1 /*
   2  * Copyright 2001-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_g1CollectedHeap.cpp.incl"
  27 
  28 // turn it on so that the contents of the young list (scan-only /
  29 // to-be-collected) are printed at "strategic" points before / during
  30 // / after the collection --- this is useful for debugging
  31 #define SCAN_ONLY_VERBOSE 0
  32 // CURRENT STATUS
  33 // This file is under construction.  Search for "FIXME".
  34 
  35 // INVARIANTS/NOTES
  36 //
  37 // All allocation activity covered by the G1CollectedHeap interface is
  38 //   serialized by acquiring the HeapLock.  This happens in
  39 //   mem_allocate_work, which all such allocation functions call.
  40 //   (Note that this does not apply to TLAB allocation, which is not part
  41 //   of this interface: it is done by clients of this interface.)
  42 
  43 // Local to this file.
  44 
  45 // Finds the first HeapRegion.
  46 // No longer used, but might be handy someday.
  47 
  48 class FindFirstRegionClosure: public HeapRegionClosure {
  49   HeapRegion* _a_region;
  50 public:
  51   FindFirstRegionClosure() : _a_region(NULL) {}
  52   bool doHeapRegion(HeapRegion* r) {
  53     _a_region = r;
  54     return true;
  55   }
  56   HeapRegion* result() { return _a_region; }
  57 };
  58 
  59 
  60 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  61   SuspendibleThreadSet* _sts;
  62   G1RemSet* _g1rs;
  63   ConcurrentG1Refine* _cg1r;
  64   bool _concurrent;
  65 public:
  66   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  67                               G1RemSet* g1rs,
  68                               ConcurrentG1Refine* cg1r) :
  69     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  70   {}
  71   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  72     _g1rs->concurrentRefineOneCard(card_ptr, worker_i);
  73     if (_concurrent && _sts->should_yield()) {
  74       // Caller will actually yield.
  75       return false;
  76     }
  77     // Otherwise, we finished successfully; return true.
  78     return true;
  79   }
  80   void set_concurrent(bool b) { _concurrent = b; }
  81 };
  82 
  83 
  84 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
  85   int _calls;
  86   G1CollectedHeap* _g1h;
  87   CardTableModRefBS* _ctbs;
  88   int _histo[256];
  89 public:
  90   ClearLoggedCardTableEntryClosure() :
  91     _calls(0)
  92   {
  93     _g1h = G1CollectedHeap::heap();
  94     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
  95     for (int i = 0; i < 256; i++) _histo[i] = 0;
  96   }
  97   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  98     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
  99       _calls++;
 100       unsigned char* ujb = (unsigned char*)card_ptr;
 101       int ind = (int)(*ujb);
 102       _histo[ind]++;
 103       *card_ptr = -1;
 104     }
 105     return true;
 106   }
 107   int calls() { return _calls; }
 108   void print_histo() {
 109     gclog_or_tty->print_cr("Card table value histogram:");
 110     for (int i = 0; i < 256; i++) {
 111       if (_histo[i] != 0) {
 112         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 113       }
 114     }
 115   }
 116 };
 117 
 118 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 119   int _calls;
 120   G1CollectedHeap* _g1h;
 121   CardTableModRefBS* _ctbs;
 122 public:
 123   RedirtyLoggedCardTableEntryClosure() :
 124     _calls(0)
 125   {
 126     _g1h = G1CollectedHeap::heap();
 127     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 128   }
 129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 131       _calls++;
 132       *card_ptr = 0;
 133     }
 134     return true;
 135   }
 136   int calls() { return _calls; }
 137 };
 138 
 139 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 140 public:
 141   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 142     *card_ptr = CardTableModRefBS::dirty_card_val();
 143     return true;
 144   }
 145 };
 146 
 147 YoungList::YoungList(G1CollectedHeap* g1h)
 148   : _g1h(g1h), _head(NULL),
 149     _scan_only_head(NULL), _scan_only_tail(NULL), _curr_scan_only(NULL),
 150     _length(0), _scan_only_length(0),
 151     _last_sampled_rs_lengths(0),
 152     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0)
 153 {
 154   guarantee( check_list_empty(false), "just making sure..." );
 155 }
 156 
 157 void YoungList::push_region(HeapRegion *hr) {
 158   assert(!hr->is_young(), "should not already be young");
 159   assert(hr->get_next_young_region() == NULL, "cause it should!");
 160 
 161   hr->set_next_young_region(_head);
 162   _head = hr;
 163 
 164   hr->set_young();
 165   double yg_surv_rate = _g1h->g1_policy()->predict_yg_surv_rate((int)_length);
 166   ++_length;
 167 }
 168 
 169 void YoungList::add_survivor_region(HeapRegion* hr) {
 170   assert(hr->is_survivor(), "should be flagged as survivor region");
 171   assert(hr->get_next_young_region() == NULL, "cause it should!");
 172 
 173   hr->set_next_young_region(_survivor_head);
 174   if (_survivor_head == NULL) {
 175     _survivor_tail = hr;
 176   }
 177   _survivor_head = hr;
 178 
 179   ++_survivor_length;
 180 }
 181 
 182 HeapRegion* YoungList::pop_region() {
 183   while (_head != NULL) {
 184     assert( length() > 0, "list should not be empty" );
 185     HeapRegion* ret = _head;
 186     _head = ret->get_next_young_region();
 187     ret->set_next_young_region(NULL);
 188     --_length;
 189     assert(ret->is_young(), "region should be very young");
 190 
 191     // Replace 'Survivor' region type with 'Young'. So the region will
 192     // be treated as a young region and will not be 'confused' with
 193     // newly created survivor regions.
 194     if (ret->is_survivor()) {
 195       ret->set_young();
 196     }
 197 
 198     if (!ret->is_scan_only()) {
 199       return ret;
 200     }
 201 
 202     // scan-only, we'll add it to the scan-only list
 203     if (_scan_only_tail == NULL) {
 204       guarantee( _scan_only_head == NULL, "invariant" );
 205 
 206       _scan_only_head = ret;
 207       _curr_scan_only = ret;
 208     } else {
 209       guarantee( _scan_only_head != NULL, "invariant" );
 210       _scan_only_tail->set_next_young_region(ret);
 211     }
 212     guarantee( ret->get_next_young_region() == NULL, "invariant" );
 213     _scan_only_tail = ret;
 214 
 215     // no need to be tagged as scan-only any more
 216     ret->set_young();
 217 
 218     ++_scan_only_length;
 219   }
 220   assert( length() == 0, "list should be empty" );
 221   return NULL;
 222 }
 223 
 224 void YoungList::empty_list(HeapRegion* list) {
 225   while (list != NULL) {
 226     HeapRegion* next = list->get_next_young_region();
 227     list->set_next_young_region(NULL);
 228     list->uninstall_surv_rate_group();
 229     list->set_not_young();
 230     list = next;
 231   }
 232 }
 233 
 234 void YoungList::empty_list() {
 235   assert(check_list_well_formed(), "young list should be well formed");
 236 
 237   empty_list(_head);
 238   _head = NULL;
 239   _length = 0;
 240 
 241   empty_list(_scan_only_head);
 242   _scan_only_head = NULL;
 243   _scan_only_tail = NULL;
 244   _scan_only_length = 0;
 245   _curr_scan_only = NULL;
 246 
 247   empty_list(_survivor_head);
 248   _survivor_head = NULL;
 249   _survivor_tail = NULL;
 250   _survivor_length = 0;
 251 
 252   _last_sampled_rs_lengths = 0;
 253 
 254   assert(check_list_empty(false), "just making sure...");
 255 }
 256 
 257 bool YoungList::check_list_well_formed() {
 258   bool ret = true;
 259 
 260   size_t length = 0;
 261   HeapRegion* curr = _head;
 262   HeapRegion* last = NULL;
 263   while (curr != NULL) {
 264     if (!curr->is_young() || curr->is_scan_only()) {
 265       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 266                              "incorrectly tagged (%d, %d)",
 267                              curr->bottom(), curr->end(),
 268                              curr->is_young(), curr->is_scan_only());
 269       ret = false;
 270     }
 271     ++length;
 272     last = curr;
 273     curr = curr->get_next_young_region();
 274   }
 275   ret = ret && (length == _length);
 276 
 277   if (!ret) {
 278     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 279     gclog_or_tty->print_cr("###   list has %d entries, _length is %d",
 280                            length, _length);
 281   }
 282 
 283   bool scan_only_ret = true;
 284   length = 0;
 285   curr = _scan_only_head;
 286   last = NULL;
 287   while (curr != NULL) {
 288     if (!curr->is_young() || curr->is_scan_only()) {
 289       gclog_or_tty->print_cr("### SCAN-ONLY REGION "PTR_FORMAT"-"PTR_FORMAT" "
 290                              "incorrectly tagged (%d, %d)",
 291                              curr->bottom(), curr->end(),
 292                              curr->is_young(), curr->is_scan_only());
 293       scan_only_ret = false;
 294     }
 295     ++length;
 296     last = curr;
 297     curr = curr->get_next_young_region();
 298   }
 299   scan_only_ret = scan_only_ret && (length == _scan_only_length);
 300 
 301   if ( (last != _scan_only_tail) ||
 302        (_scan_only_head == NULL && _scan_only_tail != NULL) ||
 303        (_scan_only_head != NULL && _scan_only_tail == NULL) ) {
 304      gclog_or_tty->print_cr("## _scan_only_tail is set incorrectly");
 305      scan_only_ret = false;
 306   }
 307 
 308   if (_curr_scan_only != NULL && _curr_scan_only != _scan_only_head) {
 309     gclog_or_tty->print_cr("### _curr_scan_only is set incorrectly");
 310     scan_only_ret = false;
 311    }
 312 
 313   if (!scan_only_ret) {
 314     gclog_or_tty->print_cr("### SCAN-ONLY LIST seems not well formed!");
 315     gclog_or_tty->print_cr("###   list has %d entries, _scan_only_length is %d",
 316                   length, _scan_only_length);
 317   }
 318 
 319   return ret && scan_only_ret;
 320 }
 321 
 322 bool YoungList::check_list_empty(bool ignore_scan_only_list,
 323                                  bool check_sample) {
 324   bool ret = true;
 325 
 326   if (_length != 0) {
 327     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %d",
 328                   _length);
 329     ret = false;
 330   }
 331   if (check_sample && _last_sampled_rs_lengths != 0) {
 332     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 333     ret = false;
 334   }
 335   if (_head != NULL) {
 336     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 337     ret = false;
 338   }
 339   if (!ret) {
 340     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 341   }
 342 
 343   if (ignore_scan_only_list)
 344     return ret;
 345 
 346   bool scan_only_ret = true;
 347   if (_scan_only_length != 0) {
 348     gclog_or_tty->print_cr("### SCAN-ONLY LIST should have 0 length, not %d",
 349                   _scan_only_length);
 350     scan_only_ret = false;
 351   }
 352   if (_scan_only_head != NULL) {
 353     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL head");
 354      scan_only_ret = false;
 355   }
 356   if (_scan_only_tail != NULL) {
 357     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not have a NULL tail");
 358     scan_only_ret = false;
 359   }
 360   if (!scan_only_ret) {
 361     gclog_or_tty->print_cr("### SCAN-ONLY LIST does not seem empty");
 362   }
 363 
 364   return ret && scan_only_ret;
 365 }
 366 
 367 void
 368 YoungList::rs_length_sampling_init() {
 369   _sampled_rs_lengths = 0;
 370   _curr               = _head;
 371 }
 372 
 373 bool
 374 YoungList::rs_length_sampling_more() {
 375   return _curr != NULL;
 376 }
 377 
 378 void
 379 YoungList::rs_length_sampling_next() {
 380   assert( _curr != NULL, "invariant" );
 381   _sampled_rs_lengths += _curr->rem_set()->occupied();
 382   _curr = _curr->get_next_young_region();
 383   if (_curr == NULL) {
 384     _last_sampled_rs_lengths = _sampled_rs_lengths;
 385     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 386   }
 387 }
 388 
 389 void
 390 YoungList::reset_auxilary_lists() {
 391   // We could have just "moved" the scan-only list to the young list.
 392   // However, the scan-only list is ordered according to the region
 393   // age in descending order, so, by moving one entry at a time, we
 394   // ensure that it is recreated in ascending order.
 395 
 396   guarantee( is_empty(), "young list should be empty" );
 397   assert(check_list_well_formed(), "young list should be well formed");
 398 
 399   // Add survivor regions to SurvRateGroup.
 400   _g1h->g1_policy()->note_start_adding_survivor_regions();
 401   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 402   for (HeapRegion* curr = _survivor_head;
 403        curr != NULL;
 404        curr = curr->get_next_young_region()) {
 405     _g1h->g1_policy()->set_region_survivors(curr);
 406   }
 407   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 408 
 409   if (_survivor_head != NULL) {
 410     _head           = _survivor_head;
 411     _length         = _survivor_length + _scan_only_length;
 412     _survivor_tail->set_next_young_region(_scan_only_head);
 413   } else {
 414     _head           = _scan_only_head;
 415     _length         = _scan_only_length;
 416   }
 417 
 418   for (HeapRegion* curr = _scan_only_head;
 419        curr != NULL;
 420        curr = curr->get_next_young_region()) {
 421     curr->recalculate_age_in_surv_rate_group();
 422   }
 423   _scan_only_head   = NULL;
 424   _scan_only_tail   = NULL;
 425   _scan_only_length = 0;
 426   _curr_scan_only   = NULL;
 427 
 428   _survivor_head    = NULL;
 429   _survivor_tail   = NULL;
 430   _survivor_length  = 0;
 431   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 432 
 433   assert(check_list_well_formed(), "young list should be well formed");
 434 }
 435 
 436 void YoungList::print() {
 437   HeapRegion* lists[] = {_head,   _scan_only_head, _survivor_head};
 438   const char* names[] = {"YOUNG", "SCAN-ONLY",     "SURVIVOR"};
 439 
 440   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 441     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 442     HeapRegion *curr = lists[list];
 443     if (curr == NULL)
 444       gclog_or_tty->print_cr("  empty");
 445     while (curr != NULL) {
 446       gclog_or_tty->print_cr("  [%08x-%08x], t: %08x, P: %08x, N: %08x, C: %08x, "
 447                              "age: %4d, y: %d, s-o: %d, surv: %d",
 448                              curr->bottom(), curr->end(),
 449                              curr->top(),
 450                              curr->prev_top_at_mark_start(),
 451                              curr->next_top_at_mark_start(),
 452                              curr->top_at_conc_mark_count(),
 453                              curr->age_in_surv_rate_group_cond(),
 454                              curr->is_young(),
 455                              curr->is_scan_only(),
 456                              curr->is_survivor());
 457       curr = curr->get_next_young_region();
 458     }
 459   }
 460 
 461   gclog_or_tty->print_cr("");
 462 }
 463 
 464 void G1CollectedHeap::stop_conc_gc_threads() {
 465   _cg1r->cg1rThread()->stop();
 466   _czft->stop();
 467   _cmThread->stop();
 468 }
 469 
 470 
 471 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 472   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 473   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 474 
 475   // Count the dirty cards at the start.
 476   CountNonCleanMemRegionClosure count1(this);
 477   ct_bs->mod_card_iterate(&count1);
 478   int orig_count = count1.n();
 479 
 480   // First clear the logged cards.
 481   ClearLoggedCardTableEntryClosure clear;
 482   dcqs.set_closure(&clear);
 483   dcqs.apply_closure_to_all_completed_buffers();
 484   dcqs.iterate_closure_all_threads(false);
 485   clear.print_histo();
 486 
 487   // Now ensure that there's no dirty cards.
 488   CountNonCleanMemRegionClosure count2(this);
 489   ct_bs->mod_card_iterate(&count2);
 490   if (count2.n() != 0) {
 491     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 492                            count2.n(), orig_count);
 493   }
 494   guarantee(count2.n() == 0, "Card table should be clean.");
 495 
 496   RedirtyLoggedCardTableEntryClosure redirty;
 497   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 498   dcqs.apply_closure_to_all_completed_buffers();
 499   dcqs.iterate_closure_all_threads(false);
 500   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 501                          clear.calls(), orig_count);
 502   guarantee(redirty.calls() == clear.calls(),
 503             "Or else mechanism is broken.");
 504 
 505   CountNonCleanMemRegionClosure count3(this);
 506   ct_bs->mod_card_iterate(&count3);
 507   if (count3.n() != orig_count) {
 508     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 509                            orig_count, count3.n());
 510     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 511   }
 512 
 513   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 514 }
 515 
 516 // Private class members.
 517 
 518 G1CollectedHeap* G1CollectedHeap::_g1h;
 519 
 520 // Private methods.
 521 
 522 // Finds a HeapRegion that can be used to allocate a given size of block.
 523 
 524 
 525 HeapRegion* G1CollectedHeap::newAllocRegion_work(size_t word_size,
 526                                                  bool do_expand,
 527                                                  bool zero_filled) {
 528   ConcurrentZFThread::note_region_alloc();
 529   HeapRegion* res = alloc_free_region_from_lists(zero_filled);
 530   if (res == NULL && do_expand) {
 531     expand(word_size * HeapWordSize);
 532     res = alloc_free_region_from_lists(zero_filled);
 533     assert(res == NULL ||
 534            (!res->isHumongous() &&
 535             (!zero_filled ||
 536              res->zero_fill_state() == HeapRegion::Allocated)),
 537            "Alloc Regions must be zero filled (and non-H)");
 538   }
 539   if (res != NULL && res->is_empty()) _free_regions--;
 540   assert(res == NULL ||
 541          (!res->isHumongous() &&
 542           (!zero_filled ||
 543            res->zero_fill_state() == HeapRegion::Allocated)),
 544          "Non-young alloc Regions must be zero filled (and non-H)");
 545 
 546   if (G1TraceRegions) {
 547     if (res != NULL) {
 548       gclog_or_tty->print_cr("new alloc region %d:["PTR_FORMAT", "PTR_FORMAT"], "
 549                              "top "PTR_FORMAT,
 550                              res->hrs_index(), res->bottom(), res->end(), res->top());
 551     }
 552   }
 553 
 554   return res;
 555 }
 556 
 557 HeapRegion* G1CollectedHeap::newAllocRegionWithExpansion(int purpose,
 558                                                          size_t word_size,
 559                                                          bool zero_filled) {
 560   HeapRegion* alloc_region = NULL;
 561   if (_gc_alloc_region_counts[purpose] < g1_policy()->max_regions(purpose)) {
 562     alloc_region = newAllocRegion_work(word_size, true, zero_filled);
 563     if (purpose == GCAllocForSurvived && alloc_region != NULL) {
 564       alloc_region->set_survivor();
 565     }
 566     ++_gc_alloc_region_counts[purpose];
 567   } else {
 568     g1_policy()->note_alloc_region_limit_reached(purpose);
 569   }
 570   return alloc_region;
 571 }
 572 
 573 // If could fit into free regions w/o expansion, try.
 574 // Otherwise, if can expand, do so.
 575 // Otherwise, if using ex regions might help, try with ex given back.
 576 HeapWord* G1CollectedHeap::humongousObjAllocate(size_t word_size) {
 577   assert(regions_accounted_for(), "Region leakage!");
 578 
 579   // We can't allocate H regions while cleanupComplete is running, since
 580   // some of the regions we find to be empty might not yet be added to the
 581   // unclean list.  (If we're already at a safepoint, this call is
 582   // unnecessary, not to mention wrong.)
 583   if (!SafepointSynchronize::is_at_safepoint())
 584     wait_for_cleanup_complete();
 585 
 586   size_t num_regions =
 587     round_to(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 588 
 589   // Special case if < one region???
 590 
 591   // Remember the ft size.
 592   size_t x_size = expansion_regions();
 593 
 594   HeapWord* res = NULL;
 595   bool eliminated_allocated_from_lists = false;
 596 
 597   // Can the allocation potentially fit in the free regions?
 598   if (free_regions() >= num_regions) {
 599     res = _hrs->obj_allocate(word_size);
 600   }
 601   if (res == NULL) {
 602     // Try expansion.
 603     size_t fs = _hrs->free_suffix();
 604     if (fs + x_size >= num_regions) {
 605       expand((num_regions - fs) * HeapRegion::GrainBytes);
 606       res = _hrs->obj_allocate(word_size);
 607       assert(res != NULL, "This should have worked.");
 608     } else {
 609       // Expansion won't help.  Are there enough free regions if we get rid
 610       // of reservations?
 611       size_t avail = free_regions();
 612       if (avail >= num_regions) {
 613         res = _hrs->obj_allocate(word_size);
 614         if (res != NULL) {
 615           remove_allocated_regions_from_lists();
 616           eliminated_allocated_from_lists = true;
 617         }
 618       }
 619     }
 620   }
 621   if (res != NULL) {
 622     // Increment by the number of regions allocated.
 623     // FIXME: Assumes regions all of size GrainBytes.
 624 #ifndef PRODUCT
 625     mr_bs()->verify_clean_region(MemRegion(res, res + num_regions *
 626                                            HeapRegion::GrainWords));
 627 #endif
 628     if (!eliminated_allocated_from_lists)
 629       remove_allocated_regions_from_lists();
 630     _summary_bytes_used += word_size * HeapWordSize;
 631     _free_regions -= num_regions;
 632     _num_humongous_regions += (int) num_regions;
 633   }
 634   assert(regions_accounted_for(), "Region Leakage");
 635   return res;
 636 }
 637 
 638 HeapWord*
 639 G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 640                                          bool permit_collection_pause) {
 641   HeapWord* res = NULL;
 642   HeapRegion* allocated_young_region = NULL;
 643 
 644   assert( SafepointSynchronize::is_at_safepoint() ||
 645           Heap_lock->owned_by_self(), "pre condition of the call" );
 646 
 647   if (isHumongous(word_size)) {
 648     // Allocation of a humongous object can, in a sense, complete a
 649     // partial region, if the previous alloc was also humongous, and
 650     // caused the test below to succeed.
 651     if (permit_collection_pause)
 652       do_collection_pause_if_appropriate(word_size);
 653     res = humongousObjAllocate(word_size);
 654     assert(_cur_alloc_region == NULL
 655            || !_cur_alloc_region->isHumongous(),
 656            "Prevent a regression of this bug.");
 657 
 658   } else {
 659     // We may have concurrent cleanup working at the time. Wait for it
 660     // to complete. In the future we would probably want to make the
 661     // concurrent cleanup truly concurrent by decoupling it from the
 662     // allocation.
 663     if (!SafepointSynchronize::is_at_safepoint())
 664       wait_for_cleanup_complete();
 665     // If we do a collection pause, this will be reset to a non-NULL
 666     // value.  If we don't, nulling here ensures that we allocate a new
 667     // region below.
 668     if (_cur_alloc_region != NULL) {
 669       // We're finished with the _cur_alloc_region.
 670       _summary_bytes_used += _cur_alloc_region->used();
 671       _cur_alloc_region = NULL;
 672     }
 673     assert(_cur_alloc_region == NULL, "Invariant.");
 674     // Completion of a heap region is perhaps a good point at which to do
 675     // a collection pause.
 676     if (permit_collection_pause)
 677       do_collection_pause_if_appropriate(word_size);
 678     // Make sure we have an allocation region available.
 679     if (_cur_alloc_region == NULL) {
 680       if (!SafepointSynchronize::is_at_safepoint())
 681         wait_for_cleanup_complete();
 682       bool next_is_young = should_set_young_locked();
 683       // If the next region is not young, make sure it's zero-filled.
 684       _cur_alloc_region = newAllocRegion(word_size, !next_is_young);
 685       if (_cur_alloc_region != NULL) {
 686         _summary_bytes_used -= _cur_alloc_region->used();
 687         if (next_is_young) {
 688           set_region_short_lived_locked(_cur_alloc_region);
 689           allocated_young_region = _cur_alloc_region;
 690         }
 691       }
 692     }
 693     assert(_cur_alloc_region == NULL || !_cur_alloc_region->isHumongous(),
 694            "Prevent a regression of this bug.");
 695 
 696     // Now retry the allocation.
 697     if (_cur_alloc_region != NULL) {
 698       res = _cur_alloc_region->allocate(word_size);
 699     }
 700   }
 701 
 702   // NOTE: fails frequently in PRT
 703   assert(regions_accounted_for(), "Region leakage!");
 704 
 705   if (res != NULL) {
 706     if (!SafepointSynchronize::is_at_safepoint()) {
 707       assert( permit_collection_pause, "invariant" );
 708       assert( Heap_lock->owned_by_self(), "invariant" );
 709       Heap_lock->unlock();
 710     }
 711 
 712     if (allocated_young_region != NULL) {
 713       HeapRegion* hr = allocated_young_region;
 714       HeapWord* bottom = hr->bottom();
 715       HeapWord* end = hr->end();
 716       MemRegion mr(bottom, end);
 717       ((CardTableModRefBS*)_g1h->barrier_set())->dirty(mr);
 718     }
 719   }
 720 
 721   assert( SafepointSynchronize::is_at_safepoint() ||
 722           (res == NULL && Heap_lock->owned_by_self()) ||
 723           (res != NULL && !Heap_lock->owned_by_self()),
 724           "post condition of the call" );
 725 
 726   return res;
 727 }
 728 
 729 HeapWord*
 730 G1CollectedHeap::mem_allocate(size_t word_size,
 731                               bool   is_noref,
 732                               bool   is_tlab,
 733                               bool* gc_overhead_limit_was_exceeded) {
 734   debug_only(check_for_valid_allocation_state());
 735   assert(no_gc_in_progress(), "Allocation during gc not allowed");
 736   HeapWord* result = NULL;
 737 
 738   // Loop until the allocation is satisified,
 739   // or unsatisfied after GC.
 740   for (int try_count = 1; /* return or throw */; try_count += 1) {
 741     int gc_count_before;
 742     {
 743       Heap_lock->lock();
 744       result = attempt_allocation(word_size);
 745       if (result != NULL) {
 746         // attempt_allocation should have unlocked the heap lock
 747         assert(is_in(result), "result not in heap");
 748         return result;
 749       }
 750       // Read the gc count while the heap lock is held.
 751       gc_count_before = SharedHeap::heap()->total_collections();
 752       Heap_lock->unlock();
 753     }
 754 
 755     // Create the garbage collection operation...
 756     VM_G1CollectForAllocation op(word_size,
 757                                  gc_count_before);
 758 
 759     // ...and get the VM thread to execute it.
 760     VMThread::execute(&op);
 761     if (op.prologue_succeeded()) {
 762       result = op.result();
 763       assert(result == NULL || is_in(result), "result not in heap");
 764       return result;
 765     }
 766 
 767     // Give a warning if we seem to be looping forever.
 768     if ((QueuedAllocationWarningCount > 0) &&
 769         (try_count % QueuedAllocationWarningCount == 0)) {
 770       warning("G1CollectedHeap::mem_allocate_work retries %d times",
 771               try_count);
 772     }
 773   }
 774 }
 775 
 776 void G1CollectedHeap::abandon_cur_alloc_region() {
 777   if (_cur_alloc_region != NULL) {
 778     // We're finished with the _cur_alloc_region.
 779     if (_cur_alloc_region->is_empty()) {
 780       _free_regions++;
 781       free_region(_cur_alloc_region);
 782     } else {
 783       _summary_bytes_used += _cur_alloc_region->used();
 784     }
 785     _cur_alloc_region = NULL;
 786   }
 787 }
 788 
 789 void G1CollectedHeap::abandon_gc_alloc_regions() {
 790   // first, make sure that the GC alloc region list is empty (it should!)
 791   assert(_gc_alloc_region_list == NULL, "invariant");
 792   release_gc_alloc_regions(true /* totally */);
 793 }
 794 
 795 class PostMCRemSetClearClosure: public HeapRegionClosure {
 796   ModRefBarrierSet* _mr_bs;
 797 public:
 798   PostMCRemSetClearClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
 799   bool doHeapRegion(HeapRegion* r) {
 800     r->reset_gc_time_stamp();
 801     if (r->continuesHumongous())
 802       return false;
 803     HeapRegionRemSet* hrrs = r->rem_set();
 804     if (hrrs != NULL) hrrs->clear();
 805     // You might think here that we could clear just the cards
 806     // corresponding to the used region.  But no: if we leave a dirty card
 807     // in a region we might allocate into, then it would prevent that card
 808     // from being enqueued, and cause it to be missed.
 809     // Re: the performance cost: we shouldn't be doing full GC anyway!
 810     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
 811     return false;
 812   }
 813 };
 814 
 815 
 816 class PostMCRemSetInvalidateClosure: public HeapRegionClosure {
 817   ModRefBarrierSet* _mr_bs;
 818 public:
 819   PostMCRemSetInvalidateClosure(ModRefBarrierSet* mr_bs) : _mr_bs(mr_bs) {}
 820   bool doHeapRegion(HeapRegion* r) {
 821     if (r->continuesHumongous()) return false;
 822     if (r->used_region().word_size() != 0) {
 823       _mr_bs->invalidate(r->used_region(), true /*whole heap*/);
 824     }
 825     return false;
 826   }
 827 };
 828 
 829 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
 830   G1CollectedHeap*   _g1h;
 831   UpdateRSOopClosure _cl;
 832   int                _worker_i;
 833 public:
 834   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
 835     _cl(g1->g1_rem_set()->as_HRInto_G1RemSet(), worker_i),
 836     _worker_i(worker_i),
 837     _g1h(g1)
 838   { }
 839   bool doHeapRegion(HeapRegion* r) {
 840     if (!r->continuesHumongous()) {
 841       _cl.set_from(r);
 842       r->oop_iterate(&_cl);
 843     }
 844     return false;
 845   }
 846 };
 847 
 848 class ParRebuildRSTask: public AbstractGangTask {
 849   G1CollectedHeap* _g1;
 850 public:
 851   ParRebuildRSTask(G1CollectedHeap* g1)
 852     : AbstractGangTask("ParRebuildRSTask"),
 853       _g1(g1)
 854   { }
 855 
 856   void work(int i) {
 857     RebuildRSOutOfRegionClosure rebuild_rs(_g1, i);
 858     _g1->heap_region_par_iterate_chunked(&rebuild_rs, i,
 859                                          HeapRegion::RebuildRSClaimValue);
 860   }
 861 };
 862 
 863 void G1CollectedHeap::do_collection(bool full, bool clear_all_soft_refs,
 864                                     size_t word_size) {
 865   ResourceMark rm;
 866 
 867   if (full && DisableExplicitGC) {
 868     gclog_or_tty->print("\n\n\nDisabling Explicit GC\n\n\n");
 869     return;
 870   }
 871 
 872   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 873   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
 874 
 875   if (GC_locker::is_active()) {
 876     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 877   }
 878 
 879   {
 880     IsGCActiveMark x;
 881 
 882     // Timing
 883     gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
 884     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 885     TraceTime t(full ? "Full GC (System.gc())" : "Full GC", PrintGC, true, gclog_or_tty);
 886 
 887     double start = os::elapsedTime();
 888     GCOverheadReporter::recordSTWStart(start);
 889     g1_policy()->record_full_collection_start();
 890 
 891     gc_prologue(true);
 892     increment_total_collections();
 893 
 894     size_t g1h_prev_used = used();
 895     assert(used() == recalculate_used(), "Should be equal");
 896 
 897     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
 898       HandleMark hm;  // Discard invalid handles created during verification
 899       prepare_for_verify();
 900       gclog_or_tty->print(" VerifyBeforeGC:");
 901       Universe::verify(true);
 902     }
 903     assert(regions_accounted_for(), "Region leakage!");
 904 
 905     COMPILER2_PRESENT(DerivedPointerTable::clear());
 906 
 907     // We want to discover references, but not process them yet.
 908     // This mode is disabled in
 909     // instanceRefKlass::process_discovered_references if the
 910     // generation does some collection work, or
 911     // instanceRefKlass::enqueue_discovered_references if the
 912     // generation returns without doing any work.
 913     ref_processor()->disable_discovery();
 914     ref_processor()->abandon_partial_discovery();
 915     ref_processor()->verify_no_references_recorded();
 916 
 917     // Abandon current iterations of concurrent marking and concurrent
 918     // refinement, if any are in progress.
 919     concurrent_mark()->abort();
 920 
 921     // Make sure we'll choose a new allocation region afterwards.
 922     abandon_cur_alloc_region();
 923     abandon_gc_alloc_regions();
 924     assert(_cur_alloc_region == NULL, "Invariant.");
 925     g1_rem_set()->as_HRInto_G1RemSet()->cleanupHRRS();
 926     tear_down_region_lists();
 927     set_used_regions_to_need_zero_fill();
 928     if (g1_policy()->in_young_gc_mode()) {
 929       empty_young_list();
 930       g1_policy()->set_full_young_gcs(true);
 931     }
 932 
 933     // Temporarily make reference _discovery_ single threaded (non-MT).
 934     ReferenceProcessorMTMutator rp_disc_ser(ref_processor(), false);
 935 
 936     // Temporarily make refs discovery atomic
 937     ReferenceProcessorAtomicMutator rp_disc_atomic(ref_processor(), true);
 938 
 939     // Temporarily clear _is_alive_non_header
 940     ReferenceProcessorIsAliveMutator rp_is_alive_null(ref_processor(), NULL);
 941 
 942     ref_processor()->enable_discovery();
 943     ref_processor()->setup_policy(clear_all_soft_refs);
 944 
 945     // Do collection work
 946     {
 947       HandleMark hm;  // Discard invalid handles created during gc
 948       G1MarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
 949     }
 950     // Because freeing humongous regions may have added some unclean
 951     // regions, it is necessary to tear down again before rebuilding.
 952     tear_down_region_lists();
 953     rebuild_region_lists();
 954 
 955     _summary_bytes_used = recalculate_used();
 956 
 957     ref_processor()->enqueue_discovered_references();
 958 
 959     COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 960 
 961     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
 962       HandleMark hm;  // Discard invalid handles created during verification
 963       gclog_or_tty->print(" VerifyAfterGC:");
 964       Universe::verify(false);
 965     }
 966     NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 967 
 968     reset_gc_time_stamp();
 969     // Since everything potentially moved, we will clear all remembered
 970     // sets, and clear all cards.  Later we will rebuild remebered
 971     // sets. We will also reset the GC time stamps of the regions.
 972     PostMCRemSetClearClosure rs_clear(mr_bs());
 973     heap_region_iterate(&rs_clear);
 974 
 975     // Resize the heap if necessary.
 976     resize_if_necessary_after_full_collection(full ? 0 : word_size);
 977 
 978     if (_cg1r->use_cache()) {
 979       _cg1r->clear_and_record_card_counts();
 980       _cg1r->clear_hot_cache();
 981     }
 982 
 983     // Rebuild remembered sets of all regions.
 984     if (ParallelGCThreads > 0) {
 985       ParRebuildRSTask rebuild_rs_task(this);
 986       assert(check_heap_region_claim_values(
 987              HeapRegion::InitialClaimValue), "sanity check");
 988       set_par_threads(workers()->total_workers());
 989       workers()->run_task(&rebuild_rs_task);
 990       set_par_threads(0);
 991       assert(check_heap_region_claim_values(
 992              HeapRegion::RebuildRSClaimValue), "sanity check");
 993       reset_heap_region_claim_values();
 994     } else {
 995       RebuildRSOutOfRegionClosure rebuild_rs(this);
 996       heap_region_iterate(&rebuild_rs);
 997     }
 998 
 999     if (PrintGC) {
1000       print_size_transition(gclog_or_tty, g1h_prev_used, used(), capacity());
1001     }
1002 
1003     if (true) { // FIXME
1004       // Ask the permanent generation to adjust size for full collections
1005       perm()->compute_new_size();
1006     }
1007 
1008     double end = os::elapsedTime();
1009     GCOverheadReporter::recordSTWEnd(end);
1010     g1_policy()->record_full_collection_end();
1011 
1012 #ifdef TRACESPINNING
1013     ParallelTaskTerminator::print_termination_counts();
1014 #endif
1015 
1016     gc_epilogue(true);
1017 
1018     // Abandon concurrent refinement.  This must happen last: in the
1019     // dirty-card logging system, some cards may be dirty by weak-ref
1020     // processing, and may be enqueued.  But the whole card table is
1021     // dirtied, so this should abandon those logs, and set "do_traversal"
1022     // to true.
1023     concurrent_g1_refine()->set_pya_restart();
1024     assert(!G1DeferredRSUpdate
1025            || (G1DeferredRSUpdate && (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1026     assert(regions_accounted_for(), "Region leakage!");
1027   }
1028 
1029   if (g1_policy()->in_young_gc_mode()) {
1030     _young_list->reset_sampled_info();
1031     assert( check_young_list_empty(false, false),
1032             "young list should be empty at this point");
1033   }
1034 }
1035 
1036 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1037   do_collection(true, clear_all_soft_refs, 0);
1038 }
1039 
1040 // This code is mostly copied from TenuredGeneration.
1041 void
1042 G1CollectedHeap::
1043 resize_if_necessary_after_full_collection(size_t word_size) {
1044   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1045 
1046   // Include the current allocation, if any, and bytes that will be
1047   // pre-allocated to support collections, as "used".
1048   const size_t used_after_gc = used();
1049   const size_t capacity_after_gc = capacity();
1050   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1051 
1052   // We don't have floating point command-line arguments
1053   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100;
1054   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1055   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
1056   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1057 
1058   size_t minimum_desired_capacity = (size_t) (used_after_gc / maximum_used_percentage);
1059   size_t maximum_desired_capacity = (size_t) (used_after_gc / minimum_used_percentage);
1060 
1061   // Don't shrink less than the initial size.
1062   minimum_desired_capacity =
1063     MAX2(minimum_desired_capacity,
1064          collector_policy()->initial_heap_byte_size());
1065   maximum_desired_capacity =
1066     MAX2(maximum_desired_capacity,
1067          collector_policy()->initial_heap_byte_size());
1068 
1069   // We are failing here because minimum_desired_capacity is
1070   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
1071   assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check");
1072 
1073   if (PrintGC && Verbose) {
1074     const double free_percentage = ((double)free_after_gc) / capacity();
1075     gclog_or_tty->print_cr("Computing new size after full GC ");
1076     gclog_or_tty->print_cr("  "
1077                            "  minimum_free_percentage: %6.2f",
1078                            minimum_free_percentage);
1079     gclog_or_tty->print_cr("  "
1080                            "  maximum_free_percentage: %6.2f",
1081                            maximum_free_percentage);
1082     gclog_or_tty->print_cr("  "
1083                            "  capacity: %6.1fK"
1084                            "  minimum_desired_capacity: %6.1fK"
1085                            "  maximum_desired_capacity: %6.1fK",
1086                            capacity() / (double) K,
1087                            minimum_desired_capacity / (double) K,
1088                            maximum_desired_capacity / (double) K);
1089     gclog_or_tty->print_cr("  "
1090                            "   free_after_gc   : %6.1fK"
1091                            "   used_after_gc   : %6.1fK",
1092                            free_after_gc / (double) K,
1093                            used_after_gc / (double) K);
1094     gclog_or_tty->print_cr("  "
1095                            "   free_percentage: %6.2f",
1096                            free_percentage);
1097   }
1098   if (capacity() < minimum_desired_capacity) {
1099     // Don't expand unless it's significant
1100     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1101     expand(expand_bytes);
1102     if (PrintGC && Verbose) {
1103       gclog_or_tty->print_cr("    expanding:"
1104                              "  minimum_desired_capacity: %6.1fK"
1105                              "  expand_bytes: %6.1fK",
1106                              minimum_desired_capacity / (double) K,
1107                              expand_bytes / (double) K);
1108     }
1109 
1110     // No expansion, now see if we want to shrink
1111   } else if (capacity() > maximum_desired_capacity) {
1112     // Capacity too large, compute shrinking size
1113     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1114     shrink(shrink_bytes);
1115     if (PrintGC && Verbose) {
1116       gclog_or_tty->print_cr("  "
1117                              "  shrinking:"
1118                              "  initSize: %.1fK"
1119                              "  maximum_desired_capacity: %.1fK",
1120                              collector_policy()->initial_heap_byte_size() / (double) K,
1121                              maximum_desired_capacity / (double) K);
1122       gclog_or_tty->print_cr("  "
1123                              "  shrink_bytes: %.1fK",
1124                              shrink_bytes / (double) K);
1125     }
1126   }
1127 }
1128 
1129 
1130 HeapWord*
1131 G1CollectedHeap::satisfy_failed_allocation(size_t word_size) {
1132   HeapWord* result = NULL;
1133 
1134   // In a G1 heap, we're supposed to keep allocation from failing by
1135   // incremental pauses.  Therefore, at least for now, we'll favor
1136   // expansion over collection.  (This might change in the future if we can
1137   // do something smarter than full collection to satisfy a failed alloc.)
1138 
1139   result = expand_and_allocate(word_size);
1140   if (result != NULL) {
1141     assert(is_in(result), "result not in heap");
1142     return result;
1143   }
1144 
1145   // OK, I guess we have to try collection.
1146 
1147   do_collection(false, false, word_size);
1148 
1149   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
1150 
1151   if (result != NULL) {
1152     assert(is_in(result), "result not in heap");
1153     return result;
1154   }
1155 
1156   // Try collecting soft references.
1157   do_collection(false, true, word_size);
1158   result = attempt_allocation(word_size, /*permit_collection_pause*/false);
1159   if (result != NULL) {
1160     assert(is_in(result), "result not in heap");
1161     return result;
1162   }
1163 
1164   // What else?  We might try synchronous finalization later.  If the total
1165   // space available is large enough for the allocation, then a more
1166   // complete compaction phase than we've tried so far might be
1167   // appropriate.
1168   return NULL;
1169 }
1170 
1171 // Attempting to expand the heap sufficiently
1172 // to support an allocation of the given "word_size".  If
1173 // successful, perform the allocation and return the address of the
1174 // allocated block, or else "NULL".
1175 
1176 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1177   size_t expand_bytes = word_size * HeapWordSize;
1178   if (expand_bytes < MinHeapDeltaBytes) {
1179     expand_bytes = MinHeapDeltaBytes;
1180   }
1181   expand(expand_bytes);
1182   assert(regions_accounted_for(), "Region leakage!");
1183   HeapWord* result = attempt_allocation(word_size, false /* permit_collection_pause */);
1184   return result;
1185 }
1186 
1187 size_t G1CollectedHeap::free_region_if_totally_empty(HeapRegion* hr) {
1188   size_t pre_used = 0;
1189   size_t cleared_h_regions = 0;
1190   size_t freed_regions = 0;
1191   UncleanRegionList local_list;
1192   free_region_if_totally_empty_work(hr, pre_used, cleared_h_regions,
1193                                     freed_regions, &local_list);
1194 
1195   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
1196                           &local_list);
1197   return pre_used;
1198 }
1199 
1200 void
1201 G1CollectedHeap::free_region_if_totally_empty_work(HeapRegion* hr,
1202                                                    size_t& pre_used,
1203                                                    size_t& cleared_h,
1204                                                    size_t& freed_regions,
1205                                                    UncleanRegionList* list,
1206                                                    bool par) {
1207   assert(!hr->continuesHumongous(), "should have filtered these out");
1208   size_t res = 0;
1209   if (!hr->popular() && hr->used() > 0 && hr->garbage_bytes() == hr->used()) {
1210     if (!hr->is_young()) {
1211       if (G1PolicyVerbose > 0)
1212         gclog_or_tty->print_cr("Freeing empty region "PTR_FORMAT "(" SIZE_FORMAT " bytes)"
1213                                " during cleanup", hr, hr->used());
1214       free_region_work(hr, pre_used, cleared_h, freed_regions, list, par);
1215     }
1216   }
1217 }
1218 
1219 // FIXME: both this and shrink could probably be more efficient by
1220 // doing one "VirtualSpace::expand_by" call rather than several.
1221 void G1CollectedHeap::expand(size_t expand_bytes) {
1222   size_t old_mem_size = _g1_storage.committed_size();
1223   // We expand by a minimum of 1K.
1224   expand_bytes = MAX2(expand_bytes, (size_t)K);
1225   size_t aligned_expand_bytes =
1226     ReservedSpace::page_align_size_up(expand_bytes);
1227   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1228                                        HeapRegion::GrainBytes);
1229   expand_bytes = aligned_expand_bytes;
1230   while (expand_bytes > 0) {
1231     HeapWord* base = (HeapWord*)_g1_storage.high();
1232     // Commit more storage.
1233     bool successful = _g1_storage.expand_by(HeapRegion::GrainBytes);
1234     if (!successful) {
1235         expand_bytes = 0;
1236     } else {
1237       expand_bytes -= HeapRegion::GrainBytes;
1238       // Expand the committed region.
1239       HeapWord* high = (HeapWord*) _g1_storage.high();
1240       _g1_committed.set_end(high);
1241       // Create a new HeapRegion.
1242       MemRegion mr(base, high);
1243       bool is_zeroed = !_g1_max_committed.contains(base);
1244       HeapRegion* hr = new HeapRegion(_bot_shared, mr, is_zeroed);
1245 
1246       // Now update max_committed if necessary.
1247       _g1_max_committed.set_end(MAX2(_g1_max_committed.end(), high));
1248 
1249       // Add it to the HeapRegionSeq.
1250       _hrs->insert(hr);
1251       // Set the zero-fill state, according to whether it's already
1252       // zeroed.
1253       {
1254         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
1255         if (is_zeroed) {
1256           hr->set_zero_fill_complete();
1257           put_free_region_on_list_locked(hr);
1258         } else {
1259           hr->set_zero_fill_needed();
1260           put_region_on_unclean_list_locked(hr);
1261         }
1262       }
1263       _free_regions++;
1264       // And we used up an expansion region to create it.
1265       _expansion_regions--;
1266       // Tell the cardtable about it.
1267       Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1268       // And the offset table as well.
1269       _bot_shared->resize(_g1_committed.word_size());
1270     }
1271   }
1272   if (Verbose && PrintGC) {
1273     size_t new_mem_size = _g1_storage.committed_size();
1274     gclog_or_tty->print_cr("Expanding garbage-first heap from %ldK by %ldK to %ldK",
1275                            old_mem_size/K, aligned_expand_bytes/K,
1276                            new_mem_size/K);
1277   }
1278 }
1279 
1280 void G1CollectedHeap::shrink_helper(size_t shrink_bytes)
1281 {
1282   size_t old_mem_size = _g1_storage.committed_size();
1283   size_t aligned_shrink_bytes =
1284     ReservedSpace::page_align_size_down(shrink_bytes);
1285   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1286                                          HeapRegion::GrainBytes);
1287   size_t num_regions_deleted = 0;
1288   MemRegion mr = _hrs->shrink_by(aligned_shrink_bytes, num_regions_deleted);
1289 
1290   assert(mr.end() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1291   if (mr.byte_size() > 0)
1292     _g1_storage.shrink_by(mr.byte_size());
1293   assert(mr.start() == (HeapWord*)_g1_storage.high(), "Bad shrink!");
1294 
1295   _g1_committed.set_end(mr.start());
1296   _free_regions -= num_regions_deleted;
1297   _expansion_regions += num_regions_deleted;
1298 
1299   // Tell the cardtable about it.
1300   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1301 
1302   // And the offset table as well.
1303   _bot_shared->resize(_g1_committed.word_size());
1304 
1305   HeapRegionRemSet::shrink_heap(n_regions());
1306 
1307   if (Verbose && PrintGC) {
1308     size_t new_mem_size = _g1_storage.committed_size();
1309     gclog_or_tty->print_cr("Shrinking garbage-first heap from %ldK by %ldK to %ldK",
1310                            old_mem_size/K, aligned_shrink_bytes/K,
1311                            new_mem_size/K);
1312   }
1313 }
1314 
1315 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1316   release_gc_alloc_regions(true /* totally */);
1317   tear_down_region_lists();  // We will rebuild them in a moment.
1318   shrink_helper(shrink_bytes);
1319   rebuild_region_lists();
1320 }
1321 
1322 // Public methods.
1323 
1324 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1325 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1326 #endif // _MSC_VER
1327 
1328 
1329 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1330   SharedHeap(policy_),
1331   _g1_policy(policy_),
1332   _ref_processor(NULL),
1333   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1334   _bot_shared(NULL),
1335   _par_alloc_during_gc_lock(Mutex::leaf, "par alloc during GC lock"),
1336   _objs_with_preserved_marks(NULL), _preserved_marks_of_objs(NULL),
1337   _evac_failure_scan_stack(NULL) ,
1338   _mark_in_progress(false),
1339   _cg1r(NULL), _czft(NULL), _summary_bytes_used(0),
1340   _cur_alloc_region(NULL),
1341   _refine_cte_cl(NULL),
1342   _free_region_list(NULL), _free_region_list_size(0),
1343   _free_regions(0),
1344   _popular_object_boundary(NULL),
1345   _cur_pop_hr_index(0),
1346   _popular_regions_to_be_evacuated(NULL),
1347   _pop_obj_rc_at_copy(),
1348   _full_collection(false),
1349   _unclean_region_list(),
1350   _unclean_regions_coming(false),
1351   _young_list(new YoungList(this)),
1352   _gc_time_stamp(0),
1353   _surviving_young_words(NULL),
1354   _in_cset_fast_test(NULL),
1355   _in_cset_fast_test_base(NULL) {
1356   _g1h = this; // To catch bugs.
1357   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1358     vm_exit_during_initialization("Failed necessary allocation.");
1359   }
1360   int n_queues = MAX2((int)ParallelGCThreads, 1);
1361   _task_queues = new RefToScanQueueSet(n_queues);
1362 
1363   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1364   assert(n_rem_sets > 0, "Invariant.");
1365 
1366   HeapRegionRemSetIterator** iter_arr =
1367     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues);
1368   for (int i = 0; i < n_queues; i++) {
1369     iter_arr[i] = new HeapRegionRemSetIterator();
1370   }
1371   _rem_set_iterator = iter_arr;
1372 
1373   for (int i = 0; i < n_queues; i++) {
1374     RefToScanQueue* q = new RefToScanQueue();
1375     q->initialize();
1376     _task_queues->register_queue(i, q);
1377   }
1378 
1379   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
1380     _gc_alloc_regions[ap]          = NULL;
1381     _gc_alloc_region_counts[ap]    = 0;
1382     _retained_gc_alloc_regions[ap] = NULL;
1383     // by default, we do not retain a GC alloc region for each ap;
1384     // we'll override this, when appropriate, below
1385     _retain_gc_alloc_region[ap]    = false;
1386   }
1387 
1388   // We will try to remember the last half-full tenured region we
1389   // allocated to at the end of a collection so that we can re-use it
1390   // during the next collection.
1391   _retain_gc_alloc_region[GCAllocForTenured]  = true;
1392 
1393   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1394 }
1395 
1396 jint G1CollectedHeap::initialize() {
1397   os::enable_vtime();
1398 
1399   // Necessary to satisfy locking discipline assertions.
1400 
1401   MutexLocker x(Heap_lock);
1402 
1403   // While there are no constraints in the GC code that HeapWordSize
1404   // be any particular value, there are multiple other areas in the
1405   // system which believe this to be true (e.g. oop->object_size in some
1406   // cases incorrectly returns the size in wordSize units rather than
1407   // HeapWordSize).
1408   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1409 
1410   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1411   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1412 
1413   // Ensure that the sizes are properly aligned.
1414   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1415   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1416 
1417   // We allocate this in any case, but only do no work if the command line
1418   // param is off.
1419   _cg1r = new ConcurrentG1Refine();
1420 
1421   // Reserve the maximum.
1422   PermanentGenerationSpec* pgs = collector_policy()->permanent_generation();
1423   // Includes the perm-gen.
1424   ReservedSpace heap_rs(max_byte_size + pgs->max_size(),
1425                         HeapRegion::GrainBytes,
1426                         false /*ism*/);
1427 
1428   if (!heap_rs.is_reserved()) {
1429     vm_exit_during_initialization("Could not reserve enough space for object heap");
1430     return JNI_ENOMEM;
1431   }
1432 
1433   // It is important to do this in a way such that concurrent readers can't
1434   // temporarily think somethings in the heap.  (I've actually seen this
1435   // happen in asserts: DLD.)
1436   _reserved.set_word_size(0);
1437   _reserved.set_start((HeapWord*)heap_rs.base());
1438   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1439 
1440   _expansion_regions = max_byte_size/HeapRegion::GrainBytes;
1441 
1442   _num_humongous_regions = 0;
1443 
1444   // Create the gen rem set (and barrier set) for the entire reserved region.
1445   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1446   set_barrier_set(rem_set()->bs());
1447   if (barrier_set()->is_a(BarrierSet::ModRef)) {
1448     _mr_bs = (ModRefBarrierSet*)_barrier_set;
1449   } else {
1450     vm_exit_during_initialization("G1 requires a mod ref bs.");
1451     return JNI_ENOMEM;
1452   }
1453 
1454   // Also create a G1 rem set.
1455   if (G1UseHRIntoRS) {
1456     if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
1457       _g1_rem_set = new HRInto_G1RemSet(this, (CardTableModRefBS*)mr_bs());
1458     } else {
1459       vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
1460       return JNI_ENOMEM;
1461     }
1462   } else {
1463     _g1_rem_set = new StupidG1RemSet(this);
1464   }
1465 
1466   // Carve out the G1 part of the heap.
1467 
1468   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
1469   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
1470                            g1_rs.size()/HeapWordSize);
1471   ReservedSpace perm_gen_rs = heap_rs.last_part(max_byte_size);
1472 
1473   _perm_gen = pgs->init(perm_gen_rs, pgs->init_size(), rem_set());
1474 
1475   _g1_storage.initialize(g1_rs, 0);
1476   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
1477   _g1_max_committed = _g1_committed;
1478   _hrs = new HeapRegionSeq(_expansion_regions);
1479   guarantee(_hrs != NULL, "Couldn't allocate HeapRegionSeq");
1480   guarantee(_cur_alloc_region == NULL, "from constructor");
1481 
1482   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
1483                                              heap_word_size(init_byte_size));
1484 
1485   _g1h = this;
1486 
1487   // Create the ConcurrentMark data structure and thread.
1488   // (Must do this late, so that "max_regions" is defined.)
1489   _cm       = new ConcurrentMark(heap_rs, (int) max_regions());
1490   _cmThread = _cm->cmThread();
1491 
1492   // ...and the concurrent zero-fill thread, if necessary.
1493   if (G1ConcZeroFill) {
1494     _czft = new ConcurrentZFThread();
1495   }
1496 
1497 
1498 
1499   // Allocate the popular regions; take them off free lists.
1500   size_t pop_byte_size = G1NumPopularRegions * HeapRegion::GrainBytes;
1501   expand(pop_byte_size);
1502   _popular_object_boundary =
1503     _g1_reserved.start() + (G1NumPopularRegions * HeapRegion::GrainWords);
1504   for (int i = 0; i < G1NumPopularRegions; i++) {
1505     HeapRegion* hr = newAllocRegion(HeapRegion::GrainWords);
1506     //    assert(hr != NULL && hr->bottom() < _popular_object_boundary,
1507     //     "Should be enough, and all should be below boundary.");
1508     hr->set_popular(true);
1509   }
1510   assert(_cur_pop_hr_index == 0, "Start allocating at the first region.");
1511 
1512   // Initialize the from_card cache structure of HeapRegionRemSet.
1513   HeapRegionRemSet::init_heap(max_regions());
1514 
1515   // Now expand into the rest of the initial heap size.
1516   expand(init_byte_size - pop_byte_size);
1517 
1518   // Perform any initialization actions delegated to the policy.
1519   g1_policy()->init();
1520 
1521   g1_policy()->note_start_of_mark_thread();
1522 
1523   _refine_cte_cl =
1524     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
1525                                     g1_rem_set(),
1526                                     concurrent_g1_refine());
1527   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
1528 
1529   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1530                                                SATB_Q_FL_lock,
1531                                                0,
1532                                                Shared_SATB_Q_lock);
1533   if (G1RSBarrierUseQueue) {
1534     JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1535                                                   DirtyCardQ_FL_lock,
1536                                                   G1DirtyCardQueueMax,
1537                                                   Shared_DirtyCardQ_lock);
1538   }
1539   if (G1DeferredRSUpdate) {
1540     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1541                                       DirtyCardQ_FL_lock,
1542                                       0,
1543                                       Shared_DirtyCardQ_lock,
1544                                       &JavaThread::dirty_card_queue_set());
1545   }
1546   // In case we're keeping closure specialization stats, initialize those
1547   // counts and that mechanism.
1548   SpecializationStats::clear();
1549 
1550   _gc_alloc_region_list = NULL;
1551 
1552   // Do later initialization work for concurrent refinement.
1553   _cg1r->init();
1554 
1555   const char* group_names[] = { "CR", "ZF", "CM", "CL" };
1556   GCOverheadReporter::initGCOverheadReporter(4, group_names);
1557 
1558   return JNI_OK;
1559 }
1560 
1561 void G1CollectedHeap::ref_processing_init() {
1562   SharedHeap::ref_processing_init();
1563   MemRegion mr = reserved_region();
1564   _ref_processor = ReferenceProcessor::create_ref_processor(
1565                                          mr,    // span
1566                                          false, // Reference discovery is not atomic
1567                                                 // (though it shouldn't matter here.)
1568                                          true,  // mt_discovery
1569                                          NULL,  // is alive closure: need to fill this in for efficiency
1570                                          ParallelGCThreads,
1571                                          ParallelRefProcEnabled,
1572                                          true); // Setting next fields of discovered
1573                                                 // lists requires a barrier.
1574 }
1575 
1576 size_t G1CollectedHeap::capacity() const {
1577   return _g1_committed.byte_size();
1578 }
1579 
1580 void G1CollectedHeap::iterate_dirty_card_closure(bool concurrent,
1581                                                  int worker_i) {
1582   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1583   int n_completed_buffers = 0;
1584   while (dcqs.apply_closure_to_completed_buffer(worker_i, 0, true)) {
1585     n_completed_buffers++;
1586   }
1587   g1_policy()->record_update_rs_processed_buffers(worker_i,
1588                                                   (double) n_completed_buffers);
1589   dcqs.clear_n_completed_buffers();
1590   // Finish up the queue...
1591   if (worker_i == 0) concurrent_g1_refine()->clean_up_cache(worker_i,
1592                                                             g1_rem_set());
1593   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1594 }
1595 
1596 
1597 // Computes the sum of the storage used by the various regions.
1598 
1599 size_t G1CollectedHeap::used() const {
1600   assert(Heap_lock->owner() != NULL,
1601          "Should be owned on this thread's behalf.");
1602   size_t result = _summary_bytes_used;
1603   if (_cur_alloc_region != NULL)
1604     result += _cur_alloc_region->used();
1605   return result;
1606 }
1607 
1608 class SumUsedClosure: public HeapRegionClosure {
1609   size_t _used;
1610 public:
1611   SumUsedClosure() : _used(0) {}
1612   bool doHeapRegion(HeapRegion* r) {
1613     if (!r->continuesHumongous()) {
1614       _used += r->used();
1615     }
1616     return false;
1617   }
1618   size_t result() { return _used; }
1619 };
1620 
1621 size_t G1CollectedHeap::recalculate_used() const {
1622   SumUsedClosure blk;
1623   _hrs->iterate(&blk);
1624   return blk.result();
1625 }
1626 
1627 #ifndef PRODUCT
1628 class SumUsedRegionsClosure: public HeapRegionClosure {
1629   size_t _num;
1630 public:
1631   // _num is set to 1 to account for the popular region
1632   SumUsedRegionsClosure() : _num(G1NumPopularRegions) {}
1633   bool doHeapRegion(HeapRegion* r) {
1634     if (r->continuesHumongous() || r->used() > 0 || r->is_gc_alloc_region()) {
1635       _num += 1;
1636     }
1637     return false;
1638   }
1639   size_t result() { return _num; }
1640 };
1641 
1642 size_t G1CollectedHeap::recalculate_used_regions() const {
1643   SumUsedRegionsClosure blk;
1644   _hrs->iterate(&blk);
1645   return blk.result();
1646 }
1647 #endif // PRODUCT
1648 
1649 size_t G1CollectedHeap::unsafe_max_alloc() {
1650   if (_free_regions > 0) return HeapRegion::GrainBytes;
1651   // otherwise, is there space in the current allocation region?
1652 
1653   // We need to store the current allocation region in a local variable
1654   // here. The problem is that this method doesn't take any locks and
1655   // there may be other threads which overwrite the current allocation
1656   // region field. attempt_allocation(), for example, sets it to NULL
1657   // and this can happen *after* the NULL check here but before the call
1658   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
1659   // to be a problem in the optimized build, since the two loads of the
1660   // current allocation region field are optimized away.
1661   HeapRegion* car = _cur_alloc_region;
1662 
1663   // FIXME: should iterate over all regions?
1664   if (car == NULL) {
1665     return 0;
1666   }
1667   return car->free();
1668 }
1669 
1670 void G1CollectedHeap::collect(GCCause::Cause cause) {
1671   // The caller doesn't have the Heap_lock
1672   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
1673   MutexLocker ml(Heap_lock);
1674   collect_locked(cause);
1675 }
1676 
1677 void G1CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
1678   assert(Thread::current()->is_VM_thread(), "Precondition#1");
1679   assert(Heap_lock->is_locked(), "Precondition#2");
1680   GCCauseSetter gcs(this, cause);
1681   switch (cause) {
1682     case GCCause::_heap_inspection:
1683     case GCCause::_heap_dump: {
1684       HandleMark hm;
1685       do_full_collection(false);         // don't clear all soft refs
1686       break;
1687     }
1688     default: // XXX FIX ME
1689       ShouldNotReachHere(); // Unexpected use of this function
1690   }
1691 }
1692 
1693 
1694 void G1CollectedHeap::collect_locked(GCCause::Cause cause) {
1695   // Don't want to do a GC until cleanup is completed.
1696   wait_for_cleanup_complete();
1697 
1698   // Read the GC count while holding the Heap_lock
1699   int gc_count_before = SharedHeap::heap()->total_collections();
1700   {
1701     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
1702     VM_G1CollectFull op(gc_count_before, cause);
1703     VMThread::execute(&op);
1704   }
1705 }
1706 
1707 bool G1CollectedHeap::is_in(const void* p) const {
1708   if (_g1_committed.contains(p)) {
1709     HeapRegion* hr = _hrs->addr_to_region(p);
1710     return hr->is_in(p);
1711   } else {
1712     return _perm_gen->as_gen()->is_in(p);
1713   }
1714 }
1715 
1716 // Iteration functions.
1717 
1718 // Iterates an OopClosure over all ref-containing fields of objects
1719 // within a HeapRegion.
1720 
1721 class IterateOopClosureRegionClosure: public HeapRegionClosure {
1722   MemRegion _mr;
1723   OopClosure* _cl;
1724 public:
1725   IterateOopClosureRegionClosure(MemRegion mr, OopClosure* cl)
1726     : _mr(mr), _cl(cl) {}
1727   bool doHeapRegion(HeapRegion* r) {
1728     if (! r->continuesHumongous()) {
1729       r->oop_iterate(_cl);
1730     }
1731     return false;
1732   }
1733 };
1734 
1735 void G1CollectedHeap::oop_iterate(OopClosure* cl) {
1736   IterateOopClosureRegionClosure blk(_g1_committed, cl);
1737   _hrs->iterate(&blk);
1738 }
1739 
1740 void G1CollectedHeap::oop_iterate(MemRegion mr, OopClosure* cl) {
1741   IterateOopClosureRegionClosure blk(mr, cl);
1742   _hrs->iterate(&blk);
1743 }
1744 
1745 // Iterates an ObjectClosure over all objects within a HeapRegion.
1746 
1747 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
1748   ObjectClosure* _cl;
1749 public:
1750   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
1751   bool doHeapRegion(HeapRegion* r) {
1752     if (! r->continuesHumongous()) {
1753       r->object_iterate(_cl);
1754     }
1755     return false;
1756   }
1757 };
1758 
1759 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
1760   IterateObjectClosureRegionClosure blk(cl);
1761   _hrs->iterate(&blk);
1762 }
1763 
1764 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
1765   // FIXME: is this right?
1766   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
1767 }
1768 
1769 // Calls a SpaceClosure on a HeapRegion.
1770 
1771 class SpaceClosureRegionClosure: public HeapRegionClosure {
1772   SpaceClosure* _cl;
1773 public:
1774   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
1775   bool doHeapRegion(HeapRegion* r) {
1776     _cl->do_space(r);
1777     return false;
1778   }
1779 };
1780 
1781 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
1782   SpaceClosureRegionClosure blk(cl);
1783   _hrs->iterate(&blk);
1784 }
1785 
1786 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) {
1787   _hrs->iterate(cl);
1788 }
1789 
1790 void G1CollectedHeap::heap_region_iterate_from(HeapRegion* r,
1791                                                HeapRegionClosure* cl) {
1792   _hrs->iterate_from(r, cl);
1793 }
1794 
1795 void
1796 G1CollectedHeap::heap_region_iterate_from(int idx, HeapRegionClosure* cl) {
1797   _hrs->iterate_from(idx, cl);
1798 }
1799 
1800 HeapRegion* G1CollectedHeap::region_at(size_t idx) { return _hrs->at(idx); }
1801 
1802 void
1803 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
1804                                                  int worker,
1805                                                  jint claim_value) {
1806   const size_t regions = n_regions();
1807   const size_t worker_num = (ParallelGCThreads > 0 ? ParallelGCThreads : 1);
1808   // try to spread out the starting points of the workers
1809   const size_t start_index = regions / worker_num * (size_t) worker;
1810 
1811   // each worker will actually look at all regions
1812   for (size_t count = 0; count < regions; ++count) {
1813     const size_t index = (start_index + count) % regions;
1814     assert(0 <= index && index < regions, "sanity");
1815     HeapRegion* r = region_at(index);
1816     // we'll ignore "continues humongous" regions (we'll process them
1817     // when we come across their corresponding "start humongous"
1818     // region) and regions already claimed
1819     if (r->claim_value() == claim_value || r->continuesHumongous()) {
1820       continue;
1821     }
1822     // OK, try to claim it
1823     if (r->claimHeapRegion(claim_value)) {
1824       // success!
1825       assert(!r->continuesHumongous(), "sanity");
1826       if (r->startsHumongous()) {
1827         // If the region is "starts humongous" we'll iterate over its
1828         // "continues humongous" first; in fact we'll do them
1829         // first. The order is important. In on case, calling the
1830         // closure on the "starts humongous" region might de-allocate
1831         // and clear all its "continues humongous" regions and, as a
1832         // result, we might end up processing them twice. So, we'll do
1833         // them first (notice: most closures will ignore them anyway) and
1834         // then we'll do the "starts humongous" region.
1835         for (size_t ch_index = index + 1; ch_index < regions; ++ch_index) {
1836           HeapRegion* chr = region_at(ch_index);
1837 
1838           // if the region has already been claimed or it's not
1839           // "continues humongous" we're done
1840           if (chr->claim_value() == claim_value ||
1841               !chr->continuesHumongous()) {
1842             break;
1843           }
1844 
1845           // Noone should have claimed it directly. We can given
1846           // that we claimed its "starts humongous" region.
1847           assert(chr->claim_value() != claim_value, "sanity");
1848           assert(chr->humongous_start_region() == r, "sanity");
1849 
1850           if (chr->claimHeapRegion(claim_value)) {
1851             // we should always be able to claim it; noone else should
1852             // be trying to claim this region
1853 
1854             bool res2 = cl->doHeapRegion(chr);
1855             assert(!res2, "Should not abort");
1856 
1857             // Right now, this holds (i.e., no closure that actually
1858             // does something with "continues humongous" regions
1859             // clears them). We might have to weaken it in the future,
1860             // but let's leave these two asserts here for extra safety.
1861             assert(chr->continuesHumongous(), "should still be the case");
1862             assert(chr->humongous_start_region() == r, "sanity");
1863           } else {
1864             guarantee(false, "we should not reach here");
1865           }
1866         }
1867       }
1868 
1869       assert(!r->continuesHumongous(), "sanity");
1870       bool res = cl->doHeapRegion(r);
1871       assert(!res, "Should not abort");
1872     }
1873   }
1874 }
1875 
1876 class ResetClaimValuesClosure: public HeapRegionClosure {
1877 public:
1878   bool doHeapRegion(HeapRegion* r) {
1879     r->set_claim_value(HeapRegion::InitialClaimValue);
1880     return false;
1881   }
1882 };
1883 
1884 void
1885 G1CollectedHeap::reset_heap_region_claim_values() {
1886   ResetClaimValuesClosure blk;
1887   heap_region_iterate(&blk);
1888 }
1889 
1890 #ifdef ASSERT
1891 // This checks whether all regions in the heap have the correct claim
1892 // value. I also piggy-backed on this a check to ensure that the
1893 // humongous_start_region() information on "continues humongous"
1894 // regions is correct.
1895 
1896 class CheckClaimValuesClosure : public HeapRegionClosure {
1897 private:
1898   jint _claim_value;
1899   size_t _failures;
1900   HeapRegion* _sh_region;
1901 public:
1902   CheckClaimValuesClosure(jint claim_value) :
1903     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
1904   bool doHeapRegion(HeapRegion* r) {
1905     if (r->claim_value() != _claim_value) {
1906       gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
1907                              "claim value = %d, should be %d",
1908                              r->bottom(), r->end(), r->claim_value(),
1909                              _claim_value);
1910       ++_failures;
1911     }
1912     if (!r->isHumongous()) {
1913       _sh_region = NULL;
1914     } else if (r->startsHumongous()) {
1915       _sh_region = r;
1916     } else if (r->continuesHumongous()) {
1917       if (r->humongous_start_region() != _sh_region) {
1918         gclog_or_tty->print_cr("Region ["PTR_FORMAT","PTR_FORMAT"), "
1919                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
1920                                r->bottom(), r->end(),
1921                                r->humongous_start_region(),
1922                                _sh_region);
1923         ++_failures;
1924       }
1925     }
1926     return false;
1927   }
1928   size_t failures() {
1929     return _failures;
1930   }
1931 };
1932 
1933 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
1934   CheckClaimValuesClosure cl(claim_value);
1935   heap_region_iterate(&cl);
1936   return cl.failures() == 0;
1937 }
1938 #endif // ASSERT
1939 
1940 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
1941   HeapRegion* r = g1_policy()->collection_set();
1942   while (r != NULL) {
1943     HeapRegion* next = r->next_in_collection_set();
1944     if (cl->doHeapRegion(r)) {
1945       cl->incomplete();
1946       return;
1947     }
1948     r = next;
1949   }
1950 }
1951 
1952 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
1953                                                   HeapRegionClosure *cl) {
1954   assert(r->in_collection_set(),
1955          "Start region must be a member of the collection set.");
1956   HeapRegion* cur = r;
1957   while (cur != NULL) {
1958     HeapRegion* next = cur->next_in_collection_set();
1959     if (cl->doHeapRegion(cur) && false) {
1960       cl->incomplete();
1961       return;
1962     }
1963     cur = next;
1964   }
1965   cur = g1_policy()->collection_set();
1966   while (cur != r) {
1967     HeapRegion* next = cur->next_in_collection_set();
1968     if (cl->doHeapRegion(cur) && false) {
1969       cl->incomplete();
1970       return;
1971     }
1972     cur = next;
1973   }
1974 }
1975 
1976 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
1977   return _hrs->length() > 0 ? _hrs->at(0) : NULL;
1978 }
1979 
1980 
1981 Space* G1CollectedHeap::space_containing(const void* addr) const {
1982   Space* res = heap_region_containing(addr);
1983   if (res == NULL)
1984     res = perm_gen()->space_containing(addr);
1985   return res;
1986 }
1987 
1988 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
1989   Space* sp = space_containing(addr);
1990   if (sp != NULL) {
1991     return sp->block_start(addr);
1992   }
1993   return NULL;
1994 }
1995 
1996 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
1997   Space* sp = space_containing(addr);
1998   assert(sp != NULL, "block_size of address outside of heap");
1999   return sp->block_size(addr);
2000 }
2001 
2002 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2003   Space* sp = space_containing(addr);
2004   return sp->block_is_obj(addr);
2005 }
2006 
2007 bool G1CollectedHeap::supports_tlab_allocation() const {
2008   return true;
2009 }
2010 
2011 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2012   return HeapRegion::GrainBytes;
2013 }
2014 
2015 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2016   // Return the remaining space in the cur alloc region, but not less than
2017   // the min TLAB size.
2018   // Also, no more than half the region size, since we can't allow tlabs to
2019   // grow big enough to accomodate humongous objects.
2020 
2021   // We need to story it locally, since it might change between when we
2022   // test for NULL and when we use it later.
2023   ContiguousSpace* cur_alloc_space = _cur_alloc_region;
2024   if (cur_alloc_space == NULL) {
2025     return HeapRegion::GrainBytes/2;
2026   } else {
2027     return MAX2(MIN2(cur_alloc_space->free(),
2028                      (size_t)(HeapRegion::GrainBytes/2)),
2029                 (size_t)MinTLABSize);
2030   }
2031 }
2032 
2033 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t size) {
2034   bool dummy;
2035   return G1CollectedHeap::mem_allocate(size, false, true, &dummy);
2036 }
2037 
2038 bool G1CollectedHeap::allocs_are_zero_filled() {
2039   return false;
2040 }
2041 
2042 size_t G1CollectedHeap::large_typearray_limit() {
2043   // FIXME
2044   return HeapRegion::GrainBytes/HeapWordSize;
2045 }
2046 
2047 size_t G1CollectedHeap::max_capacity() const {
2048   return _g1_committed.byte_size();
2049 }
2050 
2051 jlong G1CollectedHeap::millis_since_last_gc() {
2052   // assert(false, "NYI");
2053   return 0;
2054 }
2055 
2056 
2057 void G1CollectedHeap::prepare_for_verify() {
2058   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2059     ensure_parsability(false);
2060   }
2061   g1_rem_set()->prepare_for_verify();
2062 }
2063 
2064 class VerifyLivenessOopClosure: public OopClosure {
2065   G1CollectedHeap* g1h;
2066 public:
2067   VerifyLivenessOopClosure(G1CollectedHeap* _g1h) {
2068     g1h = _g1h;
2069   }
2070   void do_oop(narrowOop *p) {
2071     guarantee(false, "NYI");
2072   }
2073   void do_oop(oop *p) {
2074     oop obj = *p;
2075     assert(obj == NULL || !g1h->is_obj_dead(obj),
2076            "Dead object referenced by a not dead object");
2077   }
2078 };
2079 
2080 class VerifyObjsInRegionClosure: public ObjectClosure {
2081   G1CollectedHeap* _g1h;
2082   size_t _live_bytes;
2083   HeapRegion *_hr;
2084 public:
2085   VerifyObjsInRegionClosure(HeapRegion *hr) : _live_bytes(0), _hr(hr) {
2086     _g1h = G1CollectedHeap::heap();
2087   }
2088   void do_object(oop o) {
2089     VerifyLivenessOopClosure isLive(_g1h);
2090     assert(o != NULL, "Huh?");
2091     if (!_g1h->is_obj_dead(o)) {
2092       o->oop_iterate(&isLive);
2093       if (!_hr->obj_allocated_since_prev_marking(o))
2094         _live_bytes += (o->size() * HeapWordSize);
2095     }
2096   }
2097   size_t live_bytes() { return _live_bytes; }
2098 };
2099 
2100 class PrintObjsInRegionClosure : public ObjectClosure {
2101   HeapRegion *_hr;
2102   G1CollectedHeap *_g1;
2103 public:
2104   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
2105     _g1 = G1CollectedHeap::heap();
2106   };
2107 
2108   void do_object(oop o) {
2109     if (o != NULL) {
2110       HeapWord *start = (HeapWord *) o;
2111       size_t word_sz = o->size();
2112       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
2113                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
2114                           (void*) o, word_sz,
2115                           _g1->isMarkedPrev(o),
2116                           _g1->isMarkedNext(o),
2117                           _hr->obj_allocated_since_prev_marking(o));
2118       HeapWord *end = start + word_sz;
2119       HeapWord *cur;
2120       int *val;
2121       for (cur = start; cur < end; cur++) {
2122         val = (int *) cur;
2123         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
2124       }
2125     }
2126   }
2127 };
2128 
2129 class VerifyRegionClosure: public HeapRegionClosure {
2130 public:
2131   bool _allow_dirty;
2132   bool _par;
2133   VerifyRegionClosure(bool allow_dirty, bool par = false)
2134     : _allow_dirty(allow_dirty), _par(par) {}
2135   bool doHeapRegion(HeapRegion* r) {
2136     guarantee(_par || r->claim_value() == HeapRegion::InitialClaimValue,
2137               "Should be unclaimed at verify points.");
2138     if (r->isHumongous()) {
2139       if (r->startsHumongous()) {
2140         // Verify the single H object.
2141         oop(r->bottom())->verify();
2142         size_t word_sz = oop(r->bottom())->size();
2143         guarantee(r->top() == r->bottom() + word_sz,
2144                   "Only one object in a humongous region");
2145       }
2146     } else {
2147       VerifyObjsInRegionClosure not_dead_yet_cl(r);
2148       r->verify(_allow_dirty);
2149       r->object_iterate(&not_dead_yet_cl);
2150       guarantee(r->max_live_bytes() >= not_dead_yet_cl.live_bytes(),
2151                 "More live objects than counted in last complete marking.");
2152     }
2153     return false;
2154   }
2155 };
2156 
2157 class VerifyRootsClosure: public OopsInGenClosure {
2158 private:
2159   G1CollectedHeap* _g1h;
2160   bool             _failures;
2161 
2162 public:
2163   VerifyRootsClosure() :
2164     _g1h(G1CollectedHeap::heap()), _failures(false) { }
2165 
2166   bool failures() { return _failures; }
2167 
2168   void do_oop(narrowOop* p) {
2169     guarantee(false, "NYI");
2170   }
2171 
2172   void do_oop(oop* p) {
2173     oop obj = *p;
2174     if (obj != NULL) {
2175       if (_g1h->is_obj_dead(obj)) {
2176         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2177                                "points to dead obj "PTR_FORMAT, p, (void*) obj);
2178         obj->print_on(gclog_or_tty);
2179         _failures = true;
2180       }
2181     }
2182   }
2183 };
2184 
2185 // This is the task used for parallel heap verification.
2186 
2187 class G1ParVerifyTask: public AbstractGangTask {
2188 private:
2189   G1CollectedHeap* _g1h;
2190   bool _allow_dirty;
2191 
2192 public:
2193   G1ParVerifyTask(G1CollectedHeap* g1h, bool allow_dirty) :
2194     AbstractGangTask("Parallel verify task"),
2195     _g1h(g1h), _allow_dirty(allow_dirty) { }
2196 
2197   void work(int worker_i) {
2198     VerifyRegionClosure blk(_allow_dirty, true);
2199     _g1h->heap_region_par_iterate_chunked(&blk, worker_i,
2200                                           HeapRegion::ParVerifyClaimValue);
2201   }
2202 };
2203 
2204 void G1CollectedHeap::verify(bool allow_dirty, bool silent) {
2205   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2206     if (!silent) { gclog_or_tty->print("roots "); }
2207     VerifyRootsClosure rootsCl;
2208     process_strong_roots(false,
2209                          SharedHeap::SO_AllClasses,
2210                          &rootsCl,
2211                          &rootsCl);
2212     rem_set()->invalidate(perm_gen()->used_region(), false);
2213     if (!silent) { gclog_or_tty->print("heapRegions "); }
2214     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
2215       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2216              "sanity check");
2217 
2218       G1ParVerifyTask task(this, allow_dirty);
2219       int n_workers = workers()->total_workers();
2220       set_par_threads(n_workers);
2221       workers()->run_task(&task);
2222       set_par_threads(0);
2223 
2224       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
2225              "sanity check");
2226 
2227       reset_heap_region_claim_values();
2228 
2229       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
2230              "sanity check");
2231     } else {
2232       VerifyRegionClosure blk(allow_dirty);
2233       _hrs->iterate(&blk);
2234     }
2235     if (!silent) gclog_or_tty->print("remset ");
2236     rem_set()->verify();
2237     guarantee(!rootsCl.failures(), "should not have had failures");
2238   } else {
2239     if (!silent) gclog_or_tty->print("(SKIPPING roots, heapRegions, remset) ");
2240   }
2241 }
2242 
2243 class PrintRegionClosure: public HeapRegionClosure {
2244   outputStream* _st;
2245 public:
2246   PrintRegionClosure(outputStream* st) : _st(st) {}
2247   bool doHeapRegion(HeapRegion* r) {
2248     r->print_on(_st);
2249     return false;
2250   }
2251 };
2252 
2253 void G1CollectedHeap::print() const { print_on(gclog_or_tty); }
2254 
2255 void G1CollectedHeap::print_on(outputStream* st) const {
2256   PrintRegionClosure blk(st);
2257   _hrs->iterate(&blk);
2258 }
2259 
2260 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2261   if (ParallelGCThreads > 0) {
2262     workers()->print_worker_threads();
2263   }
2264   st->print("\"G1 concurrent mark GC Thread\" ");
2265   _cmThread->print();
2266   st->cr();
2267   st->print("\"G1 concurrent refinement GC Thread\" ");
2268   _cg1r->cg1rThread()->print_on(st);
2269   st->cr();
2270   st->print("\"G1 zero-fill GC Thread\" ");
2271   _czft->print_on(st);
2272   st->cr();
2273 }
2274 
2275 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2276   if (ParallelGCThreads > 0) {
2277     workers()->threads_do(tc);
2278   }
2279   tc->do_thread(_cmThread);
2280   tc->do_thread(_cg1r->cg1rThread());
2281   tc->do_thread(_czft);
2282 }
2283 
2284 void G1CollectedHeap::print_tracing_info() const {
2285   concurrent_g1_refine()->print_final_card_counts();
2286 
2287   // We'll overload this to mean "trace GC pause statistics."
2288   if (TraceGen0Time || TraceGen1Time) {
2289     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
2290     // to that.
2291     g1_policy()->print_tracing_info();
2292   }
2293   if (SummarizeG1RSStats) {
2294     g1_rem_set()->print_summary_info();
2295   }
2296   if (SummarizeG1ConcMark) {
2297     concurrent_mark()->print_summary_info();
2298   }
2299   if (SummarizeG1ZFStats) {
2300     ConcurrentZFThread::print_summary_info();
2301   }
2302   if (G1SummarizePopularity) {
2303     print_popularity_summary_info();
2304   }
2305   g1_policy()->print_yg_surv_rate_info();
2306 
2307   GCOverheadReporter::printGCOverhead();
2308 
2309   SpecializationStats::print();
2310 }
2311 
2312 
2313 int G1CollectedHeap::addr_to_arena_id(void* addr) const {
2314   HeapRegion* hr = heap_region_containing(addr);
2315   if (hr == NULL) {
2316     return 0;
2317   } else {
2318     return 1;
2319   }
2320 }
2321 
2322 G1CollectedHeap* G1CollectedHeap::heap() {
2323   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
2324          "not a garbage-first heap");
2325   return _g1h;
2326 }
2327 
2328 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2329   if (PrintHeapAtGC){
2330     gclog_or_tty->print_cr(" {Heap before GC collections=%d:", total_collections());
2331     Universe::print();
2332   }
2333   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2334   // Call allocation profiler
2335   AllocationProfiler::iterate_since_last_gc();
2336   // Fill TLAB's and such
2337   ensure_parsability(true);
2338 }
2339 
2340 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
2341   // FIXME: what is this about?
2342   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2343   // is set.
2344   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
2345                         "derived pointer present"));
2346 
2347   if (PrintHeapAtGC){
2348     gclog_or_tty->print_cr(" Heap after GC collections=%d:", total_collections());
2349     Universe::print();
2350     gclog_or_tty->print("} ");
2351   }
2352 }
2353 
2354 void G1CollectedHeap::do_collection_pause() {
2355   // Read the GC count while holding the Heap_lock
2356   // we need to do this _before_ wait_for_cleanup_complete(), to
2357   // ensure that we do not give up the heap lock and potentially
2358   // pick up the wrong count
2359   int gc_count_before = SharedHeap::heap()->total_collections();
2360 
2361   // Don't want to do a GC pause while cleanup is being completed!
2362   wait_for_cleanup_complete();
2363 
2364   g1_policy()->record_stop_world_start();
2365   {
2366     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
2367     VM_G1IncCollectionPause op(gc_count_before);
2368     VMThread::execute(&op);
2369   }
2370 }
2371 
2372 void
2373 G1CollectedHeap::doConcurrentMark() {
2374   if (G1ConcMark) {
2375     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2376     if (!_cmThread->in_progress()) {
2377       _cmThread->set_started();
2378       CGC_lock->notify();
2379     }
2380   }
2381 }
2382 
2383 class VerifyMarkedObjsClosure: public ObjectClosure {
2384     G1CollectedHeap* _g1h;
2385     public:
2386     VerifyMarkedObjsClosure(G1CollectedHeap* g1h) : _g1h(g1h) {}
2387     void do_object(oop obj) {
2388       assert(obj->mark()->is_marked() ? !_g1h->is_obj_dead(obj) : true,
2389              "markandsweep mark should agree with concurrent deadness");
2390     }
2391 };
2392 
2393 void
2394 G1CollectedHeap::checkConcurrentMark() {
2395     VerifyMarkedObjsClosure verifycl(this);
2396     //    MutexLockerEx x(getMarkBitMapLock(),
2397     //              Mutex::_no_safepoint_check_flag);
2398     object_iterate(&verifycl);
2399 }
2400 
2401 void G1CollectedHeap::do_sync_mark() {
2402   _cm->checkpointRootsInitial();
2403   _cm->markFromRoots();
2404   _cm->checkpointRootsFinal(false);
2405 }
2406 
2407 // <NEW PREDICTION>
2408 
2409 double G1CollectedHeap::predict_region_elapsed_time_ms(HeapRegion *hr,
2410                                                        bool young) {
2411   return _g1_policy->predict_region_elapsed_time_ms(hr, young);
2412 }
2413 
2414 void G1CollectedHeap::check_if_region_is_too_expensive(double
2415                                                            predicted_time_ms) {
2416   _g1_policy->check_if_region_is_too_expensive(predicted_time_ms);
2417 }
2418 
2419 size_t G1CollectedHeap::pending_card_num() {
2420   size_t extra_cards = 0;
2421   JavaThread *curr = Threads::first();
2422   while (curr != NULL) {
2423     DirtyCardQueue& dcq = curr->dirty_card_queue();
2424     extra_cards += dcq.size();
2425     curr = curr->next();
2426   }
2427   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2428   size_t buffer_size = dcqs.buffer_size();
2429   size_t buffer_num = dcqs.completed_buffers_num();
2430   return buffer_size * buffer_num + extra_cards;
2431 }
2432 
2433 size_t G1CollectedHeap::max_pending_card_num() {
2434   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2435   size_t buffer_size = dcqs.buffer_size();
2436   size_t buffer_num  = dcqs.completed_buffers_num();
2437   int thread_num  = Threads::number_of_threads();
2438   return (buffer_num + thread_num) * buffer_size;
2439 }
2440 
2441 size_t G1CollectedHeap::cards_scanned() {
2442   HRInto_G1RemSet* g1_rset = (HRInto_G1RemSet*) g1_rem_set();
2443   return g1_rset->cardsScanned();
2444 }
2445 
2446 void
2447 G1CollectedHeap::setup_surviving_young_words() {
2448   guarantee( _surviving_young_words == NULL, "pre-condition" );
2449   size_t array_length = g1_policy()->young_cset_length();
2450   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, array_length);
2451   if (_surviving_young_words == NULL) {
2452     vm_exit_out_of_memory(sizeof(size_t) * array_length,
2453                           "Not enough space for young surv words summary.");
2454   }
2455   memset(_surviving_young_words, 0, array_length * sizeof(size_t));
2456   for (size_t i = 0;  i < array_length; ++i) {
2457     guarantee( _surviving_young_words[i] == 0, "invariant" );
2458   }
2459 }
2460 
2461 void
2462 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
2463   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
2464   size_t array_length = g1_policy()->young_cset_length();
2465   for (size_t i = 0; i < array_length; ++i)
2466     _surviving_young_words[i] += surv_young_words[i];
2467 }
2468 
2469 void
2470 G1CollectedHeap::cleanup_surviving_young_words() {
2471   guarantee( _surviving_young_words != NULL, "pre-condition" );
2472   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
2473   _surviving_young_words = NULL;
2474 }
2475 
2476 // </NEW PREDICTION>
2477 
2478 void
2479 G1CollectedHeap::do_collection_pause_at_safepoint(HeapRegion* popular_region) {
2480   char verbose_str[128];
2481   sprintf(verbose_str, "GC pause ");
2482   if (popular_region != NULL)
2483     strcat(verbose_str, "(popular)");
2484   else if (g1_policy()->in_young_gc_mode()) {
2485     if (g1_policy()->full_young_gcs())
2486       strcat(verbose_str, "(young)");
2487     else
2488       strcat(verbose_str, "(partial)");
2489   }
2490   bool reset_should_initiate_conc_mark = false;
2491   if (popular_region != NULL && g1_policy()->should_initiate_conc_mark()) {
2492     // we currently do not allow an initial mark phase to be piggy-backed
2493     // on a popular pause
2494     reset_should_initiate_conc_mark = true;
2495     g1_policy()->unset_should_initiate_conc_mark();
2496   }
2497   if (g1_policy()->should_initiate_conc_mark())
2498     strcat(verbose_str, " (initial-mark)");
2499 
2500   GCCauseSetter x(this, (popular_region == NULL ?
2501                          GCCause::_g1_inc_collection_pause :
2502                          GCCause::_g1_pop_region_collection_pause));
2503 
2504   // if PrintGCDetails is on, we'll print long statistics information
2505   // in the collector policy code, so let's not print this as the output
2506   // is messy if we do.
2507   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
2508   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
2509   TraceTime t(verbose_str, PrintGC && !PrintGCDetails, true, gclog_or_tty);
2510 
2511   ResourceMark rm;
2512   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
2513   assert(Thread::current() == VMThread::vm_thread(), "should be in vm thread");
2514   guarantee(!is_gc_active(), "collection is not reentrant");
2515   assert(regions_accounted_for(), "Region leakage!");
2516 
2517   increment_gc_time_stamp();
2518 
2519   if (g1_policy()->in_young_gc_mode()) {
2520     assert(check_young_list_well_formed(),
2521                 "young list should be well formed");
2522   }
2523 
2524   if (GC_locker::is_active()) {
2525     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
2526   }
2527 
2528   bool abandoned = false;
2529   { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2530     IsGCActiveMark x;
2531 
2532     gc_prologue(false);
2533     increment_total_collections();
2534 
2535 #if G1_REM_SET_LOGGING
2536     gclog_or_tty->print_cr("\nJust chose CS, heap:");
2537     print();
2538 #endif
2539 
2540     if (VerifyBeforeGC && total_collections() >= VerifyGCStartAt) {
2541       HandleMark hm;  // Discard invalid handles created during verification
2542       prepare_for_verify();
2543       gclog_or_tty->print(" VerifyBeforeGC:");
2544       Universe::verify(false);
2545     }
2546 
2547     COMPILER2_PRESENT(DerivedPointerTable::clear());
2548 
2549     // We want to turn off ref discovery, if necessary, and turn it back on
2550     // on again later if we do.
2551     bool was_enabled = ref_processor()->discovery_enabled();
2552     if (was_enabled) ref_processor()->disable_discovery();
2553 
2554     // Forget the current alloc region (we might even choose it to be part
2555     // of the collection set!).
2556     abandon_cur_alloc_region();
2557 
2558     // The elapsed time induced by the start time below deliberately elides
2559     // the possible verification above.
2560     double start_time_sec = os::elapsedTime();
2561     GCOverheadReporter::recordSTWStart(start_time_sec);
2562     size_t start_used_bytes = used();
2563     if (!G1ConcMark) {
2564       do_sync_mark();
2565     }
2566 
2567     g1_policy()->record_collection_pause_start(start_time_sec,
2568                                                start_used_bytes);
2569 
2570     guarantee(_in_cset_fast_test == NULL, "invariant");
2571     guarantee(_in_cset_fast_test_base == NULL, "invariant");
2572     _in_cset_fast_test_length = max_regions();
2573     _in_cset_fast_test_base =
2574                              NEW_C_HEAP_ARRAY(bool, _in_cset_fast_test_length);
2575     memset(_in_cset_fast_test_base, false,
2576                                      _in_cset_fast_test_length * sizeof(bool));
2577     // We're biasing _in_cset_fast_test to avoid subtracting the
2578     // beginning of the heap every time we want to index; basically
2579     // it's the same with what we do with the card table.
2580     _in_cset_fast_test = _in_cset_fast_test_base -
2581               ((size_t) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2582 
2583 #if SCAN_ONLY_VERBOSE
2584     _young_list->print();
2585 #endif // SCAN_ONLY_VERBOSE
2586 
2587     if (g1_policy()->should_initiate_conc_mark()) {
2588       concurrent_mark()->checkpointRootsInitialPre();
2589     }
2590     save_marks();
2591 
2592     // We must do this before any possible evacuation that should propagate
2593     // marks, including evacuation of popular objects in a popular pause.
2594     if (mark_in_progress()) {
2595       double start_time_sec = os::elapsedTime();
2596 
2597       _cm->drainAllSATBBuffers();
2598       double finish_mark_ms = (os::elapsedTime() - start_time_sec) * 1000.0;
2599       g1_policy()->record_satb_drain_time(finish_mark_ms);
2600 
2601     }
2602     // Record the number of elements currently on the mark stack, so we
2603     // only iterate over these.  (Since evacuation may add to the mark
2604     // stack, doing more exposes race conditions.)  If no mark is in
2605     // progress, this will be zero.
2606     _cm->set_oops_do_bound();
2607 
2608     assert(regions_accounted_for(), "Region leakage.");
2609 
2610     bool abandoned = false;
2611 
2612     if (mark_in_progress())
2613       concurrent_mark()->newCSet();
2614 
2615     // Now choose the CS.
2616     if (popular_region == NULL) {
2617       g1_policy()->choose_collection_set();
2618     } else {
2619       // We may be evacuating a single region (for popularity).
2620       g1_policy()->record_popular_pause_preamble_start();
2621       popularity_pause_preamble(popular_region);
2622       g1_policy()->record_popular_pause_preamble_end();
2623       abandoned = (g1_policy()->collection_set() == NULL);
2624       // Now we allow more regions to be added (we have to collect
2625       // all popular regions).
2626       if (!abandoned) {
2627         g1_policy()->choose_collection_set(popular_region);
2628       }
2629     }
2630     // We may abandon a pause if we find no region that will fit in the MMU
2631     // pause.
2632     abandoned = (g1_policy()->collection_set() == NULL);
2633 
2634     // Nothing to do if we were unable to choose a collection set.
2635     if (!abandoned) {
2636 #if G1_REM_SET_LOGGING
2637       gclog_or_tty->print_cr("\nAfter pause, heap:");
2638       print();
2639 #endif
2640 
2641       setup_surviving_young_words();
2642 
2643       // Set up the gc allocation regions.
2644       get_gc_alloc_regions();
2645 
2646       // Actually do the work...
2647       evacuate_collection_set();
2648       free_collection_set(g1_policy()->collection_set());
2649       g1_policy()->clear_collection_set();
2650 
2651       FREE_C_HEAP_ARRAY(bool, _in_cset_fast_test_base);
2652       // this is more for peace of mind; we're nulling them here and
2653       // we're expecting them to be null at the beginning of the next GC
2654       _in_cset_fast_test = NULL;
2655       _in_cset_fast_test_base = NULL;
2656 
2657       if (popular_region != NULL) {
2658         // We have to wait until now, because we don't want the region to
2659         // be rescheduled for pop-evac during RS update.
2660         popular_region->set_popular_pending(false);
2661       }
2662 
2663       release_gc_alloc_regions(false /* totally */);
2664 
2665       cleanup_surviving_young_words();
2666 
2667       if (g1_policy()->in_young_gc_mode()) {
2668         _young_list->reset_sampled_info();
2669         assert(check_young_list_empty(true),
2670                "young list should be empty");
2671 
2672 #if SCAN_ONLY_VERBOSE
2673         _young_list->print();
2674 #endif // SCAN_ONLY_VERBOSE
2675 
2676         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
2677                                              _young_list->first_survivor_region(),
2678                                              _young_list->last_survivor_region());
2679         _young_list->reset_auxilary_lists();
2680       }
2681     } else {
2682       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
2683     }
2684 
2685     if (evacuation_failed()) {
2686       _summary_bytes_used = recalculate_used();
2687     } else {
2688       // The "used" of the the collection set have already been subtracted
2689       // when they were freed.  Add in the bytes evacuated.
2690       _summary_bytes_used += g1_policy()->bytes_in_to_space();
2691     }
2692 
2693     if (g1_policy()->in_young_gc_mode() &&
2694         g1_policy()->should_initiate_conc_mark()) {
2695       concurrent_mark()->checkpointRootsInitialPost();
2696       set_marking_started();
2697       doConcurrentMark();
2698     }
2699 
2700 #if SCAN_ONLY_VERBOSE
2701     _young_list->print();
2702 #endif // SCAN_ONLY_VERBOSE
2703 
2704     double end_time_sec = os::elapsedTime();
2705     double pause_time_ms = (end_time_sec - start_time_sec) * MILLIUNITS;
2706     g1_policy()->record_pause_time_ms(pause_time_ms);
2707     GCOverheadReporter::recordSTWEnd(end_time_sec);
2708     g1_policy()->record_collection_pause_end(popular_region != NULL,
2709                                              abandoned);
2710 
2711     assert(regions_accounted_for(), "Region leakage.");
2712 
2713     if (VerifyAfterGC && total_collections() >= VerifyGCStartAt) {
2714       HandleMark hm;  // Discard invalid handles created during verification
2715       gclog_or_tty->print(" VerifyAfterGC:");
2716       Universe::verify(false);
2717     }
2718 
2719     if (was_enabled) ref_processor()->enable_discovery();
2720 
2721     {
2722       size_t expand_bytes = g1_policy()->expansion_amount();
2723       if (expand_bytes > 0) {
2724         size_t bytes_before = capacity();
2725         expand(expand_bytes);
2726       }
2727     }
2728 
2729     if (mark_in_progress()) {
2730       concurrent_mark()->update_g1_committed();
2731     }
2732 
2733 #ifdef TRACESPINNING
2734     ParallelTaskTerminator::print_termination_counts();
2735 #endif
2736 
2737     gc_epilogue(false);
2738   }
2739 
2740   assert(verify_region_lists(), "Bad region lists.");
2741 
2742   if (reset_should_initiate_conc_mark)
2743     g1_policy()->set_should_initiate_conc_mark();
2744 
2745   if (ExitAfterGCNum > 0 && total_collections() == ExitAfterGCNum) {
2746     gclog_or_tty->print_cr("Stopping after GC #%d", ExitAfterGCNum);
2747     print_tracing_info();
2748     vm_exit(-1);
2749   }
2750 }
2751 
2752 void G1CollectedHeap::set_gc_alloc_region(int purpose, HeapRegion* r) {
2753   assert(purpose >= 0 && purpose < GCAllocPurposeCount, "invalid purpose");
2754   // make sure we don't call set_gc_alloc_region() multiple times on
2755   // the same region
2756   assert(r == NULL || !r->is_gc_alloc_region(),
2757          "shouldn't already be a GC alloc region");
2758   HeapWord* original_top = NULL;
2759   if (r != NULL)
2760     original_top = r->top();
2761 
2762   // We will want to record the used space in r as being there before gc.
2763   // One we install it as a GC alloc region it's eligible for allocation.
2764   // So record it now and use it later.
2765   size_t r_used = 0;
2766   if (r != NULL) {
2767     r_used = r->used();
2768 
2769     if (ParallelGCThreads > 0) {
2770       // need to take the lock to guard against two threads calling
2771       // get_gc_alloc_region concurrently (very unlikely but...)
2772       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
2773       r->save_marks();
2774     }
2775   }
2776   HeapRegion* old_alloc_region = _gc_alloc_regions[purpose];
2777   _gc_alloc_regions[purpose] = r;
2778   if (old_alloc_region != NULL) {
2779     // Replace aliases too.
2780     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2781       if (_gc_alloc_regions[ap] == old_alloc_region) {
2782         _gc_alloc_regions[ap] = r;
2783       }
2784     }
2785   }
2786   if (r != NULL) {
2787     push_gc_alloc_region(r);
2788     if (mark_in_progress() && original_top != r->next_top_at_mark_start()) {
2789       // We are using a region as a GC alloc region after it has been used
2790       // as a mutator allocation region during the current marking cycle.
2791       // The mutator-allocated objects are currently implicitly marked, but
2792       // when we move hr->next_top_at_mark_start() forward at the the end
2793       // of the GC pause, they won't be.  We therefore mark all objects in
2794       // the "gap".  We do this object-by-object, since marking densely
2795       // does not currently work right with marking bitmap iteration.  This
2796       // means we rely on TLAB filling at the start of pauses, and no
2797       // "resuscitation" of filled TLAB's.  If we want to do this, we need
2798       // to fix the marking bitmap iteration.
2799       HeapWord* curhw = r->next_top_at_mark_start();
2800       HeapWord* t = original_top;
2801 
2802       while (curhw < t) {
2803         oop cur = (oop)curhw;
2804         // We'll assume parallel for generality.  This is rare code.
2805         concurrent_mark()->markAndGrayObjectIfNecessary(cur); // can't we just mark them?
2806         curhw = curhw + cur->size();
2807       }
2808       assert(curhw == t, "Should have parsed correctly.");
2809     }
2810     if (G1PolicyVerbose > 1) {
2811       gclog_or_tty->print("New alloc region ["PTR_FORMAT", "PTR_FORMAT", " PTR_FORMAT") "
2812                           "for survivors:", r->bottom(), original_top, r->end());
2813       r->print();
2814     }
2815     g1_policy()->record_before_bytes(r_used);
2816   }
2817 }
2818 
2819 void G1CollectedHeap::push_gc_alloc_region(HeapRegion* hr) {
2820   assert(Thread::current()->is_VM_thread() ||
2821          par_alloc_during_gc_lock()->owned_by_self(), "Precondition");
2822   assert(!hr->is_gc_alloc_region() && !hr->in_collection_set(),
2823          "Precondition.");
2824   hr->set_is_gc_alloc_region(true);
2825   hr->set_next_gc_alloc_region(_gc_alloc_region_list);
2826   _gc_alloc_region_list = hr;
2827 }
2828 
2829 #ifdef G1_DEBUG
2830 class FindGCAllocRegion: public HeapRegionClosure {
2831 public:
2832   bool doHeapRegion(HeapRegion* r) {
2833     if (r->is_gc_alloc_region()) {
2834       gclog_or_tty->print_cr("Region %d ["PTR_FORMAT"...] is still a gc_alloc_region.",
2835                              r->hrs_index(), r->bottom());
2836     }
2837     return false;
2838   }
2839 };
2840 #endif // G1_DEBUG
2841 
2842 void G1CollectedHeap::forget_alloc_region_list() {
2843   assert(Thread::current()->is_VM_thread(), "Precondition");
2844   while (_gc_alloc_region_list != NULL) {
2845     HeapRegion* r = _gc_alloc_region_list;
2846     assert(r->is_gc_alloc_region(), "Invariant.");
2847     _gc_alloc_region_list = r->next_gc_alloc_region();
2848     r->set_next_gc_alloc_region(NULL);
2849     r->set_is_gc_alloc_region(false);
2850     if (r->is_survivor()) {
2851       if (r->is_empty()) {
2852         r->set_not_young();
2853       } else {
2854         _young_list->add_survivor_region(r);
2855       }
2856     }
2857     if (r->is_empty()) {
2858       ++_free_regions;
2859     }
2860   }
2861 #ifdef G1_DEBUG
2862   FindGCAllocRegion fa;
2863   heap_region_iterate(&fa);
2864 #endif // G1_DEBUG
2865 }
2866 
2867 
2868 bool G1CollectedHeap::check_gc_alloc_regions() {
2869   // TODO: allocation regions check
2870   return true;
2871 }
2872 
2873 void G1CollectedHeap::get_gc_alloc_regions() {
2874   // First, let's check that the GC alloc region list is empty (it should)
2875   assert(_gc_alloc_region_list == NULL, "invariant");
2876 
2877   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2878     assert(_gc_alloc_regions[ap] == NULL, "invariant");
2879 
2880     // Create new GC alloc regions.
2881     HeapRegion* alloc_region = _retained_gc_alloc_regions[ap];
2882     _retained_gc_alloc_regions[ap] = NULL;
2883 
2884     if (alloc_region != NULL) {
2885       assert(_retain_gc_alloc_region[ap], "only way to retain a GC region");
2886 
2887       // let's make sure that the GC alloc region is not tagged as such
2888       // outside a GC operation
2889       assert(!alloc_region->is_gc_alloc_region(), "sanity");
2890 
2891       if (alloc_region->in_collection_set() ||
2892           alloc_region->top() == alloc_region->end() ||
2893           alloc_region->top() == alloc_region->bottom()) {
2894         // we will discard the current GC alloc region if it's in the
2895         // collection set (it can happen!), if it's already full (no
2896         // point in using it), or if it's empty (this means that it
2897         // was emptied during a cleanup and it should be on the free
2898         // list now).
2899 
2900         alloc_region = NULL;
2901       }
2902     }
2903 
2904     if (alloc_region == NULL) {
2905       // we will get a new GC alloc region
2906       alloc_region = newAllocRegionWithExpansion(ap, 0);
2907     }
2908 
2909     if (alloc_region != NULL) {
2910       assert(_gc_alloc_regions[ap] == NULL, "pre-condition");
2911       set_gc_alloc_region(ap, alloc_region);
2912     }
2913 
2914     assert(_gc_alloc_regions[ap] == NULL ||
2915            _gc_alloc_regions[ap]->is_gc_alloc_region(),
2916            "the GC alloc region should be tagged as such");
2917     assert(_gc_alloc_regions[ap] == NULL ||
2918            _gc_alloc_regions[ap] == _gc_alloc_region_list,
2919            "the GC alloc region should be the same as the GC alloc list head");
2920   }
2921   // Set alternative regions for allocation purposes that have reached
2922   // their limit.
2923   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2924     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(ap);
2925     if (_gc_alloc_regions[ap] == NULL && alt_purpose != ap) {
2926       _gc_alloc_regions[ap] = _gc_alloc_regions[alt_purpose];
2927     }
2928   }
2929   assert(check_gc_alloc_regions(), "alloc regions messed up");
2930 }
2931 
2932 void G1CollectedHeap::release_gc_alloc_regions(bool totally) {
2933   // We keep a separate list of all regions that have been alloc regions in
2934   // the current collection pause. Forget that now. This method will
2935   // untag the GC alloc regions and tear down the GC alloc region
2936   // list. It's desirable that no regions are tagged as GC alloc
2937   // outside GCs.
2938   forget_alloc_region_list();
2939 
2940   // The current alloc regions contain objs that have survived
2941   // collection. Make them no longer GC alloc regions.
2942   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2943     HeapRegion* r = _gc_alloc_regions[ap];
2944     _retained_gc_alloc_regions[ap] = NULL;
2945 
2946     if (r != NULL) {
2947       // we retain nothing on _gc_alloc_regions between GCs
2948       set_gc_alloc_region(ap, NULL);
2949       _gc_alloc_region_counts[ap] = 0;
2950 
2951       if (r->is_empty()) {
2952         // we didn't actually allocate anything in it; let's just put
2953         // it on the free list
2954         MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
2955         r->set_zero_fill_complete();
2956         put_free_region_on_list_locked(r);
2957       } else if (_retain_gc_alloc_region[ap] && !totally) {
2958         // retain it so that we can use it at the beginning of the next GC
2959         _retained_gc_alloc_regions[ap] = r;
2960       }
2961     }
2962   }
2963 }
2964 
2965 #ifndef PRODUCT
2966 // Useful for debugging
2967 
2968 void G1CollectedHeap::print_gc_alloc_regions() {
2969   gclog_or_tty->print_cr("GC alloc regions");
2970   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
2971     HeapRegion* r = _gc_alloc_regions[ap];
2972     if (r == NULL) {
2973       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT, ap, NULL);
2974     } else {
2975       gclog_or_tty->print_cr("  %2d : "PTR_FORMAT" "SIZE_FORMAT,
2976                              ap, r->bottom(), r->used());
2977     }
2978   }
2979 }
2980 #endif // PRODUCT
2981 
2982 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
2983   _drain_in_progress = false;
2984   set_evac_failure_closure(cl);
2985   _evac_failure_scan_stack = new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
2986 }
2987 
2988 void G1CollectedHeap::finalize_for_evac_failure() {
2989   assert(_evac_failure_scan_stack != NULL &&
2990          _evac_failure_scan_stack->length() == 0,
2991          "Postcondition");
2992   assert(!_drain_in_progress, "Postcondition");
2993   // Don't have to delete, since the scan stack is a resource object.
2994   _evac_failure_scan_stack = NULL;
2995 }
2996 
2997 
2998 
2999 // *** Sequential G1 Evacuation
3000 
3001 HeapWord* G1CollectedHeap::allocate_during_gc(GCAllocPurpose purpose, size_t word_size) {
3002   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
3003   // let the caller handle alloc failure
3004   if (alloc_region == NULL) return NULL;
3005   assert(isHumongous(word_size) || !alloc_region->isHumongous(),
3006          "Either the object is humongous or the region isn't");
3007   HeapWord* block = alloc_region->allocate(word_size);
3008   if (block == NULL) {
3009     block = allocate_during_gc_slow(purpose, alloc_region, false, word_size);
3010   }
3011   return block;
3012 }
3013 
3014 class G1IsAliveClosure: public BoolObjectClosure {
3015   G1CollectedHeap* _g1;
3016 public:
3017   G1IsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3018   void do_object(oop p) { assert(false, "Do not call."); }
3019   bool do_object_b(oop p) {
3020     // It is reachable if it is outside the collection set, or is inside
3021     // and forwarded.
3022 
3023 #ifdef G1_DEBUG
3024     gclog_or_tty->print_cr("is alive "PTR_FORMAT" in CS %d forwarded %d overall %d",
3025                            (void*) p, _g1->obj_in_cs(p), p->is_forwarded(),
3026                            !_g1->obj_in_cs(p) || p->is_forwarded());
3027 #endif // G1_DEBUG
3028 
3029     return !_g1->obj_in_cs(p) || p->is_forwarded();
3030   }
3031 };
3032 
3033 class G1KeepAliveClosure: public OopClosure {
3034   G1CollectedHeap* _g1;
3035 public:
3036   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3037   void do_oop(narrowOop* p) {
3038     guarantee(false, "NYI");
3039   }
3040   void do_oop(oop* p) {
3041     oop obj = *p;
3042 #ifdef G1_DEBUG
3043     if (PrintGC && Verbose) {
3044       gclog_or_tty->print_cr("keep alive *"PTR_FORMAT" = "PTR_FORMAT" "PTR_FORMAT,
3045                              p, (void*) obj, (void*) *p);
3046     }
3047 #endif // G1_DEBUG
3048 
3049     if (_g1->obj_in_cs(obj)) {
3050       assert( obj->is_forwarded(), "invariant" );
3051       *p = obj->forwardee();
3052 
3053 #ifdef G1_DEBUG
3054       gclog_or_tty->print_cr("     in CSet: moved "PTR_FORMAT" -> "PTR_FORMAT,
3055                              (void*) obj, (void*) *p);
3056 #endif // G1_DEBUG
3057     }
3058   }
3059 };
3060 
3061 class UpdateRSetImmediate : public OopsInHeapRegionClosure {
3062 private:
3063   G1CollectedHeap* _g1;
3064   G1RemSet* _g1_rem_set;
3065 public:
3066   UpdateRSetImmediate(G1CollectedHeap* g1) :
3067     _g1(g1), _g1_rem_set(g1->g1_rem_set()) {}
3068 
3069   void do_oop(narrowOop* p) {
3070     guarantee(false, "NYI");
3071   }
3072   void do_oop(oop* p) {
3073     assert(_from->is_in_reserved(p), "paranoia");
3074     if (*p != NULL && !_from->is_survivor()) {
3075       _g1_rem_set->par_write_ref(_from, p, 0);
3076     }
3077   }
3078 };
3079 
3080 class UpdateRSetDeferred : public OopsInHeapRegionClosure {
3081 private:
3082   G1CollectedHeap* _g1;
3083   DirtyCardQueue *_dcq;
3084   CardTableModRefBS* _ct_bs;
3085 
3086 public:
3087   UpdateRSetDeferred(G1CollectedHeap* g1, DirtyCardQueue* dcq) :
3088     _g1(g1), _ct_bs((CardTableModRefBS*)_g1->barrier_set()), _dcq(dcq) {}
3089 
3090   void do_oop(narrowOop* p) {
3091     guarantee(false, "NYI");
3092   }
3093   void do_oop(oop* p) {
3094     assert(_from->is_in_reserved(p), "paranoia");
3095     if (!_from->is_in_reserved(*p) && !_from->is_survivor()) {
3096       size_t card_index = _ct_bs->index_for(p);
3097       if (_ct_bs->mark_card_deferred(card_index)) {
3098         _dcq->enqueue((jbyte*)_ct_bs->byte_for_index(card_index));
3099       }
3100     }
3101   }
3102 };
3103 
3104 
3105 
3106 class RemoveSelfPointerClosure: public ObjectClosure {
3107 private:
3108   G1CollectedHeap* _g1;
3109   ConcurrentMark* _cm;
3110   HeapRegion* _hr;
3111   size_t _prev_marked_bytes;
3112   size_t _next_marked_bytes;
3113   OopsInHeapRegionClosure *_cl;
3114 public:
3115   RemoveSelfPointerClosure(G1CollectedHeap* g1, OopsInHeapRegionClosure* cl) :
3116     _g1(g1), _cm(_g1->concurrent_mark()),  _prev_marked_bytes(0),
3117     _next_marked_bytes(0), _cl(cl) {}
3118 
3119   size_t prev_marked_bytes() { return _prev_marked_bytes; }
3120   size_t next_marked_bytes() { return _next_marked_bytes; }
3121 
3122   // The original idea here was to coalesce evacuated and dead objects.
3123   // However that caused complications with the block offset table (BOT).
3124   // In particular if there were two TLABs, one of them partially refined.
3125   // |----- TLAB_1--------|----TLAB_2-~~~(partially refined part)~~~|
3126   // The BOT entries of the unrefined part of TLAB_2 point to the start
3127   // of TLAB_2. If the last object of the TLAB_1 and the first object
3128   // of TLAB_2 are coalesced, then the cards of the unrefined part
3129   // would point into middle of the filler object.
3130   //
3131   // The current approach is to not coalesce and leave the BOT contents intact.
3132   void do_object(oop obj) {
3133     if (obj->is_forwarded() && obj->forwardee() == obj) {
3134       // The object failed to move.
3135       assert(!_g1->is_obj_dead(obj), "We should not be preserving dead objs.");
3136       _cm->markPrev(obj);
3137       assert(_cm->isPrevMarked(obj), "Should be marked!");
3138       _prev_marked_bytes += (obj->size() * HeapWordSize);
3139       if (_g1->mark_in_progress() && !_g1->is_obj_ill(obj)) {
3140         _cm->markAndGrayObjectIfNecessary(obj);
3141       }
3142       obj->set_mark(markOopDesc::prototype());
3143       // While we were processing RSet buffers during the
3144       // collection, we actually didn't scan any cards on the
3145       // collection set, since we didn't want to update remebered
3146       // sets with entries that point into the collection set, given
3147       // that live objects fromthe collection set are about to move
3148       // and such entries will be stale very soon. This change also
3149       // dealt with a reliability issue which involved scanning a
3150       // card in the collection set and coming across an array that
3151       // was being chunked and looking malformed. The problem is
3152       // that, if evacuation fails, we might have remembered set
3153       // entries missing given that we skipped cards on the
3154       // collection set. So, we'll recreate such entries now.
3155       obj->oop_iterate(_cl);
3156       assert(_cm->isPrevMarked(obj), "Should be marked!");
3157     } else {
3158       // The object has been either evacuated or is dead. Fill it with a
3159       // dummy object.
3160       MemRegion mr((HeapWord*)obj, obj->size());
3161       CollectedHeap::fill_with_object(mr);
3162       _cm->clearRangeBothMaps(mr);
3163     }
3164   }
3165 };
3166 
3167 void G1CollectedHeap::remove_self_forwarding_pointers() {
3168   UpdateRSetImmediate immediate_update(_g1h);
3169   DirtyCardQueue dcq(&_g1h->dirty_card_queue_set());
3170   UpdateRSetDeferred deferred_update(_g1h, &dcq);
3171   OopsInHeapRegionClosure *cl;
3172   if (G1DeferredRSUpdate) {
3173     cl = &deferred_update;
3174   } else {
3175     cl = &immediate_update;
3176   }
3177   HeapRegion* cur = g1_policy()->collection_set();
3178   while (cur != NULL) {
3179     assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3180 
3181     RemoveSelfPointerClosure rspc(_g1h, cl);
3182     if (cur->evacuation_failed()) {
3183       assert(cur->in_collection_set(), "bad CS");
3184       cl->set_region(cur);
3185       cur->object_iterate(&rspc);
3186 
3187       // A number of manipulations to make the TAMS be the current top,
3188       // and the marked bytes be the ones observed in the iteration.
3189       if (_g1h->concurrent_mark()->at_least_one_mark_complete()) {
3190         // The comments below are the postconditions achieved by the
3191         // calls.  Note especially the last such condition, which says that
3192         // the count of marked bytes has been properly restored.
3193         cur->note_start_of_marking(false);
3194         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3195         cur->add_to_marked_bytes(rspc.prev_marked_bytes());
3196         // _next_marked_bytes == prev_marked_bytes.
3197         cur->note_end_of_marking();
3198         // _prev_top_at_mark_start == top(),
3199         // _prev_marked_bytes == prev_marked_bytes
3200       }
3201       // If there is no mark in progress, we modified the _next variables
3202       // above needlessly, but harmlessly.
3203       if (_g1h->mark_in_progress()) {
3204         cur->note_start_of_marking(false);
3205         // _next_top_at_mark_start == top, _next_marked_bytes == 0
3206         // _next_marked_bytes == next_marked_bytes.
3207       }
3208 
3209       // Now make sure the region has the right index in the sorted array.
3210       g1_policy()->note_change_in_marked_bytes(cur);
3211     }
3212     cur = cur->next_in_collection_set();
3213   }
3214   assert(g1_policy()->assertMarkedBytesDataOK(), "Should be!");
3215 
3216   // Now restore saved marks, if any.
3217   if (_objs_with_preserved_marks != NULL) {
3218     assert(_preserved_marks_of_objs != NULL, "Both or none.");
3219     assert(_objs_with_preserved_marks->length() ==
3220            _preserved_marks_of_objs->length(), "Both or none.");
3221     guarantee(_objs_with_preserved_marks->length() ==
3222               _preserved_marks_of_objs->length(), "Both or none.");
3223     for (int i = 0; i < _objs_with_preserved_marks->length(); i++) {
3224       oop obj   = _objs_with_preserved_marks->at(i);
3225       markOop m = _preserved_marks_of_objs->at(i);
3226       obj->set_mark(m);
3227     }
3228     // Delete the preserved marks growable arrays (allocated on the C heap).
3229     delete _objs_with_preserved_marks;
3230     delete _preserved_marks_of_objs;
3231     _objs_with_preserved_marks = NULL;
3232     _preserved_marks_of_objs = NULL;
3233   }
3234 }
3235 
3236 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
3237   _evac_failure_scan_stack->push(obj);
3238 }
3239 
3240 void G1CollectedHeap::drain_evac_failure_scan_stack() {
3241   assert(_evac_failure_scan_stack != NULL, "precondition");
3242 
3243   while (_evac_failure_scan_stack->length() > 0) {
3244      oop obj = _evac_failure_scan_stack->pop();
3245      _evac_failure_closure->set_region(heap_region_containing(obj));
3246      obj->oop_iterate_backwards(_evac_failure_closure);
3247   }
3248 }
3249 
3250 void G1CollectedHeap::handle_evacuation_failure(oop old) {
3251   markOop m = old->mark();
3252   // forward to self
3253   assert(!old->is_forwarded(), "precondition");
3254 
3255   old->forward_to(old);
3256   handle_evacuation_failure_common(old, m);
3257 }
3258 
3259 oop
3260 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
3261                                                oop old) {
3262   markOop m = old->mark();
3263   oop forward_ptr = old->forward_to_atomic(old);
3264   if (forward_ptr == NULL) {
3265     // Forward-to-self succeeded.
3266     if (_evac_failure_closure != cl) {
3267       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
3268       assert(!_drain_in_progress,
3269              "Should only be true while someone holds the lock.");
3270       // Set the global evac-failure closure to the current thread's.
3271       assert(_evac_failure_closure == NULL, "Or locking has failed.");
3272       set_evac_failure_closure(cl);
3273       // Now do the common part.
3274       handle_evacuation_failure_common(old, m);
3275       // Reset to NULL.
3276       set_evac_failure_closure(NULL);
3277     } else {
3278       // The lock is already held, and this is recursive.
3279       assert(_drain_in_progress, "This should only be the recursive case.");
3280       handle_evacuation_failure_common(old, m);
3281     }
3282     return old;
3283   } else {
3284     // Someone else had a place to copy it.
3285     return forward_ptr;
3286   }
3287 }
3288 
3289 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
3290   set_evacuation_failed(true);
3291 
3292   preserve_mark_if_necessary(old, m);
3293 
3294   HeapRegion* r = heap_region_containing(old);
3295   if (!r->evacuation_failed()) {
3296     r->set_evacuation_failed(true);
3297     if (G1TraceRegions) {
3298       gclog_or_tty->print("evacuation failed in heap region "PTR_FORMAT" "
3299                           "["PTR_FORMAT","PTR_FORMAT")\n",
3300                           r, r->bottom(), r->end());
3301     }
3302   }
3303 
3304   push_on_evac_failure_scan_stack(old);
3305 
3306   if (!_drain_in_progress) {
3307     // prevent recursion in copy_to_survivor_space()
3308     _drain_in_progress = true;
3309     drain_evac_failure_scan_stack();
3310     _drain_in_progress = false;
3311   }
3312 }
3313 
3314 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
3315   if (m != markOopDesc::prototype()) {
3316     if (_objs_with_preserved_marks == NULL) {
3317       assert(_preserved_marks_of_objs == NULL, "Both or none.");
3318       _objs_with_preserved_marks =
3319         new (ResourceObj::C_HEAP) GrowableArray<oop>(40, true);
3320       _preserved_marks_of_objs =
3321         new (ResourceObj::C_HEAP) GrowableArray<markOop>(40, true);
3322     }
3323     _objs_with_preserved_marks->push(obj);
3324     _preserved_marks_of_objs->push(m);
3325   }
3326 }
3327 
3328 // *** Parallel G1 Evacuation
3329 
3330 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
3331                                                   size_t word_size) {
3332   HeapRegion* alloc_region = _gc_alloc_regions[purpose];
3333   // let the caller handle alloc failure
3334   if (alloc_region == NULL) return NULL;
3335 
3336   HeapWord* block = alloc_region->par_allocate(word_size);
3337   if (block == NULL) {
3338     MutexLockerEx x(par_alloc_during_gc_lock(),
3339                     Mutex::_no_safepoint_check_flag);
3340     block = allocate_during_gc_slow(purpose, alloc_region, true, word_size);
3341   }
3342   return block;
3343 }
3344 
3345 void G1CollectedHeap::retire_alloc_region(HeapRegion* alloc_region,
3346                                             bool par) {
3347   // Another thread might have obtained alloc_region for the given
3348   // purpose, and might be attempting to allocate in it, and might
3349   // succeed.  Therefore, we can't do the "finalization" stuff on the
3350   // region below until we're sure the last allocation has happened.
3351   // We ensure this by allocating the remaining space with a garbage
3352   // object.
3353   if (par) par_allocate_remaining_space(alloc_region);
3354   // Now we can do the post-GC stuff on the region.
3355   alloc_region->note_end_of_copying();
3356   g1_policy()->record_after_bytes(alloc_region->used());
3357 }
3358 
3359 HeapWord*
3360 G1CollectedHeap::allocate_during_gc_slow(GCAllocPurpose purpose,
3361                                          HeapRegion*    alloc_region,
3362                                          bool           par,
3363                                          size_t         word_size) {
3364   HeapWord* block = NULL;
3365   // In the parallel case, a previous thread to obtain the lock may have
3366   // already assigned a new gc_alloc_region.
3367   if (alloc_region != _gc_alloc_regions[purpose]) {
3368     assert(par, "But should only happen in parallel case.");
3369     alloc_region = _gc_alloc_regions[purpose];
3370     if (alloc_region == NULL) return NULL;
3371     block = alloc_region->par_allocate(word_size);
3372     if (block != NULL) return block;
3373     // Otherwise, continue; this new region is empty, too.
3374   }
3375   assert(alloc_region != NULL, "We better have an allocation region");
3376   retire_alloc_region(alloc_region, par);
3377 
3378   if (_gc_alloc_region_counts[purpose] >= g1_policy()->max_regions(purpose)) {
3379     // Cannot allocate more regions for the given purpose.
3380     GCAllocPurpose alt_purpose = g1_policy()->alternative_purpose(purpose);
3381     // Is there an alternative?
3382     if (purpose != alt_purpose) {
3383       HeapRegion* alt_region = _gc_alloc_regions[alt_purpose];
3384       // Has not the alternative region been aliased?
3385       if (alloc_region != alt_region && alt_region != NULL) {
3386         // Try to allocate in the alternative region.
3387         if (par) {
3388           block = alt_region->par_allocate(word_size);
3389         } else {
3390           block = alt_region->allocate(word_size);
3391         }
3392         // Make an alias.
3393         _gc_alloc_regions[purpose] = _gc_alloc_regions[alt_purpose];
3394         if (block != NULL) {
3395           return block;
3396         }
3397         retire_alloc_region(alt_region, par);
3398       }
3399       // Both the allocation region and the alternative one are full
3400       // and aliased, replace them with a new allocation region.
3401       purpose = alt_purpose;
3402     } else {
3403       set_gc_alloc_region(purpose, NULL);
3404       return NULL;
3405     }
3406   }
3407 
3408   // Now allocate a new region for allocation.
3409   alloc_region = newAllocRegionWithExpansion(purpose, word_size, false /*zero_filled*/);
3410 
3411   // let the caller handle alloc failure
3412   if (alloc_region != NULL) {
3413 
3414     assert(check_gc_alloc_regions(), "alloc regions messed up");
3415     assert(alloc_region->saved_mark_at_top(),
3416            "Mark should have been saved already.");
3417     // We used to assert that the region was zero-filled here, but no
3418     // longer.
3419 
3420     // This must be done last: once it's installed, other regions may
3421     // allocate in it (without holding the lock.)
3422     set_gc_alloc_region(purpose, alloc_region);
3423 
3424     if (par) {
3425       block = alloc_region->par_allocate(word_size);
3426     } else {
3427       block = alloc_region->allocate(word_size);
3428     }
3429     // Caller handles alloc failure.
3430   } else {
3431     // This sets other apis using the same old alloc region to NULL, also.
3432     set_gc_alloc_region(purpose, NULL);
3433   }
3434   return block;  // May be NULL.
3435 }
3436 
3437 void G1CollectedHeap::par_allocate_remaining_space(HeapRegion* r) {
3438   HeapWord* block = NULL;
3439   size_t free_words;
3440   do {
3441     free_words = r->free()/HeapWordSize;
3442     // If there's too little space, no one can allocate, so we're done.
3443     if (free_words < (size_t)oopDesc::header_size()) return;
3444     // Otherwise, try to claim it.
3445     block = r->par_allocate(free_words);
3446   } while (block == NULL);
3447   fill_with_object(block, free_words);
3448 }
3449 
3450 #define use_local_bitmaps         1
3451 #define verify_local_bitmaps      0
3452 
3453 #ifndef PRODUCT
3454 
3455 class GCLabBitMap;
3456 class GCLabBitMapClosure: public BitMapClosure {
3457 private:
3458   ConcurrentMark* _cm;
3459   GCLabBitMap*    _bitmap;
3460 
3461 public:
3462   GCLabBitMapClosure(ConcurrentMark* cm,
3463                      GCLabBitMap* bitmap) {
3464     _cm     = cm;
3465     _bitmap = bitmap;
3466   }
3467 
3468   virtual bool do_bit(size_t offset);
3469 };
3470 
3471 #endif // PRODUCT
3472 
3473 #define oop_buffer_length 256
3474 
3475 class GCLabBitMap: public BitMap {
3476 private:
3477   ConcurrentMark* _cm;
3478 
3479   int       _shifter;
3480   size_t    _bitmap_word_covers_words;
3481 
3482   // beginning of the heap
3483   HeapWord* _heap_start;
3484 
3485   // this is the actual start of the GCLab
3486   HeapWord* _real_start_word;
3487 
3488   // this is the actual end of the GCLab
3489   HeapWord* _real_end_word;
3490 
3491   // this is the first word, possibly located before the actual start
3492   // of the GCLab, that corresponds to the first bit of the bitmap
3493   HeapWord* _start_word;
3494 
3495   // size of a GCLab in words
3496   size_t _gclab_word_size;
3497 
3498   static int shifter() {
3499     return MinObjAlignment - 1;
3500   }
3501 
3502   // how many heap words does a single bitmap word corresponds to?
3503   static size_t bitmap_word_covers_words() {
3504     return BitsPerWord << shifter();
3505   }
3506 
3507   static size_t gclab_word_size() {
3508     return ParallelGCG1AllocBufferSize / HeapWordSize;
3509   }
3510 
3511   static size_t bitmap_size_in_bits() {
3512     size_t bits_in_bitmap = gclab_word_size() >> shifter();
3513     // We are going to ensure that the beginning of a word in this
3514     // bitmap also corresponds to the beginning of a word in the
3515     // global marking bitmap. To handle the case where a GCLab
3516     // starts from the middle of the bitmap, we need to add enough
3517     // space (i.e. up to a bitmap word) to ensure that we have
3518     // enough bits in the bitmap.
3519     return bits_in_bitmap + BitsPerWord - 1;
3520   }
3521 public:
3522   GCLabBitMap(HeapWord* heap_start)
3523     : BitMap(bitmap_size_in_bits()),
3524       _cm(G1CollectedHeap::heap()->concurrent_mark()),
3525       _shifter(shifter()),
3526       _bitmap_word_covers_words(bitmap_word_covers_words()),
3527       _heap_start(heap_start),
3528       _gclab_word_size(gclab_word_size()),
3529       _real_start_word(NULL),
3530       _real_end_word(NULL),
3531       _start_word(NULL)
3532   {
3533     guarantee( size_in_words() >= bitmap_size_in_words(),
3534                "just making sure");
3535   }
3536 
3537   inline unsigned heapWordToOffset(HeapWord* addr) {
3538     unsigned offset = (unsigned) pointer_delta(addr, _start_word) >> _shifter;
3539     assert(offset < size(), "offset should be within bounds");
3540     return offset;
3541   }
3542 
3543   inline HeapWord* offsetToHeapWord(size_t offset) {
3544     HeapWord* addr =  _start_word + (offset << _shifter);
3545     assert(_real_start_word <= addr && addr < _real_end_word, "invariant");
3546     return addr;
3547   }
3548 
3549   bool fields_well_formed() {
3550     bool ret1 = (_real_start_word == NULL) &&
3551                 (_real_end_word == NULL) &&
3552                 (_start_word == NULL);
3553     if (ret1)
3554       return true;
3555 
3556     bool ret2 = _real_start_word >= _start_word &&
3557       _start_word < _real_end_word &&
3558       (_real_start_word + _gclab_word_size) == _real_end_word &&
3559       (_start_word + _gclab_word_size + _bitmap_word_covers_words)
3560                                                               > _real_end_word;
3561     return ret2;
3562   }
3563 
3564   inline bool mark(HeapWord* addr) {
3565     guarantee(use_local_bitmaps, "invariant");
3566     assert(fields_well_formed(), "invariant");
3567 
3568     if (addr >= _real_start_word && addr < _real_end_word) {
3569       assert(!isMarked(addr), "should not have already been marked");
3570 
3571       // first mark it on the bitmap
3572       at_put(heapWordToOffset(addr), true);
3573 
3574       return true;
3575     } else {
3576       return false;
3577     }
3578   }
3579 
3580   inline bool isMarked(HeapWord* addr) {
3581     guarantee(use_local_bitmaps, "invariant");
3582     assert(fields_well_formed(), "invariant");
3583 
3584     return at(heapWordToOffset(addr));
3585   }
3586 
3587   void set_buffer(HeapWord* start) {
3588     guarantee(use_local_bitmaps, "invariant");
3589     clear();
3590 
3591     assert(start != NULL, "invariant");
3592     _real_start_word = start;
3593     _real_end_word   = start + _gclab_word_size;
3594 
3595     size_t diff =
3596       pointer_delta(start, _heap_start) % _bitmap_word_covers_words;
3597     _start_word = start - diff;
3598 
3599     assert(fields_well_formed(), "invariant");
3600   }
3601 
3602 #ifndef PRODUCT
3603   void verify() {
3604     // verify that the marks have been propagated
3605     GCLabBitMapClosure cl(_cm, this);
3606     iterate(&cl);
3607   }
3608 #endif // PRODUCT
3609 
3610   void retire() {
3611     guarantee(use_local_bitmaps, "invariant");
3612     assert(fields_well_formed(), "invariant");
3613 
3614     if (_start_word != NULL) {
3615       CMBitMap*       mark_bitmap = _cm->nextMarkBitMap();
3616 
3617       // this means that the bitmap was set up for the GCLab
3618       assert(_real_start_word != NULL && _real_end_word != NULL, "invariant");
3619 
3620       mark_bitmap->mostly_disjoint_range_union(this,
3621                                 0, // always start from the start of the bitmap
3622                                 _start_word,
3623                                 size_in_words());
3624       _cm->grayRegionIfNecessary(MemRegion(_real_start_word, _real_end_word));
3625 
3626 #ifndef PRODUCT
3627       if (use_local_bitmaps && verify_local_bitmaps)
3628         verify();
3629 #endif // PRODUCT
3630     } else {
3631       assert(_real_start_word == NULL && _real_end_word == NULL, "invariant");
3632     }
3633   }
3634 
3635   static size_t bitmap_size_in_words() {
3636     return (bitmap_size_in_bits() + BitsPerWord - 1) / BitsPerWord;
3637   }
3638 };
3639 
3640 #ifndef PRODUCT
3641 
3642 bool GCLabBitMapClosure::do_bit(size_t offset) {
3643   HeapWord* addr = _bitmap->offsetToHeapWord(offset);
3644   guarantee(_cm->isMarked(oop(addr)), "it should be!");
3645   return true;
3646 }
3647 
3648 #endif // PRODUCT
3649 
3650 class G1ParGCAllocBuffer: public ParGCAllocBuffer {
3651 private:
3652   bool        _retired;
3653   bool        _during_marking;
3654   GCLabBitMap _bitmap;
3655 
3656 public:
3657   G1ParGCAllocBuffer() :
3658     ParGCAllocBuffer(ParallelGCG1AllocBufferSize / HeapWordSize),
3659     _during_marking(G1CollectedHeap::heap()->mark_in_progress()),
3660     _bitmap(G1CollectedHeap::heap()->reserved_region().start()),
3661     _retired(false)
3662   { }
3663 
3664   inline bool mark(HeapWord* addr) {
3665     guarantee(use_local_bitmaps, "invariant");
3666     assert(_during_marking, "invariant");
3667     return _bitmap.mark(addr);
3668   }
3669 
3670   inline void set_buf(HeapWord* buf) {
3671     if (use_local_bitmaps && _during_marking)
3672       _bitmap.set_buffer(buf);
3673     ParGCAllocBuffer::set_buf(buf);
3674     _retired = false;
3675   }
3676 
3677   inline void retire(bool end_of_gc, bool retain) {
3678     if (_retired)
3679       return;
3680     if (use_local_bitmaps && _during_marking) {
3681       _bitmap.retire();
3682     }
3683     ParGCAllocBuffer::retire(end_of_gc, retain);
3684     _retired = true;
3685   }
3686 };
3687 
3688 
3689 class G1ParScanThreadState : public StackObj {
3690 protected:
3691   G1CollectedHeap* _g1h;
3692   RefToScanQueue*  _refs;
3693   DirtyCardQueue   _dcq;
3694   CardTableModRefBS* _ct_bs;
3695   G1RemSet* _g1_rem;
3696 
3697   typedef GrowableArray<oop*> OverflowQueue;
3698   OverflowQueue* _overflowed_refs;
3699 
3700   G1ParGCAllocBuffer _alloc_buffers[GCAllocPurposeCount];
3701   ageTable           _age_table;
3702 
3703   size_t           _alloc_buffer_waste;
3704   size_t           _undo_waste;
3705 
3706   OopsInHeapRegionClosure*      _evac_failure_cl;
3707   G1ParScanHeapEvacClosure*     _evac_cl;
3708   G1ParScanPartialArrayClosure* _partial_scan_cl;
3709 
3710   int _hash_seed;
3711   int _queue_num;
3712 
3713   int _term_attempts;
3714 #if G1_DETAILED_STATS
3715   int _pushes, _pops, _steals, _steal_attempts;
3716   int _overflow_pushes;
3717 #endif
3718 
3719   double _start;
3720   double _start_strong_roots;
3721   double _strong_roots_time;
3722   double _start_term;
3723   double _term_time;
3724 
3725   // Map from young-age-index (0 == not young, 1 is youngest) to
3726   // surviving words. base is what we get back from the malloc call
3727   size_t* _surviving_young_words_base;
3728   // this points into the array, as we use the first few entries for padding
3729   size_t* _surviving_young_words;
3730 
3731 #define PADDING_ELEM_NUM (64 / sizeof(size_t))
3732 
3733   void   add_to_alloc_buffer_waste(size_t waste) { _alloc_buffer_waste += waste; }
3734 
3735   void   add_to_undo_waste(size_t waste)         { _undo_waste += waste; }
3736 
3737   DirtyCardQueue& dirty_card_queue()             { return _dcq;  }
3738   CardTableModRefBS* ctbs()                      { return _ct_bs; }
3739 
3740   void immediate_rs_update(HeapRegion* from, oop* p, int tid) {
3741     _g1_rem->par_write_ref(from, p, tid);
3742   }
3743 
3744   void deferred_rs_update(HeapRegion* from, oop* p, int tid) {
3745     // If the new value of the field points to the same region or
3746     // is the to-space, we don't need to include it in the Rset updates.
3747     if (!from->is_in_reserved(*p) && !from->is_survivor()) {
3748       size_t card_index = ctbs()->index_for(p);
3749       // If the card hasn't been added to the buffer, do it.
3750       if (ctbs()->mark_card_deferred(card_index)) {
3751         dirty_card_queue().enqueue((jbyte*)ctbs()->byte_for_index(card_index));
3752       }
3753     }
3754   }
3755 
3756 public:
3757   G1ParScanThreadState(G1CollectedHeap* g1h, int queue_num)
3758     : _g1h(g1h),
3759       _refs(g1h->task_queue(queue_num)),
3760       _dcq(&g1h->dirty_card_queue_set()),
3761       _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
3762       _g1_rem(g1h->g1_rem_set()),
3763       _hash_seed(17), _queue_num(queue_num),
3764       _term_attempts(0),
3765       _age_table(false),
3766 #if G1_DETAILED_STATS
3767       _pushes(0), _pops(0), _steals(0),
3768       _steal_attempts(0),  _overflow_pushes(0),
3769 #endif
3770       _strong_roots_time(0), _term_time(0),
3771       _alloc_buffer_waste(0), _undo_waste(0)
3772   {
3773     // we allocate G1YoungSurvRateNumRegions plus one entries, since
3774     // we "sacrifice" entry 0 to keep track of surviving bytes for
3775     // non-young regions (where the age is -1)
3776     // We also add a few elements at the beginning and at the end in
3777     // an attempt to eliminate cache contention
3778     size_t real_length = 1 + _g1h->g1_policy()->young_cset_length();
3779     size_t array_length = PADDING_ELEM_NUM +
3780                           real_length +
3781                           PADDING_ELEM_NUM;
3782     _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length);
3783     if (_surviving_young_words_base == NULL)
3784       vm_exit_out_of_memory(array_length * sizeof(size_t),
3785                             "Not enough space for young surv histo.");
3786     _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
3787     memset(_surviving_young_words, 0, real_length * sizeof(size_t));
3788 
3789     _overflowed_refs = new OverflowQueue(10);
3790 
3791     _start = os::elapsedTime();
3792   }
3793 
3794   ~G1ParScanThreadState() {
3795     FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
3796   }
3797 
3798   RefToScanQueue*   refs()            { return _refs;             }
3799   OverflowQueue*    overflowed_refs() { return _overflowed_refs;  }
3800   ageTable*         age_table()       { return &_age_table;       }
3801 
3802   G1ParGCAllocBuffer* alloc_buffer(GCAllocPurpose purpose) {
3803     return &_alloc_buffers[purpose];
3804   }
3805 
3806   size_t alloc_buffer_waste()                    { return _alloc_buffer_waste; }
3807   size_t undo_waste()                            { return _undo_waste; }
3808 
3809   void push_on_queue(oop* ref) {
3810     assert(ref != NULL, "invariant");
3811     assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref), "invariant");
3812 
3813     if (!refs()->push(ref)) {
3814       overflowed_refs()->push(ref);
3815       IF_G1_DETAILED_STATS(note_overflow_push());
3816     } else {
3817       IF_G1_DETAILED_STATS(note_push());
3818     }
3819   }
3820 
3821   void pop_from_queue(oop*& ref) {
3822     if (!refs()->pop_local(ref)) {
3823       ref = NULL;
3824     } else {
3825       assert(ref != NULL, "invariant");
3826       assert(has_partial_array_mask(ref) || _g1h->obj_in_cs(*ref),
3827              "invariant");
3828 
3829       IF_G1_DETAILED_STATS(note_pop());
3830     }
3831   }
3832 
3833   void pop_from_overflow_queue(oop*& ref) {
3834     ref = overflowed_refs()->pop();
3835   }
3836 
3837   int refs_to_scan()                             { return refs()->size();                 }
3838   int overflowed_refs_to_scan()                  { return overflowed_refs()->length();    }
3839 
3840   void update_rs(HeapRegion* from, oop* p, int tid) {
3841     if (G1DeferredRSUpdate) {
3842       deferred_rs_update(from, p, tid);
3843     } else {
3844       immediate_rs_update(from, p, tid);
3845     }
3846   }
3847 
3848   HeapWord* allocate_slow(GCAllocPurpose purpose, size_t word_sz) {
3849 
3850     HeapWord* obj = NULL;
3851     if (word_sz * 100 <
3852         (size_t)(ParallelGCG1AllocBufferSize / HeapWordSize) *
3853                                                   ParallelGCBufferWastePct) {
3854       G1ParGCAllocBuffer* alloc_buf = alloc_buffer(purpose);
3855       add_to_alloc_buffer_waste(alloc_buf->words_remaining());
3856       alloc_buf->retire(false, false);
3857 
3858       HeapWord* buf =
3859         _g1h->par_allocate_during_gc(purpose, ParallelGCG1AllocBufferSize / HeapWordSize);
3860       if (buf == NULL) return NULL; // Let caller handle allocation failure.
3861       // Otherwise.
3862       alloc_buf->set_buf(buf);
3863 
3864       obj = alloc_buf->allocate(word_sz);
3865       assert(obj != NULL, "buffer was definitely big enough...");
3866     } else {
3867       obj = _g1h->par_allocate_during_gc(purpose, word_sz);
3868     }
3869     return obj;
3870   }
3871 
3872   HeapWord* allocate(GCAllocPurpose purpose, size_t word_sz) {
3873     HeapWord* obj = alloc_buffer(purpose)->allocate(word_sz);
3874     if (obj != NULL) return obj;
3875     return allocate_slow(purpose, word_sz);
3876   }
3877 
3878   void undo_allocation(GCAllocPurpose purpose, HeapWord* obj, size_t word_sz) {
3879     if (alloc_buffer(purpose)->contains(obj)) {
3880       guarantee(alloc_buffer(purpose)->contains(obj + word_sz - 1),
3881                 "should contain whole object");
3882       alloc_buffer(purpose)->undo_allocation(obj, word_sz);
3883     } else {
3884       CollectedHeap::fill_with_object(obj, word_sz);
3885       add_to_undo_waste(word_sz);
3886     }
3887   }
3888 
3889   void set_evac_failure_closure(OopsInHeapRegionClosure* evac_failure_cl) {
3890     _evac_failure_cl = evac_failure_cl;
3891   }
3892   OopsInHeapRegionClosure* evac_failure_closure() {
3893     return _evac_failure_cl;
3894   }
3895 
3896   void set_evac_closure(G1ParScanHeapEvacClosure* evac_cl) {
3897     _evac_cl = evac_cl;
3898   }
3899 
3900   void set_partial_scan_closure(G1ParScanPartialArrayClosure* partial_scan_cl) {
3901     _partial_scan_cl = partial_scan_cl;
3902   }
3903 
3904   int* hash_seed() { return &_hash_seed; }
3905   int  queue_num() { return _queue_num; }
3906 
3907   int term_attempts()   { return _term_attempts; }
3908   void note_term_attempt()  { _term_attempts++; }
3909 
3910 #if G1_DETAILED_STATS
3911   int pushes()          { return _pushes; }
3912   int pops()            { return _pops; }
3913   int steals()          { return _steals; }
3914   int steal_attempts()  { return _steal_attempts; }
3915   int overflow_pushes() { return _overflow_pushes; }
3916 
3917   void note_push()          { _pushes++; }
3918   void note_pop()           { _pops++; }
3919   void note_steal()         { _steals++; }
3920   void note_steal_attempt() { _steal_attempts++; }
3921   void note_overflow_push() { _overflow_pushes++; }
3922 #endif
3923 
3924   void start_strong_roots() {
3925     _start_strong_roots = os::elapsedTime();
3926   }
3927   void end_strong_roots() {
3928     _strong_roots_time += (os::elapsedTime() - _start_strong_roots);
3929   }
3930   double strong_roots_time() { return _strong_roots_time; }
3931 
3932   void start_term_time() {
3933     note_term_attempt();
3934     _start_term = os::elapsedTime();
3935   }
3936   void end_term_time() {
3937     _term_time += (os::elapsedTime() - _start_term);
3938   }
3939   double term_time() { return _term_time; }
3940 
3941   double elapsed() {
3942     return os::elapsedTime() - _start;
3943   }
3944 
3945   size_t* surviving_young_words() {
3946     // We add on to hide entry 0 which accumulates surviving words for
3947     // age -1 regions (i.e. non-young ones)
3948     return _surviving_young_words;
3949   }
3950 
3951   void retire_alloc_buffers() {
3952     for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
3953       size_t waste = _alloc_buffers[ap].words_remaining();
3954       add_to_alloc_buffer_waste(waste);
3955       _alloc_buffers[ap].retire(true, false);
3956     }
3957   }
3958 
3959 private:
3960   void deal_with_reference(oop* ref_to_scan) {
3961     if (has_partial_array_mask(ref_to_scan)) {
3962       _partial_scan_cl->do_oop_nv(ref_to_scan);
3963     } else {
3964       // Note: we can use "raw" versions of "region_containing" because
3965       // "obj_to_scan" is definitely in the heap, and is not in a
3966       // humongous region.
3967       HeapRegion* r = _g1h->heap_region_containing_raw(ref_to_scan);
3968       _evac_cl->set_region(r);
3969       _evac_cl->do_oop_nv(ref_to_scan);
3970     }
3971   }
3972 
3973 public:
3974   void trim_queue() {
3975     // I've replicated the loop twice, first to drain the overflow
3976     // queue, second to drain the task queue. This is better than
3977     // having a single loop, which checks both conditions and, inside
3978     // it, either pops the overflow queue or the task queue, as each
3979     // loop is tighter. Also, the decision to drain the overflow queue
3980     // first is not arbitrary, as the overflow queue is not visible
3981     // to the other workers, whereas the task queue is. So, we want to
3982     // drain the "invisible" entries first, while allowing the other
3983     // workers to potentially steal the "visible" entries.
3984 
3985     while (refs_to_scan() > 0 || overflowed_refs_to_scan() > 0) {
3986       while (overflowed_refs_to_scan() > 0) {
3987         oop *ref_to_scan = NULL;
3988         pop_from_overflow_queue(ref_to_scan);
3989         assert(ref_to_scan != NULL, "invariant");
3990         // We shouldn't have pushed it on the queue if it was not
3991         // pointing into the CSet.
3992         assert(ref_to_scan != NULL, "sanity");
3993         assert(has_partial_array_mask(ref_to_scan) ||
3994                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
3995 
3996         deal_with_reference(ref_to_scan);
3997       }
3998 
3999       while (refs_to_scan() > 0) {
4000         oop *ref_to_scan = NULL;
4001         pop_from_queue(ref_to_scan);
4002 
4003         if (ref_to_scan != NULL) {
4004           // We shouldn't have pushed it on the queue if it was not
4005           // pointing into the CSet.
4006           assert(has_partial_array_mask(ref_to_scan) ||
4007                                       _g1h->obj_in_cs(*ref_to_scan), "sanity");
4008 
4009           deal_with_reference(ref_to_scan);
4010         }
4011       }
4012     }
4013   }
4014 };
4015 
4016 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1, G1ParScanThreadState* par_scan_state) :
4017   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4018   _par_scan_state(par_scan_state) { }
4019 
4020 // This closure is applied to the fields of the objects that have just been copied.
4021 // Should probably be made inline and moved in g1OopClosures.inline.hpp.
4022 void G1ParScanClosure::do_oop_nv(oop* p) {
4023   oop obj = *p;
4024 
4025   if (obj != NULL) {
4026     if (_g1->in_cset_fast_test(obj)) {
4027       // We're not going to even bother checking whether the object is
4028       // already forwarded or not, as this usually causes an immediate
4029       // stall. We'll try to prefetch the object (for write, given that
4030       // we might need to install the forwarding reference) and we'll
4031       // get back to it when pop it from the queue
4032       Prefetch::write(obj->mark_addr(), 0);
4033       Prefetch::read(obj->mark_addr(), (HeapWordSize*2));
4034 
4035       // slightly paranoid test; I'm trying to catch potential
4036       // problems before we go into push_on_queue to know where the
4037       // problem is coming from
4038       assert(obj == *p, "the value of *p should not have changed");
4039       _par_scan_state->push_on_queue(p);
4040     } else {
4041       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4042     }
4043   }
4044 }
4045 
4046 void G1ParCopyHelper::mark_forwardee(oop* p) {
4047   // This is called _after_ do_oop_work has been called, hence after
4048   // the object has been relocated to its new location and *p points
4049   // to its new location.
4050 
4051   oop thisOop = *p;
4052   if (thisOop != NULL) {
4053     assert((_g1->evacuation_failed()) || (!_g1->obj_in_cs(thisOop)),
4054            "shouldn't still be in the CSet if evacuation didn't fail.");
4055     HeapWord* addr = (HeapWord*)thisOop;
4056     if (_g1->is_in_g1_reserved(addr))
4057       _cm->grayRoot(oop(addr));
4058   }
4059 }
4060 
4061 oop G1ParCopyHelper::copy_to_survivor_space(oop old) {
4062   size_t    word_sz = old->size();
4063   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4064   // +1 to make the -1 indexes valid...
4065   int       young_index = from_region->young_index_in_cset()+1;
4066   assert( (from_region->is_young() && young_index > 0) ||
4067           (!from_region->is_young() && young_index == 0), "invariant" );
4068   G1CollectorPolicy* g1p = _g1->g1_policy();
4069   markOop m = old->mark();
4070   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4071                                            : m->age();
4072   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4073                                                              word_sz);
4074   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4075   oop       obj     = oop(obj_ptr);
4076 
4077   if (obj_ptr == NULL) {
4078     // This will either forward-to-self, or detect that someone else has
4079     // installed a forwarding pointer.
4080     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4081     return _g1->handle_evacuation_failure_par(cl, old);
4082   }
4083 
4084   // We're going to allocate linearly, so might as well prefetch ahead.
4085   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4086 
4087   oop forward_ptr = old->forward_to_atomic(obj);
4088   if (forward_ptr == NULL) {
4089     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4090     if (g1p->track_object_age(alloc_purpose)) {
4091       // We could simply do obj->incr_age(). However, this causes a
4092       // performance issue. obj->incr_age() will first check whether
4093       // the object has a displaced mark by checking its mark word;
4094       // getting the mark word from the new location of the object
4095       // stalls. So, given that we already have the mark word and we
4096       // are about to install it anyway, it's better to increase the
4097       // age on the mark word, when the object does not have a
4098       // displaced mark word. We're not expecting many objects to have
4099       // a displaced marked word, so that case is not optimized
4100       // further (it could be...) and we simply call obj->incr_age().
4101 
4102       if (m->has_displaced_mark_helper()) {
4103         // in this case, we have to install the mark word first,
4104         // otherwise obj looks to be forwarded (the old mark word,
4105         // which contains the forward pointer, was copied)
4106         obj->set_mark(m);
4107         obj->incr_age();
4108       } else {
4109         m = m->incr_age();
4110         obj->set_mark(m);
4111       }
4112       _par_scan_state->age_table()->add(obj, word_sz);
4113     } else {
4114       obj->set_mark(m);
4115     }
4116 
4117     // preserve "next" mark bit
4118     if (_g1->mark_in_progress() && !_g1->is_obj_ill(old)) {
4119       if (!use_local_bitmaps ||
4120           !_par_scan_state->alloc_buffer(alloc_purpose)->mark(obj_ptr)) {
4121         // if we couldn't mark it on the local bitmap (this happens when
4122         // the object was not allocated in the GCLab), we have to bite
4123         // the bullet and do the standard parallel mark
4124         _cm->markAndGrayObjectIfNecessary(obj);
4125       }
4126 #if 1
4127       if (_g1->isMarkedNext(old)) {
4128         _cm->nextMarkBitMap()->parClear((HeapWord*)old);
4129       }
4130 #endif
4131     }
4132 
4133     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4134     surv_young_words[young_index] += word_sz;
4135 
4136     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4137       arrayOop(old)->set_length(0);
4138       _par_scan_state->push_on_queue(set_partial_array_mask(old));
4139     } else {
4140       // No point in using the slower heap_region_containing() method,
4141       // given that we know obj is in the heap.
4142       _scanner->set_region(_g1->heap_region_containing_raw(obj));
4143       obj->oop_iterate_backwards(_scanner);
4144     }
4145   } else {
4146     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4147     obj = forward_ptr;
4148   }
4149   return obj;
4150 }
4151 
4152 template<bool do_gen_barrier, G1Barrier barrier,
4153          bool do_mark_forwardee, bool skip_cset_test>
4154 void G1ParCopyClosure<do_gen_barrier, barrier,
4155                       do_mark_forwardee, skip_cset_test>::do_oop_work(oop* p) {
4156   oop obj = *p;
4157   assert(barrier != G1BarrierRS || obj != NULL,
4158          "Precondition: G1BarrierRS implies obj is nonNull");
4159 
4160   // The only time we skip the cset test is when we're scanning
4161   // references popped from the queue. And we only push on the queue
4162   // references that we know point into the cset, so no point in
4163   // checking again. But we'll leave an assert here for peace of mind.
4164   assert(!skip_cset_test || _g1->obj_in_cs(obj), "invariant");
4165 
4166   // here the null check is implicit in the cset_fast_test() test
4167   if (skip_cset_test || _g1->in_cset_fast_test(obj)) {
4168 #if G1_REM_SET_LOGGING
4169     gclog_or_tty->print_cr("Loc "PTR_FORMAT" contains pointer "PTR_FORMAT" "
4170                            "into CS.", p, (void*) obj);
4171 #endif
4172     if (obj->is_forwarded()) {
4173       *p = obj->forwardee();
4174     } else {
4175       *p = copy_to_survivor_space(obj);
4176     }
4177     // When scanning the RS, we only care about objs in CS.
4178     if (barrier == G1BarrierRS) {
4179       _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4180     }
4181   }
4182 
4183   // When scanning moved objs, must look at all oops.
4184   if (barrier == G1BarrierEvac && obj != NULL) {
4185     _par_scan_state->update_rs(_from, p, _par_scan_state->queue_num());
4186   }
4187 
4188   if (do_gen_barrier && obj != NULL) {
4189     par_do_barrier(p);
4190   }
4191 }
4192 
4193 template void G1ParCopyClosure<false, G1BarrierEvac, false, true>::do_oop_work(oop* p);
4194 
4195 template<class T> void G1ParScanPartialArrayClosure::process_array_chunk(
4196   oop obj, int start, int end) {
4197   // process our set of indices (include header in first chunk)
4198   assert(start < end, "invariant");
4199   T* const base      = (T*)objArrayOop(obj)->base();
4200   T* const start_addr = (start == 0) ? (T*) obj : base + start;
4201   T* const end_addr   = base + end;
4202   MemRegion mr((HeapWord*)start_addr, (HeapWord*)end_addr);
4203   _scanner.set_region(_g1->heap_region_containing(obj));
4204   obj->oop_iterate(&_scanner, mr);
4205 }
4206 
4207 void G1ParScanPartialArrayClosure::do_oop_nv(oop* p) {
4208   assert(!UseCompressedOops, "Needs to be fixed to work with compressed oops");
4209   assert(has_partial_array_mask(p), "invariant");
4210   oop old = clear_partial_array_mask(p);
4211   assert(old->is_objArray(), "must be obj array");
4212   assert(old->is_forwarded(), "must be forwarded");
4213   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
4214 
4215   objArrayOop obj = objArrayOop(old->forwardee());
4216   assert((void*)old != (void*)old->forwardee(), "self forwarding here?");
4217   // Process ParGCArrayScanChunk elements now
4218   // and push the remainder back onto queue
4219   int start     = arrayOop(old)->length();
4220   int end       = obj->length();
4221   int remainder = end - start;
4222   assert(start <= end, "just checking");
4223   if (remainder > 2 * ParGCArrayScanChunk) {
4224     // Test above combines last partial chunk with a full chunk
4225     end = start + ParGCArrayScanChunk;
4226     arrayOop(old)->set_length(end);
4227     // Push remainder.
4228     _par_scan_state->push_on_queue(set_partial_array_mask(old));
4229   } else {
4230     // Restore length so that the heap remains parsable in
4231     // case of evacuation failure.
4232     arrayOop(old)->set_length(end);
4233   }
4234 
4235   // process our set of indices (include header in first chunk)
4236   process_array_chunk<oop>(obj, start, end);
4237 }
4238 
4239 int G1ScanAndBalanceClosure::_nq = 0;
4240 
4241 class G1ParEvacuateFollowersClosure : public VoidClosure {
4242 protected:
4243   G1CollectedHeap*              _g1h;
4244   G1ParScanThreadState*         _par_scan_state;
4245   RefToScanQueueSet*            _queues;
4246   ParallelTaskTerminator*       _terminator;
4247 
4248   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4249   RefToScanQueueSet*      queues()         { return _queues; }
4250   ParallelTaskTerminator* terminator()     { return _terminator; }
4251 
4252 public:
4253   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4254                                 G1ParScanThreadState* par_scan_state,
4255                                 RefToScanQueueSet* queues,
4256                                 ParallelTaskTerminator* terminator)
4257     : _g1h(g1h), _par_scan_state(par_scan_state),
4258       _queues(queues), _terminator(terminator) {}
4259 
4260   void do_void() {
4261     G1ParScanThreadState* pss = par_scan_state();
4262     while (true) {
4263       oop* ref_to_scan;
4264       pss->trim_queue();
4265       IF_G1_DETAILED_STATS(pss->note_steal_attempt());
4266       if (queues()->steal(pss->queue_num(),
4267                           pss->hash_seed(),
4268                           ref_to_scan)) {
4269         IF_G1_DETAILED_STATS(pss->note_steal());
4270 
4271         // slightly paranoid tests; I'm trying to catch potential
4272         // problems before we go into push_on_queue to know where the
4273         // problem is coming from
4274         assert(ref_to_scan != NULL, "invariant");
4275         assert(has_partial_array_mask(ref_to_scan) ||
4276                                    _g1h->obj_in_cs(*ref_to_scan), "invariant");
4277         pss->push_on_queue(ref_to_scan);
4278         continue;
4279       }
4280       pss->start_term_time();
4281       if (terminator()->offer_termination()) break;
4282       pss->end_term_time();
4283     }
4284     pss->end_term_time();
4285     pss->retire_alloc_buffers();
4286   }
4287 };
4288 
4289 class G1ParTask : public AbstractGangTask {
4290 protected:
4291   G1CollectedHeap*       _g1h;
4292   RefToScanQueueSet      *_queues;
4293   ParallelTaskTerminator _terminator;
4294 
4295   Mutex _stats_lock;
4296   Mutex* stats_lock() { return &_stats_lock; }
4297 
4298   size_t getNCards() {
4299     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4300       / G1BlockOffsetSharedArray::N_bytes;
4301   }
4302 
4303 public:
4304   G1ParTask(G1CollectedHeap* g1h, int workers, RefToScanQueueSet *task_queues)
4305     : AbstractGangTask("G1 collection"),
4306       _g1h(g1h),
4307       _queues(task_queues),
4308       _terminator(workers, _queues),
4309       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4310   {}
4311 
4312   RefToScanQueueSet* queues() { return _queues; }
4313 
4314   RefToScanQueue *work_queue(int i) {
4315     return queues()->queue(i);
4316   }
4317 
4318   void work(int i) {
4319     ResourceMark rm;
4320     HandleMark   hm;
4321 
4322     G1ParScanThreadState            pss(_g1h, i);
4323     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss);
4324     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss);
4325     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss);
4326 
4327     pss.set_evac_closure(&scan_evac_cl);
4328     pss.set_evac_failure_closure(&evac_failure_cl);
4329     pss.set_partial_scan_closure(&partial_scan_cl);
4330 
4331     G1ParScanExtRootClosure         only_scan_root_cl(_g1h, &pss);
4332     G1ParScanPermClosure            only_scan_perm_cl(_g1h, &pss);
4333     G1ParScanHeapRSClosure          only_scan_heap_rs_cl(_g1h, &pss);
4334 
4335     G1ParScanAndMarkExtRootClosure  scan_mark_root_cl(_g1h, &pss);
4336     G1ParScanAndMarkPermClosure     scan_mark_perm_cl(_g1h, &pss);
4337     G1ParScanAndMarkHeapRSClosure   scan_mark_heap_rs_cl(_g1h, &pss);
4338 
4339     OopsInHeapRegionClosure        *scan_root_cl;
4340     OopsInHeapRegionClosure        *scan_perm_cl;
4341     OopsInHeapRegionClosure        *scan_so_cl;
4342 
4343     if (_g1h->g1_policy()->should_initiate_conc_mark()) {
4344       scan_root_cl = &scan_mark_root_cl;
4345       scan_perm_cl = &scan_mark_perm_cl;
4346       scan_so_cl   = &scan_mark_heap_rs_cl;
4347     } else {
4348       scan_root_cl = &only_scan_root_cl;
4349       scan_perm_cl = &only_scan_perm_cl;
4350       scan_so_cl   = &only_scan_heap_rs_cl;
4351     }
4352 
4353     pss.start_strong_roots();
4354     _g1h->g1_process_strong_roots(/* not collecting perm */ false,
4355                                   SharedHeap::SO_AllClasses,
4356                                   scan_root_cl,
4357                                   &only_scan_heap_rs_cl,
4358                                   scan_so_cl,
4359                                   scan_perm_cl,
4360                                   i);
4361     pss.end_strong_roots();
4362     {
4363       double start = os::elapsedTime();
4364       G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4365       evac.do_void();
4366       double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4367       double term_ms = pss.term_time()*1000.0;
4368       _g1h->g1_policy()->record_obj_copy_time(i, elapsed_ms-term_ms);
4369       _g1h->g1_policy()->record_termination_time(i, term_ms);
4370     }
4371     if (G1UseSurvivorSpace) {
4372       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4373     }
4374     _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4375 
4376     // Clean up any par-expanded rem sets.
4377     HeapRegionRemSet::par_cleanup();
4378 
4379     MutexLocker x(stats_lock());
4380     if (ParallelGCVerbose) {
4381       gclog_or_tty->print("Thread %d complete:\n", i);
4382 #if G1_DETAILED_STATS
4383       gclog_or_tty->print("  Pushes: %7d    Pops: %7d   Overflows: %7d   Steals %7d (in %d attempts)\n",
4384                           pss.pushes(),
4385                           pss.pops(),
4386                           pss.overflow_pushes(),
4387                           pss.steals(),
4388                           pss.steal_attempts());
4389 #endif
4390       double elapsed      = pss.elapsed();
4391       double strong_roots = pss.strong_roots_time();
4392       double term         = pss.term_time();
4393       gclog_or_tty->print("  Elapsed: %7.2f ms.\n"
4394                           "    Strong roots: %7.2f ms (%6.2f%%)\n"
4395                           "    Termination:  %7.2f ms (%6.2f%%) (in %d entries)\n",
4396                           elapsed * 1000.0,
4397                           strong_roots * 1000.0, (strong_roots*100.0/elapsed),
4398                           term * 1000.0, (term*100.0/elapsed),
4399                           pss.term_attempts());
4400       size_t total_waste = pss.alloc_buffer_waste() + pss.undo_waste();
4401       gclog_or_tty->print("  Waste: %8dK\n"
4402                  "    Alloc Buffer: %8dK\n"
4403                  "    Undo: %8dK\n",
4404                  (total_waste * HeapWordSize) / K,
4405                  (pss.alloc_buffer_waste() * HeapWordSize) / K,
4406                  (pss.undo_waste() * HeapWordSize) / K);
4407     }
4408 
4409     assert(pss.refs_to_scan() == 0, "Task queue should be empty");
4410     assert(pss.overflowed_refs_to_scan() == 0, "Overflow queue should be empty");
4411   }
4412 };
4413 
4414 // *** Common G1 Evacuation Stuff
4415 
4416 class G1CountClosure: public OopsInHeapRegionClosure {
4417 public:
4418   int n;
4419   G1CountClosure() : n(0) {}
4420   void do_oop(narrowOop* p) {
4421     guarantee(false, "NYI");
4422   }
4423   void do_oop(oop* p) {
4424     oop obj = *p;
4425     assert(obj != NULL && G1CollectedHeap::heap()->obj_in_cs(obj),
4426            "Rem set closure called on non-rem-set pointer.");
4427     n++;
4428   }
4429 };
4430 
4431 static G1CountClosure count_closure;
4432 
4433 void
4434 G1CollectedHeap::
4435 g1_process_strong_roots(bool collecting_perm_gen,
4436                         SharedHeap::ScanningOption so,
4437                         OopClosure* scan_non_heap_roots,
4438                         OopsInHeapRegionClosure* scan_rs,
4439                         OopsInHeapRegionClosure* scan_so,
4440                         OopsInGenClosure* scan_perm,
4441                         int worker_i) {
4442   // First scan the strong roots, including the perm gen.
4443   double ext_roots_start = os::elapsedTime();
4444   double closure_app_time_sec = 0.0;
4445 
4446   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4447   BufferingOopsInGenClosure buf_scan_perm(scan_perm);
4448   buf_scan_perm.set_generation(perm_gen());
4449 
4450   process_strong_roots(collecting_perm_gen, so,
4451                        &buf_scan_non_heap_roots,
4452                        &buf_scan_perm);
4453   // Finish up any enqueued closure apps.
4454   buf_scan_non_heap_roots.done();
4455   buf_scan_perm.done();
4456   double ext_roots_end = os::elapsedTime();
4457   g1_policy()->reset_obj_copy_time(worker_i);
4458   double obj_copy_time_sec =
4459     buf_scan_non_heap_roots.closure_app_seconds() +
4460     buf_scan_perm.closure_app_seconds();
4461   g1_policy()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4462   double ext_root_time_ms =
4463     ((ext_roots_end - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4464   g1_policy()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4465 
4466   // Scan strong roots in mark stack.
4467   if (!_process_strong_tasks->is_task_claimed(G1H_PS_mark_stack_oops_do)) {
4468     concurrent_mark()->oops_do(scan_non_heap_roots);
4469   }
4470   double mark_stack_scan_ms = (os::elapsedTime() - ext_roots_end) * 1000.0;
4471   g1_policy()->record_mark_stack_scan_time(worker_i, mark_stack_scan_ms);
4472 
4473   // XXX What should this be doing in the parallel case?
4474   g1_policy()->record_collection_pause_end_CH_strong_roots();
4475   if (G1VerifyRemSet) {
4476     // :::: FIXME ::::
4477     // The stupid remembered set doesn't know how to filter out dead
4478     // objects, which the smart one does, and so when it is created
4479     // and then compared the number of entries in each differs and
4480     // the verification code fails.
4481     guarantee(false, "verification code is broken, see note");
4482 
4483     // Let's make sure that the current rem set agrees with the stupidest
4484     // one possible!
4485     bool refs_enabled = ref_processor()->discovery_enabled();
4486     if (refs_enabled) ref_processor()->disable_discovery();
4487     StupidG1RemSet stupid(this);
4488     count_closure.n = 0;
4489     stupid.oops_into_collection_set_do(&count_closure, worker_i);
4490     int stupid_n = count_closure.n;
4491     count_closure.n = 0;
4492     g1_rem_set()->oops_into_collection_set_do(&count_closure, worker_i);
4493     guarantee(count_closure.n == stupid_n, "Old and new rem sets differ.");
4494     gclog_or_tty->print_cr("\nFound %d pointers in heap RS.", count_closure.n);
4495     if (refs_enabled) ref_processor()->enable_discovery();
4496   }
4497   if (scan_so != NULL) {
4498     scan_scan_only_set(scan_so, worker_i);
4499   }
4500   // Now scan the complement of the collection set.
4501   if (scan_rs != NULL) {
4502     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
4503   }
4504   // Finish with the ref_processor roots.
4505   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4506     ref_processor()->oops_do(scan_non_heap_roots);
4507   }
4508   g1_policy()->record_collection_pause_end_G1_strong_roots();
4509   _process_strong_tasks->all_tasks_completed();
4510 }
4511 
4512 void
4513 G1CollectedHeap::scan_scan_only_region(HeapRegion* r,
4514                                        OopsInHeapRegionClosure* oc,
4515                                        int worker_i) {
4516   HeapWord* startAddr = r->bottom();
4517   HeapWord* endAddr = r->used_region().end();
4518 
4519   oc->set_region(r);
4520 
4521   HeapWord* p = r->bottom();
4522   HeapWord* t = r->top();
4523   guarantee( p == r->next_top_at_mark_start(), "invariant" );
4524   while (p < t) {
4525     oop obj = oop(p);
4526     p += obj->oop_iterate(oc);
4527   }
4528 }
4529 
4530 void
4531 G1CollectedHeap::scan_scan_only_set(OopsInHeapRegionClosure* oc,
4532                                     int worker_i) {
4533   double start = os::elapsedTime();
4534 
4535   BufferingOopsInHeapRegionClosure boc(oc);
4536 
4537   FilterInHeapRegionAndIntoCSClosure scan_only(this, &boc);
4538   FilterAndMarkInHeapRegionAndIntoCSClosure scan_and_mark(this, &boc, concurrent_mark());
4539 
4540   OopsInHeapRegionClosure *foc;
4541   if (g1_policy()->should_initiate_conc_mark())
4542     foc = &scan_and_mark;
4543   else
4544     foc = &scan_only;
4545 
4546   HeapRegion* hr;
4547   int n = 0;
4548   while ((hr = _young_list->par_get_next_scan_only_region()) != NULL) {
4549     scan_scan_only_region(hr, foc, worker_i);
4550     ++n;
4551   }
4552   boc.done();
4553 
4554   double closure_app_s = boc.closure_app_seconds();
4555   g1_policy()->record_obj_copy_time(worker_i, closure_app_s * 1000.0);
4556   double ms = (os::elapsedTime() - start - closure_app_s)*1000.0;
4557   g1_policy()->record_scan_only_time(worker_i, ms, n);
4558 }
4559 
4560 void
4561 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
4562                                        OopClosure* non_root_closure) {
4563   SharedHeap::process_weak_roots(root_closure, non_root_closure);
4564 }
4565 
4566 
4567 class SaveMarksClosure: public HeapRegionClosure {
4568 public:
4569   bool doHeapRegion(HeapRegion* r) {
4570     r->save_marks();
4571     return false;
4572   }
4573 };
4574 
4575 void G1CollectedHeap::save_marks() {
4576   if (ParallelGCThreads == 0) {
4577     SaveMarksClosure sm;
4578     heap_region_iterate(&sm);
4579   }
4580   // We do this even in the parallel case
4581   perm_gen()->save_marks();
4582 }
4583 
4584 void G1CollectedHeap::evacuate_collection_set() {
4585   set_evacuation_failed(false);
4586 
4587   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4588   concurrent_g1_refine()->set_use_cache(false);
4589   int n_workers = (ParallelGCThreads > 0 ? workers()->total_workers() : 1);
4590   set_par_threads(n_workers);
4591   G1ParTask g1_par_task(this, n_workers, _task_queues);
4592 
4593   init_for_evac_failure(NULL);
4594 
4595   change_strong_roots_parity();  // In preparation for parallel strong roots.
4596   rem_set()->prepare_for_younger_refs_iterate(true);
4597 
4598   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4599   double start_par = os::elapsedTime();
4600   if (ParallelGCThreads > 0) {
4601     // The individual threads will set their evac-failure closures.
4602     workers()->run_task(&g1_par_task);
4603   } else {
4604     g1_par_task.work(0);
4605   }
4606 
4607   double par_time = (os::elapsedTime() - start_par) * 1000.0;
4608   g1_policy()->record_par_time(par_time);
4609   set_par_threads(0);
4610   // Is this the right thing to do here?  We don't save marks
4611   // on individual heap regions when we allocate from
4612   // them in parallel, so this seems like the correct place for this.
4613   retire_all_alloc_regions();
4614   {
4615     G1IsAliveClosure is_alive(this);
4616     G1KeepAliveClosure keep_alive(this);
4617     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4618   }
4619   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4620 
4621   concurrent_g1_refine()->set_use_cache(true);
4622 
4623   finalize_for_evac_failure();
4624 
4625   // Must do this before removing self-forwarding pointers, which clears
4626   // the per-region evac-failure flags.
4627   concurrent_mark()->complete_marking_in_collection_set();
4628 
4629   if (evacuation_failed()) {
4630     remove_self_forwarding_pointers();
4631     if (PrintGCDetails) {
4632       gclog_or_tty->print(" (evacuation failed)");
4633     } else if (PrintGC) {
4634       gclog_or_tty->print("--");
4635     }
4636   }
4637 
4638   if (G1DeferredRSUpdate) {
4639     RedirtyLoggedCardTableEntryFastClosure redirty;
4640     dirty_card_queue_set().set_closure(&redirty);
4641     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
4642     JavaThread::dirty_card_queue_set().merge_bufferlists(&dirty_card_queue_set());
4643     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4644   }
4645 
4646   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
4647 }
4648 
4649 void G1CollectedHeap::free_region(HeapRegion* hr) {
4650   size_t pre_used = 0;
4651   size_t cleared_h_regions = 0;
4652   size_t freed_regions = 0;
4653   UncleanRegionList local_list;
4654 
4655   HeapWord* start = hr->bottom();
4656   HeapWord* end   = hr->prev_top_at_mark_start();
4657   size_t used_bytes = hr->used();
4658   size_t live_bytes = hr->max_live_bytes();
4659   if (used_bytes > 0) {
4660     guarantee( live_bytes <= used_bytes, "invariant" );
4661   } else {
4662     guarantee( live_bytes == 0, "invariant" );
4663   }
4664 
4665   size_t garbage_bytes = used_bytes - live_bytes;
4666   if (garbage_bytes > 0)
4667     g1_policy()->decrease_known_garbage_bytes(garbage_bytes);
4668 
4669   free_region_work(hr, pre_used, cleared_h_regions, freed_regions,
4670                    &local_list);
4671   finish_free_region_work(pre_used, cleared_h_regions, freed_regions,
4672                           &local_list);
4673 }
4674 
4675 void
4676 G1CollectedHeap::free_region_work(HeapRegion* hr,
4677                                   size_t& pre_used,
4678                                   size_t& cleared_h_regions,
4679                                   size_t& freed_regions,
4680                                   UncleanRegionList* list,
4681                                   bool par) {
4682   assert(!hr->popular(), "should not free popular regions");
4683   pre_used += hr->used();
4684   if (hr->isHumongous()) {
4685     assert(hr->startsHumongous(),
4686            "Only the start of a humongous region should be freed.");
4687     int ind = _hrs->find(hr);
4688     assert(ind != -1, "Should have an index.");
4689     // Clear the start region.
4690     hr->hr_clear(par, true /*clear_space*/);
4691     list->insert_before_head(hr);
4692     cleared_h_regions++;
4693     freed_regions++;
4694     // Clear any continued regions.
4695     ind++;
4696     while ((size_t)ind < n_regions()) {
4697       HeapRegion* hrc = _hrs->at(ind);
4698       if (!hrc->continuesHumongous()) break;
4699       // Otherwise, does continue the H region.
4700       assert(hrc->humongous_start_region() == hr, "Huh?");
4701       hrc->hr_clear(par, true /*clear_space*/);
4702       cleared_h_regions++;
4703       freed_regions++;
4704       list->insert_before_head(hrc);
4705       ind++;
4706     }
4707   } else {
4708     hr->hr_clear(par, true /*clear_space*/);
4709     list->insert_before_head(hr);
4710     freed_regions++;
4711     // If we're using clear2, this should not be enabled.
4712     // assert(!hr->in_cohort(), "Can't be both free and in a cohort.");
4713   }
4714 }
4715 
4716 void G1CollectedHeap::finish_free_region_work(size_t pre_used,
4717                                               size_t cleared_h_regions,
4718                                               size_t freed_regions,
4719                                               UncleanRegionList* list) {
4720   if (list != NULL && list->sz() > 0) {
4721     prepend_region_list_on_unclean_list(list);
4722   }
4723   // Acquire a lock, if we're parallel, to update possibly-shared
4724   // variables.
4725   Mutex* lock = (n_par_threads() > 0) ? ParGCRareEvent_lock : NULL;
4726   {
4727     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
4728     _summary_bytes_used -= pre_used;
4729     _num_humongous_regions -= (int) cleared_h_regions;
4730     _free_regions += freed_regions;
4731   }
4732 }
4733 
4734 
4735 void G1CollectedHeap::dirtyCardsForYoungRegions(CardTableModRefBS* ct_bs, HeapRegion* list) {
4736   while (list != NULL) {
4737     guarantee( list->is_young(), "invariant" );
4738 
4739     HeapWord* bottom = list->bottom();
4740     HeapWord* end = list->end();
4741     MemRegion mr(bottom, end);
4742     ct_bs->dirty(mr);
4743 
4744     list = list->get_next_young_region();
4745   }
4746 }
4747 
4748 void G1CollectedHeap::cleanUpCardTable() {
4749   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
4750   double start = os::elapsedTime();
4751 
4752   ct_bs->clear(_g1_committed);
4753 
4754   // now, redirty the cards of the scan-only and survivor regions
4755   // (it seemed faster to do it this way, instead of iterating over
4756   // all regions and then clearing / dirtying as approprite)
4757   dirtyCardsForYoungRegions(ct_bs, _young_list->first_scan_only_region());
4758   dirtyCardsForYoungRegions(ct_bs, _young_list->first_survivor_region());
4759 
4760   double elapsed = os::elapsedTime() - start;
4761   g1_policy()->record_clear_ct_time( elapsed * 1000.0);
4762 }
4763 
4764 
4765 void G1CollectedHeap::do_collection_pause_if_appropriate(size_t word_size) {
4766   // First do any popular regions.
4767   HeapRegion* hr;
4768   while ((hr = popular_region_to_evac()) != NULL) {
4769     evac_popular_region(hr);
4770   }
4771   // Now do heuristic pauses.
4772   if (g1_policy()->should_do_collection_pause(word_size)) {
4773     do_collection_pause();
4774   }
4775 }
4776 
4777 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
4778   double young_time_ms     = 0.0;
4779   double non_young_time_ms = 0.0;
4780 
4781   G1CollectorPolicy* policy = g1_policy();
4782 
4783   double start_sec = os::elapsedTime();
4784   bool non_young = true;
4785 
4786   HeapRegion* cur = cs_head;
4787   int age_bound = -1;
4788   size_t rs_lengths = 0;
4789 
4790   while (cur != NULL) {
4791     if (non_young) {
4792       if (cur->is_young()) {
4793         double end_sec = os::elapsedTime();
4794         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4795         non_young_time_ms += elapsed_ms;
4796 
4797         start_sec = os::elapsedTime();
4798         non_young = false;
4799       }
4800     } else {
4801       if (!cur->is_on_free_list()) {
4802         double end_sec = os::elapsedTime();
4803         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4804         young_time_ms += elapsed_ms;
4805 
4806         start_sec = os::elapsedTime();
4807         non_young = true;
4808       }
4809     }
4810 
4811     rs_lengths += cur->rem_set()->occupied();
4812 
4813     HeapRegion* next = cur->next_in_collection_set();
4814     assert(cur->in_collection_set(), "bad CS");
4815     cur->set_next_in_collection_set(NULL);
4816     cur->set_in_collection_set(false);
4817 
4818     if (cur->is_young()) {
4819       int index = cur->young_index_in_cset();
4820       guarantee( index != -1, "invariant" );
4821       guarantee( (size_t)index < policy->young_cset_length(), "invariant" );
4822       size_t words_survived = _surviving_young_words[index];
4823       cur->record_surv_words_in_group(words_survived);
4824     } else {
4825       int index = cur->young_index_in_cset();
4826       guarantee( index == -1, "invariant" );
4827     }
4828 
4829     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4830             (!cur->is_young() && cur->young_index_in_cset() == -1),
4831             "invariant" );
4832 
4833     if (!cur->evacuation_failed()) {
4834       // And the region is empty.
4835       assert(!cur->is_empty(),
4836              "Should not have empty regions in a CS.");
4837       free_region(cur);
4838     } else {
4839       guarantee( !cur->is_scan_only(), "should not be scan only" );
4840       cur->uninstall_surv_rate_group();
4841       if (cur->is_young())
4842         cur->set_young_index_in_cset(-1);
4843       cur->set_not_young();
4844       cur->set_evacuation_failed(false);
4845     }
4846     cur = next;
4847   }
4848 
4849   policy->record_max_rs_lengths(rs_lengths);
4850   policy->cset_regions_freed();
4851 
4852   double end_sec = os::elapsedTime();
4853   double elapsed_ms = (end_sec - start_sec) * 1000.0;
4854   if (non_young)
4855     non_young_time_ms += elapsed_ms;
4856   else
4857     young_time_ms += elapsed_ms;
4858 
4859   policy->record_young_free_cset_time_ms(young_time_ms);
4860   policy->record_non_young_free_cset_time_ms(non_young_time_ms);
4861 }
4862 
4863 HeapRegion*
4864 G1CollectedHeap::alloc_region_from_unclean_list_locked(bool zero_filled) {
4865   assert(ZF_mon->owned_by_self(), "Precondition");
4866   HeapRegion* res = pop_unclean_region_list_locked();
4867   if (res != NULL) {
4868     assert(!res->continuesHumongous() &&
4869            res->zero_fill_state() != HeapRegion::Allocated,
4870            "Only free regions on unclean list.");
4871     if (zero_filled) {
4872       res->ensure_zero_filled_locked();
4873       res->set_zero_fill_allocated();
4874     }
4875   }
4876   return res;
4877 }
4878 
4879 HeapRegion* G1CollectedHeap::alloc_region_from_unclean_list(bool zero_filled) {
4880   MutexLockerEx zx(ZF_mon, Mutex::_no_safepoint_check_flag);
4881   return alloc_region_from_unclean_list_locked(zero_filled);
4882 }
4883 
4884 void G1CollectedHeap::put_region_on_unclean_list(HeapRegion* r) {
4885   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4886   put_region_on_unclean_list_locked(r);
4887   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
4888 }
4889 
4890 void G1CollectedHeap::set_unclean_regions_coming(bool b) {
4891   MutexLockerEx x(Cleanup_mon);
4892   set_unclean_regions_coming_locked(b);
4893 }
4894 
4895 void G1CollectedHeap::set_unclean_regions_coming_locked(bool b) {
4896   assert(Cleanup_mon->owned_by_self(), "Precondition");
4897   _unclean_regions_coming = b;
4898   // Wake up mutator threads that might be waiting for completeCleanup to
4899   // finish.
4900   if (!b) Cleanup_mon->notify_all();
4901 }
4902 
4903 void G1CollectedHeap::wait_for_cleanup_complete() {
4904   MutexLockerEx x(Cleanup_mon);
4905   wait_for_cleanup_complete_locked();
4906 }
4907 
4908 void G1CollectedHeap::wait_for_cleanup_complete_locked() {
4909   assert(Cleanup_mon->owned_by_self(), "precondition");
4910   while (_unclean_regions_coming) {
4911     Cleanup_mon->wait();
4912   }
4913 }
4914 
4915 void
4916 G1CollectedHeap::put_region_on_unclean_list_locked(HeapRegion* r) {
4917   assert(ZF_mon->owned_by_self(), "precondition.");
4918   _unclean_region_list.insert_before_head(r);
4919 }
4920 
4921 void
4922 G1CollectedHeap::prepend_region_list_on_unclean_list(UncleanRegionList* list) {
4923   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4924   prepend_region_list_on_unclean_list_locked(list);
4925   if (should_zf()) ZF_mon->notify_all(); // Wake up ZF thread.
4926 }
4927 
4928 void
4929 G1CollectedHeap::
4930 prepend_region_list_on_unclean_list_locked(UncleanRegionList* list) {
4931   assert(ZF_mon->owned_by_self(), "precondition.");
4932   _unclean_region_list.prepend_list(list);
4933 }
4934 
4935 HeapRegion* G1CollectedHeap::pop_unclean_region_list_locked() {
4936   assert(ZF_mon->owned_by_self(), "precondition.");
4937   HeapRegion* res = _unclean_region_list.pop();
4938   if (res != NULL) {
4939     // Inform ZF thread that there's a new unclean head.
4940     if (_unclean_region_list.hd() != NULL && should_zf())
4941       ZF_mon->notify_all();
4942   }
4943   return res;
4944 }
4945 
4946 HeapRegion* G1CollectedHeap::peek_unclean_region_list_locked() {
4947   assert(ZF_mon->owned_by_self(), "precondition.");
4948   return _unclean_region_list.hd();
4949 }
4950 
4951 
4952 bool G1CollectedHeap::move_cleaned_region_to_free_list_locked() {
4953   assert(ZF_mon->owned_by_self(), "Precondition");
4954   HeapRegion* r = peek_unclean_region_list_locked();
4955   if (r != NULL && r->zero_fill_state() == HeapRegion::ZeroFilled) {
4956     // Result of below must be equal to "r", since we hold the lock.
4957     (void)pop_unclean_region_list_locked();
4958     put_free_region_on_list_locked(r);
4959     return true;
4960   } else {
4961     return false;
4962   }
4963 }
4964 
4965 bool G1CollectedHeap::move_cleaned_region_to_free_list() {
4966   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4967   return move_cleaned_region_to_free_list_locked();
4968 }
4969 
4970 
4971 void G1CollectedHeap::put_free_region_on_list_locked(HeapRegion* r) {
4972   assert(ZF_mon->owned_by_self(), "precondition.");
4973   assert(_free_region_list_size == free_region_list_length(), "Inv");
4974   assert(r->zero_fill_state() == HeapRegion::ZeroFilled,
4975         "Regions on free list must be zero filled");
4976   assert(!r->isHumongous(), "Must not be humongous.");
4977   assert(r->is_empty(), "Better be empty");
4978   assert(!r->is_on_free_list(),
4979          "Better not already be on free list");
4980   assert(!r->is_on_unclean_list(),
4981          "Better not already be on unclean list");
4982   r->set_on_free_list(true);
4983   r->set_next_on_free_list(_free_region_list);
4984   _free_region_list = r;
4985   _free_region_list_size++;
4986   assert(_free_region_list_size == free_region_list_length(), "Inv");
4987 }
4988 
4989 void G1CollectedHeap::put_free_region_on_list(HeapRegion* r) {
4990   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
4991   put_free_region_on_list_locked(r);
4992 }
4993 
4994 HeapRegion* G1CollectedHeap::pop_free_region_list_locked() {
4995   assert(ZF_mon->owned_by_self(), "precondition.");
4996   assert(_free_region_list_size == free_region_list_length(), "Inv");
4997   HeapRegion* res = _free_region_list;
4998   if (res != NULL) {
4999     _free_region_list = res->next_from_free_list();
5000     _free_region_list_size--;
5001     res->set_on_free_list(false);
5002     res->set_next_on_free_list(NULL);
5003     assert(_free_region_list_size == free_region_list_length(), "Inv");
5004   }
5005   return res;
5006 }
5007 
5008 
5009 HeapRegion* G1CollectedHeap::alloc_free_region_from_lists(bool zero_filled) {
5010   // By self, or on behalf of self.
5011   assert(Heap_lock->is_locked(), "Precondition");
5012   HeapRegion* res = NULL;
5013   bool first = true;
5014   while (res == NULL) {
5015     if (zero_filled || !first) {
5016       MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5017       res = pop_free_region_list_locked();
5018       if (res != NULL) {
5019         assert(!res->zero_fill_is_allocated(),
5020                "No allocated regions on free list.");
5021         res->set_zero_fill_allocated();
5022       } else if (!first) {
5023         break;  // We tried both, time to return NULL.
5024       }
5025     }
5026 
5027     if (res == NULL) {
5028       res = alloc_region_from_unclean_list(zero_filled);
5029     }
5030     assert(res == NULL ||
5031            !zero_filled ||
5032            res->zero_fill_is_allocated(),
5033            "We must have allocated the region we're returning");
5034     first = false;
5035   }
5036   return res;
5037 }
5038 
5039 void G1CollectedHeap::remove_allocated_regions_from_lists() {
5040   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5041   {
5042     HeapRegion* prev = NULL;
5043     HeapRegion* cur = _unclean_region_list.hd();
5044     while (cur != NULL) {
5045       HeapRegion* next = cur->next_from_unclean_list();
5046       if (cur->zero_fill_is_allocated()) {
5047         // Remove from the list.
5048         if (prev == NULL) {
5049           (void)_unclean_region_list.pop();
5050         } else {
5051           _unclean_region_list.delete_after(prev);
5052         }
5053         cur->set_on_unclean_list(false);
5054         cur->set_next_on_unclean_list(NULL);
5055       } else {
5056         prev = cur;
5057       }
5058       cur = next;
5059     }
5060     assert(_unclean_region_list.sz() == unclean_region_list_length(),
5061            "Inv");
5062   }
5063 
5064   {
5065     HeapRegion* prev = NULL;
5066     HeapRegion* cur = _free_region_list;
5067     while (cur != NULL) {
5068       HeapRegion* next = cur->next_from_free_list();
5069       if (cur->zero_fill_is_allocated()) {
5070         // Remove from the list.
5071         if (prev == NULL) {
5072           _free_region_list = cur->next_from_free_list();
5073         } else {
5074           prev->set_next_on_free_list(cur->next_from_free_list());
5075         }
5076         cur->set_on_free_list(false);
5077         cur->set_next_on_free_list(NULL);
5078         _free_region_list_size--;
5079       } else {
5080         prev = cur;
5081       }
5082       cur = next;
5083     }
5084     assert(_free_region_list_size == free_region_list_length(), "Inv");
5085   }
5086 }
5087 
5088 bool G1CollectedHeap::verify_region_lists() {
5089   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5090   return verify_region_lists_locked();
5091 }
5092 
5093 bool G1CollectedHeap::verify_region_lists_locked() {
5094   HeapRegion* unclean = _unclean_region_list.hd();
5095   while (unclean != NULL) {
5096     guarantee(unclean->is_on_unclean_list(), "Well, it is!");
5097     guarantee(!unclean->is_on_free_list(), "Well, it shouldn't be!");
5098     guarantee(unclean->zero_fill_state() != HeapRegion::Allocated,
5099               "Everything else is possible.");
5100     unclean = unclean->next_from_unclean_list();
5101   }
5102   guarantee(_unclean_region_list.sz() == unclean_region_list_length(), "Inv");
5103 
5104   HeapRegion* free_r = _free_region_list;
5105   while (free_r != NULL) {
5106     assert(free_r->is_on_free_list(), "Well, it is!");
5107     assert(!free_r->is_on_unclean_list(), "Well, it shouldn't be!");
5108     switch (free_r->zero_fill_state()) {
5109     case HeapRegion::NotZeroFilled:
5110     case HeapRegion::ZeroFilling:
5111       guarantee(false, "Should not be on free list.");
5112       break;
5113     default:
5114       // Everything else is possible.
5115       break;
5116     }
5117     free_r = free_r->next_from_free_list();
5118   }
5119   guarantee(_free_region_list_size == free_region_list_length(), "Inv");
5120   // If we didn't do an assertion...
5121   return true;
5122 }
5123 
5124 size_t G1CollectedHeap::free_region_list_length() {
5125   assert(ZF_mon->owned_by_self(), "precondition.");
5126   size_t len = 0;
5127   HeapRegion* cur = _free_region_list;
5128   while (cur != NULL) {
5129     len++;
5130     cur = cur->next_from_free_list();
5131   }
5132   return len;
5133 }
5134 
5135 size_t G1CollectedHeap::unclean_region_list_length() {
5136   assert(ZF_mon->owned_by_self(), "precondition.");
5137   return _unclean_region_list.length();
5138 }
5139 
5140 size_t G1CollectedHeap::n_regions() {
5141   return _hrs->length();
5142 }
5143 
5144 size_t G1CollectedHeap::max_regions() {
5145   return
5146     (size_t)align_size_up(g1_reserved_obj_bytes(), HeapRegion::GrainBytes) /
5147     HeapRegion::GrainBytes;
5148 }
5149 
5150 size_t G1CollectedHeap::free_regions() {
5151   /* Possibly-expensive assert.
5152   assert(_free_regions == count_free_regions(),
5153          "_free_regions is off.");
5154   */
5155   return _free_regions;
5156 }
5157 
5158 bool G1CollectedHeap::should_zf() {
5159   return _free_region_list_size < (size_t) G1ConcZFMaxRegions;
5160 }
5161 
5162 class RegionCounter: public HeapRegionClosure {
5163   size_t _n;
5164 public:
5165   RegionCounter() : _n(0) {}
5166   bool doHeapRegion(HeapRegion* r) {
5167     if (r->is_empty() && !r->popular()) {
5168       assert(!r->isHumongous(), "H regions should not be empty.");
5169       _n++;
5170     }
5171     return false;
5172   }
5173   int res() { return (int) _n; }
5174 };
5175 
5176 size_t G1CollectedHeap::count_free_regions() {
5177   RegionCounter rc;
5178   heap_region_iterate(&rc);
5179   size_t n = rc.res();
5180   if (_cur_alloc_region != NULL && _cur_alloc_region->is_empty())
5181     n--;
5182   return n;
5183 }
5184 
5185 size_t G1CollectedHeap::count_free_regions_list() {
5186   size_t n = 0;
5187   size_t o = 0;
5188   ZF_mon->lock_without_safepoint_check();
5189   HeapRegion* cur = _free_region_list;
5190   while (cur != NULL) {
5191     cur = cur->next_from_free_list();
5192     n++;
5193   }
5194   size_t m = unclean_region_list_length();
5195   ZF_mon->unlock();
5196   return n + m;
5197 }
5198 
5199 bool G1CollectedHeap::should_set_young_locked() {
5200   assert(heap_lock_held_for_gc(),
5201               "the heap lock should already be held by or for this thread");
5202   return  (g1_policy()->in_young_gc_mode() &&
5203            g1_policy()->should_add_next_region_to_young_list());
5204 }
5205 
5206 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5207   assert(heap_lock_held_for_gc(),
5208               "the heap lock should already be held by or for this thread");
5209   _young_list->push_region(hr);
5210   g1_policy()->set_region_short_lived(hr);
5211 }
5212 
5213 class NoYoungRegionsClosure: public HeapRegionClosure {
5214 private:
5215   bool _success;
5216 public:
5217   NoYoungRegionsClosure() : _success(true) { }
5218   bool doHeapRegion(HeapRegion* r) {
5219     if (r->is_young()) {
5220       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
5221                              r->bottom(), r->end());
5222       _success = false;
5223     }
5224     return false;
5225   }
5226   bool success() { return _success; }
5227 };
5228 
5229 bool G1CollectedHeap::check_young_list_empty(bool ignore_scan_only_list,
5230                                              bool check_sample) {
5231   bool ret = true;
5232 
5233   ret = _young_list->check_list_empty(ignore_scan_only_list, check_sample);
5234   if (!ignore_scan_only_list) {
5235     NoYoungRegionsClosure closure;
5236     heap_region_iterate(&closure);
5237     ret = ret && closure.success();
5238   }
5239 
5240   return ret;
5241 }
5242 
5243 void G1CollectedHeap::empty_young_list() {
5244   assert(heap_lock_held_for_gc(),
5245               "the heap lock should already be held by or for this thread");
5246   assert(g1_policy()->in_young_gc_mode(), "should be in young GC mode");
5247 
5248   _young_list->empty_list();
5249 }
5250 
5251 bool G1CollectedHeap::all_alloc_regions_no_allocs_since_save_marks() {
5252   bool no_allocs = true;
5253   for (int ap = 0; ap < GCAllocPurposeCount && no_allocs; ++ap) {
5254     HeapRegion* r = _gc_alloc_regions[ap];
5255     no_allocs = r == NULL || r->saved_mark_at_top();
5256   }
5257   return no_allocs;
5258 }
5259 
5260 void G1CollectedHeap::retire_all_alloc_regions() {
5261   for (int ap = 0; ap < GCAllocPurposeCount; ++ap) {
5262     HeapRegion* r = _gc_alloc_regions[ap];
5263     if (r != NULL) {
5264       // Check for aliases.
5265       bool has_processed_alias = false;
5266       for (int i = 0; i < ap; ++i) {
5267         if (_gc_alloc_regions[i] == r) {
5268           has_processed_alias = true;
5269           break;
5270         }
5271       }
5272       if (!has_processed_alias) {
5273         retire_alloc_region(r, false /* par */);
5274       }
5275     }
5276   }
5277 }
5278 
5279 
5280 // Done at the start of full GC.
5281 void G1CollectedHeap::tear_down_region_lists() {
5282   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5283   while (pop_unclean_region_list_locked() != NULL) ;
5284   assert(_unclean_region_list.hd() == NULL && _unclean_region_list.sz() == 0,
5285          "Postconditions of loop.")
5286   while (pop_free_region_list_locked() != NULL) ;
5287   assert(_free_region_list == NULL, "Postcondition of loop.");
5288   if (_free_region_list_size != 0) {
5289     gclog_or_tty->print_cr("Size is %d.", _free_region_list_size);
5290     print();
5291   }
5292   assert(_free_region_list_size == 0, "Postconditions of loop.");
5293 }
5294 
5295 
5296 class RegionResetter: public HeapRegionClosure {
5297   G1CollectedHeap* _g1;
5298   int _n;
5299 public:
5300   RegionResetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
5301   bool doHeapRegion(HeapRegion* r) {
5302     if (r->continuesHumongous()) return false;
5303     if (r->top() > r->bottom()) {
5304       if (r->top() < r->end()) {
5305         Copy::fill_to_words(r->top(),
5306                           pointer_delta(r->end(), r->top()));
5307       }
5308       r->set_zero_fill_allocated();
5309     } else {
5310       assert(r->is_empty(), "tautology");
5311       if (r->popular()) {
5312         if (r->zero_fill_state() != HeapRegion::Allocated) {
5313           r->ensure_zero_filled_locked();
5314           r->set_zero_fill_allocated();
5315         }
5316       } else {
5317         _n++;
5318         switch (r->zero_fill_state()) {
5319         case HeapRegion::NotZeroFilled:
5320         case HeapRegion::ZeroFilling:
5321           _g1->put_region_on_unclean_list_locked(r);
5322           break;
5323         case HeapRegion::Allocated:
5324           r->set_zero_fill_complete();
5325           // no break; go on to put on free list.
5326         case HeapRegion::ZeroFilled:
5327           _g1->put_free_region_on_list_locked(r);
5328           break;
5329         }
5330       }
5331     }
5332     return false;
5333   }
5334 
5335   int getFreeRegionCount() {return _n;}
5336 };
5337 
5338 // Done at the end of full GC.
5339 void G1CollectedHeap::rebuild_region_lists() {
5340   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5341   // This needs to go at the end of the full GC.
5342   RegionResetter rs;
5343   heap_region_iterate(&rs);
5344   _free_regions = rs.getFreeRegionCount();
5345   // Tell the ZF thread it may have work to do.
5346   if (should_zf()) ZF_mon->notify_all();
5347 }
5348 
5349 class UsedRegionsNeedZeroFillSetter: public HeapRegionClosure {
5350   G1CollectedHeap* _g1;
5351   int _n;
5352 public:
5353   UsedRegionsNeedZeroFillSetter() : _g1(G1CollectedHeap::heap()), _n(0) {}
5354   bool doHeapRegion(HeapRegion* r) {
5355     if (r->continuesHumongous()) return false;
5356     if (r->top() > r->bottom()) {
5357       // There are assertions in "set_zero_fill_needed()" below that
5358       // require top() == bottom(), so this is technically illegal.
5359       // We'll skirt the law here, by making that true temporarily.
5360       DEBUG_ONLY(HeapWord* save_top = r->top();
5361                  r->set_top(r->bottom()));
5362       r->set_zero_fill_needed();
5363       DEBUG_ONLY(r->set_top(save_top));
5364     }
5365     return false;
5366   }
5367 };
5368 
5369 // Done at the start of full GC.
5370 void G1CollectedHeap::set_used_regions_to_need_zero_fill() {
5371   MutexLockerEx x(ZF_mon, Mutex::_no_safepoint_check_flag);
5372   // This needs to go at the end of the full GC.
5373   UsedRegionsNeedZeroFillSetter rs;
5374   heap_region_iterate(&rs);
5375 }
5376 
5377 class CountObjClosure: public ObjectClosure {
5378   size_t _n;
5379 public:
5380   CountObjClosure() : _n(0) {}
5381   void do_object(oop obj) { _n++; }
5382   size_t n() { return _n; }
5383 };
5384 
5385 size_t G1CollectedHeap::pop_object_used_objs() {
5386   size_t sum_objs = 0;
5387   for (int i = 0; i < G1NumPopularRegions; i++) {
5388     CountObjClosure cl;
5389     _hrs->at(i)->object_iterate(&cl);
5390     sum_objs += cl.n();
5391   }
5392   return sum_objs;
5393 }
5394 
5395 size_t G1CollectedHeap::pop_object_used_bytes() {
5396   size_t sum_bytes = 0;
5397   for (int i = 0; i < G1NumPopularRegions; i++) {
5398     sum_bytes += _hrs->at(i)->used();
5399   }
5400   return sum_bytes;
5401 }
5402 
5403 
5404 static int nq = 0;
5405 
5406 HeapWord* G1CollectedHeap::allocate_popular_object(size_t word_size) {
5407   while (_cur_pop_hr_index < G1NumPopularRegions) {
5408     HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
5409     HeapWord* res = cur_pop_region->allocate(word_size);
5410     if (res != NULL) {
5411       // We account for popular objs directly in the used summary:
5412       _summary_bytes_used += (word_size * HeapWordSize);
5413       return res;
5414     }
5415     // Otherwise, try the next region (first making sure that we remember
5416     // the last "top" value as the "next_top_at_mark_start", so that
5417     // objects made popular during markings aren't automatically considered
5418     // live).
5419     cur_pop_region->note_end_of_copying();
5420     // Otherwise, try the next region.
5421     _cur_pop_hr_index++;
5422   }
5423   // XXX: For now !!!
5424   vm_exit_out_of_memory(word_size,
5425                         "Not enough pop obj space (To Be Fixed)");
5426   return NULL;
5427 }
5428 
5429 class HeapRegionList: public CHeapObj {
5430   public:
5431   HeapRegion* hr;
5432   HeapRegionList* next;
5433 };
5434 
5435 void G1CollectedHeap::schedule_popular_region_evac(HeapRegion* r) {
5436   // This might happen during parallel GC, so protect by this lock.
5437   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
5438   // We don't schedule regions whose evacuations are already pending, or
5439   // are already being evacuated.
5440   if (!r->popular_pending() && !r->in_collection_set()) {
5441     r->set_popular_pending(true);
5442     if (G1TracePopularity) {
5443       gclog_or_tty->print_cr("Scheduling region "PTR_FORMAT" "
5444                              "["PTR_FORMAT", "PTR_FORMAT") for pop-object evacuation.",
5445                              r, r->bottom(), r->end());
5446     }
5447     HeapRegionList* hrl = new HeapRegionList;
5448     hrl->hr = r;
5449     hrl->next = _popular_regions_to_be_evacuated;
5450     _popular_regions_to_be_evacuated = hrl;
5451   }
5452 }
5453 
5454 HeapRegion* G1CollectedHeap::popular_region_to_evac() {
5455   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
5456   HeapRegion* res = NULL;
5457   while (_popular_regions_to_be_evacuated != NULL && res == NULL) {
5458     HeapRegionList* hrl = _popular_regions_to_be_evacuated;
5459     _popular_regions_to_be_evacuated = hrl->next;
5460     res = hrl->hr;
5461     // The G1RSPopLimit may have increased, so recheck here...
5462     if (res->rem_set()->occupied() < (size_t) G1RSPopLimit) {
5463       // Hah: don't need to schedule.
5464       if (G1TracePopularity) {
5465         gclog_or_tty->print_cr("Unscheduling region "PTR_FORMAT" "
5466                                "["PTR_FORMAT", "PTR_FORMAT") "
5467                                "for pop-object evacuation (size %d < limit %d)",
5468                                res, res->bottom(), res->end(),
5469                                res->rem_set()->occupied(), G1RSPopLimit);
5470       }
5471       res->set_popular_pending(false);
5472       res = NULL;
5473     }
5474     // We do not reset res->popular() here; if we did so, it would allow
5475     // the region to be "rescheduled" for popularity evacuation.  Instead,
5476     // this is done in the collection pause, with the world stopped.
5477     // So the invariant is that the regions in the list have the popularity
5478     // boolean set, but having the boolean set does not imply membership
5479     // on the list (though there can at most one such pop-pending region
5480     // not on the list at any time).
5481     delete hrl;
5482   }
5483   return res;
5484 }
5485 
5486 void G1CollectedHeap::evac_popular_region(HeapRegion* hr) {
5487   while (true) {
5488     // Don't want to do a GC pause while cleanup is being completed!
5489     wait_for_cleanup_complete();
5490 
5491     // Read the GC count while holding the Heap_lock
5492     int gc_count_before = SharedHeap::heap()->total_collections();
5493     g1_policy()->record_stop_world_start();
5494 
5495     {
5496       MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
5497       VM_G1PopRegionCollectionPause op(gc_count_before, hr);
5498       VMThread::execute(&op);
5499 
5500       // If the prolog succeeded, we didn't do a GC for this.
5501       if (op.prologue_succeeded()) break;
5502     }
5503     // Otherwise we didn't.  We should recheck the size, though, since
5504     // the limit may have increased...
5505     if (hr->rem_set()->occupied() < (size_t) G1RSPopLimit) {
5506       hr->set_popular_pending(false);
5507       break;
5508     }
5509   }
5510 }
5511 
5512 void G1CollectedHeap::atomic_inc_obj_rc(oop obj) {
5513   Atomic::inc(obj_rc_addr(obj));
5514 }
5515 
5516 class CountRCClosure: public OopsInHeapRegionClosure {
5517   G1CollectedHeap* _g1h;
5518   bool _parallel;
5519 public:
5520   CountRCClosure(G1CollectedHeap* g1h) :
5521     _g1h(g1h), _parallel(ParallelGCThreads > 0)
5522   {}
5523   void do_oop(narrowOop* p) {
5524     guarantee(false, "NYI");
5525   }
5526   void do_oop(oop* p) {
5527     oop obj = *p;
5528     assert(obj != NULL, "Precondition.");
5529     if (_parallel) {
5530       // We go sticky at the limit to avoid excess contention.
5531       // If we want to track the actual RC's further, we'll need to keep a
5532       // per-thread hash table or something for the popular objects.
5533       if (_g1h->obj_rc(obj) < G1ObjPopLimit) {
5534         _g1h->atomic_inc_obj_rc(obj);
5535       }
5536     } else {
5537       _g1h->inc_obj_rc(obj);
5538     }
5539   }
5540 };
5541 
5542 class EvacPopObjClosure: public ObjectClosure {
5543   G1CollectedHeap* _g1h;
5544   size_t _pop_objs;
5545   size_t _max_rc;
5546 public:
5547   EvacPopObjClosure(G1CollectedHeap* g1h) :
5548     _g1h(g1h), _pop_objs(0), _max_rc(0) {}
5549 
5550   void do_object(oop obj) {
5551     size_t rc = _g1h->obj_rc(obj);
5552     _max_rc = MAX2(rc, _max_rc);
5553     if (rc >= (size_t) G1ObjPopLimit) {
5554       _g1h->_pop_obj_rc_at_copy.add((double)rc);
5555       size_t word_sz = obj->size();
5556       HeapWord* new_pop_loc = _g1h->allocate_popular_object(word_sz);
5557       oop new_pop_obj = (oop)new_pop_loc;
5558       Copy::aligned_disjoint_words((HeapWord*)obj, new_pop_loc, word_sz);
5559       obj->forward_to(new_pop_obj);
5560       G1ScanAndBalanceClosure scan_and_balance(_g1h);
5561       new_pop_obj->oop_iterate_backwards(&scan_and_balance);
5562       // preserve "next" mark bit if marking is in progress.
5563       if (_g1h->mark_in_progress() && !_g1h->is_obj_ill(obj)) {
5564         _g1h->concurrent_mark()->markAndGrayObjectIfNecessary(new_pop_obj);
5565       }
5566 
5567       if (G1TracePopularity) {
5568         gclog_or_tty->print_cr("Found obj " PTR_FORMAT " of word size " SIZE_FORMAT
5569                                " pop (%d), move to " PTR_FORMAT,
5570                                (void*) obj, word_sz,
5571                                _g1h->obj_rc(obj), (void*) new_pop_obj);
5572       }
5573       _pop_objs++;
5574     }
5575   }
5576   size_t pop_objs() { return _pop_objs; }
5577   size_t max_rc() { return _max_rc; }
5578 };
5579 
5580 class G1ParCountRCTask : public AbstractGangTask {
5581   G1CollectedHeap* _g1h;
5582   BitMap _bm;
5583 
5584   size_t getNCards() {
5585     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
5586       / G1BlockOffsetSharedArray::N_bytes;
5587   }
5588   CountRCClosure _count_rc_closure;
5589 public:
5590   G1ParCountRCTask(G1CollectedHeap* g1h) :
5591     AbstractGangTask("G1 Par RC Count task"),
5592     _g1h(g1h), _bm(getNCards()), _count_rc_closure(g1h)
5593   {}
5594 
5595   void work(int i) {
5596     ResourceMark rm;
5597     HandleMark   hm;
5598     _g1h->g1_rem_set()->oops_into_collection_set_do(&_count_rc_closure, i);
5599   }
5600 };
5601 
5602 void G1CollectedHeap::popularity_pause_preamble(HeapRegion* popular_region) {
5603   // We're evacuating a single region (for popularity).
5604   if (G1TracePopularity) {
5605     gclog_or_tty->print_cr("Doing pop region pause for ["PTR_FORMAT", "PTR_FORMAT")",
5606                            popular_region->bottom(), popular_region->end());
5607   }
5608   g1_policy()->set_single_region_collection_set(popular_region);
5609   size_t max_rc;
5610   if (!compute_reference_counts_and_evac_popular(popular_region,
5611                                                  &max_rc)) {
5612     // We didn't evacuate any popular objects.
5613     // We increase the RS popularity limit, to prevent this from
5614     // happening in the future.
5615     if (G1RSPopLimit < (1 << 30)) {
5616       G1RSPopLimit *= 2;
5617     }
5618     // For now, interesting enough for a message:
5619 #if 1
5620     gclog_or_tty->print_cr("In pop region pause for ["PTR_FORMAT", "PTR_FORMAT"), "
5621                            "failed to find a pop object (max = %d).",
5622                            popular_region->bottom(), popular_region->end(),
5623                            max_rc);
5624     gclog_or_tty->print_cr("Increased G1RSPopLimit to %d.", G1RSPopLimit);
5625 #endif // 0
5626     // Also, we reset the collection set to NULL, to make the rest of
5627     // the collection do nothing.
5628     assert(popular_region->next_in_collection_set() == NULL,
5629            "should be single-region.");
5630     popular_region->set_in_collection_set(false);
5631     popular_region->set_popular_pending(false);
5632     g1_policy()->clear_collection_set();
5633   }
5634 }
5635 
5636 bool G1CollectedHeap::
5637 compute_reference_counts_and_evac_popular(HeapRegion* popular_region,
5638                                           size_t* max_rc) {
5639   HeapWord* rc_region_bot;
5640   HeapWord* rc_region_end;
5641 
5642   // Set up the reference count region.
5643   HeapRegion* rc_region = newAllocRegion(HeapRegion::GrainWords);
5644   if (rc_region != NULL) {
5645     rc_region_bot = rc_region->bottom();
5646     rc_region_end = rc_region->end();
5647   } else {
5648     rc_region_bot = NEW_C_HEAP_ARRAY(HeapWord, HeapRegion::GrainWords);
5649     if (rc_region_bot == NULL) {
5650       vm_exit_out_of_memory(HeapRegion::GrainWords,
5651                             "No space for RC region.");
5652     }
5653     rc_region_end = rc_region_bot + HeapRegion::GrainWords;
5654   }
5655 
5656   if (G1TracePopularity)
5657     gclog_or_tty->print_cr("RC region is ["PTR_FORMAT", "PTR_FORMAT")",
5658                            rc_region_bot, rc_region_end);
5659   if (rc_region_bot > popular_region->bottom()) {
5660     _rc_region_above = true;
5661     _rc_region_diff =
5662       pointer_delta(rc_region_bot, popular_region->bottom(), 1);
5663   } else {
5664     assert(rc_region_bot < popular_region->bottom(), "Can't be equal.");
5665     _rc_region_above = false;
5666     _rc_region_diff =
5667       pointer_delta(popular_region->bottom(), rc_region_bot, 1);
5668   }
5669   g1_policy()->record_pop_compute_rc_start();
5670   // Count external references.
5671   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5672   if (ParallelGCThreads > 0) {
5673 
5674     set_par_threads(workers()->total_workers());
5675     G1ParCountRCTask par_count_rc_task(this);
5676     workers()->run_task(&par_count_rc_task);
5677     set_par_threads(0);
5678 
5679   } else {
5680     CountRCClosure count_rc_closure(this);
5681     g1_rem_set()->oops_into_collection_set_do(&count_rc_closure, 0);
5682   }
5683   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5684   g1_policy()->record_pop_compute_rc_end();
5685 
5686   // Now evacuate popular objects.
5687   g1_policy()->record_pop_evac_start();
5688   EvacPopObjClosure evac_pop_obj_cl(this);
5689   popular_region->object_iterate(&evac_pop_obj_cl);
5690   *max_rc = evac_pop_obj_cl.max_rc();
5691 
5692   // Make sure the last "top" value of the current popular region is copied
5693   // as the "next_top_at_mark_start", so that objects made popular during
5694   // markings aren't automatically considered live.
5695   HeapRegion* cur_pop_region = _hrs->at(_cur_pop_hr_index);
5696   cur_pop_region->note_end_of_copying();
5697 
5698   if (rc_region != NULL) {
5699     free_region(rc_region);
5700   } else {
5701     FREE_C_HEAP_ARRAY(HeapWord, rc_region_bot);
5702   }
5703   g1_policy()->record_pop_evac_end();
5704 
5705   return evac_pop_obj_cl.pop_objs() > 0;
5706 }
5707 
5708 class CountPopObjInfoClosure: public HeapRegionClosure {
5709   size_t _objs;
5710   size_t _bytes;
5711 
5712   class CountObjClosure: public ObjectClosure {
5713     int _n;
5714   public:
5715     CountObjClosure() : _n(0) {}
5716     void do_object(oop obj) { _n++; }
5717     size_t n() { return _n; }
5718   };
5719 
5720 public:
5721   CountPopObjInfoClosure() : _objs(0), _bytes(0) {}
5722   bool doHeapRegion(HeapRegion* r) {
5723     _bytes += r->used();
5724     CountObjClosure blk;
5725     r->object_iterate(&blk);
5726     _objs += blk.n();
5727     return false;
5728   }
5729   size_t objs() { return _objs; }
5730   size_t bytes() { return _bytes; }
5731 };
5732 
5733 
5734 void G1CollectedHeap::print_popularity_summary_info() const {
5735   CountPopObjInfoClosure blk;
5736   for (int i = 0; i <= _cur_pop_hr_index; i++) {
5737     blk.doHeapRegion(_hrs->at(i));
5738   }
5739   gclog_or_tty->print_cr("\nPopular objects: %d objs, %d bytes.",
5740                          blk.objs(), blk.bytes());
5741   gclog_or_tty->print_cr("   RC at copy = [avg = %5.2f, max = %5.2f, sd = %5.2f].",
5742                 _pop_obj_rc_at_copy.avg(),
5743                 _pop_obj_rc_at_copy.maximum(),
5744                 _pop_obj_rc_at_copy.sd());
5745 }
5746 
5747 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5748   _refine_cte_cl->set_concurrent(concurrent);
5749 }
5750 
5751 #ifndef PRODUCT
5752 
5753 class PrintHeapRegionClosure: public HeapRegionClosure {
5754 public:
5755   bool doHeapRegion(HeapRegion *r) {
5756     gclog_or_tty->print("Region: "PTR_FORMAT":", r);
5757     if (r != NULL) {
5758       if (r->is_on_free_list())
5759         gclog_or_tty->print("Free ");
5760       if (r->is_young())
5761         gclog_or_tty->print("Young ");
5762       if (r->isHumongous())
5763         gclog_or_tty->print("Is Humongous ");
5764       r->print();
5765     }
5766     return false;
5767   }
5768 };
5769 
5770 class SortHeapRegionClosure : public HeapRegionClosure {
5771   size_t young_regions,free_regions, unclean_regions;
5772   size_t hum_regions, count;
5773   size_t unaccounted, cur_unclean, cur_alloc;
5774   size_t total_free;
5775   HeapRegion* cur;
5776 public:
5777   SortHeapRegionClosure(HeapRegion *_cur) : cur(_cur), young_regions(0),
5778     free_regions(0), unclean_regions(0),
5779     hum_regions(0),
5780     count(0), unaccounted(0),
5781     cur_alloc(0), total_free(0)
5782   {}
5783   bool doHeapRegion(HeapRegion *r) {
5784     count++;
5785     if (r->is_on_free_list()) free_regions++;
5786     else if (r->is_on_unclean_list()) unclean_regions++;
5787     else if (r->isHumongous())  hum_regions++;
5788     else if (r->is_young()) young_regions++;
5789     else if (r == cur) cur_alloc++;
5790     else unaccounted++;
5791     return false;
5792   }
5793   void print() {
5794     total_free = free_regions + unclean_regions;
5795     gclog_or_tty->print("%d regions\n", count);
5796     gclog_or_tty->print("%d free: free_list = %d unclean = %d\n",
5797                         total_free, free_regions, unclean_regions);
5798     gclog_or_tty->print("%d humongous %d young\n",
5799                         hum_regions, young_regions);
5800     gclog_or_tty->print("%d cur_alloc\n", cur_alloc);
5801     gclog_or_tty->print("UHOH unaccounted = %d\n", unaccounted);
5802   }
5803 };
5804 
5805 void G1CollectedHeap::print_region_counts() {
5806   SortHeapRegionClosure sc(_cur_alloc_region);
5807   PrintHeapRegionClosure cl;
5808   heap_region_iterate(&cl);
5809   heap_region_iterate(&sc);
5810   sc.print();
5811   print_region_accounting_info();
5812 };
5813 
5814 bool G1CollectedHeap::regions_accounted_for() {
5815   // TODO: regions accounting for young/survivor/tenured
5816   return true;
5817 }
5818 
5819 bool G1CollectedHeap::print_region_accounting_info() {
5820   gclog_or_tty->print_cr("P regions: %d.", G1NumPopularRegions);
5821   gclog_or_tty->print_cr("Free regions: %d (count: %d count list %d) (clean: %d unclean: %d).",
5822                          free_regions(),
5823                          count_free_regions(), count_free_regions_list(),
5824                          _free_region_list_size, _unclean_region_list.sz());
5825   gclog_or_tty->print_cr("cur_alloc: %d.",
5826                          (_cur_alloc_region == NULL ? 0 : 1));
5827   gclog_or_tty->print_cr("H regions: %d.", _num_humongous_regions);
5828 
5829   // TODO: check regions accounting for young/survivor/tenured
5830   return true;
5831 }
5832 
5833 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5834   HeapRegion* hr = heap_region_containing(p);
5835   if (hr == NULL) {
5836     return is_in_permanent(p);
5837   } else {
5838     return hr->is_in(p);
5839   }
5840 }
5841 #endif // PRODUCT
5842 
5843 void G1CollectedHeap::g1_unimplemented() {
5844   // Unimplemented();
5845 }
5846 
5847 
5848 // Local Variables: ***
5849 // c-indentation-style: gnu ***
5850 // End: ***