1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_assembler_x86.cpp.incl"
  27 
  28 // Implementation of AddressLiteral
  29 
  30 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  31   _is_lval = false;
  32   _target = target;
  33   switch (rtype) {
  34   case relocInfo::oop_type:
  35     // Oops are a special case. Normally they would be their own section
  36     // but in cases like icBuffer they are literals in the code stream that
  37     // we don't have a section for. We use none so that we get a literal address
  38     // which is always patchable.
  39     break;
  40   case relocInfo::external_word_type:
  41     _rspec = external_word_Relocation::spec(target);
  42     break;
  43   case relocInfo::internal_word_type:
  44     _rspec = internal_word_Relocation::spec(target);
  45     break;
  46   case relocInfo::opt_virtual_call_type:
  47     _rspec = opt_virtual_call_Relocation::spec();
  48     break;
  49   case relocInfo::static_call_type:
  50     _rspec = static_call_Relocation::spec();
  51     break;
  52   case relocInfo::runtime_call_type:
  53     _rspec = runtime_call_Relocation::spec();
  54     break;
  55   case relocInfo::poll_type:
  56   case relocInfo::poll_return_type:
  57     _rspec = Relocation::spec_simple(rtype);
  58     break;
  59   case relocInfo::none:
  60     break;
  61   default:
  62     ShouldNotReachHere();
  63     break;
  64   }
  65 }
  66 
  67 // Implementation of Address
  68 
  69 #ifdef _LP64
  70 
  71 Address Address::make_array(ArrayAddress adr) {
  72   // Not implementable on 64bit machines
  73   // Should have been handled higher up the call chain.
  74   ShouldNotReachHere();
  75   return Address();
  76 }
  77 
  78 // exceedingly dangerous constructor
  79 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
  80   _base  = noreg;
  81   _index = noreg;
  82   _scale = no_scale;
  83   _disp  = disp;
  84   switch (rtype) {
  85     case relocInfo::external_word_type:
  86       _rspec = external_word_Relocation::spec(loc);
  87       break;
  88     case relocInfo::internal_word_type:
  89       _rspec = internal_word_Relocation::spec(loc);
  90       break;
  91     case relocInfo::runtime_call_type:
  92       // HMM
  93       _rspec = runtime_call_Relocation::spec();
  94       break;
  95     case relocInfo::poll_type:
  96     case relocInfo::poll_return_type:
  97       _rspec = Relocation::spec_simple(rtype);
  98       break;
  99     case relocInfo::none:
 100       break;
 101     default:
 102       ShouldNotReachHere();
 103   }
 104 }
 105 #else // LP64
 106 
 107 Address Address::make_array(ArrayAddress adr) {
 108   AddressLiteral base = adr.base();
 109   Address index = adr.index();
 110   assert(index._disp == 0, "must not have disp"); // maybe it can?
 111   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 112   array._rspec = base._rspec;
 113   return array;
 114 }
 115 
 116 // exceedingly dangerous constructor
 117 Address::Address(address loc, RelocationHolder spec) {
 118   _base  = noreg;
 119   _index = noreg;
 120   _scale = no_scale;
 121   _disp  = (intptr_t) loc;
 122   _rspec = spec;
 123 }
 124 
 125 #endif // _LP64
 126 
 127 
 128 
 129 // Convert the raw encoding form into the form expected by the constructor for
 130 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 131 // that to noreg for the Address constructor.
 132 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
 133   RelocationHolder rspec;
 134   if (disp_is_oop) {
 135     rspec = Relocation::spec_simple(relocInfo::oop_type);
 136   }
 137   bool valid_index = index != rsp->encoding();
 138   if (valid_index) {
 139     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 140     madr._rspec = rspec;
 141     return madr;
 142   } else {
 143     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 144     madr._rspec = rspec;
 145     return madr;
 146   }
 147 }
 148 
 149 // Implementation of Assembler
 150 
 151 int AbstractAssembler::code_fill_byte() {
 152   return (u_char)'\xF4'; // hlt
 153 }
 154 
 155 // make this go away someday
 156 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 157   if (rtype == relocInfo::none)
 158         emit_long(data);
 159   else  emit_data(data, Relocation::spec_simple(rtype), format);
 160 }
 161 
 162 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 163   assert(imm_operand == 0, "default format must be immediate in this file");
 164   assert(inst_mark() != NULL, "must be inside InstructionMark");
 165   if (rspec.type() !=  relocInfo::none) {
 166     #ifdef ASSERT
 167       check_relocation(rspec, format);
 168     #endif
 169     // Do not use AbstractAssembler::relocate, which is not intended for
 170     // embedded words.  Instead, relocate to the enclosing instruction.
 171 
 172     // hack. call32 is too wide for mask so use disp32
 173     if (format == call32_operand)
 174       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 175     else
 176       code_section()->relocate(inst_mark(), rspec, format);
 177   }
 178   emit_long(data);
 179 }
 180 
 181 static int encode(Register r) {
 182   int enc = r->encoding();
 183   if (enc >= 8) {
 184     enc -= 8;
 185   }
 186   return enc;
 187 }
 188 
 189 static int encode(XMMRegister r) {
 190   int enc = r->encoding();
 191   if (enc >= 8) {
 192     enc -= 8;
 193   }
 194   return enc;
 195 }
 196 
 197 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 198   assert(dst->has_byte_register(), "must have byte register");
 199   assert(isByte(op1) && isByte(op2), "wrong opcode");
 200   assert(isByte(imm8), "not a byte");
 201   assert((op1 & 0x01) == 0, "should be 8bit operation");
 202   emit_byte(op1);
 203   emit_byte(op2 | encode(dst));
 204   emit_byte(imm8);
 205 }
 206 
 207 
 208 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 209   assert(isByte(op1) && isByte(op2), "wrong opcode");
 210   assert((op1 & 0x01) == 1, "should be 32bit operation");
 211   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 212   if (is8bit(imm32)) {
 213     emit_byte(op1 | 0x02); // set sign bit
 214     emit_byte(op2 | encode(dst));
 215     emit_byte(imm32 & 0xFF);
 216   } else {
 217     emit_byte(op1);
 218     emit_byte(op2 | encode(dst));
 219     emit_long(imm32);
 220   }
 221 }
 222 
 223 // immediate-to-memory forms
 224 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 225   assert((op1 & 0x01) == 1, "should be 32bit operation");
 226   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 227   if (is8bit(imm32)) {
 228     emit_byte(op1 | 0x02); // set sign bit
 229     emit_operand(rm, adr, 1);
 230     emit_byte(imm32 & 0xFF);
 231   } else {
 232     emit_byte(op1);
 233     emit_operand(rm, adr, 4);
 234     emit_long(imm32);
 235   }
 236 }
 237 
 238 void Assembler::emit_arith(int op1, int op2, Register dst, jobject obj) {
 239   LP64_ONLY(ShouldNotReachHere());
 240   assert(isByte(op1) && isByte(op2), "wrong opcode");
 241   assert((op1 & 0x01) == 1, "should be 32bit operation");
 242   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 243   InstructionMark im(this);
 244   emit_byte(op1);
 245   emit_byte(op2 | encode(dst));
 246   emit_data((intptr_t)obj, relocInfo::oop_type, 0);
 247 }
 248 
 249 
 250 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 251   assert(isByte(op1) && isByte(op2), "wrong opcode");
 252   emit_byte(op1);
 253   emit_byte(op2 | encode(dst) << 3 | encode(src));
 254 }
 255 
 256 
 257 void Assembler::emit_operand(Register reg, Register base, Register index,
 258                              Address::ScaleFactor scale, int disp,
 259                              RelocationHolder const& rspec,
 260                              int rip_relative_correction) {
 261   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 262 
 263   // Encode the registers as needed in the fields they are used in
 264 
 265   int regenc = encode(reg) << 3;
 266   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 267   int baseenc = base->is_valid() ? encode(base) : 0;
 268 
 269   if (base->is_valid()) {
 270     if (index->is_valid()) {
 271       assert(scale != Address::no_scale, "inconsistent address");
 272       // [base + index*scale + disp]
 273       if (disp == 0 && rtype == relocInfo::none  &&
 274           base != rbp LP64_ONLY(&& base != r13)) {
 275         // [base + index*scale]
 276         // [00 reg 100][ss index base]
 277         assert(index != rsp, "illegal addressing mode");
 278         emit_byte(0x04 | regenc);
 279         emit_byte(scale << 6 | indexenc | baseenc);
 280       } else if (is8bit(disp) && rtype == relocInfo::none) {
 281         // [base + index*scale + imm8]
 282         // [01 reg 100][ss index base] imm8
 283         assert(index != rsp, "illegal addressing mode");
 284         emit_byte(0x44 | regenc);
 285         emit_byte(scale << 6 | indexenc | baseenc);
 286         emit_byte(disp & 0xFF);
 287       } else {
 288         // [base + index*scale + disp32]
 289         // [10 reg 100][ss index base] disp32
 290         assert(index != rsp, "illegal addressing mode");
 291         emit_byte(0x84 | regenc);
 292         emit_byte(scale << 6 | indexenc | baseenc);
 293         emit_data(disp, rspec, disp32_operand);
 294       }
 295     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 296       // [rsp + disp]
 297       if (disp == 0 && rtype == relocInfo::none) {
 298         // [rsp]
 299         // [00 reg 100][00 100 100]
 300         emit_byte(0x04 | regenc);
 301         emit_byte(0x24);
 302       } else if (is8bit(disp) && rtype == relocInfo::none) {
 303         // [rsp + imm8]
 304         // [01 reg 100][00 100 100] disp8
 305         emit_byte(0x44 | regenc);
 306         emit_byte(0x24);
 307         emit_byte(disp & 0xFF);
 308       } else {
 309         // [rsp + imm32]
 310         // [10 reg 100][00 100 100] disp32
 311         emit_byte(0x84 | regenc);
 312         emit_byte(0x24);
 313         emit_data(disp, rspec, disp32_operand);
 314       }
 315     } else {
 316       // [base + disp]
 317       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 318       if (disp == 0 && rtype == relocInfo::none &&
 319           base != rbp LP64_ONLY(&& base != r13)) {
 320         // [base]
 321         // [00 reg base]
 322         emit_byte(0x00 | regenc | baseenc);
 323       } else if (is8bit(disp) && rtype == relocInfo::none) {
 324         // [base + disp8]
 325         // [01 reg base] disp8
 326         emit_byte(0x40 | regenc | baseenc);
 327         emit_byte(disp & 0xFF);
 328       } else {
 329         // [base + disp32]
 330         // [10 reg base] disp32
 331         emit_byte(0x80 | regenc | baseenc);
 332         emit_data(disp, rspec, disp32_operand);
 333       }
 334     }
 335   } else {
 336     if (index->is_valid()) {
 337       assert(scale != Address::no_scale, "inconsistent address");
 338       // [index*scale + disp]
 339       // [00 reg 100][ss index 101] disp32
 340       assert(index != rsp, "illegal addressing mode");
 341       emit_byte(0x04 | regenc);
 342       emit_byte(scale << 6 | indexenc | 0x05);
 343       emit_data(disp, rspec, disp32_operand);
 344     } else if (rtype != relocInfo::none ) {
 345       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 346       // [00 000 101] disp32
 347 
 348       emit_byte(0x05 | regenc);
 349       // Note that the RIP-rel. correction applies to the generated
 350       // disp field, but _not_ to the target address in the rspec.
 351 
 352       // disp was created by converting the target address minus the pc
 353       // at the start of the instruction. That needs more correction here.
 354       // intptr_t disp = target - next_ip;
 355       assert(inst_mark() != NULL, "must be inside InstructionMark");
 356       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 357       int64_t adjusted = disp;
 358       // Do rip-rel adjustment for 64bit
 359       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 360       assert(is_simm32(adjusted),
 361              "must be 32bit offset (RIP relative address)");
 362       emit_data((int32_t) adjusted, rspec, disp32_operand);
 363 
 364     } else {
 365       // 32bit never did this, did everything as the rip-rel/disp code above
 366       // [disp] ABSOLUTE
 367       // [00 reg 100][00 100 101] disp32
 368       emit_byte(0x04 | regenc);
 369       emit_byte(0x25);
 370       emit_data(disp, rspec, disp32_operand);
 371     }
 372   }
 373 }
 374 
 375 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 376                              Address::ScaleFactor scale, int disp,
 377                              RelocationHolder const& rspec) {
 378   emit_operand((Register)reg, base, index, scale, disp, rspec);
 379 }
 380 
 381 // Secret local extension to Assembler::WhichOperand:
 382 #define end_pc_operand (_WhichOperand_limit)
 383 
 384 address Assembler::locate_operand(address inst, WhichOperand which) {
 385   // Decode the given instruction, and return the address of
 386   // an embedded 32-bit operand word.
 387 
 388   // If "which" is disp32_operand, selects the displacement portion
 389   // of an effective address specifier.
 390   // If "which" is imm64_operand, selects the trailing immediate constant.
 391   // If "which" is call32_operand, selects the displacement of a call or jump.
 392   // Caller is responsible for ensuring that there is such an operand,
 393   // and that it is 32/64 bits wide.
 394 
 395   // If "which" is end_pc_operand, find the end of the instruction.
 396 
 397   address ip = inst;
 398   bool is_64bit = false;
 399 
 400   debug_only(bool has_disp32 = false);
 401   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 402 
 403   again_after_prefix:
 404   switch (0xFF & *ip++) {
 405 
 406   // These convenience macros generate groups of "case" labels for the switch.
 407 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 408 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 409              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 410 #define REP16(x) REP8((x)+0): \
 411               case REP8((x)+8)
 412 
 413   case CS_segment:
 414   case SS_segment:
 415   case DS_segment:
 416   case ES_segment:
 417   case FS_segment:
 418   case GS_segment:
 419     // Seems dubious
 420     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 421     assert(ip == inst+1, "only one prefix allowed");
 422     goto again_after_prefix;
 423 
 424   case 0x67:
 425   case REX:
 426   case REX_B:
 427   case REX_X:
 428   case REX_XB:
 429   case REX_R:
 430   case REX_RB:
 431   case REX_RX:
 432   case REX_RXB:
 433     NOT_LP64(assert(false, "64bit prefixes"));
 434     goto again_after_prefix;
 435 
 436   case REX_W:
 437   case REX_WB:
 438   case REX_WX:
 439   case REX_WXB:
 440   case REX_WR:
 441   case REX_WRB:
 442   case REX_WRX:
 443   case REX_WRXB:
 444     NOT_LP64(assert(false, "64bit prefixes"));
 445     is_64bit = true;
 446     goto again_after_prefix;
 447 
 448   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 449   case 0x88: // movb a, r
 450   case 0x89: // movl a, r
 451   case 0x8A: // movb r, a
 452   case 0x8B: // movl r, a
 453   case 0x8F: // popl a
 454     debug_only(has_disp32 = true);
 455     break;
 456 
 457   case 0x68: // pushq #32
 458     if (which == end_pc_operand) {
 459       return ip + 4;
 460     }
 461     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 462     return ip;                  // not produced by emit_operand
 463 
 464   case 0x66: // movw ... (size prefix)
 465     again_after_size_prefix2:
 466     switch (0xFF & *ip++) {
 467     case REX:
 468     case REX_B:
 469     case REX_X:
 470     case REX_XB:
 471     case REX_R:
 472     case REX_RB:
 473     case REX_RX:
 474     case REX_RXB:
 475     case REX_W:
 476     case REX_WB:
 477     case REX_WX:
 478     case REX_WXB:
 479     case REX_WR:
 480     case REX_WRB:
 481     case REX_WRX:
 482     case REX_WRXB:
 483       NOT_LP64(assert(false, "64bit prefix found"));
 484       goto again_after_size_prefix2;
 485     case 0x8B: // movw r, a
 486     case 0x89: // movw a, r
 487       debug_only(has_disp32 = true);
 488       break;
 489     case 0xC7: // movw a, #16
 490       debug_only(has_disp32 = true);
 491       tail_size = 2;  // the imm16
 492       break;
 493     case 0x0F: // several SSE/SSE2 variants
 494       ip--;    // reparse the 0x0F
 495       goto again_after_prefix;
 496     default:
 497       ShouldNotReachHere();
 498     }
 499     break;
 500 
 501   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 502     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 503     // these asserts are somewhat nonsensical
 504 #ifndef _LP64
 505     assert(which == imm_operand || which == disp32_operand, "");
 506 #else
 507     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 508            which == narrow_oop_operand && !is_64bit, "");
 509 #endif // _LP64
 510     return ip;
 511 
 512   case 0x69: // imul r, a, #32
 513   case 0xC7: // movl a, #32(oop?)
 514     tail_size = 4;
 515     debug_only(has_disp32 = true); // has both kinds of operands!
 516     break;
 517 
 518   case 0x0F: // movx..., etc.
 519     switch (0xFF & *ip++) {
 520     case 0x12: // movlps
 521     case 0x28: // movaps
 522     case 0x2E: // ucomiss
 523     case 0x2F: // comiss
 524     case 0x54: // andps
 525     case 0x55: // andnps
 526     case 0x56: // orps
 527     case 0x57: // xorps
 528     case 0x6E: // movd
 529     case 0x7E: // movd
 530     case 0xAE: // ldmxcsr   a
 531       // 64bit side says it these have both operands but that doesn't
 532       // appear to be true
 533       debug_only(has_disp32 = true);
 534       break;
 535 
 536     case 0xAD: // shrd r, a, %cl
 537     case 0xAF: // imul r, a
 538     case 0xBE: // movsbl r, a (movsxb)
 539     case 0xBF: // movswl r, a (movsxw)
 540     case 0xB6: // movzbl r, a (movzxb)
 541     case 0xB7: // movzwl r, a (movzxw)
 542     case REP16(0x40): // cmovl cc, r, a
 543     case 0xB0: // cmpxchgb
 544     case 0xB1: // cmpxchg
 545     case 0xC1: // xaddl
 546     case 0xC7: // cmpxchg8
 547     case REP16(0x90): // setcc a
 548       debug_only(has_disp32 = true);
 549       // fall out of the switch to decode the address
 550       break;
 551 
 552     case 0xAC: // shrd r, a, #8
 553       debug_only(has_disp32 = true);
 554       tail_size = 1;  // the imm8
 555       break;
 556 
 557     case REP16(0x80): // jcc rdisp32
 558       if (which == end_pc_operand)  return ip + 4;
 559       assert(which == call32_operand, "jcc has no disp32 or imm");
 560       return ip;
 561     default:
 562       ShouldNotReachHere();
 563     }
 564     break;
 565 
 566   case 0x81: // addl a, #32; addl r, #32
 567     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 568     // on 32bit in the case of cmpl, the imm might be an oop
 569     tail_size = 4;
 570     debug_only(has_disp32 = true); // has both kinds of operands!
 571     break;
 572 
 573   case 0x83: // addl a, #8; addl r, #8
 574     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 575     debug_only(has_disp32 = true); // has both kinds of operands!
 576     tail_size = 1;
 577     break;
 578 
 579   case 0x9B:
 580     switch (0xFF & *ip++) {
 581     case 0xD9: // fnstcw a
 582       debug_only(has_disp32 = true);
 583       break;
 584     default:
 585       ShouldNotReachHere();
 586     }
 587     break;
 588 
 589   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 590   case REP4(0x10): // adc...
 591   case REP4(0x20): // and...
 592   case REP4(0x30): // xor...
 593   case REP4(0x08): // or...
 594   case REP4(0x18): // sbb...
 595   case REP4(0x28): // sub...
 596   case 0xF7: // mull a
 597   case 0x8D: // lea r, a
 598   case 0x87: // xchg r, a
 599   case REP4(0x38): // cmp...
 600   case 0x85: // test r, a
 601     debug_only(has_disp32 = true); // has both kinds of operands!
 602     break;
 603 
 604   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 605   case 0xC6: // movb a, #8
 606   case 0x80: // cmpb a, #8
 607   case 0x6B: // imul r, a, #8
 608     debug_only(has_disp32 = true); // has both kinds of operands!
 609     tail_size = 1; // the imm8
 610     break;
 611 
 612   case 0xE8: // call rdisp32
 613   case 0xE9: // jmp  rdisp32
 614     if (which == end_pc_operand)  return ip + 4;
 615     assert(which == call32_operand, "call has no disp32 or imm");
 616     return ip;
 617 
 618   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 619   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 620   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 621   case 0xDD: // fld_d a; fst_d a; fstp_d a
 622   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 623   case 0xDF: // fild_d a; fistp_d a
 624   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 625   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 626   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 627     debug_only(has_disp32 = true);
 628     break;
 629 
 630   case 0xF0:                    // Lock
 631     assert(os::is_MP(), "only on MP");
 632     goto again_after_prefix;
 633 
 634   case 0xF3:                    // For SSE
 635   case 0xF2:                    // For SSE2
 636     switch (0xFF & *ip++) {
 637     case REX:
 638     case REX_B:
 639     case REX_X:
 640     case REX_XB:
 641     case REX_R:
 642     case REX_RB:
 643     case REX_RX:
 644     case REX_RXB:
 645     case REX_W:
 646     case REX_WB:
 647     case REX_WX:
 648     case REX_WXB:
 649     case REX_WR:
 650     case REX_WRB:
 651     case REX_WRX:
 652     case REX_WRXB:
 653       NOT_LP64(assert(false, "found 64bit prefix"));
 654       ip++;
 655     default:
 656       ip++;
 657     }
 658     debug_only(has_disp32 = true); // has both kinds of operands!
 659     break;
 660 
 661   default:
 662     ShouldNotReachHere();
 663 
 664 #undef REP8
 665 #undef REP16
 666   }
 667 
 668   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 669 #ifdef _LP64
 670   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 671 #else
 672   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 673   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 674 #endif // LP64
 675   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 676 
 677   // parse the output of emit_operand
 678   int op2 = 0xFF & *ip++;
 679   int base = op2 & 0x07;
 680   int op3 = -1;
 681   const int b100 = 4;
 682   const int b101 = 5;
 683   if (base == b100 && (op2 >> 6) != 3) {
 684     op3 = 0xFF & *ip++;
 685     base = op3 & 0x07;   // refetch the base
 686   }
 687   // now ip points at the disp (if any)
 688 
 689   switch (op2 >> 6) {
 690   case 0:
 691     // [00 reg  100][ss index base]
 692     // [00 reg  100][00   100  esp]
 693     // [00 reg base]
 694     // [00 reg  100][ss index  101][disp32]
 695     // [00 reg  101]               [disp32]
 696 
 697     if (base == b101) {
 698       if (which == disp32_operand)
 699         return ip;              // caller wants the disp32
 700       ip += 4;                  // skip the disp32
 701     }
 702     break;
 703 
 704   case 1:
 705     // [01 reg  100][ss index base][disp8]
 706     // [01 reg  100][00   100  esp][disp8]
 707     // [01 reg base]               [disp8]
 708     ip += 1;                    // skip the disp8
 709     break;
 710 
 711   case 2:
 712     // [10 reg  100][ss index base][disp32]
 713     // [10 reg  100][00   100  esp][disp32]
 714     // [10 reg base]               [disp32]
 715     if (which == disp32_operand)
 716       return ip;                // caller wants the disp32
 717     ip += 4;                    // skip the disp32
 718     break;
 719 
 720   case 3:
 721     // [11 reg base]  (not a memory addressing mode)
 722     break;
 723   }
 724 
 725   if (which == end_pc_operand) {
 726     return ip + tail_size;
 727   }
 728 
 729 #ifdef _LP64
 730   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 731 #else
 732   assert(which == imm_operand, "instruction has only an imm field");
 733 #endif // LP64
 734   return ip;
 735 }
 736 
 737 address Assembler::locate_next_instruction(address inst) {
 738   // Secretly share code with locate_operand:
 739   return locate_operand(inst, end_pc_operand);
 740 }
 741 
 742 
 743 #ifdef ASSERT
 744 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 745   address inst = inst_mark();
 746   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 747   address opnd;
 748 
 749   Relocation* r = rspec.reloc();
 750   if (r->type() == relocInfo::none) {
 751     return;
 752   } else if (r->is_call() || format == call32_operand) {
 753     // assert(format == imm32_operand, "cannot specify a nonzero format");
 754     opnd = locate_operand(inst, call32_operand);
 755   } else if (r->is_data()) {
 756     assert(format == imm_operand || format == disp32_operand
 757            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 758     opnd = locate_operand(inst, (WhichOperand)format);
 759   } else {
 760     assert(format == imm_operand, "cannot specify a format");
 761     return;
 762   }
 763   assert(opnd == pc(), "must put operand where relocs can find it");
 764 }
 765 #endif // ASSERT
 766 
 767 void Assembler::emit_operand32(Register reg, Address adr) {
 768   assert(reg->encoding() < 8, "no extended registers");
 769   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 770   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 771                adr._rspec);
 772 }
 773 
 774 void Assembler::emit_operand(Register reg, Address adr,
 775                              int rip_relative_correction) {
 776   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 777                adr._rspec,
 778                rip_relative_correction);
 779 }
 780 
 781 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 782   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 783                adr._rspec);
 784 }
 785 
 786 // MMX operations
 787 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 788   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 789   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 790 }
 791 
 792 // work around gcc (3.2.1-7a) bug
 793 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 794   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 795   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 796 }
 797 
 798 
 799 void Assembler::emit_farith(int b1, int b2, int i) {
 800   assert(isByte(b1) && isByte(b2), "wrong opcode");
 801   assert(0 <= i &&  i < 8, "illegal stack offset");
 802   emit_byte(b1);
 803   emit_byte(b2 + i);
 804 }
 805 
 806 
 807 // Now the Assembler instruction (identical for 32/64 bits)
 808 
 809 void Assembler::adcl(Register dst, int32_t imm32) {
 810   prefix(dst);
 811   emit_arith(0x81, 0xD0, dst, imm32);
 812 }
 813 
 814 void Assembler::adcl(Register dst, Address src) {
 815   InstructionMark im(this);
 816   prefix(src, dst);
 817   emit_byte(0x13);
 818   emit_operand(dst, src);
 819 }
 820 
 821 void Assembler::adcl(Register dst, Register src) {
 822   (void) prefix_and_encode(dst->encoding(), src->encoding());
 823   emit_arith(0x13, 0xC0, dst, src);
 824 }
 825 
 826 void Assembler::addl(Address dst, int32_t imm32) {
 827   InstructionMark im(this);
 828   prefix(dst);
 829   emit_arith_operand(0x81, rax, dst, imm32);
 830 }
 831 
 832 void Assembler::addl(Address dst, Register src) {
 833   InstructionMark im(this);
 834   prefix(dst, src);
 835   emit_byte(0x01);
 836   emit_operand(src, dst);
 837 }
 838 
 839 void Assembler::addl(Register dst, int32_t imm32) {
 840   prefix(dst);
 841   emit_arith(0x81, 0xC0, dst, imm32);
 842 }
 843 
 844 void Assembler::addl(Register dst, Address src) {
 845   InstructionMark im(this);
 846   prefix(src, dst);
 847   emit_byte(0x03);
 848   emit_operand(dst, src);
 849 }
 850 
 851 void Assembler::addl(Register dst, Register src) {
 852   (void) prefix_and_encode(dst->encoding(), src->encoding());
 853   emit_arith(0x03, 0xC0, dst, src);
 854 }
 855 
 856 void Assembler::addr_nop_4() {
 857   // 4 bytes: NOP DWORD PTR [EAX+0]
 858   emit_byte(0x0F);
 859   emit_byte(0x1F);
 860   emit_byte(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 861   emit_byte(0);    // 8-bits offset (1 byte)
 862 }
 863 
 864 void Assembler::addr_nop_5() {
 865   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 866   emit_byte(0x0F);
 867   emit_byte(0x1F);
 868   emit_byte(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 869   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 870   emit_byte(0);    // 8-bits offset (1 byte)
 871 }
 872 
 873 void Assembler::addr_nop_7() {
 874   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 875   emit_byte(0x0F);
 876   emit_byte(0x1F);
 877   emit_byte(0x80); // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 878   emit_long(0);    // 32-bits offset (4 bytes)
 879 }
 880 
 881 void Assembler::addr_nop_8() {
 882   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 883   emit_byte(0x0F);
 884   emit_byte(0x1F);
 885   emit_byte(0x84); // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 886   emit_byte(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 887   emit_long(0);    // 32-bits offset (4 bytes)
 888 }
 889 
 890 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 891   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 892   emit_byte(0xF2);
 893   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 894   emit_byte(0x0F);
 895   emit_byte(0x58);
 896   emit_byte(0xC0 | encode);
 897 }
 898 
 899 void Assembler::addsd(XMMRegister dst, Address src) {
 900   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 901   InstructionMark im(this);
 902   emit_byte(0xF2);
 903   prefix(src, dst);
 904   emit_byte(0x0F);
 905   emit_byte(0x58);
 906   emit_operand(dst, src);
 907 }
 908 
 909 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 910   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 911   emit_byte(0xF3);
 912   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 913   emit_byte(0x0F);
 914   emit_byte(0x58);
 915   emit_byte(0xC0 | encode);
 916 }
 917 
 918 void Assembler::addss(XMMRegister dst, Address src) {
 919   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 920   InstructionMark im(this);
 921   emit_byte(0xF3);
 922   prefix(src, dst);
 923   emit_byte(0x0F);
 924   emit_byte(0x58);
 925   emit_operand(dst, src);
 926 }
 927 
 928 void Assembler::andl(Register dst, int32_t imm32) {
 929   prefix(dst);
 930   emit_arith(0x81, 0xE0, dst, imm32);
 931 }
 932 
 933 void Assembler::andl(Register dst, Address src) {
 934   InstructionMark im(this);
 935   prefix(src, dst);
 936   emit_byte(0x23);
 937   emit_operand(dst, src);
 938 }
 939 
 940 void Assembler::andl(Register dst, Register src) {
 941   (void) prefix_and_encode(dst->encoding(), src->encoding());
 942   emit_arith(0x23, 0xC0, dst, src);
 943 }
 944 
 945 void Assembler::andpd(XMMRegister dst, Address src) {
 946   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 947   InstructionMark im(this);
 948   emit_byte(0x66);
 949   prefix(src, dst);
 950   emit_byte(0x0F);
 951   emit_byte(0x54);
 952   emit_operand(dst, src);
 953 }
 954 
 955 void Assembler::bsfl(Register dst, Register src) {
 956   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 957   emit_byte(0x0F);
 958   emit_byte(0xBC);
 959   emit_byte(0xC0 | encode);
 960 }
 961 
 962 void Assembler::bsrl(Register dst, Register src) {
 963   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
 964   int encode = prefix_and_encode(dst->encoding(), src->encoding());
 965   emit_byte(0x0F);
 966   emit_byte(0xBD);
 967   emit_byte(0xC0 | encode);
 968 }
 969 
 970 void Assembler::bswapl(Register reg) { // bswap
 971   int encode = prefix_and_encode(reg->encoding());
 972   emit_byte(0x0F);
 973   emit_byte(0xC8 | encode);
 974 }
 975 
 976 void Assembler::call(Label& L, relocInfo::relocType rtype) {
 977   // suspect disp32 is always good
 978   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
 979 
 980   if (L.is_bound()) {
 981     const int long_size = 5;
 982     int offs = (int)( target(L) - pc() );
 983     assert(offs <= 0, "assembler error");
 984     InstructionMark im(this);
 985     // 1110 1000 #32-bit disp
 986     emit_byte(0xE8);
 987     emit_data(offs - long_size, rtype, operand);
 988   } else {
 989     InstructionMark im(this);
 990     // 1110 1000 #32-bit disp
 991     L.add_patch_at(code(), locator());
 992 
 993     emit_byte(0xE8);
 994     emit_data(int(0), rtype, operand);
 995   }
 996 }
 997 
 998 void Assembler::call(Register dst) {
 999   // This was originally using a 32bit register encoding
1000   // and surely we want 64bit!
1001   // this is a 32bit encoding but in 64bit mode the default
1002   // operand size is 64bit so there is no need for the
1003   // wide prefix. So prefix only happens if we use the
1004   // new registers. Much like push/pop.
1005   int x = offset();
1006   // this may be true but dbx disassembles it as if it
1007   // were 32bits...
1008   // int encode = prefix_and_encode(dst->encoding());
1009   // if (offset() != x) assert(dst->encoding() >= 8, "what?");
1010   int encode = prefixq_and_encode(dst->encoding());
1011 
1012   emit_byte(0xFF);
1013   emit_byte(0xD0 | encode);
1014 }
1015 
1016 
1017 void Assembler::call(Address adr) {
1018   InstructionMark im(this);
1019   prefix(adr);
1020   emit_byte(0xFF);
1021   emit_operand(rdx, adr);
1022 }
1023 
1024 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1025   assert(entry != NULL, "call most probably wrong");
1026   InstructionMark im(this);
1027   emit_byte(0xE8);
1028   intptr_t disp = entry - (_code_pos + sizeof(int32_t));
1029   assert(is_simm32(disp), "must be 32bit offset (call2)");
1030   // Technically, should use call32_operand, but this format is
1031   // implied by the fact that we're emitting a call instruction.
1032 
1033   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1034   emit_data((int) disp, rspec, operand);
1035 }
1036 
1037 void Assembler::cdql() {
1038   emit_byte(0x99);
1039 }
1040 
1041 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1042   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1043   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1044   emit_byte(0x0F);
1045   emit_byte(0x40 | cc);
1046   emit_byte(0xC0 | encode);
1047 }
1048 
1049 
1050 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1051   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1052   prefix(src, dst);
1053   emit_byte(0x0F);
1054   emit_byte(0x40 | cc);
1055   emit_operand(dst, src);
1056 }
1057 
1058 void Assembler::cmpb(Address dst, int imm8) {
1059   InstructionMark im(this);
1060   prefix(dst);
1061   emit_byte(0x80);
1062   emit_operand(rdi, dst, 1);
1063   emit_byte(imm8);
1064 }
1065 
1066 void Assembler::cmpl(Address dst, int32_t imm32) {
1067   InstructionMark im(this);
1068   prefix(dst);
1069   emit_byte(0x81);
1070   emit_operand(rdi, dst, 4);
1071   emit_long(imm32);
1072 }
1073 
1074 void Assembler::cmpl(Register dst, int32_t imm32) {
1075   prefix(dst);
1076   emit_arith(0x81, 0xF8, dst, imm32);
1077 }
1078 
1079 void Assembler::cmpl(Register dst, Register src) {
1080   (void) prefix_and_encode(dst->encoding(), src->encoding());
1081   emit_arith(0x3B, 0xC0, dst, src);
1082 }
1083 
1084 
1085 void Assembler::cmpl(Register dst, Address  src) {
1086   InstructionMark im(this);
1087   prefix(src, dst);
1088   emit_byte(0x3B);
1089   emit_operand(dst, src);
1090 }
1091 
1092 void Assembler::cmpw(Address dst, int imm16) {
1093   InstructionMark im(this);
1094   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1095   emit_byte(0x66);
1096   emit_byte(0x81);
1097   emit_operand(rdi, dst, 2);
1098   emit_word(imm16);
1099 }
1100 
1101 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1102 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1103 // The ZF is set if the compared values were equal, and cleared otherwise.
1104 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1105   if (Atomics & 2) {
1106      // caveat: no instructionmark, so this isn't relocatable.
1107      // Emit a synthetic, non-atomic, CAS equivalent.
1108      // Beware.  The synthetic form sets all ICCs, not just ZF.
1109      // cmpxchg r,[m] is equivalent to rax, = CAS (m, rax, r)
1110      cmpl(rax, adr);
1111      movl(rax, adr);
1112      if (reg != rax) {
1113         Label L ;
1114         jcc(Assembler::notEqual, L);
1115         movl(adr, reg);
1116         bind(L);
1117      }
1118   } else {
1119      InstructionMark im(this);
1120      prefix(adr, reg);
1121      emit_byte(0x0F);
1122      emit_byte(0xB1);
1123      emit_operand(reg, adr);
1124   }
1125 }
1126 
1127 void Assembler::comisd(XMMRegister dst, Address src) {
1128   // NOTE: dbx seems to decode this as comiss even though the
1129   // 0x66 is there. Strangly ucomisd comes out correct
1130   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1131   emit_byte(0x66);
1132   comiss(dst, src);
1133 }
1134 
1135 void Assembler::comiss(XMMRegister dst, Address src) {
1136   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1137 
1138   InstructionMark im(this);
1139   prefix(src, dst);
1140   emit_byte(0x0F);
1141   emit_byte(0x2F);
1142   emit_operand(dst, src);
1143 }
1144 
1145 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1146   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1147   emit_byte(0xF3);
1148   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1149   emit_byte(0x0F);
1150   emit_byte(0xE6);
1151   emit_byte(0xC0 | encode);
1152 }
1153 
1154 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1156   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1157   emit_byte(0x0F);
1158   emit_byte(0x5B);
1159   emit_byte(0xC0 | encode);
1160 }
1161 
1162 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1163   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1164   emit_byte(0xF2);
1165   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1166   emit_byte(0x0F);
1167   emit_byte(0x5A);
1168   emit_byte(0xC0 | encode);
1169 }
1170 
1171 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1172   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1173   emit_byte(0xF2);
1174   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1175   emit_byte(0x0F);
1176   emit_byte(0x2A);
1177   emit_byte(0xC0 | encode);
1178 }
1179 
1180 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1181   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1182   emit_byte(0xF3);
1183   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1184   emit_byte(0x0F);
1185   emit_byte(0x2A);
1186   emit_byte(0xC0 | encode);
1187 }
1188 
1189 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1190   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1191   emit_byte(0xF3);
1192   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1193   emit_byte(0x0F);
1194   emit_byte(0x5A);
1195   emit_byte(0xC0 | encode);
1196 }
1197 
1198 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1199   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1200   emit_byte(0xF2);
1201   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1202   emit_byte(0x0F);
1203   emit_byte(0x2C);
1204   emit_byte(0xC0 | encode);
1205 }
1206 
1207 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1208   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1209   emit_byte(0xF3);
1210   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1211   emit_byte(0x0F);
1212   emit_byte(0x2C);
1213   emit_byte(0xC0 | encode);
1214 }
1215 
1216 void Assembler::decl(Address dst) {
1217   // Don't use it directly. Use MacroAssembler::decrement() instead.
1218   InstructionMark im(this);
1219   prefix(dst);
1220   emit_byte(0xFF);
1221   emit_operand(rcx, dst);
1222 }
1223 
1224 void Assembler::divsd(XMMRegister dst, Address src) {
1225   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1226   InstructionMark im(this);
1227   emit_byte(0xF2);
1228   prefix(src, dst);
1229   emit_byte(0x0F);
1230   emit_byte(0x5E);
1231   emit_operand(dst, src);
1232 }
1233 
1234 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1235   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1236   emit_byte(0xF2);
1237   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1238   emit_byte(0x0F);
1239   emit_byte(0x5E);
1240   emit_byte(0xC0 | encode);
1241 }
1242 
1243 void Assembler::divss(XMMRegister dst, Address src) {
1244   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1245   InstructionMark im(this);
1246   emit_byte(0xF3);
1247   prefix(src, dst);
1248   emit_byte(0x0F);
1249   emit_byte(0x5E);
1250   emit_operand(dst, src);
1251 }
1252 
1253 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1254   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1255   emit_byte(0xF3);
1256   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1257   emit_byte(0x0F);
1258   emit_byte(0x5E);
1259   emit_byte(0xC0 | encode);
1260 }
1261 
1262 void Assembler::emms() {
1263   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1264   emit_byte(0x0F);
1265   emit_byte(0x77);
1266 }
1267 
1268 void Assembler::hlt() {
1269   emit_byte(0xF4);
1270 }
1271 
1272 void Assembler::idivl(Register src) {
1273   int encode = prefix_and_encode(src->encoding());
1274   emit_byte(0xF7);
1275   emit_byte(0xF8 | encode);
1276 }
1277 
1278 void Assembler::imull(Register dst, Register src) {
1279   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1280   emit_byte(0x0F);
1281   emit_byte(0xAF);
1282   emit_byte(0xC0 | encode);
1283 }
1284 
1285 
1286 void Assembler::imull(Register dst, Register src, int value) {
1287   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1288   if (is8bit(value)) {
1289     emit_byte(0x6B);
1290     emit_byte(0xC0 | encode);
1291     emit_byte(value);
1292   } else {
1293     emit_byte(0x69);
1294     emit_byte(0xC0 | encode);
1295     emit_long(value);
1296   }
1297 }
1298 
1299 void Assembler::incl(Address dst) {
1300   // Don't use it directly. Use MacroAssembler::increment() instead.
1301   InstructionMark im(this);
1302   prefix(dst);
1303   emit_byte(0xFF);
1304   emit_operand(rax, dst);
1305 }
1306 
1307 void Assembler::jcc(Condition cc, Label& L, relocInfo::relocType rtype) {
1308   InstructionMark im(this);
1309   relocate(rtype);
1310   assert((0 <= cc) && (cc < 16), "illegal cc");
1311   if (L.is_bound()) {
1312     address dst = target(L);
1313     assert(dst != NULL, "jcc most probably wrong");
1314 
1315     const int short_size = 2;
1316     const int long_size = 6;
1317     intptr_t offs = (intptr_t)dst - (intptr_t)_code_pos;
1318     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
1319       // 0111 tttn #8-bit disp
1320       emit_byte(0x70 | cc);
1321       emit_byte((offs - short_size) & 0xFF);
1322     } else {
1323       // 0000 1111 1000 tttn #32-bit disp
1324       assert(is_simm32(offs - long_size),
1325              "must be 32bit offset (call4)");
1326       emit_byte(0x0F);
1327       emit_byte(0x80 | cc);
1328       emit_long(offs - long_size);
1329     }
1330   } else {
1331     // Note: could eliminate cond. jumps to this jump if condition
1332     //       is the same however, seems to be rather unlikely case.
1333     // Note: use jccb() if label to be bound is very close to get
1334     //       an 8-bit displacement
1335     L.add_patch_at(code(), locator());
1336     emit_byte(0x0F);
1337     emit_byte(0x80 | cc);
1338     emit_long(0);
1339   }
1340 }
1341 
1342 void Assembler::jccb(Condition cc, Label& L) {
1343   if (L.is_bound()) {
1344     const int short_size = 2;
1345     address entry = target(L);
1346     assert(is8bit((intptr_t)entry - ((intptr_t)_code_pos + short_size)),
1347            "Dispacement too large for a short jmp");
1348     intptr_t offs = (intptr_t)entry - (intptr_t)_code_pos;
1349     // 0111 tttn #8-bit disp
1350     emit_byte(0x70 | cc);
1351     emit_byte((offs - short_size) & 0xFF);
1352   } else {
1353     InstructionMark im(this);
1354     L.add_patch_at(code(), locator());
1355     emit_byte(0x70 | cc);
1356     emit_byte(0);
1357   }
1358 }
1359 
1360 void Assembler::jmp(Address adr) {
1361   InstructionMark im(this);
1362   prefix(adr);
1363   emit_byte(0xFF);
1364   emit_operand(rsp, adr);
1365 }
1366 
1367 void Assembler::jmp(Label& L, relocInfo::relocType rtype) {
1368   if (L.is_bound()) {
1369     address entry = target(L);
1370     assert(entry != NULL, "jmp most probably wrong");
1371     InstructionMark im(this);
1372     const int short_size = 2;
1373     const int long_size = 5;
1374     intptr_t offs = entry - _code_pos;
1375     if (rtype == relocInfo::none && is8bit(offs - short_size)) {
1376       emit_byte(0xEB);
1377       emit_byte((offs - short_size) & 0xFF);
1378     } else {
1379       emit_byte(0xE9);
1380       emit_long(offs - long_size);
1381     }
1382   } else {
1383     // By default, forward jumps are always 32-bit displacements, since
1384     // we can't yet know where the label will be bound.  If you're sure that
1385     // the forward jump will not run beyond 256 bytes, use jmpb to
1386     // force an 8-bit displacement.
1387     InstructionMark im(this);
1388     relocate(rtype);
1389     L.add_patch_at(code(), locator());
1390     emit_byte(0xE9);
1391     emit_long(0);
1392   }
1393 }
1394 
1395 void Assembler::jmp(Register entry) {
1396   int encode = prefix_and_encode(entry->encoding());
1397   emit_byte(0xFF);
1398   emit_byte(0xE0 | encode);
1399 }
1400 
1401 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1402   InstructionMark im(this);
1403   emit_byte(0xE9);
1404   assert(dest != NULL, "must have a target");
1405   intptr_t disp = dest - (_code_pos + sizeof(int32_t));
1406   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1407   emit_data(disp, rspec.reloc(), call32_operand);
1408 }
1409 
1410 void Assembler::jmpb(Label& L) {
1411   if (L.is_bound()) {
1412     const int short_size = 2;
1413     address entry = target(L);
1414     assert(is8bit((entry - _code_pos) + short_size),
1415            "Dispacement too large for a short jmp");
1416     assert(entry != NULL, "jmp most probably wrong");
1417     intptr_t offs = entry - _code_pos;
1418     emit_byte(0xEB);
1419     emit_byte((offs - short_size) & 0xFF);
1420   } else {
1421     InstructionMark im(this);
1422     L.add_patch_at(code(), locator());
1423     emit_byte(0xEB);
1424     emit_byte(0);
1425   }
1426 }
1427 
1428 void Assembler::ldmxcsr( Address src) {
1429   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1430   InstructionMark im(this);
1431   prefix(src);
1432   emit_byte(0x0F);
1433   emit_byte(0xAE);
1434   emit_operand(as_Register(2), src);
1435 }
1436 
1437 void Assembler::leal(Register dst, Address src) {
1438   InstructionMark im(this);
1439 #ifdef _LP64
1440   emit_byte(0x67); // addr32
1441   prefix(src, dst);
1442 #endif // LP64
1443   emit_byte(0x8D);
1444   emit_operand(dst, src);
1445 }
1446 
1447 void Assembler::lock() {
1448   if (Atomics & 1) {
1449      // Emit either nothing, a NOP, or a NOP: prefix
1450      emit_byte(0x90) ;
1451   } else {
1452      emit_byte(0xF0);
1453   }
1454 }
1455 
1456 void Assembler::lzcntl(Register dst, Register src) {
1457   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1458   emit_byte(0xF3);
1459   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1460   emit_byte(0x0F);
1461   emit_byte(0xBD);
1462   emit_byte(0xC0 | encode);
1463 }
1464 
1465 // Emit mfence instruction
1466 void Assembler::mfence() {
1467   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1468   emit_byte( 0x0F );
1469   emit_byte( 0xAE );
1470   emit_byte( 0xF0 );
1471 }
1472 
1473 void Assembler::mov(Register dst, Register src) {
1474   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1475 }
1476 
1477 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1478   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1479   int dstenc = dst->encoding();
1480   int srcenc = src->encoding();
1481   emit_byte(0x66);
1482   if (dstenc < 8) {
1483     if (srcenc >= 8) {
1484       prefix(REX_B);
1485       srcenc -= 8;
1486     }
1487   } else {
1488     if (srcenc < 8) {
1489       prefix(REX_R);
1490     } else {
1491       prefix(REX_RB);
1492       srcenc -= 8;
1493     }
1494     dstenc -= 8;
1495   }
1496   emit_byte(0x0F);
1497   emit_byte(0x28);
1498   emit_byte(0xC0 | dstenc << 3 | srcenc);
1499 }
1500 
1501 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1502   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1503   int dstenc = dst->encoding();
1504   int srcenc = src->encoding();
1505   if (dstenc < 8) {
1506     if (srcenc >= 8) {
1507       prefix(REX_B);
1508       srcenc -= 8;
1509     }
1510   } else {
1511     if (srcenc < 8) {
1512       prefix(REX_R);
1513     } else {
1514       prefix(REX_RB);
1515       srcenc -= 8;
1516     }
1517     dstenc -= 8;
1518   }
1519   emit_byte(0x0F);
1520   emit_byte(0x28);
1521   emit_byte(0xC0 | dstenc << 3 | srcenc);
1522 }
1523 
1524 void Assembler::movb(Register dst, Address src) {
1525   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1526   InstructionMark im(this);
1527   prefix(src, dst, true);
1528   emit_byte(0x8A);
1529   emit_operand(dst, src);
1530 }
1531 
1532 
1533 void Assembler::movb(Address dst, int imm8) {
1534   InstructionMark im(this);
1535    prefix(dst);
1536   emit_byte(0xC6);
1537   emit_operand(rax, dst, 1);
1538   emit_byte(imm8);
1539 }
1540 
1541 
1542 void Assembler::movb(Address dst, Register src) {
1543   assert(src->has_byte_register(), "must have byte register");
1544   InstructionMark im(this);
1545   prefix(dst, src, true);
1546   emit_byte(0x88);
1547   emit_operand(src, dst);
1548 }
1549 
1550 void Assembler::movdl(XMMRegister dst, Register src) {
1551   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1552   emit_byte(0x66);
1553   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1554   emit_byte(0x0F);
1555   emit_byte(0x6E);
1556   emit_byte(0xC0 | encode);
1557 }
1558 
1559 void Assembler::movdl(Register dst, XMMRegister src) {
1560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1561   emit_byte(0x66);
1562   // swap src/dst to get correct prefix
1563   int encode = prefix_and_encode(src->encoding(), dst->encoding());
1564   emit_byte(0x0F);
1565   emit_byte(0x7E);
1566   emit_byte(0xC0 | encode);
1567 }
1568 
1569 void Assembler::movdqa(XMMRegister dst, Address src) {
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   InstructionMark im(this);
1572   emit_byte(0x66);
1573   prefix(src, dst);
1574   emit_byte(0x0F);
1575   emit_byte(0x6F);
1576   emit_operand(dst, src);
1577 }
1578 
1579 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1580   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1581   emit_byte(0x66);
1582   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1583   emit_byte(0x0F);
1584   emit_byte(0x6F);
1585   emit_byte(0xC0 | encode);
1586 }
1587 
1588 void Assembler::movdqa(Address dst, XMMRegister src) {
1589   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1590   InstructionMark im(this);
1591   emit_byte(0x66);
1592   prefix(dst, src);
1593   emit_byte(0x0F);
1594   emit_byte(0x7F);
1595   emit_operand(src, dst);
1596 }
1597 
1598 void Assembler::movdqu(XMMRegister dst, Address src) {
1599   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1600   InstructionMark im(this);
1601   emit_byte(0xF3);
1602   prefix(src, dst);
1603   emit_byte(0x0F);
1604   emit_byte(0x6F);
1605   emit_operand(dst, src);
1606 }
1607 
1608 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1610   emit_byte(0xF3);
1611   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
1612   emit_byte(0x0F);
1613   emit_byte(0x6F);
1614   emit_byte(0xC0 | encode);
1615 }
1616 
1617 void Assembler::movdqu(Address dst, XMMRegister src) {
1618   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1619   InstructionMark im(this);
1620   emit_byte(0xF3);
1621   prefix(dst, src);
1622   emit_byte(0x0F);
1623   emit_byte(0x7F);
1624   emit_operand(src, dst);
1625 }
1626 
1627 // Uses zero extension on 64bit
1628 
1629 void Assembler::movl(Register dst, int32_t imm32) {
1630   int encode = prefix_and_encode(dst->encoding());
1631   emit_byte(0xB8 | encode);
1632   emit_long(imm32);
1633 }
1634 
1635 void Assembler::movl(Register dst, Register src) {
1636   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1637   emit_byte(0x8B);
1638   emit_byte(0xC0 | encode);
1639 }
1640 
1641 void Assembler::movl(Register dst, Address src) {
1642   InstructionMark im(this);
1643   prefix(src, dst);
1644   emit_byte(0x8B);
1645   emit_operand(dst, src);
1646 }
1647 
1648 void Assembler::movl(Address dst, int32_t imm32) {
1649   InstructionMark im(this);
1650   prefix(dst);
1651   emit_byte(0xC7);
1652   emit_operand(rax, dst, 4);
1653   emit_long(imm32);
1654 }
1655 
1656 void Assembler::movl(Address dst, Register src) {
1657   InstructionMark im(this);
1658   prefix(dst, src);
1659   emit_byte(0x89);
1660   emit_operand(src, dst);
1661 }
1662 
1663 // New cpus require to use movsd and movss to avoid partial register stall
1664 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1665 // The selection is done in MacroAssembler::movdbl() and movflt().
1666 void Assembler::movlpd(XMMRegister dst, Address src) {
1667   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1668   InstructionMark im(this);
1669   emit_byte(0x66);
1670   prefix(src, dst);
1671   emit_byte(0x0F);
1672   emit_byte(0x12);
1673   emit_operand(dst, src);
1674 }
1675 
1676 void Assembler::movq( MMXRegister dst, Address src ) {
1677   assert( VM_Version::supports_mmx(), "" );
1678   emit_byte(0x0F);
1679   emit_byte(0x6F);
1680   emit_operand(dst, src);
1681 }
1682 
1683 void Assembler::movq( Address dst, MMXRegister src ) {
1684   assert( VM_Version::supports_mmx(), "" );
1685   emit_byte(0x0F);
1686   emit_byte(0x7F);
1687   // workaround gcc (3.2.1-7a) bug
1688   // In that version of gcc with only an emit_operand(MMX, Address)
1689   // gcc will tail jump and try and reverse the parameters completely
1690   // obliterating dst in the process. By having a version available
1691   // that doesn't need to swap the args at the tail jump the bug is
1692   // avoided.
1693   emit_operand(dst, src);
1694 }
1695 
1696 void Assembler::movq(XMMRegister dst, Address src) {
1697   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1698   InstructionMark im(this);
1699   emit_byte(0xF3);
1700   prefix(src, dst);
1701   emit_byte(0x0F);
1702   emit_byte(0x7E);
1703   emit_operand(dst, src);
1704 }
1705 
1706 void Assembler::movq(Address dst, XMMRegister src) {
1707   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1708   InstructionMark im(this);
1709   emit_byte(0x66);
1710   prefix(dst, src);
1711   emit_byte(0x0F);
1712   emit_byte(0xD6);
1713   emit_operand(src, dst);
1714 }
1715 
1716 void Assembler::movsbl(Register dst, Address src) { // movsxb
1717   InstructionMark im(this);
1718   prefix(src, dst);
1719   emit_byte(0x0F);
1720   emit_byte(0xBE);
1721   emit_operand(dst, src);
1722 }
1723 
1724 void Assembler::movsbl(Register dst, Register src) { // movsxb
1725   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1726   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1727   emit_byte(0x0F);
1728   emit_byte(0xBE);
1729   emit_byte(0xC0 | encode);
1730 }
1731 
1732 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1733   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1734   emit_byte(0xF2);
1735   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1736   emit_byte(0x0F);
1737   emit_byte(0x10);
1738   emit_byte(0xC0 | encode);
1739 }
1740 
1741 void Assembler::movsd(XMMRegister dst, Address src) {
1742   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1743   InstructionMark im(this);
1744   emit_byte(0xF2);
1745   prefix(src, dst);
1746   emit_byte(0x0F);
1747   emit_byte(0x10);
1748   emit_operand(dst, src);
1749 }
1750 
1751 void Assembler::movsd(Address dst, XMMRegister src) {
1752   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1753   InstructionMark im(this);
1754   emit_byte(0xF2);
1755   prefix(dst, src);
1756   emit_byte(0x0F);
1757   emit_byte(0x11);
1758   emit_operand(src, dst);
1759 }
1760 
1761 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1762   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1763   emit_byte(0xF3);
1764   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1765   emit_byte(0x0F);
1766   emit_byte(0x10);
1767   emit_byte(0xC0 | encode);
1768 }
1769 
1770 void Assembler::movss(XMMRegister dst, Address src) {
1771   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1772   InstructionMark im(this);
1773   emit_byte(0xF3);
1774   prefix(src, dst);
1775   emit_byte(0x0F);
1776   emit_byte(0x10);
1777   emit_operand(dst, src);
1778 }
1779 
1780 void Assembler::movss(Address dst, XMMRegister src) {
1781   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1782   InstructionMark im(this);
1783   emit_byte(0xF3);
1784   prefix(dst, src);
1785   emit_byte(0x0F);
1786   emit_byte(0x11);
1787   emit_operand(src, dst);
1788 }
1789 
1790 void Assembler::movswl(Register dst, Address src) { // movsxw
1791   InstructionMark im(this);
1792   prefix(src, dst);
1793   emit_byte(0x0F);
1794   emit_byte(0xBF);
1795   emit_operand(dst, src);
1796 }
1797 
1798 void Assembler::movswl(Register dst, Register src) { // movsxw
1799   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1800   emit_byte(0x0F);
1801   emit_byte(0xBF);
1802   emit_byte(0xC0 | encode);
1803 }
1804 
1805 void Assembler::movw(Address dst, int imm16) {
1806   InstructionMark im(this);
1807 
1808   emit_byte(0x66); // switch to 16-bit mode
1809   prefix(dst);
1810   emit_byte(0xC7);
1811   emit_operand(rax, dst, 2);
1812   emit_word(imm16);
1813 }
1814 
1815 void Assembler::movw(Register dst, Address src) {
1816   InstructionMark im(this);
1817   emit_byte(0x66);
1818   prefix(src, dst);
1819   emit_byte(0x8B);
1820   emit_operand(dst, src);
1821 }
1822 
1823 void Assembler::movw(Address dst, Register src) {
1824   InstructionMark im(this);
1825   emit_byte(0x66);
1826   prefix(dst, src);
1827   emit_byte(0x89);
1828   emit_operand(src, dst);
1829 }
1830 
1831 void Assembler::movzbl(Register dst, Address src) { // movzxb
1832   InstructionMark im(this);
1833   prefix(src, dst);
1834   emit_byte(0x0F);
1835   emit_byte(0xB6);
1836   emit_operand(dst, src);
1837 }
1838 
1839 void Assembler::movzbl(Register dst, Register src) { // movzxb
1840   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1841   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1842   emit_byte(0x0F);
1843   emit_byte(0xB6);
1844   emit_byte(0xC0 | encode);
1845 }
1846 
1847 void Assembler::movzwl(Register dst, Address src) { // movzxw
1848   InstructionMark im(this);
1849   prefix(src, dst);
1850   emit_byte(0x0F);
1851   emit_byte(0xB7);
1852   emit_operand(dst, src);
1853 }
1854 
1855 void Assembler::movzwl(Register dst, Register src) { // movzxw
1856   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1857   emit_byte(0x0F);
1858   emit_byte(0xB7);
1859   emit_byte(0xC0 | encode);
1860 }
1861 
1862 void Assembler::mull(Address src) {
1863   InstructionMark im(this);
1864   prefix(src);
1865   emit_byte(0xF7);
1866   emit_operand(rsp, src);
1867 }
1868 
1869 void Assembler::mull(Register src) {
1870   int encode = prefix_and_encode(src->encoding());
1871   emit_byte(0xF7);
1872   emit_byte(0xE0 | encode);
1873 }
1874 
1875 void Assembler::mulsd(XMMRegister dst, Address src) {
1876   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1877   InstructionMark im(this);
1878   emit_byte(0xF2);
1879   prefix(src, dst);
1880   emit_byte(0x0F);
1881   emit_byte(0x59);
1882   emit_operand(dst, src);
1883 }
1884 
1885 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
1886   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1887   emit_byte(0xF2);
1888   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1889   emit_byte(0x0F);
1890   emit_byte(0x59);
1891   emit_byte(0xC0 | encode);
1892 }
1893 
1894 void Assembler::mulss(XMMRegister dst, Address src) {
1895   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1896   InstructionMark im(this);
1897   emit_byte(0xF3);
1898   prefix(src, dst);
1899   emit_byte(0x0F);
1900   emit_byte(0x59);
1901   emit_operand(dst, src);
1902 }
1903 
1904 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
1905   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1906   emit_byte(0xF3);
1907   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1908   emit_byte(0x0F);
1909   emit_byte(0x59);
1910   emit_byte(0xC0 | encode);
1911 }
1912 
1913 void Assembler::negl(Register dst) {
1914   int encode = prefix_and_encode(dst->encoding());
1915   emit_byte(0xF7);
1916   emit_byte(0xD8 | encode);
1917 }
1918 
1919 void Assembler::nop(int i) {
1920 #ifdef ASSERT
1921   assert(i > 0, " ");
1922   // The fancy nops aren't currently recognized by debuggers making it a
1923   // pain to disassemble code while debugging. If asserts are on clearly
1924   // speed is not an issue so simply use the single byte traditional nop
1925   // to do alignment.
1926 
1927   for (; i > 0 ; i--) emit_byte(0x90);
1928   return;
1929 
1930 #endif // ASSERT
1931 
1932   if (UseAddressNop && VM_Version::is_intel()) {
1933     //
1934     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
1935     //  1: 0x90
1936     //  2: 0x66 0x90
1937     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
1938     //  4: 0x0F 0x1F 0x40 0x00
1939     //  5: 0x0F 0x1F 0x44 0x00 0x00
1940     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
1941     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
1942     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1943     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1944     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1945     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
1946 
1947     // The rest coding is Intel specific - don't use consecutive address nops
1948 
1949     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1950     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1951     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1952     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
1953 
1954     while(i >= 15) {
1955       // For Intel don't generate consecutive addess nops (mix with regular nops)
1956       i -= 15;
1957       emit_byte(0x66);   // size prefix
1958       emit_byte(0x66);   // size prefix
1959       emit_byte(0x66);   // size prefix
1960       addr_nop_8();
1961       emit_byte(0x66);   // size prefix
1962       emit_byte(0x66);   // size prefix
1963       emit_byte(0x66);   // size prefix
1964       emit_byte(0x90);   // nop
1965     }
1966     switch (i) {
1967       case 14:
1968         emit_byte(0x66); // size prefix
1969       case 13:
1970         emit_byte(0x66); // size prefix
1971       case 12:
1972         addr_nop_8();
1973         emit_byte(0x66); // size prefix
1974         emit_byte(0x66); // size prefix
1975         emit_byte(0x66); // size prefix
1976         emit_byte(0x90); // nop
1977         break;
1978       case 11:
1979         emit_byte(0x66); // size prefix
1980       case 10:
1981         emit_byte(0x66); // size prefix
1982       case 9:
1983         emit_byte(0x66); // size prefix
1984       case 8:
1985         addr_nop_8();
1986         break;
1987       case 7:
1988         addr_nop_7();
1989         break;
1990       case 6:
1991         emit_byte(0x66); // size prefix
1992       case 5:
1993         addr_nop_5();
1994         break;
1995       case 4:
1996         addr_nop_4();
1997         break;
1998       case 3:
1999         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2000         emit_byte(0x66); // size prefix
2001       case 2:
2002         emit_byte(0x66); // size prefix
2003       case 1:
2004         emit_byte(0x90); // nop
2005         break;
2006       default:
2007         assert(i == 0, " ");
2008     }
2009     return;
2010   }
2011   if (UseAddressNop && VM_Version::is_amd()) {
2012     //
2013     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2014     //  1: 0x90
2015     //  2: 0x66 0x90
2016     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2017     //  4: 0x0F 0x1F 0x40 0x00
2018     //  5: 0x0F 0x1F 0x44 0x00 0x00
2019     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2020     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2021     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2022     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2023     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2024     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2025 
2026     // The rest coding is AMD specific - use consecutive address nops
2027 
2028     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2029     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2030     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2031     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2032     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2033     //     Size prefixes (0x66) are added for larger sizes
2034 
2035     while(i >= 22) {
2036       i -= 11;
2037       emit_byte(0x66); // size prefix
2038       emit_byte(0x66); // size prefix
2039       emit_byte(0x66); // size prefix
2040       addr_nop_8();
2041     }
2042     // Generate first nop for size between 21-12
2043     switch (i) {
2044       case 21:
2045         i -= 1;
2046         emit_byte(0x66); // size prefix
2047       case 20:
2048       case 19:
2049         i -= 1;
2050         emit_byte(0x66); // size prefix
2051       case 18:
2052       case 17:
2053         i -= 1;
2054         emit_byte(0x66); // size prefix
2055       case 16:
2056       case 15:
2057         i -= 8;
2058         addr_nop_8();
2059         break;
2060       case 14:
2061       case 13:
2062         i -= 7;
2063         addr_nop_7();
2064         break;
2065       case 12:
2066         i -= 6;
2067         emit_byte(0x66); // size prefix
2068         addr_nop_5();
2069         break;
2070       default:
2071         assert(i < 12, " ");
2072     }
2073 
2074     // Generate second nop for size between 11-1
2075     switch (i) {
2076       case 11:
2077         emit_byte(0x66); // size prefix
2078       case 10:
2079         emit_byte(0x66); // size prefix
2080       case 9:
2081         emit_byte(0x66); // size prefix
2082       case 8:
2083         addr_nop_8();
2084         break;
2085       case 7:
2086         addr_nop_7();
2087         break;
2088       case 6:
2089         emit_byte(0x66); // size prefix
2090       case 5:
2091         addr_nop_5();
2092         break;
2093       case 4:
2094         addr_nop_4();
2095         break;
2096       case 3:
2097         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2098         emit_byte(0x66); // size prefix
2099       case 2:
2100         emit_byte(0x66); // size prefix
2101       case 1:
2102         emit_byte(0x90); // nop
2103         break;
2104       default:
2105         assert(i == 0, " ");
2106     }
2107     return;
2108   }
2109 
2110   // Using nops with size prefixes "0x66 0x90".
2111   // From AMD Optimization Guide:
2112   //  1: 0x90
2113   //  2: 0x66 0x90
2114   //  3: 0x66 0x66 0x90
2115   //  4: 0x66 0x66 0x66 0x90
2116   //  5: 0x66 0x66 0x90 0x66 0x90
2117   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2118   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2119   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2120   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2121   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2122   //
2123   while(i > 12) {
2124     i -= 4;
2125     emit_byte(0x66); // size prefix
2126     emit_byte(0x66);
2127     emit_byte(0x66);
2128     emit_byte(0x90); // nop
2129   }
2130   // 1 - 12 nops
2131   if(i > 8) {
2132     if(i > 9) {
2133       i -= 1;
2134       emit_byte(0x66);
2135     }
2136     i -= 3;
2137     emit_byte(0x66);
2138     emit_byte(0x66);
2139     emit_byte(0x90);
2140   }
2141   // 1 - 8 nops
2142   if(i > 4) {
2143     if(i > 6) {
2144       i -= 1;
2145       emit_byte(0x66);
2146     }
2147     i -= 3;
2148     emit_byte(0x66);
2149     emit_byte(0x66);
2150     emit_byte(0x90);
2151   }
2152   switch (i) {
2153     case 4:
2154       emit_byte(0x66);
2155     case 3:
2156       emit_byte(0x66);
2157     case 2:
2158       emit_byte(0x66);
2159     case 1:
2160       emit_byte(0x90);
2161       break;
2162     default:
2163       assert(i == 0, " ");
2164   }
2165 }
2166 
2167 void Assembler::notl(Register dst) {
2168   int encode = prefix_and_encode(dst->encoding());
2169   emit_byte(0xF7);
2170   emit_byte(0xD0 | encode );
2171 }
2172 
2173 void Assembler::orl(Address dst, int32_t imm32) {
2174   InstructionMark im(this);
2175   prefix(dst);
2176   emit_byte(0x81);
2177   emit_operand(rcx, dst, 4);
2178   emit_long(imm32);
2179 }
2180 
2181 void Assembler::orl(Register dst, int32_t imm32) {
2182   prefix(dst);
2183   emit_arith(0x81, 0xC8, dst, imm32);
2184 }
2185 
2186 
2187 void Assembler::orl(Register dst, Address src) {
2188   InstructionMark im(this);
2189   prefix(src, dst);
2190   emit_byte(0x0B);
2191   emit_operand(dst, src);
2192 }
2193 
2194 
2195 void Assembler::orl(Register dst, Register src) {
2196   (void) prefix_and_encode(dst->encoding(), src->encoding());
2197   emit_arith(0x0B, 0xC0, dst, src);
2198 }
2199 
2200 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2201   assert(VM_Version::supports_sse4_2(), "");
2202 
2203   InstructionMark im(this);
2204   emit_byte(0x66);
2205   prefix(src, dst);
2206   emit_byte(0x0F);
2207   emit_byte(0x3A);
2208   emit_byte(0x61);
2209   emit_operand(dst, src);
2210   emit_byte(imm8);
2211 }
2212 
2213 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2214   assert(VM_Version::supports_sse4_2(), "");
2215 
2216   emit_byte(0x66);
2217   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2218   emit_byte(0x0F);
2219   emit_byte(0x3A);
2220   emit_byte(0x61);
2221   emit_byte(0xC0 | encode);
2222   emit_byte(imm8);
2223 }
2224 
2225 // generic
2226 void Assembler::pop(Register dst) {
2227   int encode = prefix_and_encode(dst->encoding());
2228   emit_byte(0x58 | encode);
2229 }
2230 
2231 void Assembler::popcntl(Register dst, Address src) {
2232   assert(VM_Version::supports_popcnt(), "must support");
2233   InstructionMark im(this);
2234   emit_byte(0xF3);
2235   prefix(src, dst);
2236   emit_byte(0x0F);
2237   emit_byte(0xB8);
2238   emit_operand(dst, src);
2239 }
2240 
2241 void Assembler::popcntl(Register dst, Register src) {
2242   assert(VM_Version::supports_popcnt(), "must support");
2243   emit_byte(0xF3);
2244   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2245   emit_byte(0x0F);
2246   emit_byte(0xB8);
2247   emit_byte(0xC0 | encode);
2248 }
2249 
2250 void Assembler::popf() {
2251   emit_byte(0x9D);
2252 }
2253 
2254 #ifndef _LP64 // no 32bit push/pop on amd64
2255 void Assembler::popl(Address dst) {
2256   // NOTE: this will adjust stack by 8byte on 64bits
2257   InstructionMark im(this);
2258   prefix(dst);
2259   emit_byte(0x8F);
2260   emit_operand(rax, dst);
2261 }
2262 #endif
2263 
2264 void Assembler::prefetch_prefix(Address src) {
2265   prefix(src);
2266   emit_byte(0x0F);
2267 }
2268 
2269 void Assembler::prefetchnta(Address src) {
2270   NOT_LP64(assert(VM_Version::supports_sse2(), "must support"));
2271   InstructionMark im(this);
2272   prefetch_prefix(src);
2273   emit_byte(0x18);
2274   emit_operand(rax, src); // 0, src
2275 }
2276 
2277 void Assembler::prefetchr(Address src) {
2278   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
2279   InstructionMark im(this);
2280   prefetch_prefix(src);
2281   emit_byte(0x0D);
2282   emit_operand(rax, src); // 0, src
2283 }
2284 
2285 void Assembler::prefetcht0(Address src) {
2286   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2287   InstructionMark im(this);
2288   prefetch_prefix(src);
2289   emit_byte(0x18);
2290   emit_operand(rcx, src); // 1, src
2291 }
2292 
2293 void Assembler::prefetcht1(Address src) {
2294   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2295   InstructionMark im(this);
2296   prefetch_prefix(src);
2297   emit_byte(0x18);
2298   emit_operand(rdx, src); // 2, src
2299 }
2300 
2301 void Assembler::prefetcht2(Address src) {
2302   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2303   InstructionMark im(this);
2304   prefetch_prefix(src);
2305   emit_byte(0x18);
2306   emit_operand(rbx, src); // 3, src
2307 }
2308 
2309 void Assembler::prefetchw(Address src) {
2310   NOT_LP64(assert(VM_Version::supports_3dnow(), "must support"));
2311   InstructionMark im(this);
2312   prefetch_prefix(src);
2313   emit_byte(0x0D);
2314   emit_operand(rcx, src); // 1, src
2315 }
2316 
2317 void Assembler::prefix(Prefix p) {
2318   a_byte(p);
2319 }
2320 
2321 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2322   assert(isByte(mode), "invalid value");
2323   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2324 
2325   emit_byte(0x66);
2326   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2327   emit_byte(0x0F);
2328   emit_byte(0x70);
2329   emit_byte(0xC0 | encode);
2330   emit_byte(mode & 0xFF);
2331 
2332 }
2333 
2334 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2335   assert(isByte(mode), "invalid value");
2336   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2337 
2338   InstructionMark im(this);
2339   emit_byte(0x66);
2340   prefix(src, dst);
2341   emit_byte(0x0F);
2342   emit_byte(0x70);
2343   emit_operand(dst, src);
2344   emit_byte(mode & 0xFF);
2345 }
2346 
2347 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2348   assert(isByte(mode), "invalid value");
2349   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2350 
2351   emit_byte(0xF2);
2352   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2353   emit_byte(0x0F);
2354   emit_byte(0x70);
2355   emit_byte(0xC0 | encode);
2356   emit_byte(mode & 0xFF);
2357 }
2358 
2359 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2360   assert(isByte(mode), "invalid value");
2361   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2362 
2363   InstructionMark im(this);
2364   emit_byte(0xF2);
2365   prefix(src, dst); // QQ new
2366   emit_byte(0x0F);
2367   emit_byte(0x70);
2368   emit_operand(dst, src);
2369   emit_byte(mode & 0xFF);
2370 }
2371 
2372 void Assembler::psrlq(XMMRegister dst, int shift) {
2373   // HMM Table D-1 says sse2 or mmx
2374   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2375 
2376   int encode = prefixq_and_encode(xmm2->encoding(), dst->encoding());
2377   emit_byte(0x66);
2378   emit_byte(0x0F);
2379   emit_byte(0x73);
2380   emit_byte(0xC0 | encode);
2381   emit_byte(shift);
2382 }
2383 
2384 void Assembler::ptest(XMMRegister dst, Address src) {
2385   assert(VM_Version::supports_sse4_1(), "");
2386 
2387   InstructionMark im(this);
2388   emit_byte(0x66);
2389   prefix(src, dst);
2390   emit_byte(0x0F);
2391   emit_byte(0x38);
2392   emit_byte(0x17);
2393   emit_operand(dst, src);
2394 }
2395 
2396 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2397   assert(VM_Version::supports_sse4_1(), "");
2398 
2399   emit_byte(0x66);
2400   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2401   emit_byte(0x0F);
2402   emit_byte(0x38);
2403   emit_byte(0x17);
2404   emit_byte(0xC0 | encode);
2405 }
2406 
2407 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2408   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2409   emit_byte(0x66);
2410   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2411   emit_byte(0x0F);
2412   emit_byte(0x60);
2413   emit_byte(0xC0 | encode);
2414 }
2415 
2416 void Assembler::push(int32_t imm32) {
2417   // in 64bits we push 64bits onto the stack but only
2418   // take a 32bit immediate
2419   emit_byte(0x68);
2420   emit_long(imm32);
2421 }
2422 
2423 void Assembler::push(Register src) {
2424   int encode = prefix_and_encode(src->encoding());
2425 
2426   emit_byte(0x50 | encode);
2427 }
2428 
2429 void Assembler::pushf() {
2430   emit_byte(0x9C);
2431 }
2432 
2433 #ifndef _LP64 // no 32bit push/pop on amd64
2434 void Assembler::pushl(Address src) {
2435   // Note this will push 64bit on 64bit
2436   InstructionMark im(this);
2437   prefix(src);
2438   emit_byte(0xFF);
2439   emit_operand(rsi, src);
2440 }
2441 #endif
2442 
2443 void Assembler::pxor(XMMRegister dst, Address src) {
2444   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2445   InstructionMark im(this);
2446   emit_byte(0x66);
2447   prefix(src, dst);
2448   emit_byte(0x0F);
2449   emit_byte(0xEF);
2450   emit_operand(dst, src);
2451 }
2452 
2453 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
2454   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2455   InstructionMark im(this);
2456   emit_byte(0x66);
2457   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2458   emit_byte(0x0F);
2459   emit_byte(0xEF);
2460   emit_byte(0xC0 | encode);
2461 }
2462 
2463 void Assembler::rcll(Register dst, int imm8) {
2464   assert(isShiftCount(imm8), "illegal shift count");
2465   int encode = prefix_and_encode(dst->encoding());
2466   if (imm8 == 1) {
2467     emit_byte(0xD1);
2468     emit_byte(0xD0 | encode);
2469   } else {
2470     emit_byte(0xC1);
2471     emit_byte(0xD0 | encode);
2472     emit_byte(imm8);
2473   }
2474 }
2475 
2476 // copies data from [esi] to [edi] using rcx pointer sized words
2477 // generic
2478 void Assembler::rep_mov() {
2479   emit_byte(0xF3);
2480   // MOVSQ
2481   LP64_ONLY(prefix(REX_W));
2482   emit_byte(0xA5);
2483 }
2484 
2485 // sets rcx pointer sized words with rax, value at [edi]
2486 // generic
2487 void Assembler::rep_set() { // rep_set
2488   emit_byte(0xF3);
2489   // STOSQ
2490   LP64_ONLY(prefix(REX_W));
2491   emit_byte(0xAB);
2492 }
2493 
2494 // scans rcx pointer sized words at [edi] for occurance of rax,
2495 // generic
2496 void Assembler::repne_scan() { // repne_scan
2497   emit_byte(0xF2);
2498   // SCASQ
2499   LP64_ONLY(prefix(REX_W));
2500   emit_byte(0xAF);
2501 }
2502 
2503 #ifdef _LP64
2504 // scans rcx 4 byte words at [edi] for occurance of rax,
2505 // generic
2506 void Assembler::repne_scanl() { // repne_scan
2507   emit_byte(0xF2);
2508   // SCASL
2509   emit_byte(0xAF);
2510 }
2511 #endif
2512 
2513 void Assembler::ret(int imm16) {
2514   if (imm16 == 0) {
2515     emit_byte(0xC3);
2516   } else {
2517     emit_byte(0xC2);
2518     emit_word(imm16);
2519   }
2520 }
2521 
2522 void Assembler::sahf() {
2523 #ifdef _LP64
2524   // Not supported in 64bit mode
2525   ShouldNotReachHere();
2526 #endif
2527   emit_byte(0x9E);
2528 }
2529 
2530 void Assembler::sarl(Register dst, int imm8) {
2531   int encode = prefix_and_encode(dst->encoding());
2532   assert(isShiftCount(imm8), "illegal shift count");
2533   if (imm8 == 1) {
2534     emit_byte(0xD1);
2535     emit_byte(0xF8 | encode);
2536   } else {
2537     emit_byte(0xC1);
2538     emit_byte(0xF8 | encode);
2539     emit_byte(imm8);
2540   }
2541 }
2542 
2543 void Assembler::sarl(Register dst) {
2544   int encode = prefix_and_encode(dst->encoding());
2545   emit_byte(0xD3);
2546   emit_byte(0xF8 | encode);
2547 }
2548 
2549 void Assembler::sbbl(Address dst, int32_t imm32) {
2550   InstructionMark im(this);
2551   prefix(dst);
2552   emit_arith_operand(0x81, rbx, dst, imm32);
2553 }
2554 
2555 void Assembler::sbbl(Register dst, int32_t imm32) {
2556   prefix(dst);
2557   emit_arith(0x81, 0xD8, dst, imm32);
2558 }
2559 
2560 
2561 void Assembler::sbbl(Register dst, Address src) {
2562   InstructionMark im(this);
2563   prefix(src, dst);
2564   emit_byte(0x1B);
2565   emit_operand(dst, src);
2566 }
2567 
2568 void Assembler::sbbl(Register dst, Register src) {
2569   (void) prefix_and_encode(dst->encoding(), src->encoding());
2570   emit_arith(0x1B, 0xC0, dst, src);
2571 }
2572 
2573 void Assembler::setb(Condition cc, Register dst) {
2574   assert(0 <= cc && cc < 16, "illegal cc");
2575   int encode = prefix_and_encode(dst->encoding(), true);
2576   emit_byte(0x0F);
2577   emit_byte(0x90 | cc);
2578   emit_byte(0xC0 | encode);
2579 }
2580 
2581 void Assembler::shll(Register dst, int imm8) {
2582   assert(isShiftCount(imm8), "illegal shift count");
2583   int encode = prefix_and_encode(dst->encoding());
2584   if (imm8 == 1 ) {
2585     emit_byte(0xD1);
2586     emit_byte(0xE0 | encode);
2587   } else {
2588     emit_byte(0xC1);
2589     emit_byte(0xE0 | encode);
2590     emit_byte(imm8);
2591   }
2592 }
2593 
2594 void Assembler::shll(Register dst) {
2595   int encode = prefix_and_encode(dst->encoding());
2596   emit_byte(0xD3);
2597   emit_byte(0xE0 | encode);
2598 }
2599 
2600 void Assembler::shrl(Register dst, int imm8) {
2601   assert(isShiftCount(imm8), "illegal shift count");
2602   int encode = prefix_and_encode(dst->encoding());
2603   emit_byte(0xC1);
2604   emit_byte(0xE8 | encode);
2605   emit_byte(imm8);
2606 }
2607 
2608 void Assembler::shrl(Register dst) {
2609   int encode = prefix_and_encode(dst->encoding());
2610   emit_byte(0xD3);
2611   emit_byte(0xE8 | encode);
2612 }
2613 
2614 // copies a single word from [esi] to [edi]
2615 void Assembler::smovl() {
2616   emit_byte(0xA5);
2617 }
2618 
2619 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2620   // HMM Table D-1 says sse2
2621   // NOT_LP64(assert(VM_Version::supports_sse(), ""));
2622   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2623   emit_byte(0xF2);
2624   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2625   emit_byte(0x0F);
2626   emit_byte(0x51);
2627   emit_byte(0xC0 | encode);
2628 }
2629 
2630 void Assembler::stmxcsr( Address dst) {
2631   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2632   InstructionMark im(this);
2633   prefix(dst);
2634   emit_byte(0x0F);
2635   emit_byte(0xAE);
2636   emit_operand(as_Register(3), dst);
2637 }
2638 
2639 void Assembler::subl(Address dst, int32_t imm32) {
2640   InstructionMark im(this);
2641   prefix(dst);
2642   if (is8bit(imm32)) {
2643     emit_byte(0x83);
2644     emit_operand(rbp, dst, 1);
2645     emit_byte(imm32 & 0xFF);
2646   } else {
2647     emit_byte(0x81);
2648     emit_operand(rbp, dst, 4);
2649     emit_long(imm32);
2650   }
2651 }
2652 
2653 void Assembler::subl(Register dst, int32_t imm32) {
2654   prefix(dst);
2655   emit_arith(0x81, 0xE8, dst, imm32);
2656 }
2657 
2658 void Assembler::subl(Address dst, Register src) {
2659   InstructionMark im(this);
2660   prefix(dst, src);
2661   emit_byte(0x29);
2662   emit_operand(src, dst);
2663 }
2664 
2665 void Assembler::subl(Register dst, Address src) {
2666   InstructionMark im(this);
2667   prefix(src, dst);
2668   emit_byte(0x2B);
2669   emit_operand(dst, src);
2670 }
2671 
2672 void Assembler::subl(Register dst, Register src) {
2673   (void) prefix_and_encode(dst->encoding(), src->encoding());
2674   emit_arith(0x2B, 0xC0, dst, src);
2675 }
2676 
2677 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2679   emit_byte(0xF2);
2680   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2681   emit_byte(0x0F);
2682   emit_byte(0x5C);
2683   emit_byte(0xC0 | encode);
2684 }
2685 
2686 void Assembler::subsd(XMMRegister dst, Address src) {
2687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2688   InstructionMark im(this);
2689   emit_byte(0xF2);
2690   prefix(src, dst);
2691   emit_byte(0x0F);
2692   emit_byte(0x5C);
2693   emit_operand(dst, src);
2694 }
2695 
2696 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2697   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2698   emit_byte(0xF3);
2699   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2700   emit_byte(0x0F);
2701   emit_byte(0x5C);
2702   emit_byte(0xC0 | encode);
2703 }
2704 
2705 void Assembler::subss(XMMRegister dst, Address src) {
2706   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2707   InstructionMark im(this);
2708   emit_byte(0xF3);
2709   prefix(src, dst);
2710   emit_byte(0x0F);
2711   emit_byte(0x5C);
2712   emit_operand(dst, src);
2713 }
2714 
2715 void Assembler::testb(Register dst, int imm8) {
2716   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2717   (void) prefix_and_encode(dst->encoding(), true);
2718   emit_arith_b(0xF6, 0xC0, dst, imm8);
2719 }
2720 
2721 void Assembler::testl(Register dst, int32_t imm32) {
2722   // not using emit_arith because test
2723   // doesn't support sign-extension of
2724   // 8bit operands
2725   int encode = dst->encoding();
2726   if (encode == 0) {
2727     emit_byte(0xA9);
2728   } else {
2729     encode = prefix_and_encode(encode);
2730     emit_byte(0xF7);
2731     emit_byte(0xC0 | encode);
2732   }
2733   emit_long(imm32);
2734 }
2735 
2736 void Assembler::testl(Register dst, Register src) {
2737   (void) prefix_and_encode(dst->encoding(), src->encoding());
2738   emit_arith(0x85, 0xC0, dst, src);
2739 }
2740 
2741 void Assembler::testl(Register dst, Address  src) {
2742   InstructionMark im(this);
2743   prefix(src, dst);
2744   emit_byte(0x85);
2745   emit_operand(dst, src);
2746 }
2747 
2748 void Assembler::ucomisd(XMMRegister dst, Address src) {
2749   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2750   emit_byte(0x66);
2751   ucomiss(dst, src);
2752 }
2753 
2754 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2755   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2756   emit_byte(0x66);
2757   ucomiss(dst, src);
2758 }
2759 
2760 void Assembler::ucomiss(XMMRegister dst, Address src) {
2761   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2762 
2763   InstructionMark im(this);
2764   prefix(src, dst);
2765   emit_byte(0x0F);
2766   emit_byte(0x2E);
2767   emit_operand(dst, src);
2768 }
2769 
2770 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2771   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2772   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2773   emit_byte(0x0F);
2774   emit_byte(0x2E);
2775   emit_byte(0xC0 | encode);
2776 }
2777 
2778 
2779 void Assembler::xaddl(Address dst, Register src) {
2780   InstructionMark im(this);
2781   prefix(dst, src);
2782   emit_byte(0x0F);
2783   emit_byte(0xC1);
2784   emit_operand(src, dst);
2785 }
2786 
2787 void Assembler::xchgl(Register dst, Address src) { // xchg
2788   InstructionMark im(this);
2789   prefix(src, dst);
2790   emit_byte(0x87);
2791   emit_operand(dst, src);
2792 }
2793 
2794 void Assembler::xchgl(Register dst, Register src) {
2795   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2796   emit_byte(0x87);
2797   emit_byte(0xc0 | encode);
2798 }
2799 
2800 void Assembler::xorl(Register dst, int32_t imm32) {
2801   prefix(dst);
2802   emit_arith(0x81, 0xF0, dst, imm32);
2803 }
2804 
2805 void Assembler::xorl(Register dst, Address src) {
2806   InstructionMark im(this);
2807   prefix(src, dst);
2808   emit_byte(0x33);
2809   emit_operand(dst, src);
2810 }
2811 
2812 void Assembler::xorl(Register dst, Register src) {
2813   (void) prefix_and_encode(dst->encoding(), src->encoding());
2814   emit_arith(0x33, 0xC0, dst, src);
2815 }
2816 
2817 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
2818   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2819   emit_byte(0x66);
2820   xorps(dst, src);
2821 }
2822 
2823 void Assembler::xorpd(XMMRegister dst, Address src) {
2824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2825   InstructionMark im(this);
2826   emit_byte(0x66);
2827   prefix(src, dst);
2828   emit_byte(0x0F);
2829   emit_byte(0x57);
2830   emit_operand(dst, src);
2831 }
2832 
2833 
2834 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
2835   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2836   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2837   emit_byte(0x0F);
2838   emit_byte(0x57);
2839   emit_byte(0xC0 | encode);
2840 }
2841 
2842 void Assembler::xorps(XMMRegister dst, Address src) {
2843   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2844   InstructionMark im(this);
2845   prefix(src, dst);
2846   emit_byte(0x0F);
2847   emit_byte(0x57);
2848   emit_operand(dst, src);
2849 }
2850 
2851 #ifndef _LP64
2852 // 32bit only pieces of the assembler
2853 
2854 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
2855   // NO PREFIX AS NEVER 64BIT
2856   InstructionMark im(this);
2857   emit_byte(0x81);
2858   emit_byte(0xF8 | src1->encoding());
2859   emit_data(imm32, rspec, 0);
2860 }
2861 
2862 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
2863   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
2864   InstructionMark im(this);
2865   emit_byte(0x81);
2866   emit_operand(rdi, src1);
2867   emit_data(imm32, rspec, 0);
2868 }
2869 
2870 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
2871 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
2872 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
2873 void Assembler::cmpxchg8(Address adr) {
2874   InstructionMark im(this);
2875   emit_byte(0x0F);
2876   emit_byte(0xc7);
2877   emit_operand(rcx, adr);
2878 }
2879 
2880 void Assembler::decl(Register dst) {
2881   // Don't use it directly. Use MacroAssembler::decrementl() instead.
2882  emit_byte(0x48 | dst->encoding());
2883 }
2884 
2885 #endif // _LP64
2886 
2887 // 64bit typically doesn't use the x87 but needs to for the trig funcs
2888 
2889 void Assembler::fabs() {
2890   emit_byte(0xD9);
2891   emit_byte(0xE1);
2892 }
2893 
2894 void Assembler::fadd(int i) {
2895   emit_farith(0xD8, 0xC0, i);
2896 }
2897 
2898 void Assembler::fadd_d(Address src) {
2899   InstructionMark im(this);
2900   emit_byte(0xDC);
2901   emit_operand32(rax, src);
2902 }
2903 
2904 void Assembler::fadd_s(Address src) {
2905   InstructionMark im(this);
2906   emit_byte(0xD8);
2907   emit_operand32(rax, src);
2908 }
2909 
2910 void Assembler::fadda(int i) {
2911   emit_farith(0xDC, 0xC0, i);
2912 }
2913 
2914 void Assembler::faddp(int i) {
2915   emit_farith(0xDE, 0xC0, i);
2916 }
2917 
2918 void Assembler::fchs() {
2919   emit_byte(0xD9);
2920   emit_byte(0xE0);
2921 }
2922 
2923 void Assembler::fcom(int i) {
2924   emit_farith(0xD8, 0xD0, i);
2925 }
2926 
2927 void Assembler::fcomp(int i) {
2928   emit_farith(0xD8, 0xD8, i);
2929 }
2930 
2931 void Assembler::fcomp_d(Address src) {
2932   InstructionMark im(this);
2933   emit_byte(0xDC);
2934   emit_operand32(rbx, src);
2935 }
2936 
2937 void Assembler::fcomp_s(Address src) {
2938   InstructionMark im(this);
2939   emit_byte(0xD8);
2940   emit_operand32(rbx, src);
2941 }
2942 
2943 void Assembler::fcompp() {
2944   emit_byte(0xDE);
2945   emit_byte(0xD9);
2946 }
2947 
2948 void Assembler::fcos() {
2949   emit_byte(0xD9);
2950   emit_byte(0xFF);
2951 }
2952 
2953 void Assembler::fdecstp() {
2954   emit_byte(0xD9);
2955   emit_byte(0xF6);
2956 }
2957 
2958 void Assembler::fdiv(int i) {
2959   emit_farith(0xD8, 0xF0, i);
2960 }
2961 
2962 void Assembler::fdiv_d(Address src) {
2963   InstructionMark im(this);
2964   emit_byte(0xDC);
2965   emit_operand32(rsi, src);
2966 }
2967 
2968 void Assembler::fdiv_s(Address src) {
2969   InstructionMark im(this);
2970   emit_byte(0xD8);
2971   emit_operand32(rsi, src);
2972 }
2973 
2974 void Assembler::fdiva(int i) {
2975   emit_farith(0xDC, 0xF8, i);
2976 }
2977 
2978 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
2979 //       is erroneous for some of the floating-point instructions below.
2980 
2981 void Assembler::fdivp(int i) {
2982   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
2983 }
2984 
2985 void Assembler::fdivr(int i) {
2986   emit_farith(0xD8, 0xF8, i);
2987 }
2988 
2989 void Assembler::fdivr_d(Address src) {
2990   InstructionMark im(this);
2991   emit_byte(0xDC);
2992   emit_operand32(rdi, src);
2993 }
2994 
2995 void Assembler::fdivr_s(Address src) {
2996   InstructionMark im(this);
2997   emit_byte(0xD8);
2998   emit_operand32(rdi, src);
2999 }
3000 
3001 void Assembler::fdivra(int i) {
3002   emit_farith(0xDC, 0xF0, i);
3003 }
3004 
3005 void Assembler::fdivrp(int i) {
3006   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
3007 }
3008 
3009 void Assembler::ffree(int i) {
3010   emit_farith(0xDD, 0xC0, i);
3011 }
3012 
3013 void Assembler::fild_d(Address adr) {
3014   InstructionMark im(this);
3015   emit_byte(0xDF);
3016   emit_operand32(rbp, adr);
3017 }
3018 
3019 void Assembler::fild_s(Address adr) {
3020   InstructionMark im(this);
3021   emit_byte(0xDB);
3022   emit_operand32(rax, adr);
3023 }
3024 
3025 void Assembler::fincstp() {
3026   emit_byte(0xD9);
3027   emit_byte(0xF7);
3028 }
3029 
3030 void Assembler::finit() {
3031   emit_byte(0x9B);
3032   emit_byte(0xDB);
3033   emit_byte(0xE3);
3034 }
3035 
3036 void Assembler::fist_s(Address adr) {
3037   InstructionMark im(this);
3038   emit_byte(0xDB);
3039   emit_operand32(rdx, adr);
3040 }
3041 
3042 void Assembler::fistp_d(Address adr) {
3043   InstructionMark im(this);
3044   emit_byte(0xDF);
3045   emit_operand32(rdi, adr);
3046 }
3047 
3048 void Assembler::fistp_s(Address adr) {
3049   InstructionMark im(this);
3050   emit_byte(0xDB);
3051   emit_operand32(rbx, adr);
3052 }
3053 
3054 void Assembler::fld1() {
3055   emit_byte(0xD9);
3056   emit_byte(0xE8);
3057 }
3058 
3059 void Assembler::fld_d(Address adr) {
3060   InstructionMark im(this);
3061   emit_byte(0xDD);
3062   emit_operand32(rax, adr);
3063 }
3064 
3065 void Assembler::fld_s(Address adr) {
3066   InstructionMark im(this);
3067   emit_byte(0xD9);
3068   emit_operand32(rax, adr);
3069 }
3070 
3071 
3072 void Assembler::fld_s(int index) {
3073   emit_farith(0xD9, 0xC0, index);
3074 }
3075 
3076 void Assembler::fld_x(Address adr) {
3077   InstructionMark im(this);
3078   emit_byte(0xDB);
3079   emit_operand32(rbp, adr);
3080 }
3081 
3082 void Assembler::fldcw(Address src) {
3083   InstructionMark im(this);
3084   emit_byte(0xd9);
3085   emit_operand32(rbp, src);
3086 }
3087 
3088 void Assembler::fldenv(Address src) {
3089   InstructionMark im(this);
3090   emit_byte(0xD9);
3091   emit_operand32(rsp, src);
3092 }
3093 
3094 void Assembler::fldlg2() {
3095   emit_byte(0xD9);
3096   emit_byte(0xEC);
3097 }
3098 
3099 void Assembler::fldln2() {
3100   emit_byte(0xD9);
3101   emit_byte(0xED);
3102 }
3103 
3104 void Assembler::fldz() {
3105   emit_byte(0xD9);
3106   emit_byte(0xEE);
3107 }
3108 
3109 void Assembler::flog() {
3110   fldln2();
3111   fxch();
3112   fyl2x();
3113 }
3114 
3115 void Assembler::flog10() {
3116   fldlg2();
3117   fxch();
3118   fyl2x();
3119 }
3120 
3121 void Assembler::fmul(int i) {
3122   emit_farith(0xD8, 0xC8, i);
3123 }
3124 
3125 void Assembler::fmul_d(Address src) {
3126   InstructionMark im(this);
3127   emit_byte(0xDC);
3128   emit_operand32(rcx, src);
3129 }
3130 
3131 void Assembler::fmul_s(Address src) {
3132   InstructionMark im(this);
3133   emit_byte(0xD8);
3134   emit_operand32(rcx, src);
3135 }
3136 
3137 void Assembler::fmula(int i) {
3138   emit_farith(0xDC, 0xC8, i);
3139 }
3140 
3141 void Assembler::fmulp(int i) {
3142   emit_farith(0xDE, 0xC8, i);
3143 }
3144 
3145 void Assembler::fnsave(Address dst) {
3146   InstructionMark im(this);
3147   emit_byte(0xDD);
3148   emit_operand32(rsi, dst);
3149 }
3150 
3151 void Assembler::fnstcw(Address src) {
3152   InstructionMark im(this);
3153   emit_byte(0x9B);
3154   emit_byte(0xD9);
3155   emit_operand32(rdi, src);
3156 }
3157 
3158 void Assembler::fnstsw_ax() {
3159   emit_byte(0xdF);
3160   emit_byte(0xE0);
3161 }
3162 
3163 void Assembler::fprem() {
3164   emit_byte(0xD9);
3165   emit_byte(0xF8);
3166 }
3167 
3168 void Assembler::fprem1() {
3169   emit_byte(0xD9);
3170   emit_byte(0xF5);
3171 }
3172 
3173 void Assembler::frstor(Address src) {
3174   InstructionMark im(this);
3175   emit_byte(0xDD);
3176   emit_operand32(rsp, src);
3177 }
3178 
3179 void Assembler::fsin() {
3180   emit_byte(0xD9);
3181   emit_byte(0xFE);
3182 }
3183 
3184 void Assembler::fsqrt() {
3185   emit_byte(0xD9);
3186   emit_byte(0xFA);
3187 }
3188 
3189 void Assembler::fst_d(Address adr) {
3190   InstructionMark im(this);
3191   emit_byte(0xDD);
3192   emit_operand32(rdx, adr);
3193 }
3194 
3195 void Assembler::fst_s(Address adr) {
3196   InstructionMark im(this);
3197   emit_byte(0xD9);
3198   emit_operand32(rdx, adr);
3199 }
3200 
3201 void Assembler::fstp_d(Address adr) {
3202   InstructionMark im(this);
3203   emit_byte(0xDD);
3204   emit_operand32(rbx, adr);
3205 }
3206 
3207 void Assembler::fstp_d(int index) {
3208   emit_farith(0xDD, 0xD8, index);
3209 }
3210 
3211 void Assembler::fstp_s(Address adr) {
3212   InstructionMark im(this);
3213   emit_byte(0xD9);
3214   emit_operand32(rbx, adr);
3215 }
3216 
3217 void Assembler::fstp_x(Address adr) {
3218   InstructionMark im(this);
3219   emit_byte(0xDB);
3220   emit_operand32(rdi, adr);
3221 }
3222 
3223 void Assembler::fsub(int i) {
3224   emit_farith(0xD8, 0xE0, i);
3225 }
3226 
3227 void Assembler::fsub_d(Address src) {
3228   InstructionMark im(this);
3229   emit_byte(0xDC);
3230   emit_operand32(rsp, src);
3231 }
3232 
3233 void Assembler::fsub_s(Address src) {
3234   InstructionMark im(this);
3235   emit_byte(0xD8);
3236   emit_operand32(rsp, src);
3237 }
3238 
3239 void Assembler::fsuba(int i) {
3240   emit_farith(0xDC, 0xE8, i);
3241 }
3242 
3243 void Assembler::fsubp(int i) {
3244   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
3245 }
3246 
3247 void Assembler::fsubr(int i) {
3248   emit_farith(0xD8, 0xE8, i);
3249 }
3250 
3251 void Assembler::fsubr_d(Address src) {
3252   InstructionMark im(this);
3253   emit_byte(0xDC);
3254   emit_operand32(rbp, src);
3255 }
3256 
3257 void Assembler::fsubr_s(Address src) {
3258   InstructionMark im(this);
3259   emit_byte(0xD8);
3260   emit_operand32(rbp, src);
3261 }
3262 
3263 void Assembler::fsubra(int i) {
3264   emit_farith(0xDC, 0xE0, i);
3265 }
3266 
3267 void Assembler::fsubrp(int i) {
3268   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
3269 }
3270 
3271 void Assembler::ftan() {
3272   emit_byte(0xD9);
3273   emit_byte(0xF2);
3274   emit_byte(0xDD);
3275   emit_byte(0xD8);
3276 }
3277 
3278 void Assembler::ftst() {
3279   emit_byte(0xD9);
3280   emit_byte(0xE4);
3281 }
3282 
3283 void Assembler::fucomi(int i) {
3284   // make sure the instruction is supported (introduced for P6, together with cmov)
3285   guarantee(VM_Version::supports_cmov(), "illegal instruction");
3286   emit_farith(0xDB, 0xE8, i);
3287 }
3288 
3289 void Assembler::fucomip(int i) {
3290   // make sure the instruction is supported (introduced for P6, together with cmov)
3291   guarantee(VM_Version::supports_cmov(), "illegal instruction");
3292   emit_farith(0xDF, 0xE8, i);
3293 }
3294 
3295 void Assembler::fwait() {
3296   emit_byte(0x9B);
3297 }
3298 
3299 void Assembler::fxch(int i) {
3300   emit_farith(0xD9, 0xC8, i);
3301 }
3302 
3303 void Assembler::fyl2x() {
3304   emit_byte(0xD9);
3305   emit_byte(0xF1);
3306 }
3307 
3308 
3309 #ifndef _LP64
3310 
3311 void Assembler::incl(Register dst) {
3312   // Don't use it directly. Use MacroAssembler::incrementl() instead.
3313  emit_byte(0x40 | dst->encoding());
3314 }
3315 
3316 void Assembler::lea(Register dst, Address src) {
3317   leal(dst, src);
3318 }
3319 
3320 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
3321   InstructionMark im(this);
3322   emit_byte(0xC7);
3323   emit_operand(rax, dst);
3324   emit_data((int)imm32, rspec, 0);
3325 }
3326 
3327 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
3328   InstructionMark im(this);
3329   int encode = prefix_and_encode(dst->encoding());
3330   emit_byte(0xB8 | encode);
3331   emit_data((int)imm32, rspec, 0);
3332 }
3333 
3334 void Assembler::popa() { // 32bit
3335   emit_byte(0x61);
3336 }
3337 
3338 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
3339   InstructionMark im(this);
3340   emit_byte(0x68);
3341   emit_data(imm32, rspec, 0);
3342 }
3343 
3344 void Assembler::pusha() { // 32bit
3345   emit_byte(0x60);
3346 }
3347 
3348 void Assembler::set_byte_if_not_zero(Register dst) {
3349   emit_byte(0x0F);
3350   emit_byte(0x95);
3351   emit_byte(0xE0 | dst->encoding());
3352 }
3353 
3354 void Assembler::shldl(Register dst, Register src) {
3355   emit_byte(0x0F);
3356   emit_byte(0xA5);
3357   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
3358 }
3359 
3360 void Assembler::shrdl(Register dst, Register src) {
3361   emit_byte(0x0F);
3362   emit_byte(0xAD);
3363   emit_byte(0xC0 | src->encoding() << 3 | dst->encoding());
3364 }
3365 
3366 #else // LP64
3367 
3368 // 64bit only pieces of the assembler
3369 // This should only be used by 64bit instructions that can use rip-relative
3370 // it cannot be used by instructions that want an immediate value.
3371 
3372 bool Assembler::reachable(AddressLiteral adr) {
3373   int64_t disp;
3374   // None will force a 64bit literal to the code stream. Likely a placeholder
3375   // for something that will be patched later and we need to certain it will
3376   // always be reachable.
3377   if (adr.reloc() == relocInfo::none) {
3378     return false;
3379   }
3380   if (adr.reloc() == relocInfo::internal_word_type) {
3381     // This should be rip relative and easily reachable.
3382     return true;
3383   }
3384   if (adr.reloc() == relocInfo::virtual_call_type ||
3385       adr.reloc() == relocInfo::opt_virtual_call_type ||
3386       adr.reloc() == relocInfo::static_call_type ||
3387       adr.reloc() == relocInfo::static_stub_type ) {
3388     // This should be rip relative within the code cache and easily
3389     // reachable until we get huge code caches. (At which point
3390     // ic code is going to have issues).
3391     return true;
3392   }
3393   if (adr.reloc() != relocInfo::external_word_type &&
3394       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
3395       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
3396       adr.reloc() != relocInfo::runtime_call_type ) {
3397     return false;
3398   }
3399 
3400   // Stress the correction code
3401   if (ForceUnreachable) {
3402     // Must be runtimecall reloc, see if it is in the codecache
3403     // Flipping stuff in the codecache to be unreachable causes issues
3404     // with things like inline caches where the additional instructions
3405     // are not handled.
3406     if (CodeCache::find_blob(adr._target) == NULL) {
3407       return false;
3408     }
3409   }
3410   // For external_word_type/runtime_call_type if it is reachable from where we
3411   // are now (possibly a temp buffer) and where we might end up
3412   // anywhere in the codeCache then we are always reachable.
3413   // This would have to change if we ever save/restore shared code
3414   // to be more pessimistic.
3415 
3416   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
3417   if (!is_simm32(disp)) return false;
3418   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
3419   if (!is_simm32(disp)) return false;
3420 
3421   disp = (int64_t)adr._target - ((int64_t)_code_pos + sizeof(int));
3422 
3423   // Because rip relative is a disp + address_of_next_instruction and we
3424   // don't know the value of address_of_next_instruction we apply a fudge factor
3425   // to make sure we will be ok no matter the size of the instruction we get placed into.
3426   // We don't have to fudge the checks above here because they are already worst case.
3427 
3428   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
3429   // + 4 because better safe than sorry.
3430   const int fudge = 12 + 4;
3431   if (disp < 0) {
3432     disp -= fudge;
3433   } else {
3434     disp += fudge;
3435   }
3436   return is_simm32(disp);
3437 }
3438 
3439 void Assembler::emit_data64(jlong data,
3440                             relocInfo::relocType rtype,
3441                             int format) {
3442   if (rtype == relocInfo::none) {
3443     emit_long64(data);
3444   } else {
3445     emit_data64(data, Relocation::spec_simple(rtype), format);
3446   }
3447 }
3448 
3449 void Assembler::emit_data64(jlong data,
3450                             RelocationHolder const& rspec,
3451                             int format) {
3452   assert(imm_operand == 0, "default format must be immediate in this file");
3453   assert(imm_operand == format, "must be immediate");
3454   assert(inst_mark() != NULL, "must be inside InstructionMark");
3455   // Do not use AbstractAssembler::relocate, which is not intended for
3456   // embedded words.  Instead, relocate to the enclosing instruction.
3457   code_section()->relocate(inst_mark(), rspec, format);
3458 #ifdef ASSERT
3459   check_relocation(rspec, format);
3460 #endif
3461   emit_long64(data);
3462 }
3463 
3464 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
3465   if (reg_enc >= 8) {
3466     prefix(REX_B);
3467     reg_enc -= 8;
3468   } else if (byteinst && reg_enc >= 4) {
3469     prefix(REX);
3470   }
3471   return reg_enc;
3472 }
3473 
3474 int Assembler::prefixq_and_encode(int reg_enc) {
3475   if (reg_enc < 8) {
3476     prefix(REX_W);
3477   } else {
3478     prefix(REX_WB);
3479     reg_enc -= 8;
3480   }
3481   return reg_enc;
3482 }
3483 
3484 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
3485   if (dst_enc < 8) {
3486     if (src_enc >= 8) {
3487       prefix(REX_B);
3488       src_enc -= 8;
3489     } else if (byteinst && src_enc >= 4) {
3490       prefix(REX);
3491     }
3492   } else {
3493     if (src_enc < 8) {
3494       prefix(REX_R);
3495     } else {
3496       prefix(REX_RB);
3497       src_enc -= 8;
3498     }
3499     dst_enc -= 8;
3500   }
3501   return dst_enc << 3 | src_enc;
3502 }
3503 
3504 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
3505   if (dst_enc < 8) {
3506     if (src_enc < 8) {
3507       prefix(REX_W);
3508     } else {
3509       prefix(REX_WB);
3510       src_enc -= 8;
3511     }
3512   } else {
3513     if (src_enc < 8) {
3514       prefix(REX_WR);
3515     } else {
3516       prefix(REX_WRB);
3517       src_enc -= 8;
3518     }
3519     dst_enc -= 8;
3520   }
3521   return dst_enc << 3 | src_enc;
3522 }
3523 
3524 void Assembler::prefix(Register reg) {
3525   if (reg->encoding() >= 8) {
3526     prefix(REX_B);
3527   }
3528 }
3529 
3530 void Assembler::prefix(Address adr) {
3531   if (adr.base_needs_rex()) {
3532     if (adr.index_needs_rex()) {
3533       prefix(REX_XB);
3534     } else {
3535       prefix(REX_B);
3536     }
3537   } else {
3538     if (adr.index_needs_rex()) {
3539       prefix(REX_X);
3540     }
3541   }
3542 }
3543 
3544 void Assembler::prefixq(Address adr) {
3545   if (adr.base_needs_rex()) {
3546     if (adr.index_needs_rex()) {
3547       prefix(REX_WXB);
3548     } else {
3549       prefix(REX_WB);
3550     }
3551   } else {
3552     if (adr.index_needs_rex()) {
3553       prefix(REX_WX);
3554     } else {
3555       prefix(REX_W);
3556     }
3557   }
3558 }
3559 
3560 
3561 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
3562   if (reg->encoding() < 8) {
3563     if (adr.base_needs_rex()) {
3564       if (adr.index_needs_rex()) {
3565         prefix(REX_XB);
3566       } else {
3567         prefix(REX_B);
3568       }
3569     } else {
3570       if (adr.index_needs_rex()) {
3571         prefix(REX_X);
3572       } else if (reg->encoding() >= 4 ) {
3573         prefix(REX);
3574       }
3575     }
3576   } else {
3577     if (adr.base_needs_rex()) {
3578       if (adr.index_needs_rex()) {
3579         prefix(REX_RXB);
3580       } else {
3581         prefix(REX_RB);
3582       }
3583     } else {
3584       if (adr.index_needs_rex()) {
3585         prefix(REX_RX);
3586       } else {
3587         prefix(REX_R);
3588       }
3589     }
3590   }
3591 }
3592 
3593 void Assembler::prefixq(Address adr, Register src) {
3594   if (src->encoding() < 8) {
3595     if (adr.base_needs_rex()) {
3596       if (adr.index_needs_rex()) {
3597         prefix(REX_WXB);
3598       } else {
3599         prefix(REX_WB);
3600       }
3601     } else {
3602       if (adr.index_needs_rex()) {
3603         prefix(REX_WX);
3604       } else {
3605         prefix(REX_W);
3606       }
3607     }
3608   } else {
3609     if (adr.base_needs_rex()) {
3610       if (adr.index_needs_rex()) {
3611         prefix(REX_WRXB);
3612       } else {
3613         prefix(REX_WRB);
3614       }
3615     } else {
3616       if (adr.index_needs_rex()) {
3617         prefix(REX_WRX);
3618       } else {
3619         prefix(REX_WR);
3620       }
3621     }
3622   }
3623 }
3624 
3625 void Assembler::prefix(Address adr, XMMRegister reg) {
3626   if (reg->encoding() < 8) {
3627     if (adr.base_needs_rex()) {
3628       if (adr.index_needs_rex()) {
3629         prefix(REX_XB);
3630       } else {
3631         prefix(REX_B);
3632       }
3633     } else {
3634       if (adr.index_needs_rex()) {
3635         prefix(REX_X);
3636       }
3637     }
3638   } else {
3639     if (adr.base_needs_rex()) {
3640       if (adr.index_needs_rex()) {
3641         prefix(REX_RXB);
3642       } else {
3643         prefix(REX_RB);
3644       }
3645     } else {
3646       if (adr.index_needs_rex()) {
3647         prefix(REX_RX);
3648       } else {
3649         prefix(REX_R);
3650       }
3651     }
3652   }
3653 }
3654 
3655 void Assembler::adcq(Register dst, int32_t imm32) {
3656   (void) prefixq_and_encode(dst->encoding());
3657   emit_arith(0x81, 0xD0, dst, imm32);
3658 }
3659 
3660 void Assembler::adcq(Register dst, Address src) {
3661   InstructionMark im(this);
3662   prefixq(src, dst);
3663   emit_byte(0x13);
3664   emit_operand(dst, src);
3665 }
3666 
3667 void Assembler::adcq(Register dst, Register src) {
3668   (int) prefixq_and_encode(dst->encoding(), src->encoding());
3669   emit_arith(0x13, 0xC0, dst, src);
3670 }
3671 
3672 void Assembler::addq(Address dst, int32_t imm32) {
3673   InstructionMark im(this);
3674   prefixq(dst);
3675   emit_arith_operand(0x81, rax, dst,imm32);
3676 }
3677 
3678 void Assembler::addq(Address dst, Register src) {
3679   InstructionMark im(this);
3680   prefixq(dst, src);
3681   emit_byte(0x01);
3682   emit_operand(src, dst);
3683 }
3684 
3685 void Assembler::addq(Register dst, int32_t imm32) {
3686   (void) prefixq_and_encode(dst->encoding());
3687   emit_arith(0x81, 0xC0, dst, imm32);
3688 }
3689 
3690 void Assembler::addq(Register dst, Address src) {
3691   InstructionMark im(this);
3692   prefixq(src, dst);
3693   emit_byte(0x03);
3694   emit_operand(dst, src);
3695 }
3696 
3697 void Assembler::addq(Register dst, Register src) {
3698   (void) prefixq_and_encode(dst->encoding(), src->encoding());
3699   emit_arith(0x03, 0xC0, dst, src);
3700 }
3701 
3702 void Assembler::andq(Register dst, int32_t imm32) {
3703   (void) prefixq_and_encode(dst->encoding());
3704   emit_arith(0x81, 0xE0, dst, imm32);
3705 }
3706 
3707 void Assembler::andq(Register dst, Address src) {
3708   InstructionMark im(this);
3709   prefixq(src, dst);
3710   emit_byte(0x23);
3711   emit_operand(dst, src);
3712 }
3713 
3714 void Assembler::andq(Register dst, Register src) {
3715   (int) prefixq_and_encode(dst->encoding(), src->encoding());
3716   emit_arith(0x23, 0xC0, dst, src);
3717 }
3718 
3719 void Assembler::bsfq(Register dst, Register src) {
3720   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3721   emit_byte(0x0F);
3722   emit_byte(0xBC);
3723   emit_byte(0xC0 | encode);
3724 }
3725 
3726 void Assembler::bsrq(Register dst, Register src) {
3727   assert(!VM_Version::supports_lzcnt(), "encoding is treated as LZCNT");
3728   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3729   emit_byte(0x0F);
3730   emit_byte(0xBD);
3731   emit_byte(0xC0 | encode);
3732 }
3733 
3734 void Assembler::bswapq(Register reg) {
3735   int encode = prefixq_and_encode(reg->encoding());
3736   emit_byte(0x0F);
3737   emit_byte(0xC8 | encode);
3738 }
3739 
3740 void Assembler::cdqq() {
3741   prefix(REX_W);
3742   emit_byte(0x99);
3743 }
3744 
3745 void Assembler::clflush(Address adr) {
3746   prefix(adr);
3747   emit_byte(0x0F);
3748   emit_byte(0xAE);
3749   emit_operand(rdi, adr);
3750 }
3751 
3752 void Assembler::cmovq(Condition cc, Register dst, Register src) {
3753   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3754   emit_byte(0x0F);
3755   emit_byte(0x40 | cc);
3756   emit_byte(0xC0 | encode);
3757 }
3758 
3759 void Assembler::cmovq(Condition cc, Register dst, Address src) {
3760   InstructionMark im(this);
3761   prefixq(src, dst);
3762   emit_byte(0x0F);
3763   emit_byte(0x40 | cc);
3764   emit_operand(dst, src);
3765 }
3766 
3767 void Assembler::cmpq(Address dst, int32_t imm32) {
3768   InstructionMark im(this);
3769   prefixq(dst);
3770   emit_byte(0x81);
3771   emit_operand(rdi, dst, 4);
3772   emit_long(imm32);
3773 }
3774 
3775 void Assembler::cmpq(Register dst, int32_t imm32) {
3776   (void) prefixq_and_encode(dst->encoding());
3777   emit_arith(0x81, 0xF8, dst, imm32);
3778 }
3779 
3780 void Assembler::cmpq(Address dst, Register src) {
3781   InstructionMark im(this);
3782   prefixq(dst, src);
3783   emit_byte(0x3B);
3784   emit_operand(src, dst);
3785 }
3786 
3787 void Assembler::cmpq(Register dst, Register src) {
3788   (void) prefixq_and_encode(dst->encoding(), src->encoding());
3789   emit_arith(0x3B, 0xC0, dst, src);
3790 }
3791 
3792 void Assembler::cmpq(Register dst, Address  src) {
3793   InstructionMark im(this);
3794   prefixq(src, dst);
3795   emit_byte(0x3B);
3796   emit_operand(dst, src);
3797 }
3798 
3799 void Assembler::cmpxchgq(Register reg, Address adr) {
3800   InstructionMark im(this);
3801   prefixq(adr, reg);
3802   emit_byte(0x0F);
3803   emit_byte(0xB1);
3804   emit_operand(reg, adr);
3805 }
3806 
3807 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
3808   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3809   emit_byte(0xF2);
3810   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3811   emit_byte(0x0F);
3812   emit_byte(0x2A);
3813   emit_byte(0xC0 | encode);
3814 }
3815 
3816 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
3817   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3818   emit_byte(0xF3);
3819   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3820   emit_byte(0x0F);
3821   emit_byte(0x2A);
3822   emit_byte(0xC0 | encode);
3823 }
3824 
3825 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
3826   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3827   emit_byte(0xF2);
3828   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3829   emit_byte(0x0F);
3830   emit_byte(0x2C);
3831   emit_byte(0xC0 | encode);
3832 }
3833 
3834 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
3835   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3836   emit_byte(0xF3);
3837   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3838   emit_byte(0x0F);
3839   emit_byte(0x2C);
3840   emit_byte(0xC0 | encode);
3841 }
3842 
3843 void Assembler::decl(Register dst) {
3844   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3845   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
3846   int encode = prefix_and_encode(dst->encoding());
3847   emit_byte(0xFF);
3848   emit_byte(0xC8 | encode);
3849 }
3850 
3851 void Assembler::decq(Register dst) {
3852   // Don't use it directly. Use MacroAssembler::decrementq() instead.
3853   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
3854   int encode = prefixq_and_encode(dst->encoding());
3855   emit_byte(0xFF);
3856   emit_byte(0xC8 | encode);
3857 }
3858 
3859 void Assembler::decq(Address dst) {
3860   // Don't use it directly. Use MacroAssembler::decrementq() instead.
3861   InstructionMark im(this);
3862   prefixq(dst);
3863   emit_byte(0xFF);
3864   emit_operand(rcx, dst);
3865 }
3866 
3867 void Assembler::fxrstor(Address src) {
3868   prefixq(src);
3869   emit_byte(0x0F);
3870   emit_byte(0xAE);
3871   emit_operand(as_Register(1), src);
3872 }
3873 
3874 void Assembler::fxsave(Address dst) {
3875   prefixq(dst);
3876   emit_byte(0x0F);
3877   emit_byte(0xAE);
3878   emit_operand(as_Register(0), dst);
3879 }
3880 
3881 void Assembler::idivq(Register src) {
3882   int encode = prefixq_and_encode(src->encoding());
3883   emit_byte(0xF7);
3884   emit_byte(0xF8 | encode);
3885 }
3886 
3887 void Assembler::imulq(Register dst, Register src) {
3888   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3889   emit_byte(0x0F);
3890   emit_byte(0xAF);
3891   emit_byte(0xC0 | encode);
3892 }
3893 
3894 void Assembler::imulq(Register dst, Register src, int value) {
3895   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3896   if (is8bit(value)) {
3897     emit_byte(0x6B);
3898     emit_byte(0xC0 | encode);
3899     emit_byte(value);
3900   } else {
3901     emit_byte(0x69);
3902     emit_byte(0xC0 | encode);
3903     emit_long(value);
3904   }
3905 }
3906 
3907 void Assembler::incl(Register dst) {
3908   // Don't use it directly. Use MacroAssembler::incrementl() instead.
3909   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
3910   int encode = prefix_and_encode(dst->encoding());
3911   emit_byte(0xFF);
3912   emit_byte(0xC0 | encode);
3913 }
3914 
3915 void Assembler::incq(Register dst) {
3916   // Don't use it directly. Use MacroAssembler::incrementq() instead.
3917   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
3918   int encode = prefixq_and_encode(dst->encoding());
3919   emit_byte(0xFF);
3920   emit_byte(0xC0 | encode);
3921 }
3922 
3923 void Assembler::incq(Address dst) {
3924   // Don't use it directly. Use MacroAssembler::incrementq() instead.
3925   InstructionMark im(this);
3926   prefixq(dst);
3927   emit_byte(0xFF);
3928   emit_operand(rax, dst);
3929 }
3930 
3931 void Assembler::lea(Register dst, Address src) {
3932   leaq(dst, src);
3933 }
3934 
3935 void Assembler::leaq(Register dst, Address src) {
3936   InstructionMark im(this);
3937   prefixq(src, dst);
3938   emit_byte(0x8D);
3939   emit_operand(dst, src);
3940 }
3941 
3942 void Assembler::mov64(Register dst, int64_t imm64) {
3943   InstructionMark im(this);
3944   int encode = prefixq_and_encode(dst->encoding());
3945   emit_byte(0xB8 | encode);
3946   emit_long64(imm64);
3947 }
3948 
3949 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
3950   InstructionMark im(this);
3951   int encode = prefixq_and_encode(dst->encoding());
3952   emit_byte(0xB8 | encode);
3953   emit_data64(imm64, rspec);
3954 }
3955 
3956 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
3957   InstructionMark im(this);
3958   int encode = prefix_and_encode(dst->encoding());
3959   emit_byte(0xB8 | encode);
3960   emit_data((int)imm32, rspec, narrow_oop_operand);
3961 }
3962 
3963 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
3964   InstructionMark im(this);
3965   prefix(dst);
3966   emit_byte(0xC7);
3967   emit_operand(rax, dst, 4);
3968   emit_data((int)imm32, rspec, narrow_oop_operand);
3969 }
3970 
3971 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
3972   InstructionMark im(this);
3973   int encode = prefix_and_encode(src1->encoding());
3974   emit_byte(0x81);
3975   emit_byte(0xF8 | encode);
3976   emit_data((int)imm32, rspec, narrow_oop_operand);
3977 }
3978 
3979 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
3980   InstructionMark im(this);
3981   prefix(src1);
3982   emit_byte(0x81);
3983   emit_operand(rax, src1, 4);
3984   emit_data((int)imm32, rspec, narrow_oop_operand);
3985 }
3986 
3987 void Assembler::lzcntq(Register dst, Register src) {
3988   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
3989   emit_byte(0xF3);
3990   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3991   emit_byte(0x0F);
3992   emit_byte(0xBD);
3993   emit_byte(0xC0 | encode);
3994 }
3995 
3996 void Assembler::movdq(XMMRegister dst, Register src) {
3997   // table D-1 says MMX/SSE2
3998   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
3999   emit_byte(0x66);
4000   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4001   emit_byte(0x0F);
4002   emit_byte(0x6E);
4003   emit_byte(0xC0 | encode);
4004 }
4005 
4006 void Assembler::movdq(Register dst, XMMRegister src) {
4007   // table D-1 says MMX/SSE2
4008   NOT_LP64(assert(VM_Version::supports_sse2() || VM_Version::supports_mmx(), ""));
4009   emit_byte(0x66);
4010   // swap src/dst to get correct prefix
4011   int encode = prefixq_and_encode(src->encoding(), dst->encoding());
4012   emit_byte(0x0F);
4013   emit_byte(0x7E);
4014   emit_byte(0xC0 | encode);
4015 }
4016 
4017 void Assembler::movq(Register dst, Register src) {
4018   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4019   emit_byte(0x8B);
4020   emit_byte(0xC0 | encode);
4021 }
4022 
4023 void Assembler::movq(Register dst, Address src) {
4024   InstructionMark im(this);
4025   prefixq(src, dst);
4026   emit_byte(0x8B);
4027   emit_operand(dst, src);
4028 }
4029 
4030 void Assembler::movq(Address dst, Register src) {
4031   InstructionMark im(this);
4032   prefixq(dst, src);
4033   emit_byte(0x89);
4034   emit_operand(src, dst);
4035 }
4036 
4037 void Assembler::movsbq(Register dst, Address src) {
4038   InstructionMark im(this);
4039   prefixq(src, dst);
4040   emit_byte(0x0F);
4041   emit_byte(0xBE);
4042   emit_operand(dst, src);
4043 }
4044 
4045 void Assembler::movsbq(Register dst, Register src) {
4046   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4047   emit_byte(0x0F);
4048   emit_byte(0xBE);
4049   emit_byte(0xC0 | encode);
4050 }
4051 
4052 void Assembler::movslq(Register dst, int32_t imm32) {
4053   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
4054   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
4055   // as a result we shouldn't use until tested at runtime...
4056   ShouldNotReachHere();
4057   InstructionMark im(this);
4058   int encode = prefixq_and_encode(dst->encoding());
4059   emit_byte(0xC7 | encode);
4060   emit_long(imm32);
4061 }
4062 
4063 void Assembler::movslq(Address dst, int32_t imm32) {
4064   assert(is_simm32(imm32), "lost bits");
4065   InstructionMark im(this);
4066   prefixq(dst);
4067   emit_byte(0xC7);
4068   emit_operand(rax, dst, 4);
4069   emit_long(imm32);
4070 }
4071 
4072 void Assembler::movslq(Register dst, Address src) {
4073   InstructionMark im(this);
4074   prefixq(src, dst);
4075   emit_byte(0x63);
4076   emit_operand(dst, src);
4077 }
4078 
4079 void Assembler::movslq(Register dst, Register src) {
4080   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4081   emit_byte(0x63);
4082   emit_byte(0xC0 | encode);
4083 }
4084 
4085 void Assembler::movswq(Register dst, Address src) {
4086   InstructionMark im(this);
4087   prefixq(src, dst);
4088   emit_byte(0x0F);
4089   emit_byte(0xBF);
4090   emit_operand(dst, src);
4091 }
4092 
4093 void Assembler::movswq(Register dst, Register src) {
4094   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4095   emit_byte(0x0F);
4096   emit_byte(0xBF);
4097   emit_byte(0xC0 | encode);
4098 }
4099 
4100 void Assembler::movzbq(Register dst, Address src) {
4101   InstructionMark im(this);
4102   prefixq(src, dst);
4103   emit_byte(0x0F);
4104   emit_byte(0xB6);
4105   emit_operand(dst, src);
4106 }
4107 
4108 void Assembler::movzbq(Register dst, Register src) {
4109   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4110   emit_byte(0x0F);
4111   emit_byte(0xB6);
4112   emit_byte(0xC0 | encode);
4113 }
4114 
4115 void Assembler::movzwq(Register dst, Address src) {
4116   InstructionMark im(this);
4117   prefixq(src, dst);
4118   emit_byte(0x0F);
4119   emit_byte(0xB7);
4120   emit_operand(dst, src);
4121 }
4122 
4123 void Assembler::movzwq(Register dst, Register src) {
4124   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4125   emit_byte(0x0F);
4126   emit_byte(0xB7);
4127   emit_byte(0xC0 | encode);
4128 }
4129 
4130 void Assembler::negq(Register dst) {
4131   int encode = prefixq_and_encode(dst->encoding());
4132   emit_byte(0xF7);
4133   emit_byte(0xD8 | encode);
4134 }
4135 
4136 void Assembler::notq(Register dst) {
4137   int encode = prefixq_and_encode(dst->encoding());
4138   emit_byte(0xF7);
4139   emit_byte(0xD0 | encode);
4140 }
4141 
4142 void Assembler::orq(Address dst, int32_t imm32) {
4143   InstructionMark im(this);
4144   prefixq(dst);
4145   emit_byte(0x81);
4146   emit_operand(rcx, dst, 4);
4147   emit_long(imm32);
4148 }
4149 
4150 void Assembler::orq(Register dst, int32_t imm32) {
4151   (void) prefixq_and_encode(dst->encoding());
4152   emit_arith(0x81, 0xC8, dst, imm32);
4153 }
4154 
4155 void Assembler::orq(Register dst, Address src) {
4156   InstructionMark im(this);
4157   prefixq(src, dst);
4158   emit_byte(0x0B);
4159   emit_operand(dst, src);
4160 }
4161 
4162 void Assembler::orq(Register dst, Register src) {
4163   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4164   emit_arith(0x0B, 0xC0, dst, src);
4165 }
4166 
4167 void Assembler::popa() { // 64bit
4168   movq(r15, Address(rsp, 0));
4169   movq(r14, Address(rsp, wordSize));
4170   movq(r13, Address(rsp, 2 * wordSize));
4171   movq(r12, Address(rsp, 3 * wordSize));
4172   movq(r11, Address(rsp, 4 * wordSize));
4173   movq(r10, Address(rsp, 5 * wordSize));
4174   movq(r9,  Address(rsp, 6 * wordSize));
4175   movq(r8,  Address(rsp, 7 * wordSize));
4176   movq(rdi, Address(rsp, 8 * wordSize));
4177   movq(rsi, Address(rsp, 9 * wordSize));
4178   movq(rbp, Address(rsp, 10 * wordSize));
4179   // skip rsp
4180   movq(rbx, Address(rsp, 12 * wordSize));
4181   movq(rdx, Address(rsp, 13 * wordSize));
4182   movq(rcx, Address(rsp, 14 * wordSize));
4183   movq(rax, Address(rsp, 15 * wordSize));
4184 
4185   addq(rsp, 16 * wordSize);
4186 }
4187 
4188 void Assembler::popcntq(Register dst, Address src) {
4189   assert(VM_Version::supports_popcnt(), "must support");
4190   InstructionMark im(this);
4191   emit_byte(0xF3);
4192   prefixq(src, dst);
4193   emit_byte(0x0F);
4194   emit_byte(0xB8);
4195   emit_operand(dst, src);
4196 }
4197 
4198 void Assembler::popcntq(Register dst, Register src) {
4199   assert(VM_Version::supports_popcnt(), "must support");
4200   emit_byte(0xF3);
4201   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4202   emit_byte(0x0F);
4203   emit_byte(0xB8);
4204   emit_byte(0xC0 | encode);
4205 }
4206 
4207 void Assembler::popq(Address dst) {
4208   InstructionMark im(this);
4209   prefixq(dst);
4210   emit_byte(0x8F);
4211   emit_operand(rax, dst);
4212 }
4213 
4214 void Assembler::pusha() { // 64bit
4215   // we have to store original rsp.  ABI says that 128 bytes
4216   // below rsp are local scratch.
4217   movq(Address(rsp, -5 * wordSize), rsp);
4218 
4219   subq(rsp, 16 * wordSize);
4220 
4221   movq(Address(rsp, 15 * wordSize), rax);
4222   movq(Address(rsp, 14 * wordSize), rcx);
4223   movq(Address(rsp, 13 * wordSize), rdx);
4224   movq(Address(rsp, 12 * wordSize), rbx);
4225   // skip rsp
4226   movq(Address(rsp, 10 * wordSize), rbp);
4227   movq(Address(rsp, 9 * wordSize), rsi);
4228   movq(Address(rsp, 8 * wordSize), rdi);
4229   movq(Address(rsp, 7 * wordSize), r8);
4230   movq(Address(rsp, 6 * wordSize), r9);
4231   movq(Address(rsp, 5 * wordSize), r10);
4232   movq(Address(rsp, 4 * wordSize), r11);
4233   movq(Address(rsp, 3 * wordSize), r12);
4234   movq(Address(rsp, 2 * wordSize), r13);
4235   movq(Address(rsp, wordSize), r14);
4236   movq(Address(rsp, 0), r15);
4237 }
4238 
4239 void Assembler::pushq(Address src) {
4240   InstructionMark im(this);
4241   prefixq(src);
4242   emit_byte(0xFF);
4243   emit_operand(rsi, src);
4244 }
4245 
4246 void Assembler::rclq(Register dst, int imm8) {
4247   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4248   int encode = prefixq_and_encode(dst->encoding());
4249   if (imm8 == 1) {
4250     emit_byte(0xD1);
4251     emit_byte(0xD0 | encode);
4252   } else {
4253     emit_byte(0xC1);
4254     emit_byte(0xD0 | encode);
4255     emit_byte(imm8);
4256   }
4257 }
4258 void Assembler::sarq(Register dst, int imm8) {
4259   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4260   int encode = prefixq_and_encode(dst->encoding());
4261   if (imm8 == 1) {
4262     emit_byte(0xD1);
4263     emit_byte(0xF8 | encode);
4264   } else {
4265     emit_byte(0xC1);
4266     emit_byte(0xF8 | encode);
4267     emit_byte(imm8);
4268   }
4269 }
4270 
4271 void Assembler::sarq(Register dst) {
4272   int encode = prefixq_and_encode(dst->encoding());
4273   emit_byte(0xD3);
4274   emit_byte(0xF8 | encode);
4275 }
4276 void Assembler::sbbq(Address dst, int32_t imm32) {
4277   InstructionMark im(this);
4278   prefixq(dst);
4279   emit_arith_operand(0x81, rbx, dst, imm32);
4280 }
4281 
4282 void Assembler::sbbq(Register dst, int32_t imm32) {
4283   (void) prefixq_and_encode(dst->encoding());
4284   emit_arith(0x81, 0xD8, dst, imm32);
4285 }
4286 
4287 void Assembler::sbbq(Register dst, Address src) {
4288   InstructionMark im(this);
4289   prefixq(src, dst);
4290   emit_byte(0x1B);
4291   emit_operand(dst, src);
4292 }
4293 
4294 void Assembler::sbbq(Register dst, Register src) {
4295   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4296   emit_arith(0x1B, 0xC0, dst, src);
4297 }
4298 
4299 void Assembler::shlq(Register dst, int imm8) {
4300   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4301   int encode = prefixq_and_encode(dst->encoding());
4302   if (imm8 == 1) {
4303     emit_byte(0xD1);
4304     emit_byte(0xE0 | encode);
4305   } else {
4306     emit_byte(0xC1);
4307     emit_byte(0xE0 | encode);
4308     emit_byte(imm8);
4309   }
4310 }
4311 
4312 void Assembler::shlq(Register dst) {
4313   int encode = prefixq_and_encode(dst->encoding());
4314   emit_byte(0xD3);
4315   emit_byte(0xE0 | encode);
4316 }
4317 
4318 void Assembler::shrq(Register dst, int imm8) {
4319   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4320   int encode = prefixq_and_encode(dst->encoding());
4321   emit_byte(0xC1);
4322   emit_byte(0xE8 | encode);
4323   emit_byte(imm8);
4324 }
4325 
4326 void Assembler::shrq(Register dst) {
4327   int encode = prefixq_and_encode(dst->encoding());
4328   emit_byte(0xD3);
4329   emit_byte(0xE8 | encode);
4330 }
4331 
4332 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4333   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4334   InstructionMark im(this);
4335   emit_byte(0xF2);
4336   prefix(src, dst);
4337   emit_byte(0x0F);
4338   emit_byte(0x51);
4339   emit_operand(dst, src);
4340 }
4341 
4342 void Assembler::subq(Address dst, int32_t imm32) {
4343   InstructionMark im(this);
4344   prefixq(dst);
4345   if (is8bit(imm32)) {
4346     emit_byte(0x83);
4347     emit_operand(rbp, dst, 1);
4348     emit_byte(imm32 & 0xFF);
4349   } else {
4350     emit_byte(0x81);
4351     emit_operand(rbp, dst, 4);
4352     emit_long(imm32);
4353   }
4354 }
4355 
4356 void Assembler::subq(Register dst, int32_t imm32) {
4357   (void) prefixq_and_encode(dst->encoding());
4358   emit_arith(0x81, 0xE8, dst, imm32);
4359 }
4360 
4361 void Assembler::subq(Address dst, Register src) {
4362   InstructionMark im(this);
4363   prefixq(dst, src);
4364   emit_byte(0x29);
4365   emit_operand(src, dst);
4366 }
4367 
4368 void Assembler::subq(Register dst, Address src) {
4369   InstructionMark im(this);
4370   prefixq(src, dst);
4371   emit_byte(0x2B);
4372   emit_operand(dst, src);
4373 }
4374 
4375 void Assembler::subq(Register dst, Register src) {
4376   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4377   emit_arith(0x2B, 0xC0, dst, src);
4378 }
4379 
4380 void Assembler::testq(Register dst, int32_t imm32) {
4381   // not using emit_arith because test
4382   // doesn't support sign-extension of
4383   // 8bit operands
4384   int encode = dst->encoding();
4385   if (encode == 0) {
4386     prefix(REX_W);
4387     emit_byte(0xA9);
4388   } else {
4389     encode = prefixq_and_encode(encode);
4390     emit_byte(0xF7);
4391     emit_byte(0xC0 | encode);
4392   }
4393   emit_long(imm32);
4394 }
4395 
4396 void Assembler::testq(Register dst, Register src) {
4397   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4398   emit_arith(0x85, 0xC0, dst, src);
4399 }
4400 
4401 void Assembler::xaddq(Address dst, Register src) {
4402   InstructionMark im(this);
4403   prefixq(dst, src);
4404   emit_byte(0x0F);
4405   emit_byte(0xC1);
4406   emit_operand(src, dst);
4407 }
4408 
4409 void Assembler::xchgq(Register dst, Address src) {
4410   InstructionMark im(this);
4411   prefixq(src, dst);
4412   emit_byte(0x87);
4413   emit_operand(dst, src);
4414 }
4415 
4416 void Assembler::xchgq(Register dst, Register src) {
4417   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4418   emit_byte(0x87);
4419   emit_byte(0xc0 | encode);
4420 }
4421 
4422 void Assembler::xorq(Register dst, Register src) {
4423   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4424   emit_arith(0x33, 0xC0, dst, src);
4425 }
4426 
4427 void Assembler::xorq(Register dst, Address src) {
4428   InstructionMark im(this);
4429   prefixq(src, dst);
4430   emit_byte(0x33);
4431   emit_operand(dst, src);
4432 }
4433 
4434 #endif // !LP64
4435 
4436 static Assembler::Condition reverse[] = {
4437     Assembler::noOverflow     /* overflow      = 0x0 */ ,
4438     Assembler::overflow       /* noOverflow    = 0x1 */ ,
4439     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
4440     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
4441     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
4442     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
4443     Assembler::above          /* belowEqual    = 0x6 */ ,
4444     Assembler::belowEqual     /* above         = 0x7 */ ,
4445     Assembler::positive       /* negative      = 0x8 */ ,
4446     Assembler::negative       /* positive      = 0x9 */ ,
4447     Assembler::noParity       /* parity        = 0xa */ ,
4448     Assembler::parity         /* noParity      = 0xb */ ,
4449     Assembler::greaterEqual   /* less          = 0xc */ ,
4450     Assembler::less           /* greaterEqual  = 0xd */ ,
4451     Assembler::greater        /* lessEqual     = 0xe */ ,
4452     Assembler::lessEqual      /* greater       = 0xf, */
4453 
4454 };
4455 
4456 
4457 // Implementation of MacroAssembler
4458 
4459 // First all the versions that have distinct versions depending on 32/64 bit
4460 // Unless the difference is trivial (1 line or so).
4461 
4462 #ifndef _LP64
4463 
4464 // 32bit versions
4465 
4466 Address MacroAssembler::as_Address(AddressLiteral adr) {
4467   return Address(adr.target(), adr.rspec());
4468 }
4469 
4470 Address MacroAssembler::as_Address(ArrayAddress adr) {
4471   return Address::make_array(adr);
4472 }
4473 
4474 int MacroAssembler::biased_locking_enter(Register lock_reg,
4475                                          Register obj_reg,
4476                                          Register swap_reg,
4477                                          Register tmp_reg,
4478                                          bool swap_reg_contains_mark,
4479                                          Label& done,
4480                                          Label* slow_case,
4481                                          BiasedLockingCounters* counters) {
4482   assert(UseBiasedLocking, "why call this otherwise?");
4483   assert(swap_reg == rax, "swap_reg must be rax, for cmpxchg");
4484   assert_different_registers(lock_reg, obj_reg, swap_reg);
4485 
4486   if (PrintBiasedLockingStatistics && counters == NULL)
4487     counters = BiasedLocking::counters();
4488 
4489   bool need_tmp_reg = false;
4490   if (tmp_reg == noreg) {
4491     need_tmp_reg = true;
4492     tmp_reg = lock_reg;
4493   } else {
4494     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
4495   }
4496   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
4497   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
4498   Address klass_addr     (obj_reg, oopDesc::klass_offset_in_bytes());
4499   Address saved_mark_addr(lock_reg, 0);
4500 
4501   // Biased locking
4502   // See whether the lock is currently biased toward our thread and
4503   // whether the epoch is still valid
4504   // Note that the runtime guarantees sufficient alignment of JavaThread
4505   // pointers to allow age to be placed into low bits
4506   // First check to see whether biasing is even enabled for this object
4507   Label cas_label;
4508   int null_check_offset = -1;
4509   if (!swap_reg_contains_mark) {
4510     null_check_offset = offset();
4511     movl(swap_reg, mark_addr);
4512   }
4513   if (need_tmp_reg) {
4514     push(tmp_reg);
4515   }
4516   movl(tmp_reg, swap_reg);
4517   andl(tmp_reg, markOopDesc::biased_lock_mask_in_place);
4518   cmpl(tmp_reg, markOopDesc::biased_lock_pattern);
4519   if (need_tmp_reg) {
4520     pop(tmp_reg);
4521   }
4522   jcc(Assembler::notEqual, cas_label);
4523   // The bias pattern is present in the object's header. Need to check
4524   // whether the bias owner and the epoch are both still current.
4525   // Note that because there is no current thread register on x86 we
4526   // need to store off the mark word we read out of the object to
4527   // avoid reloading it and needing to recheck invariants below. This
4528   // store is unfortunate but it makes the overall code shorter and
4529   // simpler.
4530   movl(saved_mark_addr, swap_reg);
4531   if (need_tmp_reg) {
4532     push(tmp_reg);
4533   }
4534   get_thread(tmp_reg);
4535   xorl(swap_reg, tmp_reg);
4536   if (swap_reg_contains_mark) {
4537     null_check_offset = offset();
4538   }
4539   movl(tmp_reg, klass_addr);
4540   xorl(swap_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4541   andl(swap_reg, ~((int) markOopDesc::age_mask_in_place));
4542   if (need_tmp_reg) {
4543     pop(tmp_reg);
4544   }
4545   if (counters != NULL) {
4546     cond_inc32(Assembler::zero,
4547                ExternalAddress((address)counters->biased_lock_entry_count_addr()));
4548   }
4549   jcc(Assembler::equal, done);
4550 
4551   Label try_revoke_bias;
4552   Label try_rebias;
4553 
4554   // At this point we know that the header has the bias pattern and
4555   // that we are not the bias owner in the current epoch. We need to
4556   // figure out more details about the state of the header in order to
4557   // know what operations can be legally performed on the object's
4558   // header.
4559 
4560   // If the low three bits in the xor result aren't clear, that means
4561   // the prototype header is no longer biased and we have to revoke
4562   // the bias on this object.
4563   testl(swap_reg, markOopDesc::biased_lock_mask_in_place);
4564   jcc(Assembler::notZero, try_revoke_bias);
4565 
4566   // Biasing is still enabled for this data type. See whether the
4567   // epoch of the current bias is still valid, meaning that the epoch
4568   // bits of the mark word are equal to the epoch bits of the
4569   // prototype header. (Note that the prototype header's epoch bits
4570   // only change at a safepoint.) If not, attempt to rebias the object
4571   // toward the current thread. Note that we must be absolutely sure
4572   // that the current epoch is invalid in order to do this because
4573   // otherwise the manipulations it performs on the mark word are
4574   // illegal.
4575   testl(swap_reg, markOopDesc::epoch_mask_in_place);
4576   jcc(Assembler::notZero, try_rebias);
4577 
4578   // The epoch of the current bias is still valid but we know nothing
4579   // about the owner; it might be set or it might be clear. Try to
4580   // acquire the bias of the object using an atomic operation. If this
4581   // fails we will go in to the runtime to revoke the object's bias.
4582   // Note that we first construct the presumed unbiased header so we
4583   // don't accidentally blow away another thread's valid bias.
4584   movl(swap_reg, saved_mark_addr);
4585   andl(swap_reg,
4586        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
4587   if (need_tmp_reg) {
4588     push(tmp_reg);
4589   }
4590   get_thread(tmp_reg);
4591   orl(tmp_reg, swap_reg);
4592   if (os::is_MP()) {
4593     lock();
4594   }
4595   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4596   if (need_tmp_reg) {
4597     pop(tmp_reg);
4598   }
4599   // If the biasing toward our thread failed, this means that
4600   // another thread succeeded in biasing it toward itself and we
4601   // need to revoke that bias. The revocation will occur in the
4602   // interpreter runtime in the slow case.
4603   if (counters != NULL) {
4604     cond_inc32(Assembler::zero,
4605                ExternalAddress((address)counters->anonymously_biased_lock_entry_count_addr()));
4606   }
4607   if (slow_case != NULL) {
4608     jcc(Assembler::notZero, *slow_case);
4609   }
4610   jmp(done);
4611 
4612   bind(try_rebias);
4613   // At this point we know the epoch has expired, meaning that the
4614   // current "bias owner", if any, is actually invalid. Under these
4615   // circumstances _only_, we are allowed to use the current header's
4616   // value as the comparison value when doing the cas to acquire the
4617   // bias in the current epoch. In other words, we allow transfer of
4618   // the bias from one thread to another directly in this situation.
4619   //
4620   // FIXME: due to a lack of registers we currently blow away the age
4621   // bits in this situation. Should attempt to preserve them.
4622   if (need_tmp_reg) {
4623     push(tmp_reg);
4624   }
4625   get_thread(tmp_reg);
4626   movl(swap_reg, klass_addr);
4627   orl(tmp_reg, Address(swap_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4628   movl(swap_reg, saved_mark_addr);
4629   if (os::is_MP()) {
4630     lock();
4631   }
4632   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4633   if (need_tmp_reg) {
4634     pop(tmp_reg);
4635   }
4636   // If the biasing toward our thread failed, then another thread
4637   // succeeded in biasing it toward itself and we need to revoke that
4638   // bias. The revocation will occur in the runtime in the slow case.
4639   if (counters != NULL) {
4640     cond_inc32(Assembler::zero,
4641                ExternalAddress((address)counters->rebiased_lock_entry_count_addr()));
4642   }
4643   if (slow_case != NULL) {
4644     jcc(Assembler::notZero, *slow_case);
4645   }
4646   jmp(done);
4647 
4648   bind(try_revoke_bias);
4649   // The prototype mark in the klass doesn't have the bias bit set any
4650   // more, indicating that objects of this data type are not supposed
4651   // to be biased any more. We are going to try to reset the mark of
4652   // this object to the prototype value and fall through to the
4653   // CAS-based locking scheme. Note that if our CAS fails, it means
4654   // that another thread raced us for the privilege of revoking the
4655   // bias of this particular object, so it's okay to continue in the
4656   // normal locking code.
4657   //
4658   // FIXME: due to a lack of registers we currently blow away the age
4659   // bits in this situation. Should attempt to preserve them.
4660   movl(swap_reg, saved_mark_addr);
4661   if (need_tmp_reg) {
4662     push(tmp_reg);
4663   }
4664   movl(tmp_reg, klass_addr);
4665   movl(tmp_reg, Address(tmp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
4666   if (os::is_MP()) {
4667     lock();
4668   }
4669   cmpxchgptr(tmp_reg, Address(obj_reg, 0));
4670   if (need_tmp_reg) {
4671     pop(tmp_reg);
4672   }
4673   // Fall through to the normal CAS-based lock, because no matter what
4674   // the result of the above CAS, some thread must have succeeded in
4675   // removing the bias bit from the object's header.
4676   if (counters != NULL) {
4677     cond_inc32(Assembler::zero,
4678                ExternalAddress((address)counters->revoked_lock_entry_count_addr()));
4679   }
4680 
4681   bind(cas_label);
4682 
4683   return null_check_offset;
4684 }
4685 void MacroAssembler::call_VM_leaf_base(address entry_point,
4686                                        int number_of_arguments) {
4687   call(RuntimeAddress(entry_point));
4688   increment(rsp, number_of_arguments * wordSize);
4689 }
4690 
4691 void MacroAssembler::cmpoop(Address src1, jobject obj) {
4692   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
4693 }
4694 
4695 void MacroAssembler::cmpoop(Register src1, jobject obj) {
4696   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
4697 }
4698 
4699 void MacroAssembler::extend_sign(Register hi, Register lo) {
4700   // According to Intel Doc. AP-526, "Integer Divide", p.18.
4701   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
4702     cdql();
4703   } else {
4704     movl(hi, lo);
4705     sarl(hi, 31);
4706   }
4707 }
4708 
4709 void MacroAssembler::fat_nop() {
4710   // A 5 byte nop that is safe for patching (see patch_verified_entry)
4711   emit_byte(0x26); // es:
4712   emit_byte(0x2e); // cs:
4713   emit_byte(0x64); // fs:
4714   emit_byte(0x65); // gs:
4715   emit_byte(0x90);
4716 }
4717 
4718 void MacroAssembler::jC2(Register tmp, Label& L) {
4719   // set parity bit if FPU flag C2 is set (via rax)
4720   save_rax(tmp);
4721   fwait(); fnstsw_ax();
4722   sahf();
4723   restore_rax(tmp);
4724   // branch
4725   jcc(Assembler::parity, L);
4726 }
4727 
4728 void MacroAssembler::jnC2(Register tmp, Label& L) {
4729   // set parity bit if FPU flag C2 is set (via rax)
4730   save_rax(tmp);
4731   fwait(); fnstsw_ax();
4732   sahf();
4733   restore_rax(tmp);
4734   // branch
4735   jcc(Assembler::noParity, L);
4736 }
4737 
4738 // 32bit can do a case table jump in one instruction but we no longer allow the base
4739 // to be installed in the Address class
4740 void MacroAssembler::jump(ArrayAddress entry) {
4741   jmp(as_Address(entry));
4742 }
4743 
4744 // Note: y_lo will be destroyed
4745 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
4746   // Long compare for Java (semantics as described in JVM spec.)
4747   Label high, low, done;
4748 
4749   cmpl(x_hi, y_hi);
4750   jcc(Assembler::less, low);
4751   jcc(Assembler::greater, high);
4752   // x_hi is the return register
4753   xorl(x_hi, x_hi);
4754   cmpl(x_lo, y_lo);
4755   jcc(Assembler::below, low);
4756   jcc(Assembler::equal, done);
4757 
4758   bind(high);
4759   xorl(x_hi, x_hi);
4760   increment(x_hi);
4761   jmp(done);
4762 
4763   bind(low);
4764   xorl(x_hi, x_hi);
4765   decrementl(x_hi);
4766 
4767   bind(done);
4768 }
4769 
4770 void MacroAssembler::lea(Register dst, AddressLiteral src) {
4771     mov_literal32(dst, (int32_t)src.target(), src.rspec());
4772 }
4773 
4774 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
4775   // leal(dst, as_Address(adr));
4776   // see note in movl as to why we must use a move
4777   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
4778 }
4779 
4780 void MacroAssembler::leave() {
4781   mov(rsp, rbp);
4782   pop(rbp);
4783 }
4784 
4785 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
4786   // Multiplication of two Java long values stored on the stack
4787   // as illustrated below. Result is in rdx:rax.
4788   //
4789   // rsp ---> [  ??  ] \               \
4790   //            ....    | y_rsp_offset  |
4791   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
4792   //          [ y_hi ]                  | (in bytes)
4793   //            ....                    |
4794   //          [ x_lo ]                 /
4795   //          [ x_hi ]
4796   //            ....
4797   //
4798   // Basic idea: lo(result) = lo(x_lo * y_lo)
4799   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
4800   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
4801   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
4802   Label quick;
4803   // load x_hi, y_hi and check if quick
4804   // multiplication is possible
4805   movl(rbx, x_hi);
4806   movl(rcx, y_hi);
4807   movl(rax, rbx);
4808   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
4809   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
4810   // do full multiplication
4811   // 1st step
4812   mull(y_lo);                                    // x_hi * y_lo
4813   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
4814   // 2nd step
4815   movl(rax, x_lo);
4816   mull(rcx);                                     // x_lo * y_hi
4817   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
4818   // 3rd step
4819   bind(quick);                                   // note: rbx, = 0 if quick multiply!
4820   movl(rax, x_lo);
4821   mull(y_lo);                                    // x_lo * y_lo
4822   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
4823 }
4824 
4825 void MacroAssembler::lneg(Register hi, Register lo) {
4826   negl(lo);
4827   adcl(hi, 0);
4828   negl(hi);
4829 }
4830 
4831 void MacroAssembler::lshl(Register hi, Register lo) {
4832   // Java shift left long support (semantics as described in JVM spec., p.305)
4833   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
4834   // shift value is in rcx !
4835   assert(hi != rcx, "must not use rcx");
4836   assert(lo != rcx, "must not use rcx");
4837   const Register s = rcx;                        // shift count
4838   const int      n = BitsPerWord;
4839   Label L;
4840   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
4841   cmpl(s, n);                                    // if (s < n)
4842   jcc(Assembler::less, L);                       // else (s >= n)
4843   movl(hi, lo);                                  // x := x << n
4844   xorl(lo, lo);
4845   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
4846   bind(L);                                       // s (mod n) < n
4847   shldl(hi, lo);                                 // x := x << s
4848   shll(lo);
4849 }
4850 
4851 
4852 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
4853   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
4854   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
4855   assert(hi != rcx, "must not use rcx");
4856   assert(lo != rcx, "must not use rcx");
4857   const Register s = rcx;                        // shift count
4858   const int      n = BitsPerWord;
4859   Label L;
4860   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
4861   cmpl(s, n);                                    // if (s < n)
4862   jcc(Assembler::less, L);                       // else (s >= n)
4863   movl(lo, hi);                                  // x := x >> n
4864   if (sign_extension) sarl(hi, 31);
4865   else                xorl(hi, hi);
4866   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
4867   bind(L);                                       // s (mod n) < n
4868   shrdl(lo, hi);                                 // x := x >> s
4869   if (sign_extension) sarl(hi);
4870   else                shrl(hi);
4871 }
4872 
4873 void MacroAssembler::movoop(Register dst, jobject obj) {
4874   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
4875 }
4876 
4877 void MacroAssembler::movoop(Address dst, jobject obj) {
4878   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
4879 }
4880 
4881 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
4882   if (src.is_lval()) {
4883     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
4884   } else {
4885     movl(dst, as_Address(src));
4886   }
4887 }
4888 
4889 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
4890   movl(as_Address(dst), src);
4891 }
4892 
4893 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
4894   movl(dst, as_Address(src));
4895 }
4896 
4897 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
4898 void MacroAssembler::movptr(Address dst, intptr_t src) {
4899   movl(dst, src);
4900 }
4901 
4902 
4903 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
4904   movsd(dst, as_Address(src));
4905 }
4906 
4907 void MacroAssembler::pop_callee_saved_registers() {
4908   pop(rcx);
4909   pop(rdx);
4910   pop(rdi);
4911   pop(rsi);
4912 }
4913 
4914 void MacroAssembler::pop_fTOS() {
4915   fld_d(Address(rsp, 0));
4916   addl(rsp, 2 * wordSize);
4917 }
4918 
4919 void MacroAssembler::push_callee_saved_registers() {
4920   push(rsi);
4921   push(rdi);
4922   push(rdx);
4923   push(rcx);
4924 }
4925 
4926 void MacroAssembler::push_fTOS() {
4927   subl(rsp, 2 * wordSize);
4928   fstp_d(Address(rsp, 0));
4929 }
4930 
4931 
4932 void MacroAssembler::pushoop(jobject obj) {
4933   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
4934 }
4935 
4936 
4937 void MacroAssembler::pushptr(AddressLiteral src) {
4938   if (src.is_lval()) {
4939     push_literal32((int32_t)src.target(), src.rspec());
4940   } else {
4941     pushl(as_Address(src));
4942   }
4943 }
4944 
4945 void MacroAssembler::set_word_if_not_zero(Register dst) {
4946   xorl(dst, dst);
4947   set_byte_if_not_zero(dst);
4948 }
4949 
4950 static void pass_arg0(MacroAssembler* masm, Register arg) {
4951   masm->push(arg);
4952 }
4953 
4954 static void pass_arg1(MacroAssembler* masm, Register arg) {
4955   masm->push(arg);
4956 }
4957 
4958 static void pass_arg2(MacroAssembler* masm, Register arg) {
4959   masm->push(arg);
4960 }
4961 
4962 static void pass_arg3(MacroAssembler* masm, Register arg) {
4963   masm->push(arg);
4964 }
4965 
4966 #ifndef PRODUCT
4967 extern "C" void findpc(intptr_t x);
4968 #endif
4969 
4970 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
4971   // In order to get locks to work, we need to fake a in_VM state
4972   JavaThread* thread = JavaThread::current();
4973   JavaThreadState saved_state = thread->thread_state();
4974   thread->set_thread_state(_thread_in_vm);
4975   if (ShowMessageBoxOnError) {
4976     JavaThread* thread = JavaThread::current();
4977     JavaThreadState saved_state = thread->thread_state();
4978     thread->set_thread_state(_thread_in_vm);
4979     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
4980       ttyLocker ttyl;
4981       BytecodeCounter::print();
4982     }
4983     // To see where a verify_oop failed, get $ebx+40/X for this frame.
4984     // This is the value of eip which points to where verify_oop will return.
4985     if (os::message_box(msg, "Execution stopped, print registers?")) {
4986       ttyLocker ttyl;
4987       tty->print_cr("eip = 0x%08x", eip);
4988 #ifndef PRODUCT
4989       tty->cr();
4990       findpc(eip);
4991       tty->cr();
4992 #endif
4993       tty->print_cr("rax, = 0x%08x", rax);
4994       tty->print_cr("rbx, = 0x%08x", rbx);
4995       tty->print_cr("rcx = 0x%08x", rcx);
4996       tty->print_cr("rdx = 0x%08x", rdx);
4997       tty->print_cr("rdi = 0x%08x", rdi);
4998       tty->print_cr("rsi = 0x%08x", rsi);
4999       tty->print_cr("rbp, = 0x%08x", rbp);
5000       tty->print_cr("rsp = 0x%08x", rsp);
5001       BREAKPOINT;
5002     }
5003   } else {
5004     ttyLocker ttyl;
5005     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
5006     assert(false, "DEBUG MESSAGE");
5007   }
5008   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
5009 }
5010 
5011 void MacroAssembler::stop(const char* msg) {
5012   ExternalAddress message((address)msg);
5013   // push address of message
5014   pushptr(message.addr());
5015   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
5016   pusha();                                           // push registers
5017   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
5018   hlt();
5019 }
5020 
5021 void MacroAssembler::warn(const char* msg) {
5022   push_CPU_state();
5023 
5024   ExternalAddress message((address) msg);
5025   // push address of message
5026   pushptr(message.addr());
5027 
5028   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
5029   addl(rsp, wordSize);       // discard argument
5030   pop_CPU_state();
5031 }
5032 
5033 #else // _LP64
5034 
5035 // 64 bit versions
5036 
5037 Address MacroAssembler::as_Address(AddressLiteral adr) {
5038   // amd64 always does this as a pc-rel
5039   // we can be absolute or disp based on the instruction type
5040   // jmp/call are displacements others are absolute
5041   assert(!adr.is_lval(), "must be rval");
5042   assert(reachable(adr), "must be");
5043   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
5044 
5045 }
5046 
5047 Address MacroAssembler::as_Address(ArrayAddress adr) {
5048   AddressLiteral base = adr.base();
5049   lea(rscratch1, base);
5050   Address index = adr.index();
5051   assert(index._disp == 0, "must not have disp"); // maybe it can?
5052   Address array(rscratch1, index._index, index._scale, index._disp);
5053   return array;
5054 }
5055 
5056 int MacroAssembler::biased_locking_enter(Register lock_reg,
5057                                          Register obj_reg,
5058                                          Register swap_reg,
5059                                          Register tmp_reg,
5060                                          bool swap_reg_contains_mark,
5061                                          Label& done,
5062                                          Label* slow_case,
5063                                          BiasedLockingCounters* counters) {
5064   assert(UseBiasedLocking, "why call this otherwise?");
5065   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
5066   assert(tmp_reg != noreg, "tmp_reg must be supplied");
5067   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
5068   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
5069   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
5070   Address saved_mark_addr(lock_reg, 0);
5071 
5072   if (PrintBiasedLockingStatistics && counters == NULL)
5073     counters = BiasedLocking::counters();
5074 
5075   // Biased locking
5076   // See whether the lock is currently biased toward our thread and
5077   // whether the epoch is still valid
5078   // Note that the runtime guarantees sufficient alignment of JavaThread
5079   // pointers to allow age to be placed into low bits
5080   // First check to see whether biasing is even enabled for this object
5081   Label cas_label;
5082   int null_check_offset = -1;
5083   if (!swap_reg_contains_mark) {
5084     null_check_offset = offset();
5085     movq(swap_reg, mark_addr);
5086   }
5087   movq(tmp_reg, swap_reg);
5088   andq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
5089   cmpq(tmp_reg, markOopDesc::biased_lock_pattern);
5090   jcc(Assembler::notEqual, cas_label);
5091   // The bias pattern is present in the object's header. Need to check
5092   // whether the bias owner and the epoch are both still current.
5093   load_prototype_header(tmp_reg, obj_reg);
5094   orq(tmp_reg, r15_thread);
5095   xorq(tmp_reg, swap_reg);
5096   andq(tmp_reg, ~((int) markOopDesc::age_mask_in_place));
5097   if (counters != NULL) {
5098     cond_inc32(Assembler::zero,
5099                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
5100   }
5101   jcc(Assembler::equal, done);
5102 
5103   Label try_revoke_bias;
5104   Label try_rebias;
5105 
5106   // At this point we know that the header has the bias pattern and
5107   // that we are not the bias owner in the current epoch. We need to
5108   // figure out more details about the state of the header in order to
5109   // know what operations can be legally performed on the object's
5110   // header.
5111 
5112   // If the low three bits in the xor result aren't clear, that means
5113   // the prototype header is no longer biased and we have to revoke
5114   // the bias on this object.
5115   testq(tmp_reg, markOopDesc::biased_lock_mask_in_place);
5116   jcc(Assembler::notZero, try_revoke_bias);
5117 
5118   // Biasing is still enabled for this data type. See whether the
5119   // epoch of the current bias is still valid, meaning that the epoch
5120   // bits of the mark word are equal to the epoch bits of the
5121   // prototype header. (Note that the prototype header's epoch bits
5122   // only change at a safepoint.) If not, attempt to rebias the object
5123   // toward the current thread. Note that we must be absolutely sure
5124   // that the current epoch is invalid in order to do this because
5125   // otherwise the manipulations it performs on the mark word are
5126   // illegal.
5127   testq(tmp_reg, markOopDesc::epoch_mask_in_place);
5128   jcc(Assembler::notZero, try_rebias);
5129 
5130   // The epoch of the current bias is still valid but we know nothing
5131   // about the owner; it might be set or it might be clear. Try to
5132   // acquire the bias of the object using an atomic operation. If this
5133   // fails we will go in to the runtime to revoke the object's bias.
5134   // Note that we first construct the presumed unbiased header so we
5135   // don't accidentally blow away another thread's valid bias.
5136   andq(swap_reg,
5137        markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
5138   movq(tmp_reg, swap_reg);
5139   orq(tmp_reg, r15_thread);
5140   if (os::is_MP()) {
5141     lock();
5142   }
5143   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5144   // If the biasing toward our thread failed, this means that
5145   // another thread succeeded in biasing it toward itself and we
5146   // need to revoke that bias. The revocation will occur in the
5147   // interpreter runtime in the slow case.
5148   if (counters != NULL) {
5149     cond_inc32(Assembler::zero,
5150                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
5151   }
5152   if (slow_case != NULL) {
5153     jcc(Assembler::notZero, *slow_case);
5154   }
5155   jmp(done);
5156 
5157   bind(try_rebias);
5158   // At this point we know the epoch has expired, meaning that the
5159   // current "bias owner", if any, is actually invalid. Under these
5160   // circumstances _only_, we are allowed to use the current header's
5161   // value as the comparison value when doing the cas to acquire the
5162   // bias in the current epoch. In other words, we allow transfer of
5163   // the bias from one thread to another directly in this situation.
5164   //
5165   // FIXME: due to a lack of registers we currently blow away the age
5166   // bits in this situation. Should attempt to preserve them.
5167   load_prototype_header(tmp_reg, obj_reg);
5168   orq(tmp_reg, r15_thread);
5169   if (os::is_MP()) {
5170     lock();
5171   }
5172   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5173   // If the biasing toward our thread failed, then another thread
5174   // succeeded in biasing it toward itself and we need to revoke that
5175   // bias. The revocation will occur in the runtime in the slow case.
5176   if (counters != NULL) {
5177     cond_inc32(Assembler::zero,
5178                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
5179   }
5180   if (slow_case != NULL) {
5181     jcc(Assembler::notZero, *slow_case);
5182   }
5183   jmp(done);
5184 
5185   bind(try_revoke_bias);
5186   // The prototype mark in the klass doesn't have the bias bit set any
5187   // more, indicating that objects of this data type are not supposed
5188   // to be biased any more. We are going to try to reset the mark of
5189   // this object to the prototype value and fall through to the
5190   // CAS-based locking scheme. Note that if our CAS fails, it means
5191   // that another thread raced us for the privilege of revoking the
5192   // bias of this particular object, so it's okay to continue in the
5193   // normal locking code.
5194   //
5195   // FIXME: due to a lack of registers we currently blow away the age
5196   // bits in this situation. Should attempt to preserve them.
5197   load_prototype_header(tmp_reg, obj_reg);
5198   if (os::is_MP()) {
5199     lock();
5200   }
5201   cmpxchgq(tmp_reg, Address(obj_reg, 0));
5202   // Fall through to the normal CAS-based lock, because no matter what
5203   // the result of the above CAS, some thread must have succeeded in
5204   // removing the bias bit from the object's header.
5205   if (counters != NULL) {
5206     cond_inc32(Assembler::zero,
5207                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
5208   }
5209 
5210   bind(cas_label);
5211 
5212   return null_check_offset;
5213 }
5214 
5215 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
5216   Label L, E;
5217 
5218 #ifdef _WIN64
5219   // Windows always allocates space for it's register args
5220   assert(num_args <= 4, "only register arguments supported");
5221   subq(rsp,  frame::arg_reg_save_area_bytes);
5222 #endif
5223 
5224   // Align stack if necessary
5225   testl(rsp, 15);
5226   jcc(Assembler::zero, L);
5227 
5228   subq(rsp, 8);
5229   {
5230     call(RuntimeAddress(entry_point));
5231   }
5232   addq(rsp, 8);
5233   jmp(E);
5234 
5235   bind(L);
5236   {
5237     call(RuntimeAddress(entry_point));
5238   }
5239 
5240   bind(E);
5241 
5242 #ifdef _WIN64
5243   // restore stack pointer
5244   addq(rsp, frame::arg_reg_save_area_bytes);
5245 #endif
5246 
5247 }
5248 
5249 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
5250   assert(!src2.is_lval(), "should use cmpptr");
5251 
5252   if (reachable(src2)) {
5253     cmpq(src1, as_Address(src2));
5254   } else {
5255     lea(rscratch1, src2);
5256     Assembler::cmpq(src1, Address(rscratch1, 0));
5257   }
5258 }
5259 
5260 int MacroAssembler::corrected_idivq(Register reg) {
5261   // Full implementation of Java ldiv and lrem; checks for special
5262   // case as described in JVM spec., p.243 & p.271.  The function
5263   // returns the (pc) offset of the idivl instruction - may be needed
5264   // for implicit exceptions.
5265   //
5266   //         normal case                           special case
5267   //
5268   // input : rax: dividend                         min_long
5269   //         reg: divisor   (may not be eax/edx)   -1
5270   //
5271   // output: rax: quotient  (= rax idiv reg)       min_long
5272   //         rdx: remainder (= rax irem reg)       0
5273   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
5274   static const int64_t min_long = 0x8000000000000000;
5275   Label normal_case, special_case;
5276 
5277   // check for special case
5278   cmp64(rax, ExternalAddress((address) &min_long));
5279   jcc(Assembler::notEqual, normal_case);
5280   xorl(rdx, rdx); // prepare rdx for possible special case (where
5281                   // remainder = 0)
5282   cmpq(reg, -1);
5283   jcc(Assembler::equal, special_case);
5284 
5285   // handle normal case
5286   bind(normal_case);
5287   cdqq();
5288   int idivq_offset = offset();
5289   idivq(reg);
5290 
5291   // normal and special case exit
5292   bind(special_case);
5293 
5294   return idivq_offset;
5295 }
5296 
5297 void MacroAssembler::decrementq(Register reg, int value) {
5298   if (value == min_jint) { subq(reg, value); return; }
5299   if (value <  0) { incrementq(reg, -value); return; }
5300   if (value == 0) {                        ; return; }
5301   if (value == 1 && UseIncDec) { decq(reg) ; return; }
5302   /* else */      { subq(reg, value)       ; return; }
5303 }
5304 
5305 void MacroAssembler::decrementq(Address dst, int value) {
5306   if (value == min_jint) { subq(dst, value); return; }
5307   if (value <  0) { incrementq(dst, -value); return; }
5308   if (value == 0) {                        ; return; }
5309   if (value == 1 && UseIncDec) { decq(dst) ; return; }
5310   /* else */      { subq(dst, value)       ; return; }
5311 }
5312 
5313 void MacroAssembler::fat_nop() {
5314   // A 5 byte nop that is safe for patching (see patch_verified_entry)
5315   // Recommened sequence from 'Software Optimization Guide for the AMD
5316   // Hammer Processor'
5317   emit_byte(0x66);
5318   emit_byte(0x66);
5319   emit_byte(0x90);
5320   emit_byte(0x66);
5321   emit_byte(0x90);
5322 }
5323 
5324 void MacroAssembler::incrementq(Register reg, int value) {
5325   if (value == min_jint) { addq(reg, value); return; }
5326   if (value <  0) { decrementq(reg, -value); return; }
5327   if (value == 0) {                        ; return; }
5328   if (value == 1 && UseIncDec) { incq(reg) ; return; }
5329   /* else */      { addq(reg, value)       ; return; }
5330 }
5331 
5332 void MacroAssembler::incrementq(Address dst, int value) {
5333   if (value == min_jint) { addq(dst, value); return; }
5334   if (value <  0) { decrementq(dst, -value); return; }
5335   if (value == 0) {                        ; return; }
5336   if (value == 1 && UseIncDec) { incq(dst) ; return; }
5337   /* else */      { addq(dst, value)       ; return; }
5338 }
5339 
5340 // 32bit can do a case table jump in one instruction but we no longer allow the base
5341 // to be installed in the Address class
5342 void MacroAssembler::jump(ArrayAddress entry) {
5343   lea(rscratch1, entry.base());
5344   Address dispatch = entry.index();
5345   assert(dispatch._base == noreg, "must be");
5346   dispatch._base = rscratch1;
5347   jmp(dispatch);
5348 }
5349 
5350 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
5351   ShouldNotReachHere(); // 64bit doesn't use two regs
5352   cmpq(x_lo, y_lo);
5353 }
5354 
5355 void MacroAssembler::lea(Register dst, AddressLiteral src) {
5356     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
5357 }
5358 
5359 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
5360   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
5361   movptr(dst, rscratch1);
5362 }
5363 
5364 void MacroAssembler::leave() {
5365   // %%% is this really better? Why not on 32bit too?
5366   emit_byte(0xC9); // LEAVE
5367 }
5368 
5369 void MacroAssembler::lneg(Register hi, Register lo) {
5370   ShouldNotReachHere(); // 64bit doesn't use two regs
5371   negq(lo);
5372 }
5373 
5374 void MacroAssembler::movoop(Register dst, jobject obj) {
5375   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
5376 }
5377 
5378 void MacroAssembler::movoop(Address dst, jobject obj) {
5379   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
5380   movq(dst, rscratch1);
5381 }
5382 
5383 void MacroAssembler::movptr(Register dst, AddressLiteral src) {
5384   if (src.is_lval()) {
5385     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
5386   } else {
5387     if (reachable(src)) {
5388       movq(dst, as_Address(src));
5389     } else {
5390       lea(rscratch1, src);
5391       movq(dst, Address(rscratch1,0));
5392     }
5393   }
5394 }
5395 
5396 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
5397   movq(as_Address(dst), src);
5398 }
5399 
5400 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
5401   movq(dst, as_Address(src));
5402 }
5403 
5404 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
5405 void MacroAssembler::movptr(Address dst, intptr_t src) {
5406   mov64(rscratch1, src);
5407   movq(dst, rscratch1);
5408 }
5409 
5410 // These are mostly for initializing NULL
5411 void MacroAssembler::movptr(Address dst, int32_t src) {
5412   movslq(dst, src);
5413 }
5414 
5415 void MacroAssembler::movptr(Register dst, int32_t src) {
5416   mov64(dst, (intptr_t)src);
5417 }
5418 
5419 void MacroAssembler::pushoop(jobject obj) {
5420   movoop(rscratch1, obj);
5421   push(rscratch1);
5422 }
5423 
5424 void MacroAssembler::pushptr(AddressLiteral src) {
5425   lea(rscratch1, src);
5426   if (src.is_lval()) {
5427     push(rscratch1);
5428   } else {
5429     pushq(Address(rscratch1, 0));
5430   }
5431 }
5432 
5433 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
5434                                            bool clear_pc) {
5435   // we must set sp to zero to clear frame
5436   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
5437   // must clear fp, so that compiled frames are not confused; it is
5438   // possible that we need it only for debugging
5439   if (clear_fp) {
5440     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
5441   }
5442 
5443   if (clear_pc) {
5444     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
5445   }
5446 }
5447 
5448 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
5449                                          Register last_java_fp,
5450                                          address  last_java_pc) {
5451   // determine last_java_sp register
5452   if (!last_java_sp->is_valid()) {
5453     last_java_sp = rsp;
5454   }
5455 
5456   // last_java_fp is optional
5457   if (last_java_fp->is_valid()) {
5458     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
5459            last_java_fp);
5460   }
5461 
5462   // last_java_pc is optional
5463   if (last_java_pc != NULL) {
5464     Address java_pc(r15_thread,
5465                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
5466     lea(rscratch1, InternalAddress(last_java_pc));
5467     movptr(java_pc, rscratch1);
5468   }
5469 
5470   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
5471 }
5472 
5473 static void pass_arg0(MacroAssembler* masm, Register arg) {
5474   if (c_rarg0 != arg ) {
5475     masm->mov(c_rarg0, arg);
5476   }
5477 }
5478 
5479 static void pass_arg1(MacroAssembler* masm, Register arg) {
5480   if (c_rarg1 != arg ) {
5481     masm->mov(c_rarg1, arg);
5482   }
5483 }
5484 
5485 static void pass_arg2(MacroAssembler* masm, Register arg) {
5486   if (c_rarg2 != arg ) {
5487     masm->mov(c_rarg2, arg);
5488   }
5489 }
5490 
5491 static void pass_arg3(MacroAssembler* masm, Register arg) {
5492   if (c_rarg3 != arg ) {
5493     masm->mov(c_rarg3, arg);
5494   }
5495 }
5496 
5497 void MacroAssembler::stop(const char* msg) {
5498   address rip = pc();
5499   pusha(); // get regs on stack
5500   lea(c_rarg0, ExternalAddress((address) msg));
5501   lea(c_rarg1, InternalAddress(rip));
5502   movq(c_rarg2, rsp); // pass pointer to regs array
5503   andq(rsp, -16); // align stack as required by ABI
5504   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
5505   hlt();
5506 }
5507 
5508 void MacroAssembler::warn(const char* msg) {
5509   push(r12);
5510   movq(r12, rsp);
5511   andq(rsp, -16);     // align stack as required by push_CPU_state and call
5512 
5513   push_CPU_state();   // keeps alignment at 16 bytes
5514   lea(c_rarg0, ExternalAddress((address) msg));
5515   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
5516   pop_CPU_state();
5517 
5518   movq(rsp, r12);
5519   pop(r12);
5520 }
5521 
5522 #ifndef PRODUCT
5523 extern "C" void findpc(intptr_t x);
5524 #endif
5525 
5526 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
5527   // In order to get locks to work, we need to fake a in_VM state
5528   if (ShowMessageBoxOnError ) {
5529     JavaThread* thread = JavaThread::current();
5530     JavaThreadState saved_state = thread->thread_state();
5531     thread->set_thread_state(_thread_in_vm);
5532 #ifndef PRODUCT
5533     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
5534       ttyLocker ttyl;
5535       BytecodeCounter::print();
5536     }
5537 #endif
5538     // To see where a verify_oop failed, get $ebx+40/X for this frame.
5539     // XXX correct this offset for amd64
5540     // This is the value of eip which points to where verify_oop will return.
5541     if (os::message_box(msg, "Execution stopped, print registers?")) {
5542       ttyLocker ttyl;
5543       tty->print_cr("rip = 0x%016lx", pc);
5544 #ifndef PRODUCT
5545       tty->cr();
5546       findpc(pc);
5547       tty->cr();
5548 #endif
5549       tty->print_cr("rax = 0x%016lx", regs[15]);
5550       tty->print_cr("rbx = 0x%016lx", regs[12]);
5551       tty->print_cr("rcx = 0x%016lx", regs[14]);
5552       tty->print_cr("rdx = 0x%016lx", regs[13]);
5553       tty->print_cr("rdi = 0x%016lx", regs[8]);
5554       tty->print_cr("rsi = 0x%016lx", regs[9]);
5555       tty->print_cr("rbp = 0x%016lx", regs[10]);
5556       tty->print_cr("rsp = 0x%016lx", regs[11]);
5557       tty->print_cr("r8  = 0x%016lx", regs[7]);
5558       tty->print_cr("r9  = 0x%016lx", regs[6]);
5559       tty->print_cr("r10 = 0x%016lx", regs[5]);
5560       tty->print_cr("r11 = 0x%016lx", regs[4]);
5561       tty->print_cr("r12 = 0x%016lx", regs[3]);
5562       tty->print_cr("r13 = 0x%016lx", regs[2]);
5563       tty->print_cr("r14 = 0x%016lx", regs[1]);
5564       tty->print_cr("r15 = 0x%016lx", regs[0]);
5565       BREAKPOINT;
5566     }
5567     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
5568   } else {
5569     ttyLocker ttyl;
5570     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
5571                     msg);
5572   }
5573 }
5574 
5575 #endif // _LP64
5576 
5577 // Now versions that are common to 32/64 bit
5578 
5579 void MacroAssembler::addptr(Register dst, int32_t imm32) {
5580   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
5581 }
5582 
5583 void MacroAssembler::addptr(Register dst, Register src) {
5584   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
5585 }
5586 
5587 void MacroAssembler::addptr(Address dst, Register src) {
5588   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
5589 }
5590 
5591 void MacroAssembler::align(int modulus) {
5592   if (offset() % modulus != 0) {
5593     nop(modulus - (offset() % modulus));
5594   }
5595 }
5596 
5597 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
5598   if (reachable(src)) {
5599     andpd(dst, as_Address(src));
5600   } else {
5601     lea(rscratch1, src);
5602     andpd(dst, Address(rscratch1, 0));
5603   }
5604 }
5605 
5606 void MacroAssembler::andptr(Register dst, int32_t imm32) {
5607   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
5608 }
5609 
5610 void MacroAssembler::atomic_incl(AddressLiteral counter_addr) {
5611   pushf();
5612   if (os::is_MP())
5613     lock();
5614   incrementl(counter_addr);
5615   popf();
5616 }
5617 
5618 // Writes to stack successive pages until offset reached to check for
5619 // stack overflow + shadow pages.  This clobbers tmp.
5620 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
5621   movptr(tmp, rsp);
5622   // Bang stack for total size given plus shadow page size.
5623   // Bang one page at a time because large size can bang beyond yellow and
5624   // red zones.
5625   Label loop;
5626   bind(loop);
5627   movl(Address(tmp, (-os::vm_page_size())), size );
5628   subptr(tmp, os::vm_page_size());
5629   subl(size, os::vm_page_size());
5630   jcc(Assembler::greater, loop);
5631 
5632   // Bang down shadow pages too.
5633   // The -1 because we already subtracted 1 page.
5634   for (int i = 0; i< StackShadowPages-1; i++) {
5635     // this could be any sized move but this is can be a debugging crumb
5636     // so the bigger the better.
5637     movptr(Address(tmp, (-i*os::vm_page_size())), size );
5638   }
5639 }
5640 
5641 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
5642   assert(UseBiasedLocking, "why call this otherwise?");
5643 
5644   // Check for biased locking unlock case, which is a no-op
5645   // Note: we do not have to check the thread ID for two reasons.
5646   // First, the interpreter checks for IllegalMonitorStateException at
5647   // a higher level. Second, if the bias was revoked while we held the
5648   // lock, the object could not be rebiased toward another thread, so
5649   // the bias bit would be clear.
5650   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
5651   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
5652   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
5653   jcc(Assembler::equal, done);
5654 }
5655 
5656 void MacroAssembler::c2bool(Register x) {
5657   // implements x == 0 ? 0 : 1
5658   // note: must only look at least-significant byte of x
5659   //       since C-style booleans are stored in one byte
5660   //       only! (was bug)
5661   andl(x, 0xFF);
5662   setb(Assembler::notZero, x);
5663 }
5664 
5665 // Wouldn't need if AddressLiteral version had new name
5666 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
5667   Assembler::call(L, rtype);
5668 }
5669 
5670 void MacroAssembler::call(Register entry) {
5671   Assembler::call(entry);
5672 }
5673 
5674 void MacroAssembler::call(AddressLiteral entry) {
5675   if (reachable(entry)) {
5676     Assembler::call_literal(entry.target(), entry.rspec());
5677   } else {
5678     lea(rscratch1, entry);
5679     Assembler::call(rscratch1);
5680   }
5681 }
5682 
5683 // Implementation of call_VM versions
5684 
5685 void MacroAssembler::call_VM(Register oop_result,
5686                              address entry_point,
5687                              bool check_exceptions) {
5688   Label C, E;
5689   call(C, relocInfo::none);
5690   jmp(E);
5691 
5692   bind(C);
5693   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
5694   ret(0);
5695 
5696   bind(E);
5697 }
5698 
5699 void MacroAssembler::call_VM(Register oop_result,
5700                              address entry_point,
5701                              Register arg_1,
5702                              bool check_exceptions) {
5703   Label C, E;
5704   call(C, relocInfo::none);
5705   jmp(E);
5706 
5707   bind(C);
5708   pass_arg1(this, arg_1);
5709   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
5710   ret(0);
5711 
5712   bind(E);
5713 }
5714 
5715 void MacroAssembler::call_VM(Register oop_result,
5716                              address entry_point,
5717                              Register arg_1,
5718                              Register arg_2,
5719                              bool check_exceptions) {
5720   Label C, E;
5721   call(C, relocInfo::none);
5722   jmp(E);
5723 
5724   bind(C);
5725 
5726   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5727 
5728   pass_arg2(this, arg_2);
5729   pass_arg1(this, arg_1);
5730   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
5731   ret(0);
5732 
5733   bind(E);
5734 }
5735 
5736 void MacroAssembler::call_VM(Register oop_result,
5737                              address entry_point,
5738                              Register arg_1,
5739                              Register arg_2,
5740                              Register arg_3,
5741                              bool check_exceptions) {
5742   Label C, E;
5743   call(C, relocInfo::none);
5744   jmp(E);
5745 
5746   bind(C);
5747 
5748   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
5749   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
5750   pass_arg3(this, arg_3);
5751 
5752   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5753   pass_arg2(this, arg_2);
5754 
5755   pass_arg1(this, arg_1);
5756   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
5757   ret(0);
5758 
5759   bind(E);
5760 }
5761 
5762 void MacroAssembler::call_VM(Register oop_result,
5763                              Register last_java_sp,
5764                              address entry_point,
5765                              int number_of_arguments,
5766                              bool check_exceptions) {
5767   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
5768   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
5769 }
5770 
5771 void MacroAssembler::call_VM(Register oop_result,
5772                              Register last_java_sp,
5773                              address entry_point,
5774                              Register arg_1,
5775                              bool check_exceptions) {
5776   pass_arg1(this, arg_1);
5777   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
5778 }
5779 
5780 void MacroAssembler::call_VM(Register oop_result,
5781                              Register last_java_sp,
5782                              address entry_point,
5783                              Register arg_1,
5784                              Register arg_2,
5785                              bool check_exceptions) {
5786 
5787   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5788   pass_arg2(this, arg_2);
5789   pass_arg1(this, arg_1);
5790   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
5791 }
5792 
5793 void MacroAssembler::call_VM(Register oop_result,
5794                              Register last_java_sp,
5795                              address entry_point,
5796                              Register arg_1,
5797                              Register arg_2,
5798                              Register arg_3,
5799                              bool check_exceptions) {
5800   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
5801   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
5802   pass_arg3(this, arg_3);
5803   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5804   pass_arg2(this, arg_2);
5805   pass_arg1(this, arg_1);
5806   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
5807 }
5808 
5809 void MacroAssembler::call_VM_base(Register oop_result,
5810                                   Register java_thread,
5811                                   Register last_java_sp,
5812                                   address  entry_point,
5813                                   int      number_of_arguments,
5814                                   bool     check_exceptions) {
5815   // determine java_thread register
5816   if (!java_thread->is_valid()) {
5817 #ifdef _LP64
5818     java_thread = r15_thread;
5819 #else
5820     java_thread = rdi;
5821     get_thread(java_thread);
5822 #endif // LP64
5823   }
5824   // determine last_java_sp register
5825   if (!last_java_sp->is_valid()) {
5826     last_java_sp = rsp;
5827   }
5828   // debugging support
5829   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
5830   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
5831   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
5832   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
5833 
5834   // push java thread (becomes first argument of C function)
5835 
5836   NOT_LP64(push(java_thread); number_of_arguments++);
5837   LP64_ONLY(mov(c_rarg0, r15_thread));
5838 
5839   // set last Java frame before call
5840   assert(last_java_sp != rbp, "can't use ebp/rbp");
5841 
5842   // Only interpreter should have to set fp
5843   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
5844 
5845   // do the call, remove parameters
5846   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
5847 
5848   // restore the thread (cannot use the pushed argument since arguments
5849   // may be overwritten by C code generated by an optimizing compiler);
5850   // however can use the register value directly if it is callee saved.
5851   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
5852     // rdi & rsi (also r15) are callee saved -> nothing to do
5853 #ifdef ASSERT
5854     guarantee(java_thread != rax, "change this code");
5855     push(rax);
5856     { Label L;
5857       get_thread(rax);
5858       cmpptr(java_thread, rax);
5859       jcc(Assembler::equal, L);
5860       stop("MacroAssembler::call_VM_base: rdi not callee saved?");
5861       bind(L);
5862     }
5863     pop(rax);
5864 #endif
5865   } else {
5866     get_thread(java_thread);
5867   }
5868   // reset last Java frame
5869   // Only interpreter should have to clear fp
5870   reset_last_Java_frame(java_thread, true, false);
5871 
5872 #ifndef CC_INTERP
5873    // C++ interp handles this in the interpreter
5874   check_and_handle_popframe(java_thread);
5875   check_and_handle_earlyret(java_thread);
5876 #endif /* CC_INTERP */
5877 
5878   if (check_exceptions) {
5879     // check for pending exceptions (java_thread is set upon return)
5880     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
5881 #ifndef _LP64
5882     jump_cc(Assembler::notEqual,
5883             RuntimeAddress(StubRoutines::forward_exception_entry()));
5884 #else
5885     // This used to conditionally jump to forward_exception however it is
5886     // possible if we relocate that the branch will not reach. So we must jump
5887     // around so we can always reach
5888 
5889     Label ok;
5890     jcc(Assembler::equal, ok);
5891     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
5892     bind(ok);
5893 #endif // LP64
5894   }
5895 
5896   // get oop result if there is one and reset the value in the thread
5897   if (oop_result->is_valid()) {
5898     movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
5899     movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
5900     verify_oop(oop_result, "broken oop in call_VM_base");
5901   }
5902 }
5903 
5904 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
5905 
5906   // Calculate the value for last_Java_sp
5907   // somewhat subtle. call_VM does an intermediate call
5908   // which places a return address on the stack just under the
5909   // stack pointer as the user finsihed with it. This allows
5910   // use to retrieve last_Java_pc from last_Java_sp[-1].
5911   // On 32bit we then have to push additional args on the stack to accomplish
5912   // the actual requested call. On 64bit call_VM only can use register args
5913   // so the only extra space is the return address that call_VM created.
5914   // This hopefully explains the calculations here.
5915 
5916 #ifdef _LP64
5917   // We've pushed one address, correct last_Java_sp
5918   lea(rax, Address(rsp, wordSize));
5919 #else
5920   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
5921 #endif // LP64
5922 
5923   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
5924 
5925 }
5926 
5927 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
5928   call_VM_leaf_base(entry_point, number_of_arguments);
5929 }
5930 
5931 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
5932   pass_arg0(this, arg_0);
5933   call_VM_leaf(entry_point, 1);
5934 }
5935 
5936 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
5937 
5938   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
5939   pass_arg1(this, arg_1);
5940   pass_arg0(this, arg_0);
5941   call_VM_leaf(entry_point, 2);
5942 }
5943 
5944 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
5945   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
5946   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
5947   pass_arg2(this, arg_2);
5948   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
5949   pass_arg1(this, arg_1);
5950   pass_arg0(this, arg_0);
5951   call_VM_leaf(entry_point, 3);
5952 }
5953 
5954 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
5955 }
5956 
5957 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
5958 }
5959 
5960 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
5961   if (reachable(src1)) {
5962     cmpl(as_Address(src1), imm);
5963   } else {
5964     lea(rscratch1, src1);
5965     cmpl(Address(rscratch1, 0), imm);
5966   }
5967 }
5968 
5969 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
5970   assert(!src2.is_lval(), "use cmpptr");
5971   if (reachable(src2)) {
5972     cmpl(src1, as_Address(src2));
5973   } else {
5974     lea(rscratch1, src2);
5975     cmpl(src1, Address(rscratch1, 0));
5976   }
5977 }
5978 
5979 void MacroAssembler::cmp32(Register src1, int32_t imm) {
5980   Assembler::cmpl(src1, imm);
5981 }
5982 
5983 void MacroAssembler::cmp32(Register src1, Address src2) {
5984   Assembler::cmpl(src1, src2);
5985 }
5986 
5987 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
5988   ucomisd(opr1, opr2);
5989 
5990   Label L;
5991   if (unordered_is_less) {
5992     movl(dst, -1);
5993     jcc(Assembler::parity, L);
5994     jcc(Assembler::below , L);
5995     movl(dst, 0);
5996     jcc(Assembler::equal , L);
5997     increment(dst);
5998   } else { // unordered is greater
5999     movl(dst, 1);
6000     jcc(Assembler::parity, L);
6001     jcc(Assembler::above , L);
6002     movl(dst, 0);
6003     jcc(Assembler::equal , L);
6004     decrementl(dst);
6005   }
6006   bind(L);
6007 }
6008 
6009 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
6010   ucomiss(opr1, opr2);
6011 
6012   Label L;
6013   if (unordered_is_less) {
6014     movl(dst, -1);
6015     jcc(Assembler::parity, L);
6016     jcc(Assembler::below , L);
6017     movl(dst, 0);
6018     jcc(Assembler::equal , L);
6019     increment(dst);
6020   } else { // unordered is greater
6021     movl(dst, 1);
6022     jcc(Assembler::parity, L);
6023     jcc(Assembler::above , L);
6024     movl(dst, 0);
6025     jcc(Assembler::equal , L);
6026     decrementl(dst);
6027   }
6028   bind(L);
6029 }
6030 
6031 
6032 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
6033   if (reachable(src1)) {
6034     cmpb(as_Address(src1), imm);
6035   } else {
6036     lea(rscratch1, src1);
6037     cmpb(Address(rscratch1, 0), imm);
6038   }
6039 }
6040 
6041 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
6042 #ifdef _LP64
6043   if (src2.is_lval()) {
6044     movptr(rscratch1, src2);
6045     Assembler::cmpq(src1, rscratch1);
6046   } else if (reachable(src2)) {
6047     cmpq(src1, as_Address(src2));
6048   } else {
6049     lea(rscratch1, src2);
6050     Assembler::cmpq(src1, Address(rscratch1, 0));
6051   }
6052 #else
6053   if (src2.is_lval()) {
6054     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
6055   } else {
6056     cmpl(src1, as_Address(src2));
6057   }
6058 #endif // _LP64
6059 }
6060 
6061 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
6062   assert(src2.is_lval(), "not a mem-mem compare");
6063 #ifdef _LP64
6064   // moves src2's literal address
6065   movptr(rscratch1, src2);
6066   Assembler::cmpq(src1, rscratch1);
6067 #else
6068   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
6069 #endif // _LP64
6070 }
6071 
6072 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
6073   if (reachable(adr)) {
6074     if (os::is_MP())
6075       lock();
6076     cmpxchgptr(reg, as_Address(adr));
6077   } else {
6078     lea(rscratch1, adr);
6079     if (os::is_MP())
6080       lock();
6081     cmpxchgptr(reg, Address(rscratch1, 0));
6082   }
6083 }
6084 
6085 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
6086   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
6087 }
6088 
6089 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
6090   if (reachable(src)) {
6091     comisd(dst, as_Address(src));
6092   } else {
6093     lea(rscratch1, src);
6094     comisd(dst, Address(rscratch1, 0));
6095   }
6096 }
6097 
6098 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
6099   if (reachable(src)) {
6100     comiss(dst, as_Address(src));
6101   } else {
6102     lea(rscratch1, src);
6103     comiss(dst, Address(rscratch1, 0));
6104   }
6105 }
6106 
6107 
6108 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
6109   Condition negated_cond = negate_condition(cond);
6110   Label L;
6111   jcc(negated_cond, L);
6112   atomic_incl(counter_addr);
6113   bind(L);
6114 }
6115 
6116 int MacroAssembler::corrected_idivl(Register reg) {
6117   // Full implementation of Java idiv and irem; checks for
6118   // special case as described in JVM spec., p.243 & p.271.
6119   // The function returns the (pc) offset of the idivl
6120   // instruction - may be needed for implicit exceptions.
6121   //
6122   //         normal case                           special case
6123   //
6124   // input : rax,: dividend                         min_int
6125   //         reg: divisor   (may not be rax,/rdx)   -1
6126   //
6127   // output: rax,: quotient  (= rax, idiv reg)       min_int
6128   //         rdx: remainder (= rax, irem reg)       0
6129   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
6130   const int min_int = 0x80000000;
6131   Label normal_case, special_case;
6132 
6133   // check for special case
6134   cmpl(rax, min_int);
6135   jcc(Assembler::notEqual, normal_case);
6136   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
6137   cmpl(reg, -1);
6138   jcc(Assembler::equal, special_case);
6139 
6140   // handle normal case
6141   bind(normal_case);
6142   cdql();
6143   int idivl_offset = offset();
6144   idivl(reg);
6145 
6146   // normal and special case exit
6147   bind(special_case);
6148 
6149   return idivl_offset;
6150 }
6151 
6152 
6153 
6154 void MacroAssembler::decrementl(Register reg, int value) {
6155   if (value == min_jint) {subl(reg, value) ; return; }
6156   if (value <  0) { incrementl(reg, -value); return; }
6157   if (value == 0) {                        ; return; }
6158   if (value == 1 && UseIncDec) { decl(reg) ; return; }
6159   /* else */      { subl(reg, value)       ; return; }
6160 }
6161 
6162 void MacroAssembler::decrementl(Address dst, int value) {
6163   if (value == min_jint) {subl(dst, value) ; return; }
6164   if (value <  0) { incrementl(dst, -value); return; }
6165   if (value == 0) {                        ; return; }
6166   if (value == 1 && UseIncDec) { decl(dst) ; return; }
6167   /* else */      { subl(dst, value)       ; return; }
6168 }
6169 
6170 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
6171   assert (shift_value > 0, "illegal shift value");
6172   Label _is_positive;
6173   testl (reg, reg);
6174   jcc (Assembler::positive, _is_positive);
6175   int offset = (1 << shift_value) - 1 ;
6176 
6177   if (offset == 1) {
6178     incrementl(reg);
6179   } else {
6180     addl(reg, offset);
6181   }
6182 
6183   bind (_is_positive);
6184   sarl(reg, shift_value);
6185 }
6186 
6187 // !defined(COMPILER2) is because of stupid core builds
6188 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
6189 void MacroAssembler::empty_FPU_stack() {
6190   if (VM_Version::supports_mmx()) {
6191     emms();
6192   } else {
6193     for (int i = 8; i-- > 0; ) ffree(i);
6194   }
6195 }
6196 #endif // !LP64 || C1 || !C2
6197 
6198 
6199 // Defines obj, preserves var_size_in_bytes
6200 void MacroAssembler::eden_allocate(Register obj,
6201                                    Register var_size_in_bytes,
6202                                    int con_size_in_bytes,
6203                                    Register t1,
6204                                    Label& slow_case) {
6205   assert(obj == rax, "obj must be in rax, for cmpxchg");
6206   assert_different_registers(obj, var_size_in_bytes, t1);
6207   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
6208     jmp(slow_case);
6209   } else {
6210     Register end = t1;
6211     Label retry;
6212     bind(retry);
6213     ExternalAddress heap_top((address) Universe::heap()->top_addr());
6214     movptr(obj, heap_top);
6215     if (var_size_in_bytes == noreg) {
6216       lea(end, Address(obj, con_size_in_bytes));
6217     } else {
6218       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
6219     }
6220     // if end < obj then we wrapped around => object too long => slow case
6221     cmpptr(end, obj);
6222     jcc(Assembler::below, slow_case);
6223     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
6224     jcc(Assembler::above, slow_case);
6225     // Compare obj with the top addr, and if still equal, store the new top addr in
6226     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
6227     // it otherwise. Use lock prefix for atomicity on MPs.
6228     locked_cmpxchgptr(end, heap_top);
6229     jcc(Assembler::notEqual, retry);
6230   }
6231 }
6232 
6233 void MacroAssembler::enter() {
6234   push(rbp);
6235   mov(rbp, rsp);
6236 }
6237 
6238 void MacroAssembler::fcmp(Register tmp) {
6239   fcmp(tmp, 1, true, true);
6240 }
6241 
6242 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
6243   assert(!pop_right || pop_left, "usage error");
6244   if (VM_Version::supports_cmov()) {
6245     assert(tmp == noreg, "unneeded temp");
6246     if (pop_left) {
6247       fucomip(index);
6248     } else {
6249       fucomi(index);
6250     }
6251     if (pop_right) {
6252       fpop();
6253     }
6254   } else {
6255     assert(tmp != noreg, "need temp");
6256     if (pop_left) {
6257       if (pop_right) {
6258         fcompp();
6259       } else {
6260         fcomp(index);
6261       }
6262     } else {
6263       fcom(index);
6264     }
6265     // convert FPU condition into eflags condition via rax,
6266     save_rax(tmp);
6267     fwait(); fnstsw_ax();
6268     sahf();
6269     restore_rax(tmp);
6270   }
6271   // condition codes set as follows:
6272   //
6273   // CF (corresponds to C0) if x < y
6274   // PF (corresponds to C2) if unordered
6275   // ZF (corresponds to C3) if x = y
6276 }
6277 
6278 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
6279   fcmp2int(dst, unordered_is_less, 1, true, true);
6280 }
6281 
6282 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
6283   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
6284   Label L;
6285   if (unordered_is_less) {
6286     movl(dst, -1);
6287     jcc(Assembler::parity, L);
6288     jcc(Assembler::below , L);
6289     movl(dst, 0);
6290     jcc(Assembler::equal , L);
6291     increment(dst);
6292   } else { // unordered is greater
6293     movl(dst, 1);
6294     jcc(Assembler::parity, L);
6295     jcc(Assembler::above , L);
6296     movl(dst, 0);
6297     jcc(Assembler::equal , L);
6298     decrementl(dst);
6299   }
6300   bind(L);
6301 }
6302 
6303 void MacroAssembler::fld_d(AddressLiteral src) {
6304   fld_d(as_Address(src));
6305 }
6306 
6307 void MacroAssembler::fld_s(AddressLiteral src) {
6308   fld_s(as_Address(src));
6309 }
6310 
6311 void MacroAssembler::fld_x(AddressLiteral src) {
6312   Assembler::fld_x(as_Address(src));
6313 }
6314 
6315 void MacroAssembler::fldcw(AddressLiteral src) {
6316   Assembler::fldcw(as_Address(src));
6317 }
6318 
6319 void MacroAssembler::fpop() {
6320   ffree();
6321   fincstp();
6322 }
6323 
6324 void MacroAssembler::fremr(Register tmp) {
6325   save_rax(tmp);
6326   { Label L;
6327     bind(L);
6328     fprem();
6329     fwait(); fnstsw_ax();
6330 #ifdef _LP64
6331     testl(rax, 0x400);
6332     jcc(Assembler::notEqual, L);
6333 #else
6334     sahf();
6335     jcc(Assembler::parity, L);
6336 #endif // _LP64
6337   }
6338   restore_rax(tmp);
6339   // Result is in ST0.
6340   // Note: fxch & fpop to get rid of ST1
6341   // (otherwise FPU stack could overflow eventually)
6342   fxch(1);
6343   fpop();
6344 }
6345 
6346 
6347 void MacroAssembler::incrementl(AddressLiteral dst) {
6348   if (reachable(dst)) {
6349     incrementl(as_Address(dst));
6350   } else {
6351     lea(rscratch1, dst);
6352     incrementl(Address(rscratch1, 0));
6353   }
6354 }
6355 
6356 void MacroAssembler::incrementl(ArrayAddress dst) {
6357   incrementl(as_Address(dst));
6358 }
6359 
6360 void MacroAssembler::incrementl(Register reg, int value) {
6361   if (value == min_jint) {addl(reg, value) ; return; }
6362   if (value <  0) { decrementl(reg, -value); return; }
6363   if (value == 0) {                        ; return; }
6364   if (value == 1 && UseIncDec) { incl(reg) ; return; }
6365   /* else */      { addl(reg, value)       ; return; }
6366 }
6367 
6368 void MacroAssembler::incrementl(Address dst, int value) {
6369   if (value == min_jint) {addl(dst, value) ; return; }
6370   if (value <  0) { decrementl(dst, -value); return; }
6371   if (value == 0) {                        ; return; }
6372   if (value == 1 && UseIncDec) { incl(dst) ; return; }
6373   /* else */      { addl(dst, value)       ; return; }
6374 }
6375 
6376 void MacroAssembler::jump(AddressLiteral dst) {
6377   if (reachable(dst)) {
6378     jmp_literal(dst.target(), dst.rspec());
6379   } else {
6380     lea(rscratch1, dst);
6381     jmp(rscratch1);
6382   }
6383 }
6384 
6385 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
6386   if (reachable(dst)) {
6387     InstructionMark im(this);
6388     relocate(dst.reloc());
6389     const int short_size = 2;
6390     const int long_size = 6;
6391     int offs = (intptr_t)dst.target() - ((intptr_t)_code_pos);
6392     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
6393       // 0111 tttn #8-bit disp
6394       emit_byte(0x70 | cc);
6395       emit_byte((offs - short_size) & 0xFF);
6396     } else {
6397       // 0000 1111 1000 tttn #32-bit disp
6398       emit_byte(0x0F);
6399       emit_byte(0x80 | cc);
6400       emit_long(offs - long_size);
6401     }
6402   } else {
6403 #ifdef ASSERT
6404     warning("reversing conditional branch");
6405 #endif /* ASSERT */
6406     Label skip;
6407     jccb(reverse[cc], skip);
6408     lea(rscratch1, dst);
6409     Assembler::jmp(rscratch1);
6410     bind(skip);
6411   }
6412 }
6413 
6414 void MacroAssembler::ldmxcsr(AddressLiteral src) {
6415   if (reachable(src)) {
6416     Assembler::ldmxcsr(as_Address(src));
6417   } else {
6418     lea(rscratch1, src);
6419     Assembler::ldmxcsr(Address(rscratch1, 0));
6420   }
6421 }
6422 
6423 int MacroAssembler::load_signed_byte(Register dst, Address src) {
6424   int off;
6425   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6426     off = offset();
6427     movsbl(dst, src); // movsxb
6428   } else {
6429     off = load_unsigned_byte(dst, src);
6430     shll(dst, 24);
6431     sarl(dst, 24);
6432   }
6433   return off;
6434 }
6435 
6436 // Note: load_signed_short used to be called load_signed_word.
6437 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
6438 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
6439 // The term "word" in HotSpot means a 32- or 64-bit machine word.
6440 int MacroAssembler::load_signed_short(Register dst, Address src) {
6441   int off;
6442   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6443     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
6444     // version but this is what 64bit has always done. This seems to imply
6445     // that users are only using 32bits worth.
6446     off = offset();
6447     movswl(dst, src); // movsxw
6448   } else {
6449     off = load_unsigned_short(dst, src);
6450     shll(dst, 16);
6451     sarl(dst, 16);
6452   }
6453   return off;
6454 }
6455 
6456 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
6457   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
6458   // and "3.9 Partial Register Penalties", p. 22).
6459   int off;
6460   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
6461     off = offset();
6462     movzbl(dst, src); // movzxb
6463   } else {
6464     xorl(dst, dst);
6465     off = offset();
6466     movb(dst, src);
6467   }
6468   return off;
6469 }
6470 
6471 // Note: load_unsigned_short used to be called load_unsigned_word.
6472 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
6473   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
6474   // and "3.9 Partial Register Penalties", p. 22).
6475   int off;
6476   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
6477     off = offset();
6478     movzwl(dst, src); // movzxw
6479   } else {
6480     xorl(dst, dst);
6481     off = offset();
6482     movw(dst, src);
6483   }
6484   return off;
6485 }
6486 
6487 void MacroAssembler::load_sized_value(Register dst, Address src,
6488                                       int size_in_bytes, bool is_signed) {
6489   switch (size_in_bytes ^ (is_signed ? -1 : 0)) {
6490 #ifndef _LP64
6491   // For case 8, caller is responsible for manually loading
6492   // the second word into another register.
6493   case ~8:  // fall through:
6494   case  8:  movl(                dst, src ); break;
6495 #else
6496   case ~8:  // fall through:
6497   case  8:  movq(                dst, src ); break;
6498 #endif
6499   case ~4:  // fall through:
6500   case  4:  movl(                dst, src ); break;
6501   case ~2:  load_signed_short(   dst, src ); break;
6502   case  2:  load_unsigned_short( dst, src ); break;
6503   case ~1:  load_signed_byte(    dst, src ); break;
6504   case  1:  load_unsigned_byte(  dst, src ); break;
6505   default:  ShouldNotReachHere();
6506   }
6507 }
6508 
6509 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
6510   if (reachable(dst)) {
6511     movl(as_Address(dst), src);
6512   } else {
6513     lea(rscratch1, dst);
6514     movl(Address(rscratch1, 0), src);
6515   }
6516 }
6517 
6518 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
6519   if (reachable(src)) {
6520     movl(dst, as_Address(src));
6521   } else {
6522     lea(rscratch1, src);
6523     movl(dst, Address(rscratch1, 0));
6524   }
6525 }
6526 
6527 // C++ bool manipulation
6528 
6529 void MacroAssembler::movbool(Register dst, Address src) {
6530   if(sizeof(bool) == 1)
6531     movb(dst, src);
6532   else if(sizeof(bool) == 2)
6533     movw(dst, src);
6534   else if(sizeof(bool) == 4)
6535     movl(dst, src);
6536   else
6537     // unsupported
6538     ShouldNotReachHere();
6539 }
6540 
6541 void MacroAssembler::movbool(Address dst, bool boolconst) {
6542   if(sizeof(bool) == 1)
6543     movb(dst, (int) boolconst);
6544   else if(sizeof(bool) == 2)
6545     movw(dst, (int) boolconst);
6546   else if(sizeof(bool) == 4)
6547     movl(dst, (int) boolconst);
6548   else
6549     // unsupported
6550     ShouldNotReachHere();
6551 }
6552 
6553 void MacroAssembler::movbool(Address dst, Register src) {
6554   if(sizeof(bool) == 1)
6555     movb(dst, src);
6556   else if(sizeof(bool) == 2)
6557     movw(dst, src);
6558   else if(sizeof(bool) == 4)
6559     movl(dst, src);
6560   else
6561     // unsupported
6562     ShouldNotReachHere();
6563 }
6564 
6565 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
6566   movb(as_Address(dst), src);
6567 }
6568 
6569 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
6570   if (reachable(src)) {
6571     if (UseXmmLoadAndClearUpper) {
6572       movsd (dst, as_Address(src));
6573     } else {
6574       movlpd(dst, as_Address(src));
6575     }
6576   } else {
6577     lea(rscratch1, src);
6578     if (UseXmmLoadAndClearUpper) {
6579       movsd (dst, Address(rscratch1, 0));
6580     } else {
6581       movlpd(dst, Address(rscratch1, 0));
6582     }
6583   }
6584 }
6585 
6586 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
6587   if (reachable(src)) {
6588     movss(dst, as_Address(src));
6589   } else {
6590     lea(rscratch1, src);
6591     movss(dst, Address(rscratch1, 0));
6592   }
6593 }
6594 
6595 void MacroAssembler::movptr(Register dst, Register src) {
6596   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6597 }
6598 
6599 void MacroAssembler::movptr(Register dst, Address src) {
6600   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6601 }
6602 
6603 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
6604 void MacroAssembler::movptr(Register dst, intptr_t src) {
6605   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
6606 }
6607 
6608 void MacroAssembler::movptr(Address dst, Register src) {
6609   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
6610 }
6611 
6612 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
6613   if (reachable(src)) {
6614     movss(dst, as_Address(src));
6615   } else {
6616     lea(rscratch1, src);
6617     movss(dst, Address(rscratch1, 0));
6618   }
6619 }
6620 
6621 void MacroAssembler::null_check(Register reg, int offset) {
6622   if (needs_explicit_null_check(offset)) {
6623     // provoke OS NULL exception if reg = NULL by
6624     // accessing M[reg] w/o changing any (non-CC) registers
6625     // NOTE: cmpl is plenty here to provoke a segv
6626     cmpptr(rax, Address(reg, 0));
6627     // Note: should probably use testl(rax, Address(reg, 0));
6628     //       may be shorter code (however, this version of
6629     //       testl needs to be implemented first)
6630   } else {
6631     // nothing to do, (later) access of M[reg + offset]
6632     // will provoke OS NULL exception if reg = NULL
6633   }
6634 }
6635 
6636 void MacroAssembler::os_breakpoint() {
6637   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
6638   // (e.g., MSVC can't call ps() otherwise)
6639   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
6640 }
6641 
6642 void MacroAssembler::pop_CPU_state() {
6643   pop_FPU_state();
6644   pop_IU_state();
6645 }
6646 
6647 void MacroAssembler::pop_FPU_state() {
6648   NOT_LP64(frstor(Address(rsp, 0));)
6649   LP64_ONLY(fxrstor(Address(rsp, 0));)
6650   addptr(rsp, FPUStateSizeInWords * wordSize);
6651 }
6652 
6653 void MacroAssembler::pop_IU_state() {
6654   popa();
6655   LP64_ONLY(addq(rsp, 8));
6656   popf();
6657 }
6658 
6659 // Save Integer and Float state
6660 // Warning: Stack must be 16 byte aligned (64bit)
6661 void MacroAssembler::push_CPU_state() {
6662   push_IU_state();
6663   push_FPU_state();
6664 }
6665 
6666 void MacroAssembler::push_FPU_state() {
6667   subptr(rsp, FPUStateSizeInWords * wordSize);
6668 #ifndef _LP64
6669   fnsave(Address(rsp, 0));
6670   fwait();
6671 #else
6672   fxsave(Address(rsp, 0));
6673 #endif // LP64
6674 }
6675 
6676 void MacroAssembler::push_IU_state() {
6677   // Push flags first because pusha kills them
6678   pushf();
6679   // Make sure rsp stays 16-byte aligned
6680   LP64_ONLY(subq(rsp, 8));
6681   pusha();
6682 }
6683 
6684 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
6685   // determine java_thread register
6686   if (!java_thread->is_valid()) {
6687     java_thread = rdi;
6688     get_thread(java_thread);
6689   }
6690   // we must set sp to zero to clear frame
6691   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
6692   if (clear_fp) {
6693     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
6694   }
6695 
6696   if (clear_pc)
6697     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
6698 
6699 }
6700 
6701 void MacroAssembler::restore_rax(Register tmp) {
6702   if (tmp == noreg) pop(rax);
6703   else if (tmp != rax) mov(rax, tmp);
6704 }
6705 
6706 void MacroAssembler::round_to(Register reg, int modulus) {
6707   addptr(reg, modulus - 1);
6708   andptr(reg, -modulus);
6709 }
6710 
6711 void MacroAssembler::save_rax(Register tmp) {
6712   if (tmp == noreg) push(rax);
6713   else if (tmp != rax) mov(tmp, rax);
6714 }
6715 
6716 // Write serialization page so VM thread can do a pseudo remote membar.
6717 // We use the current thread pointer to calculate a thread specific
6718 // offset to write to within the page. This minimizes bus traffic
6719 // due to cache line collision.
6720 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
6721   movl(tmp, thread);
6722   shrl(tmp, os::get_serialize_page_shift_count());
6723   andl(tmp, (os::vm_page_size() - sizeof(int)));
6724 
6725   Address index(noreg, tmp, Address::times_1);
6726   ExternalAddress page(os::get_memory_serialize_page());
6727 
6728   // Size of store must match masking code above
6729   movl(as_Address(ArrayAddress(page, index)), tmp);
6730 }
6731 
6732 // Calls to C land
6733 //
6734 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
6735 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
6736 // has to be reset to 0. This is required to allow proper stack traversal.
6737 void MacroAssembler::set_last_Java_frame(Register java_thread,
6738                                          Register last_java_sp,
6739                                          Register last_java_fp,
6740                                          address  last_java_pc) {
6741   // determine java_thread register
6742   if (!java_thread->is_valid()) {
6743     java_thread = rdi;
6744     get_thread(java_thread);
6745   }
6746   // determine last_java_sp register
6747   if (!last_java_sp->is_valid()) {
6748     last_java_sp = rsp;
6749   }
6750 
6751   // last_java_fp is optional
6752 
6753   if (last_java_fp->is_valid()) {
6754     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
6755   }
6756 
6757   // last_java_pc is optional
6758 
6759   if (last_java_pc != NULL) {
6760     lea(Address(java_thread,
6761                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
6762         InternalAddress(last_java_pc));
6763 
6764   }
6765   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
6766 }
6767 
6768 void MacroAssembler::shlptr(Register dst, int imm8) {
6769   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
6770 }
6771 
6772 void MacroAssembler::shrptr(Register dst, int imm8) {
6773   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
6774 }
6775 
6776 void MacroAssembler::sign_extend_byte(Register reg) {
6777   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
6778     movsbl(reg, reg); // movsxb
6779   } else {
6780     shll(reg, 24);
6781     sarl(reg, 24);
6782   }
6783 }
6784 
6785 void MacroAssembler::sign_extend_short(Register reg) {
6786   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
6787     movswl(reg, reg); // movsxw
6788   } else {
6789     shll(reg, 16);
6790     sarl(reg, 16);
6791   }
6792 }
6793 
6794 //////////////////////////////////////////////////////////////////////////////////
6795 #ifndef SERIALGC
6796 
6797 void MacroAssembler::g1_write_barrier_pre(Register obj,
6798 #ifndef _LP64
6799                                           Register thread,
6800 #endif
6801                                           Register tmp,
6802                                           Register tmp2,
6803                                           bool tosca_live) {
6804   LP64_ONLY(Register thread = r15_thread;)
6805   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
6806                                        PtrQueue::byte_offset_of_active()));
6807 
6808   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
6809                                        PtrQueue::byte_offset_of_index()));
6810   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
6811                                        PtrQueue::byte_offset_of_buf()));
6812 
6813 
6814   Label done;
6815   Label runtime;
6816 
6817   // if (!marking_in_progress) goto done;
6818   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
6819     cmpl(in_progress, 0);
6820   } else {
6821     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
6822     cmpb(in_progress, 0);
6823   }
6824   jcc(Assembler::equal, done);
6825 
6826   // if (x.f == NULL) goto done;
6827 #ifdef _LP64
6828   load_heap_oop(tmp2, Address(obj, 0));
6829 #else
6830   movptr(tmp2, Address(obj, 0));
6831 #endif
6832   cmpptr(tmp2, (int32_t) NULL_WORD);
6833   jcc(Assembler::equal, done);
6834 
6835   // Can we store original value in the thread's buffer?
6836 
6837 #ifdef _LP64
6838   movslq(tmp, index);
6839   cmpq(tmp, 0);
6840 #else
6841   cmpl(index, 0);
6842 #endif
6843   jcc(Assembler::equal, runtime);
6844 #ifdef _LP64
6845   subq(tmp, wordSize);
6846   movl(index, tmp);
6847   addq(tmp, buffer);
6848 #else
6849   subl(index, wordSize);
6850   movl(tmp, buffer);
6851   addl(tmp, index);
6852 #endif
6853   movptr(Address(tmp, 0), tmp2);
6854   jmp(done);
6855   bind(runtime);
6856   // save the live input values
6857   if(tosca_live) push(rax);
6858   push(obj);
6859 #ifdef _LP64
6860   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, r15_thread);
6861 #else
6862   push(thread);
6863   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), tmp2, thread);
6864   pop(thread);
6865 #endif
6866   pop(obj);
6867   if(tosca_live) pop(rax);
6868   bind(done);
6869 
6870 }
6871 
6872 void MacroAssembler::g1_write_barrier_post(Register store_addr,
6873                                            Register new_val,
6874 #ifndef _LP64
6875                                            Register thread,
6876 #endif
6877                                            Register tmp,
6878                                            Register tmp2) {
6879 
6880   LP64_ONLY(Register thread = r15_thread;)
6881   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
6882                                        PtrQueue::byte_offset_of_index()));
6883   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
6884                                        PtrQueue::byte_offset_of_buf()));
6885   BarrierSet* bs = Universe::heap()->barrier_set();
6886   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
6887   Label done;
6888   Label runtime;
6889 
6890   // Does store cross heap regions?
6891 
6892   movptr(tmp, store_addr);
6893   xorptr(tmp, new_val);
6894   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
6895   jcc(Assembler::equal, done);
6896 
6897   // crosses regions, storing NULL?
6898 
6899   cmpptr(new_val, (int32_t) NULL_WORD);
6900   jcc(Assembler::equal, done);
6901 
6902   // storing region crossing non-NULL, is card already dirty?
6903 
6904   ExternalAddress cardtable((address) ct->byte_map_base);
6905   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
6906 #ifdef _LP64
6907   const Register card_addr = tmp;
6908 
6909   movq(card_addr, store_addr);
6910   shrq(card_addr, CardTableModRefBS::card_shift);
6911 
6912   lea(tmp2, cardtable);
6913 
6914   // get the address of the card
6915   addq(card_addr, tmp2);
6916 #else
6917   const Register card_index = tmp;
6918 
6919   movl(card_index, store_addr);
6920   shrl(card_index, CardTableModRefBS::card_shift);
6921 
6922   Address index(noreg, card_index, Address::times_1);
6923   const Register card_addr = tmp;
6924   lea(card_addr, as_Address(ArrayAddress(cardtable, index)));
6925 #endif
6926   cmpb(Address(card_addr, 0), 0);
6927   jcc(Assembler::equal, done);
6928 
6929   // storing a region crossing, non-NULL oop, card is clean.
6930   // dirty card and log.
6931 
6932   movb(Address(card_addr, 0), 0);
6933 
6934   cmpl(queue_index, 0);
6935   jcc(Assembler::equal, runtime);
6936   subl(queue_index, wordSize);
6937   movptr(tmp2, buffer);
6938 #ifdef _LP64
6939   movslq(rscratch1, queue_index);
6940   addq(tmp2, rscratch1);
6941   movq(Address(tmp2, 0), card_addr);
6942 #else
6943   addl(tmp2, queue_index);
6944   movl(Address(tmp2, 0), card_index);
6945 #endif
6946   jmp(done);
6947 
6948   bind(runtime);
6949   // save the live input values
6950   push(store_addr);
6951   push(new_val);
6952 #ifdef _LP64
6953   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
6954 #else
6955   push(thread);
6956   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
6957   pop(thread);
6958 #endif
6959   pop(new_val);
6960   pop(store_addr);
6961 
6962   bind(done);
6963 
6964 }
6965 
6966 #endif // SERIALGC
6967 //////////////////////////////////////////////////////////////////////////////////
6968 
6969 
6970 void MacroAssembler::store_check(Register obj) {
6971   // Does a store check for the oop in register obj. The content of
6972   // register obj is destroyed afterwards.
6973   store_check_part_1(obj);
6974   store_check_part_2(obj);
6975 }
6976 
6977 void MacroAssembler::store_check(Register obj, Address dst) {
6978   store_check(obj);
6979 }
6980 
6981 
6982 // split the store check operation so that other instructions can be scheduled inbetween
6983 void MacroAssembler::store_check_part_1(Register obj) {
6984   BarrierSet* bs = Universe::heap()->barrier_set();
6985   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
6986   shrptr(obj, CardTableModRefBS::card_shift);
6987 }
6988 
6989 void MacroAssembler::store_check_part_2(Register obj) {
6990   BarrierSet* bs = Universe::heap()->barrier_set();
6991   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
6992   CardTableModRefBS* ct = (CardTableModRefBS*)bs;
6993   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
6994 
6995   // The calculation for byte_map_base is as follows:
6996   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
6997   // So this essentially converts an address to a displacement and
6998   // it will never need to be relocated. On 64bit however the value may be too
6999   // large for a 32bit displacement
7000 
7001   intptr_t disp = (intptr_t) ct->byte_map_base;
7002   if (is_simm32(disp)) {
7003     Address cardtable(noreg, obj, Address::times_1, disp);
7004     movb(cardtable, 0);
7005   } else {
7006     // By doing it as an ExternalAddress disp could be converted to a rip-relative
7007     // displacement and done in a single instruction given favorable mapping and
7008     // a smarter version of as_Address. Worst case it is two instructions which
7009     // is no worse off then loading disp into a register and doing as a simple
7010     // Address() as above.
7011     // We can't do as ExternalAddress as the only style since if disp == 0 we'll
7012     // assert since NULL isn't acceptable in a reloci (see 6644928). In any case
7013     // in some cases we'll get a single instruction version.
7014 
7015     ExternalAddress cardtable((address)disp);
7016     Address index(noreg, obj, Address::times_1);
7017     movb(as_Address(ArrayAddress(cardtable, index)), 0);
7018   }
7019 }
7020 
7021 void MacroAssembler::subptr(Register dst, int32_t imm32) {
7022   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
7023 }
7024 
7025 void MacroAssembler::subptr(Register dst, Register src) {
7026   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
7027 }
7028 
7029 void MacroAssembler::test32(Register src1, AddressLiteral src2) {
7030   // src2 must be rval
7031 
7032   if (reachable(src2)) {
7033     testl(src1, as_Address(src2));
7034   } else {
7035     lea(rscratch1, src2);
7036     testl(src1, Address(rscratch1, 0));
7037   }
7038 }
7039 
7040 // C++ bool manipulation
7041 void MacroAssembler::testbool(Register dst) {
7042   if(sizeof(bool) == 1)
7043     testb(dst, 0xff);
7044   else if(sizeof(bool) == 2) {
7045     // testw implementation needed for two byte bools
7046     ShouldNotReachHere();
7047   } else if(sizeof(bool) == 4)
7048     testl(dst, dst);
7049   else
7050     // unsupported
7051     ShouldNotReachHere();
7052 }
7053 
7054 void MacroAssembler::testptr(Register dst, Register src) {
7055   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
7056 }
7057 
7058 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
7059 void MacroAssembler::tlab_allocate(Register obj,
7060                                    Register var_size_in_bytes,
7061                                    int con_size_in_bytes,
7062                                    Register t1,
7063                                    Register t2,
7064                                    Label& slow_case) {
7065   assert_different_registers(obj, t1, t2);
7066   assert_different_registers(obj, var_size_in_bytes, t1);
7067   Register end = t2;
7068   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
7069 
7070   verify_tlab();
7071 
7072   NOT_LP64(get_thread(thread));
7073 
7074   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
7075   if (var_size_in_bytes == noreg) {
7076     lea(end, Address(obj, con_size_in_bytes));
7077   } else {
7078     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
7079   }
7080   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
7081   jcc(Assembler::above, slow_case);
7082 
7083   // update the tlab top pointer
7084   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
7085 
7086   // recover var_size_in_bytes if necessary
7087   if (var_size_in_bytes == end) {
7088     subptr(var_size_in_bytes, obj);
7089   }
7090   verify_tlab();
7091 }
7092 
7093 // Preserves rbx, and rdx.
7094 void MacroAssembler::tlab_refill(Label& retry,
7095                                  Label& try_eden,
7096                                  Label& slow_case) {
7097   Register top = rax;
7098   Register t1  = rcx;
7099   Register t2  = rsi;
7100   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
7101   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
7102   Label do_refill, discard_tlab;
7103 
7104   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
7105     // No allocation in the shared eden.
7106     jmp(slow_case);
7107   }
7108 
7109   NOT_LP64(get_thread(thread_reg));
7110 
7111   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
7112   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
7113 
7114   // calculate amount of free space
7115   subptr(t1, top);
7116   shrptr(t1, LogHeapWordSize);
7117 
7118   // Retain tlab and allocate object in shared space if
7119   // the amount free in the tlab is too large to discard.
7120   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
7121   jcc(Assembler::lessEqual, discard_tlab);
7122 
7123   // Retain
7124   // %%% yuck as movptr...
7125   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
7126   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
7127   if (TLABStats) {
7128     // increment number of slow_allocations
7129     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
7130   }
7131   jmp(try_eden);
7132 
7133   bind(discard_tlab);
7134   if (TLABStats) {
7135     // increment number of refills
7136     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
7137     // accumulate wastage -- t1 is amount free in tlab
7138     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
7139   }
7140 
7141   // if tlab is currently allocated (top or end != null) then
7142   // fill [top, end + alignment_reserve) with array object
7143   testptr (top, top);
7144   jcc(Assembler::zero, do_refill);
7145 
7146   // set up the mark word
7147   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
7148   // set the length to the remaining space
7149   subptr(t1, typeArrayOopDesc::header_size(T_INT));
7150   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
7151   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
7152   movptr(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
7153   // set klass to intArrayKlass
7154   // dubious reloc why not an oop reloc?
7155   movptr(t1, ExternalAddress((address) Universe::intArrayKlassObj_addr()));
7156   // store klass last.  concurrent gcs assumes klass length is valid if
7157   // klass field is not null.
7158   store_klass(top, t1);
7159 
7160   // refill the tlab with an eden allocation
7161   bind(do_refill);
7162   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
7163   shlptr(t1, LogHeapWordSize);
7164   // add object_size ??
7165   eden_allocate(top, t1, 0, t2, slow_case);
7166 
7167   // Check that t1 was preserved in eden_allocate.
7168 #ifdef ASSERT
7169   if (UseTLAB) {
7170     Label ok;
7171     Register tsize = rsi;
7172     assert_different_registers(tsize, thread_reg, t1);
7173     push(tsize);
7174     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
7175     shlptr(tsize, LogHeapWordSize);
7176     cmpptr(t1, tsize);
7177     jcc(Assembler::equal, ok);
7178     stop("assert(t1 != tlab size)");
7179     should_not_reach_here();
7180 
7181     bind(ok);
7182     pop(tsize);
7183   }
7184 #endif
7185   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
7186   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
7187   addptr(top, t1);
7188   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
7189   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
7190   verify_tlab();
7191   jmp(retry);
7192 }
7193 
7194 static const double     pi_4 =  0.7853981633974483;
7195 
7196 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
7197   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
7198   // was attempted in this code; unfortunately it appears that the
7199   // switch to 80-bit precision and back causes this to be
7200   // unprofitable compared with simply performing a runtime call if
7201   // the argument is out of the (-pi/4, pi/4) range.
7202 
7203   Register tmp = noreg;
7204   if (!VM_Version::supports_cmov()) {
7205     // fcmp needs a temporary so preserve rbx,
7206     tmp = rbx;
7207     push(tmp);
7208   }
7209 
7210   Label slow_case, done;
7211 
7212   ExternalAddress pi4_adr = (address)&pi_4;
7213   if (reachable(pi4_adr)) {
7214     // x ?<= pi/4
7215     fld_d(pi4_adr);
7216     fld_s(1);                // Stack:  X  PI/4  X
7217     fabs();                  // Stack: |X| PI/4  X
7218     fcmp(tmp);
7219     jcc(Assembler::above, slow_case);
7220 
7221     // fastest case: -pi/4 <= x <= pi/4
7222     switch(trig) {
7223     case 's':
7224       fsin();
7225       break;
7226     case 'c':
7227       fcos();
7228       break;
7229     case 't':
7230       ftan();
7231       break;
7232     default:
7233       assert(false, "bad intrinsic");
7234       break;
7235     }
7236     jmp(done);
7237   }
7238 
7239   // slow case: runtime call
7240   bind(slow_case);
7241   // Preserve registers across runtime call
7242   pusha();
7243   int incoming_argument_and_return_value_offset = -1;
7244   if (num_fpu_regs_in_use > 1) {
7245     // Must preserve all other FPU regs (could alternatively convert
7246     // SharedRuntime::dsin and dcos into assembly routines known not to trash
7247     // FPU state, but can not trust C compiler)
7248     NEEDS_CLEANUP;
7249     // NOTE that in this case we also push the incoming argument to
7250     // the stack and restore it later; we also use this stack slot to
7251     // hold the return value from dsin or dcos.
7252     for (int i = 0; i < num_fpu_regs_in_use; i++) {
7253       subptr(rsp, sizeof(jdouble));
7254       fstp_d(Address(rsp, 0));
7255     }
7256     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
7257     fld_d(Address(rsp, incoming_argument_and_return_value_offset));
7258   }
7259   subptr(rsp, sizeof(jdouble));
7260   fstp_d(Address(rsp, 0));
7261 #ifdef _LP64
7262   movdbl(xmm0, Address(rsp, 0));
7263 #endif // _LP64
7264 
7265   // NOTE: we must not use call_VM_leaf here because that requires a
7266   // complete interpreter frame in debug mode -- same bug as 4387334
7267   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
7268   // do proper 64bit abi
7269 
7270   NEEDS_CLEANUP;
7271   // Need to add stack banging before this runtime call if it needs to
7272   // be taken; however, there is no generic stack banging routine at
7273   // the MacroAssembler level
7274   switch(trig) {
7275   case 's':
7276     {
7277       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 0);
7278     }
7279     break;
7280   case 'c':
7281     {
7282       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 0);
7283     }
7284     break;
7285   case 't':
7286     {
7287       MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 0);
7288     }
7289     break;
7290   default:
7291     assert(false, "bad intrinsic");
7292     break;
7293   }
7294 #ifdef _LP64
7295     movsd(Address(rsp, 0), xmm0);
7296     fld_d(Address(rsp, 0));
7297 #endif // _LP64
7298   addptr(rsp, sizeof(jdouble));
7299   if (num_fpu_regs_in_use > 1) {
7300     // Must save return value to stack and then restore entire FPU stack
7301     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
7302     for (int i = 0; i < num_fpu_regs_in_use; i++) {
7303       fld_d(Address(rsp, 0));
7304       addptr(rsp, sizeof(jdouble));
7305     }
7306   }
7307   popa();
7308 
7309   // Come here with result in F-TOS
7310   bind(done);
7311 
7312   if (tmp != noreg) {
7313     pop(tmp);
7314   }
7315 }
7316 
7317 
7318 // Look up the method for a megamorphic invokeinterface call.
7319 // The target method is determined by <intf_klass, itable_index>.
7320 // The receiver klass is in recv_klass.
7321 // On success, the result will be in method_result, and execution falls through.
7322 // On failure, execution transfers to the given label.
7323 void MacroAssembler::lookup_interface_method(Register recv_klass,
7324                                              Register intf_klass,
7325                                              RegisterOrConstant itable_index,
7326                                              Register method_result,
7327                                              Register scan_temp,
7328                                              Label& L_no_such_interface) {
7329   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
7330   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
7331          "caller must use same register for non-constant itable index as for method");
7332 
7333   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
7334   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
7335   int itentry_off = itableMethodEntry::method_offset_in_bytes();
7336   int scan_step   = itableOffsetEntry::size() * wordSize;
7337   int vte_size    = vtableEntry::size() * wordSize;
7338   Address::ScaleFactor times_vte_scale = Address::times_ptr;
7339   assert(vte_size == wordSize, "else adjust times_vte_scale");
7340 
7341   movl(scan_temp, Address(recv_klass, instanceKlass::vtable_length_offset() * wordSize));
7342 
7343   // %%% Could store the aligned, prescaled offset in the klassoop.
7344   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
7345   if (HeapWordsPerLong > 1) {
7346     // Round up to align_object_offset boundary
7347     // see code for instanceKlass::start_of_itable!
7348     round_to(scan_temp, BytesPerLong);
7349   }
7350 
7351   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
7352   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
7353   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
7354 
7355   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
7356   //   if (scan->interface() == intf) {
7357   //     result = (klass + scan->offset() + itable_index);
7358   //   }
7359   // }
7360   Label search, found_method;
7361 
7362   for (int peel = 1; peel >= 0; peel--) {
7363     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
7364     cmpptr(intf_klass, method_result);
7365 
7366     if (peel) {
7367       jccb(Assembler::equal, found_method);
7368     } else {
7369       jccb(Assembler::notEqual, search);
7370       // (invert the test to fall through to found_method...)
7371     }
7372 
7373     if (!peel)  break;
7374 
7375     bind(search);
7376 
7377     // Check that the previous entry is non-null.  A null entry means that
7378     // the receiver class doesn't implement the interface, and wasn't the
7379     // same as when the caller was compiled.
7380     testptr(method_result, method_result);
7381     jcc(Assembler::zero, L_no_such_interface);
7382     addptr(scan_temp, scan_step);
7383   }
7384 
7385   bind(found_method);
7386 
7387   // Got a hit.
7388   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
7389   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
7390 }
7391 
7392 
7393 void MacroAssembler::check_klass_subtype(Register sub_klass,
7394                            Register super_klass,
7395                            Register temp_reg,
7396                            Label& L_success) {
7397   Label L_failure;
7398   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
7399   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
7400   bind(L_failure);
7401 }
7402 
7403 
7404 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
7405                                                    Register super_klass,
7406                                                    Register temp_reg,
7407                                                    Label* L_success,
7408                                                    Label* L_failure,
7409                                                    Label* L_slow_path,
7410                                         RegisterOrConstant super_check_offset) {
7411   assert_different_registers(sub_klass, super_klass, temp_reg);
7412   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
7413   if (super_check_offset.is_register()) {
7414     assert_different_registers(sub_klass, super_klass,
7415                                super_check_offset.as_register());
7416   } else if (must_load_sco) {
7417     assert(temp_reg != noreg, "supply either a temp or a register offset");
7418   }
7419 
7420   Label L_fallthrough;
7421   int label_nulls = 0;
7422   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
7423   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
7424   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
7425   assert(label_nulls <= 1, "at most one NULL in the batch");
7426 
7427   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
7428                    Klass::secondary_super_cache_offset_in_bytes());
7429   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
7430                     Klass::super_check_offset_offset_in_bytes());
7431   Address super_check_offset_addr(super_klass, sco_offset);
7432 
7433   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
7434   // range of a jccb.  If this routine grows larger, reconsider at
7435   // least some of these.
7436 #define local_jcc(assembler_cond, label)                                \
7437   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
7438   else                             jcc( assembler_cond, label) /*omit semi*/
7439 
7440   // Hacked jmp, which may only be used just before L_fallthrough.
7441 #define final_jmp(label)                                                \
7442   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
7443   else                            jmp(label)                /*omit semi*/
7444 
7445   // If the pointers are equal, we are done (e.g., String[] elements).
7446   // This self-check enables sharing of secondary supertype arrays among
7447   // non-primary types such as array-of-interface.  Otherwise, each such
7448   // type would need its own customized SSA.
7449   // We move this check to the front of the fast path because many
7450   // type checks are in fact trivially successful in this manner,
7451   // so we get a nicely predicted branch right at the start of the check.
7452   cmpptr(sub_klass, super_klass);
7453   local_jcc(Assembler::equal, *L_success);
7454 
7455   // Check the supertype display:
7456   if (must_load_sco) {
7457     // Positive movl does right thing on LP64.
7458     movl(temp_reg, super_check_offset_addr);
7459     super_check_offset = RegisterOrConstant(temp_reg);
7460   }
7461   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
7462   cmpptr(super_klass, super_check_addr); // load displayed supertype
7463 
7464   // This check has worked decisively for primary supers.
7465   // Secondary supers are sought in the super_cache ('super_cache_addr').
7466   // (Secondary supers are interfaces and very deeply nested subtypes.)
7467   // This works in the same check above because of a tricky aliasing
7468   // between the super_cache and the primary super display elements.
7469   // (The 'super_check_addr' can address either, as the case requires.)
7470   // Note that the cache is updated below if it does not help us find
7471   // what we need immediately.
7472   // So if it was a primary super, we can just fail immediately.
7473   // Otherwise, it's the slow path for us (no success at this point).
7474 
7475   if (super_check_offset.is_register()) {
7476     local_jcc(Assembler::equal, *L_success);
7477     cmpl(super_check_offset.as_register(), sc_offset);
7478     if (L_failure == &L_fallthrough) {
7479       local_jcc(Assembler::equal, *L_slow_path);
7480     } else {
7481       local_jcc(Assembler::notEqual, *L_failure);
7482       final_jmp(*L_slow_path);
7483     }
7484   } else if (super_check_offset.as_constant() == sc_offset) {
7485     // Need a slow path; fast failure is impossible.
7486     if (L_slow_path == &L_fallthrough) {
7487       local_jcc(Assembler::equal, *L_success);
7488     } else {
7489       local_jcc(Assembler::notEqual, *L_slow_path);
7490       final_jmp(*L_success);
7491     }
7492   } else {
7493     // No slow path; it's a fast decision.
7494     if (L_failure == &L_fallthrough) {
7495       local_jcc(Assembler::equal, *L_success);
7496     } else {
7497       local_jcc(Assembler::notEqual, *L_failure);
7498       final_jmp(*L_success);
7499     }
7500   }
7501 
7502   bind(L_fallthrough);
7503 
7504 #undef local_jcc
7505 #undef final_jmp
7506 }
7507 
7508 
7509 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
7510                                                    Register super_klass,
7511                                                    Register temp_reg,
7512                                                    Register temp2_reg,
7513                                                    Label* L_success,
7514                                                    Label* L_failure,
7515                                                    bool set_cond_codes) {
7516   assert_different_registers(sub_klass, super_klass, temp_reg);
7517   if (temp2_reg != noreg)
7518     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
7519 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
7520 
7521   Label L_fallthrough;
7522   int label_nulls = 0;
7523   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
7524   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
7525   assert(label_nulls <= 1, "at most one NULL in the batch");
7526 
7527   // a couple of useful fields in sub_klass:
7528   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
7529                    Klass::secondary_supers_offset_in_bytes());
7530   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
7531                    Klass::secondary_super_cache_offset_in_bytes());
7532   Address secondary_supers_addr(sub_klass, ss_offset);
7533   Address super_cache_addr(     sub_klass, sc_offset);
7534 
7535   // Do a linear scan of the secondary super-klass chain.
7536   // This code is rarely used, so simplicity is a virtue here.
7537   // The repne_scan instruction uses fixed registers, which we must spill.
7538   // Don't worry too much about pre-existing connections with the input regs.
7539 
7540   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
7541   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
7542 
7543   // Get super_klass value into rax (even if it was in rdi or rcx).
7544   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
7545   if (super_klass != rax || UseCompressedOops) {
7546     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
7547     mov(rax, super_klass);
7548   }
7549   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
7550   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
7551 
7552 #ifndef PRODUCT
7553   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
7554   ExternalAddress pst_counter_addr((address) pst_counter);
7555   NOT_LP64(  incrementl(pst_counter_addr) );
7556   LP64_ONLY( lea(rcx, pst_counter_addr) );
7557   LP64_ONLY( incrementl(Address(rcx, 0)) );
7558 #endif //PRODUCT
7559 
7560   // We will consult the secondary-super array.
7561   movptr(rdi, secondary_supers_addr);
7562   // Load the array length.  (Positive movl does right thing on LP64.)
7563   movl(rcx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
7564   // Skip to start of data.
7565   addptr(rdi, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
7566 
7567   // Scan RCX words at [RDI] for an occurrence of RAX.
7568   // Set NZ/Z based on last compare.
7569 #ifdef _LP64
7570   // This part is tricky, as values in supers array could be 32 or 64 bit wide
7571   // and we store values in objArrays always encoded, thus we need to encode
7572   // the value of rax before repne.  Note that rax is dead after the repne.
7573   if (UseCompressedOops) {
7574     encode_heap_oop_not_null(rax);
7575     // The superclass is never null; it would be a basic system error if a null
7576     // pointer were to sneak in here.  Note that we have already loaded the
7577     // Klass::super_check_offset from the super_klass in the fast path,
7578     // so if there is a null in that register, we are already in the afterlife.
7579     repne_scanl();
7580   } else
7581 #endif // _LP64
7582     repne_scan();
7583 
7584   // Unspill the temp. registers:
7585   if (pushed_rdi)  pop(rdi);
7586   if (pushed_rcx)  pop(rcx);
7587   if (pushed_rax)  pop(rax);
7588 
7589   if (set_cond_codes) {
7590     // Special hack for the AD files:  rdi is guaranteed non-zero.
7591     assert(!pushed_rdi, "rdi must be left non-NULL");
7592     // Also, the condition codes are properly set Z/NZ on succeed/failure.
7593   }
7594 
7595   if (L_failure == &L_fallthrough)
7596         jccb(Assembler::notEqual, *L_failure);
7597   else  jcc(Assembler::notEqual, *L_failure);
7598 
7599   // Success.  Cache the super we found and proceed in triumph.
7600   movptr(super_cache_addr, super_klass);
7601 
7602   if (L_success != &L_fallthrough) {
7603     jmp(*L_success);
7604   }
7605 
7606 #undef IS_A_TEMP
7607 
7608   bind(L_fallthrough);
7609 }
7610 
7611 
7612 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
7613   ucomisd(dst, as_Address(src));
7614 }
7615 
7616 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
7617   ucomiss(dst, as_Address(src));
7618 }
7619 
7620 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
7621   if (reachable(src)) {
7622     xorpd(dst, as_Address(src));
7623   } else {
7624     lea(rscratch1, src);
7625     xorpd(dst, Address(rscratch1, 0));
7626   }
7627 }
7628 
7629 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
7630   if (reachable(src)) {
7631     xorps(dst, as_Address(src));
7632   } else {
7633     lea(rscratch1, src);
7634     xorps(dst, Address(rscratch1, 0));
7635   }
7636 }
7637 
7638 void MacroAssembler::verify_oop(Register reg, const char* s) {
7639   if (!VerifyOops) return;
7640 
7641   // Pass register number to verify_oop_subroutine
7642   char* b = new char[strlen(s) + 50];
7643   sprintf(b, "verify_oop: %s: %s", reg->name(), s);
7644   push(rax);                          // save rax,
7645   push(reg);                          // pass register argument
7646   ExternalAddress buffer((address) b);
7647   // avoid using pushptr, as it modifies scratch registers
7648   // and our contract is not to modify anything
7649   movptr(rax, buffer.addr());
7650   push(rax);
7651   // call indirectly to solve generation ordering problem
7652   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
7653   call(rax);
7654 }
7655 
7656 
7657 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
7658                                                       Register tmp,
7659                                                       int offset) {
7660   intptr_t value = *delayed_value_addr;
7661   if (value != 0)
7662     return RegisterOrConstant(value + offset);
7663 
7664   // load indirectly to solve generation ordering problem
7665   movptr(tmp, ExternalAddress((address) delayed_value_addr));
7666 
7667 #ifdef ASSERT
7668   Label L;
7669   testptr(tmp, tmp);
7670   jccb(Assembler::notZero, L);
7671   hlt();
7672   bind(L);
7673 #endif
7674 
7675   if (offset != 0)
7676     addptr(tmp, offset);
7677 
7678   return RegisterOrConstant(tmp);
7679 }
7680 
7681 
7682 // registers on entry:
7683 //  - rax ('check' register): required MethodType
7684 //  - rcx: method handle
7685 //  - rdx, rsi, or ?: killable temp
7686 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
7687                                               Register temp_reg,
7688                                               Label& wrong_method_type) {
7689   if (UseCompressedOops)  unimplemented();  // field accesses must decode
7690   // compare method type against that of the receiver
7691   cmpptr(mtype_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)));
7692   jcc(Assembler::notEqual, wrong_method_type);
7693 }
7694 
7695 
7696 // A method handle has a "vmslots" field which gives the size of its
7697 // argument list in JVM stack slots.  This field is either located directly
7698 // in every method handle, or else is indirectly accessed through the
7699 // method handle's MethodType.  This macro hides the distinction.
7700 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
7701                                                 Register temp_reg) {
7702   if (UseCompressedOops)  unimplemented();  // field accesses must decode
7703   // load mh.type.form.vmslots
7704   if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
7705     // hoist vmslots into every mh to avoid dependent load chain
7706     movl(vmslots_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)));
7707   } else {
7708     Register temp2_reg = vmslots_reg;
7709     movptr(temp2_reg, Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)));
7710     movptr(temp2_reg, Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)));
7711     movl(vmslots_reg, Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)));
7712   }
7713 }
7714 
7715 
7716 // registers on entry:
7717 //  - rcx: method handle
7718 //  - rdx: killable temp (interpreted only)
7719 //  - rax: killable temp (compiled only)
7720 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg) {
7721   assert(mh_reg == rcx, "caller must put MH object in rcx");
7722   assert_different_registers(mh_reg, temp_reg);
7723 
7724   if (UseCompressedOops)  unimplemented();  // field accesses must decode
7725 
7726   // pick out the interpreted side of the handler
7727   movptr(temp_reg, Address(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg)));
7728 
7729   // off we go...
7730   jmp(Address(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes()));
7731 
7732   // for the various stubs which take control at this point,
7733   // see MethodHandles::generate_method_handle_stub
7734 }
7735 
7736 
7737 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
7738                                          int extra_slot_offset) {
7739   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
7740   int stackElementSize = Interpreter::stackElementSize();
7741   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
7742 #ifdef ASSERT
7743   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
7744   assert(offset1 - offset == stackElementSize, "correct arithmetic");
7745 #endif
7746   Register             scale_reg    = noreg;
7747   Address::ScaleFactor scale_factor = Address::no_scale;
7748   if (arg_slot.is_constant()) {
7749     offset += arg_slot.as_constant() * stackElementSize;
7750   } else {
7751     scale_reg    = arg_slot.as_register();
7752     scale_factor = Address::times(stackElementSize);
7753   }
7754   offset += wordSize;           // return PC is on stack
7755   return Address(rsp, scale_reg, scale_factor, offset);
7756 }
7757 
7758 
7759 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
7760   if (!VerifyOops) return;
7761 
7762   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
7763   // Pass register number to verify_oop_subroutine
7764   char* b = new char[strlen(s) + 50];
7765   sprintf(b, "verify_oop_addr: %s", s);
7766 
7767   push(rax);                          // save rax,
7768   // addr may contain rsp so we will have to adjust it based on the push
7769   // we just did
7770   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
7771   // stores rax into addr which is backwards of what was intended.
7772   if (addr.uses(rsp)) {
7773     lea(rax, addr);
7774     pushptr(Address(rax, BytesPerWord));
7775   } else {
7776     pushptr(addr);
7777   }
7778 
7779   ExternalAddress buffer((address) b);
7780   // pass msg argument
7781   // avoid using pushptr, as it modifies scratch registers
7782   // and our contract is not to modify anything
7783   movptr(rax, buffer.addr());
7784   push(rax);
7785 
7786   // call indirectly to solve generation ordering problem
7787   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
7788   call(rax);
7789   // Caller pops the arguments and restores rax, from the stack
7790 }
7791 
7792 void MacroAssembler::verify_tlab() {
7793 #ifdef ASSERT
7794   if (UseTLAB && VerifyOops) {
7795     Label next, ok;
7796     Register t1 = rsi;
7797     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
7798 
7799     push(t1);
7800     NOT_LP64(push(thread_reg));
7801     NOT_LP64(get_thread(thread_reg));
7802 
7803     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
7804     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
7805     jcc(Assembler::aboveEqual, next);
7806     stop("assert(top >= start)");
7807     should_not_reach_here();
7808 
7809     bind(next);
7810     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
7811     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
7812     jcc(Assembler::aboveEqual, ok);
7813     stop("assert(top <= end)");
7814     should_not_reach_here();
7815 
7816     bind(ok);
7817     NOT_LP64(pop(thread_reg));
7818     pop(t1);
7819   }
7820 #endif
7821 }
7822 
7823 class ControlWord {
7824  public:
7825   int32_t _value;
7826 
7827   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
7828   int  precision_control() const       { return  (_value >>  8) & 3      ; }
7829   bool precision() const               { return ((_value >>  5) & 1) != 0; }
7830   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
7831   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
7832   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
7833   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
7834   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
7835 
7836   void print() const {
7837     // rounding control
7838     const char* rc;
7839     switch (rounding_control()) {
7840       case 0: rc = "round near"; break;
7841       case 1: rc = "round down"; break;
7842       case 2: rc = "round up  "; break;
7843       case 3: rc = "chop      "; break;
7844     };
7845     // precision control
7846     const char* pc;
7847     switch (precision_control()) {
7848       case 0: pc = "24 bits "; break;
7849       case 1: pc = "reserved"; break;
7850       case 2: pc = "53 bits "; break;
7851       case 3: pc = "64 bits "; break;
7852     };
7853     // flags
7854     char f[9];
7855     f[0] = ' ';
7856     f[1] = ' ';
7857     f[2] = (precision   ()) ? 'P' : 'p';
7858     f[3] = (underflow   ()) ? 'U' : 'u';
7859     f[4] = (overflow    ()) ? 'O' : 'o';
7860     f[5] = (zero_divide ()) ? 'Z' : 'z';
7861     f[6] = (denormalized()) ? 'D' : 'd';
7862     f[7] = (invalid     ()) ? 'I' : 'i';
7863     f[8] = '\x0';
7864     // output
7865     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
7866   }
7867 
7868 };
7869 
7870 class StatusWord {
7871  public:
7872   int32_t _value;
7873 
7874   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
7875   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
7876   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
7877   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
7878   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
7879   int  top() const                     { return  (_value >> 11) & 7      ; }
7880   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
7881   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
7882   bool precision() const               { return ((_value >>  5) & 1) != 0; }
7883   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
7884   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
7885   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
7886   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
7887   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
7888 
7889   void print() const {
7890     // condition codes
7891     char c[5];
7892     c[0] = (C3()) ? '3' : '-';
7893     c[1] = (C2()) ? '2' : '-';
7894     c[2] = (C1()) ? '1' : '-';
7895     c[3] = (C0()) ? '0' : '-';
7896     c[4] = '\x0';
7897     // flags
7898     char f[9];
7899     f[0] = (error_status()) ? 'E' : '-';
7900     f[1] = (stack_fault ()) ? 'S' : '-';
7901     f[2] = (precision   ()) ? 'P' : '-';
7902     f[3] = (underflow   ()) ? 'U' : '-';
7903     f[4] = (overflow    ()) ? 'O' : '-';
7904     f[5] = (zero_divide ()) ? 'Z' : '-';
7905     f[6] = (denormalized()) ? 'D' : '-';
7906     f[7] = (invalid     ()) ? 'I' : '-';
7907     f[8] = '\x0';
7908     // output
7909     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
7910   }
7911 
7912 };
7913 
7914 class TagWord {
7915  public:
7916   int32_t _value;
7917 
7918   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
7919 
7920   void print() const {
7921     printf("%04x", _value & 0xFFFF);
7922   }
7923 
7924 };
7925 
7926 class FPU_Register {
7927  public:
7928   int32_t _m0;
7929   int32_t _m1;
7930   int16_t _ex;
7931 
7932   bool is_indefinite() const           {
7933     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
7934   }
7935 
7936   void print() const {
7937     char  sign = (_ex < 0) ? '-' : '+';
7938     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
7939     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
7940   };
7941 
7942 };
7943 
7944 class FPU_State {
7945  public:
7946   enum {
7947     register_size       = 10,
7948     number_of_registers =  8,
7949     register_mask       =  7
7950   };
7951 
7952   ControlWord  _control_word;
7953   StatusWord   _status_word;
7954   TagWord      _tag_word;
7955   int32_t      _error_offset;
7956   int32_t      _error_selector;
7957   int32_t      _data_offset;
7958   int32_t      _data_selector;
7959   int8_t       _register[register_size * number_of_registers];
7960 
7961   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
7962   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
7963 
7964   const char* tag_as_string(int tag) const {
7965     switch (tag) {
7966       case 0: return "valid";
7967       case 1: return "zero";
7968       case 2: return "special";
7969       case 3: return "empty";
7970     }
7971     ShouldNotReachHere()
7972     return NULL;
7973   }
7974 
7975   void print() const {
7976     // print computation registers
7977     { int t = _status_word.top();
7978       for (int i = 0; i < number_of_registers; i++) {
7979         int j = (i - t) & register_mask;
7980         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
7981         st(j)->print();
7982         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
7983       }
7984     }
7985     printf("\n");
7986     // print control registers
7987     printf("ctrl = "); _control_word.print(); printf("\n");
7988     printf("stat = "); _status_word .print(); printf("\n");
7989     printf("tags = "); _tag_word    .print(); printf("\n");
7990   }
7991 
7992 };
7993 
7994 class Flag_Register {
7995  public:
7996   int32_t _value;
7997 
7998   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
7999   bool direction() const               { return ((_value >> 10) & 1) != 0; }
8000   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
8001   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
8002   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
8003   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
8004   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
8005 
8006   void print() const {
8007     // flags
8008     char f[8];
8009     f[0] = (overflow       ()) ? 'O' : '-';
8010     f[1] = (direction      ()) ? 'D' : '-';
8011     f[2] = (sign           ()) ? 'S' : '-';
8012     f[3] = (zero           ()) ? 'Z' : '-';
8013     f[4] = (auxiliary_carry()) ? 'A' : '-';
8014     f[5] = (parity         ()) ? 'P' : '-';
8015     f[6] = (carry          ()) ? 'C' : '-';
8016     f[7] = '\x0';
8017     // output
8018     printf("%08x  flags = %s", _value, f);
8019   }
8020 
8021 };
8022 
8023 class IU_Register {
8024  public:
8025   int32_t _value;
8026 
8027   void print() const {
8028     printf("%08x  %11d", _value, _value);
8029   }
8030 
8031 };
8032 
8033 class IU_State {
8034  public:
8035   Flag_Register _eflags;
8036   IU_Register   _rdi;
8037   IU_Register   _rsi;
8038   IU_Register   _rbp;
8039   IU_Register   _rsp;
8040   IU_Register   _rbx;
8041   IU_Register   _rdx;
8042   IU_Register   _rcx;
8043   IU_Register   _rax;
8044 
8045   void print() const {
8046     // computation registers
8047     printf("rax,  = "); _rax.print(); printf("\n");
8048     printf("rbx,  = "); _rbx.print(); printf("\n");
8049     printf("rcx  = "); _rcx.print(); printf("\n");
8050     printf("rdx  = "); _rdx.print(); printf("\n");
8051     printf("rdi  = "); _rdi.print(); printf("\n");
8052     printf("rsi  = "); _rsi.print(); printf("\n");
8053     printf("rbp,  = "); _rbp.print(); printf("\n");
8054     printf("rsp  = "); _rsp.print(); printf("\n");
8055     printf("\n");
8056     // control registers
8057     printf("flgs = "); _eflags.print(); printf("\n");
8058   }
8059 };
8060 
8061 
8062 class CPU_State {
8063  public:
8064   FPU_State _fpu_state;
8065   IU_State  _iu_state;
8066 
8067   void print() const {
8068     printf("--------------------------------------------------\n");
8069     _iu_state .print();
8070     printf("\n");
8071     _fpu_state.print();
8072     printf("--------------------------------------------------\n");
8073   }
8074 
8075 };
8076 
8077 
8078 static void _print_CPU_state(CPU_State* state) {
8079   state->print();
8080 };
8081 
8082 
8083 void MacroAssembler::print_CPU_state() {
8084   push_CPU_state();
8085   push(rsp);                // pass CPU state
8086   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
8087   addptr(rsp, wordSize);       // discard argument
8088   pop_CPU_state();
8089 }
8090 
8091 
8092 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
8093   static int counter = 0;
8094   FPU_State* fs = &state->_fpu_state;
8095   counter++;
8096   // For leaf calls, only verify that the top few elements remain empty.
8097   // We only need 1 empty at the top for C2 code.
8098   if( stack_depth < 0 ) {
8099     if( fs->tag_for_st(7) != 3 ) {
8100       printf("FPR7 not empty\n");
8101       state->print();
8102       assert(false, "error");
8103       return false;
8104     }
8105     return true;                // All other stack states do not matter
8106   }
8107 
8108   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
8109          "bad FPU control word");
8110 
8111   // compute stack depth
8112   int i = 0;
8113   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
8114   int d = i;
8115   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
8116   // verify findings
8117   if (i != FPU_State::number_of_registers) {
8118     // stack not contiguous
8119     printf("%s: stack not contiguous at ST%d\n", s, i);
8120     state->print();
8121     assert(false, "error");
8122     return false;
8123   }
8124   // check if computed stack depth corresponds to expected stack depth
8125   if (stack_depth < 0) {
8126     // expected stack depth is -stack_depth or less
8127     if (d > -stack_depth) {
8128       // too many elements on the stack
8129       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
8130       state->print();
8131       assert(false, "error");
8132       return false;
8133     }
8134   } else {
8135     // expected stack depth is stack_depth
8136     if (d != stack_depth) {
8137       // wrong stack depth
8138       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
8139       state->print();
8140       assert(false, "error");
8141       return false;
8142     }
8143   }
8144   // everything is cool
8145   return true;
8146 }
8147 
8148 
8149 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
8150   if (!VerifyFPU) return;
8151   push_CPU_state();
8152   push(rsp);                // pass CPU state
8153   ExternalAddress msg((address) s);
8154   // pass message string s
8155   pushptr(msg.addr());
8156   push(stack_depth);        // pass stack depth
8157   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
8158   addptr(rsp, 3 * wordSize);   // discard arguments
8159   // check for error
8160   { Label L;
8161     testl(rax, rax);
8162     jcc(Assembler::notZero, L);
8163     int3();                  // break if error condition
8164     bind(L);
8165   }
8166   pop_CPU_state();
8167 }
8168 
8169 void MacroAssembler::load_klass(Register dst, Register src) {
8170 #ifdef _LP64
8171   if (UseCompressedOops) {
8172     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8173     decode_heap_oop_not_null(dst);
8174   } else
8175 #endif
8176     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8177 }
8178 
8179 void MacroAssembler::load_prototype_header(Register dst, Register src) {
8180 #ifdef _LP64
8181   if (UseCompressedOops) {
8182     assert (Universe::heap() != NULL, "java heap should be initialized");
8183     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8184     if (Universe::narrow_oop_shift() != 0) {
8185       assert(Address::times_8 == LogMinObjAlignmentInBytes &&
8186              Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
8187       movq(dst, Address(r12_heapbase, dst, Address::times_8, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8188     } else {
8189       movq(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8190     }
8191   } else
8192 #endif
8193   {
8194     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
8195     movptr(dst, Address(dst, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()));
8196   }
8197 }
8198 
8199 void MacroAssembler::store_klass(Register dst, Register src) {
8200 #ifdef _LP64
8201   if (UseCompressedOops) {
8202     encode_heap_oop_not_null(src);
8203     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8204   } else
8205 #endif
8206     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
8207 }
8208 
8209 #ifdef _LP64
8210 void MacroAssembler::store_klass_gap(Register dst, Register src) {
8211   if (UseCompressedOops) {
8212     // Store to klass gap in destination
8213     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
8214   }
8215 }
8216 
8217 void MacroAssembler::load_heap_oop(Register dst, Address src) {
8218   if (UseCompressedOops) {
8219     movl(dst, src);
8220     decode_heap_oop(dst);
8221   } else {
8222     movq(dst, src);
8223   }
8224 }
8225 
8226 void MacroAssembler::store_heap_oop(Address dst, Register src) {
8227   if (UseCompressedOops) {
8228     assert(!dst.uses(src), "not enough registers");
8229     encode_heap_oop(src);
8230     movl(dst, src);
8231   } else {
8232     movq(dst, src);
8233   }
8234 }
8235 
8236 // Used for storing NULLs.
8237 void MacroAssembler::store_heap_oop_null(Address dst) {
8238   if (UseCompressedOops) {
8239     movl(dst, (int32_t)NULL_WORD);
8240   } else {
8241     movslq(dst, (int32_t)NULL_WORD);
8242   }
8243 }
8244 
8245 // Algorithm must match oop.inline.hpp encode_heap_oop.
8246 void MacroAssembler::encode_heap_oop(Register r) {
8247   assert (UseCompressedOops, "should be compressed");
8248   assert (Universe::heap() != NULL, "java heap should be initialized");
8249   if (Universe::narrow_oop_base() == NULL) {
8250     verify_oop(r, "broken oop in encode_heap_oop");
8251     if (Universe::narrow_oop_shift() != 0) {
8252       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8253       shrq(r, LogMinObjAlignmentInBytes);
8254     }
8255     return;
8256   }
8257 #ifdef ASSERT
8258   if (CheckCompressedOops) {
8259     Label ok;
8260     push(rscratch1); // cmpptr trashes rscratch1
8261     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8262     jcc(Assembler::equal, ok);
8263     stop("MacroAssembler::encode_heap_oop: heap base corrupted?");
8264     bind(ok);
8265     pop(rscratch1);
8266   }
8267 #endif
8268   verify_oop(r, "broken oop in encode_heap_oop");
8269   testq(r, r);
8270   cmovq(Assembler::equal, r, r12_heapbase);
8271   subq(r, r12_heapbase);
8272   shrq(r, LogMinObjAlignmentInBytes);
8273 }
8274 
8275 void MacroAssembler::encode_heap_oop_not_null(Register r) {
8276   assert (UseCompressedOops, "should be compressed");
8277   assert (Universe::heap() != NULL, "java heap should be initialized");
8278 #ifdef ASSERT
8279   if (CheckCompressedOops) {
8280     Label ok;
8281     testq(r, r);
8282     jcc(Assembler::notEqual, ok);
8283     stop("null oop passed to encode_heap_oop_not_null");
8284     bind(ok);
8285   }
8286 #endif
8287   verify_oop(r, "broken oop in encode_heap_oop_not_null");
8288   if (Universe::narrow_oop_base() != NULL) {
8289     subq(r, r12_heapbase);
8290   }
8291   if (Universe::narrow_oop_shift() != 0) {
8292     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8293     shrq(r, LogMinObjAlignmentInBytes);
8294   }
8295 }
8296 
8297 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
8298   assert (UseCompressedOops, "should be compressed");
8299   assert (Universe::heap() != NULL, "java heap should be initialized");
8300 #ifdef ASSERT
8301   if (CheckCompressedOops) {
8302     Label ok;
8303     testq(src, src);
8304     jcc(Assembler::notEqual, ok);
8305     stop("null oop passed to encode_heap_oop_not_null2");
8306     bind(ok);
8307   }
8308 #endif
8309   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
8310   if (dst != src) {
8311     movq(dst, src);
8312   }
8313   if (Universe::narrow_oop_base() != NULL) {
8314     subq(dst, r12_heapbase);
8315   }
8316   if (Universe::narrow_oop_shift() != 0) {
8317     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8318     shrq(dst, LogMinObjAlignmentInBytes);
8319   }
8320 }
8321 
8322 void  MacroAssembler::decode_heap_oop(Register r) {
8323   assert (UseCompressedOops, "should be compressed");
8324   assert (Universe::heap() != NULL, "java heap should be initialized");
8325   if (Universe::narrow_oop_base() == NULL) {
8326     if (Universe::narrow_oop_shift() != 0) {
8327       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
8328       shlq(r, LogMinObjAlignmentInBytes);
8329     }
8330     verify_oop(r, "broken oop in decode_heap_oop");
8331     return;
8332   }
8333 #ifdef ASSERT
8334   if (CheckCompressedOops) {
8335     Label ok;
8336     push(rscratch1);
8337     cmpptr(r12_heapbase,
8338            ExternalAddress((address)Universe::narrow_oop_base_addr()));
8339     jcc(Assembler::equal, ok);
8340     stop("MacroAssembler::decode_heap_oop: heap base corrupted?");
8341     bind(ok);
8342     pop(rscratch1);
8343   }
8344 #endif
8345 
8346   Label done;
8347   shlq(r, LogMinObjAlignmentInBytes);
8348   jccb(Assembler::equal, done);
8349   addq(r, r12_heapbase);
8350 #if 0
8351    // alternate decoding probably a wash.
8352    testq(r, r);
8353    jccb(Assembler::equal, done);
8354    leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
8355 #endif
8356   bind(done);
8357   verify_oop(r, "broken oop in decode_heap_oop");
8358 }
8359 
8360 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
8361   assert (UseCompressedOops, "should only be used for compressed headers");
8362   assert (Universe::heap() != NULL, "java heap should be initialized");
8363   // Cannot assert, unverified entry point counts instructions (see .ad file)
8364   // vtableStubs also counts instructions in pd_code_size_limit.
8365   // Also do not verify_oop as this is called by verify_oop.
8366   if (Universe::narrow_oop_shift() != 0) {
8367     assert (Address::times_8 == LogMinObjAlignmentInBytes &&
8368             Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
8369     // Don't use Shift since it modifies flags.
8370     leaq(r, Address(r12_heapbase, r, Address::times_8, 0));
8371   } else {
8372     assert (Universe::narrow_oop_base() == NULL, "sanity");
8373   }
8374 }
8375 
8376 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
8377   assert (UseCompressedOops, "should only be used for compressed headers");
8378   assert (Universe::heap() != NULL, "java heap should be initialized");
8379   // Cannot assert, unverified entry point counts instructions (see .ad file)
8380   // vtableStubs also counts instructions in pd_code_size_limit.
8381   // Also do not verify_oop as this is called by verify_oop.
8382   if (Universe::narrow_oop_shift() != 0) {
8383     assert (Address::times_8 == LogMinObjAlignmentInBytes &&
8384             Address::times_8 == Universe::narrow_oop_shift(), "decode alg wrong");
8385     leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
8386   } else if (dst != src) {
8387     assert (Universe::narrow_oop_base() == NULL, "sanity");
8388     movq(dst, src);
8389   }
8390 }
8391 
8392 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
8393   assert (UseCompressedOops, "should only be used for compressed headers");
8394   assert (Universe::heap() != NULL, "java heap should be initialized");
8395   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8396   int oop_index = oop_recorder()->find_index(obj);
8397   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8398   mov_narrow_oop(dst, oop_index, rspec);
8399 }
8400 
8401 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
8402   assert (UseCompressedOops, "should only be used for compressed headers");
8403   assert (Universe::heap() != NULL, "java heap should be initialized");
8404   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8405   int oop_index = oop_recorder()->find_index(obj);
8406   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8407   mov_narrow_oop(dst, oop_index, rspec);
8408 }
8409 
8410 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
8411   assert (UseCompressedOops, "should only be used for compressed headers");
8412   assert (Universe::heap() != NULL, "java heap should be initialized");
8413   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8414   int oop_index = oop_recorder()->find_index(obj);
8415   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8416   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
8417 }
8418 
8419 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
8420   assert (UseCompressedOops, "should only be used for compressed headers");
8421   assert (Universe::heap() != NULL, "java heap should be initialized");
8422   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
8423   int oop_index = oop_recorder()->find_index(obj);
8424   RelocationHolder rspec = oop_Relocation::spec(oop_index);
8425   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
8426 }
8427 
8428 void MacroAssembler::reinit_heapbase() {
8429   if (UseCompressedOops) {
8430     movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_oop_base_addr()));
8431   }
8432 }
8433 #endif // _LP64
8434 
8435 // IndexOf substring.
8436 void MacroAssembler::string_indexof(Register str1, Register str2,
8437                                     Register cnt1, Register cnt2, Register result,
8438                                     XMMRegister vec, Register tmp) {
8439   assert(UseSSE42Intrinsics, "SSE4.2 is required");
8440 
8441   Label RELOAD_SUBSTR, PREP_FOR_SCAN, SCAN_TO_SUBSTR,
8442         SCAN_SUBSTR, RET_NOT_FOUND, CLEANUP;
8443 
8444   push(str1); // string addr
8445   push(str2); // substr addr
8446   push(cnt2); // substr count
8447   jmpb(PREP_FOR_SCAN);
8448 
8449   // Substr count saved at sp
8450   // Substr saved at sp+1*wordSize
8451   // String saved at sp+2*wordSize
8452 
8453   // Reload substr for rescan
8454   bind(RELOAD_SUBSTR);
8455   movl(cnt2, Address(rsp, 0));
8456   movptr(str2, Address(rsp, wordSize));
8457   // We came here after the beginninig of the substring was
8458   // matched but the rest of it was not so we need to search
8459   // again. Start from the next element after the previous match.
8460   subptr(str1, result); // Restore counter
8461   shrl(str1, 1);
8462   addl(cnt1, str1);
8463   decrementl(cnt1);
8464   lea(str1, Address(result, 2)); // Reload string
8465 
8466   // Load substr
8467   bind(PREP_FOR_SCAN);
8468   movdqu(vec, Address(str2, 0));
8469   addl(cnt1, 8);  // prime the loop
8470   subptr(str1, 16);
8471 
8472   // Scan string for substr in 16-byte vectors
8473   bind(SCAN_TO_SUBSTR);
8474   subl(cnt1, 8);
8475   addptr(str1, 16);
8476 
8477   // pcmpestri
8478   //   inputs:
8479   //     xmm - substring
8480   //     rax - substring length (elements count)
8481   //     mem - scaned string
8482   //     rdx - string length (elements count)
8483   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
8484   //   outputs:
8485   //     rcx - matched index in string
8486   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
8487 
8488   pcmpestri(vec, Address(str1, 0), 0x0d);
8489   jcc(Assembler::above, SCAN_TO_SUBSTR);      // CF == 0 && ZF == 0
8490   jccb(Assembler::aboveEqual, RET_NOT_FOUND); // CF == 0
8491 
8492   // Fallthrough: found a potential substr
8493 
8494   // Make sure string is still long enough
8495   subl(cnt1, tmp);
8496   cmpl(cnt1, cnt2);
8497   jccb(Assembler::negative, RET_NOT_FOUND);
8498   // Compute start addr of substr
8499   lea(str1, Address(str1, tmp, Address::times_2));
8500   movptr(result, str1); // save
8501 
8502   // Compare potential substr
8503   addl(cnt1, 8);     // prime the loop
8504   addl(cnt2, 8);
8505   subptr(str1, 16);
8506   subptr(str2, 16);
8507 
8508   // Scan 16-byte vectors of string and substr
8509   bind(SCAN_SUBSTR);
8510   subl(cnt1, 8);
8511   subl(cnt2, 8);
8512   addptr(str1, 16);
8513   addptr(str2, 16);
8514   movdqu(vec, Address(str2, 0));
8515   pcmpestri(vec, Address(str1, 0), 0x0d);
8516   jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
8517   jcc(Assembler::positive, SCAN_SUBSTR);     // SF == 0
8518 
8519   // Compute substr offset
8520   subptr(result, Address(rsp, 2*wordSize));
8521   shrl(result, 1); // index
8522   jmpb(CLEANUP);
8523 
8524   bind(RET_NOT_FOUND);
8525   movl(result, -1);
8526 
8527   bind(CLEANUP);
8528   addptr(rsp, 3*wordSize);
8529 }
8530 
8531 // Compare strings.
8532 void MacroAssembler::string_compare(Register str1, Register str2,
8533                                     Register cnt1, Register cnt2, Register result,
8534                                     XMMRegister vec1, XMMRegister vec2) {
8535   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
8536 
8537   // Compute the minimum of the string lengths and the
8538   // difference of the string lengths (stack).
8539   // Do the conditional move stuff
8540   movl(result, cnt1);
8541   subl(cnt1, cnt2);
8542   push(cnt1);
8543   if (VM_Version::supports_cmov()) {
8544     cmovl(Assembler::lessEqual, cnt2, result);
8545   } else {
8546     Label GT_LABEL;
8547     jccb(Assembler::greater, GT_LABEL);
8548     movl(cnt2, result);
8549     bind(GT_LABEL);
8550   }
8551 
8552   // Is the minimum length zero?
8553   testl(cnt2, cnt2);
8554   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8555 
8556   // Load first characters
8557   load_unsigned_short(result, Address(str1, 0));
8558   load_unsigned_short(cnt1, Address(str2, 0));
8559 
8560   // Compare first characters
8561   subl(result, cnt1);
8562   jcc(Assembler::notZero,  POP_LABEL);
8563   decrementl(cnt2);
8564   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8565 
8566   {
8567     // Check after comparing first character to see if strings are equivalent
8568     Label LSkip2;
8569     // Check if the strings start at same location
8570     cmpptr(str1, str2);
8571     jccb(Assembler::notEqual, LSkip2);
8572 
8573     // Check if the length difference is zero (from stack)
8574     cmpl(Address(rsp, 0), 0x0);
8575     jcc(Assembler::equal,  LENGTH_DIFF_LABEL);
8576 
8577     // Strings might not be equivalent
8578     bind(LSkip2);
8579   }
8580 
8581   // Advance to next character
8582   addptr(str1, 2);
8583   addptr(str2, 2);
8584 
8585   if (UseSSE42Intrinsics) {
8586     // With SSE4.2, use double quad vector compare
8587     Label COMPARE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
8588     // Setup to compare 16-byte vectors
8589     movl(cnt1, cnt2);
8590     andl(cnt2, 0xfffffff8); // cnt2 holds the vector count
8591     andl(cnt1, 0x00000007); // cnt1 holds the tail count
8592     testl(cnt2, cnt2);
8593     jccb(Assembler::zero, COMPARE_TAIL);
8594 
8595     lea(str2, Address(str2, cnt2, Address::times_2));
8596     lea(str1, Address(str1, cnt2, Address::times_2));
8597     negptr(cnt2);
8598 
8599     bind(COMPARE_VECTORS);
8600     movdqu(vec1, Address(str1, cnt2, Address::times_2));
8601     movdqu(vec2, Address(str2, cnt2, Address::times_2));
8602     pxor(vec1, vec2);
8603     ptest(vec1, vec1);
8604     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
8605     addptr(cnt2, 8);
8606     jcc(Assembler::notZero, COMPARE_VECTORS);
8607     jmpb(COMPARE_TAIL);
8608 
8609     // Mismatched characters in the vectors
8610     bind(VECTOR_NOT_EQUAL);
8611     lea(str1, Address(str1, cnt2, Address::times_2));
8612     lea(str2, Address(str2, cnt2, Address::times_2));
8613     movl(cnt1, 8);
8614 
8615     // Compare tail (< 8 chars), or rescan last vectors to
8616     // find 1st mismatched characters
8617     bind(COMPARE_TAIL);
8618     testl(cnt1, cnt1);
8619     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
8620     movl(cnt2, cnt1);
8621     // Fallthru to tail compare
8622   }
8623 
8624   // Shift str2 and str1 to the end of the arrays, negate min
8625   lea(str1, Address(str1, cnt2, Address::times_2, 0));
8626   lea(str2, Address(str2, cnt2, Address::times_2, 0));
8627   negptr(cnt2);
8628 
8629     // Compare the rest of the characters
8630   bind(WHILE_HEAD_LABEL);
8631   load_unsigned_short(result, Address(str1, cnt2, Address::times_2, 0));
8632   load_unsigned_short(cnt1, Address(str2, cnt2, Address::times_2, 0));
8633   subl(result, cnt1);
8634   jccb(Assembler::notZero, POP_LABEL);
8635   increment(cnt2);
8636   jcc(Assembler::notZero, WHILE_HEAD_LABEL);
8637 
8638   // Strings are equal up to min length.  Return the length difference.
8639   bind(LENGTH_DIFF_LABEL);
8640   pop(result);
8641   jmpb(DONE_LABEL);
8642 
8643   // Discard the stored length difference
8644   bind(POP_LABEL);
8645   addptr(rsp, wordSize);
8646 
8647   // That's it
8648   bind(DONE_LABEL);
8649 }
8650 
8651 // Compare char[] arrays aligned to 4 bytes or substrings.
8652 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8653                                         Register limit, Register result, Register chr,
8654                                         XMMRegister vec1, XMMRegister vec2) {
8655   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
8656 
8657   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8658   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
8659 
8660   // Check the input args
8661   cmpptr(ary1, ary2);
8662   jcc(Assembler::equal, TRUE_LABEL);
8663 
8664   if (is_array_equ) {
8665     // Need additional checks for arrays_equals.
8666     testptr(ary1, ary1);
8667     jcc(Assembler::zero, FALSE_LABEL);
8668     testptr(ary2, ary2);
8669     jcc(Assembler::zero, FALSE_LABEL);
8670 
8671     // Check the lengths
8672     movl(limit, Address(ary1, length_offset));
8673     cmpl(limit, Address(ary2, length_offset));
8674     jcc(Assembler::notEqual, FALSE_LABEL);
8675   }
8676 
8677   // count == 0
8678   testl(limit, limit);
8679   jcc(Assembler::zero, TRUE_LABEL);
8680 
8681   if (is_array_equ) {
8682     // Load array address
8683     lea(ary1, Address(ary1, base_offset));
8684     lea(ary2, Address(ary2, base_offset));
8685   }
8686 
8687   shll(limit, 1);      // byte count != 0
8688   movl(result, limit); // copy
8689 
8690   if (UseSSE42Intrinsics) {
8691     // With SSE4.2, use double quad vector compare
8692     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8693     // Compare 16-byte vectors
8694     andl(result, 0x0000000e);  //   tail count (in bytes)
8695     andl(limit, 0xfffffff0);   // vector count (in bytes)
8696     jccb(Assembler::zero, COMPARE_TAIL);
8697 
8698     lea(ary1, Address(ary1, limit, Address::times_1));
8699     lea(ary2, Address(ary2, limit, Address::times_1));
8700     negptr(limit);
8701 
8702     bind(COMPARE_WIDE_VECTORS);
8703     movdqu(vec1, Address(ary1, limit, Address::times_1));
8704     movdqu(vec2, Address(ary2, limit, Address::times_1));
8705     pxor(vec1, vec2);
8706     ptest(vec1, vec1);
8707     jccb(Assembler::notZero, FALSE_LABEL);
8708     addptr(limit, 16);
8709     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8710 
8711     bind(COMPARE_TAIL); // limit is zero
8712     movl(limit, result);
8713     // Fallthru to tail compare
8714   }
8715 
8716   // Compare 4-byte vectors
8717   andl(limit, 0xfffffffc); // vector count (in bytes)
8718   jccb(Assembler::zero, COMPARE_CHAR);
8719 
8720   lea(ary1, Address(ary1, limit, Address::times_1));
8721   lea(ary2, Address(ary2, limit, Address::times_1));
8722   negptr(limit);
8723 
8724   bind(COMPARE_VECTORS);
8725   movl(chr, Address(ary1, limit, Address::times_1));
8726   cmpl(chr, Address(ary2, limit, Address::times_1));
8727   jccb(Assembler::notEqual, FALSE_LABEL);
8728   addptr(limit, 4);
8729   jcc(Assembler::notZero, COMPARE_VECTORS);
8730 
8731   // Compare trailing char (final 2 bytes), if any
8732   bind(COMPARE_CHAR);
8733   testl(result, 0x2);   // tail  char
8734   jccb(Assembler::zero, TRUE_LABEL);
8735   load_unsigned_short(chr, Address(ary1, 0));
8736   load_unsigned_short(limit, Address(ary2, 0));
8737   cmpl(chr, limit);
8738   jccb(Assembler::notEqual, FALSE_LABEL);
8739 
8740   bind(TRUE_LABEL);
8741   movl(result, 1);   // return true
8742   jmpb(DONE);
8743 
8744   bind(FALSE_LABEL);
8745   xorl(result, result); // return false
8746 
8747   // That's it
8748   bind(DONE);
8749 }
8750 
8751 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
8752   switch (cond) {
8753     // Note some conditions are synonyms for others
8754     case Assembler::zero:         return Assembler::notZero;
8755     case Assembler::notZero:      return Assembler::zero;
8756     case Assembler::less:         return Assembler::greaterEqual;
8757     case Assembler::lessEqual:    return Assembler::greater;
8758     case Assembler::greater:      return Assembler::lessEqual;
8759     case Assembler::greaterEqual: return Assembler::less;
8760     case Assembler::below:        return Assembler::aboveEqual;
8761     case Assembler::belowEqual:   return Assembler::above;
8762     case Assembler::above:        return Assembler::belowEqual;
8763     case Assembler::aboveEqual:   return Assembler::below;
8764     case Assembler::overflow:     return Assembler::noOverflow;
8765     case Assembler::noOverflow:   return Assembler::overflow;
8766     case Assembler::negative:     return Assembler::positive;
8767     case Assembler::positive:     return Assembler::negative;
8768     case Assembler::parity:       return Assembler::noParity;
8769     case Assembler::noParity:     return Assembler::parity;
8770   }
8771   ShouldNotReachHere(); return Assembler::overflow;
8772 }
8773 
8774 SkipIfEqual::SkipIfEqual(
8775     MacroAssembler* masm, const bool* flag_addr, bool value) {
8776   _masm = masm;
8777   _masm->cmp8(ExternalAddress((address)flag_addr), value);
8778   _masm->jcc(Assembler::equal, _label);
8779 }
8780 
8781 SkipIfEqual::~SkipIfEqual() {
8782   _masm->bind(_label);
8783 }