1 /*
   2  * Copyright 1999-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_library_call.cpp.incl"
  27 
  28 class LibraryIntrinsic : public InlineCallGenerator {
  29   // Extend the set of intrinsics known to the runtime:
  30  public:
  31  private:
  32   bool             _is_virtual;
  33   vmIntrinsics::ID _intrinsic_id;
  34 
  35  public:
  36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  37     : InlineCallGenerator(m),
  38       _is_virtual(is_virtual),
  39       _intrinsic_id(id)
  40   {
  41   }
  42   virtual bool is_intrinsic() const { return true; }
  43   virtual bool is_virtual()   const { return _is_virtual; }
  44   virtual JVMState* generate(JVMState* jvms);
  45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  46 };
  47 
  48 
  49 // Local helper class for LibraryIntrinsic:
  50 class LibraryCallKit : public GraphKit {
  51  private:
  52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  53 
  54  public:
  55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  56     : GraphKit(caller),
  57       _intrinsic(intrinsic)
  58   {
  59   }
  60 
  61   ciMethod*         caller()    const    { return jvms()->method(); }
  62   int               bci()       const    { return jvms()->bci(); }
  63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  65   ciMethod*         callee()    const    { return _intrinsic->method(); }
  66   ciSignature*      signature() const    { return callee()->signature(); }
  67   int               arg_size()  const    { return callee()->arg_size(); }
  68 
  69   bool try_to_inline();
  70 
  71   // Helper functions to inline natives
  72   void push_result(RegionNode* region, PhiNode* value);
  73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  74   Node* generate_slow_guard(Node* test, RegionNode* region);
  75   Node* generate_fair_guard(Node* test, RegionNode* region);
  76   Node* generate_negative_guard(Node* index, RegionNode* region,
  77                                 // resulting CastII of index:
  78                                 Node* *pos_index = NULL);
  79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  80                                    // resulting CastII of index:
  81                                    Node* *pos_index = NULL);
  82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  83                              Node* array_length,
  84                              RegionNode* region);
  85   Node* generate_current_thread(Node* &tls_output);
  86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
  87                               bool disjoint_bases, const char* &name);
  88   Node* load_mirror_from_klass(Node* klass);
  89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
  90                                       int nargs,
  91                                       RegionNode* region, int null_path,
  92                                       int offset);
  93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
  94                                RegionNode* region, int null_path) {
  95     int offset = java_lang_Class::klass_offset_in_bytes();
  96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
  97                                          region, null_path,
  98                                          offset);
  99   }
 100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 101                                      int nargs,
 102                                      RegionNode* region, int null_path) {
 103     int offset = java_lang_Class::array_klass_offset_in_bytes();
 104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 105                                          region, null_path,
 106                                          offset);
 107   }
 108   Node* generate_access_flags_guard(Node* kls,
 109                                     int modifier_mask, int modifier_bits,
 110                                     RegionNode* region);
 111   Node* generate_interface_guard(Node* kls, RegionNode* region);
 112   Node* generate_array_guard(Node* kls, RegionNode* region) {
 113     return generate_array_guard_common(kls, region, false, false);
 114   }
 115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 116     return generate_array_guard_common(kls, region, false, true);
 117   }
 118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 119     return generate_array_guard_common(kls, region, true, false);
 120   }
 121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 122     return generate_array_guard_common(kls, region, true, true);
 123   }
 124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 125                                     bool obj_array, bool not_array);
 126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 128                                      bool is_virtual = false, bool is_static = false);
 129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 130     return generate_method_call(method_id, false, true);
 131   }
 132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 133     return generate_method_call(method_id, true, false);
 134   }
 135 
 136   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
 137   bool inline_string_compareTo();
 138   bool inline_string_indexOf();
 139   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 140   bool inline_string_equals();
 141   Node* pop_math_arg();
 142   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 143   bool inline_math_native(vmIntrinsics::ID id);
 144   bool inline_trig(vmIntrinsics::ID id);
 145   bool inline_trans(vmIntrinsics::ID id);
 146   bool inline_abs(vmIntrinsics::ID id);
 147   bool inline_sqrt(vmIntrinsics::ID id);
 148   bool inline_pow(vmIntrinsics::ID id);
 149   bool inline_exp(vmIntrinsics::ID id);
 150   bool inline_min_max(vmIntrinsics::ID id);
 151   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 152   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 153   int classify_unsafe_addr(Node* &base, Node* &offset);
 154   Node* make_unsafe_address(Node* base, Node* offset);
 155   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 156   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 157   bool inline_unsafe_allocate();
 158   bool inline_unsafe_copyMemory();
 159   bool inline_native_currentThread();
 160   bool inline_native_time_funcs(bool isNano);
 161   bool inline_native_isInterrupted();
 162   bool inline_native_Class_query(vmIntrinsics::ID id);
 163   bool inline_native_subtype_check();
 164 
 165   bool inline_native_newArray();
 166   bool inline_native_getLength();
 167   bool inline_array_copyOf(bool is_copyOfRange);
 168   bool inline_array_equals();
 169   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 170   bool inline_native_clone(bool is_virtual);
 171   bool inline_native_Reflection_getCallerClass();
 172   bool inline_native_AtomicLong_get();
 173   bool inline_native_AtomicLong_attemptUpdate();
 174   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 175   // Helper function for inlining native object hash method
 176   bool inline_native_hashcode(bool is_virtual, bool is_static);
 177   bool inline_native_getClass();
 178 
 179   // Helper functions for inlining arraycopy
 180   bool inline_arraycopy();
 181   void generate_arraycopy(const TypePtr* adr_type,
 182                           BasicType basic_elem_type,
 183                           Node* src,  Node* src_offset,
 184                           Node* dest, Node* dest_offset,
 185                           Node* copy_length,
 186                           bool disjoint_bases = false,
 187                           bool length_never_negative = false,
 188                           RegionNode* slow_region = NULL);
 189   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 190                                                 RegionNode* slow_region);
 191   void generate_clear_array(const TypePtr* adr_type,
 192                             Node* dest,
 193                             BasicType basic_elem_type,
 194                             Node* slice_off,
 195                             Node* slice_len,
 196                             Node* slice_end);
 197   bool generate_block_arraycopy(const TypePtr* adr_type,
 198                                 BasicType basic_elem_type,
 199                                 AllocateNode* alloc,
 200                                 Node* src,  Node* src_offset,
 201                                 Node* dest, Node* dest_offset,
 202                                 Node* dest_size);
 203   void generate_slow_arraycopy(const TypePtr* adr_type,
 204                                Node* src,  Node* src_offset,
 205                                Node* dest, Node* dest_offset,
 206                                Node* copy_length);
 207   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 208                                      Node* dest_elem_klass,
 209                                      Node* src,  Node* src_offset,
 210                                      Node* dest, Node* dest_offset,
 211                                      Node* copy_length);
 212   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 213                                    Node* src,  Node* src_offset,
 214                                    Node* dest, Node* dest_offset,
 215                                    Node* copy_length);
 216   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 217                                     BasicType basic_elem_type,
 218                                     bool disjoint_bases,
 219                                     Node* src,  Node* src_offset,
 220                                     Node* dest, Node* dest_offset,
 221                                     Node* copy_length);
 222   bool inline_unsafe_CAS(BasicType type);
 223   bool inline_unsafe_ordered_store(BasicType type);
 224   bool inline_fp_conversions(vmIntrinsics::ID id);
 225   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 226   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 227   bool inline_bitCount(vmIntrinsics::ID id);
 228   bool inline_reverseBytes(vmIntrinsics::ID id);
 229 };
 230 
 231 
 232 //---------------------------make_vm_intrinsic----------------------------
 233 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 234   vmIntrinsics::ID id = m->intrinsic_id();
 235   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 236 
 237   if (DisableIntrinsic[0] != '\0'
 238       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 239     // disabled by a user request on the command line:
 240     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 241     return NULL;
 242   }
 243 
 244   if (!m->is_loaded()) {
 245     // do not attempt to inline unloaded methods
 246     return NULL;
 247   }
 248 
 249   // Only a few intrinsics implement a virtual dispatch.
 250   // They are expensive calls which are also frequently overridden.
 251   if (is_virtual) {
 252     switch (id) {
 253     case vmIntrinsics::_hashCode:
 254     case vmIntrinsics::_clone:
 255       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 256       break;
 257     default:
 258       return NULL;
 259     }
 260   }
 261 
 262   // -XX:-InlineNatives disables nearly all intrinsics:
 263   if (!InlineNatives) {
 264     switch (id) {
 265     case vmIntrinsics::_indexOf:
 266     case vmIntrinsics::_compareTo:
 267     case vmIntrinsics::_equals:
 268     case vmIntrinsics::_equalsC:
 269       break;  // InlineNatives does not control String.compareTo
 270     default:
 271       return NULL;
 272     }
 273   }
 274 
 275   switch (id) {
 276   case vmIntrinsics::_compareTo:
 277     if (!SpecialStringCompareTo)  return NULL;
 278     break;
 279   case vmIntrinsics::_indexOf:
 280     if (!SpecialStringIndexOf)  return NULL;
 281     break;
 282   case vmIntrinsics::_equals:
 283     if (!SpecialStringEquals)  return NULL;
 284     break;
 285   case vmIntrinsics::_equalsC:
 286     if (!SpecialArraysEquals)  return NULL;
 287     break;
 288   case vmIntrinsics::_arraycopy:
 289     if (!InlineArrayCopy)  return NULL;
 290     break;
 291   case vmIntrinsics::_copyMemory:
 292     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 293     if (!InlineArrayCopy)  return NULL;
 294     break;
 295   case vmIntrinsics::_hashCode:
 296     if (!InlineObjectHash)  return NULL;
 297     break;
 298   case vmIntrinsics::_clone:
 299   case vmIntrinsics::_copyOf:
 300   case vmIntrinsics::_copyOfRange:
 301     if (!InlineObjectCopy)  return NULL;
 302     // These also use the arraycopy intrinsic mechanism:
 303     if (!InlineArrayCopy)  return NULL;
 304     break;
 305   case vmIntrinsics::_checkIndex:
 306     // We do not intrinsify this.  The optimizer does fine with it.
 307     return NULL;
 308 
 309   case vmIntrinsics::_get_AtomicLong:
 310   case vmIntrinsics::_attemptUpdate:
 311     if (!InlineAtomicLong)  return NULL;
 312     break;
 313 
 314   case vmIntrinsics::_getCallerClass:
 315     if (!UseNewReflection)  return NULL;
 316     if (!InlineReflectionGetCallerClass)  return NULL;
 317     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 318     break;
 319 
 320   case vmIntrinsics::_bitCount_i:
 321   case vmIntrinsics::_bitCount_l:
 322     if (!UsePopCountInstruction)  return NULL;
 323     break;
 324 
 325  default:
 326     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 327     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 328     break;
 329   }
 330 
 331   // -XX:-InlineClassNatives disables natives from the Class class.
 332   // The flag applies to all reflective calls, notably Array.newArray
 333   // (visible to Java programmers as Array.newInstance).
 334   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 335       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 336     if (!InlineClassNatives)  return NULL;
 337   }
 338 
 339   // -XX:-InlineThreadNatives disables natives from the Thread class.
 340   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 341     if (!InlineThreadNatives)  return NULL;
 342   }
 343 
 344   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 345   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 346       m->holder()->name() == ciSymbol::java_lang_Float() ||
 347       m->holder()->name() == ciSymbol::java_lang_Double()) {
 348     if (!InlineMathNatives)  return NULL;
 349   }
 350 
 351   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 352   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 353     if (!InlineUnsafeOps)  return NULL;
 354   }
 355 
 356   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 357 }
 358 
 359 //----------------------register_library_intrinsics-----------------------
 360 // Initialize this file's data structures, for each Compile instance.
 361 void Compile::register_library_intrinsics() {
 362   // Nothing to do here.
 363 }
 364 
 365 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 366   LibraryCallKit kit(jvms, this);
 367   Compile* C = kit.C;
 368   int nodes = C->unique();
 369 #ifndef PRODUCT
 370   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 371     char buf[1000];
 372     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 373     tty->print_cr("Intrinsic %s", str);
 374   }
 375 #endif
 376   if (kit.try_to_inline()) {
 377     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 378       tty->print("Inlining intrinsic %s%s at bci:%d in",
 379                  vmIntrinsics::name_at(intrinsic_id()),
 380                  (is_virtual() ? " (virtual)" : ""), kit.bci());
 381       kit.caller()->print_short_name(tty);
 382       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 383     }
 384     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 385     if (C->log()) {
 386       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 387                      vmIntrinsics::name_at(intrinsic_id()),
 388                      (is_virtual() ? " virtual='1'" : ""),
 389                      C->unique() - nodes);
 390     }
 391     return kit.transfer_exceptions_into_jvms();
 392   }
 393 
 394   if (PrintIntrinsics) {
 395     tty->print("Did not inline intrinsic %s%s at bci:%d in",
 396                vmIntrinsics::name_at(intrinsic_id()),
 397                (is_virtual() ? " (virtual)" : ""), kit.bci());
 398     kit.caller()->print_short_name(tty);
 399     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 400   }
 401   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 402   return NULL;
 403 }
 404 
 405 bool LibraryCallKit::try_to_inline() {
 406   // Handle symbolic names for otherwise undistinguished boolean switches:
 407   const bool is_store       = true;
 408   const bool is_native_ptr  = true;
 409   const bool is_static      = true;
 410 
 411   switch (intrinsic_id()) {
 412   case vmIntrinsics::_hashCode:
 413     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 414   case vmIntrinsics::_identityHashCode:
 415     return inline_native_hashcode(/*!virtual*/ false, is_static);
 416   case vmIntrinsics::_getClass:
 417     return inline_native_getClass();
 418 
 419   case vmIntrinsics::_dsin:
 420   case vmIntrinsics::_dcos:
 421   case vmIntrinsics::_dtan:
 422   case vmIntrinsics::_dabs:
 423   case vmIntrinsics::_datan2:
 424   case vmIntrinsics::_dsqrt:
 425   case vmIntrinsics::_dexp:
 426   case vmIntrinsics::_dlog:
 427   case vmIntrinsics::_dlog10:
 428   case vmIntrinsics::_dpow:
 429     return inline_math_native(intrinsic_id());
 430 
 431   case vmIntrinsics::_min:
 432   case vmIntrinsics::_max:
 433     return inline_min_max(intrinsic_id());
 434 
 435   case vmIntrinsics::_arraycopy:
 436     return inline_arraycopy();
 437 
 438   case vmIntrinsics::_compareTo:
 439     return inline_string_compareTo();
 440   case vmIntrinsics::_indexOf:
 441     return inline_string_indexOf();
 442   case vmIntrinsics::_equals:
 443     return inline_string_equals();
 444 
 445   case vmIntrinsics::_getObject:
 446     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 447   case vmIntrinsics::_getBoolean:
 448     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 449   case vmIntrinsics::_getByte:
 450     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 451   case vmIntrinsics::_getShort:
 452     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 453   case vmIntrinsics::_getChar:
 454     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 455   case vmIntrinsics::_getInt:
 456     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 457   case vmIntrinsics::_getLong:
 458     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 459   case vmIntrinsics::_getFloat:
 460     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 461   case vmIntrinsics::_getDouble:
 462     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 463 
 464   case vmIntrinsics::_putObject:
 465     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 466   case vmIntrinsics::_putBoolean:
 467     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 468   case vmIntrinsics::_putByte:
 469     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 470   case vmIntrinsics::_putShort:
 471     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 472   case vmIntrinsics::_putChar:
 473     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 474   case vmIntrinsics::_putInt:
 475     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 476   case vmIntrinsics::_putLong:
 477     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 478   case vmIntrinsics::_putFloat:
 479     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 480   case vmIntrinsics::_putDouble:
 481     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 482 
 483   case vmIntrinsics::_getByte_raw:
 484     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 485   case vmIntrinsics::_getShort_raw:
 486     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 487   case vmIntrinsics::_getChar_raw:
 488     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 489   case vmIntrinsics::_getInt_raw:
 490     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 491   case vmIntrinsics::_getLong_raw:
 492     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 493   case vmIntrinsics::_getFloat_raw:
 494     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 495   case vmIntrinsics::_getDouble_raw:
 496     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 497   case vmIntrinsics::_getAddress_raw:
 498     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 499 
 500   case vmIntrinsics::_putByte_raw:
 501     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 502   case vmIntrinsics::_putShort_raw:
 503     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 504   case vmIntrinsics::_putChar_raw:
 505     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 506   case vmIntrinsics::_putInt_raw:
 507     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 508   case vmIntrinsics::_putLong_raw:
 509     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 510   case vmIntrinsics::_putFloat_raw:
 511     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 512   case vmIntrinsics::_putDouble_raw:
 513     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 514   case vmIntrinsics::_putAddress_raw:
 515     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 516 
 517   case vmIntrinsics::_getObjectVolatile:
 518     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 519   case vmIntrinsics::_getBooleanVolatile:
 520     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 521   case vmIntrinsics::_getByteVolatile:
 522     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 523   case vmIntrinsics::_getShortVolatile:
 524     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 525   case vmIntrinsics::_getCharVolatile:
 526     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 527   case vmIntrinsics::_getIntVolatile:
 528     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 529   case vmIntrinsics::_getLongVolatile:
 530     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 531   case vmIntrinsics::_getFloatVolatile:
 532     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 533   case vmIntrinsics::_getDoubleVolatile:
 534     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 535 
 536   case vmIntrinsics::_putObjectVolatile:
 537     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 538   case vmIntrinsics::_putBooleanVolatile:
 539     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 540   case vmIntrinsics::_putByteVolatile:
 541     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 542   case vmIntrinsics::_putShortVolatile:
 543     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 544   case vmIntrinsics::_putCharVolatile:
 545     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 546   case vmIntrinsics::_putIntVolatile:
 547     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 548   case vmIntrinsics::_putLongVolatile:
 549     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 550   case vmIntrinsics::_putFloatVolatile:
 551     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 552   case vmIntrinsics::_putDoubleVolatile:
 553     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 554 
 555   case vmIntrinsics::_prefetchRead:
 556     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 557   case vmIntrinsics::_prefetchWrite:
 558     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 559   case vmIntrinsics::_prefetchReadStatic:
 560     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 561   case vmIntrinsics::_prefetchWriteStatic:
 562     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 563 
 564   case vmIntrinsics::_compareAndSwapObject:
 565     return inline_unsafe_CAS(T_OBJECT);
 566   case vmIntrinsics::_compareAndSwapInt:
 567     return inline_unsafe_CAS(T_INT);
 568   case vmIntrinsics::_compareAndSwapLong:
 569     return inline_unsafe_CAS(T_LONG);
 570 
 571   case vmIntrinsics::_putOrderedObject:
 572     return inline_unsafe_ordered_store(T_OBJECT);
 573   case vmIntrinsics::_putOrderedInt:
 574     return inline_unsafe_ordered_store(T_INT);
 575   case vmIntrinsics::_putOrderedLong:
 576     return inline_unsafe_ordered_store(T_LONG);
 577 
 578   case vmIntrinsics::_currentThread:
 579     return inline_native_currentThread();
 580   case vmIntrinsics::_isInterrupted:
 581     return inline_native_isInterrupted();
 582 
 583   case vmIntrinsics::_currentTimeMillis:
 584     return inline_native_time_funcs(false);
 585   case vmIntrinsics::_nanoTime:
 586     return inline_native_time_funcs(true);
 587   case vmIntrinsics::_allocateInstance:
 588     return inline_unsafe_allocate();
 589   case vmIntrinsics::_copyMemory:
 590     return inline_unsafe_copyMemory();
 591   case vmIntrinsics::_newArray:
 592     return inline_native_newArray();
 593   case vmIntrinsics::_getLength:
 594     return inline_native_getLength();
 595   case vmIntrinsics::_copyOf:
 596     return inline_array_copyOf(false);
 597   case vmIntrinsics::_copyOfRange:
 598     return inline_array_copyOf(true);
 599   case vmIntrinsics::_equalsC:
 600     return inline_array_equals();
 601   case vmIntrinsics::_clone:
 602     return inline_native_clone(intrinsic()->is_virtual());
 603 
 604   case vmIntrinsics::_isAssignableFrom:
 605     return inline_native_subtype_check();
 606 
 607   case vmIntrinsics::_isInstance:
 608   case vmIntrinsics::_getModifiers:
 609   case vmIntrinsics::_isInterface:
 610   case vmIntrinsics::_isArray:
 611   case vmIntrinsics::_isPrimitive:
 612   case vmIntrinsics::_getSuperclass:
 613   case vmIntrinsics::_getComponentType:
 614   case vmIntrinsics::_getClassAccessFlags:
 615     return inline_native_Class_query(intrinsic_id());
 616 
 617   case vmIntrinsics::_floatToRawIntBits:
 618   case vmIntrinsics::_floatToIntBits:
 619   case vmIntrinsics::_intBitsToFloat:
 620   case vmIntrinsics::_doubleToRawLongBits:
 621   case vmIntrinsics::_doubleToLongBits:
 622   case vmIntrinsics::_longBitsToDouble:
 623     return inline_fp_conversions(intrinsic_id());
 624 
 625   case vmIntrinsics::_numberOfLeadingZeros_i:
 626   case vmIntrinsics::_numberOfLeadingZeros_l:
 627     return inline_numberOfLeadingZeros(intrinsic_id());
 628 
 629   case vmIntrinsics::_numberOfTrailingZeros_i:
 630   case vmIntrinsics::_numberOfTrailingZeros_l:
 631     return inline_numberOfTrailingZeros(intrinsic_id());
 632 
 633   case vmIntrinsics::_bitCount_i:
 634   case vmIntrinsics::_bitCount_l:
 635     return inline_bitCount(intrinsic_id());
 636 
 637   case vmIntrinsics::_reverseBytes_i:
 638   case vmIntrinsics::_reverseBytes_l:
 639   case vmIntrinsics::_reverseBytes_s:
 640   case vmIntrinsics::_reverseBytes_c:
 641     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 642 
 643   case vmIntrinsics::_get_AtomicLong:
 644     return inline_native_AtomicLong_get();
 645   case vmIntrinsics::_attemptUpdate:
 646     return inline_native_AtomicLong_attemptUpdate();
 647 
 648   case vmIntrinsics::_getCallerClass:
 649     return inline_native_Reflection_getCallerClass();
 650 
 651   default:
 652     // If you get here, it may be that someone has added a new intrinsic
 653     // to the list in vmSymbols.hpp without implementing it here.
 654 #ifndef PRODUCT
 655     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 656       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 657                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 658     }
 659 #endif
 660     return false;
 661   }
 662 }
 663 
 664 //------------------------------push_result------------------------------
 665 // Helper function for finishing intrinsics.
 666 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 667   record_for_igvn(region);
 668   set_control(_gvn.transform(region));
 669   BasicType value_type = value->type()->basic_type();
 670   push_node(value_type, _gvn.transform(value));
 671 }
 672 
 673 //------------------------------generate_guard---------------------------
 674 // Helper function for generating guarded fast-slow graph structures.
 675 // The given 'test', if true, guards a slow path.  If the test fails
 676 // then a fast path can be taken.  (We generally hope it fails.)
 677 // In all cases, GraphKit::control() is updated to the fast path.
 678 // The returned value represents the control for the slow path.
 679 // The return value is never 'top'; it is either a valid control
 680 // or NULL if it is obvious that the slow path can never be taken.
 681 // Also, if region and the slow control are not NULL, the slow edge
 682 // is appended to the region.
 683 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 684   if (stopped()) {
 685     // Already short circuited.
 686     return NULL;
 687   }
 688 
 689   // Build an if node and its projections.
 690   // If test is true we take the slow path, which we assume is uncommon.
 691   if (_gvn.type(test) == TypeInt::ZERO) {
 692     // The slow branch is never taken.  No need to build this guard.
 693     return NULL;
 694   }
 695 
 696   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 697 
 698   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 699   if (if_slow == top()) {
 700     // The slow branch is never taken.  No need to build this guard.
 701     return NULL;
 702   }
 703 
 704   if (region != NULL)
 705     region->add_req(if_slow);
 706 
 707   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 708   set_control(if_fast);
 709 
 710   return if_slow;
 711 }
 712 
 713 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 714   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 715 }
 716 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 717   return generate_guard(test, region, PROB_FAIR);
 718 }
 719 
 720 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 721                                                      Node* *pos_index) {
 722   if (stopped())
 723     return NULL;                // already stopped
 724   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 725     return NULL;                // index is already adequately typed
 726   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 727   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 728   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 729   if (is_neg != NULL && pos_index != NULL) {
 730     // Emulate effect of Parse::adjust_map_after_if.
 731     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 732     ccast->set_req(0, control());
 733     (*pos_index) = _gvn.transform(ccast);
 734   }
 735   return is_neg;
 736 }
 737 
 738 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 739                                                         Node* *pos_index) {
 740   if (stopped())
 741     return NULL;                // already stopped
 742   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 743     return NULL;                // index is already adequately typed
 744   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 745   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 746   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 747   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 748   if (is_notp != NULL && pos_index != NULL) {
 749     // Emulate effect of Parse::adjust_map_after_if.
 750     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 751     ccast->set_req(0, control());
 752     (*pos_index) = _gvn.transform(ccast);
 753   }
 754   return is_notp;
 755 }
 756 
 757 // Make sure that 'position' is a valid limit index, in [0..length].
 758 // There are two equivalent plans for checking this:
 759 //   A. (offset + copyLength)  unsigned<=  arrayLength
 760 //   B. offset  <=  (arrayLength - copyLength)
 761 // We require that all of the values above, except for the sum and
 762 // difference, are already known to be non-negative.
 763 // Plan A is robust in the face of overflow, if offset and copyLength
 764 // are both hugely positive.
 765 //
 766 // Plan B is less direct and intuitive, but it does not overflow at
 767 // all, since the difference of two non-negatives is always
 768 // representable.  Whenever Java methods must perform the equivalent
 769 // check they generally use Plan B instead of Plan A.
 770 // For the moment we use Plan A.
 771 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 772                                                   Node* subseq_length,
 773                                                   Node* array_length,
 774                                                   RegionNode* region) {
 775   if (stopped())
 776     return NULL;                // already stopped
 777   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 778   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
 779     return NULL;                // common case of whole-array copy
 780   Node* last = subseq_length;
 781   if (!zero_offset)             // last += offset
 782     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 783   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 784   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 785   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 786   return is_over;
 787 }
 788 
 789 
 790 //--------------------------generate_current_thread--------------------
 791 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 792   ciKlass*    thread_klass = env()->Thread_klass();
 793   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 794   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 795   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 796   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 797   tls_output = thread;
 798   return threadObj;
 799 }
 800 
 801 
 802 //------------------------------make_string_method_node------------------------
 803 // Helper method for String intrinsic finctions.
 804 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
 805   const int value_offset  = java_lang_String::value_offset_in_bytes();
 806   const int count_offset  = java_lang_String::count_offset_in_bytes();
 807   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 808 
 809   Node* no_ctrl = NULL;
 810 
 811   ciInstanceKlass* klass = env()->String_klass();
 812   const TypeInstPtr* string_type =
 813         TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 814 
 815   const TypeAryPtr* value_type =
 816         TypeAryPtr::make(TypePtr::NotNull,
 817                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
 818                          ciTypeArrayKlass::make(T_CHAR), true, 0);
 819 
 820   // Get start addr of string and substring
 821   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
 822   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 823   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
 824   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 825   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 826 
 827   // Pin loads from String::equals() argument since it could be NULL.
 828   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
 829   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
 830   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 831   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
 832   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 833   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 834 
 835   Node* result = NULL;
 836   switch (opcode) {
 837   case Op_StrIndexOf:
 838     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 839                                        str1_start, cnt1, str2_start, cnt2);
 840     break;
 841   case Op_StrComp:
 842     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
 843                                     str1_start, cnt1, str2_start, cnt2);
 844     break;
 845   case Op_StrEquals:
 846     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 847                                       str1_start, str2_start, cnt1);
 848     break;
 849   default:
 850     ShouldNotReachHere();
 851     return NULL;
 852   }
 853 
 854   // All these intrinsics have checks.
 855   C->set_has_split_ifs(true); // Has chance for split-if optimization
 856 
 857   return _gvn.transform(result);
 858 }
 859 
 860 //------------------------------inline_string_compareTo------------------------
 861 bool LibraryCallKit::inline_string_compareTo() {
 862 
 863   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 864 
 865   const int value_offset = java_lang_String::value_offset_in_bytes();
 866   const int count_offset = java_lang_String::count_offset_in_bytes();
 867   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 868 
 869   _sp += 2;
 870   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 871   Node *receiver = pop();
 872 
 873   // Null check on self without removing any arguments.  The argument
 874   // null check technically happens in the wrong place, which can lead to
 875   // invalid stack traces when string compare is inlined into a method
 876   // which handles NullPointerExceptions.
 877   _sp += 2;
 878   receiver = do_null_check(receiver, T_OBJECT);
 879   argument = do_null_check(argument, T_OBJECT);
 880   _sp -= 2;
 881   if (stopped()) {
 882     return true;
 883   }
 884 
 885   ciInstanceKlass* klass = env()->String_klass();
 886   const TypeInstPtr* string_type =
 887     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 888   Node* no_ctrl = NULL;
 889 
 890   // Get counts for string and argument
 891   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 892   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 893 
 894   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 895   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 896 
 897   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
 898   push(compare);
 899   return true;
 900 }
 901 
 902 //------------------------------inline_string_equals------------------------
 903 bool LibraryCallKit::inline_string_equals() {
 904 
 905   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 906 
 907   const int value_offset = java_lang_String::value_offset_in_bytes();
 908   const int count_offset = java_lang_String::count_offset_in_bytes();
 909   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 910 
 911   _sp += 2;
 912   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 913   Node* receiver = pop();
 914 
 915   // Null check on self without removing any arguments.  The argument
 916   // null check technically happens in the wrong place, which can lead to
 917   // invalid stack traces when string compare is inlined into a method
 918   // which handles NullPointerExceptions.
 919   _sp += 2;
 920   receiver = do_null_check(receiver, T_OBJECT);
 921   //should not do null check for argument for String.equals(), because spec
 922   //allows to specify NULL as argument.
 923   _sp -= 2;
 924 
 925   if (stopped()) {
 926     return true;
 927   }
 928 
 929   // paths (plus control) merge
 930   RegionNode* region = new (C, 5) RegionNode(5);
 931   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
 932 
 933   // does source == target string?
 934   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
 935   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 936 
 937   Node* if_eq = generate_slow_guard(bol, NULL);
 938   if (if_eq != NULL) {
 939     // receiver == argument
 940     phi->init_req(2, intcon(1));
 941     region->init_req(2, if_eq);
 942   }
 943 
 944   // get String klass for instanceOf
 945   ciInstanceKlass* klass = env()->String_klass();
 946 
 947   if (!stopped()) {
 948     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
 949     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
 950     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
 951 
 952     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
 953     //instanceOf == true, fallthrough
 954 
 955     if (inst_false != NULL) {
 956       phi->init_req(3, intcon(0));
 957       region->init_req(3, inst_false);
 958     }
 959   }
 960 
 961   const TypeInstPtr* string_type =
 962     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 963 
 964   Node* no_ctrl = NULL;
 965   Node* receiver_cnt;
 966   Node* argument_cnt;
 967 
 968   if (!stopped()) {
 969     // Get counts for string and argument
 970     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 971     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 972 
 973     // Pin load from argument string since it could be NULL.
 974     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 975     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 976 
 977     // Check for receiver count != argument count
 978     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
 979     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
 980     Node* if_ne = generate_slow_guard(bol, NULL);
 981     if (if_ne != NULL) {
 982       phi->init_req(4, intcon(0));
 983       region->init_req(4, if_ne);
 984     }
 985   }
 986 
 987   // Check for count == 0 is done by mach node StrEquals.
 988 
 989   if (!stopped()) {
 990     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
 991     phi->init_req(1, equals);
 992     region->init_req(1, control());
 993   }
 994 
 995   // post merge
 996   set_control(_gvn.transform(region));
 997   record_for_igvn(region);
 998 
 999   push(_gvn.transform(phi));
1000 
1001   return true;
1002 }
1003 
1004 //------------------------------inline_array_equals----------------------------
1005 bool LibraryCallKit::inline_array_equals() {
1006 
1007   if (!Matcher::has_match_rule(Op_AryEq)) return false;
1008 
1009   _sp += 2;
1010   Node *argument2 = pop();
1011   Node *argument1 = pop();
1012 
1013   Node* equals =
1014     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1015                                         argument1, argument2) );
1016   push(equals);
1017   return true;
1018 }
1019 
1020 // Java version of String.indexOf(constant string)
1021 // class StringDecl {
1022 //   StringDecl(char[] ca) {
1023 //     offset = 0;
1024 //     count = ca.length;
1025 //     value = ca;
1026 //   }
1027 //   int offset;
1028 //   int count;
1029 //   char[] value;
1030 // }
1031 //
1032 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1033 //                             int targetOffset, int cache_i, int md2) {
1034 //   int cache = cache_i;
1035 //   int sourceOffset = string_object.offset;
1036 //   int sourceCount = string_object.count;
1037 //   int targetCount = target_object.length;
1038 //
1039 //   int targetCountLess1 = targetCount - 1;
1040 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1041 //
1042 //   char[] source = string_object.value;
1043 //   char[] target = target_object;
1044 //   int lastChar = target[targetCountLess1];
1045 //
1046 //  outer_loop:
1047 //   for (int i = sourceOffset; i < sourceEnd; ) {
1048 //     int src = source[i + targetCountLess1];
1049 //     if (src == lastChar) {
1050 //       // With random strings and a 4-character alphabet,
1051 //       // reverse matching at this point sets up 0.8% fewer
1052 //       // frames, but (paradoxically) makes 0.3% more probes.
1053 //       // Since those probes are nearer the lastChar probe,
1054 //       // there is may be a net D$ win with reverse matching.
1055 //       // But, reversing loop inhibits unroll of inner loop
1056 //       // for unknown reason.  So, does running outer loop from
1057 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1058 //       for (int j = 0; j < targetCountLess1; j++) {
1059 //         if (target[targetOffset + j] != source[i+j]) {
1060 //           if ((cache & (1 << source[i+j])) == 0) {
1061 //             if (md2 < j+1) {
1062 //               i += j+1;
1063 //               continue outer_loop;
1064 //             }
1065 //           }
1066 //           i += md2;
1067 //           continue outer_loop;
1068 //         }
1069 //       }
1070 //       return i - sourceOffset;
1071 //     }
1072 //     if ((cache & (1 << src)) == 0) {
1073 //       i += targetCountLess1;
1074 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1075 //     i++;
1076 //   }
1077 //   return -1;
1078 // }
1079 
1080 //------------------------------string_indexOf------------------------
1081 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1082                                      jint cache_i, jint md2_i) {
1083 
1084   Node* no_ctrl  = NULL;
1085   float likely   = PROB_LIKELY(0.9);
1086   float unlikely = PROB_UNLIKELY(0.9);
1087 
1088   const int value_offset  = java_lang_String::value_offset_in_bytes();
1089   const int count_offset  = java_lang_String::count_offset_in_bytes();
1090   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1091 
1092   ciInstanceKlass* klass = env()->String_klass();
1093   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1094   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1095 
1096   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1097   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1098   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1099   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1100   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1101   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1102 
1103   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
1104   jint target_length = target_array->length();
1105   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1106   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1107 
1108   IdealKit kit(gvn(), control(), merged_memory(), false, true);
1109 #define __ kit.
1110   Node* zero             = __ ConI(0);
1111   Node* one              = __ ConI(1);
1112   Node* cache            = __ ConI(cache_i);
1113   Node* md2              = __ ConI(md2_i);
1114   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1115   Node* targetCount      = __ ConI(target_length);
1116   Node* targetCountLess1 = __ ConI(target_length - 1);
1117   Node* targetOffset     = __ ConI(targetOffset_i);
1118   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1119 
1120   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1121   Node* outer_loop = __ make_label(2 /* goto */);
1122   Node* return_    = __ make_label(1);
1123 
1124   __ set(rtn,__ ConI(-1));
1125   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
1126        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1127        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1128        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1129        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1130          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
1131               Node* tpj = __ AddI(targetOffset, __ value(j));
1132               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1133               Node* ipj  = __ AddI(__ value(i), __ value(j));
1134               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1135               __ if_then(targ, BoolTest::ne, src2); {
1136                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1137                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1138                     __ increment(i, __ AddI(__ value(j), one));
1139                     __ goto_(outer_loop);
1140                   } __ end_if(); __ dead(j);
1141                 }__ end_if(); __ dead(j);
1142                 __ increment(i, md2);
1143                 __ goto_(outer_loop);
1144               }__ end_if();
1145               __ increment(j, one);
1146          }__ end_loop(); __ dead(j);
1147          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1148          __ goto_(return_);
1149        }__ end_if();
1150        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1151          __ increment(i, targetCountLess1);
1152        }__ end_if();
1153        __ increment(i, one);
1154        __ bind(outer_loop);
1155   }__ end_loop(); __ dead(i);
1156   __ bind(return_);
1157 
1158   // Final sync IdealKit and GraphKit.
1159   sync_kit(kit);
1160   Node* result = __ value(rtn);
1161 #undef __
1162   C->set_has_loops(true);
1163   return result;
1164 }
1165 
1166 //------------------------------inline_string_indexOf------------------------
1167 bool LibraryCallKit::inline_string_indexOf() {
1168 
1169   const int value_offset  = java_lang_String::value_offset_in_bytes();
1170   const int count_offset  = java_lang_String::count_offset_in_bytes();
1171   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1172 
1173   _sp += 2;
1174   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1175   Node *receiver = pop();
1176 
1177   Node* result;
1178   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1179       UseSSE42Intrinsics) {
1180     // Generate SSE4.2 version of indexOf
1181     // We currently only have match rules that use SSE4.2
1182 
1183     // Null check on self without removing any arguments.  The argument
1184     // null check technically happens in the wrong place, which can lead to
1185     // invalid stack traces when string compare is inlined into a method
1186     // which handles NullPointerExceptions.
1187     _sp += 2;
1188     receiver = do_null_check(receiver, T_OBJECT);
1189     argument = do_null_check(argument, T_OBJECT);
1190     _sp -= 2;
1191 
1192     if (stopped()) {
1193       return true;
1194     }
1195 
1196     // Make the merge point
1197     RegionNode* result_rgn = new (C, 3) RegionNode(3);
1198     Node*       result_phi = new (C, 3) PhiNode(result_rgn, TypeInt::INT);
1199     Node* no_ctrl  = NULL;
1200 
1201     ciInstanceKlass* klass = env()->String_klass();
1202     const TypeInstPtr* string_type =
1203       TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1204 
1205     // Get counts for string and substr
1206     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
1207     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1208 
1209     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
1210     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1211 
1212     // Check for substr count > string count
1213     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
1214     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
1215     Node* if_gt = generate_slow_guard(bol, NULL);
1216     if (if_gt != NULL) {
1217       result_phi->init_req(2, intcon(-1));
1218       result_rgn->init_req(2, if_gt);
1219     }
1220 
1221     if (!stopped()) {
1222       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
1223       result_phi->init_req(1, result);
1224       result_rgn->init_req(1, control());
1225     }
1226     set_control(_gvn.transform(result_rgn));
1227     record_for_igvn(result_rgn);
1228     result = _gvn.transform(result_phi);
1229 
1230   } else { //Use LibraryCallKit::string_indexOf
1231     // don't intrinsify is argument isn't a constant string.
1232     if (!argument->is_Con()) {
1233      return false;
1234     }
1235     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1236     if (str_type == NULL) {
1237       return false;
1238     }
1239     ciInstanceKlass* klass = env()->String_klass();
1240     ciObject* str_const = str_type->const_oop();
1241     if (str_const == NULL || str_const->klass() != klass) {
1242       return false;
1243     }
1244     ciInstance* str = str_const->as_instance();
1245     assert(str != NULL, "must be instance");
1246 
1247     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1248     int       o = str->field_value_by_offset(offset_offset).as_int();
1249     int       c = str->field_value_by_offset(count_offset).as_int();
1250     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1251 
1252     // constant strings have no offset and count == length which
1253     // simplifies the resulting code somewhat so lets optimize for that.
1254     if (o != 0 || c != pat->length()) {
1255      return false;
1256     }
1257 
1258     // Null check on self without removing any arguments.  The argument
1259     // null check technically happens in the wrong place, which can lead to
1260     // invalid stack traces when string compare is inlined into a method
1261     // which handles NullPointerExceptions.
1262     _sp += 2;
1263     receiver = do_null_check(receiver, T_OBJECT);
1264     // No null check on the argument is needed since it's a constant String oop.
1265     _sp -= 2;
1266     if (stopped()) {
1267      return true;
1268     }
1269 
1270     // The null string as a pattern always returns 0 (match at beginning of string)
1271     if (c == 0) {
1272       push(intcon(0));
1273       return true;
1274     }
1275 
1276     // Generate default indexOf
1277     jchar lastChar = pat->char_at(o + (c - 1));
1278     int cache = 0;
1279     int i;
1280     for (i = 0; i < c - 1; i++) {
1281       assert(i < pat->length(), "out of range");
1282       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1283     }
1284 
1285     int md2 = c;
1286     for (i = 0; i < c - 1; i++) {
1287       assert(i < pat->length(), "out of range");
1288       if (pat->char_at(o + i) == lastChar) {
1289         md2 = (c - 1) - i;
1290       }
1291     }
1292 
1293     result = string_indexOf(receiver, pat, o, cache, md2);
1294   }
1295 
1296   push(result);
1297   return true;
1298 }
1299 
1300 //--------------------------pop_math_arg--------------------------------
1301 // Pop a double argument to a math function from the stack
1302 // rounding it if necessary.
1303 Node * LibraryCallKit::pop_math_arg() {
1304   Node *arg = pop_pair();
1305   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1306     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1307   return arg;
1308 }
1309 
1310 //------------------------------inline_trig----------------------------------
1311 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1312 // argument reduction which will turn into a fast/slow diamond.
1313 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1314   _sp += arg_size();            // restore stack pointer
1315   Node* arg = pop_math_arg();
1316   Node* trig = NULL;
1317 
1318   switch (id) {
1319   case vmIntrinsics::_dsin:
1320     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1321     break;
1322   case vmIntrinsics::_dcos:
1323     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1324     break;
1325   case vmIntrinsics::_dtan:
1326     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1327     break;
1328   default:
1329     assert(false, "bad intrinsic was passed in");
1330     return false;
1331   }
1332 
1333   // Rounding required?  Check for argument reduction!
1334   if( Matcher::strict_fp_requires_explicit_rounding ) {
1335 
1336     static const double     pi_4 =  0.7853981633974483;
1337     static const double neg_pi_4 = -0.7853981633974483;
1338     // pi/2 in 80-bit extended precision
1339     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1340     // -pi/2 in 80-bit extended precision
1341     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1342     // Cutoff value for using this argument reduction technique
1343     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1344     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1345 
1346     // Pseudocode for sin:
1347     // if (x <= Math.PI / 4.0) {
1348     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1349     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1350     // } else {
1351     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1352     // }
1353     // return StrictMath.sin(x);
1354 
1355     // Pseudocode for cos:
1356     // if (x <= Math.PI / 4.0) {
1357     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1358     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1359     // } else {
1360     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1361     // }
1362     // return StrictMath.cos(x);
1363 
1364     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1365     // requires a special machine instruction to load it.  Instead we'll try
1366     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1367     // probably do the math inside the SIN encoding.
1368 
1369     // Make the merge point
1370     RegionNode *r = new (C, 3) RegionNode(3);
1371     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1372 
1373     // Flatten arg so we need only 1 test
1374     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1375     // Node for PI/4 constant
1376     Node *pi4 = makecon(TypeD::make(pi_4));
1377     // Check PI/4 : abs(arg)
1378     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1379     // Check: If PI/4 < abs(arg) then go slow
1380     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1381     // Branch either way
1382     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1383     set_control(opt_iff(r,iff));
1384 
1385     // Set fast path result
1386     phi->init_req(2,trig);
1387 
1388     // Slow path - non-blocking leaf call
1389     Node* call = NULL;
1390     switch (id) {
1391     case vmIntrinsics::_dsin:
1392       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1393                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1394                                "Sin", NULL, arg, top());
1395       break;
1396     case vmIntrinsics::_dcos:
1397       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1398                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1399                                "Cos", NULL, arg, top());
1400       break;
1401     case vmIntrinsics::_dtan:
1402       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1403                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1404                                "Tan", NULL, arg, top());
1405       break;
1406     }
1407     assert(control()->in(0) == call, "");
1408     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1409     r->init_req(1,control());
1410     phi->init_req(1,slow_result);
1411 
1412     // Post-merge
1413     set_control(_gvn.transform(r));
1414     record_for_igvn(r);
1415     trig = _gvn.transform(phi);
1416 
1417     C->set_has_split_ifs(true); // Has chance for split-if optimization
1418   }
1419   // Push result back on JVM stack
1420   push_pair(trig);
1421   return true;
1422 }
1423 
1424 //------------------------------inline_sqrt-------------------------------------
1425 // Inline square root instruction, if possible.
1426 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1427   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1428   _sp += arg_size();        // restore stack pointer
1429   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1430   return true;
1431 }
1432 
1433 //------------------------------inline_abs-------------------------------------
1434 // Inline absolute value instruction, if possible.
1435 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1436   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1437   _sp += arg_size();        // restore stack pointer
1438   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1439   return true;
1440 }
1441 
1442 //------------------------------inline_exp-------------------------------------
1443 // Inline exp instructions, if possible.  The Intel hardware only misses
1444 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1445 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1446   assert(id == vmIntrinsics::_dexp, "Not exp");
1447 
1448   // If this inlining ever returned NaN in the past, we do not intrinsify it
1449   // every again.  NaN results requires StrictMath.exp handling.
1450   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1451 
1452   // Do not intrinsify on older platforms which lack cmove.
1453   if (ConditionalMoveLimit == 0)  return false;
1454 
1455   _sp += arg_size();        // restore stack pointer
1456   Node *x = pop_math_arg();
1457   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1458 
1459   //-------------------
1460   //result=(result.isNaN())? StrictMath::exp():result;
1461   // Check: If isNaN() by checking result!=result? then go to Strict Math
1462   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1463   // Build the boolean node
1464   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1465 
1466   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1467     // End the current control-flow path
1468     push_pair(x);
1469     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1470     // to handle.  Recompile without intrinsifying Math.exp
1471     uncommon_trap(Deoptimization::Reason_intrinsic,
1472                   Deoptimization::Action_make_not_entrant);
1473   }
1474 
1475   C->set_has_split_ifs(true); // Has chance for split-if optimization
1476 
1477   push_pair(result);
1478 
1479   return true;
1480 }
1481 
1482 //------------------------------inline_pow-------------------------------------
1483 // Inline power instructions, if possible.
1484 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1485   assert(id == vmIntrinsics::_dpow, "Not pow");
1486 
1487   // If this inlining ever returned NaN in the past, we do not intrinsify it
1488   // every again.  NaN results requires StrictMath.pow handling.
1489   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1490 
1491   // Do not intrinsify on older platforms which lack cmove.
1492   if (ConditionalMoveLimit == 0)  return false;
1493 
1494   // Pseudocode for pow
1495   // if (x <= 0.0) {
1496   //   if ((double)((int)y)==y) { // if y is int
1497   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1498   //   } else {
1499   //     result = NaN;
1500   //   }
1501   // } else {
1502   //   result = DPow(x,y);
1503   // }
1504   // if (result != result)?  {
1505   //   uncommon_trap();
1506   // }
1507   // return result;
1508 
1509   _sp += arg_size();        // restore stack pointer
1510   Node* y = pop_math_arg();
1511   Node* x = pop_math_arg();
1512 
1513   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1514 
1515   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1516   // inside of something) then skip the fancy tests and just check for
1517   // NaN result.
1518   Node *result = NULL;
1519   if( jvms()->depth() >= 1 ) {
1520     result = fast_result;
1521   } else {
1522 
1523     // Set the merge point for If node with condition of (x <= 0.0)
1524     // There are four possible paths to region node and phi node
1525     RegionNode *r = new (C, 4) RegionNode(4);
1526     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1527 
1528     // Build the first if node: if (x <= 0.0)
1529     // Node for 0 constant
1530     Node *zeronode = makecon(TypeD::ZERO);
1531     // Check x:0
1532     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1533     // Check: If (x<=0) then go complex path
1534     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1535     // Branch either way
1536     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1537     Node *opt_test = _gvn.transform(if1);
1538     //assert( opt_test->is_If(), "Expect an IfNode");
1539     IfNode *opt_if1 = (IfNode*)opt_test;
1540     // Fast path taken; set region slot 3
1541     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1542     r->init_req(3,fast_taken); // Capture fast-control
1543 
1544     // Fast path not-taken, i.e. slow path
1545     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1546 
1547     // Set fast path result
1548     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1549     phi->init_req(3, fast_result);
1550 
1551     // Complex path
1552     // Build the second if node (if y is int)
1553     // Node for (int)y
1554     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1555     // Node for (double)((int) y)
1556     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1557     // Check (double)((int) y) : y
1558     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1559     // Check if (y isn't int) then go to slow path
1560 
1561     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1562     // Branch either way
1563     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1564     Node *slow_path = opt_iff(r,if2); // Set region path 2
1565 
1566     // Calculate DPow(abs(x), y)*(1 & (int)y)
1567     // Node for constant 1
1568     Node *conone = intcon(1);
1569     // 1& (int)y
1570     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1571     // zero node
1572     Node *conzero = intcon(0);
1573     // Check (1&(int)y)==0?
1574     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1575     // Check if (1&(int)y)!=0?, if so the result is negative
1576     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1577     // abs(x)
1578     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1579     // abs(x)^y
1580     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1581     // -abs(x)^y
1582     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1583     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1584     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1585     // Set complex path fast result
1586     phi->init_req(2, signresult);
1587 
1588     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1589     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1590     r->init_req(1,slow_path);
1591     phi->init_req(1,slow_result);
1592 
1593     // Post merge
1594     set_control(_gvn.transform(r));
1595     record_for_igvn(r);
1596     result=_gvn.transform(phi);
1597   }
1598 
1599   //-------------------
1600   //result=(result.isNaN())? uncommon_trap():result;
1601   // Check: If isNaN() by checking result!=result? then go to Strict Math
1602   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1603   // Build the boolean node
1604   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1605 
1606   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1607     // End the current control-flow path
1608     push_pair(x);
1609     push_pair(y);
1610     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1611     // to handle.  Recompile without intrinsifying Math.pow.
1612     uncommon_trap(Deoptimization::Reason_intrinsic,
1613                   Deoptimization::Action_make_not_entrant);
1614   }
1615 
1616   C->set_has_split_ifs(true); // Has chance for split-if optimization
1617 
1618   push_pair(result);
1619 
1620   return true;
1621 }
1622 
1623 //------------------------------inline_trans-------------------------------------
1624 // Inline transcendental instructions, if possible.  The Intel hardware gets
1625 // these right, no funny corner cases missed.
1626 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1627   _sp += arg_size();        // restore stack pointer
1628   Node* arg = pop_math_arg();
1629   Node* trans = NULL;
1630 
1631   switch (id) {
1632   case vmIntrinsics::_dlog:
1633     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1634     break;
1635   case vmIntrinsics::_dlog10:
1636     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1637     break;
1638   default:
1639     assert(false, "bad intrinsic was passed in");
1640     return false;
1641   }
1642 
1643   // Push result back on JVM stack
1644   push_pair(trans);
1645   return true;
1646 }
1647 
1648 //------------------------------runtime_math-----------------------------
1649 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1650   Node* a = NULL;
1651   Node* b = NULL;
1652 
1653   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1654          "must be (DD)D or (D)D type");
1655 
1656   // Inputs
1657   _sp += arg_size();        // restore stack pointer
1658   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1659     b = pop_math_arg();
1660   }
1661   a = pop_math_arg();
1662 
1663   const TypePtr* no_memory_effects = NULL;
1664   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1665                                  no_memory_effects,
1666                                  a, top(), b, b ? top() : NULL);
1667   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1668 #ifdef ASSERT
1669   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1670   assert(value_top == top(), "second value must be top");
1671 #endif
1672 
1673   push_pair(value);
1674   return true;
1675 }
1676 
1677 //------------------------------inline_math_native-----------------------------
1678 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1679   switch (id) {
1680     // These intrinsics are not properly supported on all hardware
1681   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1682     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1683   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1684     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1685   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1686     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1687 
1688   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1689     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1690   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1691     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1692 
1693     // These intrinsics are supported on all hardware
1694   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1695   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1696 
1697     // These intrinsics don't work on X86.  The ad implementation doesn't
1698     // handle NaN's properly.  Instead of returning infinity, the ad
1699     // implementation returns a NaN on overflow. See bug: 6304089
1700     // Once the ad implementations are fixed, change the code below
1701     // to match the intrinsics above
1702 
1703   case vmIntrinsics::_dexp:  return
1704     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1705   case vmIntrinsics::_dpow:  return
1706     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1707 
1708    // These intrinsics are not yet correctly implemented
1709   case vmIntrinsics::_datan2:
1710     return false;
1711 
1712   default:
1713     ShouldNotReachHere();
1714     return false;
1715   }
1716 }
1717 
1718 static bool is_simple_name(Node* n) {
1719   return (n->req() == 1         // constant
1720           || (n->is_Type() && n->as_Type()->type()->singleton())
1721           || n->is_Proj()       // parameter or return value
1722           || n->is_Phi()        // local of some sort
1723           );
1724 }
1725 
1726 //----------------------------inline_min_max-----------------------------------
1727 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1728   push(generate_min_max(id, argument(0), argument(1)));
1729 
1730   return true;
1731 }
1732 
1733 Node*
1734 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1735   // These are the candidate return value:
1736   Node* xvalue = x0;
1737   Node* yvalue = y0;
1738 
1739   if (xvalue == yvalue) {
1740     return xvalue;
1741   }
1742 
1743   bool want_max = (id == vmIntrinsics::_max);
1744 
1745   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1746   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1747   if (txvalue == NULL || tyvalue == NULL)  return top();
1748   // This is not really necessary, but it is consistent with a
1749   // hypothetical MaxINode::Value method:
1750   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1751 
1752   // %%% This folding logic should (ideally) be in a different place.
1753   // Some should be inside IfNode, and there to be a more reliable
1754   // transformation of ?: style patterns into cmoves.  We also want
1755   // more powerful optimizations around cmove and min/max.
1756 
1757   // Try to find a dominating comparison of these guys.
1758   // It can simplify the index computation for Arrays.copyOf
1759   // and similar uses of System.arraycopy.
1760   // First, compute the normalized version of CmpI(x, y).
1761   int   cmp_op = Op_CmpI;
1762   Node* xkey = xvalue;
1763   Node* ykey = yvalue;
1764   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1765   if (ideal_cmpxy->is_Cmp()) {
1766     // E.g., if we have CmpI(length - offset, count),
1767     // it might idealize to CmpI(length, count + offset)
1768     cmp_op = ideal_cmpxy->Opcode();
1769     xkey = ideal_cmpxy->in(1);
1770     ykey = ideal_cmpxy->in(2);
1771   }
1772 
1773   // Start by locating any relevant comparisons.
1774   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1775   Node* cmpxy = NULL;
1776   Node* cmpyx = NULL;
1777   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1778     Node* cmp = start_from->fast_out(k);
1779     if (cmp->outcnt() > 0 &&            // must have prior uses
1780         cmp->in(0) == NULL &&           // must be context-independent
1781         cmp->Opcode() == cmp_op) {      // right kind of compare
1782       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1783       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1784     }
1785   }
1786 
1787   const int NCMPS = 2;
1788   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1789   int cmpn;
1790   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1791     if (cmps[cmpn] != NULL)  break;     // find a result
1792   }
1793   if (cmpn < NCMPS) {
1794     // Look for a dominating test that tells us the min and max.
1795     int depth = 0;                // Limit search depth for speed
1796     Node* dom = control();
1797     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1798       if (++depth >= 100)  break;
1799       Node* ifproj = dom;
1800       if (!ifproj->is_Proj())  continue;
1801       Node* iff = ifproj->in(0);
1802       if (!iff->is_If())  continue;
1803       Node* bol = iff->in(1);
1804       if (!bol->is_Bool())  continue;
1805       Node* cmp = bol->in(1);
1806       if (cmp == NULL)  continue;
1807       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1808         if (cmps[cmpn] == cmp)  break;
1809       if (cmpn == NCMPS)  continue;
1810       BoolTest::mask btest = bol->as_Bool()->_test._test;
1811       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1812       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1813       // At this point, we know that 'x btest y' is true.
1814       switch (btest) {
1815       case BoolTest::eq:
1816         // They are proven equal, so we can collapse the min/max.
1817         // Either value is the answer.  Choose the simpler.
1818         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1819           return yvalue;
1820         return xvalue;
1821       case BoolTest::lt:          // x < y
1822       case BoolTest::le:          // x <= y
1823         return (want_max ? yvalue : xvalue);
1824       case BoolTest::gt:          // x > y
1825       case BoolTest::ge:          // x >= y
1826         return (want_max ? xvalue : yvalue);
1827       }
1828     }
1829   }
1830 
1831   // We failed to find a dominating test.
1832   // Let's pick a test that might GVN with prior tests.
1833   Node*          best_bol   = NULL;
1834   BoolTest::mask best_btest = BoolTest::illegal;
1835   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1836     Node* cmp = cmps[cmpn];
1837     if (cmp == NULL)  continue;
1838     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1839       Node* bol = cmp->fast_out(j);
1840       if (!bol->is_Bool())  continue;
1841       BoolTest::mask btest = bol->as_Bool()->_test._test;
1842       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1843       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1844       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1845         best_bol   = bol->as_Bool();
1846         best_btest = btest;
1847       }
1848     }
1849   }
1850 
1851   Node* answer_if_true  = NULL;
1852   Node* answer_if_false = NULL;
1853   switch (best_btest) {
1854   default:
1855     if (cmpxy == NULL)
1856       cmpxy = ideal_cmpxy;
1857     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1858     // and fall through:
1859   case BoolTest::lt:          // x < y
1860   case BoolTest::le:          // x <= y
1861     answer_if_true  = (want_max ? yvalue : xvalue);
1862     answer_if_false = (want_max ? xvalue : yvalue);
1863     break;
1864   case BoolTest::gt:          // x > y
1865   case BoolTest::ge:          // x >= y
1866     answer_if_true  = (want_max ? xvalue : yvalue);
1867     answer_if_false = (want_max ? yvalue : xvalue);
1868     break;
1869   }
1870 
1871   jint hi, lo;
1872   if (want_max) {
1873     // We can sharpen the minimum.
1874     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1875     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1876   } else {
1877     // We can sharpen the maximum.
1878     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1879     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1880   }
1881 
1882   // Use a flow-free graph structure, to avoid creating excess control edges
1883   // which could hinder other optimizations.
1884   // Since Math.min/max is often used with arraycopy, we want
1885   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1886   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1887                                answer_if_false, answer_if_true,
1888                                TypeInt::make(lo, hi, widen));
1889 
1890   return _gvn.transform(cmov);
1891 
1892   /*
1893   // This is not as desirable as it may seem, since Min and Max
1894   // nodes do not have a full set of optimizations.
1895   // And they would interfere, anyway, with 'if' optimizations
1896   // and with CMoveI canonical forms.
1897   switch (id) {
1898   case vmIntrinsics::_min:
1899     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1900   case vmIntrinsics::_max:
1901     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1902   default:
1903     ShouldNotReachHere();
1904   }
1905   */
1906 }
1907 
1908 inline int
1909 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1910   const TypePtr* base_type = TypePtr::NULL_PTR;
1911   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1912   if (base_type == NULL) {
1913     // Unknown type.
1914     return Type::AnyPtr;
1915   } else if (base_type == TypePtr::NULL_PTR) {
1916     // Since this is a NULL+long form, we have to switch to a rawptr.
1917     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1918     offset = MakeConX(0);
1919     return Type::RawPtr;
1920   } else if (base_type->base() == Type::RawPtr) {
1921     return Type::RawPtr;
1922   } else if (base_type->isa_oopptr()) {
1923     // Base is never null => always a heap address.
1924     if (base_type->ptr() == TypePtr::NotNull) {
1925       return Type::OopPtr;
1926     }
1927     // Offset is small => always a heap address.
1928     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1929     if (offset_type != NULL &&
1930         base_type->offset() == 0 &&     // (should always be?)
1931         offset_type->_lo >= 0 &&
1932         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1933       return Type::OopPtr;
1934     }
1935     // Otherwise, it might either be oop+off or NULL+addr.
1936     return Type::AnyPtr;
1937   } else {
1938     // No information:
1939     return Type::AnyPtr;
1940   }
1941 }
1942 
1943 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1944   int kind = classify_unsafe_addr(base, offset);
1945   if (kind == Type::RawPtr) {
1946     return basic_plus_adr(top(), base, offset);
1947   } else {
1948     return basic_plus_adr(base, offset);
1949   }
1950 }
1951 
1952 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
1953 // inline int Integer.numberOfLeadingZeros(int)
1954 // inline int Long.numberOfLeadingZeros(long)
1955 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
1956   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
1957   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
1958   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
1959   _sp += arg_size();  // restore stack pointer
1960   switch (id) {
1961   case vmIntrinsics::_numberOfLeadingZeros_i:
1962     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
1963     break;
1964   case vmIntrinsics::_numberOfLeadingZeros_l:
1965     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
1966     break;
1967   default:
1968     ShouldNotReachHere();
1969   }
1970   return true;
1971 }
1972 
1973 //-------------------inline_numberOfTrailingZeros_int/long----------------------
1974 // inline int Integer.numberOfTrailingZeros(int)
1975 // inline int Long.numberOfTrailingZeros(long)
1976 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
1977   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
1978   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
1979   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
1980   _sp += arg_size();  // restore stack pointer
1981   switch (id) {
1982   case vmIntrinsics::_numberOfTrailingZeros_i:
1983     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
1984     break;
1985   case vmIntrinsics::_numberOfTrailingZeros_l:
1986     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
1987     break;
1988   default:
1989     ShouldNotReachHere();
1990   }
1991   return true;
1992 }
1993 
1994 //----------------------------inline_bitCount_int/long-----------------------
1995 // inline int Integer.bitCount(int)
1996 // inline int Long.bitCount(long)
1997 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
1998   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
1999   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2000   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2001   _sp += arg_size();  // restore stack pointer
2002   switch (id) {
2003   case vmIntrinsics::_bitCount_i:
2004     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
2005     break;
2006   case vmIntrinsics::_bitCount_l:
2007     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
2008     break;
2009   default:
2010     ShouldNotReachHere();
2011   }
2012   return true;
2013 }
2014 
2015 //----------------------------inline_reverseBytes_int/long/char/short-------------------
2016 // inline Integer.reverseBytes(int)
2017 // inline Long.reverseBytes(long)
2018 // inline Character.reverseBytes(char)
2019 // inline Short.reverseBytes(short)
2020 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2021   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2022          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2023          "not reverse Bytes");
2024   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2025   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2026   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2027   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2028   _sp += arg_size();        // restore stack pointer
2029   switch (id) {
2030   case vmIntrinsics::_reverseBytes_i:
2031     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
2032     break;
2033   case vmIntrinsics::_reverseBytes_l:
2034     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
2035     break;
2036   case vmIntrinsics::_reverseBytes_c:
2037     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
2038     break;
2039   case vmIntrinsics::_reverseBytes_s:
2040     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
2041     break;
2042   default:
2043     ;
2044   }
2045   return true;
2046 }
2047 
2048 //----------------------------inline_unsafe_access----------------------------
2049 
2050 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2051 
2052 // Interpret Unsafe.fieldOffset cookies correctly:
2053 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2054 
2055 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2056   if (callee()->is_static())  return false;  // caller must have the capability!
2057 
2058 #ifndef PRODUCT
2059   {
2060     ResourceMark rm;
2061     // Check the signatures.
2062     ciSignature* sig = signature();
2063 #ifdef ASSERT
2064     if (!is_store) {
2065       // Object getObject(Object base, int/long offset), etc.
2066       BasicType rtype = sig->return_type()->basic_type();
2067       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2068           rtype = T_ADDRESS;  // it is really a C void*
2069       assert(rtype == type, "getter must return the expected value");
2070       if (!is_native_ptr) {
2071         assert(sig->count() == 2, "oop getter has 2 arguments");
2072         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2073         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2074       } else {
2075         assert(sig->count() == 1, "native getter has 1 argument");
2076         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2077       }
2078     } else {
2079       // void putObject(Object base, int/long offset, Object x), etc.
2080       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2081       if (!is_native_ptr) {
2082         assert(sig->count() == 3, "oop putter has 3 arguments");
2083         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2084         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2085       } else {
2086         assert(sig->count() == 2, "native putter has 2 arguments");
2087         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2088       }
2089       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2090       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2091         vtype = T_ADDRESS;  // it is really a C void*
2092       assert(vtype == type, "putter must accept the expected value");
2093     }
2094 #endif // ASSERT
2095  }
2096 #endif //PRODUCT
2097 
2098   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2099 
2100   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2101 
2102   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2103   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2104 
2105   debug_only(int saved_sp = _sp);
2106   _sp += nargs;
2107 
2108   Node* val;
2109   debug_only(val = (Node*)(uintptr_t)-1);
2110 
2111 
2112   if (is_store) {
2113     // Get the value being stored.  (Pop it first; it was pushed last.)
2114     switch (type) {
2115     case T_DOUBLE:
2116     case T_LONG:
2117     case T_ADDRESS:
2118       val = pop_pair();
2119       break;
2120     default:
2121       val = pop();
2122     }
2123   }
2124 
2125   // Build address expression.  See the code in inline_unsafe_prefetch.
2126   Node *adr;
2127   Node *heap_base_oop = top();
2128   if (!is_native_ptr) {
2129     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2130     Node* offset = pop_pair();
2131     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2132     Node* base   = pop();
2133     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2134     // to be plain byte offsets, which are also the same as those accepted
2135     // by oopDesc::field_base.
2136     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2137            "fieldOffset must be byte-scaled");
2138     // 32-bit machines ignore the high half!
2139     offset = ConvL2X(offset);
2140     adr = make_unsafe_address(base, offset);
2141     heap_base_oop = base;
2142   } else {
2143     Node* ptr = pop_pair();
2144     // Adjust Java long to machine word:
2145     ptr = ConvL2X(ptr);
2146     adr = make_unsafe_address(NULL, ptr);
2147   }
2148 
2149   // Pop receiver last:  it was pushed first.
2150   Node *receiver = pop();
2151 
2152   assert(saved_sp == _sp, "must have correct argument count");
2153 
2154   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2155 
2156   // First guess at the value type.
2157   const Type *value_type = Type::get_const_basic_type(type);
2158 
2159   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2160   // there was not enough information to nail it down.
2161   Compile::AliasType* alias_type = C->alias_type(adr_type);
2162   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2163 
2164   // We will need memory barriers unless we can determine a unique
2165   // alias category for this reference.  (Note:  If for some reason
2166   // the barriers get omitted and the unsafe reference begins to "pollute"
2167   // the alias analysis of the rest of the graph, either Compile::can_alias
2168   // or Compile::must_alias will throw a diagnostic assert.)
2169   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2170 
2171   if (!is_store && type == T_OBJECT) {
2172     // Attempt to infer a sharper value type from the offset and base type.
2173     ciKlass* sharpened_klass = NULL;
2174 
2175     // See if it is an instance field, with an object type.
2176     if (alias_type->field() != NULL) {
2177       assert(!is_native_ptr, "native pointer op cannot use a java address");
2178       if (alias_type->field()->type()->is_klass()) {
2179         sharpened_klass = alias_type->field()->type()->as_klass();
2180       }
2181     }
2182 
2183     // See if it is a narrow oop array.
2184     if (adr_type->isa_aryptr()) {
2185       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2186         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2187         if (elem_type != NULL) {
2188           sharpened_klass = elem_type->klass();
2189         }
2190       }
2191     }
2192 
2193     if (sharpened_klass != NULL) {
2194       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2195 
2196       // Sharpen the value type.
2197       value_type = tjp;
2198 
2199 #ifndef PRODUCT
2200       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2201         tty->print("  from base type:  ");   adr_type->dump();
2202         tty->print("  sharpened value: "); value_type->dump();
2203       }
2204 #endif
2205     }
2206   }
2207 
2208   // Null check on self without removing any arguments.  The argument
2209   // null check technically happens in the wrong place, which can lead to
2210   // invalid stack traces when the primitive is inlined into a method
2211   // which handles NullPointerExceptions.
2212   _sp += nargs;
2213   do_null_check(receiver, T_OBJECT);
2214   _sp -= nargs;
2215   if (stopped()) {
2216     return true;
2217   }
2218   // Heap pointers get a null-check from the interpreter,
2219   // as a courtesy.  However, this is not guaranteed by Unsafe,
2220   // and it is not possible to fully distinguish unintended nulls
2221   // from intended ones in this API.
2222 
2223   if (is_volatile) {
2224     // We need to emit leading and trailing CPU membars (see below) in
2225     // addition to memory membars when is_volatile. This is a little
2226     // too strong, but avoids the need to insert per-alias-type
2227     // volatile membars (for stores; compare Parse::do_put_xxx), which
2228     // we cannot do effectively here because we probably only have a
2229     // rough approximation of type.
2230     need_mem_bar = true;
2231     // For Stores, place a memory ordering barrier now.
2232     if (is_store)
2233       insert_mem_bar(Op_MemBarRelease);
2234   }
2235 
2236   // Memory barrier to prevent normal and 'unsafe' accesses from
2237   // bypassing each other.  Happens after null checks, so the
2238   // exception paths do not take memory state from the memory barrier,
2239   // so there's no problems making a strong assert about mixing users
2240   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2241   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2242   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2243 
2244   if (!is_store) {
2245     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2246     // load value and push onto stack
2247     switch (type) {
2248     case T_BOOLEAN:
2249     case T_CHAR:
2250     case T_BYTE:
2251     case T_SHORT:
2252     case T_INT:
2253     case T_FLOAT:
2254     case T_OBJECT:
2255       push( p );
2256       break;
2257     case T_ADDRESS:
2258       // Cast to an int type.
2259       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2260       p = ConvX2L(p);
2261       push_pair(p);
2262       break;
2263     case T_DOUBLE:
2264     case T_LONG:
2265       push_pair( p );
2266       break;
2267     default: ShouldNotReachHere();
2268     }
2269   } else {
2270     // place effect of store into memory
2271     switch (type) {
2272     case T_DOUBLE:
2273       val = dstore_rounding(val);
2274       break;
2275     case T_ADDRESS:
2276       // Repackage the long as a pointer.
2277       val = ConvL2X(val);
2278       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2279       break;
2280     }
2281 
2282     if (type != T_OBJECT ) {
2283       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2284     } else {
2285       // Possibly an oop being stored to Java heap or native memory
2286       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2287         // oop to Java heap.
2288         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2289       } else {
2290         // We can't tell at compile time if we are storing in the Java heap or outside
2291         // of it. So we need to emit code to conditionally do the proper type of
2292         // store.
2293 
2294         IdealKit ideal(gvn(), control(),  merged_memory());
2295 #define __ ideal.
2296         // QQQ who knows what probability is here??
2297         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2298           // Sync IdealKit and graphKit.
2299           set_all_memory( __ merged_memory());
2300           set_control(__ ctrl());
2301           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2302           // Update IdealKit memory.
2303           __ set_all_memory(merged_memory());
2304           __ set_ctrl(control());
2305         } __ else_(); {
2306           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2307         } __ end_if();
2308         // Final sync IdealKit and GraphKit.
2309         sync_kit(ideal);
2310 #undef __
2311       }
2312     }
2313   }
2314 
2315   if (is_volatile) {
2316     if (!is_store)
2317       insert_mem_bar(Op_MemBarAcquire);
2318     else
2319       insert_mem_bar(Op_MemBarVolatile);
2320   }
2321 
2322   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2323 
2324   return true;
2325 }
2326 
2327 //----------------------------inline_unsafe_prefetch----------------------------
2328 
2329 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2330 #ifndef PRODUCT
2331   {
2332     ResourceMark rm;
2333     // Check the signatures.
2334     ciSignature* sig = signature();
2335 #ifdef ASSERT
2336     // Object getObject(Object base, int/long offset), etc.
2337     BasicType rtype = sig->return_type()->basic_type();
2338     if (!is_native_ptr) {
2339       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2340       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2341       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2342     } else {
2343       assert(sig->count() == 1, "native prefetch has 1 argument");
2344       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2345     }
2346 #endif // ASSERT
2347   }
2348 #endif // !PRODUCT
2349 
2350   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2351 
2352   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2353   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2354 
2355   debug_only(int saved_sp = _sp);
2356   _sp += nargs;
2357 
2358   // Build address expression.  See the code in inline_unsafe_access.
2359   Node *adr;
2360   if (!is_native_ptr) {
2361     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2362     Node* offset = pop_pair();
2363     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2364     Node* base   = pop();
2365     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2366     // to be plain byte offsets, which are also the same as those accepted
2367     // by oopDesc::field_base.
2368     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2369            "fieldOffset must be byte-scaled");
2370     // 32-bit machines ignore the high half!
2371     offset = ConvL2X(offset);
2372     adr = make_unsafe_address(base, offset);
2373   } else {
2374     Node* ptr = pop_pair();
2375     // Adjust Java long to machine word:
2376     ptr = ConvL2X(ptr);
2377     adr = make_unsafe_address(NULL, ptr);
2378   }
2379 
2380   if (is_static) {
2381     assert(saved_sp == _sp, "must have correct argument count");
2382   } else {
2383     // Pop receiver last:  it was pushed first.
2384     Node *receiver = pop();
2385     assert(saved_sp == _sp, "must have correct argument count");
2386 
2387     // Null check on self without removing any arguments.  The argument
2388     // null check technically happens in the wrong place, which can lead to
2389     // invalid stack traces when the primitive is inlined into a method
2390     // which handles NullPointerExceptions.
2391     _sp += nargs;
2392     do_null_check(receiver, T_OBJECT);
2393     _sp -= nargs;
2394     if (stopped()) {
2395       return true;
2396     }
2397   }
2398 
2399   // Generate the read or write prefetch
2400   Node *prefetch;
2401   if (is_store) {
2402     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2403   } else {
2404     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2405   }
2406   prefetch->init_req(0, control());
2407   set_i_o(_gvn.transform(prefetch));
2408 
2409   return true;
2410 }
2411 
2412 //----------------------------inline_unsafe_CAS----------------------------
2413 
2414 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2415   // This basic scheme here is the same as inline_unsafe_access, but
2416   // differs in enough details that combining them would make the code
2417   // overly confusing.  (This is a true fact! I originally combined
2418   // them, but even I was confused by it!) As much code/comments as
2419   // possible are retained from inline_unsafe_access though to make
2420   // the correspondences clearer. - dl
2421 
2422   if (callee()->is_static())  return false;  // caller must have the capability!
2423 
2424 #ifndef PRODUCT
2425   {
2426     ResourceMark rm;
2427     // Check the signatures.
2428     ciSignature* sig = signature();
2429 #ifdef ASSERT
2430     BasicType rtype = sig->return_type()->basic_type();
2431     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2432     assert(sig->count() == 4, "CAS has 4 arguments");
2433     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2434     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2435 #endif // ASSERT
2436   }
2437 #endif //PRODUCT
2438 
2439   // number of stack slots per value argument (1 or 2)
2440   int type_words = type2size[type];
2441 
2442   // Cannot inline wide CAS on machines that don't support it natively
2443   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2444     return false;
2445 
2446   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2447 
2448   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2449   int nargs = 1 + 1 + 2  + type_words + type_words;
2450 
2451   // pop arguments: newval, oldval, offset, base, and receiver
2452   debug_only(int saved_sp = _sp);
2453   _sp += nargs;
2454   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2455   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2456   Node *offset   = pop_pair();
2457   Node *base     = pop();
2458   Node *receiver = pop();
2459   assert(saved_sp == _sp, "must have correct argument count");
2460 
2461   //  Null check receiver.
2462   _sp += nargs;
2463   do_null_check(receiver, T_OBJECT);
2464   _sp -= nargs;
2465   if (stopped()) {
2466     return true;
2467   }
2468 
2469   // Build field offset expression.
2470   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2471   // to be plain byte offsets, which are also the same as those accepted
2472   // by oopDesc::field_base.
2473   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2474   // 32-bit machines ignore the high half of long offsets
2475   offset = ConvL2X(offset);
2476   Node* adr = make_unsafe_address(base, offset);
2477   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2478 
2479   // (Unlike inline_unsafe_access, there seems no point in trying
2480   // to refine types. Just use the coarse types here.
2481   const Type *value_type = Type::get_const_basic_type(type);
2482   Compile::AliasType* alias_type = C->alias_type(adr_type);
2483   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2484   int alias_idx = C->get_alias_index(adr_type);
2485 
2486   // Memory-model-wise, a CAS acts like a little synchronized block,
2487   // so needs barriers on each side.  These don't translate into
2488   // actual barriers on most machines, but we still need rest of
2489   // compiler to respect ordering.
2490 
2491   insert_mem_bar(Op_MemBarRelease);
2492   insert_mem_bar(Op_MemBarCPUOrder);
2493 
2494   // 4984716: MemBars must be inserted before this
2495   //          memory node in order to avoid a false
2496   //          dependency which will confuse the scheduler.
2497   Node *mem = memory(alias_idx);
2498 
2499   // For now, we handle only those cases that actually exist: ints,
2500   // longs, and Object. Adding others should be straightforward.
2501   Node* cas;
2502   switch(type) {
2503   case T_INT:
2504     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2505     break;
2506   case T_LONG:
2507     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2508     break;
2509   case T_OBJECT:
2510      // reference stores need a store barrier.
2511     // (They don't if CAS fails, but it isn't worth checking.)
2512     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
2513 #ifdef _LP64
2514     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2515       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2516       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2517       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2518                                                           newval_enc, oldval_enc));
2519     } else
2520 #endif
2521     {
2522       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2523     }
2524     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2525     break;
2526   default:
2527     ShouldNotReachHere();
2528     break;
2529   }
2530 
2531   // SCMemProjNodes represent the memory state of CAS. Their main
2532   // role is to prevent CAS nodes from being optimized away when their
2533   // results aren't used.
2534   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2535   set_memory(proj, alias_idx);
2536 
2537   // Add the trailing membar surrounding the access
2538   insert_mem_bar(Op_MemBarCPUOrder);
2539   insert_mem_bar(Op_MemBarAcquire);
2540 
2541   push(cas);
2542   return true;
2543 }
2544 
2545 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2546   // This is another variant of inline_unsafe_access, differing in
2547   // that it always issues store-store ("release") barrier and ensures
2548   // store-atomicity (which only matters for "long").
2549 
2550   if (callee()->is_static())  return false;  // caller must have the capability!
2551 
2552 #ifndef PRODUCT
2553   {
2554     ResourceMark rm;
2555     // Check the signatures.
2556     ciSignature* sig = signature();
2557 #ifdef ASSERT
2558     BasicType rtype = sig->return_type()->basic_type();
2559     assert(rtype == T_VOID, "must return void");
2560     assert(sig->count() == 3, "has 3 arguments");
2561     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2562     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2563 #endif // ASSERT
2564   }
2565 #endif //PRODUCT
2566 
2567   // number of stack slots per value argument (1 or 2)
2568   int type_words = type2size[type];
2569 
2570   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2571 
2572   // Argument words:  "this" plus oop plus offset plus value;
2573   int nargs = 1 + 1 + 2 + type_words;
2574 
2575   // pop arguments: val, offset, base, and receiver
2576   debug_only(int saved_sp = _sp);
2577   _sp += nargs;
2578   Node* val      = (type_words == 1) ? pop() : pop_pair();
2579   Node *offset   = pop_pair();
2580   Node *base     = pop();
2581   Node *receiver = pop();
2582   assert(saved_sp == _sp, "must have correct argument count");
2583 
2584   //  Null check receiver.
2585   _sp += nargs;
2586   do_null_check(receiver, T_OBJECT);
2587   _sp -= nargs;
2588   if (stopped()) {
2589     return true;
2590   }
2591 
2592   // Build field offset expression.
2593   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2594   // 32-bit machines ignore the high half of long offsets
2595   offset = ConvL2X(offset);
2596   Node* adr = make_unsafe_address(base, offset);
2597   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2598   const Type *value_type = Type::get_const_basic_type(type);
2599   Compile::AliasType* alias_type = C->alias_type(adr_type);
2600 
2601   insert_mem_bar(Op_MemBarRelease);
2602   insert_mem_bar(Op_MemBarCPUOrder);
2603   // Ensure that the store is atomic for longs:
2604   bool require_atomic_access = true;
2605   Node* store;
2606   if (type == T_OBJECT) // reference stores need a store barrier.
2607     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2608   else {
2609     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2610   }
2611   insert_mem_bar(Op_MemBarCPUOrder);
2612   return true;
2613 }
2614 
2615 bool LibraryCallKit::inline_unsafe_allocate() {
2616   if (callee()->is_static())  return false;  // caller must have the capability!
2617   int nargs = 1 + 1;
2618   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2619   null_check_receiver(callee());  // check then ignore argument(0)
2620   _sp += nargs;  // set original stack for use by uncommon_trap
2621   Node* cls = do_null_check(argument(1), T_OBJECT);
2622   _sp -= nargs;
2623   if (stopped())  return true;
2624 
2625   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2626   _sp += nargs;  // set original stack for use by uncommon_trap
2627   kls = do_null_check(kls, T_OBJECT);
2628   _sp -= nargs;
2629   if (stopped())  return true;  // argument was like int.class
2630 
2631   // Note:  The argument might still be an illegal value like
2632   // Serializable.class or Object[].class.   The runtime will handle it.
2633   // But we must make an explicit check for initialization.
2634   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2635   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2636   Node* bits = intcon(instanceKlass::fully_initialized);
2637   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2638   // The 'test' is non-zero if we need to take a slow path.
2639 
2640   Node* obj = new_instance(kls, test);
2641   push(obj);
2642 
2643   return true;
2644 }
2645 
2646 //------------------------inline_native_time_funcs--------------
2647 // inline code for System.currentTimeMillis() and System.nanoTime()
2648 // these have the same type and signature
2649 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2650   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2651                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2652   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2653   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2654   const TypePtr* no_memory_effects = NULL;
2655   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2656   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2657 #ifdef ASSERT
2658   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2659   assert(value_top == top(), "second value must be top");
2660 #endif
2661   push_pair(value);
2662   return true;
2663 }
2664 
2665 //------------------------inline_native_currentThread------------------
2666 bool LibraryCallKit::inline_native_currentThread() {
2667   Node* junk = NULL;
2668   push(generate_current_thread(junk));
2669   return true;
2670 }
2671 
2672 //------------------------inline_native_isInterrupted------------------
2673 bool LibraryCallKit::inline_native_isInterrupted() {
2674   const int nargs = 1+1;  // receiver + boolean
2675   assert(nargs == arg_size(), "sanity");
2676   // Add a fast path to t.isInterrupted(clear_int):
2677   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2678   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2679   // So, in the common case that the interrupt bit is false,
2680   // we avoid making a call into the VM.  Even if the interrupt bit
2681   // is true, if the clear_int argument is false, we avoid the VM call.
2682   // However, if the receiver is not currentThread, we must call the VM,
2683   // because there must be some locking done around the operation.
2684 
2685   // We only go to the fast case code if we pass two guards.
2686   // Paths which do not pass are accumulated in the slow_region.
2687   RegionNode* slow_region = new (C, 1) RegionNode(1);
2688   record_for_igvn(slow_region);
2689   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2690   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2691   enum { no_int_result_path   = 1,
2692          no_clear_result_path = 2,
2693          slow_result_path     = 3
2694   };
2695 
2696   // (a) Receiving thread must be the current thread.
2697   Node* rec_thr = argument(0);
2698   Node* tls_ptr = NULL;
2699   Node* cur_thr = generate_current_thread(tls_ptr);
2700   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2701   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2702 
2703   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2704   if (!known_current_thread)
2705     generate_slow_guard(bol_thr, slow_region);
2706 
2707   // (b) Interrupt bit on TLS must be false.
2708   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2709   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2710   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2711   // Set the control input on the field _interrupted read to prevent it floating up.
2712   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2713   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2714   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2715 
2716   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2717 
2718   // First fast path:  if (!TLS._interrupted) return false;
2719   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2720   result_rgn->init_req(no_int_result_path, false_bit);
2721   result_val->init_req(no_int_result_path, intcon(0));
2722 
2723   // drop through to next case
2724   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2725 
2726   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2727   Node* clr_arg = argument(1);
2728   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2729   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2730   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2731 
2732   // Second fast path:  ... else if (!clear_int) return true;
2733   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2734   result_rgn->init_req(no_clear_result_path, false_arg);
2735   result_val->init_req(no_clear_result_path, intcon(1));
2736 
2737   // drop through to next case
2738   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2739 
2740   // (d) Otherwise, go to the slow path.
2741   slow_region->add_req(control());
2742   set_control( _gvn.transform(slow_region) );
2743 
2744   if (stopped()) {
2745     // There is no slow path.
2746     result_rgn->init_req(slow_result_path, top());
2747     result_val->init_req(slow_result_path, top());
2748   } else {
2749     // non-virtual because it is a private non-static
2750     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2751 
2752     Node* slow_val = set_results_for_java_call(slow_call);
2753     // this->control() comes from set_results_for_java_call
2754 
2755     // If we know that the result of the slow call will be true, tell the optimizer!
2756     if (known_current_thread)  slow_val = intcon(1);
2757 
2758     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2759     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2760     // These two phis are pre-filled with copies of of the fast IO and Memory
2761     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2762     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2763 
2764     result_rgn->init_req(slow_result_path, control());
2765     io_phi    ->init_req(slow_result_path, i_o());
2766     mem_phi   ->init_req(slow_result_path, reset_memory());
2767     result_val->init_req(slow_result_path, slow_val);
2768 
2769     set_all_memory( _gvn.transform(mem_phi) );
2770     set_i_o(        _gvn.transform(io_phi) );
2771   }
2772 
2773   push_result(result_rgn, result_val);
2774   C->set_has_split_ifs(true); // Has chance for split-if optimization
2775 
2776   return true;
2777 }
2778 
2779 //---------------------------load_mirror_from_klass----------------------------
2780 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2781 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2782   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2783   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2784 }
2785 
2786 //-----------------------load_klass_from_mirror_common-------------------------
2787 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2788 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2789 // and branch to the given path on the region.
2790 // If never_see_null, take an uncommon trap on null, so we can optimistically
2791 // compile for the non-null case.
2792 // If the region is NULL, force never_see_null = true.
2793 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2794                                                     bool never_see_null,
2795                                                     int nargs,
2796                                                     RegionNode* region,
2797                                                     int null_path,
2798                                                     int offset) {
2799   if (region == NULL)  never_see_null = true;
2800   Node* p = basic_plus_adr(mirror, offset);
2801   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2802   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2803   _sp += nargs; // any deopt will start just before call to enclosing method
2804   Node* null_ctl = top();
2805   kls = null_check_oop(kls, &null_ctl, never_see_null);
2806   if (region != NULL) {
2807     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2808     region->init_req(null_path, null_ctl);
2809   } else {
2810     assert(null_ctl == top(), "no loose ends");
2811   }
2812   _sp -= nargs;
2813   return kls;
2814 }
2815 
2816 //--------------------(inline_native_Class_query helpers)---------------------
2817 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2818 // Fall through if (mods & mask) == bits, take the guard otherwise.
2819 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2820   // Branch around if the given klass has the given modifier bit set.
2821   // Like generate_guard, adds a new path onto the region.
2822   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2823   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2824   Node* mask = intcon(modifier_mask);
2825   Node* bits = intcon(modifier_bits);
2826   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2827   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2828   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2829   return generate_fair_guard(bol, region);
2830 }
2831 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2832   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2833 }
2834 
2835 //-------------------------inline_native_Class_query-------------------
2836 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2837   int nargs = 1+0;  // just the Class mirror, in most cases
2838   const Type* return_type = TypeInt::BOOL;
2839   Node* prim_return_value = top();  // what happens if it's a primitive class?
2840   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2841   bool expect_prim = false;     // most of these guys expect to work on refs
2842 
2843   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2844 
2845   switch (id) {
2846   case vmIntrinsics::_isInstance:
2847     nargs = 1+1;  // the Class mirror, plus the object getting queried about
2848     // nothing is an instance of a primitive type
2849     prim_return_value = intcon(0);
2850     break;
2851   case vmIntrinsics::_getModifiers:
2852     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2853     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2854     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2855     break;
2856   case vmIntrinsics::_isInterface:
2857     prim_return_value = intcon(0);
2858     break;
2859   case vmIntrinsics::_isArray:
2860     prim_return_value = intcon(0);
2861     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2862     break;
2863   case vmIntrinsics::_isPrimitive:
2864     prim_return_value = intcon(1);
2865     expect_prim = true;  // obviously
2866     break;
2867   case vmIntrinsics::_getSuperclass:
2868     prim_return_value = null();
2869     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2870     break;
2871   case vmIntrinsics::_getComponentType:
2872     prim_return_value = null();
2873     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2874     break;
2875   case vmIntrinsics::_getClassAccessFlags:
2876     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2877     return_type = TypeInt::INT;  // not bool!  6297094
2878     break;
2879   default:
2880     ShouldNotReachHere();
2881   }
2882 
2883   Node* mirror =                      argument(0);
2884   Node* obj    = (nargs <= 1)? top(): argument(1);
2885 
2886   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2887   if (mirror_con == NULL)  return false;  // cannot happen?
2888 
2889 #ifndef PRODUCT
2890   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2891     ciType* k = mirror_con->java_mirror_type();
2892     if (k) {
2893       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2894       k->print_name();
2895       tty->cr();
2896     }
2897   }
2898 #endif
2899 
2900   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2901   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2902   record_for_igvn(region);
2903   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2904 
2905   // The mirror will never be null of Reflection.getClassAccessFlags, however
2906   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2907   // if it is. See bug 4774291.
2908 
2909   // For Reflection.getClassAccessFlags(), the null check occurs in
2910   // the wrong place; see inline_unsafe_access(), above, for a similar
2911   // situation.
2912   _sp += nargs;  // set original stack for use by uncommon_trap
2913   mirror = do_null_check(mirror, T_OBJECT);
2914   _sp -= nargs;
2915   // If mirror or obj is dead, only null-path is taken.
2916   if (stopped())  return true;
2917 
2918   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2919 
2920   // Now load the mirror's klass metaobject, and null-check it.
2921   // Side-effects region with the control path if the klass is null.
2922   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2923                                      region, _prim_path);
2924   // If kls is null, we have a primitive mirror.
2925   phi->init_req(_prim_path, prim_return_value);
2926   if (stopped()) { push_result(region, phi); return true; }
2927 
2928   Node* p;  // handy temp
2929   Node* null_ctl;
2930 
2931   // Now that we have the non-null klass, we can perform the real query.
2932   // For constant classes, the query will constant-fold in LoadNode::Value.
2933   Node* query_value = top();
2934   switch (id) {
2935   case vmIntrinsics::_isInstance:
2936     // nothing is an instance of a primitive type
2937     query_value = gen_instanceof(obj, kls);
2938     break;
2939 
2940   case vmIntrinsics::_getModifiers:
2941     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2942     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2943     break;
2944 
2945   case vmIntrinsics::_isInterface:
2946     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2947     if (generate_interface_guard(kls, region) != NULL)
2948       // A guard was added.  If the guard is taken, it was an interface.
2949       phi->add_req(intcon(1));
2950     // If we fall through, it's a plain class.
2951     query_value = intcon(0);
2952     break;
2953 
2954   case vmIntrinsics::_isArray:
2955     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2956     if (generate_array_guard(kls, region) != NULL)
2957       // A guard was added.  If the guard is taken, it was an array.
2958       phi->add_req(intcon(1));
2959     // If we fall through, it's a plain class.
2960     query_value = intcon(0);
2961     break;
2962 
2963   case vmIntrinsics::_isPrimitive:
2964     query_value = intcon(0); // "normal" path produces false
2965     break;
2966 
2967   case vmIntrinsics::_getSuperclass:
2968     // The rules here are somewhat unfortunate, but we can still do better
2969     // with random logic than with a JNI call.
2970     // Interfaces store null or Object as _super, but must report null.
2971     // Arrays store an intermediate super as _super, but must report Object.
2972     // Other types can report the actual _super.
2973     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2974     if (generate_interface_guard(kls, region) != NULL)
2975       // A guard was added.  If the guard is taken, it was an interface.
2976       phi->add_req(null());
2977     if (generate_array_guard(kls, region) != NULL)
2978       // A guard was added.  If the guard is taken, it was an array.
2979       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2980     // If we fall through, it's a plain class.  Get its _super.
2981     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
2982     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
2983     null_ctl = top();
2984     kls = null_check_oop(kls, &null_ctl);
2985     if (null_ctl != top()) {
2986       // If the guard is taken, Object.superClass is null (both klass and mirror).
2987       region->add_req(null_ctl);
2988       phi   ->add_req(null());
2989     }
2990     if (!stopped()) {
2991       query_value = load_mirror_from_klass(kls);
2992     }
2993     break;
2994 
2995   case vmIntrinsics::_getComponentType:
2996     if (generate_array_guard(kls, region) != NULL) {
2997       // Be sure to pin the oop load to the guard edge just created:
2998       Node* is_array_ctrl = region->in(region->req()-1);
2999       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
3000       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3001       phi->add_req(cmo);
3002     }
3003     query_value = null();  // non-array case is null
3004     break;
3005 
3006   case vmIntrinsics::_getClassAccessFlags:
3007     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
3008     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3009     break;
3010 
3011   default:
3012     ShouldNotReachHere();
3013   }
3014 
3015   // Fall-through is the normal case of a query to a real class.
3016   phi->init_req(1, query_value);
3017   region->init_req(1, control());
3018 
3019   push_result(region, phi);
3020   C->set_has_split_ifs(true); // Has chance for split-if optimization
3021 
3022   return true;
3023 }
3024 
3025 //--------------------------inline_native_subtype_check------------------------
3026 // This intrinsic takes the JNI calls out of the heart of
3027 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3028 bool LibraryCallKit::inline_native_subtype_check() {
3029   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3030 
3031   // Pull both arguments off the stack.
3032   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3033   args[0] = argument(0);
3034   args[1] = argument(1);
3035   Node* klasses[2];             // corresponding Klasses: superk, subk
3036   klasses[0] = klasses[1] = top();
3037 
3038   enum {
3039     // A full decision tree on {superc is prim, subc is prim}:
3040     _prim_0_path = 1,           // {P,N} => false
3041                                 // {P,P} & superc!=subc => false
3042     _prim_same_path,            // {P,P} & superc==subc => true
3043     _prim_1_path,               // {N,P} => false
3044     _ref_subtype_path,          // {N,N} & subtype check wins => true
3045     _both_ref_path,             // {N,N} & subtype check loses => false
3046     PATH_LIMIT
3047   };
3048 
3049   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3050   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
3051   record_for_igvn(region);
3052 
3053   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3054   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3055   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3056 
3057   // First null-check both mirrors and load each mirror's klass metaobject.
3058   int which_arg;
3059   for (which_arg = 0; which_arg <= 1; which_arg++) {
3060     Node* arg = args[which_arg];
3061     _sp += nargs;  // set original stack for use by uncommon_trap
3062     arg = do_null_check(arg, T_OBJECT);
3063     _sp -= nargs;
3064     if (stopped())  break;
3065     args[which_arg] = _gvn.transform(arg);
3066 
3067     Node* p = basic_plus_adr(arg, class_klass_offset);
3068     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3069     klasses[which_arg] = _gvn.transform(kls);
3070   }
3071 
3072   // Having loaded both klasses, test each for null.
3073   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3074   for (which_arg = 0; which_arg <= 1; which_arg++) {
3075     Node* kls = klasses[which_arg];
3076     Node* null_ctl = top();
3077     _sp += nargs;  // set original stack for use by uncommon_trap
3078     kls = null_check_oop(kls, &null_ctl, never_see_null);
3079     _sp -= nargs;
3080     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3081     region->init_req(prim_path, null_ctl);
3082     if (stopped())  break;
3083     klasses[which_arg] = kls;
3084   }
3085 
3086   if (!stopped()) {
3087     // now we have two reference types, in klasses[0..1]
3088     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3089     Node* superk = klasses[0];  // the receiver
3090     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3091     // now we have a successful reference subtype check
3092     region->set_req(_ref_subtype_path, control());
3093   }
3094 
3095   // If both operands are primitive (both klasses null), then
3096   // we must return true when they are identical primitives.
3097   // It is convenient to test this after the first null klass check.
3098   set_control(region->in(_prim_0_path)); // go back to first null check
3099   if (!stopped()) {
3100     // Since superc is primitive, make a guard for the superc==subc case.
3101     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
3102     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
3103     generate_guard(bol_eq, region, PROB_FAIR);
3104     if (region->req() == PATH_LIMIT+1) {
3105       // A guard was added.  If the added guard is taken, superc==subc.
3106       region->swap_edges(PATH_LIMIT, _prim_same_path);
3107       region->del_req(PATH_LIMIT);
3108     }
3109     region->set_req(_prim_0_path, control()); // Not equal after all.
3110   }
3111 
3112   // these are the only paths that produce 'true':
3113   phi->set_req(_prim_same_path,   intcon(1));
3114   phi->set_req(_ref_subtype_path, intcon(1));
3115 
3116   // pull together the cases:
3117   assert(region->req() == PATH_LIMIT, "sane region");
3118   for (uint i = 1; i < region->req(); i++) {
3119     Node* ctl = region->in(i);
3120     if (ctl == NULL || ctl == top()) {
3121       region->set_req(i, top());
3122       phi   ->set_req(i, top());
3123     } else if (phi->in(i) == NULL) {
3124       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3125     }
3126   }
3127 
3128   set_control(_gvn.transform(region));
3129   push(_gvn.transform(phi));
3130 
3131   return true;
3132 }
3133 
3134 //---------------------generate_array_guard_common------------------------
3135 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3136                                                   bool obj_array, bool not_array) {
3137   // If obj_array/non_array==false/false:
3138   // Branch around if the given klass is in fact an array (either obj or prim).
3139   // If obj_array/non_array==false/true:
3140   // Branch around if the given klass is not an array klass of any kind.
3141   // If obj_array/non_array==true/true:
3142   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3143   // If obj_array/non_array==true/false:
3144   // Branch around if the kls is an oop array (Object[] or subtype)
3145   //
3146   // Like generate_guard, adds a new path onto the region.
3147   jint  layout_con = 0;
3148   Node* layout_val = get_layout_helper(kls, layout_con);
3149   if (layout_val == NULL) {
3150     bool query = (obj_array
3151                   ? Klass::layout_helper_is_objArray(layout_con)
3152                   : Klass::layout_helper_is_javaArray(layout_con));
3153     if (query == not_array) {
3154       return NULL;                       // never a branch
3155     } else {                             // always a branch
3156       Node* always_branch = control();
3157       if (region != NULL)
3158         region->add_req(always_branch);
3159       set_control(top());
3160       return always_branch;
3161     }
3162   }
3163   // Now test the correct condition.
3164   jint  nval = (obj_array
3165                 ? ((jint)Klass::_lh_array_tag_type_value
3166                    <<    Klass::_lh_array_tag_shift)
3167                 : Klass::_lh_neutral_value);
3168   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3169   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3170   // invert the test if we are looking for a non-array
3171   if (not_array)  btest = BoolTest(btest).negate();
3172   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3173   return generate_fair_guard(bol, region);
3174 }
3175 
3176 
3177 //-----------------------inline_native_newArray--------------------------
3178 bool LibraryCallKit::inline_native_newArray() {
3179   int nargs = 2;
3180   Node* mirror    = argument(0);
3181   Node* count_val = argument(1);
3182 
3183   _sp += nargs;  // set original stack for use by uncommon_trap
3184   mirror = do_null_check(mirror, T_OBJECT);
3185   _sp -= nargs;
3186   // If mirror or obj is dead, only null-path is taken.
3187   if (stopped())  return true;
3188 
3189   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3190   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3191   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3192                                                       TypeInstPtr::NOTNULL);
3193   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3194   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3195                                                       TypePtr::BOTTOM);
3196 
3197   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3198   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3199                                                   nargs,
3200                                                   result_reg, _slow_path);
3201   Node* normal_ctl   = control();
3202   Node* no_array_ctl = result_reg->in(_slow_path);
3203 
3204   // Generate code for the slow case.  We make a call to newArray().
3205   set_control(no_array_ctl);
3206   if (!stopped()) {
3207     // Either the input type is void.class, or else the
3208     // array klass has not yet been cached.  Either the
3209     // ensuing call will throw an exception, or else it
3210     // will cache the array klass for next time.
3211     PreserveJVMState pjvms(this);
3212     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3213     Node* slow_result = set_results_for_java_call(slow_call);
3214     // this->control() comes from set_results_for_java_call
3215     result_reg->set_req(_slow_path, control());
3216     result_val->set_req(_slow_path, slow_result);
3217     result_io ->set_req(_slow_path, i_o());
3218     result_mem->set_req(_slow_path, reset_memory());
3219   }
3220 
3221   set_control(normal_ctl);
3222   if (!stopped()) {
3223     // Normal case:  The array type has been cached in the java.lang.Class.
3224     // The following call works fine even if the array type is polymorphic.
3225     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3226     Node* obj = new_array(klass_node, count_val, nargs);
3227     result_reg->init_req(_normal_path, control());
3228     result_val->init_req(_normal_path, obj);
3229     result_io ->init_req(_normal_path, i_o());
3230     result_mem->init_req(_normal_path, reset_memory());
3231   }
3232 
3233   // Return the combined state.
3234   set_i_o(        _gvn.transform(result_io)  );
3235   set_all_memory( _gvn.transform(result_mem) );
3236   push_result(result_reg, result_val);
3237   C->set_has_split_ifs(true); // Has chance for split-if optimization
3238 
3239   return true;
3240 }
3241 
3242 //----------------------inline_native_getLength--------------------------
3243 bool LibraryCallKit::inline_native_getLength() {
3244   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3245 
3246   int nargs = 1;
3247   Node* array = argument(0);
3248 
3249   _sp += nargs;  // set original stack for use by uncommon_trap
3250   array = do_null_check(array, T_OBJECT);
3251   _sp -= nargs;
3252 
3253   // If array is dead, only null-path is taken.
3254   if (stopped())  return true;
3255 
3256   // Deoptimize if it is a non-array.
3257   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3258 
3259   if (non_array != NULL) {
3260     PreserveJVMState pjvms(this);
3261     set_control(non_array);
3262     _sp += nargs;  // push the arguments back on the stack
3263     uncommon_trap(Deoptimization::Reason_intrinsic,
3264                   Deoptimization::Action_maybe_recompile);
3265   }
3266 
3267   // If control is dead, only non-array-path is taken.
3268   if (stopped())  return true;
3269 
3270   // The works fine even if the array type is polymorphic.
3271   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3272   push( load_array_length(array) );
3273 
3274   C->set_has_split_ifs(true); // Has chance for split-if optimization
3275 
3276   return true;
3277 }
3278 
3279 //------------------------inline_array_copyOf----------------------------
3280 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3281   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3282 
3283   // Restore the stack and pop off the arguments.
3284   int nargs = 3 + (is_copyOfRange? 1: 0);
3285   Node* original          = argument(0);
3286   Node* start             = is_copyOfRange? argument(1): intcon(0);
3287   Node* end               = is_copyOfRange? argument(2): argument(1);
3288   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3289 
3290   Node* newcopy;
3291 
3292   //set the original stack and the reexecute bit for the interpreter to reexecute
3293   //the bytecode that invokes Arrays.copyOf if deoptimization happens
3294   { PreserveReexecuteState preexecs(this);
3295     _sp += nargs;
3296     jvms()->set_should_reexecute(true);
3297 
3298     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3299     original          = do_null_check(original, T_OBJECT);
3300 
3301     // Check if a null path was taken unconditionally.
3302     if (stopped())  return true;
3303 
3304     Node* orig_length = load_array_length(original);
3305 
3306     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3307                                               NULL, 0);
3308     klass_node = do_null_check(klass_node, T_OBJECT);
3309 
3310     RegionNode* bailout = new (C, 1) RegionNode(1);
3311     record_for_igvn(bailout);
3312 
3313     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3314     // Bail out if that is so.
3315     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3316     if (not_objArray != NULL) {
3317       // Improve the klass node's type from the new optimistic assumption:
3318       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3319       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3320       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3321       cast->init_req(0, control());
3322       klass_node = _gvn.transform(cast);
3323     }
3324 
3325     // Bail out if either start or end is negative.
3326     generate_negative_guard(start, bailout, &start);
3327     generate_negative_guard(end,   bailout, &end);
3328 
3329     Node* length = end;
3330     if (_gvn.type(start) != TypeInt::ZERO) {
3331       length = _gvn.transform( new (C, 3) SubINode(end, start) );
3332     }
3333 
3334     // Bail out if length is negative.
3335     // ...Not needed, since the new_array will throw the right exception.
3336     //generate_negative_guard(length, bailout, &length);
3337 
3338     if (bailout->req() > 1) {
3339       PreserveJVMState pjvms(this);
3340       set_control( _gvn.transform(bailout) );
3341       uncommon_trap(Deoptimization::Reason_intrinsic,
3342                     Deoptimization::Action_maybe_recompile);
3343     }
3344 
3345     if (!stopped()) {
3346 
3347       // How many elements will we copy from the original?
3348       // The answer is MinI(orig_length - start, length).
3349       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3350       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3351 
3352       const bool raw_mem_only = true;
3353       newcopy = new_array(klass_node, length, 0, raw_mem_only);
3354 
3355       // Generate a direct call to the right arraycopy function(s).
3356       // We know the copy is disjoint but we might not know if the
3357       // oop stores need checking.
3358       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3359       // This will fail a store-check if x contains any non-nulls.
3360       bool disjoint_bases = true;
3361       bool length_never_negative = true;
3362       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3363                          original, start, newcopy, intcon(0), moved,
3364                          disjoint_bases, length_never_negative);
3365     }
3366   } //original reexecute and sp are set back here
3367 
3368   if(!stopped()) {
3369     push(newcopy);
3370   }
3371 
3372   C->set_has_split_ifs(true); // Has chance for split-if optimization
3373 
3374   return true;
3375 }
3376 
3377 
3378 //----------------------generate_virtual_guard---------------------------
3379 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3380 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3381                                              RegionNode* slow_region) {
3382   ciMethod* method = callee();
3383   int vtable_index = method->vtable_index();
3384   // Get the methodOop out of the appropriate vtable entry.
3385   int entry_offset  = (instanceKlass::vtable_start_offset() +
3386                      vtable_index*vtableEntry::size()) * wordSize +
3387                      vtableEntry::method_offset_in_bytes();
3388   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3389   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3390 
3391   // Compare the target method with the expected method (e.g., Object.hashCode).
3392   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3393 
3394   Node* native_call = makecon(native_call_addr);
3395   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3396   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3397 
3398   return generate_slow_guard(test_native, slow_region);
3399 }
3400 
3401 //-----------------------generate_method_call----------------------------
3402 // Use generate_method_call to make a slow-call to the real
3403 // method if the fast path fails.  An alternative would be to
3404 // use a stub like OptoRuntime::slow_arraycopy_Java.
3405 // This only works for expanding the current library call,
3406 // not another intrinsic.  (E.g., don't use this for making an
3407 // arraycopy call inside of the copyOf intrinsic.)
3408 CallJavaNode*
3409 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3410   // When compiling the intrinsic method itself, do not use this technique.
3411   guarantee(callee() != C->method(), "cannot make slow-call to self");
3412 
3413   ciMethod* method = callee();
3414   // ensure the JVMS we have will be correct for this call
3415   guarantee(method_id == method->intrinsic_id(), "must match");
3416 
3417   const TypeFunc* tf = TypeFunc::make(method);
3418   int tfdc = tf->domain()->cnt();
3419   CallJavaNode* slow_call;
3420   if (is_static) {
3421     assert(!is_virtual, "");
3422     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3423                                 SharedRuntime::get_resolve_static_call_stub(),
3424                                 method, bci());
3425   } else if (is_virtual) {
3426     null_check_receiver(method);
3427     int vtable_index = methodOopDesc::invalid_vtable_index;
3428     if (UseInlineCaches) {
3429       // Suppress the vtable call
3430     } else {
3431       // hashCode and clone are not a miranda methods,
3432       // so the vtable index is fixed.
3433       // No need to use the linkResolver to get it.
3434        vtable_index = method->vtable_index();
3435     }
3436     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3437                                 SharedRuntime::get_resolve_virtual_call_stub(),
3438                                 method, vtable_index, bci());
3439   } else {  // neither virtual nor static:  opt_virtual
3440     null_check_receiver(method);
3441     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3442                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3443                                 method, bci());
3444     slow_call->set_optimized_virtual(true);
3445   }
3446   set_arguments_for_java_call(slow_call);
3447   set_edges_for_java_call(slow_call);
3448   return slow_call;
3449 }
3450 
3451 
3452 //------------------------------inline_native_hashcode--------------------
3453 // Build special case code for calls to hashCode on an object.
3454 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3455   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3456   assert(!(is_virtual && is_static), "either virtual, special, or static");
3457 
3458   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3459 
3460   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3461   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3462                                                       TypeInt::INT);
3463   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3464   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3465                                                       TypePtr::BOTTOM);
3466   Node* obj = NULL;
3467   if (!is_static) {
3468     // Check for hashing null object
3469     obj = null_check_receiver(callee());
3470     if (stopped())  return true;        // unconditionally null
3471     result_reg->init_req(_null_path, top());
3472     result_val->init_req(_null_path, top());
3473   } else {
3474     // Do a null check, and return zero if null.
3475     // System.identityHashCode(null) == 0
3476     obj = argument(0);
3477     Node* null_ctl = top();
3478     obj = null_check_oop(obj, &null_ctl);
3479     result_reg->init_req(_null_path, null_ctl);
3480     result_val->init_req(_null_path, _gvn.intcon(0));
3481   }
3482 
3483   // Unconditionally null?  Then return right away.
3484   if (stopped()) {
3485     set_control( result_reg->in(_null_path) );
3486     if (!stopped())
3487       push(      result_val ->in(_null_path) );
3488     return true;
3489   }
3490 
3491   // After null check, get the object's klass.
3492   Node* obj_klass = load_object_klass(obj);
3493 
3494   // This call may be virtual (invokevirtual) or bound (invokespecial).
3495   // For each case we generate slightly different code.
3496 
3497   // We only go to the fast case code if we pass a number of guards.  The
3498   // paths which do not pass are accumulated in the slow_region.
3499   RegionNode* slow_region = new (C, 1) RegionNode(1);
3500   record_for_igvn(slow_region);
3501 
3502   // If this is a virtual call, we generate a funny guard.  We pull out
3503   // the vtable entry corresponding to hashCode() from the target object.
3504   // If the target method which we are calling happens to be the native
3505   // Object hashCode() method, we pass the guard.  We do not need this
3506   // guard for non-virtual calls -- the caller is known to be the native
3507   // Object hashCode().
3508   if (is_virtual) {
3509     generate_virtual_guard(obj_klass, slow_region);
3510   }
3511 
3512   // Get the header out of the object, use LoadMarkNode when available
3513   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3514   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
3515   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
3516 
3517   // Test the header to see if it is unlocked.
3518   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3519   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3520   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3521   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3522   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3523 
3524   generate_slow_guard(test_unlocked, slow_region);
3525 
3526   // Get the hash value and check to see that it has been properly assigned.
3527   // We depend on hash_mask being at most 32 bits and avoid the use of
3528   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3529   // vm: see markOop.hpp.
3530   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3531   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3532   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3533   // This hack lets the hash bits live anywhere in the mark object now, as long
3534   // as the shift drops the relevant bits into the low 32 bits.  Note that
3535   // Java spec says that HashCode is an int so there's no point in capturing
3536   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3537   hshifted_header      = ConvX2I(hshifted_header);
3538   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3539 
3540   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3541   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3542   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3543 
3544   generate_slow_guard(test_assigned, slow_region);
3545 
3546   Node* init_mem = reset_memory();
3547   // fill in the rest of the null path:
3548   result_io ->init_req(_null_path, i_o());
3549   result_mem->init_req(_null_path, init_mem);
3550 
3551   result_val->init_req(_fast_path, hash_val);
3552   result_reg->init_req(_fast_path, control());
3553   result_io ->init_req(_fast_path, i_o());
3554   result_mem->init_req(_fast_path, init_mem);
3555 
3556   // Generate code for the slow case.  We make a call to hashCode().
3557   set_control(_gvn.transform(slow_region));
3558   if (!stopped()) {
3559     // No need for PreserveJVMState, because we're using up the present state.
3560     set_all_memory(init_mem);
3561     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3562     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3563     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3564     Node* slow_result = set_results_for_java_call(slow_call);
3565     // this->control() comes from set_results_for_java_call
3566     result_reg->init_req(_slow_path, control());
3567     result_val->init_req(_slow_path, slow_result);
3568     result_io  ->set_req(_slow_path, i_o());
3569     result_mem ->set_req(_slow_path, reset_memory());
3570   }
3571 
3572   // Return the combined state.
3573   set_i_o(        _gvn.transform(result_io)  );
3574   set_all_memory( _gvn.transform(result_mem) );
3575   push_result(result_reg, result_val);
3576 
3577   return true;
3578 }
3579 
3580 //---------------------------inline_native_getClass----------------------------
3581 // Build special case code for calls to getClass on an object.
3582 bool LibraryCallKit::inline_native_getClass() {
3583   Node* obj = null_check_receiver(callee());
3584   if (stopped())  return true;
3585   push( load_mirror_from_klass(load_object_klass(obj)) );
3586   return true;
3587 }
3588 
3589 //-----------------inline_native_Reflection_getCallerClass---------------------
3590 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3591 //
3592 // NOTE that this code must perform the same logic as
3593 // vframeStream::security_get_caller_frame in that it must skip
3594 // Method.invoke() and auxiliary frames.
3595 
3596 
3597 
3598 
3599 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3600   ciMethod*       method = callee();
3601 
3602 #ifndef PRODUCT
3603   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3604     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3605   }
3606 #endif
3607 
3608   debug_only(int saved_sp = _sp);
3609 
3610   // Argument words:  (int depth)
3611   int nargs = 1;
3612 
3613   _sp += nargs;
3614   Node* caller_depth_node = pop();
3615 
3616   assert(saved_sp == _sp, "must have correct argument count");
3617 
3618   // The depth value must be a constant in order for the runtime call
3619   // to be eliminated.
3620   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3621   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3622 #ifndef PRODUCT
3623     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3624       tty->print_cr("  Bailing out because caller depth was not a constant");
3625     }
3626 #endif
3627     return false;
3628   }
3629   // Note that the JVM state at this point does not include the
3630   // getCallerClass() frame which we are trying to inline. The
3631   // semantics of getCallerClass(), however, are that the "first"
3632   // frame is the getCallerClass() frame, so we subtract one from the
3633   // requested depth before continuing. We don't inline requests of
3634   // getCallerClass(0).
3635   int caller_depth = caller_depth_type->get_con() - 1;
3636   if (caller_depth < 0) {
3637 #ifndef PRODUCT
3638     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3639       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3640     }
3641 #endif
3642     return false;
3643   }
3644 
3645   if (!jvms()->has_method()) {
3646 #ifndef PRODUCT
3647     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3648       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3649     }
3650 #endif
3651     return false;
3652   }
3653   int _depth = jvms()->depth();  // cache call chain depth
3654 
3655   // Walk back up the JVM state to find the caller at the required
3656   // depth. NOTE that this code must perform the same logic as
3657   // vframeStream::security_get_caller_frame in that it must skip
3658   // Method.invoke() and auxiliary frames. Note also that depth is
3659   // 1-based (1 is the bottom of the inlining).
3660   int inlining_depth = _depth;
3661   JVMState* caller_jvms = NULL;
3662 
3663   if (inlining_depth > 0) {
3664     caller_jvms = jvms();
3665     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3666     do {
3667       // The following if-tests should be performed in this order
3668       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3669         // Skip a Method.invoke() or auxiliary frame
3670       } else if (caller_depth > 0) {
3671         // Skip real frame
3672         --caller_depth;
3673       } else {
3674         // We're done: reached desired caller after skipping.
3675         break;
3676       }
3677       caller_jvms = caller_jvms->caller();
3678       --inlining_depth;
3679     } while (inlining_depth > 0);
3680   }
3681 
3682   if (inlining_depth == 0) {
3683 #ifndef PRODUCT
3684     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3685       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3686       tty->print_cr("  JVM state at this point:");
3687       for (int i = _depth; i >= 1; i--) {
3688         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3689       }
3690     }
3691 #endif
3692     return false; // Reached end of inlining
3693   }
3694 
3695   // Acquire method holder as java.lang.Class
3696   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3697   ciInstance*      caller_mirror = caller_klass->java_mirror();
3698   // Push this as a constant
3699   push(makecon(TypeInstPtr::make(caller_mirror)));
3700 #ifndef PRODUCT
3701   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3702     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3703     tty->print_cr("  JVM state at this point:");
3704     for (int i = _depth; i >= 1; i--) {
3705       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3706     }
3707   }
3708 #endif
3709   return true;
3710 }
3711 
3712 // Helper routine for above
3713 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3714   ciMethod* method = jvms->method();
3715 
3716   // Is this the Method.invoke method itself?
3717   if (method->intrinsic_id() == vmIntrinsics::_invoke)
3718     return true;
3719 
3720   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3721   ciKlass* k = method->holder();
3722   if (k->is_instance_klass()) {
3723     ciInstanceKlass* ik = k->as_instance_klass();
3724     for (; ik != NULL; ik = ik->super()) {
3725       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3726           ik == env()->find_system_klass(ik->name())) {
3727         return true;
3728       }
3729     }
3730   }
3731   else if (method->is_method_handle_adapter()) {
3732     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3733     return true;
3734   }
3735 
3736   return false;
3737 }
3738 
3739 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3740                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3741                                      // computing it since there is no lookup field by name function in the
3742                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3743                                      // Using a static variable here is safe even if we have multiple compilation
3744                                      // threads because the offset is constant.  At worst the same offset will be
3745                                      // computed and  stored multiple
3746 
3747 bool LibraryCallKit::inline_native_AtomicLong_get() {
3748   // Restore the stack and pop off the argument
3749   _sp+=1;
3750   Node *obj = pop();
3751 
3752   // get the offset of the "value" field. Since the CI interfaces
3753   // does not provide a way to look up a field by name, we scan the bytecodes
3754   // to get the field index.  We expect the first 2 instructions of the method
3755   // to be:
3756   //    0 aload_0
3757   //    1 getfield "value"
3758   ciMethod* method = callee();
3759   if (value_field_offset == -1)
3760   {
3761     ciField* value_field;
3762     ciBytecodeStream iter(method);
3763     Bytecodes::Code bc = iter.next();
3764 
3765     if ((bc != Bytecodes::_aload_0) &&
3766               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3767       return false;
3768     bc = iter.next();
3769     if (bc != Bytecodes::_getfield)
3770       return false;
3771     bool ignore;
3772     value_field = iter.get_field(ignore);
3773     value_field_offset = value_field->offset_in_bytes();
3774   }
3775 
3776   // Null check without removing any arguments.
3777   _sp++;
3778   obj = do_null_check(obj, T_OBJECT);
3779   _sp--;
3780   // Check for locking null object
3781   if (stopped()) return true;
3782 
3783   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3784   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3785   int alias_idx = C->get_alias_index(adr_type);
3786 
3787   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3788 
3789   push_pair(result);
3790 
3791   return true;
3792 }
3793 
3794 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3795   // Restore the stack and pop off the arguments
3796   _sp+=5;
3797   Node *newVal = pop_pair();
3798   Node *oldVal = pop_pair();
3799   Node *obj = pop();
3800 
3801   // we need the offset of the "value" field which was computed when
3802   // inlining the get() method.  Give up if we don't have it.
3803   if (value_field_offset == -1)
3804     return false;
3805 
3806   // Null check without removing any arguments.
3807   _sp+=5;
3808   obj = do_null_check(obj, T_OBJECT);
3809   _sp-=5;
3810   // Check for locking null object
3811   if (stopped()) return true;
3812 
3813   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3814   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3815   int alias_idx = C->get_alias_index(adr_type);
3816 
3817   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3818   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3819   set_memory(store_proj, alias_idx);
3820   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3821 
3822   Node *result;
3823   // CMove node is not used to be able fold a possible check code
3824   // after attemptUpdate() call. This code could be transformed
3825   // into CMove node by loop optimizations.
3826   {
3827     RegionNode *r = new (C, 3) RegionNode(3);
3828     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
3829 
3830     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
3831     Node *iftrue = opt_iff(r, iff);
3832     r->init_req(1, iftrue);
3833     result->init_req(1, intcon(1));
3834     result->init_req(2, intcon(0));
3835 
3836     set_control(_gvn.transform(r));
3837     record_for_igvn(r);
3838 
3839     C->set_has_split_ifs(true); // Has chance for split-if optimization
3840   }
3841 
3842   push(_gvn.transform(result));
3843   return true;
3844 }
3845 
3846 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3847   // restore the arguments
3848   _sp += arg_size();
3849 
3850   switch (id) {
3851   case vmIntrinsics::_floatToRawIntBits:
3852     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3853     break;
3854 
3855   case vmIntrinsics::_intBitsToFloat:
3856     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3857     break;
3858 
3859   case vmIntrinsics::_doubleToRawLongBits:
3860     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3861     break;
3862 
3863   case vmIntrinsics::_longBitsToDouble:
3864     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3865     break;
3866 
3867   case vmIntrinsics::_doubleToLongBits: {
3868     Node* value = pop_pair();
3869 
3870     // two paths (plus control) merge in a wood
3871     RegionNode *r = new (C, 3) RegionNode(3);
3872     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3873 
3874     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3875     // Build the boolean node
3876     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3877 
3878     // Branch either way.
3879     // NaN case is less traveled, which makes all the difference.
3880     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3881     Node *opt_isnan = _gvn.transform(ifisnan);
3882     assert( opt_isnan->is_If(), "Expect an IfNode");
3883     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3884     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3885 
3886     set_control(iftrue);
3887 
3888     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3889     Node *slow_result = longcon(nan_bits); // return NaN
3890     phi->init_req(1, _gvn.transform( slow_result ));
3891     r->init_req(1, iftrue);
3892 
3893     // Else fall through
3894     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3895     set_control(iffalse);
3896 
3897     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3898     r->init_req(2, iffalse);
3899 
3900     // Post merge
3901     set_control(_gvn.transform(r));
3902     record_for_igvn(r);
3903 
3904     Node* result = _gvn.transform(phi);
3905     assert(result->bottom_type()->isa_long(), "must be");
3906     push_pair(result);
3907 
3908     C->set_has_split_ifs(true); // Has chance for split-if optimization
3909 
3910     break;
3911   }
3912 
3913   case vmIntrinsics::_floatToIntBits: {
3914     Node* value = pop();
3915 
3916     // two paths (plus control) merge in a wood
3917     RegionNode *r = new (C, 3) RegionNode(3);
3918     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3919 
3920     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3921     // Build the boolean node
3922     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3923 
3924     // Branch either way.
3925     // NaN case is less traveled, which makes all the difference.
3926     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3927     Node *opt_isnan = _gvn.transform(ifisnan);
3928     assert( opt_isnan->is_If(), "Expect an IfNode");
3929     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3930     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3931 
3932     set_control(iftrue);
3933 
3934     static const jint nan_bits = 0x7fc00000;
3935     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3936     phi->init_req(1, _gvn.transform( slow_result ));
3937     r->init_req(1, iftrue);
3938 
3939     // Else fall through
3940     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3941     set_control(iffalse);
3942 
3943     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3944     r->init_req(2, iffalse);
3945 
3946     // Post merge
3947     set_control(_gvn.transform(r));
3948     record_for_igvn(r);
3949 
3950     Node* result = _gvn.transform(phi);
3951     assert(result->bottom_type()->isa_int(), "must be");
3952     push(result);
3953 
3954     C->set_has_split_ifs(true); // Has chance for split-if optimization
3955 
3956     break;
3957   }
3958 
3959   default:
3960     ShouldNotReachHere();
3961   }
3962 
3963   return true;
3964 }
3965 
3966 #ifdef _LP64
3967 #define XTOP ,top() /*additional argument*/
3968 #else  //_LP64
3969 #define XTOP        /*no additional argument*/
3970 #endif //_LP64
3971 
3972 //----------------------inline_unsafe_copyMemory-------------------------
3973 bool LibraryCallKit::inline_unsafe_copyMemory() {
3974   if (callee()->is_static())  return false;  // caller must have the capability!
3975   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
3976   assert(signature()->size() == nargs-1, "copy has 5 arguments");
3977   null_check_receiver(callee());  // check then ignore argument(0)
3978   if (stopped())  return true;
3979 
3980   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3981 
3982   Node* src_ptr = argument(1);
3983   Node* src_off = ConvL2X(argument(2));
3984   assert(argument(3)->is_top(), "2nd half of long");
3985   Node* dst_ptr = argument(4);
3986   Node* dst_off = ConvL2X(argument(5));
3987   assert(argument(6)->is_top(), "2nd half of long");
3988   Node* size    = ConvL2X(argument(7));
3989   assert(argument(8)->is_top(), "2nd half of long");
3990 
3991   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3992          "fieldOffset must be byte-scaled");
3993 
3994   Node* src = make_unsafe_address(src_ptr, src_off);
3995   Node* dst = make_unsafe_address(dst_ptr, dst_off);
3996 
3997   // Conservatively insert a memory barrier on all memory slices.
3998   // Do not let writes of the copy source or destination float below the copy.
3999   insert_mem_bar(Op_MemBarCPUOrder);
4000 
4001   // Call it.  Note that the length argument is not scaled.
4002   make_runtime_call(RC_LEAF|RC_NO_FP,
4003                     OptoRuntime::fast_arraycopy_Type(),
4004                     StubRoutines::unsafe_arraycopy(),
4005                     "unsafe_arraycopy",
4006                     TypeRawPtr::BOTTOM,
4007                     src, dst, size XTOP);
4008 
4009   // Do not let reads of the copy destination float above the copy.
4010   insert_mem_bar(Op_MemBarCPUOrder);
4011 
4012   return true;
4013 }
4014 
4015 //------------------------clone_coping-----------------------------------
4016 // Helper function for inline_native_clone.
4017 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4018   assert(obj_size != NULL, "");
4019   Node* raw_obj = alloc_obj->in(1);
4020   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4021 
4022   if (ReduceBulkZeroing) {
4023     // We will be completely responsible for initializing this object -
4024     // mark Initialize node as complete.
4025     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4026     // The object was just allocated - there should be no any stores!
4027     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4028   }
4029 
4030   // Copy the fastest available way.
4031   // TODO: generate fields copies for small objects instead.
4032   Node* src  = obj;
4033   Node* dest = alloc_obj;
4034   Node* size = _gvn.transform(obj_size);
4035 
4036   // Exclude the header but include array length to copy by 8 bytes words.
4037   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4038   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4039                             instanceOopDesc::base_offset_in_bytes();
4040   // base_off:
4041   // 8  - 32-bit VM
4042   // 12 - 64-bit VM, compressed oops
4043   // 16 - 64-bit VM, normal oops
4044   if (base_off % BytesPerLong != 0) {
4045     assert(UseCompressedOops, "");
4046     if (is_array) {
4047       // Exclude length to copy by 8 bytes words.
4048       base_off += sizeof(int);
4049     } else {
4050       // Include klass to copy by 8 bytes words.
4051       base_off = instanceOopDesc::klass_offset_in_bytes();
4052     }
4053     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4054   }
4055   src  = basic_plus_adr(src,  base_off);
4056   dest = basic_plus_adr(dest, base_off);
4057 
4058   // Compute the length also, if needed:
4059   Node* countx = size;
4060   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
4061   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4062 
4063   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4064   bool disjoint_bases = true;
4065   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4066                                src, NULL, dest, NULL, countx);
4067 
4068   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4069   if (card_mark) {
4070     assert(!is_array, "");
4071     // Put in store barrier for any and all oops we are sticking
4072     // into this object.  (We could avoid this if we could prove
4073     // that the object type contains no oop fields at all.)
4074     Node* no_particular_value = NULL;
4075     Node* no_particular_field = NULL;
4076     int raw_adr_idx = Compile::AliasIdxRaw;
4077     post_barrier(control(),
4078                  memory(raw_adr_type),
4079                  alloc_obj,
4080                  no_particular_field,
4081                  raw_adr_idx,
4082                  no_particular_value,
4083                  T_OBJECT,
4084                  false);
4085   }
4086 
4087   // Do not let reads from the cloned object float above the arraycopy.
4088   insert_mem_bar(Op_MemBarCPUOrder);
4089 }
4090 
4091 //------------------------inline_native_clone----------------------------
4092 // Here are the simple edge cases:
4093 //  null receiver => normal trap
4094 //  virtual and clone was overridden => slow path to out-of-line clone
4095 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4096 //
4097 // The general case has two steps, allocation and copying.
4098 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4099 //
4100 // Copying also has two cases, oop arrays and everything else.
4101 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4102 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4103 //
4104 // These steps fold up nicely if and when the cloned object's klass
4105 // can be sharply typed as an object array, a type array, or an instance.
4106 //
4107 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4108   int nargs = 1;
4109   PhiNode* result_val;
4110 
4111   //set the original stack and the reexecute bit for the interpreter to reexecute
4112   //the bytecode that invokes Object.clone if deoptimization happens
4113   { PreserveReexecuteState preexecs(this);
4114     jvms()->set_should_reexecute(true);
4115 
4116     //null_check_receiver will adjust _sp (push and pop)
4117     Node* obj = null_check_receiver(callee());
4118     if (stopped())  return true;
4119 
4120     _sp += nargs;
4121 
4122     Node* obj_klass = load_object_klass(obj);
4123     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4124     const TypeOopPtr*   toop   = ((tklass != NULL)
4125                                 ? tklass->as_instance_type()
4126                                 : TypeInstPtr::NOTNULL);
4127 
4128     // Conservatively insert a memory barrier on all memory slices.
4129     // Do not let writes into the original float below the clone.
4130     insert_mem_bar(Op_MemBarCPUOrder);
4131 
4132     // paths into result_reg:
4133     enum {
4134       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4135       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4136       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4137       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4138       PATH_LIMIT
4139     };
4140     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4141     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4142                                                         TypeInstPtr::NOTNULL);
4143     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4144     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4145                                                         TypePtr::BOTTOM);
4146     record_for_igvn(result_reg);
4147 
4148     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4149     int raw_adr_idx = Compile::AliasIdxRaw;
4150     const bool raw_mem_only = true;
4151 
4152 
4153     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4154     if (array_ctl != NULL) {
4155       // It's an array.
4156       PreserveJVMState pjvms(this);
4157       set_control(array_ctl);
4158       Node* obj_length = load_array_length(obj);
4159       Node* obj_size  = NULL;
4160       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
4161                                   raw_mem_only, &obj_size);
4162 
4163       if (!use_ReduceInitialCardMarks()) {
4164         // If it is an oop array, it requires very special treatment,
4165         // because card marking is required on each card of the array.
4166         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4167         if (is_obja != NULL) {
4168           PreserveJVMState pjvms2(this);
4169           set_control(is_obja);
4170           // Generate a direct call to the right arraycopy function(s).
4171           bool disjoint_bases = true;
4172           bool length_never_negative = true;
4173           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4174                              obj, intcon(0), alloc_obj, intcon(0),
4175                              obj_length,
4176                              disjoint_bases, length_never_negative);
4177           result_reg->init_req(_objArray_path, control());
4178           result_val->init_req(_objArray_path, alloc_obj);
4179           result_i_o ->set_req(_objArray_path, i_o());
4180           result_mem ->set_req(_objArray_path, reset_memory());
4181         }
4182       }
4183       // Otherwise, there are no card marks to worry about.
4184       // (We can dispense with card marks if we know the allocation
4185       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4186       //  causes the non-eden paths to take compensating steps to
4187       //  simulate a fresh allocation, so that no further
4188       //  card marks are required in compiled code to initialize
4189       //  the object.)
4190 
4191       if (!stopped()) {
4192         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4193 
4194         // Present the results of the copy.
4195         result_reg->init_req(_array_path, control());
4196         result_val->init_req(_array_path, alloc_obj);
4197         result_i_o ->set_req(_array_path, i_o());
4198         result_mem ->set_req(_array_path, reset_memory());
4199       }
4200     }
4201 
4202     // We only go to the instance fast case code if we pass a number of guards.
4203     // The paths which do not pass are accumulated in the slow_region.
4204     RegionNode* slow_region = new (C, 1) RegionNode(1);
4205     record_for_igvn(slow_region);
4206     if (!stopped()) {
4207       // It's an instance (we did array above).  Make the slow-path tests.
4208       // If this is a virtual call, we generate a funny guard.  We grab
4209       // the vtable entry corresponding to clone() from the target object.
4210       // If the target method which we are calling happens to be the
4211       // Object clone() method, we pass the guard.  We do not need this
4212       // guard for non-virtual calls; the caller is known to be the native
4213       // Object clone().
4214       if (is_virtual) {
4215         generate_virtual_guard(obj_klass, slow_region);
4216       }
4217 
4218       // The object must be cloneable and must not have a finalizer.
4219       // Both of these conditions may be checked in a single test.
4220       // We could optimize the cloneable test further, but we don't care.
4221       generate_access_flags_guard(obj_klass,
4222                                   // Test both conditions:
4223                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4224                                   // Must be cloneable but not finalizer:
4225                                   JVM_ACC_IS_CLONEABLE,
4226                                   slow_region);
4227     }
4228 
4229     if (!stopped()) {
4230       // It's an instance, and it passed the slow-path tests.
4231       PreserveJVMState pjvms(this);
4232       Node* obj_size  = NULL;
4233       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
4234 
4235       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4236 
4237       // Present the results of the slow call.
4238       result_reg->init_req(_instance_path, control());
4239       result_val->init_req(_instance_path, alloc_obj);
4240       result_i_o ->set_req(_instance_path, i_o());
4241       result_mem ->set_req(_instance_path, reset_memory());
4242     }
4243 
4244     // Generate code for the slow case.  We make a call to clone().
4245     set_control(_gvn.transform(slow_region));
4246     if (!stopped()) {
4247       PreserveJVMState pjvms(this);
4248       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4249       Node* slow_result = set_results_for_java_call(slow_call);
4250       // this->control() comes from set_results_for_java_call
4251       result_reg->init_req(_slow_path, control());
4252       result_val->init_req(_slow_path, slow_result);
4253       result_i_o ->set_req(_slow_path, i_o());
4254       result_mem ->set_req(_slow_path, reset_memory());
4255     }
4256 
4257     // Return the combined state.
4258     set_control(    _gvn.transform(result_reg) );
4259     set_i_o(        _gvn.transform(result_i_o) );
4260     set_all_memory( _gvn.transform(result_mem) );
4261   } //original reexecute and sp are set back here
4262 
4263   push(_gvn.transform(result_val));
4264 
4265   return true;
4266 }
4267 
4268 
4269 // constants for computing the copy function
4270 enum {
4271   COPYFUNC_UNALIGNED = 0,
4272   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
4273   COPYFUNC_CONJOINT = 0,
4274   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
4275 };
4276 
4277 // Note:  The condition "disjoint" applies also for overlapping copies
4278 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
4279 static address
4280 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
4281   int selector =
4282     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
4283     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
4284 
4285 #define RETURN_STUB(xxx_arraycopy) { \
4286   name = #xxx_arraycopy; \
4287   return StubRoutines::xxx_arraycopy(); }
4288 
4289   switch (t) {
4290   case T_BYTE:
4291   case T_BOOLEAN:
4292     switch (selector) {
4293     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
4294     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
4295     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
4296     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
4297     }
4298   case T_CHAR:
4299   case T_SHORT:
4300     switch (selector) {
4301     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
4302     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
4303     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
4304     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
4305     }
4306   case T_INT:
4307   case T_FLOAT:
4308     switch (selector) {
4309     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
4310     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
4311     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
4312     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
4313     }
4314   case T_DOUBLE:
4315   case T_LONG:
4316     switch (selector) {
4317     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
4318     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
4319     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
4320     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
4321     }
4322   case T_ARRAY:
4323   case T_OBJECT:
4324     switch (selector) {
4325     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
4326     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
4327     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
4328     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
4329     }
4330   default:
4331     ShouldNotReachHere();
4332     return NULL;
4333   }
4334 
4335 #undef RETURN_STUB
4336 }
4337 
4338 //------------------------------basictype2arraycopy----------------------------
4339 address LibraryCallKit::basictype2arraycopy(BasicType t,
4340                                             Node* src_offset,
4341                                             Node* dest_offset,
4342                                             bool disjoint_bases,
4343                                             const char* &name) {
4344   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4345   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4346 
4347   bool aligned = false;
4348   bool disjoint = disjoint_bases;
4349 
4350   // if the offsets are the same, we can treat the memory regions as
4351   // disjoint, because either the memory regions are in different arrays,
4352   // or they are identical (which we can treat as disjoint.)  We can also
4353   // treat a copy with a destination index  less that the source index
4354   // as disjoint since a low->high copy will work correctly in this case.
4355   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4356       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4357     // both indices are constants
4358     int s_offs = src_offset_inttype->get_con();
4359     int d_offs = dest_offset_inttype->get_con();
4360     int element_size = type2aelembytes(t);
4361     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4362               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4363     if (s_offs >= d_offs)  disjoint = true;
4364   } else if (src_offset == dest_offset && src_offset != NULL) {
4365     // This can occur if the offsets are identical non-constants.
4366     disjoint = true;
4367   }
4368 
4369   return select_arraycopy_function(t, aligned, disjoint, name);
4370 }
4371 
4372 
4373 //------------------------------inline_arraycopy-----------------------
4374 bool LibraryCallKit::inline_arraycopy() {
4375   // Restore the stack and pop off the arguments.
4376   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4377   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4378 
4379   Node *src         = argument(0);
4380   Node *src_offset  = argument(1);
4381   Node *dest        = argument(2);
4382   Node *dest_offset = argument(3);
4383   Node *length      = argument(4);
4384 
4385   // Compile time checks.  If any of these checks cannot be verified at compile time,
4386   // we do not make a fast path for this call.  Instead, we let the call remain as it
4387   // is.  The checks we choose to mandate at compile time are:
4388   //
4389   // (1) src and dest are arrays.
4390   const Type* src_type = src->Value(&_gvn);
4391   const Type* dest_type = dest->Value(&_gvn);
4392   const TypeAryPtr* top_src = src_type->isa_aryptr();
4393   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4394   if (top_src  == NULL || top_src->klass()  == NULL ||
4395       top_dest == NULL || top_dest->klass() == NULL) {
4396     // Conservatively insert a memory barrier on all memory slices.
4397     // Do not let writes into the source float below the arraycopy.
4398     insert_mem_bar(Op_MemBarCPUOrder);
4399 
4400     // Call StubRoutines::generic_arraycopy stub.
4401     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4402                        src, src_offset, dest, dest_offset, length);
4403 
4404     // Do not let reads from the destination float above the arraycopy.
4405     // Since we cannot type the arrays, we don't know which slices
4406     // might be affected.  We could restrict this barrier only to those
4407     // memory slices which pertain to array elements--but don't bother.
4408     if (!InsertMemBarAfterArraycopy)
4409       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4410       insert_mem_bar(Op_MemBarCPUOrder);
4411     return true;
4412   }
4413 
4414   // (2) src and dest arrays must have elements of the same BasicType
4415   // Figure out the size and type of the elements we will be copying.
4416   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4417   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4418   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4419   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4420 
4421   if (src_elem != dest_elem || dest_elem == T_VOID) {
4422     // The component types are not the same or are not recognized.  Punt.
4423     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4424     generate_slow_arraycopy(TypePtr::BOTTOM,
4425                             src, src_offset, dest, dest_offset, length);
4426     return true;
4427   }
4428 
4429   //---------------------------------------------------------------------------
4430   // We will make a fast path for this call to arraycopy.
4431 
4432   // We have the following tests left to perform:
4433   //
4434   // (3) src and dest must not be null.
4435   // (4) src_offset must not be negative.
4436   // (5) dest_offset must not be negative.
4437   // (6) length must not be negative.
4438   // (7) src_offset + length must not exceed length of src.
4439   // (8) dest_offset + length must not exceed length of dest.
4440   // (9) each element of an oop array must be assignable
4441 
4442   RegionNode* slow_region = new (C, 1) RegionNode(1);
4443   record_for_igvn(slow_region);
4444 
4445   // (3) operands must not be null
4446   // We currently perform our null checks with the do_null_check routine.
4447   // This means that the null exceptions will be reported in the caller
4448   // rather than (correctly) reported inside of the native arraycopy call.
4449   // This should be corrected, given time.  We do our null check with the
4450   // stack pointer restored.
4451   _sp += nargs;
4452   src  = do_null_check(src,  T_ARRAY);
4453   dest = do_null_check(dest, T_ARRAY);
4454   _sp -= nargs;
4455 
4456   // (4) src_offset must not be negative.
4457   generate_negative_guard(src_offset, slow_region);
4458 
4459   // (5) dest_offset must not be negative.
4460   generate_negative_guard(dest_offset, slow_region);
4461 
4462   // (6) length must not be negative (moved to generate_arraycopy()).
4463   // generate_negative_guard(length, slow_region);
4464 
4465   // (7) src_offset + length must not exceed length of src.
4466   generate_limit_guard(src_offset, length,
4467                        load_array_length(src),
4468                        slow_region);
4469 
4470   // (8) dest_offset + length must not exceed length of dest.
4471   generate_limit_guard(dest_offset, length,
4472                        load_array_length(dest),
4473                        slow_region);
4474 
4475   // (9) each element of an oop array must be assignable
4476   // The generate_arraycopy subroutine checks this.
4477 
4478   // This is where the memory effects are placed:
4479   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4480   generate_arraycopy(adr_type, dest_elem,
4481                      src, src_offset, dest, dest_offset, length,
4482                      false, false, slow_region);
4483 
4484   return true;
4485 }
4486 
4487 //-----------------------------generate_arraycopy----------------------
4488 // Generate an optimized call to arraycopy.
4489 // Caller must guard against non-arrays.
4490 // Caller must determine a common array basic-type for both arrays.
4491 // Caller must validate offsets against array bounds.
4492 // The slow_region has already collected guard failure paths
4493 // (such as out of bounds length or non-conformable array types).
4494 // The generated code has this shape, in general:
4495 //
4496 //     if (length == 0)  return   // via zero_path
4497 //     slowval = -1
4498 //     if (types unknown) {
4499 //       slowval = call generic copy loop
4500 //       if (slowval == 0)  return  // via checked_path
4501 //     } else if (indexes in bounds) {
4502 //       if ((is object array) && !(array type check)) {
4503 //         slowval = call checked copy loop
4504 //         if (slowval == 0)  return  // via checked_path
4505 //       } else {
4506 //         call bulk copy loop
4507 //         return  // via fast_path
4508 //       }
4509 //     }
4510 //     // adjust params for remaining work:
4511 //     if (slowval != -1) {
4512 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4513 //     }
4514 //   slow_region:
4515 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4516 //     return  // via slow_call_path
4517 //
4518 // This routine is used from several intrinsics:  System.arraycopy,
4519 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4520 //
4521 void
4522 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4523                                    BasicType basic_elem_type,
4524                                    Node* src,  Node* src_offset,
4525                                    Node* dest, Node* dest_offset,
4526                                    Node* copy_length,
4527                                    bool disjoint_bases,
4528                                    bool length_never_negative,
4529                                    RegionNode* slow_region) {
4530 
4531   if (slow_region == NULL) {
4532     slow_region = new(C,1) RegionNode(1);
4533     record_for_igvn(slow_region);
4534   }
4535 
4536   Node* original_dest      = dest;
4537   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4538   bool  must_clear_dest    = false;
4539 
4540   // See if this is the initialization of a newly-allocated array.
4541   // If so, we will take responsibility here for initializing it to zero.
4542   // (Note:  Because tightly_coupled_allocation performs checks on the
4543   // out-edges of the dest, we need to avoid making derived pointers
4544   // from it until we have checked its uses.)
4545   if (ReduceBulkZeroing
4546       && !ZeroTLAB              // pointless if already zeroed
4547       && basic_elem_type != T_CONFLICT // avoid corner case
4548       && !_gvn.eqv_uncast(src, dest)
4549       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4550           != NULL)
4551       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4552       && alloc->maybe_set_complete(&_gvn)) {
4553     // "You break it, you buy it."
4554     InitializeNode* init = alloc->initialization();
4555     assert(init->is_complete(), "we just did this");
4556     assert(dest->is_CheckCastPP(), "sanity");
4557     assert(dest->in(0)->in(0) == init, "dest pinned");
4558     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4559     // From this point on, every exit path is responsible for
4560     // initializing any non-copied parts of the object to zero.
4561     must_clear_dest = true;
4562   } else {
4563     // No zeroing elimination here.
4564     alloc             = NULL;
4565     //original_dest   = dest;
4566     //must_clear_dest = false;
4567   }
4568 
4569   // Results are placed here:
4570   enum { fast_path        = 1,  // normal void-returning assembly stub
4571          checked_path     = 2,  // special assembly stub with cleanup
4572          slow_call_path   = 3,  // something went wrong; call the VM
4573          zero_path        = 4,  // bypass when length of copy is zero
4574          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4575          PATH_LIMIT       = 6
4576   };
4577   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4578   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4579   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4580   record_for_igvn(result_region);
4581   _gvn.set_type_bottom(result_i_o);
4582   _gvn.set_type_bottom(result_memory);
4583   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4584 
4585   // The slow_control path:
4586   Node* slow_control;
4587   Node* slow_i_o = i_o();
4588   Node* slow_mem = memory(adr_type);
4589   debug_only(slow_control = (Node*) badAddress);
4590 
4591   // Checked control path:
4592   Node* checked_control = top();
4593   Node* checked_mem     = NULL;
4594   Node* checked_i_o     = NULL;
4595   Node* checked_value   = NULL;
4596 
4597   if (basic_elem_type == T_CONFLICT) {
4598     assert(!must_clear_dest, "");
4599     Node* cv = generate_generic_arraycopy(adr_type,
4600                                           src, src_offset, dest, dest_offset,
4601                                           copy_length);
4602     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4603     checked_control = control();
4604     checked_i_o     = i_o();
4605     checked_mem     = memory(adr_type);
4606     checked_value   = cv;
4607     set_control(top());         // no fast path
4608   }
4609 
4610   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4611   if (not_pos != NULL) {
4612     PreserveJVMState pjvms(this);
4613     set_control(not_pos);
4614 
4615     // (6) length must not be negative.
4616     if (!length_never_negative) {
4617       generate_negative_guard(copy_length, slow_region);
4618     }
4619 
4620     // copy_length is 0.
4621     if (!stopped() && must_clear_dest) {
4622       Node* dest_length = alloc->in(AllocateNode::ALength);
4623       if (_gvn.eqv_uncast(copy_length, dest_length)
4624           || _gvn.find_int_con(dest_length, 1) <= 0) {
4625         // There is no zeroing to do. No need for a secondary raw memory barrier.
4626       } else {
4627         // Clear the whole thing since there are no source elements to copy.
4628         generate_clear_array(adr_type, dest, basic_elem_type,
4629                              intcon(0), NULL,
4630                              alloc->in(AllocateNode::AllocSize));
4631         // Use a secondary InitializeNode as raw memory barrier.
4632         // Currently it is needed only on this path since other
4633         // paths have stub or runtime calls as raw memory barriers.
4634         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4635                                                        Compile::AliasIdxRaw,
4636                                                        top())->as_Initialize();
4637         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4638       }
4639     }
4640 
4641     // Present the results of the fast call.
4642     result_region->init_req(zero_path, control());
4643     result_i_o   ->init_req(zero_path, i_o());
4644     result_memory->init_req(zero_path, memory(adr_type));
4645   }
4646 
4647   if (!stopped() && must_clear_dest) {
4648     // We have to initialize the *uncopied* part of the array to zero.
4649     // The copy destination is the slice dest[off..off+len].  The other slices
4650     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4651     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4652     Node* dest_length = alloc->in(AllocateNode::ALength);
4653     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4654                                                           copy_length) );
4655 
4656     // If there is a head section that needs zeroing, do it now.
4657     if (find_int_con(dest_offset, -1) != 0) {
4658       generate_clear_array(adr_type, dest, basic_elem_type,
4659                            intcon(0), dest_offset,
4660                            NULL);
4661     }
4662 
4663     // Next, perform a dynamic check on the tail length.
4664     // It is often zero, and we can win big if we prove this.
4665     // There are two wins:  Avoid generating the ClearArray
4666     // with its attendant messy index arithmetic, and upgrade
4667     // the copy to a more hardware-friendly word size of 64 bits.
4668     Node* tail_ctl = NULL;
4669     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4670       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4671       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4672       tail_ctl = generate_slow_guard(bol_lt, NULL);
4673       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4674     }
4675 
4676     // At this point, let's assume there is no tail.
4677     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4678       // There is no tail.  Try an upgrade to a 64-bit copy.
4679       bool didit = false;
4680       { PreserveJVMState pjvms(this);
4681         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4682                                          src, src_offset, dest, dest_offset,
4683                                          dest_size);
4684         if (didit) {
4685           // Present the results of the block-copying fast call.
4686           result_region->init_req(bcopy_path, control());
4687           result_i_o   ->init_req(bcopy_path, i_o());
4688           result_memory->init_req(bcopy_path, memory(adr_type));
4689         }
4690       }
4691       if (didit)
4692         set_control(top());     // no regular fast path
4693     }
4694 
4695     // Clear the tail, if any.
4696     if (tail_ctl != NULL) {
4697       Node* notail_ctl = stopped() ? NULL : control();
4698       set_control(tail_ctl);
4699       if (notail_ctl == NULL) {
4700         generate_clear_array(adr_type, dest, basic_elem_type,
4701                              dest_tail, NULL,
4702                              dest_size);
4703       } else {
4704         // Make a local merge.
4705         Node* done_ctl = new(C,3) RegionNode(3);
4706         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4707         done_ctl->init_req(1, notail_ctl);
4708         done_mem->init_req(1, memory(adr_type));
4709         generate_clear_array(adr_type, dest, basic_elem_type,
4710                              dest_tail, NULL,
4711                              dest_size);
4712         done_ctl->init_req(2, control());
4713         done_mem->init_req(2, memory(adr_type));
4714         set_control( _gvn.transform(done_ctl) );
4715         set_memory(  _gvn.transform(done_mem), adr_type );
4716       }
4717     }
4718   }
4719 
4720   BasicType copy_type = basic_elem_type;
4721   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4722   if (!stopped() && copy_type == T_OBJECT) {
4723     // If src and dest have compatible element types, we can copy bits.
4724     // Types S[] and D[] are compatible if D is a supertype of S.
4725     //
4726     // If they are not, we will use checked_oop_disjoint_arraycopy,
4727     // which performs a fast optimistic per-oop check, and backs off
4728     // further to JVM_ArrayCopy on the first per-oop check that fails.
4729     // (Actually, we don't move raw bits only; the GC requires card marks.)
4730 
4731     // Get the klassOop for both src and dest
4732     Node* src_klass  = load_object_klass(src);
4733     Node* dest_klass = load_object_klass(dest);
4734 
4735     // Generate the subtype check.
4736     // This might fold up statically, or then again it might not.
4737     //
4738     // Non-static example:  Copying List<String>.elements to a new String[].
4739     // The backing store for a List<String> is always an Object[],
4740     // but its elements are always type String, if the generic types
4741     // are correct at the source level.
4742     //
4743     // Test S[] against D[], not S against D, because (probably)
4744     // the secondary supertype cache is less busy for S[] than S.
4745     // This usually only matters when D is an interface.
4746     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4747     // Plug failing path into checked_oop_disjoint_arraycopy
4748     if (not_subtype_ctrl != top()) {
4749       PreserveJVMState pjvms(this);
4750       set_control(not_subtype_ctrl);
4751       // (At this point we can assume disjoint_bases, since types differ.)
4752       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4753       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4754       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4755       Node* dest_elem_klass = _gvn.transform(n1);
4756       Node* cv = generate_checkcast_arraycopy(adr_type,
4757                                               dest_elem_klass,
4758                                               src, src_offset, dest, dest_offset,
4759                                               copy_length);
4760       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4761       checked_control = control();
4762       checked_i_o     = i_o();
4763       checked_mem     = memory(adr_type);
4764       checked_value   = cv;
4765     }
4766     // At this point we know we do not need type checks on oop stores.
4767 
4768     // Let's see if we need card marks:
4769     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4770       // If we do not need card marks, copy using the jint or jlong stub.
4771       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4772       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4773              "sizes agree");
4774     }
4775   }
4776 
4777   if (!stopped()) {
4778     // Generate the fast path, if possible.
4779     PreserveJVMState pjvms(this);
4780     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4781                                  src, src_offset, dest, dest_offset,
4782                                  ConvI2X(copy_length));
4783 
4784     // Present the results of the fast call.
4785     result_region->init_req(fast_path, control());
4786     result_i_o   ->init_req(fast_path, i_o());
4787     result_memory->init_req(fast_path, memory(adr_type));
4788   }
4789 
4790   // Here are all the slow paths up to this point, in one bundle:
4791   slow_control = top();
4792   if (slow_region != NULL)
4793     slow_control = _gvn.transform(slow_region);
4794   debug_only(slow_region = (RegionNode*)badAddress);
4795 
4796   set_control(checked_control);
4797   if (!stopped()) {
4798     // Clean up after the checked call.
4799     // The returned value is either 0 or -1^K,
4800     // where K = number of partially transferred array elements.
4801     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4802     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4803     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4804 
4805     // If it is 0, we are done, so transfer to the end.
4806     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4807     result_region->init_req(checked_path, checks_done);
4808     result_i_o   ->init_req(checked_path, checked_i_o);
4809     result_memory->init_req(checked_path, checked_mem);
4810 
4811     // If it is not zero, merge into the slow call.
4812     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4813     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4814     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4815     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4816     record_for_igvn(slow_reg2);
4817     slow_reg2  ->init_req(1, slow_control);
4818     slow_i_o2  ->init_req(1, slow_i_o);
4819     slow_mem2  ->init_req(1, slow_mem);
4820     slow_reg2  ->init_req(2, control());
4821     slow_i_o2  ->init_req(2, checked_i_o);
4822     slow_mem2  ->init_req(2, checked_mem);
4823 
4824     slow_control = _gvn.transform(slow_reg2);
4825     slow_i_o     = _gvn.transform(slow_i_o2);
4826     slow_mem     = _gvn.transform(slow_mem2);
4827 
4828     if (alloc != NULL) {
4829       // We'll restart from the very beginning, after zeroing the whole thing.
4830       // This can cause double writes, but that's OK since dest is brand new.
4831       // So we ignore the low 31 bits of the value returned from the stub.
4832     } else {
4833       // We must continue the copy exactly where it failed, or else
4834       // another thread might see the wrong number of writes to dest.
4835       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4836       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4837       slow_offset->init_req(1, intcon(0));
4838       slow_offset->init_req(2, checked_offset);
4839       slow_offset  = _gvn.transform(slow_offset);
4840 
4841       // Adjust the arguments by the conditionally incoming offset.
4842       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4843       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4844       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4845 
4846       // Tweak the node variables to adjust the code produced below:
4847       src_offset  = src_off_plus;
4848       dest_offset = dest_off_plus;
4849       copy_length = length_minus;
4850     }
4851   }
4852 
4853   set_control(slow_control);
4854   if (!stopped()) {
4855     // Generate the slow path, if needed.
4856     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4857 
4858     set_memory(slow_mem, adr_type);
4859     set_i_o(slow_i_o);
4860 
4861     if (must_clear_dest) {
4862       generate_clear_array(adr_type, dest, basic_elem_type,
4863                            intcon(0), NULL,
4864                            alloc->in(AllocateNode::AllocSize));
4865     }
4866 
4867     generate_slow_arraycopy(adr_type,
4868                             src, src_offset, dest, dest_offset,
4869                             copy_length);
4870 
4871     result_region->init_req(slow_call_path, control());
4872     result_i_o   ->init_req(slow_call_path, i_o());
4873     result_memory->init_req(slow_call_path, memory(adr_type));
4874   }
4875 
4876   // Remove unused edges.
4877   for (uint i = 1; i < result_region->req(); i++) {
4878     if (result_region->in(i) == NULL)
4879       result_region->init_req(i, top());
4880   }
4881 
4882   // Finished; return the combined state.
4883   set_control( _gvn.transform(result_region) );
4884   set_i_o(     _gvn.transform(result_i_o)    );
4885   set_memory(  _gvn.transform(result_memory), adr_type );
4886 
4887   // The memory edges above are precise in order to model effects around
4888   // array copies accurately to allow value numbering of field loads around
4889   // arraycopy.  Such field loads, both before and after, are common in Java
4890   // collections and similar classes involving header/array data structures.
4891   //
4892   // But with low number of register or when some registers are used or killed
4893   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4894   // The next memory barrier is added to avoid it. If the arraycopy can be
4895   // optimized away (which it can, sometimes) then we can manually remove
4896   // the membar also.
4897   //
4898   // Do not let reads from the cloned object float above the arraycopy.
4899   if (InsertMemBarAfterArraycopy || alloc != NULL)
4900     insert_mem_bar(Op_MemBarCPUOrder);
4901 }
4902 
4903 
4904 // Helper function which determines if an arraycopy immediately follows
4905 // an allocation, with no intervening tests or other escapes for the object.
4906 AllocateArrayNode*
4907 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4908                                            RegionNode* slow_region) {
4909   if (stopped())             return NULL;  // no fast path
4910   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4911 
4912   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4913   if (alloc == NULL)  return NULL;
4914 
4915   Node* rawmem = memory(Compile::AliasIdxRaw);
4916   // Is the allocation's memory state untouched?
4917   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4918     // Bail out if there have been raw-memory effects since the allocation.
4919     // (Example:  There might have been a call or safepoint.)
4920     return NULL;
4921   }
4922   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4923   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4924     return NULL;
4925   }
4926 
4927   // There must be no unexpected observers of this allocation.
4928   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4929     Node* obs = ptr->fast_out(i);
4930     if (obs != this->map()) {
4931       return NULL;
4932     }
4933   }
4934 
4935   // This arraycopy must unconditionally follow the allocation of the ptr.
4936   Node* alloc_ctl = ptr->in(0);
4937   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4938 
4939   Node* ctl = control();
4940   while (ctl != alloc_ctl) {
4941     // There may be guards which feed into the slow_region.
4942     // Any other control flow means that we might not get a chance
4943     // to finish initializing the allocated object.
4944     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4945       IfNode* iff = ctl->in(0)->as_If();
4946       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4947       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4948       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4949         ctl = iff->in(0);       // This test feeds the known slow_region.
4950         continue;
4951       }
4952       // One more try:  Various low-level checks bottom out in
4953       // uncommon traps.  If the debug-info of the trap omits
4954       // any reference to the allocation, as we've already
4955       // observed, then there can be no objection to the trap.
4956       bool found_trap = false;
4957       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4958         Node* obs = not_ctl->fast_out(j);
4959         if (obs->in(0) == not_ctl && obs->is_Call() &&
4960             (obs->as_Call()->entry_point() ==
4961              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
4962           found_trap = true; break;
4963         }
4964       }
4965       if (found_trap) {
4966         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4967         continue;
4968       }
4969     }
4970     return NULL;
4971   }
4972 
4973   // If we get this far, we have an allocation which immediately
4974   // precedes the arraycopy, and we can take over zeroing the new object.
4975   // The arraycopy will finish the initialization, and provide
4976   // a new control state to which we will anchor the destination pointer.
4977 
4978   return alloc;
4979 }
4980 
4981 // Helper for initialization of arrays, creating a ClearArray.
4982 // It writes zero bits in [start..end), within the body of an array object.
4983 // The memory effects are all chained onto the 'adr_type' alias category.
4984 //
4985 // Since the object is otherwise uninitialized, we are free
4986 // to put a little "slop" around the edges of the cleared area,
4987 // as long as it does not go back into the array's header,
4988 // or beyond the array end within the heap.
4989 //
4990 // The lower edge can be rounded down to the nearest jint and the
4991 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
4992 //
4993 // Arguments:
4994 //   adr_type           memory slice where writes are generated
4995 //   dest               oop of the destination array
4996 //   basic_elem_type    element type of the destination
4997 //   slice_idx          array index of first element to store
4998 //   slice_len          number of elements to store (or NULL)
4999 //   dest_size          total size in bytes of the array object
5000 //
5001 // Exactly one of slice_len or dest_size must be non-NULL.
5002 // If dest_size is non-NULL, zeroing extends to the end of the object.
5003 // If slice_len is non-NULL, the slice_idx value must be a constant.
5004 void
5005 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5006                                      Node* dest,
5007                                      BasicType basic_elem_type,
5008                                      Node* slice_idx,
5009                                      Node* slice_len,
5010                                      Node* dest_size) {
5011   // one or the other but not both of slice_len and dest_size:
5012   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5013   if (slice_len == NULL)  slice_len = top();
5014   if (dest_size == NULL)  dest_size = top();
5015 
5016   // operate on this memory slice:
5017   Node* mem = memory(adr_type); // memory slice to operate on
5018 
5019   // scaling and rounding of indexes:
5020   int scale = exact_log2(type2aelembytes(basic_elem_type));
5021   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5022   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5023   int bump_bit  = (-1 << scale) & BytesPerInt;
5024 
5025   // determine constant starts and ends
5026   const intptr_t BIG_NEG = -128;
5027   assert(BIG_NEG + 2*abase < 0, "neg enough");
5028   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5029   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5030   if (slice_len_con == 0) {
5031     return;                     // nothing to do here
5032   }
5033   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5034   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5035   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5036     assert(end_con < 0, "not two cons");
5037     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5038                        BytesPerLong);
5039   }
5040 
5041   if (start_con >= 0 && end_con >= 0) {
5042     // Constant start and end.  Simple.
5043     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5044                                        start_con, end_con, &_gvn);
5045   } else if (start_con >= 0 && dest_size != top()) {
5046     // Constant start, pre-rounded end after the tail of the array.
5047     Node* end = dest_size;
5048     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5049                                        start_con, end, &_gvn);
5050   } else if (start_con >= 0 && slice_len != top()) {
5051     // Constant start, non-constant end.  End needs rounding up.
5052     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5053     intptr_t end_base  = abase + (slice_idx_con << scale);
5054     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5055     Node*    end       = ConvI2X(slice_len);
5056     if (scale != 0)
5057       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
5058     end_base += end_round;
5059     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
5060     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
5061     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5062                                        start_con, end, &_gvn);
5063   } else if (start_con < 0 && dest_size != top()) {
5064     // Non-constant start, pre-rounded end after the tail of the array.
5065     // This is almost certainly a "round-to-end" operation.
5066     Node* start = slice_idx;
5067     start = ConvI2X(start);
5068     if (scale != 0)
5069       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
5070     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
5071     if ((bump_bit | clear_low) != 0) {
5072       int to_clear = (bump_bit | clear_low);
5073       // Align up mod 8, then store a jint zero unconditionally
5074       // just before the mod-8 boundary.
5075       if (((abase + bump_bit) & ~to_clear) - bump_bit
5076           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5077         bump_bit = 0;
5078         assert((abase & to_clear) == 0, "array base must be long-aligned");
5079       } else {
5080         // Bump 'start' up to (or past) the next jint boundary:
5081         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
5082         assert((abase & clear_low) == 0, "array base must be int-aligned");
5083       }
5084       // Round bumped 'start' down to jlong boundary in body of array.
5085       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5086       if (bump_bit != 0) {
5087         // Store a zero to the immediately preceding jint:
5088         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5089         Node* p1 = basic_plus_adr(dest, x1);
5090         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5091         mem = _gvn.transform(mem);
5092       }
5093     }
5094     Node* end = dest_size; // pre-rounded
5095     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5096                                        start, end, &_gvn);
5097   } else {
5098     // Non-constant start, unrounded non-constant end.
5099     // (Nobody zeroes a random midsection of an array using this routine.)
5100     ShouldNotReachHere();       // fix caller
5101   }
5102 
5103   // Done.
5104   set_memory(mem, adr_type);
5105 }
5106 
5107 
5108 bool
5109 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5110                                          BasicType basic_elem_type,
5111                                          AllocateNode* alloc,
5112                                          Node* src,  Node* src_offset,
5113                                          Node* dest, Node* dest_offset,
5114                                          Node* dest_size) {
5115   // See if there is an advantage from block transfer.
5116   int scale = exact_log2(type2aelembytes(basic_elem_type));
5117   if (scale >= LogBytesPerLong)
5118     return false;               // it is already a block transfer
5119 
5120   // Look at the alignment of the starting offsets.
5121   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5122   const intptr_t BIG_NEG = -128;
5123   assert(BIG_NEG + 2*abase < 0, "neg enough");
5124 
5125   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
5126   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
5127   if (src_off < 0 || dest_off < 0)
5128     // At present, we can only understand constants.
5129     return false;
5130 
5131   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5132     // Non-aligned; too bad.
5133     // One more chance:  Pick off an initial 32-bit word.
5134     // This is a common case, since abase can be odd mod 8.
5135     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5136         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5137       Node* sptr = basic_plus_adr(src,  src_off);
5138       Node* dptr = basic_plus_adr(dest, dest_off);
5139       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5140       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5141       src_off += BytesPerInt;
5142       dest_off += BytesPerInt;
5143     } else {
5144       return false;
5145     }
5146   }
5147   assert(src_off % BytesPerLong == 0, "");
5148   assert(dest_off % BytesPerLong == 0, "");
5149 
5150   // Do this copy by giant steps.
5151   Node* sptr  = basic_plus_adr(src,  src_off);
5152   Node* dptr  = basic_plus_adr(dest, dest_off);
5153   Node* countx = dest_size;
5154   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5155   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5156 
5157   bool disjoint_bases = true;   // since alloc != NULL
5158   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5159                                sptr, NULL, dptr, NULL, countx);
5160 
5161   return true;
5162 }
5163 
5164 
5165 // Helper function; generates code for the slow case.
5166 // We make a call to a runtime method which emulates the native method,
5167 // but without the native wrapper overhead.
5168 void
5169 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5170                                         Node* src,  Node* src_offset,
5171                                         Node* dest, Node* dest_offset,
5172                                         Node* copy_length) {
5173   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5174                                  OptoRuntime::slow_arraycopy_Type(),
5175                                  OptoRuntime::slow_arraycopy_Java(),
5176                                  "slow_arraycopy", adr_type,
5177                                  src, src_offset, dest, dest_offset,
5178                                  copy_length);
5179 
5180   // Handle exceptions thrown by this fellow:
5181   make_slow_call_ex(call, env()->Throwable_klass(), false);
5182 }
5183 
5184 // Helper function; generates code for cases requiring runtime checks.
5185 Node*
5186 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5187                                              Node* dest_elem_klass,
5188                                              Node* src,  Node* src_offset,
5189                                              Node* dest, Node* dest_offset,
5190                                              Node* copy_length) {
5191   if (stopped())  return NULL;
5192 
5193   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
5194   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5195     return NULL;
5196   }
5197 
5198   // Pick out the parameters required to perform a store-check
5199   // for the target array.  This is an optimistic check.  It will
5200   // look in each non-null element's class, at the desired klass's
5201   // super_check_offset, for the desired klass.
5202   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
5203   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5204   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
5205   Node* check_offset = _gvn.transform(n3);
5206   Node* check_value  = dest_elem_klass;
5207 
5208   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5209   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5210 
5211   // (We know the arrays are never conjoint, because their types differ.)
5212   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5213                                  OptoRuntime::checkcast_arraycopy_Type(),
5214                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5215                                  // five arguments, of which two are
5216                                  // intptr_t (jlong in LP64)
5217                                  src_start, dest_start,
5218                                  copy_length XTOP,
5219                                  check_offset XTOP,
5220                                  check_value);
5221 
5222   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5223 }
5224 
5225 
5226 // Helper function; generates code for cases requiring runtime checks.
5227 Node*
5228 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5229                                            Node* src,  Node* src_offset,
5230                                            Node* dest, Node* dest_offset,
5231                                            Node* copy_length) {
5232   if (stopped())  return NULL;
5233 
5234   address copyfunc_addr = StubRoutines::generic_arraycopy();
5235   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5236     return NULL;
5237   }
5238 
5239   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5240                     OptoRuntime::generic_arraycopy_Type(),
5241                     copyfunc_addr, "generic_arraycopy", adr_type,
5242                     src, src_offset, dest, dest_offset, copy_length);
5243 
5244   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5245 }
5246 
5247 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5248 void
5249 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5250                                              BasicType basic_elem_type,
5251                                              bool disjoint_bases,
5252                                              Node* src,  Node* src_offset,
5253                                              Node* dest, Node* dest_offset,
5254                                              Node* copy_length) {
5255   if (stopped())  return;               // nothing to do
5256 
5257   Node* src_start  = src;
5258   Node* dest_start = dest;
5259   if (src_offset != NULL || dest_offset != NULL) {
5260     assert(src_offset != NULL && dest_offset != NULL, "");
5261     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5262     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5263   }
5264 
5265   // Figure out which arraycopy runtime method to call.
5266   const char* copyfunc_name = "arraycopy";
5267   address     copyfunc_addr =
5268       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5269                           disjoint_bases, copyfunc_name);
5270 
5271   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5272   make_runtime_call(RC_LEAF|RC_NO_FP,
5273                     OptoRuntime::fast_arraycopy_Type(),
5274                     copyfunc_addr, copyfunc_name, adr_type,
5275                     src_start, dest_start, copy_length XTOP);
5276 }