950 public:
2951   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
2952   void do_oop(narrowOop* p) {
2953     guarantee(false, "NYI");
2954   }
2955   void do_oop(oop* p) {
2956     oop obj = *p;
2957 #ifdef G1_DEBUG
2958     if (PrintGC && Verbose) {
2959       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
2960                              p, (void*) obj, (void*) *p);
2961     }
2962 #endif // G1_DEBUG
2963 
2964     if (_g1->obj_in_cs(obj)) {
2965       assert( obj->is_forwarded(), "invariant" );
2966       *p = obj->forwardee();
2967 
2968 #ifdef G1_DEBUG
2969       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
2970                              (void*) obj, (void*) *p);
2971 #endif // G1_DEBUG
2972     }
2973   }
2974 };
2975 
2976 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
2977 private:
2978   G1CollectedHeap* _g1;
2979   G1RemSet* _g1_rem_set;
2980 public:
2981   UpdateRSetImmediate(G1CollectedHeap* g1) :
2982     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
2983 
2984   void do_oop(narrowOop* p) {
2985     guarantee(false, "NYI");
2986   }
2987   void do_oop(oop* p) {
2988     assert(_from->is_in_reserved(p), "paranoia");
2989     if (*p != NULL && !_from->is_survivor()) {
2990       _g1_rem_set->par_write_ref(_from, p, 0);
2991     }
2992   }
2993 };
2994 
2995 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
2996 private:
2997   G1CollectedHeap* _g1;
2998   DirtyCardQueue *_dcq;
2999   CardTableModRefBS* _ct_bs;
3000 
3001 public:
3002   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3003     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3004 
3005   void do_oop(narrowOop* p) {
3006     guarantee(false, "NYI");
3007   }
3008   void do_oop(oop* p) {
3009     assert(_from->is_in_reserved(p), "paranoia");
3010     if (!_from->is_in_reserved(*p) && !_from->is_survivor()) {
3011       size_t card_index = _ct_bs->index_for(p);
3012       if (_ct_bs->mark_card_deferred(card_index)) {
3013         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
3014       }
3015     }
3016   }
3017 };
3018 
3019 
3020 
3021 class RemoveSelfPointerClosure: public ObjectClosure {
3022 private:
3023   G1CollectedHeap* _g1;
3024   ConcurrentMark* _cm;
3025   HeapRegion* _hr;
3026   size_t _prev_marked_bytes;
3027   size_t _next_marked_bytes;
3028   OopsInHeapRegionClosure *_cl;
3029 public:
3030   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
3031     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3032     _next_marked_bytes(0), _cl(cl) {}
3033 
3034   size_t prev_marked_bytes() { return _prev_marked_bytes; }
3035   size_t next_marked_bytes() { return _next_marked_bytes; }
3036 
3037   // The original idea here was to coalesce evacuated and dead objects.
3038   // However that caused complications with the block offset table (BOT).
3039   // In particular if there were two TLABs, one of them partially refined.
3040   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
3041   // The BOT entries of the unrefined part of TLAB_2 point to the start
3042   // of TLAB_2. If the last object of the TLAB_1 and the first object
3043   // of TLAB_2 are coalesced, then the cards of the unrefined part
3044   // would point into middle of the filler object.
3045   //
3046   // The current approach is to not coalesce and leave the BOT contents intact.
3047   void do_object(oop obj) {
3048     if (obj->is_forwarded() && obj->forwardee() == obj) {
3049       // The object failed to move.
3050       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
3051       _cm->markPrev(obj);
3052       assert(_cm->isPrevMarked(obj), "Should be marked!");
3053       _prev_marked_bytes += (obj->size() * HeapWordSize);
3054       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
3055         _cm->markAndGrayObjectIfNecessary(obj);
3056       }
3057       obj->set_mark(markOopDesc::prototype());
3058       // While we were processing RSet buffers during the
3059       // collection, we actually didn't scan any cards on the
3060       // collection set, since we didn't want to update remebered
3061       // sets with entries that point into the collection set, given
3062       // that live objects fromthe collection set are about to move
3063       // and such entries will be stale very soon. This change also
3064       // dealt with a reliability issue which involved scanning a
3065       // card in the collection set and coming across an array that
3066       // was being chunked and looking malformed. The problem is
3067       // that, if evacuation fails, we might have remembered set
3068       // entries missing given that we skipped cards on the
3069       // collection set. So, we'll recreate such entries now.
3070       obj->oop_iterate(_cl);
3071       assert(_cm->isPrevMarked(obj), "Should be marked!");
3072     } else {
3073       // The object has been either evacuated or is dead. Fill it with a
3074       // dummy object.
3075       MemRegion mr((HeapWord*)obj, obj->size());
3076       CollectedHeap::fill_with_object(mr);
3077       _cm->clearRangeBothMaps(mr);
3078     }
3079   }
3080 };
3081 
3082 void G1CollectedHeap::remove_self_forwarding_pointers() {
3083   UpdateRSetImmediate immediate_update(_g1h);
3084   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
3085   UpdateRSetDeferred deferred_update(_g1h, &dcq);
3086   OopsInHeapRegionClosure *cl;
3087   if (G1DeferredRSUpdate) {
3088     cl = &deferred_update;
3089   } else {
3090     cl = &immediate_update;
3091   }
3092   HeapRegion* cur = g1_policy()->collection_set();
3093   while (cur != NULL) {
3094     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3095 
3096     RemoveSelfPointerClosure rspc(_g1h, cl);
3097     if (cur->evacuation_failed()) {
3098       assert(cur->in_collection_set(), "bad CS");
3099       cl->set_region(cur);
3100       cur->object_iterate(&rspc);
3101 
3102       // A number of manipulations to make the TAMS be the current top,
3103       // and the marked bytes be the ones observed in the iteration.
3104       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
3105         // The comments below are the postconditions achieved by the
3106         // calls.  Note especially the last such condition, which says that
3107         // the count of marked bytes has been properly restored.
3108         cur->note_start_of_marking(false);
3109         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3110         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
3111         // _next_marked_bytes == prev_marked_bytes.
3112         cur->note_end_of_marking();
3113         // _prev_top_at_mark_start == top(),
3114         // _prev_marked_bytes == prev_marked_bytes
3115       }
3116       // If there is no mark in progress, we modified the _next variables
3117       // above needlessly, but harmlessly.
3118       if (_g1h->mark_in_progress()) {
3119         cur->note_start_of_marking(false);
3120         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3121         // _next_marked_bytes == next_marked_bytes.
3122       }
3123 
3124       // Now make sure the region has the right index in the sorted array.
3125       g1_policy()->note_change_in_marked_bytes(cur);
3126     }
3127     cur = cur->next_in_collection_set();
3128   }
3129   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3130 
3131   // Now restore saved marks, if any.
3132   if (_objs_with_preserved_marks != NULL) {
3133     assert(_preserved_marks_of_objs != NULL, "Both or none.");
3134     assert(_objs_with_preserved_marks->length() ==
3135            _preserved_marks_of_objs->length(), "Both or none.");
3136     guarantee(_objs_with_preserved_marks->length() ==
3137               _preserved_marks_of_objs->length(), "Both or none.");
3138     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
3139       oop obj   = _objs_with_preserved_marks->at(i);
3140       markOop m = _preserved_marks_of_objs->at(i);
3141       obj->set_mark(m);
3142     }
3143     // Delete the preserved marks growable arrays (allocated on the C heap).
3144     delete _objs_with_preserved_marks;
3145     delete _preserved_marks_of_objs;
3146     _objs_with_preserved_marks = NULL;
3147     _preserved_marks_of_objs = NULL;
3148   }
3149 }
3150 
3151 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
3152   _evac_failure_scan_stack->push(obj);
3153 }
3154 
3155 void G1CollectedHeap::drain_evac_failure_scan_stack() {
3156   assert(_evac_failure_scan_stack != NULL, "precondition");
3157 
3158   while (_evac_failure_scan_stack->length() > 0) {
3159      oop obj = _evac_failure_scan_stack->pop();
3160      _evac_failure_closure->set_region(heap_region_containing(obj));
3161      obj->oop_iterate_backwards(_evac_failure_closure);
3162   }
3163 }
3164 
3165 void G1CollectedHeap::handle_evacuation_failure(oop old) {
3166   markOop m = old->mark();
3167   // forward to self
3168   assert(!old->is_forwarded(), "precondition");
3169 
3170   old->forward_to(old);
3171   handle_evacuation_failure_common(old, m);
3172 }
3173 
3174 oop
3175 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
3176                                                oop old) {
3177   markOop m = old->mark();
3178   oop forward_ptr = old->forward_to_atomic(old);
3179   if (forward_ptr == NULL) {
3180     // Forward-to-self succeeded.
3181     if (_evac_failure_closure != cl) {
3182       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
3183       assert(!_drain_in_progress,
3184              "Should only be true while someone holds the lock.");
3185       // Set the global evac-failure closure to the current thread's.
3186       assert(_evac_failure_closure == NULL, "Or locking has failed.");
3187       set_evac_failure_closure(cl);
3188       // Now do the common part.
3189       handle_evacuation_failure_common(old, m);
3190       // Reset to NULL.
3191       set_evac_failure_closure(NULL);
3192     } else {
3193       // The lock is already held, and this is recursive.
3194       assert(_drain_in_progress, "This should only be the recursive case.");
3195       handle_evacuation_failure_common(old, m);
3196     }
3197     return old;
3198   } else {
3199     // Someone else had a place to copy it.
3200     return forward_ptr;
3201   }
3202 }
3203 
3204 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
3205   set_evacuation_failed(true);
3206 
3207   preserve_mark_if_necessary(old, m);
3208 
3209   HeapRegion* r = heap_region_containing(old);
3210   if (!r->evacuation_failed()) {
3211     r->set_evacuation_failed(true);
3212     if (G1TraceRegions) {
3213       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
3214                           "["PTR_FORMAT","PTR_FORMAT")\n",
3215                           r, r->bottom(), r->end());
3216     }
3217   }
3218 
3219   push_on_evac_failure_scan_stack(old);
3220 
3221   if (!_drain_in_progress) {
3222     // prevent recursion in copy_to_survivor_space()
3223     _drain_in_progress = true;
3224     drain_evac_failure_scan_stack();
3225     _drain_in_progress = false;
3226   }
3227 }
3228 
3229 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
3230   if (m != markOopDesc::prototype()) {
3231     if (_objs_with_preserved_marks == NULL) {
3232       assert(_preserved_marks_of_objs == NULL, "Both or none.");
3233       _objs_with_preserved_marks =
3234         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3235       _preserved_marks_of_objs =
3236         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
3237     }
3238     _objs_with_preserved_marks->push(obj);
3239     _preserved_marks_of_objs->push(m);
3240   }
3241 }
3242 
3243 // *** Parallel G1 Evacuation
3244 
3245 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
3246                                                   size_t word_size) {
3247   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
3248   // let the caller handle alloc failure
3249   if (alloc_region == NULL) return NULL;
3250 
3251   HeapWord* block = alloc_region->par_allocate(word_size);
3252   if (block == NULL) {
3253     MutexLockerEx x(par_alloc_during_gc_lock(),
3254                     Mutex::_no_safepoint_check_flag);
3255     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
3256   }
3257   return block;
3258 }
3259 
3260 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
3261                                             bool par) {
3262   // Another thread might have obtained alloc_region for the given
3263   // purpose, and might be attempting to allocate in it, and might
3264   // succeed.  Therefore, we can't do the "finalization" stuff on the
3265   // region below until we're sure the last allocation has happened.
3266   // We ensure this by allocating the remaining space with a garbage
3267   // object.
3268   if (par) par_allocate_remaining_space(alloc_region);
3269   // Now we can do the post-GC stuff on the region.
3270   alloc_region->note_end_of_copying();
3271   g1_policy()->record_after_bytes(alloc_region->used());
3272 }
3273 
3274 HeapWord*
3275 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
3276                                          HeapRegion*    alloc_region,
3277                                          bool           par,
3278                                          size_t         word_size) {
3279   HeapWord* block = NULL;
3280   // In the parallel case, a previous thread to obtain the lock may have
3281   // already assigned a new gc_alloc_region.
3282   if (alloc_region != _gc_alloc_regions[purpose]) {
3283     assert(par, "But should only happen in parallel case.");
3284     alloc_region = _gc_alloc_regions[purpose];
3285     if (alloc_region == NULL) return NULL;
3286     block = alloc_region->par_allocate(word_size);
3287     if (block != NULL) return block;
3288     // Otherwise, continue; this new region is empty, too.
3289   }
3290   assert(alloc_region != NULL, "We better have an allocation region");
3291   retire_alloc_region(alloc_region, par);
3292 
3293   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
3294     // Cannot allocate more regions for the given purpose.
3295     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
3296     // Is there an alternative?
3297     if (purpose != alt_purpose) {
3298       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
3299       // Has not the alternative region been aliased?
3300       if (alloc_region != alt_region && alt_region != NULL) {
3301         // Try to allocate in the alternative region.
3302         if (par) {
3303           block = alt_region->par_allocate(word_size);
3304         } else {
3305           block = alt_region->allocate(word_size);
3306         }
3307         // Make an alias.
3308         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
3309         if (block != NULL) {
3310           return block;
3311         }
3312         retire_alloc_region(alt_region, par);
3313       }
3314       // Both the allocation region and the alternative one are full
3315       // and aliased, replace them with a new allocation region.
3316       purpose = alt_purpose;
3317     } else {
3318       set_gc_alloc_region(purpose, NULL);
3319       return NULL;
3320     }
3321   }
3322 
3323   // Now allocate a new region for allocation.
3324   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
3325 
3326   // let the caller handle alloc failure
3327   if (alloc_region != NULL) {
3328 
3329     assert(check_gc_alloc_regions(), "alloc regions messed up");
3330     assert(alloc_region->saved_mark_at_top(),
3331            "Mark should have been saved already.");
3332     // We used to assert that the region was zero-filled here, but no
3333     // longer.
3334 
3335     // This must be done last: once it's installed, other regions may
3336     // allocate in it (without holding the lock.)
3337     set_gc_alloc_region(purpose, alloc_region);
3338 
3339     if (par) {
3340       block = alloc_region->par_allocate(word_size);
3341     } else {
3342       block = alloc_region->allocate(word_size);
3343     }
3344     // Caller handles alloc failure.
3345   } else {
3346     // This sets other apis using the same old alloc region to NULL, also.
3347     set_gc_alloc_region(purpose, NULL);
3348   }
3349   return block;  // May be NULL.
3350 }
3351 
3352 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
3353   HeapWord* block = NULL;
3354   size_t free_words;
3355   do {
3356     free_words = r->free()/HeapWordSize;
3357     // If there's too little space, no one can allocate, so we're done.
3358     if (free_words < (size_t)oopDesc::header_size()) return;
3359     // Otherwise, try to claim it.
3360     block = r->par_allocate(free_words);
3361   } while (block == NULL);
3362   fill_with_object(block, free_words);
3363 }
3364 
3365 #define use_local_bitmaps         1
3366 #define verify_local_bitmaps      0
3367 
3368 #ifndef PRODUCT
3369 
3370 class GCLabBitMap;
3371 class GCLabBitMapClosure: public BitMapClosure {
3372 private:
3373   ConcurrentMark* _cm;
3374   GCLabBitMap*    _bitmap;
3375 
3376 public:
3377   GCLabBitMapClosure(ConcurrentMark* cm,
3378                      GCLabBitMap* bitmap) {
3379     _cm     = cm;
3380     _bitmap = bitmap;
3381   }
3382 
3383   virtual bool do_bit(size_t offset);
3384 };
3385 
3386 #endif // PRODUCT
3387 
3388 #define oop_buffer_length 256
3389 
3390 class GCLabBitMap: public BitMap {
3391 private:
3392   ConcurrentMark* _cm;
3393 
3394   int       _shifter;
3395   size_t    _bitmap_word_covers_words;
3396 
3397   // beginning of the heap
3398   HeapWord* _heap_start;
3399 
3400   // this is the actual start of the GCLab
3401   HeapWord* _real_start_word;
3402 
3403   // this is the actual end of the GCLab
3404   HeapWord* _real_end_word;
3405 
3406   // this is the first word, possibly located before the actual start
3407   // of the GCLab, that corresponds to the first bit of the bitmap
3408   HeapWord* _start_word;
3409 
3410   // size of a GCLab in words
3411   size_t _gclab_word_size;
3412 
3413   static int shifter() {
3414     return MinObjAlignment - 1;
3415   }
3416 
3417   // how many heap words does a single bitmap word corresponds to?
3418   static size_t bitmap_word_covers_words() {
3419     return BitsPerWord << shifter();
3420   }
3421 
3422   static size_t gclab_word_size() {
3423     return ParallelGCG1AllocBufferSize / HeapWordSize;
3424   }
3425 
3426   static size_t bitmap_size_in_bits() {
3427     size_t bits_in_bitmap = gclab_word_size() >> shifter();
3428     // We are going to ensure that the beginning of a word in this
3429     // bitmap also corresponds to the beginning of a word in the
3430     // global marking bitmap. To handle the case where a GCLab
3431     // starts from the middle of the bitmap, we need to add enough
3432     // space (i.e. up to a bitmap word) to ensure that we have
3433     // enough bits in the bitmap.
3434     return bits_in_bitmap + BitsPerWord - 1;
3435   }
3436 public:
3437   GCLabBitMap(HeapWord* heap_start)
3438     : BitMap(bitmap_size_in_bits()),
3439       _cm(G1CollectedHeap::heap()->concurrent_mark()),
3440       _shifter(shifter()),
3441       _bitmap_word_covers_words(bitmap_word_covers_words()),
3442       _heap_start(heap_start),
3443       _gclab_word_size(gclab_word_size()),
3444       _real_start_word(NULL),
3445       _real_end_word(NULL),
3446       _start_word(NULL)
3447   {
3448     guarantee( size_in_words() >= bitmap_size_in_words(),
3449                "just making sure");
3450   }
3451 
3452   inline unsigned heapWordToOffset(HeapWord* addr) {
3453     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
3454     assert(offset < size(), "offset should be within bounds");
3455     return offset;
3456   }
3457 
3458   inline HeapWord* offsetToHeapWord(size_t offset) {
3459     HeapWord* addr =  _start_word + (offset << _shifter);
3460     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
3461     return addr;
3462   }
3463 
3464   bool fields_well_formed() {
3465     bool ret1 = (_real_start_word == NULL) &&
3466                 (_real_end_word == NULL) &&
3467                 (_start_word == NULL);
3468     if (ret1)
3469       return true;
3470 
3471     bool ret2 = _real_start_word >= _start_word &&
3472       _start_word < _real_end_word &&
3473       (_real_start_word + _gclab_word_size) == _real_end_word &&
3474       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
3475                                                               > _real_end_word;
3476     return ret2;
3477   }
3478 
3479   inline bool mark(HeapWord* addr) {
3480     guarantee(use_local_bitmaps, "invariant");
3481     assert(fields_well_formed(), "invariant");
3482 
3483     if (addr >= _real_start_word && addr < _real_end_word) {
3484       assert(!isMarked(addr), "should not have already been marked");
3485 
3486       // first mark it on the bitmap
3487       at_put(heapWordToOffset(addr), true);
3488 
3489       return true;
3490     } else {
3491       return false;
3492     }
3493   }
3494 
3495   inline bool isMarked(HeapWord* addr) {
3496     guarantee(use_local_bitmaps, "invariant");
3497     assert(fields_well_formed(), "invariant");
3498 
3499     return at(heapWordToOffset(addr));
3500   }
3501 
3502   void set_buffer(HeapWord* start) {
3503     guarantee(use_local_bitmaps, "invariant");
3504     clear();
3505 
3506     assert(start != NULL, "invariant");
3507     _real_start_word = start;
3508     _real_end_word   = start + _gclab_word_size;
3509 
3510     size_t diff =
3511       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
3512     _start_word = start - diff;
3513 
3514     assert(fields_well_formed(), "invariant");
3515   }
3516 
3517 #ifndef PRODUCT
3518   void verify() {
3519     // verify that the marks have been propagated
3520     GCLabBitMapClosure cl(_cm, this);
3521     iterate(&cl);
3522   }
3523 #endif // PRODUCT
3524 
3525   void retire() {
3526     guarantee(use_local_bitmaps, "invariant");
3527     assert(fields_well_formed(), "invariant");
3528 
3529     if (_start_word != NULL) {
3530       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
3531 
3532       // this means that the bitmap was set up for the GCLab
3533       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
3534 
3535       mark_bitmap->mostly_disjoint_range_union(this,
3536                                 0, // always start from the start of the bitmap
3537                                 _start_word,
3538                                 size_in_words());
3539       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
3540 
3541 #ifndef PRODUCT
3542       if (use_local_bitmaps && verify_local_bitmaps)
3543         verify();
3544 #endif // PRODUCT
3545     } else {
3546       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
3547     }
3548   }
3549 
3550   static size_t bitmap_size_in_words() {
3551     return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
3552   }
3553 };
3554 
3555 #ifndef PRODUCT
3556 
3557 bool GCLabBitMapClosure::do_bit(size_t offset) {
3558   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
3559   guarantee(_cm->isMarked(oop(addr)), "it should be!");
3560   return true;
3561 }
3562 
3563 #endif // PRODUCT
3564 
3565 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
3566 private:
3567   bool        _retired;
3568   bool        _during_marking;
3569   GCLabBitMap _bitmap;
3570 
3571 public:
3572   G1ParGCAllocBuffer() :
3573     ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize),
3574     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
3575     _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
3576     _retired(false)
3577   { }
3578 
3579   inline bool mark(HeapWord* addr) {
3580     guarantee(use_local_bitmaps, "invariant");
3581     assert(_during_marking, "invariant");
3582     return _bitmap.mark(addr);
3583   }
3584 
3585   inline void set_buf(HeapWord* buf) {
3586     if (use_local_bitmaps && _during_marking)
3587       _bitmap.set_buffer(buf);
3588     ParGCAllocBuffer::set_buf(buf);
3589     _retired = false;
3590   }
3591 
3592   inline void retire(bool end_of_gc, bool retain) {
3593     if (_retired)
3594       return;
3595     if (use_local_bitmaps && _during_marking) {
3596       _bitmap.retire();
3597     }
3598     ParGCAllocBuffer::retire(end_of_gc, retain);
3599     _retired = true;
3600   }
3601 };
3602 
3603 
3604 class G1ParScanThreadState : public StackObj {
3605 protected:
3606   G1CollectedHeap* _g1h;
3607   RefToScanQueue*  _refs;
3608   DirtyCardQueue   _dcq;
3609   CardTableModRefBS* _ct_bs;
3610   G1RemSet* _g1_rem;
3611 
3612   typedef GrowableArray<oop*> OverflowQueue;
3613   OverflowQueue* _overflowed_refs;
3614 
3615   G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
3616   ageTable           _age_table;
3617 
3618   size_t           _alloc_buffer_waste;
3619   size_t           _undo_waste;
3620 
3621   OopsInHeapRegionClosure*      _evac_failure_cl;
3622   G1ParScanHeapEvacClosure*     _evac_cl;
3623   G1ParScanPartialArrayClosure* _partial_scan_cl;
3624 
3625   int _hash_seed;
3626   int _queue_num;
3627 
3628   int _term_attempts;
3629 #if G1_DETAILED_STATS
3630   int _pushes, _pops, _steals, _steal_attempts;
3631   int _overflow_pushes;
3632 #endif
3633 
3634   double _start;
3635   double _start_strong_roots;
3636   double _strong_roots_time;
3637   double _start_term;
3638   double _term_time;
3639 
3640   // Map from young-age-index (0 == not young, 1 is youngest) to
3641   // surviving words. base is what we get back from the malloc call
3642   size_t* _surviving_young_words_base;
3643   // this points into the array, as we use the first few entries for padding
3644   size_t* _surviving_young_words;
3645 
3646 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
3647 
3648   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
3649 
3650   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
3651 
3652   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
3653   CardTableModRefBS* ctbs()                      { return _ct_bs; }
3654 
3655   void immediate_rs_update(HeapRegion* from, oop* p, int tid) {
3656     if (!from->is_survivor()) {
3657       _g1_rem->par_write_ref(from, p, tid);
3658     }
3659   }
3660 
3661   void deferred_rs_update(HeapRegion* from, oop* p, int tid) {
3662     // If the new value of the field points to the same region or
3663     // is the to-space, we don't need to include it in the Rset updates.
3664     if (!from->is_in_reserved(*p) && !from->is_survivor()) {
3665       size_t card_index = ctbs()->index_for(p);
3666       // If the card hasn't been added to the buffer, do it.
3667       if (ctbs()->mark_card_deferred(card_index)) {
3668         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
3669       }
3670     }
3671   }
3672 
3673 public:
3674   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
3675     : _g1h(g1h),
3676       _refs(g1h->task_queue(queue_num)),
3677       _dcq(&g1h->dirty_card_queue_set()),
3678       _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
3679       _g1_rem(g1h->g1_rem_set()),
3680       _hash_seed(17), _queue_num(queue_num),
3681       _term_attempts(0),
3682       _age_table(false),
3683 #if G1_DETAILED_STATS
3684       _pushes(0), _pops(0), _steals(0),
3685       _steal_attempts(0),  _overflow_pushes(0),
3686 #endif
3687       _strong_roots_time(0), _term_time(0),
3688       _alloc_buffer_waste(0), _undo_waste(0)
3689   {
3690     // we allocate G1YoungSurvRateNumRegions plus one entries, since
3691     // we "sacrifice" entry 0 to keep track of surviving bytes for
3692     // non-young regions (where the age is -1)
3693     // We also add a few elements at the beginning and at the end in
3694     // an attempt to eliminate cache contention
3695     size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
3696     size_t array_length = PADDING_ELEM_NUM +
3697                           real_length +
3698                           PADDING_ELEM_NUM;
3699     _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
3700     if (_surviving_young_words_base == NULL)
3701       vm_exit_out_of_memory(array_length * sizeof(size_t),
3702                             "Not enough space for young surv histo.");
3703     _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
3704     memset(_surviving_young_words, 0, real_length * sizeof(size_t));
3705 
3706     _overflowed_refs = new OverflowQueue(10);
3707 
3708     _start = os::elapsedTime();
3709   }
3710 
3711   ~G1ParScanThreadState() {
3712     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
3713   }
3714 
3715   RefToScanQueue*   refs()            { return _refs;             }
3716   OverflowQueue*    overflowed_refs() { return _overflowed_refs;  }
3717   ageTable*         age_table()       { return &_age_table;       }
3718 
3719   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
3720     return &_alloc_buffers[purpose];
3721   }
3722 
3723   size_t alloc_buffer_waste()                    { return _alloc_buffer_waste; }
3724   size_t undo_waste()                            { return _undo_waste; }
3725 
3726   void push_on_queue(oop* ref) {
3727     assert(ref != NULL, "invariant");
3728     assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant");
3729 
3730     if (!refs()->push(ref)) {
3731       overflowed_refs()->push(ref);
3732       IF_G1_DETAILED_STATS(note_overflow_push());
3733     } else {
3734       IF_G1_DETAILED_STATS(note_push());
3735     }
3736   }
3737 
3738   void pop_from_queue(oop*& ref) {
3739     if (!refs()->pop_local(ref)) {
3740       ref = NULL;
3741     } else {
3742       assert(ref != NULL, "invariant");
3743       assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref),
3744              "invariant");
3745 
3746       IF_G1_DETAILED_STATS(note_pop());
3747     }
3748   }
3749 
3750   void pop_from_overflow_queue(oop*& ref) {
3751     ref = overflowed_refs()->pop();
3752   }
3753 
3754   int refs_to_scan()                             { return refs()->size();                 }
3755   int overflowed_refs_to_scan()                  { return overflowed_refs()->length();    }
3756 
3757   void update_rs(HeapRegion* from, oop* p, int tid) {
3758     if (G1DeferredRSUpdate) {
3759       deferred_rs_update(from, p, tid);
3760     } else {
3761       immediate_rs_update(from, p, tid);
3762     }
3763   }
3764 
3765   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
3766 
3767     HeapWord* obj = NULL;
3768     if (word_sz * 100 <
3769         (size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) *
3770                                                   ParallelGCBufferWastePct) {
3771       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
3772       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
3773       alloc_buf->retire(false, false);
3774 
3775       HeapWord* buf =
3776         _g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize);
3777       if (buf == NULL) return NULL; // Let caller handle allocation failure.
3778       // Otherwise.
3779       alloc_buf->set_buf(buf);
3780 
3781       obj = alloc_buf->allocate(word_sz);
3782       assert(obj != NULL, "buffer was definitely big enough...");
3783     } else {
3784       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
3785     }
3786     return obj;
3787   }
3788 
3789   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
3790     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
3791     if (obj != NULL) return obj;
3792     return allocate_slow(purpose, word_sz);
3793   }
3794 
3795   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
3796     if (alloc_buffer(purpose)->contains(obj)) {
3797       guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1),
3798                 "should contain whole object");
3799       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
3800     } else {
3801       CollectedHeap::fill_with_object(obj, word_sz);
3802       add_to_undo_waste(word_sz);
3803     }
3804   }
3805 
3806   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
3807     _evac_failure_cl = evac_failure_cl;
3808   }
3809   OopsInHeapRegionClosure* evac_failure_closure() {
3810     return _evac_failure_cl;
3811   }
3812 
3813   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
3814     _evac_cl = evac_cl;
3815   }
3816 
3817   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
3818     _partial_scan_cl = partial_scan_cl;
3819   }
3820 
3821   int* hash_seed() { return &_hash_seed; }
3822   int  queue_num() { return _queue_num; }
3823 
3824   int term_attempts()   { return _term_attempts; }
3825   void note_term_attempt()  { _term_attempts++; }
3826 
3827 #if G1_DETAILED_STATS
3828   int pushes()          { return _pushes; }
3829   int pops()            { return _pops; }
3830   int steals()          { return _steals; }
3831   int steal_attempts()  { return _steal_attempts; }
3832   int overflow_pushes() { return _overflow_pushes; }
3833 
3834   void note_push()          { _pushes++; }
3835   void note_pop()           { _pops++; }
3836   void note_steal()         { _steals++; }
3837   void note_steal_attempt() { _steal_attempts++; }
3838   void note_overflow_push() { _overflow_pushes++; }
3839 #endif
3840 
3841   void start_strong_roots() {
3842     _start_strong_roots = os::elapsedTime();
3843   }
3844   void end_strong_roots() {
3845     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
3846   }
3847   double strong_roots_time() { return _strong_roots_time; }
3848 
3849   void start_term_time() {
3850     note_term_attempt();
3851     _start_term = os::elapsedTime();
3852   }
3853   void end_term_time() {
3854     _term_time += (os::elapsedTime() - _start_term);
3855   }
3856   double term_time() { return _term_time; }
3857 
3858   double elapsed() {
3859     return os::elapsedTime() - _start;
3860   }
3861 
3862   size_t* surviving_young_words() {
3863     // We add on to hide entry 0 which accumulates surviving words for
3864     // age -1 regions (i.e. non-young ones)
3865     return _surviving_young_words;
3866   }
3867 
3868   void retire_alloc_buffers() {
3869     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3870       size_t waste = _alloc_buffers[ap].words_remaining();
3871       add_to_alloc_buffer_waste(waste);
3872       _alloc_buffers[ap].retire(true, false);
3873     }
3874   }
3875 
3876 private:
3877   void deal_with_reference(oop* ref_to_scan) {
3878     if (has_partial_array_mask(ref_to_scan)) {
3879       _partial_scan_cl->do_oop_nv(ref_to_scan);
3880     } else {
3881       // Note: we can use "raw" versions of "region_containing" because
3882       // "obj_to_scan" is definitely in the heap, and is not in a
3883       // humongous region.
3884       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
3885       _evac_cl->set_region(r);
3886       _evac_cl->do_oop_nv(ref_to_scan);
3887     }
3888   }
3889 
3890 public:
3891   void trim_queue() {
3892     // I've replicated the loop twice, first to drain the overflow
3893     // queue, second to drain the task queue. This is better than
3894     // having a single loop, which checks both conditions and, inside
3895     // it, either pops the overflow queue or the task queue, as each
3896     // loop is tighter. Also, the decision to drain the overflow queue
3897     // first is not arbitrary, as the overflow queue is not visible
3898     // to the other workers, whereas the task queue is. So, we want to
3899     // drain the "invisible" entries first, while allowing the other
3900     // workers to potentially steal the "visible" entries.
3901 
3902     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
3903       while (overflowed_refs_to_scan() > 0) {
3904         oop *ref_to_scan = NULL;
3905         pop_from_overflow_queue(ref_to_scan);
3906         assert(ref_to_scan != NULL, "invariant");
3907         // We shouldn't have pushed it on the queue if it was not
3908         // pointing into the CSet.
3909         assert(ref_to_scan != NULL, "sanity");
3910         assert(has_partial_array_mask(ref_to_scan) ||
3911                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
3912 
3913         deal_with_reference(ref_to_scan);
3914       }
3915 
3916       while (refs_to_scan() > 0) {
3917         oop *ref_to_scan = NULL;
3918         pop_from_queue(ref_to_scan);
3919 
3920         if (ref_to_scan != NULL) {
3921           // We shouldn't have pushed it on the queue if it was not
3922           // pointing into the CSet.
3923           assert(has_partial_array_mask(ref_to_scan) ||
3924                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
3925 
3926           deal_with_reference(ref_to_scan);
3927         }
3928       }
3929     }
3930   }
3931 };
3932 
3933 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
3934   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
3935   _par_scan_state(par_scan_state) { }
3936 
3937 // This closure is applied to the fields of the objects that have just been copied.
3938 // Should probably be made inline and moved in g1OopClosures.inline.hpp.
3939 void G1ParScanClosure::do_oop_nv(oop* p) {
3940   oop obj = *p;
3941 
3942   if (obj != NULL) {
3943     if (_g1->in_cset_fast_test(obj)) {
3944       // We're not going to even bother checking whether the object is
3945       // already forwarded or not, as this usually causes an immediate
3946       // stall. We'll try to prefetch the object (for write, given that
3947       // we might need to install the forwarding reference) and we'll
3948       // get back to it when pop it from the queue
3949       Prefetch::write(obj->mark_addr(), 0);
3950       Prefetch::read(obj->mark_addr(), (HeapWordSize*2));
3951 
3952       // slightly paranoid test; I'm trying to catch potential
3953       // problems before we go into push_on_queue to know where the
3954       // problem is coming from
3955       assert(obj == *p, "the value of *p should not have changed");
3956       _par_scan_state->push_on_queue(p);
3957     } else {
3958       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
3959     }
3960   }
3961 }
3962 
3963 void G1ParCopyHelper::mark_forwardee(oop* p) {
3964   // This is called _after_ do_oop_work has been called, hence after
3965   // the object has been relocated to its new location and *p points
3966   // to its new location.
3967 
3968   oop thisOop = *p;
3969   if (thisOop != NULL) {
3970     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)),
3971            "shouldn't still be in the CSet if evacuation didn't fail.");
3972     HeapWord* addr = (HeapWord*)thisOop;
3973     if (_g1->is_in_g1_reserved(addr))
3974       _cm->grayRoot(oop(addr));
3975   }
3976 }
3977 
3978 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
3979   size_t    word_sz = old->size();
3980   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
3981   // +1 to make the -1 indexes valid...
3982   int       young_index = from_region->young_index_in_cset()+1;
3983   assert( (from_region->is_young() && young_index > 0) ||
3984           (!from_region->is_young() && young_index == 0), "invariant" );
3985   G1CollectorPolicy* g1p = _g1->g1_policy();
3986   markOop m = old->mark();
3987   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
3988                                            : m->age();
3989   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
3990                                                              word_sz);
3991   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
3992   oop       obj     = oop(obj_ptr);
3993 
3994   if (obj_ptr == NULL) {
3995     // This will either forward-to-self, or detect that someone else has
3996     // installed a forwarding pointer.
3997     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
3998     return _g1->handle_evacuation_failure_par(cl, old);
3999   }
4000 
4001   // We're going to allocate linearly, so might as well prefetch ahead.
4002   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4003 
4004   oop forward_ptr = old->forward_to_atomic(obj);
4005   if (forward_ptr == NULL) {
4006     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4007     if (g1p->track_object_age(alloc_purpose)) {
4008       // We could simply do obj->incr_age(). However, this causes a
4009       // performance issue. obj->incr_age() will first check whether
4010       // the object has a displaced mark by checking its mark word;
4011       // getting the mark word from the new location of the object
4012       // stalls. So, given that we already have the mark word and we
4013       // are about to install it anyway, it's better to increase the
4014       // age on the mark word, when the object does not have a
4015       // displaced mark word. We're not expecting many objects to have
4016       // a displaced marked word, so that case is not optimized
4017       // further (it could be...) and we simply call obj->incr_age().
4018 
4019       if (m->has_displaced_mark_helper()) {
4020         // in this case, we have to install the mark word first,
4021         // otherwise obj looks to be forwarded (the old mark word,
4022         // which contains the forward pointer, was copied)
4023         obj->set_mark(m);
4024         obj->incr_age();
4025       } else {
4026         m = m->incr_age();
4027         obj->set_mark(m);
4028       }
4029       _par_scan_state->age_table()->add(obj, word_sz);
4030     } else {
4031       obj->set_mark(m);
4032     }
4033 
4034     // preserve "next" mark bit
4035     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
4036       if (!use_local_bitmaps ||
4037           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4038         // if we couldn't mark it on the local bitmap (this happens when
4039         // the object was not allocated in the GCLab), we have to bite
4040         // the bullet and do the standard parallel mark
4041         _cm->markAndGrayObjectIfNecessary(obj);
4042       }
4043 #if 1
4044       if (_g1->isMarkedNext(old)) {
4045         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4046       }
4047 #endif
4048     }
4049 
4050     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4051     surv_young_words[young_index] += word_sz;
4052 
4053     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4054       arrayOop(old)->set_length(0);
4055       _par_scan_state->push_on_queue(set_partial_array_mask(old));
4056     } else {
4057       // No point in using the slower heap_region_containing() method,
4058       // given that we know obj is in the heap.
4059       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4060       obj->oop_iterate_backwards(_scanner);
4061     }
4062   } else {
4063     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4064     obj = forward_ptr;
4065   }
4066   return obj;
4067 }
4068 
4069 template<bool do_gen_barrier, G1Barrier barrier,
4070          bool do_mark_forwardee, bool skip_cset_test>
4071 void G1ParCopyClosure<do_gen_barrier, barrier,
4072                       do_mark_forwardee, skip_cset_test>::do_oop_work(oop* p) {
4073   oop obj = *p;
4074   assert(barrier != G1BarrierRS || obj != NULL,
4075          "Precondition: G1BarrierRS implies obj is nonNull");
4076 
4077   // The only time we skip the cset test is when we're scanning
4078   // references popped from the queue. And we only push on the queue
4079   // references that we know point into the cset, so no point in
4080   // checking again. But we'll leave an assert here for peace of mind.
4081   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
4082 
4083   // here the null check is implicit in the cset_fast_test() test
4084   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
4085 #if G1_REM_SET_LOGGING
4086     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
4087                            "into CS.", p, (void*) obj);
4088 #endif
4089     if (obj->is_forwarded()) {
4090       *p = obj->forwardee();
4091     } else {
4092       *p = copy_to_survivor_space(obj);
4093     }
4094     // When scanning the RS, we only care about objs in CS.
4095     if (barrier == G1BarrierRS) {
4096       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4097     }
4098   }
4099 
4100   // When scanning moved objs, must look at all oops.
4101   if (barrier == G1BarrierEvac && obj != NULL) {
4102     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4103   }
4104 
4105   if (do_gen_barrier && obj != NULL) {
4106     par_do_barrier(p);
4107   }
4108 }
4109 
4110 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
4111 
4112 template<class T> void G1ParScanPartialArrayClosure::process_array_chunk(
4113   oop obj, int start, int end) {
4114   // process our set of indices (include header in first chunk)
4115   assert(start < end, "invariant");
4116   T* const base      = (T*)objArrayOop(obj)->base();
4117   T* const start_addr = (start == 0) ? (T*) obj : base + start;
4118   T* const end_addr   = base + end;
4119   MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
4120   _scanner.set_region(_g1->heap_region_containing(obj));
4121   obj->oop_iterate(&_scanner, mr);
4122 }
4123 
4124 void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) {
4125   assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops");
4126   assert(has_partial_array_mask(p), "invariant");
4127   oop old = clear_partial_array_mask(p);
4128   assert(old->is_objArray(), "must be obj array");
4129   assert(old->is_forwarded(), "must be forwarded");
4130   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4131 
4132   objArrayOop obj = objArrayOop(old->forwardee());
4133   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4134   // Process ParGCArrayScanChunk elements now
4135   // and push the remainder back onto queue
4136   int start     = arrayOop(old)->length();
4137   int end       = obj->length();
4138   int remainder = end - start;
4139   assert(start <= end, "just checking");
4140   if (remainder > 2 * ParGCArrayScanChunk) {
4141     // Test above combines last partial chunk with a full chunk
4142     end = start + ParGCArrayScanChunk;
4143     arrayOop(old)->set_length(end);
4144     // Push remainder.
4145     _par_scan_state->push_on_queue(set_partial_array_mask(old));
4146   } else {
4147     // Restore length so that the heap remains parsable in
4148     // case of evacuation failure.
4149     arrayOop(old)->set_length(end);
4150   }
4151 
4152   // process our set of indices (include header in first chunk)
4153   process_array_chunk<oop>(obj, start, end);
4154 }
4155 
4156 int G1ScanAndBalanceClosure::_nq = 0;
4157 
4158 class G1ParEvacuateFollowersClosure : public VoidClosure {
4159 protected:
4160   G1CollectedHeap*              _g1h;
4161   G1ParScanThreadState*         _par_scan_state;
4162   RefToScanQueueSet*            _queues;
4163   ParallelTaskTerminator*       _terminator;
4164 
4165   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4166   RefToScanQueueSet*      queues()         { return _queues; }
4167   ParallelTaskTerminator* terminator()     { return _terminator; }
4168 
4169 public:
4170   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4171                                 G1ParScanThreadState* par_scan_state,
4172                                 RefToScanQueueSet* queues,
4173                                 ParallelTaskTerminator* terminator)
4174     : _g1h(g1h), _par_scan_state(par_scan_state),
4175       _queues(queues), _terminator(terminator) {}
4176 
4177   void do_void() {
4178     G1ParScanThreadState* pss = par_scan_state();
4179     while (true) {
4180       oop* ref_to_scan;
4181       pss->trim_queue();
4182       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
4183       if (queues()->steal(pss->queue_num(),
4184                           pss->hash_seed(),
4185                           ref_to_scan)) {
4186         IF_G1_DETAILED_STATS(pss->note_steal());
4187 
4188         // slightly paranoid tests; I'm trying to catch potential
4189         // problems before we go into push_on_queue to know where the
4190         // problem is coming from
4191         assert(ref_to_scan != NULL, "invariant");
4192         assert(has_partial_array_mask(ref_to_scan) ||
4193                                    _g1h->obj_in_cs(*ref_to_scan), "invariant");
4194         pss->push_on_queue(ref_to_scan);
4195         continue;
4196       }
4197       pss->start_term_time();
4198       if (terminator()->offer_termination()) break;
4199       pss->end_term_time();
4200     }
4201     pss->end_term_time();
4202     pss->retire_alloc_buffers();
4203   }
4204 };
4205 
4206 class G1ParTask : public AbstractGangTask {
4207 protected:
4208   G1CollectedHeap*       _g1h;
4209   RefToScanQueueSet      *_queues;
4210   ParallelTaskTerminator _terminator;
4211 
4212   Mutex _stats_lock;
4213   Mutex* stats_lock() { return &_stats_lock; }
4214 
4215   size_t getNCards() {
4216     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4217       / G1BlockOffsetSharedArray::N_bytes;
4218   }
4219 
4220 public:
4221   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
4222     : AbstractGangTask("G1 collection"),
4223       _g1h(g1h),
4224       _queues(task_queues),
4225       _terminator(workers, _queues),
4226       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4227   {}
4228 
4229   RefToScanQueueSet* queues() { return _queues; }
4230 
4231   RefToScanQueue *work_queue(int i) {
4232     return queues()->queue(i);
4233   }
4234 
4235   void work(int i) {
4236     ResourceMark rm;
4237     HandleMark   hm;
4238 
4239     G1ParScanThreadState            pss(_g1h, i);
4240     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
4241     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
4242     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4243 
4244     pss.set_evac_closure(&scan_evac_cl);
4245     pss.set_evac_failure_closure(&evac_failure_cl);
4246     pss.set_partial_scan_closure(&partial_scan_cl);
4247 
4248     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
4249     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
4250     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4251 
4252     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
4253     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
4254     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
4255 
4256     OopsInHeapRegionClosure        *scan_root_cl;
4257     OopsInHeapRegionClosure        *scan_perm_cl;
4258     OopsInHeapRegionClosure        *scan_so_cl;
4259 
4260     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
4261       scan_root_cl = &scan_mark_root_cl;
4262       scan_perm_cl = &scan_mark_perm_cl;
4263       scan_so_cl   = &scan_mark_heap_rs_cl;
4264     } else {
4265       scan_root_cl = &only_scan_root_cl;
4266       scan_perm_cl = &only_scan_perm_cl;
4267       scan_so_cl   = &only_scan_heap_rs_cl;
4268     }
4269 
4270     pss.start_strong_roots();
4271     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4272                                   SharedHeap::SO_AllClasses,
4273                                   scan_root_cl,
4274                                   &only_scan_heap_rs_cl,
4275                                   scan_so_cl,
4276                                   scan_perm_cl,
4277                                   i);
4278     pss.end_strong_roots();
4279     {
4280       double start = os::elapsedTime();
4281       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4282       evac.do_void();
4283       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4284       double term_ms = pss.term_time()*1000.0;
4285       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4286       _g1h->g1_policy()->record_termination_time(i, term_ms);
4287     }
4288     if (G1UseSurvivorSpace) {
4289       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4290     }
4291     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4292 
4293     // Clean up any par-expanded rem sets.
4294     HeapRegionRemSet::par_cleanup();
4295 
4296     MutexLocker x(stats_lock());
4297     if (ParallelGCVerbose) {
4298       gclog_or_tty->print("Thread %d complete:\n", i);
4299 #if G1_DETAILED_STATS
4300       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
4301                           pss.pushes(),
4302                           pss.pops(),
4303                           pss.overflow_pushes(),
4304                           pss.steals(),
4305                           pss.steal_attempts());
4306 #endif
4307       double elapsed      = pss.elapsed();
4308       double strong_roots = pss.strong_roots_time();
4309       double term         = pss.term_time();
4310       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
4311                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
4312                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
4313                           elapsed * 1000.0,
4314                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
4315                           term * 1000.0, (term*100.0/elapsed),
4316                           pss.term_attempts());
4317       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
4318       gclog_or_tty->print("  Waste: %8dK\n"
4319                  "    Alloc Buffer: %8dK\n"
4320                  "    Undo: %8dK\n",
4321                  (total_waste * HeapWordSize) / K,
4322                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
4323                  (pss.undo_waste() * HeapWordSize) / K);
4324     }
4325 
4326     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
4327     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
4328   }
4329 };
4330 
4331 // *** Common G1 Evacuation Stuff
4332 
4333 class G1CountClosure: public OopsInHeapRegionClosure {
4334 public:
4335   int n;
4336   G1CountClosure() : n(0) {}
4337   void do_oop(narrowOop* p) {
4338     guarantee(false, "NYI");
4339   }
4340   void do_oop(oop* p) {
4341     oop obj = *p;
4342     assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj),
4343            "Rem set closure called on non-rem-set pointer.");
4344     n++;
4345   }
4346 };
4347 
4348 static G1CountClosure count_closure;
4349 
4350 void
4351 G1CollectedHeap::
4352 g1_process_strong_roots(bool collecting_perm_gen,
4353                         SharedHeap::ScanningOption so,
4354                         OopClosure* scan_non_heap_roots,
4355                         OopsInHeapRegionClosure* scan_rs,
4356                         OopsInHeapRegionClosure* scan_so,
4357                         OopsInGenClosure* scan_perm,
4358                         int worker_i) {
4359   // First scan the strong roots, including the perm gen.
4360   double ext_roots_start = os::elapsedTime();
4361   double closure_app_time_sec = 0.0;
4362 
4363   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4364   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4365   buf_scan_perm.set_generation(perm_gen());
4366 
4367   process_strong_roots(collecting_perm_gen, so,
4368                        &buf_scan_non_heap_roots,
4369                        &buf_scan_perm);
4370   // Finish up any enqueued closure apps.
4371   buf_scan_non_heap_roots.done();
4372   buf_scan_perm.done();
4373   double ext_roots_end = os::elapsedTime();
4374   g1_policy()->reset_obj_copy_time(worker_i);
4375   double obj_copy_time_sec =
4376     buf_scan_non_heap_roots.closure_app_seconds() +
4377     buf_scan_perm.closure_app_seconds();
4378   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4379   double ext_root_time_ms =
4380     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4381   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4382 
4383   // Scan strong roots in mark stack.
4384   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4385     concurrent_mark()->oops_do(scan_non_heap_roots);
4386   }
4387   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4388   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4389 
4390   // XXX What should this be doing in the parallel case?
4391   g1_policy()->record_collection_pause_end_CH_strong_roots();
4392   if (G1VerifyRemSet) {
4393     // :::: FIXME ::::
4394     // The stupid remembered set doesn't know how to filter out dead
4395     // objects, which the smart one does, and so when it is created
4396     // and then compared the number of entries in each differs and
4397     // the verification code fails.
4398     guarantee(false, "verification code is broken, see note");
4399 
4400     // Let's make sure that the current rem set agrees with the stupidest
4401     // one possible!
4402     bool refs_enabled = ref_processor()->discovery_enabled();
4403     if (refs_enabled) ref_processor()->disable_discovery();
4404     StupidG1RemSet stupid(this);
4405     count_closure.n = 0;
4406     stupid.oops_into_collection_set_do(&count_closure, worker_i);
4407     int stupid_n = count_closure.n;
4408     count_closure.n = 0;
4409     g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i);
4410     guarantee(count_closure.n == stupid_n, "Old and new rem sets differ.");
4411     gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n);
4412     if (refs_enabled) ref_processor()->enable_discovery();
4413   }
4414   if (scan_so != NULL) {
4415     scan_scan_only_set(scan_so, worker_i);
4416   }
4417   // Now scan the complement of the collection set.
4418   if (scan_rs != NULL) {
4419     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4420   }
4421   // Finish with the ref_processor roots.
4422   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4423     ref_processor()->oops_do(scan_non_heap_roots);
4424   }
4425   g1_policy()->record_collection_pause_end_G1_strong_roots();
4426   _process_strong_tasks->all_tasks_completed();
4427 }
4428 
4429 void
4430 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
4431                                        OopsInHeapRegionClosure* oc,
4432                                        int worker_i) {
4433   HeapWord* startAddr = r->bottom();
4434   HeapWord* endAddr = r->used_region().end();
4435 
4436   oc->set_region(r);
4437 
4438   HeapWord* p = r->bottom();
4439   HeapWord* t = r->top();
4440   guarantee( p == r->next_top_at_mark_start(), "invariant" );
4441   while (p < t) {
4442     oop obj = oop(p);
4443     p += obj->oop_iterate(oc);
4444   }
4445 }
4446 
4447 void
4448 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
4449                                     int worker_i) {
4450   double start = os::elapsedTime();
4451 
4452   BufferingOopsInHeapRegionClosure boc(oc);
4453 
4454   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
4455   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
4456 
4457   OopsInHeapRegionClosure *foc;
4458   if (g1_policy()->should_initiate_conc_mark())
4459     foc = &scan_and_mark;
4460   else
4461     foc = &scan_only;
4462 
4463   HeapRegion* hr;
4464   int n = 0;
4465   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
4466     scan_scan_only_region(hr, foc, worker_i);
4467     ++n;
4468   }
4469   boc.done();
4470 
4471   double closure_app_s = boc.closure_app_seconds();
4472   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
4473   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
4474   g1_policy()->record_scan_only_time(worker_i, ms, n);
4475 }
4476 
4477 void
4478 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4479                                        OopClosure* non_root_closure) {
4480   SharedHeap::process_weak_roots(root_closure, non_root_closure);
4481 }
4482 
4483 
4484 class SaveMarksClosure: public HeapRegionClosure {
4485 public:
4486   bool doHeapRegion(HeapRegion* r) {
4487     r->save_marks();
4488     return false;
4489   }
4490 };
4491 
4492 void G1CollectedHeap::save_marks() {
4493   if (ParallelGCThreads == 0) {
4494     SaveMarksClosure sm;
4495     heap_region_iterate(&sm);
4496   }
4497   // We do this even in the parallel case
4498   perm_gen()->save_marks();
4499 }
4500 
4501 void G1CollectedHeap::evacuate_collection_set() {
4502   set_evacuation_failed(false);
4503 
4504   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4505   concurrent_g1_refine()->set_use_cache(false);
4506   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
4507   set_par_threads(n_workers);
4508   G1ParTask g1_par_task(this, n_workers, _task_queues);
4509 
4510   init_for_evac_failure(NULL);
4511 
4512   change_strong_roots_parity();  // In preparation for parallel strong roots.
4513   rem_set()->prepare_for_younger_refs_iterate(true);
4514 
4515   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4516   double start_par = os::elapsedTime();
4517   if (ParallelGCThreads > 0) {
4518     // The individual threads will set their evac-failure closures.
4519     workers()->run_task(&g1_par_task);
4520   } else {
4521     g1_par_task.work(0);
4522   }
4523 
4524   double par_time = (os::elapsedTime() - start_par) * 1000.0;
4525   g1_policy()->record_par_time(par_time);
4526   set_par_threads(0);
4527   // Is this the right thing to do here?  We don't save marks
4528   // on individual heap regions when we allocate from
4529   // them in parallel, so this seems like the correct place for this.
4530   retire_all_alloc_regions();
4531   {
4532     G1IsAliveClosure is_alive(this);
4533     G1KeepAliveClosure keep_alive(this);
4534     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4535   }
4536   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4537 
4538   concurrent_g1_refine()->set_use_cache(true);
4539 
4540   finalize_for_evac_failure();
4541 
4542   // Must do this before removing self-forwarding pointers, which clears
4543   // the per-region evac-failure flags.
4544   concurrent_mark()->complete_marking_in_collection_set();
4545 
4546   if (evacuation_failed()) {
4547     remove_self_forwarding_pointers();
4548     if (PrintGCDetails) {
4549       gclog_or_tty->print(" (evacuation failed)");
4550     } else if (PrintGC) {
4551       gclog_or_tty->print("--");
4552     }
4553   }
4554 
4555   if (G1DeferredRSUpdate) {
4556     RedirtyLoggedCardTableEntryFastClosure redirty;
4557     dirty_card_queue_set().set_closure(&redirty);
4558     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4559     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
4560     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4561   }
4562 
4563   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
4564 }
4565 
4566 void G1CollectedHeap::free_region(HeapRegion* hr) {
4567   size_t pre_used = 0;
4568   size_t cleared_h_regions = 0;
4569   size_t freed_regions = 0;
4570   UncleanRegionList local_list;
4571 
4572   HeapWord* start = hr->bottom();
4573   HeapWord* end   = hr->prev_top_at_mark_start();
4574   size_t used_bytes = hr->used();
4575   size_t live_bytes = hr->max_live_bytes();
4576   if (used_bytes > 0) {
4577     guarantee( live_bytes <= used_bytes, "invariant" );
4578   } else {
4579     guarantee( live_bytes == 0, "invariant" );
4580   }
4581 
4582   size_t garbage_bytes = used_bytes - live_bytes;
4583   if (garbage_bytes > 0)
4584     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
4585 
4586   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
4587                    &local_list);
4588   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
4589                           &local_list);
4590 }
4591 
4592 void
4593 G1CollectedHeap::free_region_work(HeapRegion* hr,
4594                                   size_t& pre_used,
4595                                   size_t& cleared_h_regions,
4596                                   size_t& freed_regions,
4597                                   UncleanRegionList* list,
4598                                   bool par) {
4599   assert(!hr->popular(), "should not free popular regions");
4600   pre_used += hr->used();
4601   if (hr->isHumongous()) {
4602     assert(hr->startsHumongous(),
4603            "Only the start of a humongous region should be freed.");
4604     int ind = _hrs->find(hr);
4605     assert(ind != -1, "Should have an index.");
4606     // Clear the start region.
4607     hr->hr_clear(par, true /*clear_space*/);
4608     list->insert_before_head(hr);
4609     cleared_h_regions++;
4610     freed_regions++;
4611     // Clear any continued regions.
4612     ind++;
4613     while ((size_t)ind < n_regions()) {
4614       HeapRegion* hrc = _hrs->at(ind);
4615       if (!hrc->continuesHumongous()) break;
4616       // Otherwise, does continue the H region.
4617       assert(hrc->humongous_start_region() == hr, "Huh?");
4618       hrc->hr_clear(par, true /*clear_space*/);
4619       cleared_h_regions++;
4620       freed_regions++;
4621       list->insert_before_head(hrc);
4622       ind++;
4623     }
4624   } else {
4625     hr->hr_clear(par, true /*clear_space*/);
4626     list->insert_before_head(hr);
4627     freed_regions++;
4628     // If we're using clear2, this should not be enabled.
4629     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
4630   }
4631 }
4632 
4633 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
4634                                               size_t cleared_h_regions,
4635                                               size_t freed_regions,
4636                                               UncleanRegionList* list) {
4637   if (list != NULL && list->sz() > 0) {
4638     prepend_region_list_on_unclean_list(list);
4639   }
4640   // Acquire a lock, if we're parallel, to update possibly-shared
4641   // variables.
4642   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
4643   {
4644     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4645     _summary_bytes_used -= pre_used;
4646     _num_humongous_regions -= (int) cleared_h_regions;
4647     _free_regions += freed_regions;
4648   }
4649 }
4650 
4651 
4652 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
4653   while (list != NULL) {
4654     guarantee( list->is_young(), "invariant" );
4655 
4656     HeapWord* bottom = list->bottom();
4657     HeapWord* end = list->end();
4658     MemRegion mr(bottom, end);
4659     ct_bs->dirty(mr);
4660 
4661     list = list->get_next_young_region();
4662   }
4663 }
4664 
4665 void G1CollectedHeap::cleanUpCardTable() {
4666   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
4667   double start = os::elapsedTime();
4668 
4669   ct_bs->clear(_g1_committed);
4670 
4671   // now, redirty the cards of the scan-only and survivor regions
4672   // (it seemed faster to do it this way, instead of iterating over
4673   // all regions and then clearing / dirtying as approprite)
4674   dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
4675   dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
4676 
4677   double elapsed = os::elapsedTime() - start;
4678   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4679 }
4680 
4681 
4682 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
4683   // First do any popular regions.
4684   HeapRegion* hr;
4685   while ((hr = popular_region_to_evac()) != NULL) {
4686     evac_popular_region(hr);
4687   }
4688   // Now do heuristic pauses.
4689   if (g1_policy()->should_do_collection_pause(word_size)) {
4690     do_collection_pause();
4691   }
4692 }
4693 
4694 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
4695   double young_time_ms     = 0.0;
4696   double non_young_time_ms = 0.0;
4697 
4698   G1CollectorPolicy* policy = g1_policy();
4699 
4700   double start_sec = os::elapsedTime();
4701   bool non_young = true;
4702 
4703   HeapRegion* cur = cs_head;
4704   int age_bound = -1;
4705   size_t rs_lengths = 0;
4706 
4707   while (cur != NULL) {
4708     if (non_young) {
4709       if (cur->is_young()) {
4710         double end_sec = os::elapsedTime();
4711         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4712         non_young_time_ms += elapsed_ms;
4713 
4714         start_sec = os::elapsedTime();
4715         non_young = false;
4716       }
4717     } else {
4718       if (!cur->is_on_free_list()) {
4719         double end_sec = os::elapsedTime();
4720         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4721         young_time_ms += elapsed_ms;
4722 
4723         start_sec = os::elapsedTime();
4724         non_young = true;
4725       }
4726     }
4727 
4728     rs_lengths += cur->rem_set()->occupied();
4729 
4730     HeapRegion* next = cur->next_in_collection_set();
4731     assert(cur->in_collection_set(), "bad CS");
4732     cur->set_next_in_collection_set(NULL);
4733     cur->set_in_collection_set(false);
4734 
4735     if (cur->is_young()) {
4736       int index = cur->young_index_in_cset();
4737       guarantee( index != -1, "invariant" );
4738       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
4739       size_t words_survived = _surviving_young_words[index];
4740       cur->record_surv_words_in_group(words_survived);
4741     } else {
4742       int index = cur->young_index_in_cset();
4743       guarantee( index == -1, "invariant" );
4744     }
4745 
4746     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4747             (!cur->is_young() && cur->young_index_in_cset() == -1),
4748             "invariant" );
4749 
4750     if (!cur->evacuation_failed()) {
4751       // And the region is empty.
4752       assert(!cur->is_empty(),
4753              "Should not have empty regions in a CS.");
4754       free_region(cur);
4755     } else {
4756       guarantee( !cur->is_scan_only(), "should not be scan only" );
4757       cur->uninstall_surv_rate_group();
4758       if (cur->is_young())
4759         cur->set_young_index_in_cset(-1);
4760       cur->set_not_young();
4761       cur->set_evacuation_failed(false);
4762     }
4763     cur = next;
4764   }
4765 
4766   policy->record_max_rs_lengths(rs_lengths);
4767   policy->cset_regions_freed();
4768 
4769   double end_sec = os::elapsedTime();
4770   double elapsed_ms = (end_sec - start_sec) * 1000.0;
4771   if (non_young)
4772     non_young_time_ms += elapsed_ms;
4773   else
4774     young_time_ms += elapsed_ms;
4775 
4776   policy->record_young_free_cset_time_ms(young_time_ms);
4777   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
4778 }
4779 
4780 HeapRegion*
4781 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
4782   assert(ZF_mon->owned_by_self(), "Precondition");
4783   HeapRegion* res = pop_unclean_region_list_locked();
4784   if (res != NULL) {
4785     assert(!res->continuesHumongous() &&
4786            res->zero_fill_state() != HeapRegion::Allocated,
4787            "Only free regions on unclean list.");
4788     if (zero_filled) {
4789       res->ensure_zero_filled_locked();
4790       res->set_zero_fill_allocated();
4791     }
4792   }
4793   return res;
4794 }
4795 
4796 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
4797   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
4798   return alloc_region_from_unclean_list_locked(zero_filled);
4799 }
4800 
4801 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
4802   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4803   put_region_on_unclean_list_locked(r);
4804   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
4805 }
4806 
4807 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
4808   MutexLockerEx x(Cleanup_mon);
4809   set_unclean_regions_coming_locked(b);
4810 }
4811 
4812 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
4813   assert(Cleanup_mon->owned_by_self(), "Precondition");
4814   _unclean_regions_coming = b;
4815   // Wake up mutator threads that might be waiting for completeCleanup to
4816   // finish.
4817   if (!b) Cleanup_mon->notify_all();
4818 }
4819 
4820 void G1CollectedHeap::wait_for_cleanup_complete() {
4821   MutexLockerEx x(Cleanup_mon);
4822   wait_for_cleanup_complete_locked();
4823 }
4824 
4825 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
4826   assert(Cleanup_mon->owned_by_self(), "precondition");
4827   while (_unclean_regions_coming) {
4828     Cleanup_mon->wait();
4829   }
4830 }
4831 
4832 void
4833 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
4834   assert(ZF_mon->owned_by_self(), "precondition.");
4835   _unclean_region_list.insert_before_head(r);
4836 }
4837 
4838 void
4839 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
4840   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4841   prepend_region_list_on_unclean_list_locked(list);
4842   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
4843 }
4844 
4845 void
4846 G1CollectedHeap::
4847 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
4848   assert(ZF_mon->owned_by_self(), "precondition.");
4849   _unclean_region_list.prepend_list(list);
4850 }
4851 
4852 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
4853   assert(ZF_mon->owned_by_self(), "precondition.");
4854   HeapRegion* res = _unclean_region_list.pop();
4855   if (res != NULL) {
4856     // Inform ZF thread that there's a new unclean head.
4857     if (_unclean_region_list.hd() != NULL && should_zf())
4858       ZF_mon->notify_all();
4859   }
4860   return res;
4861 }
4862 
4863 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
4864   assert(ZF_mon->owned_by_self(), "precondition.");
4865   return _unclean_region_list.hd();
4866 }
4867 
4868 
4869 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
4870   assert(ZF_mon->owned_by_self(), "Precondition");
4871   HeapRegion* r = peek_unclean_region_list_locked();
4872   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
4873     // Result of below must be equal to "r", since we hold the lock.
4874     (void)pop_unclean_region_list_locked();
4875     put_free_region_on_list_locked(r);
4876     return true;
4877   } else {
4878     return false;
4879   }
4880 }
4881 
4882 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
4883   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4884   return move_cleaned_region_to_free_list_locked();
4885 }
4886 
4887 
4888 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
4889   assert(ZF_mon->owned_by_self(), "precondition.");
4890   assert(_free_region_list_size == free_region_list_length(), "Inv");
4891   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
4892         "Regions on free list must be zero filled");
4893   assert(!r->isHumongous(), "Must not be humongous.");
4894   assert(r->is_empty(), "Better be empty");
4895   assert(!r->is_on_free_list(),
4896          "Better not already be on free list");
4897   assert(!r->is_on_unclean_list(),
4898          "Better not already be on unclean list");
4899   r->set_on_free_list(true);
4900   r->set_next_on_free_list(_free_region_list);
4901   _free_region_list = r;
4902   _free_region_list_size++;
4903   assert(_free_region_list_size == free_region_list_length(), "Inv");
4904 }
4905 
4906 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
4907   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4908   put_free_region_on_list_locked(r);
4909 }
4910 
4911 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
4912   assert(ZF_mon->owned_by_self(), "precondition.");
4913   assert(_free_region_list_size == free_region_list_length(), "Inv");
4914   HeapRegion* res = _free_region_list;
4915   if (res != NULL) {
4916     _free_region_list = res->next_from_free_list();
4917     _free_region_list_size--;
4918     res->set_on_free_list(false);
4919     res->set_next_on_free_list(NULL);
4920     assert(_free_region_list_size == free_region_list_length(), "Inv");
4921   }
4922   return res;
4923 }
4924 
4925 
4926 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
4927   // By self, or on behalf of self.
4928   assert(Heap_lock->is_locked(), "Precondition");
4929   HeapRegion* res = NULL;
4930   bool first = true;
4931   while (res == NULL) {
4932     if (zero_filled || !first) {
4933       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4934       res = pop_free_region_list_locked();
4935       if (res != NULL) {
4936         assert(!res->zero_fill_is_allocated(),
4937                "No allocated regions on free list.");
4938         res->set_zero_fill_allocated();
4939       } else if (!first) {
4940         break;  // We tried both, time to return NULL.
4941       }
4942     }
4943 
4944     if (res == NULL) {
4945       res = alloc_region_from_unclean_list(zero_filled);
4946     }
4947     assert(res == NULL ||
4948            !zero_filled ||
4949            res->zero_fill_is_allocated(),
4950            "We must have allocated the region we're returning");
4951     first = false;
4952   }
4953   return res;
4954 }
4955 
4956 void G1CollectedHeap::remove_allocated_regions_from_lists() {
4957   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4958   {
4959     HeapRegion* prev = NULL;
4960     HeapRegion* cur = _unclean_region_list.hd();
4961     while (cur != NULL) {
4962       HeapRegion* next = cur->next_from_unclean_list();
4963       if (cur->zero_fill_is_allocated()) {
4964         // Remove from the list.
4965         if (prev == NULL) {
4966           (void)_unclean_region_list.pop();
4967         } else {
4968           _unclean_region_list.delete_after(prev);
4969         }
4970         cur->set_on_unclean_list(false);
4971         cur->set_next_on_unclean_list(NULL);
4972       } else {
4973         prev = cur;
4974       }
4975       cur = next;
4976     }
4977     assert(_unclean_region_list.sz() == unclean_region_list_length(),
4978            "Inv");
4979   }
4980 
4981   {
4982     HeapRegion* prev = NULL;
4983     HeapRegion* cur = _free_region_list;
4984     while (cur != NULL) {
4985       HeapRegion* next = cur->next_from_free_list();
4986       if (cur->zero_fill_is_allocated()) {
4987         // Remove from the list.
4988         if (prev == NULL) {
4989           _free_region_list = cur->next_from_free_list();
4990         } else {
4991           prev->set_next_on_free_list(cur->next_from_free_list());
4992         }
4993         cur->set_on_free_list(false);
4994         cur->set_next_on_free_list(NULL);
4995         _free_region_list_size--;
4996       } else {
4997         prev = cur;
4998       }
4999       cur = next;
5000     }
5001     assert(_free_region_list_size == free_region_list_length(), "Inv");
5002   }
5003 }
5004 
5005 bool G1CollectedHeap::verify_region_lists() {
5006   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5007   return verify_region_lists_locked();
5008 }
5009 
5010 bool G1CollectedHeap::verify_region_lists_locked() {
5011   HeapRegion* unclean = _unclean_region_list.hd();
5012   while (unclean != NULL) {
5013     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
5014     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
5015     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
5016               "Everything else is possible.");
5017     unclean = unclean->next_from_unclean_list();
5018   }
5019   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
5020 
5021   HeapRegion* free_r = _free_region_list;
5022   while (free_r != NULL) {
5023     assert(free_r->is_on_free_list(), "Well, it is!");
5024     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
5025     switch (free_r->zero_fill_state()) {
5026     case HeapRegion::NotZeroFilled:
5027     case HeapRegion::ZeroFilling:
5028       guarantee(false, "Should not be on free list.");
5029       break;
5030     default:
5031       // Everything else is possible.
5032       break;
5033     }
5034     free_r = free_r->next_from_free_list();
5035   }
5036   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
5037   // If we didn't do an assertion...
5038   return true;
5039 }
5040 
5041 size_t G1CollectedHeap::free_region_list_length() {
5042   assert(ZF_mon->owned_by_self(), "precondition.");
5043   size_t len = 0;
5044   HeapRegion* cur = _free_region_list;
5045   while (cur != NULL) {
5046     len++;
5047     cur = cur->next_from_free_list();
5048   }
5049   return len;
5050 }
5051 
5052 size_t G1CollectedHeap::unclean_region_list_length() {
5053   assert(ZF_mon->owned_by_self(), "precondition.");
5054   return _unclean_region_list.length();
5055 }
5056 
5057 size_t G1CollectedHeap::n_regions() {
5058   return _hrs->length();
5059 }
5060 
5061 size_t G1CollectedHeap::max_regions() {
5062   return
5063     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
5064     HeapRegion::GrainBytes;
5065 }
5066 
5067 size_t G1CollectedHeap::free_regions() {
5068   /* Possibly-expensive assert.
5069   assert(_free_regions == count_free_regions(),
5070          "_free_regions is off.");
5071   */
5072   return _free_regions;
5073 }
5074 
5075 bool G1CollectedHeap::should_zf() {
5076   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
5077 }
5078 
5079 class RegionCounter: public HeapRegionClosure {
5080   size_t _n;
5081 public:
5082   RegionCounter() : _n(0) {}
5083   bool doHeapRegion(HeapRegion* r) {
5084     if (r->is_empty() && !r->popular()) {
5085       assert(!r->isHumongous(), "H regions should not be empty.");
5086       _n++;
5087     }
5088     return false;
5089   }
5090   int res() { return (int) _n; }
5091 };
5092 
5093 size_t G1CollectedHeap::count_free_regions() {
5094   RegionCounter rc;
5095   heap_region_iterate(&rc);
5096   size_t n = rc.res();
5097   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
5098     n--;
5099   return n;
5100 }
5101 
5102 size_t G1CollectedHeap::count_free_regions_list() {
5103   size_t n = 0;
5104   size_t o = 0;
5105   ZF_mon->lock_without_safepoint_check();
5106   HeapRegion* cur = _free_region_list;
5107   while (cur != NULL) {
5108     cur = cur->next_from_free_list();
5109     n++;
5110   }
5111   size_t m = unclean_region_list_length();
5112   ZF_mon->unlock();
5113   return n + m;
5114 }
5115 
5116 bool G1CollectedHeap::should_set_young_locked() {
5117   assert(heap_lock_held_for_gc(),
5118               "the heap lock should already be held by or for this thread");
5119   return  (g1_policy()->in_young_gc_mode() &&
5120            g1_policy()->should_add_next_region_to_young_list());
5121 }
5122 
5123 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5124   assert(heap_lock_held_for_gc(),
5125               "the heap lock should already be held by or for this thread");
5126   _young_list->push_region(hr);
5127   g1_policy()->set_region_short_lived(hr);
5128 }
5129 
5130 class NoYoungRegionsClosure: public HeapRegionClosure {
5131 private:
5132   bool _success;
5133 public:
5134   NoYoungRegionsClosure() : _success(true) { }
5135   bool doHeapRegion(HeapRegion* r) {
5136     if (r->is_young()) {
5137       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5138                              r->bottom(), r->end());
5139       _success = false;
5140     }
5141     return false;
5142   }
5143   bool success() { return _success; }
5144 };
5145 
5146 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
5147                                              bool check_sample) {
5148   bool ret = true;
5149 
5150   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
5151   if (!ignore_scan_only_list) {
5152     NoYoungRegionsClosure closure;
5153     heap_region_iterate(&closure);
5154     ret = ret && closure.success();
5155   }
5156 
5157   return ret;
5158 }
5159 
5160 void G1CollectedHeap::empty_young_list() {
5161   assert(heap_lock_held_for_gc(),
5162               "the heap lock should already be held by or for this thread");
5163   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
5164 
5165   _young_list->empty_list();
5166 }
5167 
5168 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
5169   bool no_allocs = true;
5170   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
5171     HeapRegion* r = _gc_alloc_regions[ap];
5172     no_allocs = r == NULL || r->saved_mark_at_top();
5173   }
5174   return no_allocs;
5175 }
5176 
5177 void G1CollectedHeap::retire_all_alloc_regions() {
5178   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
5179     HeapRegion* r = _gc_alloc_regions[ap];
5180     if (r != NULL) {
5181       // Check for aliases.
5182       bool has_processed_alias = false;
5183       for (int i = 0; i < ap; ++i) {
5184         if (_gc_alloc_regions[i] == r) {
5185           has_processed_alias = true;
5186           break;
5187         }
5188       }
5189       if (!has_processed_alias) {
5190         retire_alloc_region(r, false /* par */);
5191       }
5192     }
5193   }
5194 }
5195 
5196 
5197 // Done at the start of full GC.
5198 void G1CollectedHeap::tear_down_region_lists() {
5199   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5200   while (pop_unclean_region_list_locked() != NULL) ;
5201   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
5202          "Postconditions of loop.")
5203   while (pop_free_region_list_locked() != NULL) ;
5204   assert(_free_region_list == NULL, "Postcondition of loop.");
5205   if (_free_region_list_size != 0) {
5206     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
5207     print();
5208   }
5209   assert(_free_region_list_size == 0, "Postconditions of loop.");
5210 }
5211 
5212 
5213 class RegionResetter: public HeapRegionClosure {
5214   G1CollectedHeap* _g1;
5215   int _n;
5216 public:
5217   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
5218   bool doHeapRegion(HeapRegion* r) {
5219     if (r->continuesHumongous()) return false;
5220     if (r->top() > r->bottom()) {
5221       if (r->top() < r->end()) {
5222         Copy::fill_to_words(r->top(),
5223                           pointer_delta(r->end(), r->top()));
5224       }
5225       r->set_zero_fill_allocated();
5226     } else {
5227       assert(r->is_empty(), "tautology");
5228       if (r->popular()) {
5229         if (r->zero_fill_state() != HeapRegion::Allocated) {
5230           r->ensure_zero_filled_locked();
5231           r->set_zero_fill_allocated();
5232         }
5233       } else {
5234         _n++;
5235         switch (r->zero_fill_state()) {
5236         case HeapRegion::NotZeroFilled:
5237         case HeapRegion::ZeroFilling:
5238           _g1->put_region_on_unclean_list_locked(r);
5239           break;
5240         case HeapRegion::Allocated:
5241           r->set_zero_fill_complete();
5242           // no break; go on to put on free list.
5243         case HeapRegion::ZeroFilled:
5244           _g1->put_free_region_on_list_locked(r);
5245           break;
5246         }
5247       }
5248     }
5249     return false;
5250   }
5251 
5252   int getFreeRegionCount() {return _n;}
5253 };
5254 
5255 // Done at the end of full GC.
5256 void G1CollectedHeap::rebuild_region_lists() {
5257   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5258   // This needs to go at the end of the full GC.
5259   RegionResetter rs;
5260   heap_region_iterate(&rs);
5261   _free_regions = rs.getFreeRegionCount();
5262   // Tell the ZF thread it may have work to do.
5263   if (should_zf()) ZF_mon->notify_all();
5264 }
5265 
5266 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
5267   G1CollectedHeap* _g1;
5268   int _n;
5269 public:
5270   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
5271   bool doHeapRegion(HeapRegion* r) {
5272     if (r->continuesHumongous()) return false;
5273     if (r->top() > r->bottom()) {
5274       // There are assertions in "set_zero_fill_needed()" below that
5275       // require top() == bottom(), so this is technically illegal.
5276       // We'll skirt the law here, by making that true temporarily.
5277       DEBUG_ONLY(HeapWord* save_top = r->top();
5278                  r->set_top(r->bottom()));
5279       r->set_zero_fill_needed();
5280       DEBUG_ONLY(r->set_top(save_top));
5281     }
5282     return false;
5283   }
5284 };
5285 
5286 // Done at the start of full GC.
5287 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
5288   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5289   // This needs to go at the end of the full GC.
5290   UsedRegionsNeedZeroFillSetter rs;
5291   heap_region_iterate(&rs);
5292 }
5293 
5294 class CountObjClosure: public ObjectClosure {
5295   size_t _n;
5296 public:
5297   CountObjClosure() : _n(0) {}
5298   void do_object(oop obj) { _n++; }
5299   size_t n() { return _n; }
5300 };
5301 
5302 size_t G1CollectedHeap::pop_object_used_objs() {
5303   size_t sum_objs = 0;
5304   for (int i = 0; i < G1NumPopularRegions; i++) {
5305     CountObjClosure cl;
5306     _hrs->at(i)->object_iterate(&cl);
5307     sum_objs += cl.n();
5308   }
5309   return sum_objs;
5310 }
5311 
5312 size_t G1CollectedHeap::pop_object_used_bytes() {
5313   size_t sum_bytes = 0;
5314   for (int i = 0; i < G1NumPopularRegions; i++) {
5315     sum_bytes += _hrs->at(i)->used();
5316   }
5317   return sum_bytes;
5318 }
5319 
5320 
5321 static int nq = 0;
5322 
5323 HeapWord* G1CollectedHeap::allocate_popular_object(size_t word_size) {
5324   while (_cur_pop_hr_index < G1NumPopularRegions) {
5325     HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
5326     HeapWord* res = cur_pop_region->allocate(word_size);
5327     if (res != NULL) {
5328       // We account for popular objs directly in the used summary:
5329       _summary_bytes_used += (word_size * HeapWordSize);
5330       return res;
5331     }
5332     // Otherwise, try the next region (first making sure that we remember
5333     // the last "top" value as the "next_top_at_mark_start", so that
5334     // objects made popular during markings aren't automatically considered
5335     // live).
5336     cur_pop_region->note_end_of_copying();
5337     // Otherwise, try the next region.
5338     _cur_pop_hr_index++;
5339   }
5340   // XXX: For now !!!
5341   vm_exit_out_of_memory(word_size,
5342                         "Not enough pop obj space (To Be Fixed)");
5343   return NULL;
5344 }
5345 
5346 class HeapRegionList: public CHeapObj {
5347   public:
5348   HeapRegion* hr;
5349   HeapRegionList* next;
5350 };
5351 
5352 void G1CollectedHeap::schedule_popular_region_evac(HeapRegion* r) {
5353   // This might happen during parallel GC, so protect by this lock.
5354   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
5355   // We don't schedule regions whose evacuations are already pending, or
5356   // are already being evacuated.
5357   if (!r->popular_pending() && !r->in_collection_set()) {
5358     r->set_popular_pending(true);
5359     if (G1TracePopularity) {
5360       gclog_or_tty->print_cr("Scheduling region "PTR_FORMAT" "
5361                              "["PTR_FORMAT", "PTR_FORMAT") for pop-object evacuation.",
5362                              r, r->bottom(), r->end());
5363     }
5364     HeapRegionList* hrl = new HeapRegionList;
5365     hrl->hr = r;
5366     hrl->next = _popular_regions_to_be_evacuated;
5367     _popular_regions_to_be_evacuated = hrl;
5368   }
5369 }
5370 
5371 HeapRegion* G1CollectedHeap::popular_region_to_evac() {
5372   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
5373   HeapRegion* res = NULL;
5374   while (_popular_regions_to_be_evacuated != NULL && res == NULL) {
5375     HeapRegionList* hrl = _popular_regions_to_be_evacuated;
5376     _popular_regions_to_be_evacuated = hrl->next;
5377     res = hrl->hr;
5378     // The G1RSPopLimit may have increased, so recheck here...
5379     if (res->rem_set()->occupied() < (size_t) G1RSPopLimit) {
5380       // Hah: don't need to schedule.
5381       if (G1TracePopularity) {
5382         gclog_or_tty->print_cr("Unscheduling region "PTR_FORMAT" "
5383                                "["PTR_FORMAT", "PTR_FORMAT") "
5384                                "for pop-object evacuation (size %d < limit %d)",
5385                                res, res->bottom(), res->end(),
5386                                res->rem_set()->occupied(), G1RSPopLimit);
5387       }
5388       res->set_popular_pending(false);
5389       res = NULL;
5390     }
5391     // We do not reset res->popular() here; if we did so, it would allow
5392     // the region to be "rescheduled" for popularity evacuation.  Instead,
5393     // this is done in the collection pause, with the world stopped.
5394     // So the invariant is that the regions in the list have the popularity
5395     // boolean set, but having the boolean set does not imply membership
5396     // on the list (though there can at most one such pop-pending region
5397     // not on the list at any time).
5398     delete hrl;
5399   }
5400   return res;
5401 }
5402 
5403 void G1CollectedHeap::evac_popular_region(HeapRegion* hr) {
5404   while (true) {
5405     // Don't want to do a GC pause while cleanup is being completed!
5406     wait_for_cleanup_complete();
5407 
5408     // Read the GC count while holding the Heap_lock
5409     int gc_count_before = SharedHeap::heap()->total_collections();
5410     g1_policy()->record_stop_world_start();
5411 
5412     {
5413       MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
5414       VM_G1PopRegionCollectionPause op(gc_count_before, hr);
5415       VMThread::execute(&op);
5416 
5417       // If the prolog succeeded, we didn't do a GC for this.
5418       if (op.prologue_succeeded()) break;
5419     }
5420     // Otherwise we didn't.  We should recheck the size, though, since
5421     // the limit may have increased...
5422     if (hr->rem_set()->occupied() < (size_t) G1RSPopLimit) {
5423       hr->set_popular_pending(false);
5424       break;
5425     }
5426   }
5427 }
5428 
5429 void G1CollectedHeap::atomic_inc_obj_rc(oop obj) {
5430   Atomic::inc(obj_rc_addr(obj));
5431 }
5432 
5433 class CountRCClosure: public OopsInHeapRegionClosure {
5434   G1CollectedHeap* _g1h;
5435   bool _parallel;
5436 public:
5437   CountRCClosure(G1CollectedHeap* g1h) :
5438     _g1h(g1h), _parallel(ParallelGCThreads > 0)
5439   {}
5440   void do_oop(narrowOop* p) {
5441     guarantee(false, "NYI");
5442   }
5443   void do_oop(oop* p) {
5444     oop obj = *p;
5445     assert(obj != NULL, "Precondition.");
5446     if (_parallel) {
5447       // We go sticky at the limit to avoid excess contention.
5448       // If we want to track the actual RC's further, we'll need to keep a
5449       // per-thread hash table or something for the popular objects.
5450       if (_g1h->obj_rc(obj) < G1ObjPopLimit) {
5451         _g1h->atomic_inc_obj_rc(obj);
5452       }
5453     } else {
5454       _g1h->inc_obj_rc(obj);
5455     }
5456   }
5457 };
5458 
5459 class EvacPopObjClosure: public ObjectClosure {
5460   G1CollectedHeap* _g1h;
5461   size_t _pop_objs;
5462   size_t _max_rc;
5463 public:
5464   EvacPopObjClosure(G1CollectedHeap* g1h) :
5465     _g1h(g1h), _pop_objs(0), _max_rc(0) {}
5466 
5467   void do_object(oop obj) {
5468     size_t rc = _g1h->obj_rc(obj);
5469     _max_rc = MAX2(rc, _max_rc);
5470     if (rc >= (size_t) G1ObjPopLimit) {
5471       _g1h->_pop_obj_rc_at_copy.add((double)rc);
5472       size_t word_sz = obj->size();
5473       HeapWord* new_pop_loc = _g1h->allocate_popular_object(word_sz);
5474       oop new_pop_obj = (oop)new_pop_loc;
5475       Copy::aligned_disjoint_words((HeapWord*)obj, new_pop_loc, word_sz);
5476       obj->forward_to(new_pop_obj);
5477       G1ScanAndBalanceClosure scan_and_balance(_g1h);
5478       new_pop_obj->oop_iterate_backwards(&scan_and_balance);
5479       // preserve "next" mark bit if marking is in progress.
5480       if (_g1h->mark_in_progress() && !_g1h->is_obj_ill(obj)) {
5481         _g1h->concurrent_mark()->markAndGrayObjectIfNecessary(new_pop_obj);
5482       }
5483 
5484       if (G1TracePopularity) {
5485         gclog_or_tty->print_cr("Found obj " PTR_FORMAT " of word size " SIZE_FORMAT
5486                                " pop (%d), move to " PTR_FORMAT,
5487                                (void*) obj, word_sz,
5488                                _g1h->obj_rc(obj), (void*) new_pop_obj);
5489       }
5490       _pop_objs++;
5491     }
5492   }
5493   size_t pop_objs() { return _pop_objs; }
5494   size_t max_rc() { return _max_rc; }
5495 };
5496 
5497 class G1ParCountRCTask : public AbstractGangTask {
5498   G1CollectedHeap* _g1h;
5499   BitMap _bm;
5500 
5501   size_t getNCards() {
5502     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
5503       / G1BlockOffsetSharedArray::N_bytes;
5504   }
5505   CountRCClosure _count_rc_closure;
5506 public:
5507   G1ParCountRCTask(G1CollectedHeap* g1h) :
5508     AbstractGangTask("G1 Par RC Count task"),
5509     _g1h(g1h), _bm(getNCards()), _count_rc_closure(g1h)
5510   {}
5511 
5512   void work(int i) {
5513     ResourceMark rm;
5514     HandleMark   hm;
5515     _g1h->g1_rem_set()->oops_into_collection_set_do(&_count_rc_closure, i);
5516   }
5517 };
5518 
5519 void G1CollectedHeap::popularity_pause_preamble(HeapRegion* popular_region) {
5520   // We're evacuating a single region (for popularity).
5521   if (G1TracePopularity) {
5522     gclog_or_tty->print_cr("Doing pop region pause for ["PTR_FORMAT", "PTR_FORMAT")",
5523                            popular_region->bottom(), popular_region->end());
5524   }
5525   g1_policy()->set_single_region_collection_set(popular_region);
5526   size_t max_rc;
5527   if (!compute_reference_counts_and_evac_popular(popular_region,
5528                                                  &max_rc)) {
5529     // We didn't evacuate any popular objects.
5530     // We increase the RS popularity limit, to prevent this from
5531     // happening in the future.
5532     if (G1RSPopLimit < (1 << 30)) {
5533       G1RSPopLimit *= 2;
5534     }
5535     // For now, interesting enough for a message:
5536 #if 1
5537     gclog_or_tty->print_cr("In pop region pause for ["PTR_FORMAT", "PTR_FORMAT"), "
5538                            "failed to find a pop object (max = %d).",
5539                            popular_region->bottom(), popular_region->end(),
5540                            max_rc);
5541     gclog_or_tty->print_cr("Increased G1RSPopLimit to %d.", G1RSPopLimit);
5542 #endif // 0
5543     // Also, we reset the collection set to NULL, to make the rest of
5544     // the collection do nothing.
5545     assert(popular_region->next_in_collection_set() == NULL,
5546            "should be single-region.");
5547     popular_region->set_in_collection_set(false);
5548     popular_region->set_popular_pending(false);
5549     g1_policy()->clear_collection_set();
5550   }
5551 }
5552 
5553 bool G1CollectedHeap::
5554 compute_reference_counts_and_evac_popular(HeapRegion* popular_region,
5555                                           size_t* max_rc) {
5556   HeapWord* rc_region_bot;
5557   HeapWord* rc_region_end;
5558 
5559   // Set up the reference count region.
5560   HeapRegion* rc_region = newAllocRegion(HeapRegion::GrainWords);
5561   if (rc_region != NULL) {
5562     rc_region_bot = rc_region->bottom();
5563     rc_region_end = rc_region->end();
5564   } else {
5565     rc_region_bot = NEW_C_HEAP_ARRAY(HeapWord, HeapRegion::GrainWords);
5566     if (rc_region_bot == NULL) {
5567       vm_exit_out_of_memory(HeapRegion::GrainWords,
5568                             "No space for RC region.");
5569     }
5570     rc_region_end = rc_region_bot + HeapRegion::GrainWords;
5571   }
5572 
5573   if (G1TracePopularity)
5574     gclog_or_tty->print_cr("RC region is ["PTR_FORMAT", "PTR_FORMAT")",
5575                            rc_region_bot, rc_region_end);
5576   if (rc_region_bot > popular_region->bottom()) {
5577     _rc_region_above = true;
5578     _rc_region_diff =
5579       pointer_delta(rc_region_bot, popular_region->bottom(), 1);
5580   } else {
5581     assert(rc_region_bot < popular_region->bottom(), "Can't be equal.");
5582     _rc_region_above = false;
5583     _rc_region_diff =
5584       pointer_delta(popular_region->bottom(), rc_region_bot, 1);
5585   }
5586   g1_policy()->record_pop_compute_rc_start();
5587   // Count external references.
5588   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5589   if (ParallelGCThreads > 0) {
5590 
5591     set_par_threads(workers()->total_workers());
5592     G1ParCountRCTask par_count_rc_task(this);
5593     workers()->run_task(&par_count_rc_task);
5594     set_par_threads(0);
5595 
5596   } else {
5597     CountRCClosure count_rc_closure(this);
5598     g1_rem_set()->oops_into_collection_set_do(&count_rc_closure, 0);
5599   }
5600   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5601   g1_policy()->record_pop_compute_rc_end();
5602 
5603   // Now evacuate popular objects.
5604   g1_policy()->record_pop_evac_start();
5605   EvacPopObjClosure evac_pop_obj_cl(this);
5606   popular_region->object_iterate(&evac_pop_obj_cl);
5607   *max_rc = evac_pop_obj_cl.max_rc();
5608 
5609   // Make sure the last "top" value of the current popular region is copied
5610   // as the "next_top_at_mark_start", so that objects made popular during
5611   // markings aren't automatically considered live.
5612   HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
5613   cur_pop_region->note_end_of_copying();
5614 
5615   if (rc_region != NULL) {
5616     free_region(rc_region);
5617   } else {
5618     FREE_C_HEAP_ARRAY(HeapWord, rc_region_bot);
5619   }
5620   g1_policy()->record_pop_evac_end();
5621 
5622   return evac_pop_obj_cl.pop_objs() > 0;
5623 }
5624 
5625 class CountPopObjInfoClosure: public HeapRegionClosure {
5626   size_t _objs;
5627   size_t _bytes;
5628 
5629   class CountObjClosure: public ObjectClosure {
5630     int _n;
5631   public:
5632     CountObjClosure() : _n(0) {}
5633     void do_object(oop obj) { _n++; }
5634     size_t n() { return _n; }
5635   };
5636 
5637 public:
5638   CountPopObjInfoClosure() : _objs(0), _bytes(0) {}
5639   bool doHeapRegion(HeapRegion* r) {
5640     _bytes += r->used();
5641     CountObjClosure blk;
5642     r->object_iterate(&blk);
5643     _objs += blk.n();
5644     return false;
5645   }
5646   size_t objs() { return _objs; }
5647   size_t bytes() { return _bytes; }
5648 };
5649 
5650 
5651 void G1CollectedHeap::print_popularity_summary_info() const {
5652   CountPopObjInfoClosure blk;
5653   for (int i = 0; i <= _cur_pop_hr_index; i++) {
5654     blk.doHeapRegion(_hrs->at(i));
5655   }
5656   gclog_or_tty->print_cr("\nPopular objects: %d objs, %d bytes.",
5657                          blk.objs(), blk.bytes());
5658   gclog_or_tty->print_cr("   RC at copy = [avg = %5.2f, max = %5.2f, sd = %5.2f].",
5659                 _pop_obj_rc_at_copy.avg(),
5660                 _pop_obj_rc_at_copy.maximum(),
5661                 _pop_obj_rc_at_copy.sd());
5662 }
5663 
5664 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5665   _refine_cte_cl->set_concurrent(concurrent);
5666 }
5667 
5668 #ifndef PRODUCT
5669 
5670 class PrintHeapRegionClosure: public HeapRegionClosure {
5671 public:
5672   bool doHeapRegion(HeapRegion *r) {
5673     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
5674     if (r != NULL) {
5675       if (r->is_on_free_list())
5676         gclog_or_tty->print("Free ");
5677       if (r->is_young())
5678         gclog_or_tty->print("Young ");
5679       if (r->isHumongous())
5680         gclog_or_tty->print("Is Humongous ");
5681       r->print();
5682     }
5683     return false;
5684   }
5685 };
5686 
5687 class SortHeapRegionClosure : public HeapRegionClosure {
5688   size_t young_regions,free_regions, unclean_regions;
5689   size_t hum_regions, count;
5690   size_t unaccounted, cur_unclean, cur_alloc;
5691   size_t total_free;
5692   HeapRegion* cur;
5693 public:
5694   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
5695     free_regions(0), unclean_regions(0),
5696     hum_regions(0),
5697     count(0), unaccounted(0),
5698     cur_alloc(0), total_free(0)
5699   {}
5700   bool doHeapRegion(HeapRegion *r) {
5701     count++;
5702     if (r->is_on_free_list()) free_regions++;
5703     else if (r->is_on_unclean_list()) unclean_regions++;
5704     else if (r->isHumongous())  hum_regions++;
5705     else if (r->is_young()) young_regions++;
5706     else if (r == cur) cur_alloc++;
5707     else unaccounted++;
5708     return false;
5709   }
5710   void print() {
5711     total_free = free_regions + unclean_regions;
5712     gclog_or_tty->print("%d regions\n", count);
5713     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
5714                         total_free, free_regions, unclean_regions);
5715     gclog_or_tty->print("%d humongous %d young\n",
5716                         hum_regions, young_regions);
5717     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
5718     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
5719   }
5720 };
5721 
5722 void G1CollectedHeap::print_region_counts() {
5723   SortHeapRegionClosure sc(_cur_alloc_region);
5724   PrintHeapRegionClosure cl;
5725   heap_region_iterate(&cl);
5726   heap_region_iterate(&sc);
5727   sc.print();
5728   print_region_accounting_info();
5729 };
5730 
5731 bool G1CollectedHeap::regions_accounted_for() {
5732   // TODO: regions accounting for young/survivor/tenured
5733   return true;
5734 }
5735 
5736 bool G1CollectedHeap::print_region_accounting_info() {
5737   gclog_or_tty->print_cr("P regions: %d.", G1NumPopularRegions);
5738   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
5739                          free_regions(),
5740                          count_free_regions(), count_free_regions_list(),
5741                          _free_region_list_size, _unclean_region_list.sz());
5742   gclog_or_tty->print_cr("cur_alloc: %d.",
5743                          (_cur_alloc_region == NULL ? 0 : 1));
5744   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
5745 
5746   // TODO: check regions accounting for young/survivor/tenured
5747   return true;
5748 }
5749 
5750 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5751   HeapRegion* hr = heap_region_containing(p);
5752   if (hr == NULL) {
5753     return is_in_permanent(p);
5754   } else {
5755     return hr->is_in(p);
5756   }
5757 }
5758 #endif // PRODUCT
5759 
5760 void G1CollectedHeap::g1_unimplemented() {
5761   // Unimplemented();
5762 }
5763 
5764 
5765 // Local Variables: ***
5766 // c-indentation-style: gnu ***
5767 // End: ***