1 /*
   2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #ifndef SERIALGC
  26 
  27 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  28 // can be collected independently.
  29 
  30 // NOTE: Although a HeapRegion is a Space, its
  31 // Space::initDirtyCardClosure method must not be called.
  32 // The problem is that the existence of this method breaks
  33 // the independence of barrier sets from remembered sets.
  34 // The solution is to remove this method from the definition
  35 // of a Space.
  36 
  37 class CompactibleSpace;
  38 class ContiguousSpace;
  39 class HeapRegionRemSet;
  40 class HeapRegionRemSetIterator;
  41 class HeapRegion;
  42 
  43 // A dirty card to oop closure for heap regions. It
  44 // knows how to get the G1 heap and how to use the bitmap
  45 // in the concurrent marker used by G1 to filter remembered
  46 // sets.
  47 
  48 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
  49 public:
  50   // Specification of possible DirtyCardToOopClosure filtering.
  51   enum FilterKind {
  52     NoFilterKind,
  53     IntoCSFilterKind,
  54     OutOfRegionFilterKind
  55   };
  56 
  57 protected:
  58   HeapRegion* _hr;
  59   FilterKind _fk;
  60   G1CollectedHeap* _g1;
  61 
  62   void walk_mem_region_with_cl(MemRegion mr,
  63                                HeapWord* bottom, HeapWord* top,
  64                                OopClosure* cl);
  65 
  66   // We don't specialize this for FilteringClosure; filtering is handled by
  67   // the "FilterKind" mechanism.  But we provide this to avoid a compiler
  68   // warning.
  69   void walk_mem_region_with_cl(MemRegion mr,
  70                                HeapWord* bottom, HeapWord* top,
  71                                FilteringClosure* cl) {
  72     HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
  73                                                        (OopClosure*)cl);
  74   }
  75 
  76   // Get the actual top of the area on which the closure will
  77   // operate, given where the top is assumed to be (the end of the
  78   // memory region passed to do_MemRegion) and where the object
  79   // at the top is assumed to start. For example, an object may
  80   // start at the top but actually extend past the assumed top,
  81   // in which case the top becomes the end of the object.
  82   HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
  83     return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
  84   }
  85 
  86   // Walk the given memory region from bottom to (actual) top
  87   // looking for objects and applying the oop closure (_cl) to
  88   // them. The base implementation of this treats the area as
  89   // blocks, where a block may or may not be an object. Sub-
  90   // classes should override this to provide more accurate
  91   // or possibly more efficient walking.
  92   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
  93     Filtering_DCTOC::walk_mem_region(mr, bottom, top);
  94   }
  95 
  96 public:
  97   HeapRegionDCTOC(G1CollectedHeap* g1,
  98                   HeapRegion* hr, OopClosure* cl,
  99                   CardTableModRefBS::PrecisionStyle precision,
 100                   FilterKind fk);
 101 };
 102 
 103 
 104 // The complicating factor is that BlockOffsetTable diverged
 105 // significantly, and we need functionality that is only in the G1 version.
 106 // So I copied that code, which led to an alternate G1 version of
 107 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 108 // be reconciled, then G1OffsetTableContigSpace could go away.
 109 
 110 // The idea behind time stamps is the following. Doing a save_marks on
 111 // all regions at every GC pause is time consuming (if I remember
 112 // well, 10ms or so). So, we would like to do that only for regions
 113 // that are GC alloc regions. To achieve this, we use time
 114 // stamps. For every evacuation pause, G1CollectedHeap generates a
 115 // unique time stamp (essentially a counter that gets
 116 // incremented). Every time we want to call save_marks on a region,
 117 // we set the saved_mark_word to top and also copy the current GC
 118 // time stamp to the time stamp field of the space. Reading the
 119 // saved_mark_word involves checking the time stamp of the
 120 // region. If it is the same as the current GC time stamp, then we
 121 // can safely read the saved_mark_word field, as it is valid. If the
 122 // time stamp of the region is not the same as the current GC time
 123 // stamp, then we instead read top, as the saved_mark_word field is
 124 // invalid. Time stamps (on the regions and also on the
 125 // G1CollectedHeap) are reset at every cleanup (we iterate over
 126 // the regions anyway) and at the end of a Full GC. The current scheme
 127 // that uses sequential unsigned ints will fail only if we have 4b
 128 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 129 
 130 class G1OffsetTableContigSpace: public ContiguousSpace {
 131   friend class VMStructs;
 132  protected:
 133   G1BlockOffsetArrayContigSpace _offsets;
 134   Mutex _par_alloc_lock;
 135   volatile unsigned _gc_time_stamp;
 136 
 137  public:
 138   // Constructor.  If "is_zeroed" is true, the MemRegion "mr" may be
 139   // assumed to contain zeros.
 140   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 141                            MemRegion mr, bool is_zeroed = false);
 142 
 143   void set_bottom(HeapWord* value);
 144   void set_end(HeapWord* value);
 145 
 146   virtual HeapWord* saved_mark_word() const;
 147   virtual void set_saved_mark();
 148   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 149 
 150   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 151   virtual void clear(bool mangle_space);
 152 
 153   HeapWord* block_start(const void* p);
 154   HeapWord* block_start_const(const void* p) const;
 155 
 156   // Add offset table update.
 157   virtual HeapWord* allocate(size_t word_size);
 158   HeapWord* par_allocate(size_t word_size);
 159 
 160   // MarkSweep support phase3
 161   virtual HeapWord* initialize_threshold();
 162   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 163 
 164   virtual void print() const;
 165 };
 166 
 167 class HeapRegion: public G1OffsetTableContigSpace {
 168   friend class VMStructs;
 169  private:
 170 
 171   enum HumongousType {
 172     NotHumongous = 0,
 173     StartsHumongous,
 174     ContinuesHumongous
 175   };
 176 
 177   // The next filter kind that should be used for a "new_dcto_cl" call with
 178   // the "traditional" signature.
 179   HeapRegionDCTOC::FilterKind _next_fk;
 180 
 181   // Requires that the region "mr" be dense with objects, and begin and end
 182   // with an object.
 183   void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
 184 
 185   // The remembered set for this region.
 186   // (Might want to make this "inline" later, to avoid some alloc failure
 187   // issues.)
 188   HeapRegionRemSet* _rem_set;
 189 
 190   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 191 
 192  protected:
 193   // If this region is a member of a HeapRegionSeq, the index in that
 194   // sequence, otherwise -1.
 195   int  _hrs_index;
 196 
 197   HumongousType _humongous_type;
 198   // For a humongous region, region in which it starts.
 199   HeapRegion* _humongous_start_region;
 200   // For the start region of a humongous sequence, it's original end().
 201   HeapWord* _orig_end;
 202 
 203   // True iff the region is in current collection_set.
 204   bool _in_collection_set;
 205 
 206     // True iff the region is on the unclean list, waiting to be zero filled.
 207   bool _is_on_unclean_list;
 208 
 209   // True iff the region is on the free list, ready for allocation.
 210   bool _is_on_free_list;
 211 
 212   // Is this or has it been an allocation region in the current collection
 213   // pause.
 214   bool _is_gc_alloc_region;
 215 
 216   // True iff an attempt to evacuate an object in the region failed.
 217   bool _evacuation_failed;
 218 
 219   // A heap region may be a member one of a number of special subsets, each
 220   // represented as linked lists through the field below.  Currently, these
 221   // sets include:
 222   //   The collection set.
 223   //   The set of allocation regions used in a collection pause.
 224   //   Spaces that may contain gray objects.
 225   HeapRegion* _next_in_special_set;
 226 
 227   // next region in the young "generation" region set
 228   HeapRegion* _next_young_region;
 229 
 230   // For parallel heapRegion traversal.
 231   jint _claimed;
 232 
 233   // We use concurrent marking to determine the amount of live data
 234   // in each heap region.
 235   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 236   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 237 
 238   // See "sort_index" method.  -1 means is not in the array.
 239   int _sort_index;
 240 
 241   // Means it has (or at least had) a very large RS, and should not be
 242   // considered for membership in a collection set.
 243   enum PopularityState {
 244     NotPopular,
 245     PopularPending,
 246     Popular
 247   };
 248   PopularityState _popularity;
 249 
 250   // <PREDICTION>
 251   double _gc_efficiency;
 252   // </PREDICTION>
 253 
 254   enum YoungType {
 255     NotYoung,                   // a region is not young
 256     ScanOnly,                   // a region is young and scan-only
 257     Young,                      // a region is young
 258     Survivor                    // a region is young and it contains
 259                                 // survivor
 260   };
 261 
 262   YoungType _young_type;
 263   int  _young_index_in_cset;
 264   SurvRateGroup* _surv_rate_group;
 265   int  _age_index;
 266 
 267   // The start of the unmarked area. The unmarked area extends from this
 268   // word until the top and/or end of the region, and is the part
 269   // of the region for which no marking was done, i.e. objects may
 270   // have been allocated in this part since the last mark phase.
 271   // "prev" is the top at the start of the last completed marking.
 272   // "next" is the top at the start of the in-progress marking (if any.)
 273   HeapWord* _prev_top_at_mark_start;
 274   HeapWord* _next_top_at_mark_start;
 275   // If a collection pause is in progress, this is the top at the start
 276   // of that pause.
 277 
 278   // We've counted the marked bytes of objects below here.
 279   HeapWord* _top_at_conc_mark_count;
 280 
 281   void init_top_at_mark_start() {
 282     assert(_prev_marked_bytes == 0 &&
 283            _next_marked_bytes == 0,
 284            "Must be called after zero_marked_bytes.");
 285     HeapWord* bot = bottom();
 286     _prev_top_at_mark_start = bot;
 287     _next_top_at_mark_start = bot;
 288     _top_at_conc_mark_count = bot;
 289   }
 290 
 291   jint _zfs;  // A member of ZeroFillState.  Protected by ZF_lock.
 292   Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
 293                         // made it so.
 294 
 295   void set_young_type(YoungType new_type) {
 296     //assert(_young_type != new_type, "setting the same type" );
 297     // TODO: add more assertions here
 298     _young_type = new_type;
 299   }
 300 
 301  public:
 302   // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
 303   HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
 304              MemRegion mr, bool is_zeroed);
 305 
 306   enum SomePublicConstants {
 307     // HeapRegions are GrainBytes-aligned
 308     // and have sizes that are multiples of GrainBytes.
 309     LogOfHRGrainBytes = 20,
 310     LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize,
 311     GrainBytes = 1 << LogOfHRGrainBytes,
 312     GrainWords = 1 <<LogOfHRGrainWords,
 313     MaxAge = 2, NoOfAges = MaxAge+1
 314   };
 315 
 316   enum ClaimValues {
 317     InitialClaimValue     = 0,
 318     FinalCountClaimValue  = 1,
 319     NoteEndClaimValue     = 2,
 320     ScrubRemSetClaimValue = 3,
 321     ParVerifyClaimValue   = 4,
 322     RebuildRSClaimValue   = 5
 323   };
 324 
 325   // Concurrent refinement requires contiguous heap regions (in which TLABs
 326   // might be allocated) to be zero-filled.  Each region therefore has a
 327   // zero-fill-state.
 328   enum ZeroFillState {
 329     NotZeroFilled,
 330     ZeroFilling,
 331     ZeroFilled,
 332     Allocated
 333   };
 334 
 335   // If this region is a member of a HeapRegionSeq, the index in that
 336   // sequence, otherwise -1.
 337   int hrs_index() const { return _hrs_index; }
 338   void set_hrs_index(int index) { _hrs_index = index; }
 339 
 340   // The number of bytes marked live in the region in the last marking phase.
 341   size_t marked_bytes()    { return _prev_marked_bytes; }
 342   // The number of bytes counted in the next marking.
 343   size_t next_marked_bytes() { return _next_marked_bytes; }
 344   // The number of bytes live wrt the next marking.
 345   size_t next_live_bytes() {
 346     return (top() - next_top_at_mark_start())
 347       * HeapWordSize
 348       + next_marked_bytes();
 349   }
 350 
 351   // A lower bound on the amount of garbage bytes in the region.
 352   size_t garbage_bytes() {
 353     size_t used_at_mark_start_bytes =
 354       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 355     assert(used_at_mark_start_bytes >= marked_bytes(),
 356            "Can't mark more than we have.");
 357     return used_at_mark_start_bytes - marked_bytes();
 358   }
 359 
 360   // An upper bound on the number of live bytes in the region.
 361   size_t max_live_bytes() { return used() - garbage_bytes(); }
 362 
 363   void add_to_marked_bytes(size_t incr_bytes) {
 364     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 365     guarantee( _next_marked_bytes <= used(), "invariant" );
 366   }
 367 
 368   void zero_marked_bytes()      {
 369     _prev_marked_bytes = _next_marked_bytes = 0;
 370   }
 371 
 372   bool isHumongous() const { return _humongous_type != NotHumongous; }
 373   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
 374   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
 375   // For a humongous region, region in which it starts.
 376   HeapRegion* humongous_start_region() const {
 377     return _humongous_start_region;
 378   }
 379 
 380   // Causes the current region to represent a humongous object spanning "n"
 381   // regions.
 382   virtual void set_startsHumongous();
 383 
 384   // The regions that continue a humongous sequence should be added using
 385   // this method, in increasing address order.
 386   void set_continuesHumongous(HeapRegion* start);
 387 
 388   void add_continuingHumongousRegion(HeapRegion* cont);
 389 
 390   // If the region has a remembered set, return a pointer to it.
 391   HeapRegionRemSet* rem_set() const {
 392     return _rem_set;
 393   }
 394 
 395   // True iff the region is in current collection_set.
 396   bool in_collection_set() const {
 397     return _in_collection_set;
 398   }
 399   void set_in_collection_set(bool b) {
 400     _in_collection_set = b;
 401   }
 402   HeapRegion* next_in_collection_set() {
 403     assert(in_collection_set(), "should only invoke on member of CS.");
 404     assert(_next_in_special_set == NULL ||
 405            _next_in_special_set->in_collection_set(),
 406            "Malformed CS.");
 407     return _next_in_special_set;
 408   }
 409   void set_next_in_collection_set(HeapRegion* r) {
 410     assert(in_collection_set(), "should only invoke on member of CS.");
 411     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 412     _next_in_special_set = r;
 413   }
 414 
 415   // True iff it is or has been an allocation region in the current
 416   // collection pause.
 417   bool is_gc_alloc_region() const {
 418     return _is_gc_alloc_region;
 419   }
 420   void set_is_gc_alloc_region(bool b) {
 421     _is_gc_alloc_region = b;
 422   }
 423   HeapRegion* next_gc_alloc_region() {
 424     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
 425     assert(_next_in_special_set == NULL ||
 426            _next_in_special_set->is_gc_alloc_region(),
 427            "Malformed CS.");
 428     return _next_in_special_set;
 429   }
 430   void set_next_gc_alloc_region(HeapRegion* r) {
 431     assert(is_gc_alloc_region(), "should only invoke on member of CS.");
 432     assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
 433     _next_in_special_set = r;
 434   }
 435 
 436   bool is_reserved() {
 437     return popular();
 438   }
 439 
 440   bool is_on_free_list() {
 441     return _is_on_free_list;
 442   }
 443 
 444   void set_on_free_list(bool b) {
 445     _is_on_free_list = b;
 446   }
 447 
 448   HeapRegion* next_from_free_list() {
 449     assert(is_on_free_list(),
 450            "Should only invoke on free space.");
 451     assert(_next_in_special_set == NULL ||
 452            _next_in_special_set->is_on_free_list(),
 453            "Malformed Free List.");
 454     return _next_in_special_set;
 455   }
 456 
 457   void set_next_on_free_list(HeapRegion* r) {
 458     assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
 459     _next_in_special_set = r;
 460   }
 461 
 462   bool is_on_unclean_list() {
 463     return _is_on_unclean_list;
 464   }
 465 
 466   void set_on_unclean_list(bool b);
 467 
 468   HeapRegion* next_from_unclean_list() {
 469     assert(is_on_unclean_list(),
 470            "Should only invoke on unclean space.");
 471     assert(_next_in_special_set == NULL ||
 472            _next_in_special_set->is_on_unclean_list(),
 473            "Malformed unclean List.");
 474     return _next_in_special_set;
 475   }
 476 
 477   void set_next_on_unclean_list(HeapRegion* r);
 478 
 479   HeapRegion* get_next_young_region() { return _next_young_region; }
 480   void set_next_young_region(HeapRegion* hr) {
 481     _next_young_region = hr;
 482   }
 483 
 484   // Allows logical separation between objects allocated before and after.
 485   void save_marks();
 486 
 487   // Reset HR stuff to default values.
 488   void hr_clear(bool par, bool clear_space);
 489 
 490   void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 491 
 492   // Ensure that "this" is zero-filled.
 493   void ensure_zero_filled();
 494   // This one requires that the calling thread holds ZF_mon.
 495   void ensure_zero_filled_locked();
 496 
 497   // Get the start of the unmarked area in this region.
 498   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 499   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 500 
 501   // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
 502   // allocated in the current region before the last call to "save_mark".
 503   void oop_before_save_marks_iterate(OopClosure* cl);
 504 
 505   // This call determines the "filter kind" argument that will be used for
 506   // the next call to "new_dcto_cl" on this region with the "traditional"
 507   // signature (i.e., the call below.)  The default, in the absence of a
 508   // preceding call to this method, is "NoFilterKind", and a call to this
 509   // method is necessary for each such call, or else it reverts to the
 510   // default.
 511   // (This is really ugly, but all other methods I could think of changed a
 512   // lot of main-line code for G1.)
 513   void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
 514     _next_fk = nfk;
 515   }
 516 
 517   DirtyCardToOopClosure*
 518   new_dcto_closure(OopClosure* cl,
 519                    CardTableModRefBS::PrecisionStyle precision,
 520                    HeapRegionDCTOC::FilterKind fk);
 521 
 522 #if WHASSUP
 523   DirtyCardToOopClosure*
 524   new_dcto_closure(OopClosure* cl,
 525                    CardTableModRefBS::PrecisionStyle precision,
 526                    HeapWord* boundary) {
 527     assert(boundary == NULL, "This arg doesn't make sense here.");
 528     DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
 529     _next_fk = HeapRegionDCTOC::NoFilterKind;
 530     return res;
 531   }
 532 #endif
 533 
 534   //
 535   // Note the start or end of marking. This tells the heap region
 536   // that the collector is about to start or has finished (concurrently)
 537   // marking the heap.
 538   //
 539 
 540   // Note the start of a marking phase. Record the
 541   // start of the unmarked area of the region here.
 542   void note_start_of_marking(bool during_initial_mark) {
 543     init_top_at_conc_mark_count();
 544     _next_marked_bytes = 0;
 545     if (during_initial_mark && is_young() && !is_survivor())
 546       _next_top_at_mark_start = bottom();
 547     else
 548       _next_top_at_mark_start = top();
 549   }
 550 
 551   // Note the end of a marking phase. Install the start of
 552   // the unmarked area that was captured at start of marking.
 553   void note_end_of_marking() {
 554     _prev_top_at_mark_start = _next_top_at_mark_start;
 555     _prev_marked_bytes = _next_marked_bytes;
 556     _next_marked_bytes = 0;
 557 
 558     guarantee(_prev_marked_bytes <=
 559               (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
 560               "invariant");
 561   }
 562 
 563   // After an evacuation, we need to update _next_top_at_mark_start
 564   // to be the current top.  Note this is only valid if we have only
 565   // ever evacuated into this region.  If we evacuate, allocate, and
 566   // then evacuate we are in deep doodoo.
 567   void note_end_of_copying() {
 568     assert(top() >= _next_top_at_mark_start,
 569            "Increase only");
 570     // Survivor regions will be scanned on the start of concurrent
 571     // marking.
 572     if (!is_survivor()) {
 573       _next_top_at_mark_start = top();
 574     }
 575     ContiguousSpace::set_saved_mark();
 576   }
 577 
 578   // Returns "false" iff no object in the region was allocated when the
 579   // last mark phase ended.
 580   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 581 
 582   // If "is_marked()" is true, then this is the index of the region in
 583   // an array constructed at the end of marking of the regions in a
 584   // "desirability" order.
 585   int sort_index() {
 586     return _sort_index;
 587   }
 588   void set_sort_index(int i) {
 589     _sort_index = i;
 590   }
 591 
 592   void init_top_at_conc_mark_count() {
 593     _top_at_conc_mark_count = bottom();
 594   }
 595 
 596   void set_top_at_conc_mark_count(HeapWord *cur) {
 597     assert(bottom() <= cur && cur <= end(), "Sanity.");
 598     _top_at_conc_mark_count = cur;
 599   }
 600 
 601   HeapWord* top_at_conc_mark_count() {
 602     return _top_at_conc_mark_count;
 603   }
 604 
 605   void reset_during_compaction() {
 606     guarantee( isHumongous() && startsHumongous(),
 607                "should only be called for humongous regions");
 608 
 609     zero_marked_bytes();
 610     init_top_at_mark_start();
 611   }
 612 
 613   bool popular() { return _popularity == Popular; }
 614   void set_popular(bool b) {
 615     if (b) {
 616       _popularity = Popular;
 617     } else {
 618       _popularity = NotPopular;
 619     }
 620   }
 621   bool popular_pending() { return _popularity == PopularPending; }
 622   void set_popular_pending(bool b) {
 623     if (b) {
 624       _popularity = PopularPending;
 625     } else {
 626       _popularity = NotPopular;
 627     }
 628   }
 629 
 630   // <PREDICTION>
 631   void calc_gc_efficiency(void);
 632   double gc_efficiency() { return _gc_efficiency;}
 633   // </PREDICTION>
 634 
 635   bool is_young() const     { return _young_type != NotYoung; }
 636   bool is_scan_only() const { return _young_type == ScanOnly; }
 637   bool is_survivor() const  { return _young_type == Survivor; }
 638 
 639   int  young_index_in_cset() const { return _young_index_in_cset; }
 640   void set_young_index_in_cset(int index) {
 641     assert( (index == -1) || is_young(), "pre-condition" );
 642     _young_index_in_cset = index;
 643   }
 644 
 645   int age_in_surv_rate_group() {
 646     assert( _surv_rate_group != NULL, "pre-condition" );
 647     assert( _age_index > -1, "pre-condition" );
 648     return _surv_rate_group->age_in_group(_age_index);
 649   }
 650 
 651   void recalculate_age_in_surv_rate_group() {
 652     assert( _surv_rate_group != NULL, "pre-condition" );
 653     assert( _age_index > -1, "pre-condition" );
 654     _age_index = _surv_rate_group->recalculate_age_index(_age_index);
 655   }
 656 
 657   void record_surv_words_in_group(size_t words_survived) {
 658     assert( _surv_rate_group != NULL, "pre-condition" );
 659     assert( _age_index > -1, "pre-condition" );
 660     int age_in_group = age_in_surv_rate_group();
 661     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 662   }
 663 
 664   int age_in_surv_rate_group_cond() {
 665     if (_surv_rate_group != NULL)
 666       return age_in_surv_rate_group();
 667     else
 668       return -1;
 669   }
 670 
 671   SurvRateGroup* surv_rate_group() {
 672     return _surv_rate_group;
 673   }
 674 
 675   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 676     assert( surv_rate_group != NULL, "pre-condition" );
 677     assert( _surv_rate_group == NULL, "pre-condition" );
 678     assert( is_young(), "pre-condition" );
 679 
 680     _surv_rate_group = surv_rate_group;
 681     _age_index = surv_rate_group->next_age_index();
 682   }
 683 
 684   void uninstall_surv_rate_group() {
 685     if (_surv_rate_group != NULL) {
 686       assert( _age_index > -1, "pre-condition" );
 687       assert( is_young(), "pre-condition" );
 688 
 689       _surv_rate_group = NULL;
 690       _age_index = -1;
 691     } else {
 692       assert( _age_index == -1, "pre-condition" );
 693     }
 694   }
 695 
 696   void set_young() { set_young_type(Young); }
 697 
 698   void set_scan_only() { set_young_type(ScanOnly); }
 699 
 700   void set_survivor() { set_young_type(Survivor); }
 701 
 702   void set_not_young() { set_young_type(NotYoung); }
 703 
 704   // Determine if an object has been allocated since the last
 705   // mark performed by the collector. This returns true iff the object
 706   // is within the unmarked area of the region.
 707   bool obj_allocated_since_prev_marking(oop obj) const {
 708     return (HeapWord *) obj >= prev_top_at_mark_start();
 709   }
 710   bool obj_allocated_since_next_marking(oop obj) const {
 711     return (HeapWord *) obj >= next_top_at_mark_start();
 712   }
 713 
 714   // For parallel heapRegion traversal.
 715   bool claimHeapRegion(int claimValue);
 716   jint claim_value() { return _claimed; }
 717   // Use this carefully: only when you're sure no one is claiming...
 718   void set_claim_value(int claimValue) { _claimed = claimValue; }
 719 
 720   // Returns the "evacuation_failed" property of the region.
 721   bool evacuation_failed() { return _evacuation_failed; }
 722 
 723   // Sets the "evacuation_failed" property of the region.
 724   void set_evacuation_failed(bool b) {
 725     _evacuation_failed = b;
 726 
 727     if (b) {
 728       init_top_at_conc_mark_count();
 729       _next_marked_bytes = 0;
 730     }
 731   }
 732 
 733   // Requires that "mr" be entirely within the region.
 734   // Apply "cl->do_object" to all objects that intersect with "mr".
 735   // If the iteration encounters an unparseable portion of the region,
 736   // or if "cl->abort()" is true after a closure application,
 737   // terminate the iteration and return the address of the start of the
 738   // subregion that isn't done.  (The two can be distinguished by querying
 739   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 740   // completed.
 741   HeapWord*
 742   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 743 
 744   HeapWord*
 745   oops_on_card_seq_iterate_careful(MemRegion mr,
 746                                    FilterOutOfRegionClosure* cl);
 747 
 748   // The region "mr" is entirely in "this", and starts and ends at block
 749   // boundaries. The caller declares that all the contained blocks are
 750   // coalesced into one.
 751   void declare_filled_region_to_BOT(MemRegion mr) {
 752     _offsets.single_block(mr.start(), mr.end());
 753   }
 754 
 755   // A version of block start that is guaranteed to find *some* block
 756   // boundary at or before "p", but does not object iteration, and may
 757   // therefore be used safely when the heap is unparseable.
 758   HeapWord* block_start_careful(const void* p) const {
 759     return _offsets.block_start_careful(p);
 760   }
 761 
 762   // Requires that "addr" is within the region.  Returns the start of the
 763   // first ("careful") block that starts at or after "addr", or else the
 764   // "end" of the region if there is no such block.
 765   HeapWord* next_block_start_careful(HeapWord* addr);
 766 
 767   // Returns the zero-fill-state of the current region.
 768   ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
 769   bool zero_fill_is_allocated() { return _zfs == Allocated; }
 770   Thread* zero_filler() { return _zero_filler; }
 771 
 772   // Indicate that the contents of the region are unknown, and therefore
 773   // might require zero-filling.
 774   void set_zero_fill_needed() {
 775     set_zero_fill_state_work(NotZeroFilled);
 776   }
 777   void set_zero_fill_in_progress(Thread* t) {
 778     set_zero_fill_state_work(ZeroFilling);
 779     _zero_filler = t;
 780   }
 781   void set_zero_fill_complete();
 782   void set_zero_fill_allocated() {
 783     set_zero_fill_state_work(Allocated);
 784   }
 785 
 786   void set_zero_fill_state_work(ZeroFillState zfs);
 787 
 788   // This is called when a full collection shrinks the heap.
 789   // We want to set the heap region to a value which says
 790   // it is no longer part of the heap.  For now, we'll let "NotZF" fill
 791   // that role.
 792   void reset_zero_fill() {
 793     set_zero_fill_state_work(NotZeroFilled);
 794     _zero_filler = NULL;
 795   }
 796 
 797 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix)  \
 798   virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
 799   SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
 800 
 801   CompactibleSpace* next_compaction_space() const;
 802 
 803   virtual void reset_after_compaction();
 804 
 805   void print() const;
 806   void print_on(outputStream* st) const;
 807 
 808   // Override
 809   virtual void verify(bool allow_dirty) const;
 810 
 811 #ifdef DEBUG
 812   HeapWord* allocate(size_t size);
 813 #endif
 814 };
 815 
 816 // HeapRegionClosure is used for iterating over regions.
 817 // Terminates the iteration when the "doHeapRegion" method returns "true".
 818 class HeapRegionClosure : public StackObj {
 819   friend class HeapRegionSeq;
 820   friend class G1CollectedHeap;
 821 
 822   bool _complete;
 823   void incomplete() { _complete = false; }
 824 
 825  public:
 826   HeapRegionClosure(): _complete(true) {}
 827 
 828   // Typically called on each region until it returns true.
 829   virtual bool doHeapRegion(HeapRegion* r) = 0;
 830 
 831   // True after iteration if the closure was applied to all heap regions
 832   // and returned "false" in all cases.
 833   bool complete() { return _complete; }
 834 };
 835 
 836 // A linked lists of heap regions.  It leaves the "next" field
 837 // unspecified; that's up to subtypes.
 838 class RegionList VALUE_OBJ_CLASS_SPEC {
 839 protected:
 840   virtual HeapRegion* get_next(HeapRegion* chr) = 0;
 841   virtual void set_next(HeapRegion* chr,
 842                         HeapRegion* new_next) = 0;
 843 
 844   HeapRegion* _hd;
 845   HeapRegion* _tl;
 846   size_t _sz;
 847 
 848   // Protected constructor because this type is only meaningful
 849   // when the _get/_set next functions are defined.
 850   RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
 851 public:
 852   void reset() {
 853     _hd = NULL;
 854     _tl = NULL;
 855     _sz = 0;
 856   }
 857   HeapRegion* hd() { return _hd; }
 858   HeapRegion* tl() { return _tl; }
 859   size_t sz() { return _sz; }
 860   size_t length();
 861 
 862   bool well_formed() {
 863     return
 864       ((hd() == NULL && tl() == NULL && sz() == 0)
 865        || (hd() != NULL && tl() != NULL && sz() > 0))
 866       && (sz() == length());
 867   }
 868   virtual void insert_before_head(HeapRegion* r);
 869   void prepend_list(RegionList* new_list);
 870   virtual HeapRegion* pop();
 871   void dec_sz() { _sz--; }
 872   // Requires that "r" is an element of the list, and is not the tail.
 873   void delete_after(HeapRegion* r);
 874 };
 875 
 876 class EmptyNonHRegionList: public RegionList {
 877 protected:
 878   // Protected constructor because this type is only meaningful
 879   // when the _get/_set next functions are defined.
 880   EmptyNonHRegionList() : RegionList() {}
 881 
 882 public:
 883   void insert_before_head(HeapRegion* r) {
 884     //    assert(r->is_empty(), "Better be empty");
 885     assert(!r->isHumongous(), "Better not be humongous.");
 886     RegionList::insert_before_head(r);
 887   }
 888   void prepend_list(EmptyNonHRegionList* new_list) {
 889     //    assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
 890     //     "Better be empty");
 891     assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
 892            "Better not be humongous.");
 893     //    assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
 894     //     "Better be empty");
 895     assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
 896            "Better not be humongous.");
 897     RegionList::prepend_list(new_list);
 898   }
 899 };
 900 
 901 class UncleanRegionList: public EmptyNonHRegionList {
 902 public:
 903   HeapRegion* get_next(HeapRegion* hr) {
 904     return hr->next_from_unclean_list();
 905   }
 906   void set_next(HeapRegion* hr, HeapRegion* new_next) {
 907     hr->set_next_on_unclean_list(new_next);
 908   }
 909 
 910   UncleanRegionList() : EmptyNonHRegionList() {}
 911 
 912   void insert_before_head(HeapRegion* r) {
 913     assert(!r->is_on_free_list(),
 914            "Better not already be on free list");
 915     assert(!r->is_on_unclean_list(),
 916            "Better not already be on unclean list");
 917     r->set_zero_fill_needed();
 918     r->set_on_unclean_list(true);
 919     EmptyNonHRegionList::insert_before_head(r);
 920   }
 921   void prepend_list(UncleanRegionList* new_list) {
 922     assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
 923            "Better not already be on free list");
 924     assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
 925            "Better already be marked as on unclean list");
 926     assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
 927            "Better not already be on free list");
 928     assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
 929            "Better already be marked as on unclean list");
 930     EmptyNonHRegionList::prepend_list(new_list);
 931   }
 932   HeapRegion* pop() {
 933     HeapRegion* res = RegionList::pop();
 934     if (res != NULL) res->set_on_unclean_list(false);
 935     return res;
 936   }
 937 };
 938 
 939 // Local Variables: ***
 940 // c-indentation-style: gnu ***
 941 // End: ***
 942 
 943 #endif // SERIALGC