1 /*
   2  * Copyright 1999-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_library_call.cpp.incl"
  27 
  28 class LibraryIntrinsic : public InlineCallGenerator {
  29   // Extend the set of intrinsics known to the runtime:
  30  public:
  31  private:
  32   bool             _is_virtual;
  33   vmIntrinsics::ID _intrinsic_id;
  34 
  35  public:
  36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  37     : InlineCallGenerator(m),
  38       _is_virtual(is_virtual),
  39       _intrinsic_id(id)
  40   {
  41   }
  42   virtual bool is_intrinsic() const { return true; }
  43   virtual bool is_virtual()   const { return _is_virtual; }
  44   virtual JVMState* generate(JVMState* jvms);
  45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  46 };
  47 
  48 
  49 // Local helper class for LibraryIntrinsic:
  50 class LibraryCallKit : public GraphKit {
  51  private:
  52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  53 
  54  public:
  55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  56     : GraphKit(caller),
  57       _intrinsic(intrinsic)
  58   {
  59   }
  60 
  61   ciMethod*         caller()    const    { return jvms()->method(); }
  62   int               bci()       const    { return jvms()->bci(); }
  63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  65   ciMethod*         callee()    const    { return _intrinsic->method(); }
  66   ciSignature*      signature() const    { return callee()->signature(); }
  67   int               arg_size()  const    { return callee()->arg_size(); }
  68 
  69   bool try_to_inline();
  70 
  71   // Helper functions to inline natives
  72   void push_result(RegionNode* region, PhiNode* value);
  73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  74   Node* generate_slow_guard(Node* test, RegionNode* region);
  75   Node* generate_fair_guard(Node* test, RegionNode* region);
  76   Node* generate_negative_guard(Node* index, RegionNode* region,
  77                                 // resulting CastII of index:
  78                                 Node* *pos_index = NULL);
  79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  80                                    // resulting CastII of index:
  81                                    Node* *pos_index = NULL);
  82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  83                              Node* array_length,
  84                              RegionNode* region);
  85   Node* generate_current_thread(Node* &tls_output);
  86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
  87                               bool disjoint_bases, const char* &name);
  88   Node* load_mirror_from_klass(Node* klass);
  89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
  90                                       int nargs,
  91                                       RegionNode* region, int null_path,
  92                                       int offset);
  93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
  94                                RegionNode* region, int null_path) {
  95     int offset = java_lang_Class::klass_offset_in_bytes();
  96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
  97                                          region, null_path,
  98                                          offset);
  99   }
 100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 101                                      int nargs,
 102                                      RegionNode* region, int null_path) {
 103     int offset = java_lang_Class::array_klass_offset_in_bytes();
 104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 105                                          region, null_path,
 106                                          offset);
 107   }
 108   Node* generate_access_flags_guard(Node* kls,
 109                                     int modifier_mask, int modifier_bits,
 110                                     RegionNode* region);
 111   Node* generate_interface_guard(Node* kls, RegionNode* region);
 112   Node* generate_array_guard(Node* kls, RegionNode* region) {
 113     return generate_array_guard_common(kls, region, false, false);
 114   }
 115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 116     return generate_array_guard_common(kls, region, false, true);
 117   }
 118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 119     return generate_array_guard_common(kls, region, true, false);
 120   }
 121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 122     return generate_array_guard_common(kls, region, true, true);
 123   }
 124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 125                                     bool obj_array, bool not_array);
 126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 128                                      bool is_virtual = false, bool is_static = false);
 129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 130     return generate_method_call(method_id, false, true);
 131   }
 132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 133     return generate_method_call(method_id, true, false);
 134   }
 135 
 136   Node* make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2);
 137   bool inline_string_compareTo();
 138   bool inline_string_indexOf();
 139   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 140   bool inline_string_equals();
 141   Node* pop_math_arg();
 142   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 143   bool inline_math_native(vmIntrinsics::ID id);
 144   bool inline_trig(vmIntrinsics::ID id);
 145   bool inline_trans(vmIntrinsics::ID id);
 146   bool inline_abs(vmIntrinsics::ID id);
 147   bool inline_sqrt(vmIntrinsics::ID id);
 148   bool inline_pow(vmIntrinsics::ID id);
 149   bool inline_exp(vmIntrinsics::ID id);
 150   bool inline_min_max(vmIntrinsics::ID id);
 151   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 152   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 153   int classify_unsafe_addr(Node* &base, Node* &offset);
 154   Node* make_unsafe_address(Node* base, Node* offset);
 155   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 156   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 157   bool inline_unsafe_allocate();
 158   bool inline_unsafe_copyMemory();
 159   bool inline_native_currentThread();
 160   bool inline_native_time_funcs(bool isNano);
 161   bool inline_native_isInterrupted();
 162   bool inline_native_Class_query(vmIntrinsics::ID id);
 163   bool inline_native_subtype_check();
 164 
 165   bool inline_native_newArray();
 166   bool inline_native_getLength();
 167   bool inline_array_copyOf(bool is_copyOfRange);
 168   bool inline_array_equals();
 169   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 170   bool inline_native_clone(bool is_virtual);
 171   bool inline_native_Reflection_getCallerClass();
 172   bool inline_native_AtomicLong_get();
 173   bool inline_native_AtomicLong_attemptUpdate();
 174   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 175   // Helper function for inlining native object hash method
 176   bool inline_native_hashcode(bool is_virtual, bool is_static);
 177   bool inline_native_getClass();
 178 
 179   // Helper functions for inlining arraycopy
 180   bool inline_arraycopy();
 181   void generate_arraycopy(const TypePtr* adr_type,
 182                           BasicType basic_elem_type,
 183                           Node* src,  Node* src_offset,
 184                           Node* dest, Node* dest_offset,
 185                           Node* copy_length,
 186                           bool disjoint_bases = false,
 187                           bool length_never_negative = false,
 188                           RegionNode* slow_region = NULL);
 189   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 190                                                 RegionNode* slow_region);
 191   void generate_clear_array(const TypePtr* adr_type,
 192                             Node* dest,
 193                             BasicType basic_elem_type,
 194                             Node* slice_off,
 195                             Node* slice_len,
 196                             Node* slice_end);
 197   bool generate_block_arraycopy(const TypePtr* adr_type,
 198                                 BasicType basic_elem_type,
 199                                 AllocateNode* alloc,
 200                                 Node* src,  Node* src_offset,
 201                                 Node* dest, Node* dest_offset,
 202                                 Node* dest_size);
 203   void generate_slow_arraycopy(const TypePtr* adr_type,
 204                                Node* src,  Node* src_offset,
 205                                Node* dest, Node* dest_offset,
 206                                Node* copy_length);
 207   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 208                                      Node* dest_elem_klass,
 209                                      Node* src,  Node* src_offset,
 210                                      Node* dest, Node* dest_offset,
 211                                      Node* copy_length);
 212   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 213                                    Node* src,  Node* src_offset,
 214                                    Node* dest, Node* dest_offset,
 215                                    Node* copy_length);
 216   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 217                                     BasicType basic_elem_type,
 218                                     bool disjoint_bases,
 219                                     Node* src,  Node* src_offset,
 220                                     Node* dest, Node* dest_offset,
 221                                     Node* copy_length);
 222   bool inline_unsafe_CAS(BasicType type);
 223   bool inline_unsafe_ordered_store(BasicType type);
 224   bool inline_fp_conversions(vmIntrinsics::ID id);
 225   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 226   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 227   bool inline_bitCount(vmIntrinsics::ID id);
 228   bool inline_reverseBytes(vmIntrinsics::ID id);
 229 };
 230 
 231 
 232 //---------------------------make_vm_intrinsic----------------------------
 233 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 234   vmIntrinsics::ID id = m->intrinsic_id();
 235   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 236 
 237   if (DisableIntrinsic[0] != '\0'
 238       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 239     // disabled by a user request on the command line:
 240     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 241     return NULL;
 242   }
 243 
 244   if (!m->is_loaded()) {
 245     // do not attempt to inline unloaded methods
 246     return NULL;
 247   }
 248 
 249   // Only a few intrinsics implement a virtual dispatch.
 250   // They are expensive calls which are also frequently overridden.
 251   if (is_virtual) {
 252     switch (id) {
 253     case vmIntrinsics::_hashCode:
 254     case vmIntrinsics::_clone:
 255       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 256       break;
 257     default:
 258       return NULL;
 259     }
 260   }
 261 
 262   // -XX:-InlineNatives disables nearly all intrinsics:
 263   if (!InlineNatives) {
 264     switch (id) {
 265     case vmIntrinsics::_indexOf:
 266     case vmIntrinsics::_compareTo:
 267     case vmIntrinsics::_equals:
 268     case vmIntrinsics::_equalsC:
 269       break;  // InlineNatives does not control String.compareTo
 270     default:
 271       return NULL;
 272     }
 273   }
 274 
 275   switch (id) {
 276   case vmIntrinsics::_compareTo:
 277     if (!SpecialStringCompareTo)  return NULL;
 278     break;
 279   case vmIntrinsics::_indexOf:
 280     if (!SpecialStringIndexOf)  return NULL;
 281     break;
 282   case vmIntrinsics::_equals:
 283     if (!SpecialStringEquals)  return NULL;
 284     break;
 285   case vmIntrinsics::_equalsC:
 286     if (!SpecialArraysEquals)  return NULL;
 287     break;
 288   case vmIntrinsics::_arraycopy:
 289     if (!InlineArrayCopy)  return NULL;
 290     break;
 291   case vmIntrinsics::_copyMemory:
 292     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 293     if (!InlineArrayCopy)  return NULL;
 294     break;
 295   case vmIntrinsics::_hashCode:
 296     if (!InlineObjectHash)  return NULL;
 297     break;
 298   case vmIntrinsics::_clone:
 299   case vmIntrinsics::_copyOf:
 300   case vmIntrinsics::_copyOfRange:
 301     if (!InlineObjectCopy)  return NULL;
 302     // These also use the arraycopy intrinsic mechanism:
 303     if (!InlineArrayCopy)  return NULL;
 304     break;
 305   case vmIntrinsics::_checkIndex:
 306     // We do not intrinsify this.  The optimizer does fine with it.
 307     return NULL;
 308 
 309   case vmIntrinsics::_get_AtomicLong:
 310   case vmIntrinsics::_attemptUpdate:
 311     if (!InlineAtomicLong)  return NULL;
 312     break;
 313 
 314   case vmIntrinsics::_getCallerClass:
 315     if (!UseNewReflection)  return NULL;
 316     if (!InlineReflectionGetCallerClass)  return NULL;
 317     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 318     break;
 319 
 320   case vmIntrinsics::_bitCount_i:
 321   case vmIntrinsics::_bitCount_l:
 322     if (!UsePopCountInstruction)  return NULL;
 323     break;
 324 
 325  default:
 326     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 327     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 328     break;
 329   }
 330 
 331   // -XX:-InlineClassNatives disables natives from the Class class.
 332   // The flag applies to all reflective calls, notably Array.newArray
 333   // (visible to Java programmers as Array.newInstance).
 334   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 335       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 336     if (!InlineClassNatives)  return NULL;
 337   }
 338 
 339   // -XX:-InlineThreadNatives disables natives from the Thread class.
 340   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 341     if (!InlineThreadNatives)  return NULL;
 342   }
 343 
 344   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 345   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 346       m->holder()->name() == ciSymbol::java_lang_Float() ||
 347       m->holder()->name() == ciSymbol::java_lang_Double()) {
 348     if (!InlineMathNatives)  return NULL;
 349   }
 350 
 351   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 352   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 353     if (!InlineUnsafeOps)  return NULL;
 354   }
 355 
 356   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 357 }
 358 
 359 //----------------------register_library_intrinsics-----------------------
 360 // Initialize this file's data structures, for each Compile instance.
 361 void Compile::register_library_intrinsics() {
 362   // Nothing to do here.
 363 }
 364 
 365 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 366   LibraryCallKit kit(jvms, this);
 367   Compile* C = kit.C;
 368   int nodes = C->unique();
 369 #ifndef PRODUCT
 370   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 371     char buf[1000];
 372     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 373     tty->print_cr("Intrinsic %s", str);
 374   }
 375 #endif
 376   if (kit.try_to_inline()) {
 377     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 378       tty->print("Inlining intrinsic %s%s at bci:%d in",
 379                  vmIntrinsics::name_at(intrinsic_id()),
 380                  (is_virtual() ? " (virtual)" : ""), kit.bci());
 381       kit.caller()->print_short_name(tty);
 382       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 383     }
 384     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 385     if (C->log()) {
 386       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 387                      vmIntrinsics::name_at(intrinsic_id()),
 388                      (is_virtual() ? " virtual='1'" : ""),
 389                      C->unique() - nodes);
 390     }
 391     return kit.transfer_exceptions_into_jvms();
 392   }
 393 
 394   if (PrintIntrinsics) {
 395     tty->print("Did not inline intrinsic %s%s at bci:%d in",
 396                vmIntrinsics::name_at(intrinsic_id()),
 397                (is_virtual() ? " (virtual)" : ""), kit.bci());
 398     kit.caller()->print_short_name(tty);
 399     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 400   }
 401   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 402   return NULL;
 403 }
 404 
 405 bool LibraryCallKit::try_to_inline() {
 406   // Handle symbolic names for otherwise undistinguished boolean switches:
 407   const bool is_store       = true;
 408   const bool is_native_ptr  = true;
 409   const bool is_static      = true;
 410 
 411   switch (intrinsic_id()) {
 412   case vmIntrinsics::_hashCode:
 413     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 414   case vmIntrinsics::_identityHashCode:
 415     return inline_native_hashcode(/*!virtual*/ false, is_static);
 416   case vmIntrinsics::_getClass:
 417     return inline_native_getClass();
 418 
 419   case vmIntrinsics::_dsin:
 420   case vmIntrinsics::_dcos:
 421   case vmIntrinsics::_dtan:
 422   case vmIntrinsics::_dabs:
 423   case vmIntrinsics::_datan2:
 424   case vmIntrinsics::_dsqrt:
 425   case vmIntrinsics::_dexp:
 426   case vmIntrinsics::_dlog:
 427   case vmIntrinsics::_dlog10:
 428   case vmIntrinsics::_dpow:
 429     return inline_math_native(intrinsic_id());
 430 
 431   case vmIntrinsics::_min:
 432   case vmIntrinsics::_max:
 433     return inline_min_max(intrinsic_id());
 434 
 435   case vmIntrinsics::_arraycopy:
 436     return inline_arraycopy();
 437 
 438   case vmIntrinsics::_compareTo:
 439     return inline_string_compareTo();
 440   case vmIntrinsics::_indexOf:
 441     return inline_string_indexOf();
 442   case vmIntrinsics::_equals:
 443     return inline_string_equals();
 444 
 445   case vmIntrinsics::_getObject:
 446     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 447   case vmIntrinsics::_getBoolean:
 448     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 449   case vmIntrinsics::_getByte:
 450     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 451   case vmIntrinsics::_getShort:
 452     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 453   case vmIntrinsics::_getChar:
 454     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 455   case vmIntrinsics::_getInt:
 456     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 457   case vmIntrinsics::_getLong:
 458     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 459   case vmIntrinsics::_getFloat:
 460     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 461   case vmIntrinsics::_getDouble:
 462     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 463 
 464   case vmIntrinsics::_putObject:
 465     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 466   case vmIntrinsics::_putBoolean:
 467     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 468   case vmIntrinsics::_putByte:
 469     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 470   case vmIntrinsics::_putShort:
 471     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 472   case vmIntrinsics::_putChar:
 473     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 474   case vmIntrinsics::_putInt:
 475     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 476   case vmIntrinsics::_putLong:
 477     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 478   case vmIntrinsics::_putFloat:
 479     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 480   case vmIntrinsics::_putDouble:
 481     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 482 
 483   case vmIntrinsics::_getByte_raw:
 484     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 485   case vmIntrinsics::_getShort_raw:
 486     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 487   case vmIntrinsics::_getChar_raw:
 488     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 489   case vmIntrinsics::_getInt_raw:
 490     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 491   case vmIntrinsics::_getLong_raw:
 492     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 493   case vmIntrinsics::_getFloat_raw:
 494     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 495   case vmIntrinsics::_getDouble_raw:
 496     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 497   case vmIntrinsics::_getAddress_raw:
 498     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 499 
 500   case vmIntrinsics::_putByte_raw:
 501     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 502   case vmIntrinsics::_putShort_raw:
 503     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 504   case vmIntrinsics::_putChar_raw:
 505     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 506   case vmIntrinsics::_putInt_raw:
 507     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 508   case vmIntrinsics::_putLong_raw:
 509     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 510   case vmIntrinsics::_putFloat_raw:
 511     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 512   case vmIntrinsics::_putDouble_raw:
 513     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 514   case vmIntrinsics::_putAddress_raw:
 515     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 516 
 517   case vmIntrinsics::_getObjectVolatile:
 518     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 519   case vmIntrinsics::_getBooleanVolatile:
 520     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 521   case vmIntrinsics::_getByteVolatile:
 522     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 523   case vmIntrinsics::_getShortVolatile:
 524     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 525   case vmIntrinsics::_getCharVolatile:
 526     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 527   case vmIntrinsics::_getIntVolatile:
 528     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 529   case vmIntrinsics::_getLongVolatile:
 530     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 531   case vmIntrinsics::_getFloatVolatile:
 532     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 533   case vmIntrinsics::_getDoubleVolatile:
 534     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 535 
 536   case vmIntrinsics::_putObjectVolatile:
 537     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 538   case vmIntrinsics::_putBooleanVolatile:
 539     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 540   case vmIntrinsics::_putByteVolatile:
 541     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 542   case vmIntrinsics::_putShortVolatile:
 543     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 544   case vmIntrinsics::_putCharVolatile:
 545     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 546   case vmIntrinsics::_putIntVolatile:
 547     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 548   case vmIntrinsics::_putLongVolatile:
 549     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 550   case vmIntrinsics::_putFloatVolatile:
 551     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 552   case vmIntrinsics::_putDoubleVolatile:
 553     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 554 
 555   case vmIntrinsics::_prefetchRead:
 556     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 557   case vmIntrinsics::_prefetchWrite:
 558     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 559   case vmIntrinsics::_prefetchReadStatic:
 560     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 561   case vmIntrinsics::_prefetchWriteStatic:
 562     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 563 
 564   case vmIntrinsics::_compareAndSwapObject:
 565     return inline_unsafe_CAS(T_OBJECT);
 566   case vmIntrinsics::_compareAndSwapInt:
 567     return inline_unsafe_CAS(T_INT);
 568   case vmIntrinsics::_compareAndSwapLong:
 569     return inline_unsafe_CAS(T_LONG);
 570 
 571   case vmIntrinsics::_putOrderedObject:
 572     return inline_unsafe_ordered_store(T_OBJECT);
 573   case vmIntrinsics::_putOrderedInt:
 574     return inline_unsafe_ordered_store(T_INT);
 575   case vmIntrinsics::_putOrderedLong:
 576     return inline_unsafe_ordered_store(T_LONG);
 577 
 578   case vmIntrinsics::_currentThread:
 579     return inline_native_currentThread();
 580   case vmIntrinsics::_isInterrupted:
 581     return inline_native_isInterrupted();
 582 
 583   case vmIntrinsics::_currentTimeMillis:
 584     return inline_native_time_funcs(false);
 585   case vmIntrinsics::_nanoTime:
 586     return inline_native_time_funcs(true);
 587   case vmIntrinsics::_allocateInstance:
 588     return inline_unsafe_allocate();
 589   case vmIntrinsics::_copyMemory:
 590     return inline_unsafe_copyMemory();
 591   case vmIntrinsics::_newArray:
 592     return inline_native_newArray();
 593   case vmIntrinsics::_getLength:
 594     return inline_native_getLength();
 595   case vmIntrinsics::_copyOf:
 596     return inline_array_copyOf(false);
 597   case vmIntrinsics::_copyOfRange:
 598     return inline_array_copyOf(true);
 599   case vmIntrinsics::_equalsC:
 600     return inline_array_equals();
 601   case vmIntrinsics::_clone:
 602     return inline_native_clone(intrinsic()->is_virtual());
 603 
 604   case vmIntrinsics::_isAssignableFrom:
 605     return inline_native_subtype_check();
 606 
 607   case vmIntrinsics::_isInstance:
 608   case vmIntrinsics::_getModifiers:
 609   case vmIntrinsics::_isInterface:
 610   case vmIntrinsics::_isArray:
 611   case vmIntrinsics::_isPrimitive:
 612   case vmIntrinsics::_getSuperclass:
 613   case vmIntrinsics::_getComponentType:
 614   case vmIntrinsics::_getClassAccessFlags:
 615     return inline_native_Class_query(intrinsic_id());
 616 
 617   case vmIntrinsics::_floatToRawIntBits:
 618   case vmIntrinsics::_floatToIntBits:
 619   case vmIntrinsics::_intBitsToFloat:
 620   case vmIntrinsics::_doubleToRawLongBits:
 621   case vmIntrinsics::_doubleToLongBits:
 622   case vmIntrinsics::_longBitsToDouble:
 623     return inline_fp_conversions(intrinsic_id());
 624 
 625   case vmIntrinsics::_numberOfLeadingZeros_i:
 626   case vmIntrinsics::_numberOfLeadingZeros_l:
 627     return inline_numberOfLeadingZeros(intrinsic_id());
 628 
 629   case vmIntrinsics::_numberOfTrailingZeros_i:
 630   case vmIntrinsics::_numberOfTrailingZeros_l:
 631     return inline_numberOfTrailingZeros(intrinsic_id());
 632 
 633   case vmIntrinsics::_bitCount_i:
 634   case vmIntrinsics::_bitCount_l:
 635     return inline_bitCount(intrinsic_id());
 636 
 637   case vmIntrinsics::_reverseBytes_i:
 638   case vmIntrinsics::_reverseBytes_l:
 639   case vmIntrinsics::_reverseBytes_s:
 640   case vmIntrinsics::_reverseBytes_c:
 641     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 642 
 643   case vmIntrinsics::_get_AtomicLong:
 644     return inline_native_AtomicLong_get();
 645   case vmIntrinsics::_attemptUpdate:
 646     return inline_native_AtomicLong_attemptUpdate();
 647 
 648   case vmIntrinsics::_getCallerClass:
 649     return inline_native_Reflection_getCallerClass();
 650 
 651   default:
 652     // If you get here, it may be that someone has added a new intrinsic
 653     // to the list in vmSymbols.hpp without implementing it here.
 654 #ifndef PRODUCT
 655     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 656       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 657                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 658     }
 659 #endif
 660     return false;
 661   }
 662 }
 663 
 664 //------------------------------push_result------------------------------
 665 // Helper function for finishing intrinsics.
 666 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 667   record_for_igvn(region);
 668   set_control(_gvn.transform(region));
 669   BasicType value_type = value->type()->basic_type();
 670   push_node(value_type, _gvn.transform(value));
 671 }
 672 
 673 //------------------------------generate_guard---------------------------
 674 // Helper function for generating guarded fast-slow graph structures.
 675 // The given 'test', if true, guards a slow path.  If the test fails
 676 // then a fast path can be taken.  (We generally hope it fails.)
 677 // In all cases, GraphKit::control() is updated to the fast path.
 678 // The returned value represents the control for the slow path.
 679 // The return value is never 'top'; it is either a valid control
 680 // or NULL if it is obvious that the slow path can never be taken.
 681 // Also, if region and the slow control are not NULL, the slow edge
 682 // is appended to the region.
 683 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 684   if (stopped()) {
 685     // Already short circuited.
 686     return NULL;
 687   }
 688 
 689   // Build an if node and its projections.
 690   // If test is true we take the slow path, which we assume is uncommon.
 691   if (_gvn.type(test) == TypeInt::ZERO) {
 692     // The slow branch is never taken.  No need to build this guard.
 693     return NULL;
 694   }
 695 
 696   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 697 
 698   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 699   if (if_slow == top()) {
 700     // The slow branch is never taken.  No need to build this guard.
 701     return NULL;
 702   }
 703 
 704   if (region != NULL)
 705     region->add_req(if_slow);
 706 
 707   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 708   set_control(if_fast);
 709 
 710   return if_slow;
 711 }
 712 
 713 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 714   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 715 }
 716 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 717   return generate_guard(test, region, PROB_FAIR);
 718 }
 719 
 720 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 721                                                      Node* *pos_index) {
 722   if (stopped())
 723     return NULL;                // already stopped
 724   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 725     return NULL;                // index is already adequately typed
 726   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 727   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 728   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 729   if (is_neg != NULL && pos_index != NULL) {
 730     // Emulate effect of Parse::adjust_map_after_if.
 731     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 732     ccast->set_req(0, control());
 733     (*pos_index) = _gvn.transform(ccast);
 734   }
 735   return is_neg;
 736 }
 737 
 738 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 739                                                         Node* *pos_index) {
 740   if (stopped())
 741     return NULL;                // already stopped
 742   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 743     return NULL;                // index is already adequately typed
 744   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 745   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 746   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 747   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 748   if (is_notp != NULL && pos_index != NULL) {
 749     // Emulate effect of Parse::adjust_map_after_if.
 750     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 751     ccast->set_req(0, control());
 752     (*pos_index) = _gvn.transform(ccast);
 753   }
 754   return is_notp;
 755 }
 756 
 757 // Make sure that 'position' is a valid limit index, in [0..length].
 758 // There are two equivalent plans for checking this:
 759 //   A. (offset + copyLength)  unsigned<=  arrayLength
 760 //   B. offset  <=  (arrayLength - copyLength)
 761 // We require that all of the values above, except for the sum and
 762 // difference, are already known to be non-negative.
 763 // Plan A is robust in the face of overflow, if offset and copyLength
 764 // are both hugely positive.
 765 //
 766 // Plan B is less direct and intuitive, but it does not overflow at
 767 // all, since the difference of two non-negatives is always
 768 // representable.  Whenever Java methods must perform the equivalent
 769 // check they generally use Plan B instead of Plan A.
 770 // For the moment we use Plan A.
 771 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 772                                                   Node* subseq_length,
 773                                                   Node* array_length,
 774                                                   RegionNode* region) {
 775   if (stopped())
 776     return NULL;                // already stopped
 777   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 778   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
 779     return NULL;                // common case of whole-array copy
 780   Node* last = subseq_length;
 781   if (!zero_offset)             // last += offset
 782     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 783   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 784   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 785   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 786   return is_over;
 787 }
 788 
 789 
 790 //--------------------------generate_current_thread--------------------
 791 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 792   ciKlass*    thread_klass = env()->Thread_klass();
 793   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 794   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 795   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 796   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 797   tls_output = thread;
 798   return threadObj;
 799 }
 800 
 801 
 802 //------------------------------make_string_method_node------------------------
 803 // Helper method for String intrinsic finctions.
 804 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* cnt1, Node* str2, Node* cnt2) {
 805   const int value_offset  = java_lang_String::value_offset_in_bytes();
 806   const int count_offset  = java_lang_String::count_offset_in_bytes();
 807   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 808 
 809   Node* no_ctrl = NULL;
 810 
 811   ciInstanceKlass* klass = env()->String_klass();
 812   const TypeInstPtr* string_type =
 813         TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 814 
 815   const TypeAryPtr* value_type =
 816         TypeAryPtr::make(TypePtr::NotNull,
 817                          TypeAry::make(TypeInt::CHAR,TypeInt::POS),
 818                          ciTypeArrayKlass::make(T_CHAR), true, 0);
 819 
 820   // Get start addr of string and substring
 821   Node* str1_valuea  = basic_plus_adr(str1, str1, value_offset);
 822   Node* str1_value   = make_load(no_ctrl, str1_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 823   Node* str1_offseta = basic_plus_adr(str1, str1, offset_offset);
 824   Node* str1_offset  = make_load(no_ctrl, str1_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 825   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 826 
 827   // Pin loads from String::equals() argument since it could be NULL.
 828   Node* str2_ctrl = (opcode == Op_StrEquals) ? control() : no_ctrl;
 829   Node* str2_valuea  = basic_plus_adr(str2, str2, value_offset);
 830   Node* str2_value   = make_load(str2_ctrl, str2_valuea, value_type, T_OBJECT, string_type->add_offset(value_offset));
 831   Node* str2_offseta = basic_plus_adr(str2, str2, offset_offset);
 832   Node* str2_offset  = make_load(str2_ctrl, str2_offseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
 833   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 834 
 835   Node* result = NULL;
 836   switch (opcode) {
 837   case Op_StrIndexOf:
 838     result = new (C, 6) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 839                                        str1_start, cnt1, str2_start, cnt2);
 840     break;
 841   case Op_StrComp:
 842     result = new (C, 6) StrCompNode(control(), memory(TypeAryPtr::CHARS),
 843                                     str1_start, cnt1, str2_start, cnt2);
 844     break;
 845   case Op_StrEquals:
 846     result = new (C, 5) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 847                                       str1_start, str2_start, cnt1);
 848     break;
 849   default:
 850     ShouldNotReachHere();
 851     return NULL;
 852   }
 853 
 854   // All these intrinsics have checks.
 855   C->set_has_split_ifs(true); // Has chance for split-if optimization
 856 
 857   return _gvn.transform(result);
 858 }
 859 
 860 //------------------------------inline_string_compareTo------------------------
 861 bool LibraryCallKit::inline_string_compareTo() {
 862 
 863   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 864 
 865   const int value_offset = java_lang_String::value_offset_in_bytes();
 866   const int count_offset = java_lang_String::count_offset_in_bytes();
 867   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 868 
 869   _sp += 2;
 870   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 871   Node *receiver = pop();
 872 
 873   // Null check on self without removing any arguments.  The argument
 874   // null check technically happens in the wrong place, which can lead to
 875   // invalid stack traces when string compare is inlined into a method
 876   // which handles NullPointerExceptions.
 877   _sp += 2;
 878   receiver = do_null_check(receiver, T_OBJECT);
 879   argument = do_null_check(argument, T_OBJECT);
 880   _sp -= 2;
 881   if (stopped()) {
 882     return true;
 883   }
 884 
 885   ciInstanceKlass* klass = env()->String_klass();
 886   const TypeInstPtr* string_type =
 887     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 888   Node* no_ctrl = NULL;
 889 
 890   // Get counts for string and argument
 891   Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 892   Node* receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 893 
 894   Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 895   Node* argument_cnt  = make_load(no_ctrl, argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 896 
 897   Node* compare = make_string_method_node(Op_StrComp, receiver, receiver_cnt, argument, argument_cnt);
 898   push(compare);
 899   return true;
 900 }
 901 
 902 //------------------------------inline_string_equals------------------------
 903 bool LibraryCallKit::inline_string_equals() {
 904 
 905   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 906 
 907   const int value_offset = java_lang_String::value_offset_in_bytes();
 908   const int count_offset = java_lang_String::count_offset_in_bytes();
 909   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 910 
 911   _sp += 2;
 912   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 913   Node* receiver = pop();
 914 
 915   // Null check on self without removing any arguments.  The argument
 916   // null check technically happens in the wrong place, which can lead to
 917   // invalid stack traces when string compare is inlined into a method
 918   // which handles NullPointerExceptions.
 919   _sp += 2;
 920   receiver = do_null_check(receiver, T_OBJECT);
 921   //should not do null check for argument for String.equals(), because spec
 922   //allows to specify NULL as argument.
 923   _sp -= 2;
 924 
 925   if (stopped()) {
 926     return true;
 927   }
 928 
 929   // paths (plus control) merge
 930   RegionNode* region = new (C, 5) RegionNode(5);
 931   Node* phi = new (C, 5) PhiNode(region, TypeInt::BOOL);
 932 
 933   // does source == target string?
 934   Node* cmp = _gvn.transform(new (C, 3) CmpPNode(receiver, argument));
 935   Node* bol = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 936 
 937   Node* if_eq = generate_slow_guard(bol, NULL);
 938   if (if_eq != NULL) {
 939     // receiver == argument
 940     phi->init_req(2, intcon(1));
 941     region->init_req(2, if_eq);
 942   }
 943 
 944   // get String klass for instanceOf
 945   ciInstanceKlass* klass = env()->String_klass();
 946 
 947   if (!stopped()) {
 948     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
 949     Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
 950     Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::ne));
 951 
 952     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
 953     //instanceOf == true, fallthrough
 954 
 955     if (inst_false != NULL) {
 956       phi->init_req(3, intcon(0));
 957       region->init_req(3, inst_false);
 958     }
 959   }
 960 
 961   const TypeInstPtr* string_type =
 962     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 963 
 964   Node* no_ctrl = NULL;
 965   Node* receiver_cnt;
 966   Node* argument_cnt;
 967 
 968   if (!stopped()) {
 969     // Get counts for string and argument
 970     Node* receiver_cnta = basic_plus_adr(receiver, receiver, count_offset);
 971     receiver_cnt  = make_load(no_ctrl, receiver_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 972 
 973     // Pin load from argument string since it could be NULL.
 974     Node* argument_cnta = basic_plus_adr(argument, argument, count_offset);
 975     argument_cnt  = make_load(control(), argument_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
 976 
 977     // Check for receiver count != argument count
 978     Node* cmp = _gvn.transform( new(C, 3) CmpINode(receiver_cnt, argument_cnt) );
 979     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::ne) );
 980     Node* if_ne = generate_slow_guard(bol, NULL);
 981     if (if_ne != NULL) {
 982       phi->init_req(4, intcon(0));
 983       region->init_req(4, if_ne);
 984     }
 985   }
 986 
 987   // Check for count == 0 is done by mach node StrEquals.
 988 
 989   if (!stopped()) {
 990     Node* equals = make_string_method_node(Op_StrEquals, receiver, receiver_cnt, argument, argument_cnt);
 991     phi->init_req(1, equals);
 992     region->init_req(1, control());
 993   }
 994 
 995   // post merge
 996   set_control(_gvn.transform(region));
 997   record_for_igvn(region);
 998 
 999   push(_gvn.transform(phi));
1000 
1001   return true;
1002 }
1003 
1004 //------------------------------inline_array_equals----------------------------
1005 bool LibraryCallKit::inline_array_equals() {
1006 
1007   if (!Matcher::has_match_rule(Op_AryEq)) return false;
1008 
1009   _sp += 2;
1010   Node *argument2 = pop();
1011   Node *argument1 = pop();
1012 
1013   Node* equals =
1014     _gvn.transform(new (C, 4) AryEqNode(control(), memory(TypeAryPtr::CHARS),
1015                                         argument1, argument2) );
1016   push(equals);
1017   return true;
1018 }
1019 
1020 // Java version of String.indexOf(constant string)
1021 // class StringDecl {
1022 //   StringDecl(char[] ca) {
1023 //     offset = 0;
1024 //     count = ca.length;
1025 //     value = ca;
1026 //   }
1027 //   int offset;
1028 //   int count;
1029 //   char[] value;
1030 // }
1031 //
1032 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1033 //                             int targetOffset, int cache_i, int md2) {
1034 //   int cache = cache_i;
1035 //   int sourceOffset = string_object.offset;
1036 //   int sourceCount = string_object.count;
1037 //   int targetCount = target_object.length;
1038 //
1039 //   int targetCountLess1 = targetCount - 1;
1040 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1041 //
1042 //   char[] source = string_object.value;
1043 //   char[] target = target_object;
1044 //   int lastChar = target[targetCountLess1];
1045 //
1046 //  outer_loop:
1047 //   for (int i = sourceOffset; i < sourceEnd; ) {
1048 //     int src = source[i + targetCountLess1];
1049 //     if (src == lastChar) {
1050 //       // With random strings and a 4-character alphabet,
1051 //       // reverse matching at this point sets up 0.8% fewer
1052 //       // frames, but (paradoxically) makes 0.3% more probes.
1053 //       // Since those probes are nearer the lastChar probe,
1054 //       // there is may be a net D$ win with reverse matching.
1055 //       // But, reversing loop inhibits unroll of inner loop
1056 //       // for unknown reason.  So, does running outer loop from
1057 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1058 //       for (int j = 0; j < targetCountLess1; j++) {
1059 //         if (target[targetOffset + j] != source[i+j]) {
1060 //           if ((cache & (1 << source[i+j])) == 0) {
1061 //             if (md2 < j+1) {
1062 //               i += j+1;
1063 //               continue outer_loop;
1064 //             }
1065 //           }
1066 //           i += md2;
1067 //           continue outer_loop;
1068 //         }
1069 //       }
1070 //       return i - sourceOffset;
1071 //     }
1072 //     if ((cache & (1 << src)) == 0) {
1073 //       i += targetCountLess1;
1074 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1075 //     i++;
1076 //   }
1077 //   return -1;
1078 // }
1079 
1080 //------------------------------string_indexOf------------------------
1081 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1082                                      jint cache_i, jint md2_i) {
1083 
1084   Node* no_ctrl  = NULL;
1085   float likely   = PROB_LIKELY(0.9);
1086   float unlikely = PROB_UNLIKELY(0.9);
1087 
1088   const int value_offset  = java_lang_String::value_offset_in_bytes();
1089   const int count_offset  = java_lang_String::count_offset_in_bytes();
1090   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1091 
1092   ciInstanceKlass* klass = env()->String_klass();
1093   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1094   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1095 
1096   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1097   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1098   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1099   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1100   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1101   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1102 
1103   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
1104   jint target_length = target_array->length();
1105   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1106   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1107 
1108   IdealKit kit(gvn(), control(), merged_memory(), false, true);
1109 #define __ kit.
1110   Node* zero             = __ ConI(0);
1111   Node* one              = __ ConI(1);
1112   Node* cache            = __ ConI(cache_i);
1113   Node* md2              = __ ConI(md2_i);
1114   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1115   Node* targetCount      = __ ConI(target_length);
1116   Node* targetCountLess1 = __ ConI(target_length - 1);
1117   Node* targetOffset     = __ ConI(targetOffset_i);
1118   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1119 
1120   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1121   Node* outer_loop = __ make_label(2 /* goto */);
1122   Node* return_    = __ make_label(1);
1123 
1124   __ set(rtn,__ ConI(-1));
1125   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
1126        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1127        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1128        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1129        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1130          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
1131               Node* tpj = __ AddI(targetOffset, __ value(j));
1132               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1133               Node* ipj  = __ AddI(__ value(i), __ value(j));
1134               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1135               __ if_then(targ, BoolTest::ne, src2); {
1136                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1137                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1138                     __ increment(i, __ AddI(__ value(j), one));
1139                     __ goto_(outer_loop);
1140                   } __ end_if(); __ dead(j);
1141                 }__ end_if(); __ dead(j);
1142                 __ increment(i, md2);
1143                 __ goto_(outer_loop);
1144               }__ end_if();
1145               __ increment(j, one);
1146          }__ end_loop(); __ dead(j);
1147          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1148          __ goto_(return_);
1149        }__ end_if();
1150        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1151          __ increment(i, targetCountLess1);
1152        }__ end_if();
1153        __ increment(i, one);
1154        __ bind(outer_loop);
1155   }__ end_loop(); __ dead(i);
1156   __ bind(return_);
1157 
1158   // Final sync IdealKit and GraphKit.
1159   sync_kit(kit);
1160   Node* result = __ value(rtn);
1161 #undef __
1162   C->set_has_loops(true);
1163   return result;
1164 }
1165 
1166 //------------------------------inline_string_indexOf------------------------
1167 bool LibraryCallKit::inline_string_indexOf() {
1168 
1169   const int value_offset  = java_lang_String::value_offset_in_bytes();
1170   const int count_offset  = java_lang_String::count_offset_in_bytes();
1171   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1172 
1173   _sp += 2;
1174   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1175   Node *receiver = pop();
1176 
1177   Node* result;
1178   // Disable the use of pcmpestri until it can be guaranteed that
1179   // the load doesn't cross in to the uncommited space.
1180   if (false && Matcher::has_match_rule(Op_StrIndexOf) &&
1181       UseSSE42Intrinsics) {
1182     // Generate SSE4.2 version of indexOf
1183     // We currently only have match rules that use SSE4.2
1184 
1185     // Null check on self without removing any arguments.  The argument
1186     // null check technically happens in the wrong place, which can lead to
1187     // invalid stack traces when string compare is inlined into a method
1188     // which handles NullPointerExceptions.
1189     _sp += 2;
1190     receiver = do_null_check(receiver, T_OBJECT);
1191     argument = do_null_check(argument, T_OBJECT);
1192     _sp -= 2;
1193 
1194     if (stopped()) {
1195       return true;
1196     }
1197 
1198     // Make the merge point
1199     RegionNode* result_rgn = new (C, 3) RegionNode(3);
1200     Node*       result_phi = new (C, 3) PhiNode(result_rgn, TypeInt::INT);
1201     Node* no_ctrl  = NULL;
1202 
1203     ciInstanceKlass* klass = env()->String_klass();
1204     const TypeInstPtr* string_type =
1205       TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1206 
1207     // Get counts for string and substr
1208     Node* source_cnta = basic_plus_adr(receiver, receiver, count_offset);
1209     Node* source_cnt  = make_load(no_ctrl, source_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1210 
1211     Node* substr_cnta = basic_plus_adr(argument, argument, count_offset);
1212     Node* substr_cnt  = make_load(no_ctrl, substr_cnta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1213 
1214     // Check for substr count > string count
1215     Node* cmp = _gvn.transform( new(C, 3) CmpINode(substr_cnt, source_cnt) );
1216     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::gt) );
1217     Node* if_gt = generate_slow_guard(bol, NULL);
1218     if (if_gt != NULL) {
1219       result_phi->init_req(2, intcon(-1));
1220       result_rgn->init_req(2, if_gt);
1221     }
1222 
1223     if (!stopped()) {
1224       result = make_string_method_node(Op_StrIndexOf, receiver, source_cnt, argument, substr_cnt);
1225       result_phi->init_req(1, result);
1226       result_rgn->init_req(1, control());
1227     }
1228     set_control(_gvn.transform(result_rgn));
1229     record_for_igvn(result_rgn);
1230     result = _gvn.transform(result_phi);
1231 
1232   } else { //Use LibraryCallKit::string_indexOf
1233     // don't intrinsify is argument isn't a constant string.
1234     if (!argument->is_Con()) {
1235      return false;
1236     }
1237     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1238     if (str_type == NULL) {
1239       return false;
1240     }
1241     ciInstanceKlass* klass = env()->String_klass();
1242     ciObject* str_const = str_type->const_oop();
1243     if (str_const == NULL || str_const->klass() != klass) {
1244       return false;
1245     }
1246     ciInstance* str = str_const->as_instance();
1247     assert(str != NULL, "must be instance");
1248 
1249     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1250     int       o = str->field_value_by_offset(offset_offset).as_int();
1251     int       c = str->field_value_by_offset(count_offset).as_int();
1252     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1253 
1254     // constant strings have no offset and count == length which
1255     // simplifies the resulting code somewhat so lets optimize for that.
1256     if (o != 0 || c != pat->length()) {
1257      return false;
1258     }
1259 
1260     // Null check on self without removing any arguments.  The argument
1261     // null check technically happens in the wrong place, which can lead to
1262     // invalid stack traces when string compare is inlined into a method
1263     // which handles NullPointerExceptions.
1264     _sp += 2;
1265     receiver = do_null_check(receiver, T_OBJECT);
1266     // No null check on the argument is needed since it's a constant String oop.
1267     _sp -= 2;
1268     if (stopped()) {
1269      return true;
1270     }
1271 
1272     // The null string as a pattern always returns 0 (match at beginning of string)
1273     if (c == 0) {
1274       push(intcon(0));
1275       return true;
1276     }
1277 
1278     // Generate default indexOf
1279     jchar lastChar = pat->char_at(o + (c - 1));
1280     int cache = 0;
1281     int i;
1282     for (i = 0; i < c - 1; i++) {
1283       assert(i < pat->length(), "out of range");
1284       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1285     }
1286 
1287     int md2 = c;
1288     for (i = 0; i < c - 1; i++) {
1289       assert(i < pat->length(), "out of range");
1290       if (pat->char_at(o + i) == lastChar) {
1291         md2 = (c - 1) - i;
1292       }
1293     }
1294 
1295     result = string_indexOf(receiver, pat, o, cache, md2);
1296   }
1297 
1298   push(result);
1299   return true;
1300 }
1301 
1302 //--------------------------pop_math_arg--------------------------------
1303 // Pop a double argument to a math function from the stack
1304 // rounding it if necessary.
1305 Node * LibraryCallKit::pop_math_arg() {
1306   Node *arg = pop_pair();
1307   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1308     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1309   return arg;
1310 }
1311 
1312 //------------------------------inline_trig----------------------------------
1313 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1314 // argument reduction which will turn into a fast/slow diamond.
1315 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1316   _sp += arg_size();            // restore stack pointer
1317   Node* arg = pop_math_arg();
1318   Node* trig = NULL;
1319 
1320   switch (id) {
1321   case vmIntrinsics::_dsin:
1322     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1323     break;
1324   case vmIntrinsics::_dcos:
1325     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1326     break;
1327   case vmIntrinsics::_dtan:
1328     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1329     break;
1330   default:
1331     assert(false, "bad intrinsic was passed in");
1332     return false;
1333   }
1334 
1335   // Rounding required?  Check for argument reduction!
1336   if( Matcher::strict_fp_requires_explicit_rounding ) {
1337 
1338     static const double     pi_4 =  0.7853981633974483;
1339     static const double neg_pi_4 = -0.7853981633974483;
1340     // pi/2 in 80-bit extended precision
1341     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1342     // -pi/2 in 80-bit extended precision
1343     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1344     // Cutoff value for using this argument reduction technique
1345     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1346     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1347 
1348     // Pseudocode for sin:
1349     // if (x <= Math.PI / 4.0) {
1350     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1351     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1352     // } else {
1353     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1354     // }
1355     // return StrictMath.sin(x);
1356 
1357     // Pseudocode for cos:
1358     // if (x <= Math.PI / 4.0) {
1359     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1360     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1361     // } else {
1362     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1363     // }
1364     // return StrictMath.cos(x);
1365 
1366     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1367     // requires a special machine instruction to load it.  Instead we'll try
1368     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1369     // probably do the math inside the SIN encoding.
1370 
1371     // Make the merge point
1372     RegionNode *r = new (C, 3) RegionNode(3);
1373     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1374 
1375     // Flatten arg so we need only 1 test
1376     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1377     // Node for PI/4 constant
1378     Node *pi4 = makecon(TypeD::make(pi_4));
1379     // Check PI/4 : abs(arg)
1380     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1381     // Check: If PI/4 < abs(arg) then go slow
1382     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1383     // Branch either way
1384     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1385     set_control(opt_iff(r,iff));
1386 
1387     // Set fast path result
1388     phi->init_req(2,trig);
1389 
1390     // Slow path - non-blocking leaf call
1391     Node* call = NULL;
1392     switch (id) {
1393     case vmIntrinsics::_dsin:
1394       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1395                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1396                                "Sin", NULL, arg, top());
1397       break;
1398     case vmIntrinsics::_dcos:
1399       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1400                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1401                                "Cos", NULL, arg, top());
1402       break;
1403     case vmIntrinsics::_dtan:
1404       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1405                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1406                                "Tan", NULL, arg, top());
1407       break;
1408     }
1409     assert(control()->in(0) == call, "");
1410     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1411     r->init_req(1,control());
1412     phi->init_req(1,slow_result);
1413 
1414     // Post-merge
1415     set_control(_gvn.transform(r));
1416     record_for_igvn(r);
1417     trig = _gvn.transform(phi);
1418 
1419     C->set_has_split_ifs(true); // Has chance for split-if optimization
1420   }
1421   // Push result back on JVM stack
1422   push_pair(trig);
1423   return true;
1424 }
1425 
1426 //------------------------------inline_sqrt-------------------------------------
1427 // Inline square root instruction, if possible.
1428 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1429   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1430   _sp += arg_size();        // restore stack pointer
1431   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1432   return true;
1433 }
1434 
1435 //------------------------------inline_abs-------------------------------------
1436 // Inline absolute value instruction, if possible.
1437 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1438   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1439   _sp += arg_size();        // restore stack pointer
1440   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1441   return true;
1442 }
1443 
1444 //------------------------------inline_exp-------------------------------------
1445 // Inline exp instructions, if possible.  The Intel hardware only misses
1446 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1447 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1448   assert(id == vmIntrinsics::_dexp, "Not exp");
1449 
1450   // If this inlining ever returned NaN in the past, we do not intrinsify it
1451   // every again.  NaN results requires StrictMath.exp handling.
1452   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1453 
1454   // Do not intrinsify on older platforms which lack cmove.
1455   if (ConditionalMoveLimit == 0)  return false;
1456 
1457   _sp += arg_size();        // restore stack pointer
1458   Node *x = pop_math_arg();
1459   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1460 
1461   //-------------------
1462   //result=(result.isNaN())? StrictMath::exp():result;
1463   // Check: If isNaN() by checking result!=result? then go to Strict Math
1464   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1465   // Build the boolean node
1466   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1467 
1468   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1469     // End the current control-flow path
1470     push_pair(x);
1471     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1472     // to handle.  Recompile without intrinsifying Math.exp
1473     uncommon_trap(Deoptimization::Reason_intrinsic,
1474                   Deoptimization::Action_make_not_entrant);
1475   }
1476 
1477   C->set_has_split_ifs(true); // Has chance for split-if optimization
1478 
1479   push_pair(result);
1480 
1481   return true;
1482 }
1483 
1484 //------------------------------inline_pow-------------------------------------
1485 // Inline power instructions, if possible.
1486 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1487   assert(id == vmIntrinsics::_dpow, "Not pow");
1488 
1489   // If this inlining ever returned NaN in the past, we do not intrinsify it
1490   // every again.  NaN results requires StrictMath.pow handling.
1491   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1492 
1493   // Do not intrinsify on older platforms which lack cmove.
1494   if (ConditionalMoveLimit == 0)  return false;
1495 
1496   // Pseudocode for pow
1497   // if (x <= 0.0) {
1498   //   if ((double)((int)y)==y) { // if y is int
1499   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1500   //   } else {
1501   //     result = NaN;
1502   //   }
1503   // } else {
1504   //   result = DPow(x,y);
1505   // }
1506   // if (result != result)?  {
1507   //   uncommon_trap();
1508   // }
1509   // return result;
1510 
1511   _sp += arg_size();        // restore stack pointer
1512   Node* y = pop_math_arg();
1513   Node* x = pop_math_arg();
1514 
1515   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1516 
1517   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1518   // inside of something) then skip the fancy tests and just check for
1519   // NaN result.
1520   Node *result = NULL;
1521   if( jvms()->depth() >= 1 ) {
1522     result = fast_result;
1523   } else {
1524 
1525     // Set the merge point for If node with condition of (x <= 0.0)
1526     // There are four possible paths to region node and phi node
1527     RegionNode *r = new (C, 4) RegionNode(4);
1528     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1529 
1530     // Build the first if node: if (x <= 0.0)
1531     // Node for 0 constant
1532     Node *zeronode = makecon(TypeD::ZERO);
1533     // Check x:0
1534     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1535     // Check: If (x<=0) then go complex path
1536     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1537     // Branch either way
1538     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1539     Node *opt_test = _gvn.transform(if1);
1540     //assert( opt_test->is_If(), "Expect an IfNode");
1541     IfNode *opt_if1 = (IfNode*)opt_test;
1542     // Fast path taken; set region slot 3
1543     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1544     r->init_req(3,fast_taken); // Capture fast-control
1545 
1546     // Fast path not-taken, i.e. slow path
1547     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1548 
1549     // Set fast path result
1550     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1551     phi->init_req(3, fast_result);
1552 
1553     // Complex path
1554     // Build the second if node (if y is int)
1555     // Node for (int)y
1556     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1557     // Node for (double)((int) y)
1558     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1559     // Check (double)((int) y) : y
1560     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1561     // Check if (y isn't int) then go to slow path
1562 
1563     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1564     // Branch either way
1565     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1566     Node *slow_path = opt_iff(r,if2); // Set region path 2
1567 
1568     // Calculate DPow(abs(x), y)*(1 & (int)y)
1569     // Node for constant 1
1570     Node *conone = intcon(1);
1571     // 1& (int)y
1572     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1573     // zero node
1574     Node *conzero = intcon(0);
1575     // Check (1&(int)y)==0?
1576     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1577     // Check if (1&(int)y)!=0?, if so the result is negative
1578     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1579     // abs(x)
1580     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1581     // abs(x)^y
1582     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1583     // -abs(x)^y
1584     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1585     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1586     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1587     // Set complex path fast result
1588     phi->init_req(2, signresult);
1589 
1590     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1591     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1592     r->init_req(1,slow_path);
1593     phi->init_req(1,slow_result);
1594 
1595     // Post merge
1596     set_control(_gvn.transform(r));
1597     record_for_igvn(r);
1598     result=_gvn.transform(phi);
1599   }
1600 
1601   //-------------------
1602   //result=(result.isNaN())? uncommon_trap():result;
1603   // Check: If isNaN() by checking result!=result? then go to Strict Math
1604   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1605   // Build the boolean node
1606   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1607 
1608   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1609     // End the current control-flow path
1610     push_pair(x);
1611     push_pair(y);
1612     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1613     // to handle.  Recompile without intrinsifying Math.pow.
1614     uncommon_trap(Deoptimization::Reason_intrinsic,
1615                   Deoptimization::Action_make_not_entrant);
1616   }
1617 
1618   C->set_has_split_ifs(true); // Has chance for split-if optimization
1619 
1620   push_pair(result);
1621 
1622   return true;
1623 }
1624 
1625 //------------------------------inline_trans-------------------------------------
1626 // Inline transcendental instructions, if possible.  The Intel hardware gets
1627 // these right, no funny corner cases missed.
1628 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1629   _sp += arg_size();        // restore stack pointer
1630   Node* arg = pop_math_arg();
1631   Node* trans = NULL;
1632 
1633   switch (id) {
1634   case vmIntrinsics::_dlog:
1635     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1636     break;
1637   case vmIntrinsics::_dlog10:
1638     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1639     break;
1640   default:
1641     assert(false, "bad intrinsic was passed in");
1642     return false;
1643   }
1644 
1645   // Push result back on JVM stack
1646   push_pair(trans);
1647   return true;
1648 }
1649 
1650 //------------------------------runtime_math-----------------------------
1651 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1652   Node* a = NULL;
1653   Node* b = NULL;
1654 
1655   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1656          "must be (DD)D or (D)D type");
1657 
1658   // Inputs
1659   _sp += arg_size();        // restore stack pointer
1660   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1661     b = pop_math_arg();
1662   }
1663   a = pop_math_arg();
1664 
1665   const TypePtr* no_memory_effects = NULL;
1666   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1667                                  no_memory_effects,
1668                                  a, top(), b, b ? top() : NULL);
1669   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1670 #ifdef ASSERT
1671   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1672   assert(value_top == top(), "second value must be top");
1673 #endif
1674 
1675   push_pair(value);
1676   return true;
1677 }
1678 
1679 //------------------------------inline_math_native-----------------------------
1680 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1681   switch (id) {
1682     // These intrinsics are not properly supported on all hardware
1683   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1684     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1685   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1686     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1687   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1688     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1689 
1690   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1691     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1692   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1693     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1694 
1695     // These intrinsics are supported on all hardware
1696   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1697   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1698 
1699     // These intrinsics don't work on X86.  The ad implementation doesn't
1700     // handle NaN's properly.  Instead of returning infinity, the ad
1701     // implementation returns a NaN on overflow. See bug: 6304089
1702     // Once the ad implementations are fixed, change the code below
1703     // to match the intrinsics above
1704 
1705   case vmIntrinsics::_dexp:  return
1706     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1707   case vmIntrinsics::_dpow:  return
1708     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1709 
1710    // These intrinsics are not yet correctly implemented
1711   case vmIntrinsics::_datan2:
1712     return false;
1713 
1714   default:
1715     ShouldNotReachHere();
1716     return false;
1717   }
1718 }
1719 
1720 static bool is_simple_name(Node* n) {
1721   return (n->req() == 1         // constant
1722           || (n->is_Type() && n->as_Type()->type()->singleton())
1723           || n->is_Proj()       // parameter or return value
1724           || n->is_Phi()        // local of some sort
1725           );
1726 }
1727 
1728 //----------------------------inline_min_max-----------------------------------
1729 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1730   push(generate_min_max(id, argument(0), argument(1)));
1731 
1732   return true;
1733 }
1734 
1735 Node*
1736 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1737   // These are the candidate return value:
1738   Node* xvalue = x0;
1739   Node* yvalue = y0;
1740 
1741   if (xvalue == yvalue) {
1742     return xvalue;
1743   }
1744 
1745   bool want_max = (id == vmIntrinsics::_max);
1746 
1747   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1748   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1749   if (txvalue == NULL || tyvalue == NULL)  return top();
1750   // This is not really necessary, but it is consistent with a
1751   // hypothetical MaxINode::Value method:
1752   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1753 
1754   // %%% This folding logic should (ideally) be in a different place.
1755   // Some should be inside IfNode, and there to be a more reliable
1756   // transformation of ?: style patterns into cmoves.  We also want
1757   // more powerful optimizations around cmove and min/max.
1758 
1759   // Try to find a dominating comparison of these guys.
1760   // It can simplify the index computation for Arrays.copyOf
1761   // and similar uses of System.arraycopy.
1762   // First, compute the normalized version of CmpI(x, y).
1763   int   cmp_op = Op_CmpI;
1764   Node* xkey = xvalue;
1765   Node* ykey = yvalue;
1766   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1767   if (ideal_cmpxy->is_Cmp()) {
1768     // E.g., if we have CmpI(length - offset, count),
1769     // it might idealize to CmpI(length, count + offset)
1770     cmp_op = ideal_cmpxy->Opcode();
1771     xkey = ideal_cmpxy->in(1);
1772     ykey = ideal_cmpxy->in(2);
1773   }
1774 
1775   // Start by locating any relevant comparisons.
1776   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1777   Node* cmpxy = NULL;
1778   Node* cmpyx = NULL;
1779   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1780     Node* cmp = start_from->fast_out(k);
1781     if (cmp->outcnt() > 0 &&            // must have prior uses
1782         cmp->in(0) == NULL &&           // must be context-independent
1783         cmp->Opcode() == cmp_op) {      // right kind of compare
1784       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1785       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1786     }
1787   }
1788 
1789   const int NCMPS = 2;
1790   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1791   int cmpn;
1792   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1793     if (cmps[cmpn] != NULL)  break;     // find a result
1794   }
1795   if (cmpn < NCMPS) {
1796     // Look for a dominating test that tells us the min and max.
1797     int depth = 0;                // Limit search depth for speed
1798     Node* dom = control();
1799     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1800       if (++depth >= 100)  break;
1801       Node* ifproj = dom;
1802       if (!ifproj->is_Proj())  continue;
1803       Node* iff = ifproj->in(0);
1804       if (!iff->is_If())  continue;
1805       Node* bol = iff->in(1);
1806       if (!bol->is_Bool())  continue;
1807       Node* cmp = bol->in(1);
1808       if (cmp == NULL)  continue;
1809       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1810         if (cmps[cmpn] == cmp)  break;
1811       if (cmpn == NCMPS)  continue;
1812       BoolTest::mask btest = bol->as_Bool()->_test._test;
1813       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1814       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1815       // At this point, we know that 'x btest y' is true.
1816       switch (btest) {
1817       case BoolTest::eq:
1818         // They are proven equal, so we can collapse the min/max.
1819         // Either value is the answer.  Choose the simpler.
1820         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1821           return yvalue;
1822         return xvalue;
1823       case BoolTest::lt:          // x < y
1824       case BoolTest::le:          // x <= y
1825         return (want_max ? yvalue : xvalue);
1826       case BoolTest::gt:          // x > y
1827       case BoolTest::ge:          // x >= y
1828         return (want_max ? xvalue : yvalue);
1829       }
1830     }
1831   }
1832 
1833   // We failed to find a dominating test.
1834   // Let's pick a test that might GVN with prior tests.
1835   Node*          best_bol   = NULL;
1836   BoolTest::mask best_btest = BoolTest::illegal;
1837   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1838     Node* cmp = cmps[cmpn];
1839     if (cmp == NULL)  continue;
1840     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1841       Node* bol = cmp->fast_out(j);
1842       if (!bol->is_Bool())  continue;
1843       BoolTest::mask btest = bol->as_Bool()->_test._test;
1844       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1845       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1846       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1847         best_bol   = bol->as_Bool();
1848         best_btest = btest;
1849       }
1850     }
1851   }
1852 
1853   Node* answer_if_true  = NULL;
1854   Node* answer_if_false = NULL;
1855   switch (best_btest) {
1856   default:
1857     if (cmpxy == NULL)
1858       cmpxy = ideal_cmpxy;
1859     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1860     // and fall through:
1861   case BoolTest::lt:          // x < y
1862   case BoolTest::le:          // x <= y
1863     answer_if_true  = (want_max ? yvalue : xvalue);
1864     answer_if_false = (want_max ? xvalue : yvalue);
1865     break;
1866   case BoolTest::gt:          // x > y
1867   case BoolTest::ge:          // x >= y
1868     answer_if_true  = (want_max ? xvalue : yvalue);
1869     answer_if_false = (want_max ? yvalue : xvalue);
1870     break;
1871   }
1872 
1873   jint hi, lo;
1874   if (want_max) {
1875     // We can sharpen the minimum.
1876     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1877     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1878   } else {
1879     // We can sharpen the maximum.
1880     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1881     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1882   }
1883 
1884   // Use a flow-free graph structure, to avoid creating excess control edges
1885   // which could hinder other optimizations.
1886   // Since Math.min/max is often used with arraycopy, we want
1887   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1888   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1889                                answer_if_false, answer_if_true,
1890                                TypeInt::make(lo, hi, widen));
1891 
1892   return _gvn.transform(cmov);
1893 
1894   /*
1895   // This is not as desirable as it may seem, since Min and Max
1896   // nodes do not have a full set of optimizations.
1897   // And they would interfere, anyway, with 'if' optimizations
1898   // and with CMoveI canonical forms.
1899   switch (id) {
1900   case vmIntrinsics::_min:
1901     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1902   case vmIntrinsics::_max:
1903     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1904   default:
1905     ShouldNotReachHere();
1906   }
1907   */
1908 }
1909 
1910 inline int
1911 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1912   const TypePtr* base_type = TypePtr::NULL_PTR;
1913   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1914   if (base_type == NULL) {
1915     // Unknown type.
1916     return Type::AnyPtr;
1917   } else if (base_type == TypePtr::NULL_PTR) {
1918     // Since this is a NULL+long form, we have to switch to a rawptr.
1919     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1920     offset = MakeConX(0);
1921     return Type::RawPtr;
1922   } else if (base_type->base() == Type::RawPtr) {
1923     return Type::RawPtr;
1924   } else if (base_type->isa_oopptr()) {
1925     // Base is never null => always a heap address.
1926     if (base_type->ptr() == TypePtr::NotNull) {
1927       return Type::OopPtr;
1928     }
1929     // Offset is small => always a heap address.
1930     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1931     if (offset_type != NULL &&
1932         base_type->offset() == 0 &&     // (should always be?)
1933         offset_type->_lo >= 0 &&
1934         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1935       return Type::OopPtr;
1936     }
1937     // Otherwise, it might either be oop+off or NULL+addr.
1938     return Type::AnyPtr;
1939   } else {
1940     // No information:
1941     return Type::AnyPtr;
1942   }
1943 }
1944 
1945 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1946   int kind = classify_unsafe_addr(base, offset);
1947   if (kind == Type::RawPtr) {
1948     return basic_plus_adr(top(), base, offset);
1949   } else {
1950     return basic_plus_adr(base, offset);
1951   }
1952 }
1953 
1954 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
1955 // inline int Integer.numberOfLeadingZeros(int)
1956 // inline int Long.numberOfLeadingZeros(long)
1957 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
1958   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
1959   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
1960   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
1961   _sp += arg_size();  // restore stack pointer
1962   switch (id) {
1963   case vmIntrinsics::_numberOfLeadingZeros_i:
1964     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
1965     break;
1966   case vmIntrinsics::_numberOfLeadingZeros_l:
1967     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
1968     break;
1969   default:
1970     ShouldNotReachHere();
1971   }
1972   return true;
1973 }
1974 
1975 //-------------------inline_numberOfTrailingZeros_int/long----------------------
1976 // inline int Integer.numberOfTrailingZeros(int)
1977 // inline int Long.numberOfTrailingZeros(long)
1978 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
1979   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
1980   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
1981   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
1982   _sp += arg_size();  // restore stack pointer
1983   switch (id) {
1984   case vmIntrinsics::_numberOfTrailingZeros_i:
1985     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
1986     break;
1987   case vmIntrinsics::_numberOfTrailingZeros_l:
1988     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
1989     break;
1990   default:
1991     ShouldNotReachHere();
1992   }
1993   return true;
1994 }
1995 
1996 //----------------------------inline_bitCount_int/long-----------------------
1997 // inline int Integer.bitCount(int)
1998 // inline int Long.bitCount(long)
1999 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
2000   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
2001   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
2002   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
2003   _sp += arg_size();  // restore stack pointer
2004   switch (id) {
2005   case vmIntrinsics::_bitCount_i:
2006     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
2007     break;
2008   case vmIntrinsics::_bitCount_l:
2009     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
2010     break;
2011   default:
2012     ShouldNotReachHere();
2013   }
2014   return true;
2015 }
2016 
2017 //----------------------------inline_reverseBytes_int/long/char/short-------------------
2018 // inline Integer.reverseBytes(int)
2019 // inline Long.reverseBytes(long)
2020 // inline Character.reverseBytes(char)
2021 // inline Short.reverseBytes(short)
2022 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
2023   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l ||
2024          id == vmIntrinsics::_reverseBytes_c || id == vmIntrinsics::_reverseBytes_s,
2025          "not reverse Bytes");
2026   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI))  return false;
2027   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL))  return false;
2028   if (id == vmIntrinsics::_reverseBytes_c && !Matcher::has_match_rule(Op_ReverseBytesUS)) return false;
2029   if (id == vmIntrinsics::_reverseBytes_s && !Matcher::has_match_rule(Op_ReverseBytesS))  return false;
2030   _sp += arg_size();        // restore stack pointer
2031   switch (id) {
2032   case vmIntrinsics::_reverseBytes_i:
2033     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
2034     break;
2035   case vmIntrinsics::_reverseBytes_l:
2036     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
2037     break;
2038   case vmIntrinsics::_reverseBytes_c:
2039     push(_gvn.transform(new (C, 2) ReverseBytesUSNode(0, pop())));
2040     break;
2041   case vmIntrinsics::_reverseBytes_s:
2042     push(_gvn.transform(new (C, 2) ReverseBytesSNode(0, pop())));
2043     break;
2044   default:
2045     ;
2046   }
2047   return true;
2048 }
2049 
2050 //----------------------------inline_unsafe_access----------------------------
2051 
2052 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2053 
2054 // Interpret Unsafe.fieldOffset cookies correctly:
2055 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2056 
2057 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2058   if (callee()->is_static())  return false;  // caller must have the capability!
2059 
2060 #ifndef PRODUCT
2061   {
2062     ResourceMark rm;
2063     // Check the signatures.
2064     ciSignature* sig = signature();
2065 #ifdef ASSERT
2066     if (!is_store) {
2067       // Object getObject(Object base, int/long offset), etc.
2068       BasicType rtype = sig->return_type()->basic_type();
2069       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2070           rtype = T_ADDRESS;  // it is really a C void*
2071       assert(rtype == type, "getter must return the expected value");
2072       if (!is_native_ptr) {
2073         assert(sig->count() == 2, "oop getter has 2 arguments");
2074         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2075         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2076       } else {
2077         assert(sig->count() == 1, "native getter has 1 argument");
2078         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2079       }
2080     } else {
2081       // void putObject(Object base, int/long offset, Object x), etc.
2082       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2083       if (!is_native_ptr) {
2084         assert(sig->count() == 3, "oop putter has 3 arguments");
2085         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2086         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2087       } else {
2088         assert(sig->count() == 2, "native putter has 2 arguments");
2089         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2090       }
2091       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2092       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2093         vtype = T_ADDRESS;  // it is really a C void*
2094       assert(vtype == type, "putter must accept the expected value");
2095     }
2096 #endif // ASSERT
2097  }
2098 #endif //PRODUCT
2099 
2100   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2101 
2102   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
2103 
2104   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
2105   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
2106 
2107   debug_only(int saved_sp = _sp);
2108   _sp += nargs;
2109 
2110   Node* val;
2111   debug_only(val = (Node*)(uintptr_t)-1);
2112 
2113 
2114   if (is_store) {
2115     // Get the value being stored.  (Pop it first; it was pushed last.)
2116     switch (type) {
2117     case T_DOUBLE:
2118     case T_LONG:
2119     case T_ADDRESS:
2120       val = pop_pair();
2121       break;
2122     default:
2123       val = pop();
2124     }
2125   }
2126 
2127   // Build address expression.  See the code in inline_unsafe_prefetch.
2128   Node *adr;
2129   Node *heap_base_oop = top();
2130   if (!is_native_ptr) {
2131     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2132     Node* offset = pop_pair();
2133     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2134     Node* base   = pop();
2135     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2136     // to be plain byte offsets, which are also the same as those accepted
2137     // by oopDesc::field_base.
2138     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2139            "fieldOffset must be byte-scaled");
2140     // 32-bit machines ignore the high half!
2141     offset = ConvL2X(offset);
2142     adr = make_unsafe_address(base, offset);
2143     heap_base_oop = base;
2144   } else {
2145     Node* ptr = pop_pair();
2146     // Adjust Java long to machine word:
2147     ptr = ConvL2X(ptr);
2148     adr = make_unsafe_address(NULL, ptr);
2149   }
2150 
2151   // Pop receiver last:  it was pushed first.
2152   Node *receiver = pop();
2153 
2154   assert(saved_sp == _sp, "must have correct argument count");
2155 
2156   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2157 
2158   // First guess at the value type.
2159   const Type *value_type = Type::get_const_basic_type(type);
2160 
2161   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2162   // there was not enough information to nail it down.
2163   Compile::AliasType* alias_type = C->alias_type(adr_type);
2164   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2165 
2166   // We will need memory barriers unless we can determine a unique
2167   // alias category for this reference.  (Note:  If for some reason
2168   // the barriers get omitted and the unsafe reference begins to "pollute"
2169   // the alias analysis of the rest of the graph, either Compile::can_alias
2170   // or Compile::must_alias will throw a diagnostic assert.)
2171   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2172 
2173   if (!is_store && type == T_OBJECT) {
2174     // Attempt to infer a sharper value type from the offset and base type.
2175     ciKlass* sharpened_klass = NULL;
2176 
2177     // See if it is an instance field, with an object type.
2178     if (alias_type->field() != NULL) {
2179       assert(!is_native_ptr, "native pointer op cannot use a java address");
2180       if (alias_type->field()->type()->is_klass()) {
2181         sharpened_klass = alias_type->field()->type()->as_klass();
2182       }
2183     }
2184 
2185     // See if it is a narrow oop array.
2186     if (adr_type->isa_aryptr()) {
2187       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2188         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2189         if (elem_type != NULL) {
2190           sharpened_klass = elem_type->klass();
2191         }
2192       }
2193     }
2194 
2195     if (sharpened_klass != NULL) {
2196       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2197 
2198       // Sharpen the value type.
2199       value_type = tjp;
2200 
2201 #ifndef PRODUCT
2202       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2203         tty->print("  from base type:  ");   adr_type->dump();
2204         tty->print("  sharpened value: "); value_type->dump();
2205       }
2206 #endif
2207     }
2208   }
2209 
2210   // Null check on self without removing any arguments.  The argument
2211   // null check technically happens in the wrong place, which can lead to
2212   // invalid stack traces when the primitive is inlined into a method
2213   // which handles NullPointerExceptions.
2214   _sp += nargs;
2215   do_null_check(receiver, T_OBJECT);
2216   _sp -= nargs;
2217   if (stopped()) {
2218     return true;
2219   }
2220   // Heap pointers get a null-check from the interpreter,
2221   // as a courtesy.  However, this is not guaranteed by Unsafe,
2222   // and it is not possible to fully distinguish unintended nulls
2223   // from intended ones in this API.
2224 
2225   if (is_volatile) {
2226     // We need to emit leading and trailing CPU membars (see below) in
2227     // addition to memory membars when is_volatile. This is a little
2228     // too strong, but avoids the need to insert per-alias-type
2229     // volatile membars (for stores; compare Parse::do_put_xxx), which
2230     // we cannot do effectively here because we probably only have a
2231     // rough approximation of type.
2232     need_mem_bar = true;
2233     // For Stores, place a memory ordering barrier now.
2234     if (is_store)
2235       insert_mem_bar(Op_MemBarRelease);
2236   }
2237 
2238   // Memory barrier to prevent normal and 'unsafe' accesses from
2239   // bypassing each other.  Happens after null checks, so the
2240   // exception paths do not take memory state from the memory barrier,
2241   // so there's no problems making a strong assert about mixing users
2242   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2243   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2244   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2245 
2246   if (!is_store) {
2247     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2248     // load value and push onto stack
2249     switch (type) {
2250     case T_BOOLEAN:
2251     case T_CHAR:
2252     case T_BYTE:
2253     case T_SHORT:
2254     case T_INT:
2255     case T_FLOAT:
2256     case T_OBJECT:
2257       push( p );
2258       break;
2259     case T_ADDRESS:
2260       // Cast to an int type.
2261       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2262       p = ConvX2L(p);
2263       push_pair(p);
2264       break;
2265     case T_DOUBLE:
2266     case T_LONG:
2267       push_pair( p );
2268       break;
2269     default: ShouldNotReachHere();
2270     }
2271   } else {
2272     // place effect of store into memory
2273     switch (type) {
2274     case T_DOUBLE:
2275       val = dstore_rounding(val);
2276       break;
2277     case T_ADDRESS:
2278       // Repackage the long as a pointer.
2279       val = ConvL2X(val);
2280       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2281       break;
2282     }
2283 
2284     if (type != T_OBJECT ) {
2285       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2286     } else {
2287       // Possibly an oop being stored to Java heap or native memory
2288       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2289         // oop to Java heap.
2290         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2291       } else {
2292         // We can't tell at compile time if we are storing in the Java heap or outside
2293         // of it. So we need to emit code to conditionally do the proper type of
2294         // store.
2295 
2296         IdealKit ideal(gvn(), control(),  merged_memory());
2297 #define __ ideal.
2298         // QQQ who knows what probability is here??
2299         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2300           // Sync IdealKit and graphKit.
2301           set_all_memory( __ merged_memory());
2302           set_control(__ ctrl());
2303           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2304           // Update IdealKit memory.
2305           __ set_all_memory(merged_memory());
2306           __ set_ctrl(control());
2307         } __ else_(); {
2308           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2309         } __ end_if();
2310         // Final sync IdealKit and GraphKit.
2311         sync_kit(ideal);
2312 #undef __
2313       }
2314     }
2315   }
2316 
2317   if (is_volatile) {
2318     if (!is_store)
2319       insert_mem_bar(Op_MemBarAcquire);
2320     else
2321       insert_mem_bar(Op_MemBarVolatile);
2322   }
2323 
2324   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2325 
2326   return true;
2327 }
2328 
2329 //----------------------------inline_unsafe_prefetch----------------------------
2330 
2331 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2332 #ifndef PRODUCT
2333   {
2334     ResourceMark rm;
2335     // Check the signatures.
2336     ciSignature* sig = signature();
2337 #ifdef ASSERT
2338     // Object getObject(Object base, int/long offset), etc.
2339     BasicType rtype = sig->return_type()->basic_type();
2340     if (!is_native_ptr) {
2341       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2342       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2343       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2344     } else {
2345       assert(sig->count() == 1, "native prefetch has 1 argument");
2346       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2347     }
2348 #endif // ASSERT
2349   }
2350 #endif // !PRODUCT
2351 
2352   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2353 
2354   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2355   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2356 
2357   debug_only(int saved_sp = _sp);
2358   _sp += nargs;
2359 
2360   // Build address expression.  See the code in inline_unsafe_access.
2361   Node *adr;
2362   if (!is_native_ptr) {
2363     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2364     Node* offset = pop_pair();
2365     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2366     Node* base   = pop();
2367     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2368     // to be plain byte offsets, which are also the same as those accepted
2369     // by oopDesc::field_base.
2370     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2371            "fieldOffset must be byte-scaled");
2372     // 32-bit machines ignore the high half!
2373     offset = ConvL2X(offset);
2374     adr = make_unsafe_address(base, offset);
2375   } else {
2376     Node* ptr = pop_pair();
2377     // Adjust Java long to machine word:
2378     ptr = ConvL2X(ptr);
2379     adr = make_unsafe_address(NULL, ptr);
2380   }
2381 
2382   if (is_static) {
2383     assert(saved_sp == _sp, "must have correct argument count");
2384   } else {
2385     // Pop receiver last:  it was pushed first.
2386     Node *receiver = pop();
2387     assert(saved_sp == _sp, "must have correct argument count");
2388 
2389     // Null check on self without removing any arguments.  The argument
2390     // null check technically happens in the wrong place, which can lead to
2391     // invalid stack traces when the primitive is inlined into a method
2392     // which handles NullPointerExceptions.
2393     _sp += nargs;
2394     do_null_check(receiver, T_OBJECT);
2395     _sp -= nargs;
2396     if (stopped()) {
2397       return true;
2398     }
2399   }
2400 
2401   // Generate the read or write prefetch
2402   Node *prefetch;
2403   if (is_store) {
2404     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2405   } else {
2406     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2407   }
2408   prefetch->init_req(0, control());
2409   set_i_o(_gvn.transform(prefetch));
2410 
2411   return true;
2412 }
2413 
2414 //----------------------------inline_unsafe_CAS----------------------------
2415 
2416 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2417   // This basic scheme here is the same as inline_unsafe_access, but
2418   // differs in enough details that combining them would make the code
2419   // overly confusing.  (This is a true fact! I originally combined
2420   // them, but even I was confused by it!) As much code/comments as
2421   // possible are retained from inline_unsafe_access though to make
2422   // the correspondences clearer. - dl
2423 
2424   if (callee()->is_static())  return false;  // caller must have the capability!
2425 
2426 #ifndef PRODUCT
2427   {
2428     ResourceMark rm;
2429     // Check the signatures.
2430     ciSignature* sig = signature();
2431 #ifdef ASSERT
2432     BasicType rtype = sig->return_type()->basic_type();
2433     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2434     assert(sig->count() == 4, "CAS has 4 arguments");
2435     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2436     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2437 #endif // ASSERT
2438   }
2439 #endif //PRODUCT
2440 
2441   // number of stack slots per value argument (1 or 2)
2442   int type_words = type2size[type];
2443 
2444   // Cannot inline wide CAS on machines that don't support it natively
2445   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2446     return false;
2447 
2448   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2449 
2450   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2451   int nargs = 1 + 1 + 2  + type_words + type_words;
2452 
2453   // pop arguments: newval, oldval, offset, base, and receiver
2454   debug_only(int saved_sp = _sp);
2455   _sp += nargs;
2456   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2457   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2458   Node *offset   = pop_pair();
2459   Node *base     = pop();
2460   Node *receiver = pop();
2461   assert(saved_sp == _sp, "must have correct argument count");
2462 
2463   //  Null check receiver.
2464   _sp += nargs;
2465   do_null_check(receiver, T_OBJECT);
2466   _sp -= nargs;
2467   if (stopped()) {
2468     return true;
2469   }
2470 
2471   // Build field offset expression.
2472   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2473   // to be plain byte offsets, which are also the same as those accepted
2474   // by oopDesc::field_base.
2475   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2476   // 32-bit machines ignore the high half of long offsets
2477   offset = ConvL2X(offset);
2478   Node* adr = make_unsafe_address(base, offset);
2479   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2480 
2481   // (Unlike inline_unsafe_access, there seems no point in trying
2482   // to refine types. Just use the coarse types here.
2483   const Type *value_type = Type::get_const_basic_type(type);
2484   Compile::AliasType* alias_type = C->alias_type(adr_type);
2485   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2486   int alias_idx = C->get_alias_index(adr_type);
2487 
2488   // Memory-model-wise, a CAS acts like a little synchronized block,
2489   // so needs barriers on each side.  These don't translate into
2490   // actual barriers on most machines, but we still need rest of
2491   // compiler to respect ordering.
2492 
2493   insert_mem_bar(Op_MemBarRelease);
2494   insert_mem_bar(Op_MemBarCPUOrder);
2495 
2496   // 4984716: MemBars must be inserted before this
2497   //          memory node in order to avoid a false
2498   //          dependency which will confuse the scheduler.
2499   Node *mem = memory(alias_idx);
2500 
2501   // For now, we handle only those cases that actually exist: ints,
2502   // longs, and Object. Adding others should be straightforward.
2503   Node* cas;
2504   switch(type) {
2505   case T_INT:
2506     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2507     break;
2508   case T_LONG:
2509     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2510     break;
2511   case T_OBJECT:
2512      // reference stores need a store barrier.
2513     // (They don't if CAS fails, but it isn't worth checking.)
2514     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
2515 #ifdef _LP64
2516     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2517       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2518       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2519       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2520                                                           newval_enc, oldval_enc));
2521     } else
2522 #endif
2523     {
2524       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2525     }
2526     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2527     break;
2528   default:
2529     ShouldNotReachHere();
2530     break;
2531   }
2532 
2533   // SCMemProjNodes represent the memory state of CAS. Their main
2534   // role is to prevent CAS nodes from being optimized away when their
2535   // results aren't used.
2536   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2537   set_memory(proj, alias_idx);
2538 
2539   // Add the trailing membar surrounding the access
2540   insert_mem_bar(Op_MemBarCPUOrder);
2541   insert_mem_bar(Op_MemBarAcquire);
2542 
2543   push(cas);
2544   return true;
2545 }
2546 
2547 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2548   // This is another variant of inline_unsafe_access, differing in
2549   // that it always issues store-store ("release") barrier and ensures
2550   // store-atomicity (which only matters for "long").
2551 
2552   if (callee()->is_static())  return false;  // caller must have the capability!
2553 
2554 #ifndef PRODUCT
2555   {
2556     ResourceMark rm;
2557     // Check the signatures.
2558     ciSignature* sig = signature();
2559 #ifdef ASSERT
2560     BasicType rtype = sig->return_type()->basic_type();
2561     assert(rtype == T_VOID, "must return void");
2562     assert(sig->count() == 3, "has 3 arguments");
2563     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2564     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2565 #endif // ASSERT
2566   }
2567 #endif //PRODUCT
2568 
2569   // number of stack slots per value argument (1 or 2)
2570   int type_words = type2size[type];
2571 
2572   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2573 
2574   // Argument words:  "this" plus oop plus offset plus value;
2575   int nargs = 1 + 1 + 2 + type_words;
2576 
2577   // pop arguments: val, offset, base, and receiver
2578   debug_only(int saved_sp = _sp);
2579   _sp += nargs;
2580   Node* val      = (type_words == 1) ? pop() : pop_pair();
2581   Node *offset   = pop_pair();
2582   Node *base     = pop();
2583   Node *receiver = pop();
2584   assert(saved_sp == _sp, "must have correct argument count");
2585 
2586   //  Null check receiver.
2587   _sp += nargs;
2588   do_null_check(receiver, T_OBJECT);
2589   _sp -= nargs;
2590   if (stopped()) {
2591     return true;
2592   }
2593 
2594   // Build field offset expression.
2595   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2596   // 32-bit machines ignore the high half of long offsets
2597   offset = ConvL2X(offset);
2598   Node* adr = make_unsafe_address(base, offset);
2599   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2600   const Type *value_type = Type::get_const_basic_type(type);
2601   Compile::AliasType* alias_type = C->alias_type(adr_type);
2602 
2603   insert_mem_bar(Op_MemBarRelease);
2604   insert_mem_bar(Op_MemBarCPUOrder);
2605   // Ensure that the store is atomic for longs:
2606   bool require_atomic_access = true;
2607   Node* store;
2608   if (type == T_OBJECT) // reference stores need a store barrier.
2609     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2610   else {
2611     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2612   }
2613   insert_mem_bar(Op_MemBarCPUOrder);
2614   return true;
2615 }
2616 
2617 bool LibraryCallKit::inline_unsafe_allocate() {
2618   if (callee()->is_static())  return false;  // caller must have the capability!
2619   int nargs = 1 + 1;
2620   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2621   null_check_receiver(callee());  // check then ignore argument(0)
2622   _sp += nargs;  // set original stack for use by uncommon_trap
2623   Node* cls = do_null_check(argument(1), T_OBJECT);
2624   _sp -= nargs;
2625   if (stopped())  return true;
2626 
2627   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2628   _sp += nargs;  // set original stack for use by uncommon_trap
2629   kls = do_null_check(kls, T_OBJECT);
2630   _sp -= nargs;
2631   if (stopped())  return true;  // argument was like int.class
2632 
2633   // Note:  The argument might still be an illegal value like
2634   // Serializable.class or Object[].class.   The runtime will handle it.
2635   // But we must make an explicit check for initialization.
2636   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2637   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2638   Node* bits = intcon(instanceKlass::fully_initialized);
2639   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2640   // The 'test' is non-zero if we need to take a slow path.
2641 
2642   Node* obj = new_instance(kls, test);
2643   push(obj);
2644 
2645   return true;
2646 }
2647 
2648 //------------------------inline_native_time_funcs--------------
2649 // inline code for System.currentTimeMillis() and System.nanoTime()
2650 // these have the same type and signature
2651 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2652   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2653                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2654   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2655   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2656   const TypePtr* no_memory_effects = NULL;
2657   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2658   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2659 #ifdef ASSERT
2660   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2661   assert(value_top == top(), "second value must be top");
2662 #endif
2663   push_pair(value);
2664   return true;
2665 }
2666 
2667 //------------------------inline_native_currentThread------------------
2668 bool LibraryCallKit::inline_native_currentThread() {
2669   Node* junk = NULL;
2670   push(generate_current_thread(junk));
2671   return true;
2672 }
2673 
2674 //------------------------inline_native_isInterrupted------------------
2675 bool LibraryCallKit::inline_native_isInterrupted() {
2676   const int nargs = 1+1;  // receiver + boolean
2677   assert(nargs == arg_size(), "sanity");
2678   // Add a fast path to t.isInterrupted(clear_int):
2679   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2680   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2681   // So, in the common case that the interrupt bit is false,
2682   // we avoid making a call into the VM.  Even if the interrupt bit
2683   // is true, if the clear_int argument is false, we avoid the VM call.
2684   // However, if the receiver is not currentThread, we must call the VM,
2685   // because there must be some locking done around the operation.
2686 
2687   // We only go to the fast case code if we pass two guards.
2688   // Paths which do not pass are accumulated in the slow_region.
2689   RegionNode* slow_region = new (C, 1) RegionNode(1);
2690   record_for_igvn(slow_region);
2691   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2692   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2693   enum { no_int_result_path   = 1,
2694          no_clear_result_path = 2,
2695          slow_result_path     = 3
2696   };
2697 
2698   // (a) Receiving thread must be the current thread.
2699   Node* rec_thr = argument(0);
2700   Node* tls_ptr = NULL;
2701   Node* cur_thr = generate_current_thread(tls_ptr);
2702   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2703   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2704 
2705   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2706   if (!known_current_thread)
2707     generate_slow_guard(bol_thr, slow_region);
2708 
2709   // (b) Interrupt bit on TLS must be false.
2710   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2711   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2712   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2713   // Set the control input on the field _interrupted read to prevent it floating up.
2714   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2715   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2716   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2717 
2718   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2719 
2720   // First fast path:  if (!TLS._interrupted) return false;
2721   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2722   result_rgn->init_req(no_int_result_path, false_bit);
2723   result_val->init_req(no_int_result_path, intcon(0));
2724 
2725   // drop through to next case
2726   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2727 
2728   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2729   Node* clr_arg = argument(1);
2730   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2731   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2732   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2733 
2734   // Second fast path:  ... else if (!clear_int) return true;
2735   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2736   result_rgn->init_req(no_clear_result_path, false_arg);
2737   result_val->init_req(no_clear_result_path, intcon(1));
2738 
2739   // drop through to next case
2740   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2741 
2742   // (d) Otherwise, go to the slow path.
2743   slow_region->add_req(control());
2744   set_control( _gvn.transform(slow_region) );
2745 
2746   if (stopped()) {
2747     // There is no slow path.
2748     result_rgn->init_req(slow_result_path, top());
2749     result_val->init_req(slow_result_path, top());
2750   } else {
2751     // non-virtual because it is a private non-static
2752     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2753 
2754     Node* slow_val = set_results_for_java_call(slow_call);
2755     // this->control() comes from set_results_for_java_call
2756 
2757     // If we know that the result of the slow call will be true, tell the optimizer!
2758     if (known_current_thread)  slow_val = intcon(1);
2759 
2760     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2761     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2762     // These two phis are pre-filled with copies of of the fast IO and Memory
2763     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2764     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2765 
2766     result_rgn->init_req(slow_result_path, control());
2767     io_phi    ->init_req(slow_result_path, i_o());
2768     mem_phi   ->init_req(slow_result_path, reset_memory());
2769     result_val->init_req(slow_result_path, slow_val);
2770 
2771     set_all_memory( _gvn.transform(mem_phi) );
2772     set_i_o(        _gvn.transform(io_phi) );
2773   }
2774 
2775   push_result(result_rgn, result_val);
2776   C->set_has_split_ifs(true); // Has chance for split-if optimization
2777 
2778   return true;
2779 }
2780 
2781 //---------------------------load_mirror_from_klass----------------------------
2782 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2783 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2784   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2785   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2786 }
2787 
2788 //-----------------------load_klass_from_mirror_common-------------------------
2789 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2790 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2791 // and branch to the given path on the region.
2792 // If never_see_null, take an uncommon trap on null, so we can optimistically
2793 // compile for the non-null case.
2794 // If the region is NULL, force never_see_null = true.
2795 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2796                                                     bool never_see_null,
2797                                                     int nargs,
2798                                                     RegionNode* region,
2799                                                     int null_path,
2800                                                     int offset) {
2801   if (region == NULL)  never_see_null = true;
2802   Node* p = basic_plus_adr(mirror, offset);
2803   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2804   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2805   _sp += nargs; // any deopt will start just before call to enclosing method
2806   Node* null_ctl = top();
2807   kls = null_check_oop(kls, &null_ctl, never_see_null);
2808   if (region != NULL) {
2809     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2810     region->init_req(null_path, null_ctl);
2811   } else {
2812     assert(null_ctl == top(), "no loose ends");
2813   }
2814   _sp -= nargs;
2815   return kls;
2816 }
2817 
2818 //--------------------(inline_native_Class_query helpers)---------------------
2819 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2820 // Fall through if (mods & mask) == bits, take the guard otherwise.
2821 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2822   // Branch around if the given klass has the given modifier bit set.
2823   // Like generate_guard, adds a new path onto the region.
2824   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2825   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2826   Node* mask = intcon(modifier_mask);
2827   Node* bits = intcon(modifier_bits);
2828   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2829   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2830   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2831   return generate_fair_guard(bol, region);
2832 }
2833 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2834   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2835 }
2836 
2837 //-------------------------inline_native_Class_query-------------------
2838 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2839   int nargs = 1+0;  // just the Class mirror, in most cases
2840   const Type* return_type = TypeInt::BOOL;
2841   Node* prim_return_value = top();  // what happens if it's a primitive class?
2842   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2843   bool expect_prim = false;     // most of these guys expect to work on refs
2844 
2845   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2846 
2847   switch (id) {
2848   case vmIntrinsics::_isInstance:
2849     nargs = 1+1;  // the Class mirror, plus the object getting queried about
2850     // nothing is an instance of a primitive type
2851     prim_return_value = intcon(0);
2852     break;
2853   case vmIntrinsics::_getModifiers:
2854     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2855     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2856     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2857     break;
2858   case vmIntrinsics::_isInterface:
2859     prim_return_value = intcon(0);
2860     break;
2861   case vmIntrinsics::_isArray:
2862     prim_return_value = intcon(0);
2863     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2864     break;
2865   case vmIntrinsics::_isPrimitive:
2866     prim_return_value = intcon(1);
2867     expect_prim = true;  // obviously
2868     break;
2869   case vmIntrinsics::_getSuperclass:
2870     prim_return_value = null();
2871     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2872     break;
2873   case vmIntrinsics::_getComponentType:
2874     prim_return_value = null();
2875     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2876     break;
2877   case vmIntrinsics::_getClassAccessFlags:
2878     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2879     return_type = TypeInt::INT;  // not bool!  6297094
2880     break;
2881   default:
2882     ShouldNotReachHere();
2883   }
2884 
2885   Node* mirror =                      argument(0);
2886   Node* obj    = (nargs <= 1)? top(): argument(1);
2887 
2888   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2889   if (mirror_con == NULL)  return false;  // cannot happen?
2890 
2891 #ifndef PRODUCT
2892   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2893     ciType* k = mirror_con->java_mirror_type();
2894     if (k) {
2895       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2896       k->print_name();
2897       tty->cr();
2898     }
2899   }
2900 #endif
2901 
2902   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2903   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2904   record_for_igvn(region);
2905   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2906 
2907   // The mirror will never be null of Reflection.getClassAccessFlags, however
2908   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2909   // if it is. See bug 4774291.
2910 
2911   // For Reflection.getClassAccessFlags(), the null check occurs in
2912   // the wrong place; see inline_unsafe_access(), above, for a similar
2913   // situation.
2914   _sp += nargs;  // set original stack for use by uncommon_trap
2915   mirror = do_null_check(mirror, T_OBJECT);
2916   _sp -= nargs;
2917   // If mirror or obj is dead, only null-path is taken.
2918   if (stopped())  return true;
2919 
2920   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2921 
2922   // Now load the mirror's klass metaobject, and null-check it.
2923   // Side-effects region with the control path if the klass is null.
2924   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2925                                      region, _prim_path);
2926   // If kls is null, we have a primitive mirror.
2927   phi->init_req(_prim_path, prim_return_value);
2928   if (stopped()) { push_result(region, phi); return true; }
2929 
2930   Node* p;  // handy temp
2931   Node* null_ctl;
2932 
2933   // Now that we have the non-null klass, we can perform the real query.
2934   // For constant classes, the query will constant-fold in LoadNode::Value.
2935   Node* query_value = top();
2936   switch (id) {
2937   case vmIntrinsics::_isInstance:
2938     // nothing is an instance of a primitive type
2939     query_value = gen_instanceof(obj, kls);
2940     break;
2941 
2942   case vmIntrinsics::_getModifiers:
2943     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2944     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2945     break;
2946 
2947   case vmIntrinsics::_isInterface:
2948     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2949     if (generate_interface_guard(kls, region) != NULL)
2950       // A guard was added.  If the guard is taken, it was an interface.
2951       phi->add_req(intcon(1));
2952     // If we fall through, it's a plain class.
2953     query_value = intcon(0);
2954     break;
2955 
2956   case vmIntrinsics::_isArray:
2957     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2958     if (generate_array_guard(kls, region) != NULL)
2959       // A guard was added.  If the guard is taken, it was an array.
2960       phi->add_req(intcon(1));
2961     // If we fall through, it's a plain class.
2962     query_value = intcon(0);
2963     break;
2964 
2965   case vmIntrinsics::_isPrimitive:
2966     query_value = intcon(0); // "normal" path produces false
2967     break;
2968 
2969   case vmIntrinsics::_getSuperclass:
2970     // The rules here are somewhat unfortunate, but we can still do better
2971     // with random logic than with a JNI call.
2972     // Interfaces store null or Object as _super, but must report null.
2973     // Arrays store an intermediate super as _super, but must report Object.
2974     // Other types can report the actual _super.
2975     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2976     if (generate_interface_guard(kls, region) != NULL)
2977       // A guard was added.  If the guard is taken, it was an interface.
2978       phi->add_req(null());
2979     if (generate_array_guard(kls, region) != NULL)
2980       // A guard was added.  If the guard is taken, it was an array.
2981       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2982     // If we fall through, it's a plain class.  Get its _super.
2983     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
2984     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
2985     null_ctl = top();
2986     kls = null_check_oop(kls, &null_ctl);
2987     if (null_ctl != top()) {
2988       // If the guard is taken, Object.superClass is null (both klass and mirror).
2989       region->add_req(null_ctl);
2990       phi   ->add_req(null());
2991     }
2992     if (!stopped()) {
2993       query_value = load_mirror_from_klass(kls);
2994     }
2995     break;
2996 
2997   case vmIntrinsics::_getComponentType:
2998     if (generate_array_guard(kls, region) != NULL) {
2999       // Be sure to pin the oop load to the guard edge just created:
3000       Node* is_array_ctrl = region->in(region->req()-1);
3001       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
3002       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3003       phi->add_req(cmo);
3004     }
3005     query_value = null();  // non-array case is null
3006     break;
3007 
3008   case vmIntrinsics::_getClassAccessFlags:
3009     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
3010     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3011     break;
3012 
3013   default:
3014     ShouldNotReachHere();
3015   }
3016 
3017   // Fall-through is the normal case of a query to a real class.
3018   phi->init_req(1, query_value);
3019   region->init_req(1, control());
3020 
3021   push_result(region, phi);
3022   C->set_has_split_ifs(true); // Has chance for split-if optimization
3023 
3024   return true;
3025 }
3026 
3027 //--------------------------inline_native_subtype_check------------------------
3028 // This intrinsic takes the JNI calls out of the heart of
3029 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3030 bool LibraryCallKit::inline_native_subtype_check() {
3031   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
3032 
3033   // Pull both arguments off the stack.
3034   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3035   args[0] = argument(0);
3036   args[1] = argument(1);
3037   Node* klasses[2];             // corresponding Klasses: superk, subk
3038   klasses[0] = klasses[1] = top();
3039 
3040   enum {
3041     // A full decision tree on {superc is prim, subc is prim}:
3042     _prim_0_path = 1,           // {P,N} => false
3043                                 // {P,P} & superc!=subc => false
3044     _prim_same_path,            // {P,P} & superc==subc => true
3045     _prim_1_path,               // {N,P} => false
3046     _ref_subtype_path,          // {N,N} & subtype check wins => true
3047     _both_ref_path,             // {N,N} & subtype check loses => false
3048     PATH_LIMIT
3049   };
3050 
3051   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3052   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
3053   record_for_igvn(region);
3054 
3055   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3056   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3057   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3058 
3059   // First null-check both mirrors and load each mirror's klass metaobject.
3060   int which_arg;
3061   for (which_arg = 0; which_arg <= 1; which_arg++) {
3062     Node* arg = args[which_arg];
3063     _sp += nargs;  // set original stack for use by uncommon_trap
3064     arg = do_null_check(arg, T_OBJECT);
3065     _sp -= nargs;
3066     if (stopped())  break;
3067     args[which_arg] = _gvn.transform(arg);
3068 
3069     Node* p = basic_plus_adr(arg, class_klass_offset);
3070     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3071     klasses[which_arg] = _gvn.transform(kls);
3072   }
3073 
3074   // Having loaded both klasses, test each for null.
3075   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3076   for (which_arg = 0; which_arg <= 1; which_arg++) {
3077     Node* kls = klasses[which_arg];
3078     Node* null_ctl = top();
3079     _sp += nargs;  // set original stack for use by uncommon_trap
3080     kls = null_check_oop(kls, &null_ctl, never_see_null);
3081     _sp -= nargs;
3082     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3083     region->init_req(prim_path, null_ctl);
3084     if (stopped())  break;
3085     klasses[which_arg] = kls;
3086   }
3087 
3088   if (!stopped()) {
3089     // now we have two reference types, in klasses[0..1]
3090     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3091     Node* superk = klasses[0];  // the receiver
3092     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3093     // now we have a successful reference subtype check
3094     region->set_req(_ref_subtype_path, control());
3095   }
3096 
3097   // If both operands are primitive (both klasses null), then
3098   // we must return true when they are identical primitives.
3099   // It is convenient to test this after the first null klass check.
3100   set_control(region->in(_prim_0_path)); // go back to first null check
3101   if (!stopped()) {
3102     // Since superc is primitive, make a guard for the superc==subc case.
3103     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
3104     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
3105     generate_guard(bol_eq, region, PROB_FAIR);
3106     if (region->req() == PATH_LIMIT+1) {
3107       // A guard was added.  If the added guard is taken, superc==subc.
3108       region->swap_edges(PATH_LIMIT, _prim_same_path);
3109       region->del_req(PATH_LIMIT);
3110     }
3111     region->set_req(_prim_0_path, control()); // Not equal after all.
3112   }
3113 
3114   // these are the only paths that produce 'true':
3115   phi->set_req(_prim_same_path,   intcon(1));
3116   phi->set_req(_ref_subtype_path, intcon(1));
3117 
3118   // pull together the cases:
3119   assert(region->req() == PATH_LIMIT, "sane region");
3120   for (uint i = 1; i < region->req(); i++) {
3121     Node* ctl = region->in(i);
3122     if (ctl == NULL || ctl == top()) {
3123       region->set_req(i, top());
3124       phi   ->set_req(i, top());
3125     } else if (phi->in(i) == NULL) {
3126       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3127     }
3128   }
3129 
3130   set_control(_gvn.transform(region));
3131   push(_gvn.transform(phi));
3132 
3133   return true;
3134 }
3135 
3136 //---------------------generate_array_guard_common------------------------
3137 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3138                                                   bool obj_array, bool not_array) {
3139   // If obj_array/non_array==false/false:
3140   // Branch around if the given klass is in fact an array (either obj or prim).
3141   // If obj_array/non_array==false/true:
3142   // Branch around if the given klass is not an array klass of any kind.
3143   // If obj_array/non_array==true/true:
3144   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3145   // If obj_array/non_array==true/false:
3146   // Branch around if the kls is an oop array (Object[] or subtype)
3147   //
3148   // Like generate_guard, adds a new path onto the region.
3149   jint  layout_con = 0;
3150   Node* layout_val = get_layout_helper(kls, layout_con);
3151   if (layout_val == NULL) {
3152     bool query = (obj_array
3153                   ? Klass::layout_helper_is_objArray(layout_con)
3154                   : Klass::layout_helper_is_javaArray(layout_con));
3155     if (query == not_array) {
3156       return NULL;                       // never a branch
3157     } else {                             // always a branch
3158       Node* always_branch = control();
3159       if (region != NULL)
3160         region->add_req(always_branch);
3161       set_control(top());
3162       return always_branch;
3163     }
3164   }
3165   // Now test the correct condition.
3166   jint  nval = (obj_array
3167                 ? ((jint)Klass::_lh_array_tag_type_value
3168                    <<    Klass::_lh_array_tag_shift)
3169                 : Klass::_lh_neutral_value);
3170   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3171   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3172   // invert the test if we are looking for a non-array
3173   if (not_array)  btest = BoolTest(btest).negate();
3174   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3175   return generate_fair_guard(bol, region);
3176 }
3177 
3178 
3179 //-----------------------inline_native_newArray--------------------------
3180 bool LibraryCallKit::inline_native_newArray() {
3181   int nargs = 2;
3182   Node* mirror    = argument(0);
3183   Node* count_val = argument(1);
3184 
3185   _sp += nargs;  // set original stack for use by uncommon_trap
3186   mirror = do_null_check(mirror, T_OBJECT);
3187   _sp -= nargs;
3188   // If mirror or obj is dead, only null-path is taken.
3189   if (stopped())  return true;
3190 
3191   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3192   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3193   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3194                                                       TypeInstPtr::NOTNULL);
3195   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3196   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3197                                                       TypePtr::BOTTOM);
3198 
3199   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3200   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3201                                                   nargs,
3202                                                   result_reg, _slow_path);
3203   Node* normal_ctl   = control();
3204   Node* no_array_ctl = result_reg->in(_slow_path);
3205 
3206   // Generate code for the slow case.  We make a call to newArray().
3207   set_control(no_array_ctl);
3208   if (!stopped()) {
3209     // Either the input type is void.class, or else the
3210     // array klass has not yet been cached.  Either the
3211     // ensuing call will throw an exception, or else it
3212     // will cache the array klass for next time.
3213     PreserveJVMState pjvms(this);
3214     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3215     Node* slow_result = set_results_for_java_call(slow_call);
3216     // this->control() comes from set_results_for_java_call
3217     result_reg->set_req(_slow_path, control());
3218     result_val->set_req(_slow_path, slow_result);
3219     result_io ->set_req(_slow_path, i_o());
3220     result_mem->set_req(_slow_path, reset_memory());
3221   }
3222 
3223   set_control(normal_ctl);
3224   if (!stopped()) {
3225     // Normal case:  The array type has been cached in the java.lang.Class.
3226     // The following call works fine even if the array type is polymorphic.
3227     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3228     Node* obj = new_array(klass_node, count_val, nargs);
3229     result_reg->init_req(_normal_path, control());
3230     result_val->init_req(_normal_path, obj);
3231     result_io ->init_req(_normal_path, i_o());
3232     result_mem->init_req(_normal_path, reset_memory());
3233   }
3234 
3235   // Return the combined state.
3236   set_i_o(        _gvn.transform(result_io)  );
3237   set_all_memory( _gvn.transform(result_mem) );
3238   push_result(result_reg, result_val);
3239   C->set_has_split_ifs(true); // Has chance for split-if optimization
3240 
3241   return true;
3242 }
3243 
3244 //----------------------inline_native_getLength--------------------------
3245 bool LibraryCallKit::inline_native_getLength() {
3246   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3247 
3248   int nargs = 1;
3249   Node* array = argument(0);
3250 
3251   _sp += nargs;  // set original stack for use by uncommon_trap
3252   array = do_null_check(array, T_OBJECT);
3253   _sp -= nargs;
3254 
3255   // If array is dead, only null-path is taken.
3256   if (stopped())  return true;
3257 
3258   // Deoptimize if it is a non-array.
3259   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3260 
3261   if (non_array != NULL) {
3262     PreserveJVMState pjvms(this);
3263     set_control(non_array);
3264     _sp += nargs;  // push the arguments back on the stack
3265     uncommon_trap(Deoptimization::Reason_intrinsic,
3266                   Deoptimization::Action_maybe_recompile);
3267   }
3268 
3269   // If control is dead, only non-array-path is taken.
3270   if (stopped())  return true;
3271 
3272   // The works fine even if the array type is polymorphic.
3273   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3274   push( load_array_length(array) );
3275 
3276   C->set_has_split_ifs(true); // Has chance for split-if optimization
3277 
3278   return true;
3279 }
3280 
3281 //------------------------inline_array_copyOf----------------------------
3282 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3283   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3284 
3285   // Restore the stack and pop off the arguments.
3286   int nargs = 3 + (is_copyOfRange? 1: 0);
3287   Node* original          = argument(0);
3288   Node* start             = is_copyOfRange? argument(1): intcon(0);
3289   Node* end               = is_copyOfRange? argument(2): argument(1);
3290   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3291 
3292   Node* newcopy;
3293 
3294   //set the original stack and the reexecute bit for the interpreter to reexecute
3295   //the bytecode that invokes Arrays.copyOf if deoptimization happens
3296   { PreserveReexecuteState preexecs(this);
3297     _sp += nargs;
3298     jvms()->set_should_reexecute(true);
3299 
3300     array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3301     original          = do_null_check(original, T_OBJECT);
3302 
3303     // Check if a null path was taken unconditionally.
3304     if (stopped())  return true;
3305 
3306     Node* orig_length = load_array_length(original);
3307 
3308     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, 0,
3309                                               NULL, 0);
3310     klass_node = do_null_check(klass_node, T_OBJECT);
3311 
3312     RegionNode* bailout = new (C, 1) RegionNode(1);
3313     record_for_igvn(bailout);
3314 
3315     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3316     // Bail out if that is so.
3317     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3318     if (not_objArray != NULL) {
3319       // Improve the klass node's type from the new optimistic assumption:
3320       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3321       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3322       Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3323       cast->init_req(0, control());
3324       klass_node = _gvn.transform(cast);
3325     }
3326 
3327     // Bail out if either start or end is negative.
3328     generate_negative_guard(start, bailout, &start);
3329     generate_negative_guard(end,   bailout, &end);
3330 
3331     Node* length = end;
3332     if (_gvn.type(start) != TypeInt::ZERO) {
3333       length = _gvn.transform( new (C, 3) SubINode(end, start) );
3334     }
3335 
3336     // Bail out if length is negative.
3337     // ...Not needed, since the new_array will throw the right exception.
3338     //generate_negative_guard(length, bailout, &length);
3339 
3340     if (bailout->req() > 1) {
3341       PreserveJVMState pjvms(this);
3342       set_control( _gvn.transform(bailout) );
3343       uncommon_trap(Deoptimization::Reason_intrinsic,
3344                     Deoptimization::Action_maybe_recompile);
3345     }
3346 
3347     if (!stopped()) {
3348 
3349       // How many elements will we copy from the original?
3350       // The answer is MinI(orig_length - start, length).
3351       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3352       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3353 
3354       const bool raw_mem_only = true;
3355       newcopy = new_array(klass_node, length, 0, raw_mem_only);
3356 
3357       // Generate a direct call to the right arraycopy function(s).
3358       // We know the copy is disjoint but we might not know if the
3359       // oop stores need checking.
3360       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3361       // This will fail a store-check if x contains any non-nulls.
3362       bool disjoint_bases = true;
3363       bool length_never_negative = true;
3364       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3365                          original, start, newcopy, intcon(0), moved,
3366                          disjoint_bases, length_never_negative);
3367     }
3368   } //original reexecute and sp are set back here
3369 
3370   if(!stopped()) {
3371     push(newcopy);
3372   }
3373 
3374   C->set_has_split_ifs(true); // Has chance for split-if optimization
3375 
3376   return true;
3377 }
3378 
3379 
3380 //----------------------generate_virtual_guard---------------------------
3381 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3382 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3383                                              RegionNode* slow_region) {
3384   ciMethod* method = callee();
3385   int vtable_index = method->vtable_index();
3386   // Get the methodOop out of the appropriate vtable entry.
3387   int entry_offset  = (instanceKlass::vtable_start_offset() +
3388                      vtable_index*vtableEntry::size()) * wordSize +
3389                      vtableEntry::method_offset_in_bytes();
3390   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3391   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3392 
3393   // Compare the target method with the expected method (e.g., Object.hashCode).
3394   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3395 
3396   Node* native_call = makecon(native_call_addr);
3397   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3398   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3399 
3400   return generate_slow_guard(test_native, slow_region);
3401 }
3402 
3403 //-----------------------generate_method_call----------------------------
3404 // Use generate_method_call to make a slow-call to the real
3405 // method if the fast path fails.  An alternative would be to
3406 // use a stub like OptoRuntime::slow_arraycopy_Java.
3407 // This only works for expanding the current library call,
3408 // not another intrinsic.  (E.g., don't use this for making an
3409 // arraycopy call inside of the copyOf intrinsic.)
3410 CallJavaNode*
3411 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3412   // When compiling the intrinsic method itself, do not use this technique.
3413   guarantee(callee() != C->method(), "cannot make slow-call to self");
3414 
3415   ciMethod* method = callee();
3416   // ensure the JVMS we have will be correct for this call
3417   guarantee(method_id == method->intrinsic_id(), "must match");
3418 
3419   const TypeFunc* tf = TypeFunc::make(method);
3420   int tfdc = tf->domain()->cnt();
3421   CallJavaNode* slow_call;
3422   if (is_static) {
3423     assert(!is_virtual, "");
3424     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3425                                 SharedRuntime::get_resolve_static_call_stub(),
3426                                 method, bci());
3427   } else if (is_virtual) {
3428     null_check_receiver(method);
3429     int vtable_index = methodOopDesc::invalid_vtable_index;
3430     if (UseInlineCaches) {
3431       // Suppress the vtable call
3432     } else {
3433       // hashCode and clone are not a miranda methods,
3434       // so the vtable index is fixed.
3435       // No need to use the linkResolver to get it.
3436        vtable_index = method->vtable_index();
3437     }
3438     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3439                                 SharedRuntime::get_resolve_virtual_call_stub(),
3440                                 method, vtable_index, bci());
3441   } else {  // neither virtual nor static:  opt_virtual
3442     null_check_receiver(method);
3443     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3444                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3445                                 method, bci());
3446     slow_call->set_optimized_virtual(true);
3447   }
3448   set_arguments_for_java_call(slow_call);
3449   set_edges_for_java_call(slow_call);
3450   return slow_call;
3451 }
3452 
3453 
3454 //------------------------------inline_native_hashcode--------------------
3455 // Build special case code for calls to hashCode on an object.
3456 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3457   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3458   assert(!(is_virtual && is_static), "either virtual, special, or static");
3459 
3460   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3461 
3462   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3463   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3464                                                       TypeInt::INT);
3465   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3466   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3467                                                       TypePtr::BOTTOM);
3468   Node* obj = NULL;
3469   if (!is_static) {
3470     // Check for hashing null object
3471     obj = null_check_receiver(callee());
3472     if (stopped())  return true;        // unconditionally null
3473     result_reg->init_req(_null_path, top());
3474     result_val->init_req(_null_path, top());
3475   } else {
3476     // Do a null check, and return zero if null.
3477     // System.identityHashCode(null) == 0
3478     obj = argument(0);
3479     Node* null_ctl = top();
3480     obj = null_check_oop(obj, &null_ctl);
3481     result_reg->init_req(_null_path, null_ctl);
3482     result_val->init_req(_null_path, _gvn.intcon(0));
3483   }
3484 
3485   // Unconditionally null?  Then return right away.
3486   if (stopped()) {
3487     set_control( result_reg->in(_null_path) );
3488     if (!stopped())
3489       push(      result_val ->in(_null_path) );
3490     return true;
3491   }
3492 
3493   // After null check, get the object's klass.
3494   Node* obj_klass = load_object_klass(obj);
3495 
3496   // This call may be virtual (invokevirtual) or bound (invokespecial).
3497   // For each case we generate slightly different code.
3498 
3499   // We only go to the fast case code if we pass a number of guards.  The
3500   // paths which do not pass are accumulated in the slow_region.
3501   RegionNode* slow_region = new (C, 1) RegionNode(1);
3502   record_for_igvn(slow_region);
3503 
3504   // If this is a virtual call, we generate a funny guard.  We pull out
3505   // the vtable entry corresponding to hashCode() from the target object.
3506   // If the target method which we are calling happens to be the native
3507   // Object hashCode() method, we pass the guard.  We do not need this
3508   // guard for non-virtual calls -- the caller is known to be the native
3509   // Object hashCode().
3510   if (is_virtual) {
3511     generate_virtual_guard(obj_klass, slow_region);
3512   }
3513 
3514   // Get the header out of the object, use LoadMarkNode when available
3515   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3516   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
3517   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
3518 
3519   // Test the header to see if it is unlocked.
3520   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3521   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3522   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3523   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3524   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3525 
3526   generate_slow_guard(test_unlocked, slow_region);
3527 
3528   // Get the hash value and check to see that it has been properly assigned.
3529   // We depend on hash_mask being at most 32 bits and avoid the use of
3530   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3531   // vm: see markOop.hpp.
3532   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3533   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3534   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3535   // This hack lets the hash bits live anywhere in the mark object now, as long
3536   // as the shift drops the relevant bits into the low 32 bits.  Note that
3537   // Java spec says that HashCode is an int so there's no point in capturing
3538   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3539   hshifted_header      = ConvX2I(hshifted_header);
3540   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3541 
3542   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3543   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3544   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3545 
3546   generate_slow_guard(test_assigned, slow_region);
3547 
3548   Node* init_mem = reset_memory();
3549   // fill in the rest of the null path:
3550   result_io ->init_req(_null_path, i_o());
3551   result_mem->init_req(_null_path, init_mem);
3552 
3553   result_val->init_req(_fast_path, hash_val);
3554   result_reg->init_req(_fast_path, control());
3555   result_io ->init_req(_fast_path, i_o());
3556   result_mem->init_req(_fast_path, init_mem);
3557 
3558   // Generate code for the slow case.  We make a call to hashCode().
3559   set_control(_gvn.transform(slow_region));
3560   if (!stopped()) {
3561     // No need for PreserveJVMState, because we're using up the present state.
3562     set_all_memory(init_mem);
3563     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3564     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3565     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3566     Node* slow_result = set_results_for_java_call(slow_call);
3567     // this->control() comes from set_results_for_java_call
3568     result_reg->init_req(_slow_path, control());
3569     result_val->init_req(_slow_path, slow_result);
3570     result_io  ->set_req(_slow_path, i_o());
3571     result_mem ->set_req(_slow_path, reset_memory());
3572   }
3573 
3574   // Return the combined state.
3575   set_i_o(        _gvn.transform(result_io)  );
3576   set_all_memory( _gvn.transform(result_mem) );
3577   push_result(result_reg, result_val);
3578 
3579   return true;
3580 }
3581 
3582 //---------------------------inline_native_getClass----------------------------
3583 // Build special case code for calls to getClass on an object.
3584 bool LibraryCallKit::inline_native_getClass() {
3585   Node* obj = null_check_receiver(callee());
3586   if (stopped())  return true;
3587   push( load_mirror_from_klass(load_object_klass(obj)) );
3588   return true;
3589 }
3590 
3591 //-----------------inline_native_Reflection_getCallerClass---------------------
3592 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3593 //
3594 // NOTE that this code must perform the same logic as
3595 // vframeStream::security_get_caller_frame in that it must skip
3596 // Method.invoke() and auxiliary frames.
3597 
3598 
3599 
3600 
3601 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3602   ciMethod*       method = callee();
3603 
3604 #ifndef PRODUCT
3605   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3606     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3607   }
3608 #endif
3609 
3610   debug_only(int saved_sp = _sp);
3611 
3612   // Argument words:  (int depth)
3613   int nargs = 1;
3614 
3615   _sp += nargs;
3616   Node* caller_depth_node = pop();
3617 
3618   assert(saved_sp == _sp, "must have correct argument count");
3619 
3620   // The depth value must be a constant in order for the runtime call
3621   // to be eliminated.
3622   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3623   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3624 #ifndef PRODUCT
3625     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3626       tty->print_cr("  Bailing out because caller depth was not a constant");
3627     }
3628 #endif
3629     return false;
3630   }
3631   // Note that the JVM state at this point does not include the
3632   // getCallerClass() frame which we are trying to inline. The
3633   // semantics of getCallerClass(), however, are that the "first"
3634   // frame is the getCallerClass() frame, so we subtract one from the
3635   // requested depth before continuing. We don't inline requests of
3636   // getCallerClass(0).
3637   int caller_depth = caller_depth_type->get_con() - 1;
3638   if (caller_depth < 0) {
3639 #ifndef PRODUCT
3640     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3641       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3642     }
3643 #endif
3644     return false;
3645   }
3646 
3647   if (!jvms()->has_method()) {
3648 #ifndef PRODUCT
3649     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3650       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3651     }
3652 #endif
3653     return false;
3654   }
3655   int _depth = jvms()->depth();  // cache call chain depth
3656 
3657   // Walk back up the JVM state to find the caller at the required
3658   // depth. NOTE that this code must perform the same logic as
3659   // vframeStream::security_get_caller_frame in that it must skip
3660   // Method.invoke() and auxiliary frames. Note also that depth is
3661   // 1-based (1 is the bottom of the inlining).
3662   int inlining_depth = _depth;
3663   JVMState* caller_jvms = NULL;
3664 
3665   if (inlining_depth > 0) {
3666     caller_jvms = jvms();
3667     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3668     do {
3669       // The following if-tests should be performed in this order
3670       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3671         // Skip a Method.invoke() or auxiliary frame
3672       } else if (caller_depth > 0) {
3673         // Skip real frame
3674         --caller_depth;
3675       } else {
3676         // We're done: reached desired caller after skipping.
3677         break;
3678       }
3679       caller_jvms = caller_jvms->caller();
3680       --inlining_depth;
3681     } while (inlining_depth > 0);
3682   }
3683 
3684   if (inlining_depth == 0) {
3685 #ifndef PRODUCT
3686     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3687       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3688       tty->print_cr("  JVM state at this point:");
3689       for (int i = _depth; i >= 1; i--) {
3690         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3691       }
3692     }
3693 #endif
3694     return false; // Reached end of inlining
3695   }
3696 
3697   // Acquire method holder as java.lang.Class
3698   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3699   ciInstance*      caller_mirror = caller_klass->java_mirror();
3700   // Push this as a constant
3701   push(makecon(TypeInstPtr::make(caller_mirror)));
3702 #ifndef PRODUCT
3703   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3704     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3705     tty->print_cr("  JVM state at this point:");
3706     for (int i = _depth; i >= 1; i--) {
3707       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3708     }
3709   }
3710 #endif
3711   return true;
3712 }
3713 
3714 // Helper routine for above
3715 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3716   ciMethod* method = jvms->method();
3717 
3718   // Is this the Method.invoke method itself?
3719   if (method->intrinsic_id() == vmIntrinsics::_invoke)
3720     return true;
3721 
3722   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3723   ciKlass* k = method->holder();
3724   if (k->is_instance_klass()) {
3725     ciInstanceKlass* ik = k->as_instance_klass();
3726     for (; ik != NULL; ik = ik->super()) {
3727       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3728           ik == env()->find_system_klass(ik->name())) {
3729         return true;
3730       }
3731     }
3732   }
3733   else if (method->is_method_handle_adapter()) {
3734     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
3735     return true;
3736   }
3737 
3738   return false;
3739 }
3740 
3741 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3742                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3743                                      // computing it since there is no lookup field by name function in the
3744                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3745                                      // Using a static variable here is safe even if we have multiple compilation
3746                                      // threads because the offset is constant.  At worst the same offset will be
3747                                      // computed and  stored multiple
3748 
3749 bool LibraryCallKit::inline_native_AtomicLong_get() {
3750   // Restore the stack and pop off the argument
3751   _sp+=1;
3752   Node *obj = pop();
3753 
3754   // get the offset of the "value" field. Since the CI interfaces
3755   // does not provide a way to look up a field by name, we scan the bytecodes
3756   // to get the field index.  We expect the first 2 instructions of the method
3757   // to be:
3758   //    0 aload_0
3759   //    1 getfield "value"
3760   ciMethod* method = callee();
3761   if (value_field_offset == -1)
3762   {
3763     ciField* value_field;
3764     ciBytecodeStream iter(method);
3765     Bytecodes::Code bc = iter.next();
3766 
3767     if ((bc != Bytecodes::_aload_0) &&
3768               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3769       return false;
3770     bc = iter.next();
3771     if (bc != Bytecodes::_getfield)
3772       return false;
3773     bool ignore;
3774     value_field = iter.get_field(ignore);
3775     value_field_offset = value_field->offset_in_bytes();
3776   }
3777 
3778   // Null check without removing any arguments.
3779   _sp++;
3780   obj = do_null_check(obj, T_OBJECT);
3781   _sp--;
3782   // Check for locking null object
3783   if (stopped()) return true;
3784 
3785   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3786   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3787   int alias_idx = C->get_alias_index(adr_type);
3788 
3789   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3790 
3791   push_pair(result);
3792 
3793   return true;
3794 }
3795 
3796 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3797   // Restore the stack and pop off the arguments
3798   _sp+=5;
3799   Node *newVal = pop_pair();
3800   Node *oldVal = pop_pair();
3801   Node *obj = pop();
3802 
3803   // we need the offset of the "value" field which was computed when
3804   // inlining the get() method.  Give up if we don't have it.
3805   if (value_field_offset == -1)
3806     return false;
3807 
3808   // Null check without removing any arguments.
3809   _sp+=5;
3810   obj = do_null_check(obj, T_OBJECT);
3811   _sp-=5;
3812   // Check for locking null object
3813   if (stopped()) return true;
3814 
3815   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3816   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3817   int alias_idx = C->get_alias_index(adr_type);
3818 
3819   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3820   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3821   set_memory(store_proj, alias_idx);
3822   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3823 
3824   Node *result;
3825   // CMove node is not used to be able fold a possible check code
3826   // after attemptUpdate() call. This code could be transformed
3827   // into CMove node by loop optimizations.
3828   {
3829     RegionNode *r = new (C, 3) RegionNode(3);
3830     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
3831 
3832     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
3833     Node *iftrue = opt_iff(r, iff);
3834     r->init_req(1, iftrue);
3835     result->init_req(1, intcon(1));
3836     result->init_req(2, intcon(0));
3837 
3838     set_control(_gvn.transform(r));
3839     record_for_igvn(r);
3840 
3841     C->set_has_split_ifs(true); // Has chance for split-if optimization
3842   }
3843 
3844   push(_gvn.transform(result));
3845   return true;
3846 }
3847 
3848 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3849   // restore the arguments
3850   _sp += arg_size();
3851 
3852   switch (id) {
3853   case vmIntrinsics::_floatToRawIntBits:
3854     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3855     break;
3856 
3857   case vmIntrinsics::_intBitsToFloat:
3858     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3859     break;
3860 
3861   case vmIntrinsics::_doubleToRawLongBits:
3862     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3863     break;
3864 
3865   case vmIntrinsics::_longBitsToDouble:
3866     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3867     break;
3868 
3869   case vmIntrinsics::_doubleToLongBits: {
3870     Node* value = pop_pair();
3871 
3872     // two paths (plus control) merge in a wood
3873     RegionNode *r = new (C, 3) RegionNode(3);
3874     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3875 
3876     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3877     // Build the boolean node
3878     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3879 
3880     // Branch either way.
3881     // NaN case is less traveled, which makes all the difference.
3882     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3883     Node *opt_isnan = _gvn.transform(ifisnan);
3884     assert( opt_isnan->is_If(), "Expect an IfNode");
3885     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3886     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3887 
3888     set_control(iftrue);
3889 
3890     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3891     Node *slow_result = longcon(nan_bits); // return NaN
3892     phi->init_req(1, _gvn.transform( slow_result ));
3893     r->init_req(1, iftrue);
3894 
3895     // Else fall through
3896     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3897     set_control(iffalse);
3898 
3899     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3900     r->init_req(2, iffalse);
3901 
3902     // Post merge
3903     set_control(_gvn.transform(r));
3904     record_for_igvn(r);
3905 
3906     Node* result = _gvn.transform(phi);
3907     assert(result->bottom_type()->isa_long(), "must be");
3908     push_pair(result);
3909 
3910     C->set_has_split_ifs(true); // Has chance for split-if optimization
3911 
3912     break;
3913   }
3914 
3915   case vmIntrinsics::_floatToIntBits: {
3916     Node* value = pop();
3917 
3918     // two paths (plus control) merge in a wood
3919     RegionNode *r = new (C, 3) RegionNode(3);
3920     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3921 
3922     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3923     // Build the boolean node
3924     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3925 
3926     // Branch either way.
3927     // NaN case is less traveled, which makes all the difference.
3928     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3929     Node *opt_isnan = _gvn.transform(ifisnan);
3930     assert( opt_isnan->is_If(), "Expect an IfNode");
3931     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3932     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3933 
3934     set_control(iftrue);
3935 
3936     static const jint nan_bits = 0x7fc00000;
3937     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3938     phi->init_req(1, _gvn.transform( slow_result ));
3939     r->init_req(1, iftrue);
3940 
3941     // Else fall through
3942     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3943     set_control(iffalse);
3944 
3945     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3946     r->init_req(2, iffalse);
3947 
3948     // Post merge
3949     set_control(_gvn.transform(r));
3950     record_for_igvn(r);
3951 
3952     Node* result = _gvn.transform(phi);
3953     assert(result->bottom_type()->isa_int(), "must be");
3954     push(result);
3955 
3956     C->set_has_split_ifs(true); // Has chance for split-if optimization
3957 
3958     break;
3959   }
3960 
3961   default:
3962     ShouldNotReachHere();
3963   }
3964 
3965   return true;
3966 }
3967 
3968 #ifdef _LP64
3969 #define XTOP ,top() /*additional argument*/
3970 #else  //_LP64
3971 #define XTOP        /*no additional argument*/
3972 #endif //_LP64
3973 
3974 //----------------------inline_unsafe_copyMemory-------------------------
3975 bool LibraryCallKit::inline_unsafe_copyMemory() {
3976   if (callee()->is_static())  return false;  // caller must have the capability!
3977   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
3978   assert(signature()->size() == nargs-1, "copy has 5 arguments");
3979   null_check_receiver(callee());  // check then ignore argument(0)
3980   if (stopped())  return true;
3981 
3982   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3983 
3984   Node* src_ptr = argument(1);
3985   Node* src_off = ConvL2X(argument(2));
3986   assert(argument(3)->is_top(), "2nd half of long");
3987   Node* dst_ptr = argument(4);
3988   Node* dst_off = ConvL2X(argument(5));
3989   assert(argument(6)->is_top(), "2nd half of long");
3990   Node* size    = ConvL2X(argument(7));
3991   assert(argument(8)->is_top(), "2nd half of long");
3992 
3993   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3994          "fieldOffset must be byte-scaled");
3995 
3996   Node* src = make_unsafe_address(src_ptr, src_off);
3997   Node* dst = make_unsafe_address(dst_ptr, dst_off);
3998 
3999   // Conservatively insert a memory barrier on all memory slices.
4000   // Do not let writes of the copy source or destination float below the copy.
4001   insert_mem_bar(Op_MemBarCPUOrder);
4002 
4003   // Call it.  Note that the length argument is not scaled.
4004   make_runtime_call(RC_LEAF|RC_NO_FP,
4005                     OptoRuntime::fast_arraycopy_Type(),
4006                     StubRoutines::unsafe_arraycopy(),
4007                     "unsafe_arraycopy",
4008                     TypeRawPtr::BOTTOM,
4009                     src, dst, size XTOP);
4010 
4011   // Do not let reads of the copy destination float above the copy.
4012   insert_mem_bar(Op_MemBarCPUOrder);
4013 
4014   return true;
4015 }
4016 
4017 //------------------------clone_coping-----------------------------------
4018 // Helper function for inline_native_clone.
4019 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4020   assert(obj_size != NULL, "");
4021   Node* raw_obj = alloc_obj->in(1);
4022   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4023 
4024   if (ReduceBulkZeroing) {
4025     // We will be completely responsible for initializing this object -
4026     // mark Initialize node as complete.
4027     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4028     // The object was just allocated - there should be no any stores!
4029     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4030   }
4031 
4032   // Copy the fastest available way.
4033   // TODO: generate fields copies for small objects instead.
4034   Node* src  = obj;
4035   Node* dest = alloc_obj;
4036   Node* size = _gvn.transform(obj_size);
4037 
4038   // Exclude the header but include array length to copy by 8 bytes words.
4039   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4040   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4041                             instanceOopDesc::base_offset_in_bytes();
4042   // base_off:
4043   // 8  - 32-bit VM
4044   // 12 - 64-bit VM, compressed oops
4045   // 16 - 64-bit VM, normal oops
4046   if (base_off % BytesPerLong != 0) {
4047     assert(UseCompressedOops, "");
4048     if (is_array) {
4049       // Exclude length to copy by 8 bytes words.
4050       base_off += sizeof(int);
4051     } else {
4052       // Include klass to copy by 8 bytes words.
4053       base_off = instanceOopDesc::klass_offset_in_bytes();
4054     }
4055     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4056   }
4057   src  = basic_plus_adr(src,  base_off);
4058   dest = basic_plus_adr(dest, base_off);
4059 
4060   // Compute the length also, if needed:
4061   Node* countx = size;
4062   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
4063   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4064 
4065   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4066   bool disjoint_bases = true;
4067   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4068                                src, NULL, dest, NULL, countx);
4069 
4070   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4071   if (card_mark) {
4072     assert(!is_array, "");
4073     // Put in store barrier for any and all oops we are sticking
4074     // into this object.  (We could avoid this if we could prove
4075     // that the object type contains no oop fields at all.)
4076     Node* no_particular_value = NULL;
4077     Node* no_particular_field = NULL;
4078     int raw_adr_idx = Compile::AliasIdxRaw;
4079     post_barrier(control(),
4080                  memory(raw_adr_type),
4081                  alloc_obj,
4082                  no_particular_field,
4083                  raw_adr_idx,
4084                  no_particular_value,
4085                  T_OBJECT,
4086                  false);
4087   }
4088 
4089   // Do not let reads from the cloned object float above the arraycopy.
4090   insert_mem_bar(Op_MemBarCPUOrder);
4091 }
4092 
4093 //------------------------inline_native_clone----------------------------
4094 // Here are the simple edge cases:
4095 //  null receiver => normal trap
4096 //  virtual and clone was overridden => slow path to out-of-line clone
4097 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4098 //
4099 // The general case has two steps, allocation and copying.
4100 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4101 //
4102 // Copying also has two cases, oop arrays and everything else.
4103 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4104 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4105 //
4106 // These steps fold up nicely if and when the cloned object's klass
4107 // can be sharply typed as an object array, a type array, or an instance.
4108 //
4109 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4110   int nargs = 1;
4111   PhiNode* result_val;
4112 
4113   //set the original stack and the reexecute bit for the interpreter to reexecute
4114   //the bytecode that invokes Object.clone if deoptimization happens
4115   { PreserveReexecuteState preexecs(this);
4116     jvms()->set_should_reexecute(true);
4117 
4118     //null_check_receiver will adjust _sp (push and pop)
4119     Node* obj = null_check_receiver(callee());
4120     if (stopped())  return true;
4121 
4122     _sp += nargs;
4123 
4124     Node* obj_klass = load_object_klass(obj);
4125     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4126     const TypeOopPtr*   toop   = ((tklass != NULL)
4127                                 ? tklass->as_instance_type()
4128                                 : TypeInstPtr::NOTNULL);
4129 
4130     // Conservatively insert a memory barrier on all memory slices.
4131     // Do not let writes into the original float below the clone.
4132     insert_mem_bar(Op_MemBarCPUOrder);
4133 
4134     // paths into result_reg:
4135     enum {
4136       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4137       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4138       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4139       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4140       PATH_LIMIT
4141     };
4142     RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4143     result_val             = new(C, PATH_LIMIT) PhiNode(result_reg,
4144                                                         TypeInstPtr::NOTNULL);
4145     PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4146     PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4147                                                         TypePtr::BOTTOM);
4148     record_for_igvn(result_reg);
4149 
4150     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4151     int raw_adr_idx = Compile::AliasIdxRaw;
4152     const bool raw_mem_only = true;
4153 
4154 
4155     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4156     if (array_ctl != NULL) {
4157       // It's an array.
4158       PreserveJVMState pjvms(this);
4159       set_control(array_ctl);
4160       Node* obj_length = load_array_length(obj);
4161       Node* obj_size  = NULL;
4162       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
4163                                   raw_mem_only, &obj_size);
4164 
4165       if (!use_ReduceInitialCardMarks()) {
4166         // If it is an oop array, it requires very special treatment,
4167         // because card marking is required on each card of the array.
4168         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4169         if (is_obja != NULL) {
4170           PreserveJVMState pjvms2(this);
4171           set_control(is_obja);
4172           // Generate a direct call to the right arraycopy function(s).
4173           bool disjoint_bases = true;
4174           bool length_never_negative = true;
4175           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4176                              obj, intcon(0), alloc_obj, intcon(0),
4177                              obj_length,
4178                              disjoint_bases, length_never_negative);
4179           result_reg->init_req(_objArray_path, control());
4180           result_val->init_req(_objArray_path, alloc_obj);
4181           result_i_o ->set_req(_objArray_path, i_o());
4182           result_mem ->set_req(_objArray_path, reset_memory());
4183         }
4184       }
4185       // Otherwise, there are no card marks to worry about.
4186       // (We can dispense with card marks if we know the allocation
4187       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4188       //  causes the non-eden paths to take compensating steps to
4189       //  simulate a fresh allocation, so that no further
4190       //  card marks are required in compiled code to initialize
4191       //  the object.)
4192 
4193       if (!stopped()) {
4194         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4195 
4196         // Present the results of the copy.
4197         result_reg->init_req(_array_path, control());
4198         result_val->init_req(_array_path, alloc_obj);
4199         result_i_o ->set_req(_array_path, i_o());
4200         result_mem ->set_req(_array_path, reset_memory());
4201       }
4202     }
4203 
4204     // We only go to the instance fast case code if we pass a number of guards.
4205     // The paths which do not pass are accumulated in the slow_region.
4206     RegionNode* slow_region = new (C, 1) RegionNode(1);
4207     record_for_igvn(slow_region);
4208     if (!stopped()) {
4209       // It's an instance (we did array above).  Make the slow-path tests.
4210       // If this is a virtual call, we generate a funny guard.  We grab
4211       // the vtable entry corresponding to clone() from the target object.
4212       // If the target method which we are calling happens to be the
4213       // Object clone() method, we pass the guard.  We do not need this
4214       // guard for non-virtual calls; the caller is known to be the native
4215       // Object clone().
4216       if (is_virtual) {
4217         generate_virtual_guard(obj_klass, slow_region);
4218       }
4219 
4220       // The object must be cloneable and must not have a finalizer.
4221       // Both of these conditions may be checked in a single test.
4222       // We could optimize the cloneable test further, but we don't care.
4223       generate_access_flags_guard(obj_klass,
4224                                   // Test both conditions:
4225                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4226                                   // Must be cloneable but not finalizer:
4227                                   JVM_ACC_IS_CLONEABLE,
4228                                   slow_region);
4229     }
4230 
4231     if (!stopped()) {
4232       // It's an instance, and it passed the slow-path tests.
4233       PreserveJVMState pjvms(this);
4234       Node* obj_size  = NULL;
4235       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
4236 
4237       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4238 
4239       // Present the results of the slow call.
4240       result_reg->init_req(_instance_path, control());
4241       result_val->init_req(_instance_path, alloc_obj);
4242       result_i_o ->set_req(_instance_path, i_o());
4243       result_mem ->set_req(_instance_path, reset_memory());
4244     }
4245 
4246     // Generate code for the slow case.  We make a call to clone().
4247     set_control(_gvn.transform(slow_region));
4248     if (!stopped()) {
4249       PreserveJVMState pjvms(this);
4250       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4251       Node* slow_result = set_results_for_java_call(slow_call);
4252       // this->control() comes from set_results_for_java_call
4253       result_reg->init_req(_slow_path, control());
4254       result_val->init_req(_slow_path, slow_result);
4255       result_i_o ->set_req(_slow_path, i_o());
4256       result_mem ->set_req(_slow_path, reset_memory());
4257     }
4258 
4259     // Return the combined state.
4260     set_control(    _gvn.transform(result_reg) );
4261     set_i_o(        _gvn.transform(result_i_o) );
4262     set_all_memory( _gvn.transform(result_mem) );
4263   } //original reexecute and sp are set back here
4264 
4265   push(_gvn.transform(result_val));
4266 
4267   return true;
4268 }
4269 
4270 
4271 // constants for computing the copy function
4272 enum {
4273   COPYFUNC_UNALIGNED = 0,
4274   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
4275   COPYFUNC_CONJOINT = 0,
4276   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
4277 };
4278 
4279 // Note:  The condition "disjoint" applies also for overlapping copies
4280 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
4281 static address
4282 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
4283   int selector =
4284     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
4285     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
4286 
4287 #define RETURN_STUB(xxx_arraycopy) { \
4288   name = #xxx_arraycopy; \
4289   return StubRoutines::xxx_arraycopy(); }
4290 
4291   switch (t) {
4292   case T_BYTE:
4293   case T_BOOLEAN:
4294     switch (selector) {
4295     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
4296     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
4297     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
4298     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
4299     }
4300   case T_CHAR:
4301   case T_SHORT:
4302     switch (selector) {
4303     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
4304     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
4305     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
4306     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
4307     }
4308   case T_INT:
4309   case T_FLOAT:
4310     switch (selector) {
4311     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
4312     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
4313     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
4314     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
4315     }
4316   case T_DOUBLE:
4317   case T_LONG:
4318     switch (selector) {
4319     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
4320     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
4321     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
4322     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
4323     }
4324   case T_ARRAY:
4325   case T_OBJECT:
4326     switch (selector) {
4327     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
4328     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
4329     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
4330     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
4331     }
4332   default:
4333     ShouldNotReachHere();
4334     return NULL;
4335   }
4336 
4337 #undef RETURN_STUB
4338 }
4339 
4340 //------------------------------basictype2arraycopy----------------------------
4341 address LibraryCallKit::basictype2arraycopy(BasicType t,
4342                                             Node* src_offset,
4343                                             Node* dest_offset,
4344                                             bool disjoint_bases,
4345                                             const char* &name) {
4346   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4347   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4348 
4349   bool aligned = false;
4350   bool disjoint = disjoint_bases;
4351 
4352   // if the offsets are the same, we can treat the memory regions as
4353   // disjoint, because either the memory regions are in different arrays,
4354   // or they are identical (which we can treat as disjoint.)  We can also
4355   // treat a copy with a destination index  less that the source index
4356   // as disjoint since a low->high copy will work correctly in this case.
4357   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4358       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4359     // both indices are constants
4360     int s_offs = src_offset_inttype->get_con();
4361     int d_offs = dest_offset_inttype->get_con();
4362     int element_size = type2aelembytes(t);
4363     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4364               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4365     if (s_offs >= d_offs)  disjoint = true;
4366   } else if (src_offset == dest_offset && src_offset != NULL) {
4367     // This can occur if the offsets are identical non-constants.
4368     disjoint = true;
4369   }
4370 
4371   return select_arraycopy_function(t, aligned, disjoint, name);
4372 }
4373 
4374 
4375 //------------------------------inline_arraycopy-----------------------
4376 bool LibraryCallKit::inline_arraycopy() {
4377   // Restore the stack and pop off the arguments.
4378   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4379   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4380 
4381   Node *src         = argument(0);
4382   Node *src_offset  = argument(1);
4383   Node *dest        = argument(2);
4384   Node *dest_offset = argument(3);
4385   Node *length      = argument(4);
4386 
4387   // Compile time checks.  If any of these checks cannot be verified at compile time,
4388   // we do not make a fast path for this call.  Instead, we let the call remain as it
4389   // is.  The checks we choose to mandate at compile time are:
4390   //
4391   // (1) src and dest are arrays.
4392   const Type* src_type = src->Value(&_gvn);
4393   const Type* dest_type = dest->Value(&_gvn);
4394   const TypeAryPtr* top_src = src_type->isa_aryptr();
4395   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4396   if (top_src  == NULL || top_src->klass()  == NULL ||
4397       top_dest == NULL || top_dest->klass() == NULL) {
4398     // Conservatively insert a memory barrier on all memory slices.
4399     // Do not let writes into the source float below the arraycopy.
4400     insert_mem_bar(Op_MemBarCPUOrder);
4401 
4402     // Call StubRoutines::generic_arraycopy stub.
4403     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4404                        src, src_offset, dest, dest_offset, length);
4405 
4406     // Do not let reads from the destination float above the arraycopy.
4407     // Since we cannot type the arrays, we don't know which slices
4408     // might be affected.  We could restrict this barrier only to those
4409     // memory slices which pertain to array elements--but don't bother.
4410     if (!InsertMemBarAfterArraycopy)
4411       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4412       insert_mem_bar(Op_MemBarCPUOrder);
4413     return true;
4414   }
4415 
4416   // (2) src and dest arrays must have elements of the same BasicType
4417   // Figure out the size and type of the elements we will be copying.
4418   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4419   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4420   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4421   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4422 
4423   if (src_elem != dest_elem || dest_elem == T_VOID) {
4424     // The component types are not the same or are not recognized.  Punt.
4425     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4426     generate_slow_arraycopy(TypePtr::BOTTOM,
4427                             src, src_offset, dest, dest_offset, length);
4428     return true;
4429   }
4430 
4431   //---------------------------------------------------------------------------
4432   // We will make a fast path for this call to arraycopy.
4433 
4434   // We have the following tests left to perform:
4435   //
4436   // (3) src and dest must not be null.
4437   // (4) src_offset must not be negative.
4438   // (5) dest_offset must not be negative.
4439   // (6) length must not be negative.
4440   // (7) src_offset + length must not exceed length of src.
4441   // (8) dest_offset + length must not exceed length of dest.
4442   // (9) each element of an oop array must be assignable
4443 
4444   RegionNode* slow_region = new (C, 1) RegionNode(1);
4445   record_for_igvn(slow_region);
4446 
4447   // (3) operands must not be null
4448   // We currently perform our null checks with the do_null_check routine.
4449   // This means that the null exceptions will be reported in the caller
4450   // rather than (correctly) reported inside of the native arraycopy call.
4451   // This should be corrected, given time.  We do our null check with the
4452   // stack pointer restored.
4453   _sp += nargs;
4454   src  = do_null_check(src,  T_ARRAY);
4455   dest = do_null_check(dest, T_ARRAY);
4456   _sp -= nargs;
4457 
4458   // (4) src_offset must not be negative.
4459   generate_negative_guard(src_offset, slow_region);
4460 
4461   // (5) dest_offset must not be negative.
4462   generate_negative_guard(dest_offset, slow_region);
4463 
4464   // (6) length must not be negative (moved to generate_arraycopy()).
4465   // generate_negative_guard(length, slow_region);
4466 
4467   // (7) src_offset + length must not exceed length of src.
4468   generate_limit_guard(src_offset, length,
4469                        load_array_length(src),
4470                        slow_region);
4471 
4472   // (8) dest_offset + length must not exceed length of dest.
4473   generate_limit_guard(dest_offset, length,
4474                        load_array_length(dest),
4475                        slow_region);
4476 
4477   // (9) each element of an oop array must be assignable
4478   // The generate_arraycopy subroutine checks this.
4479 
4480   // This is where the memory effects are placed:
4481   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4482   generate_arraycopy(adr_type, dest_elem,
4483                      src, src_offset, dest, dest_offset, length,
4484                      false, false, slow_region);
4485 
4486   return true;
4487 }
4488 
4489 //-----------------------------generate_arraycopy----------------------
4490 // Generate an optimized call to arraycopy.
4491 // Caller must guard against non-arrays.
4492 // Caller must determine a common array basic-type for both arrays.
4493 // Caller must validate offsets against array bounds.
4494 // The slow_region has already collected guard failure paths
4495 // (such as out of bounds length or non-conformable array types).
4496 // The generated code has this shape, in general:
4497 //
4498 //     if (length == 0)  return   // via zero_path
4499 //     slowval = -1
4500 //     if (types unknown) {
4501 //       slowval = call generic copy loop
4502 //       if (slowval == 0)  return  // via checked_path
4503 //     } else if (indexes in bounds) {
4504 //       if ((is object array) && !(array type check)) {
4505 //         slowval = call checked copy loop
4506 //         if (slowval == 0)  return  // via checked_path
4507 //       } else {
4508 //         call bulk copy loop
4509 //         return  // via fast_path
4510 //       }
4511 //     }
4512 //     // adjust params for remaining work:
4513 //     if (slowval != -1) {
4514 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4515 //     }
4516 //   slow_region:
4517 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4518 //     return  // via slow_call_path
4519 //
4520 // This routine is used from several intrinsics:  System.arraycopy,
4521 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4522 //
4523 void
4524 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4525                                    BasicType basic_elem_type,
4526                                    Node* src,  Node* src_offset,
4527                                    Node* dest, Node* dest_offset,
4528                                    Node* copy_length,
4529                                    bool disjoint_bases,
4530                                    bool length_never_negative,
4531                                    RegionNode* slow_region) {
4532 
4533   if (slow_region == NULL) {
4534     slow_region = new(C,1) RegionNode(1);
4535     record_for_igvn(slow_region);
4536   }
4537 
4538   Node* original_dest      = dest;
4539   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4540   bool  must_clear_dest    = false;
4541 
4542   // See if this is the initialization of a newly-allocated array.
4543   // If so, we will take responsibility here for initializing it to zero.
4544   // (Note:  Because tightly_coupled_allocation performs checks on the
4545   // out-edges of the dest, we need to avoid making derived pointers
4546   // from it until we have checked its uses.)
4547   if (ReduceBulkZeroing
4548       && !ZeroTLAB              // pointless if already zeroed
4549       && basic_elem_type != T_CONFLICT // avoid corner case
4550       && !_gvn.eqv_uncast(src, dest)
4551       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4552           != NULL)
4553       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4554       && alloc->maybe_set_complete(&_gvn)) {
4555     // "You break it, you buy it."
4556     InitializeNode* init = alloc->initialization();
4557     assert(init->is_complete(), "we just did this");
4558     assert(dest->is_CheckCastPP(), "sanity");
4559     assert(dest->in(0)->in(0) == init, "dest pinned");
4560     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4561     // From this point on, every exit path is responsible for
4562     // initializing any non-copied parts of the object to zero.
4563     must_clear_dest = true;
4564   } else {
4565     // No zeroing elimination here.
4566     alloc             = NULL;
4567     //original_dest   = dest;
4568     //must_clear_dest = false;
4569   }
4570 
4571   // Results are placed here:
4572   enum { fast_path        = 1,  // normal void-returning assembly stub
4573          checked_path     = 2,  // special assembly stub with cleanup
4574          slow_call_path   = 3,  // something went wrong; call the VM
4575          zero_path        = 4,  // bypass when length of copy is zero
4576          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4577          PATH_LIMIT       = 6
4578   };
4579   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4580   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4581   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4582   record_for_igvn(result_region);
4583   _gvn.set_type_bottom(result_i_o);
4584   _gvn.set_type_bottom(result_memory);
4585   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4586 
4587   // The slow_control path:
4588   Node* slow_control;
4589   Node* slow_i_o = i_o();
4590   Node* slow_mem = memory(adr_type);
4591   debug_only(slow_control = (Node*) badAddress);
4592 
4593   // Checked control path:
4594   Node* checked_control = top();
4595   Node* checked_mem     = NULL;
4596   Node* checked_i_o     = NULL;
4597   Node* checked_value   = NULL;
4598 
4599   if (basic_elem_type == T_CONFLICT) {
4600     assert(!must_clear_dest, "");
4601     Node* cv = generate_generic_arraycopy(adr_type,
4602                                           src, src_offset, dest, dest_offset,
4603                                           copy_length);
4604     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4605     checked_control = control();
4606     checked_i_o     = i_o();
4607     checked_mem     = memory(adr_type);
4608     checked_value   = cv;
4609     set_control(top());         // no fast path
4610   }
4611 
4612   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4613   if (not_pos != NULL) {
4614     PreserveJVMState pjvms(this);
4615     set_control(not_pos);
4616 
4617     // (6) length must not be negative.
4618     if (!length_never_negative) {
4619       generate_negative_guard(copy_length, slow_region);
4620     }
4621 
4622     // copy_length is 0.
4623     if (!stopped() && must_clear_dest) {
4624       Node* dest_length = alloc->in(AllocateNode::ALength);
4625       if (_gvn.eqv_uncast(copy_length, dest_length)
4626           || _gvn.find_int_con(dest_length, 1) <= 0) {
4627         // There is no zeroing to do. No need for a secondary raw memory barrier.
4628       } else {
4629         // Clear the whole thing since there are no source elements to copy.
4630         generate_clear_array(adr_type, dest, basic_elem_type,
4631                              intcon(0), NULL,
4632                              alloc->in(AllocateNode::AllocSize));
4633         // Use a secondary InitializeNode as raw memory barrier.
4634         // Currently it is needed only on this path since other
4635         // paths have stub or runtime calls as raw memory barriers.
4636         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4637                                                        Compile::AliasIdxRaw,
4638                                                        top())->as_Initialize();
4639         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4640       }
4641     }
4642 
4643     // Present the results of the fast call.
4644     result_region->init_req(zero_path, control());
4645     result_i_o   ->init_req(zero_path, i_o());
4646     result_memory->init_req(zero_path, memory(adr_type));
4647   }
4648 
4649   if (!stopped() && must_clear_dest) {
4650     // We have to initialize the *uncopied* part of the array to zero.
4651     // The copy destination is the slice dest[off..off+len].  The other slices
4652     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4653     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4654     Node* dest_length = alloc->in(AllocateNode::ALength);
4655     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4656                                                           copy_length) );
4657 
4658     // If there is a head section that needs zeroing, do it now.
4659     if (find_int_con(dest_offset, -1) != 0) {
4660       generate_clear_array(adr_type, dest, basic_elem_type,
4661                            intcon(0), dest_offset,
4662                            NULL);
4663     }
4664 
4665     // Next, perform a dynamic check on the tail length.
4666     // It is often zero, and we can win big if we prove this.
4667     // There are two wins:  Avoid generating the ClearArray
4668     // with its attendant messy index arithmetic, and upgrade
4669     // the copy to a more hardware-friendly word size of 64 bits.
4670     Node* tail_ctl = NULL;
4671     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4672       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4673       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4674       tail_ctl = generate_slow_guard(bol_lt, NULL);
4675       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4676     }
4677 
4678     // At this point, let's assume there is no tail.
4679     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4680       // There is no tail.  Try an upgrade to a 64-bit copy.
4681       bool didit = false;
4682       { PreserveJVMState pjvms(this);
4683         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4684                                          src, src_offset, dest, dest_offset,
4685                                          dest_size);
4686         if (didit) {
4687           // Present the results of the block-copying fast call.
4688           result_region->init_req(bcopy_path, control());
4689           result_i_o   ->init_req(bcopy_path, i_o());
4690           result_memory->init_req(bcopy_path, memory(adr_type));
4691         }
4692       }
4693       if (didit)
4694         set_control(top());     // no regular fast path
4695     }
4696 
4697     // Clear the tail, if any.
4698     if (tail_ctl != NULL) {
4699       Node* notail_ctl = stopped() ? NULL : control();
4700       set_control(tail_ctl);
4701       if (notail_ctl == NULL) {
4702         generate_clear_array(adr_type, dest, basic_elem_type,
4703                              dest_tail, NULL,
4704                              dest_size);
4705       } else {
4706         // Make a local merge.
4707         Node* done_ctl = new(C,3) RegionNode(3);
4708         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4709         done_ctl->init_req(1, notail_ctl);
4710         done_mem->init_req(1, memory(adr_type));
4711         generate_clear_array(adr_type, dest, basic_elem_type,
4712                              dest_tail, NULL,
4713                              dest_size);
4714         done_ctl->init_req(2, control());
4715         done_mem->init_req(2, memory(adr_type));
4716         set_control( _gvn.transform(done_ctl) );
4717         set_memory(  _gvn.transform(done_mem), adr_type );
4718       }
4719     }
4720   }
4721 
4722   BasicType copy_type = basic_elem_type;
4723   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4724   if (!stopped() && copy_type == T_OBJECT) {
4725     // If src and dest have compatible element types, we can copy bits.
4726     // Types S[] and D[] are compatible if D is a supertype of S.
4727     //
4728     // If they are not, we will use checked_oop_disjoint_arraycopy,
4729     // which performs a fast optimistic per-oop check, and backs off
4730     // further to JVM_ArrayCopy on the first per-oop check that fails.
4731     // (Actually, we don't move raw bits only; the GC requires card marks.)
4732 
4733     // Get the klassOop for both src and dest
4734     Node* src_klass  = load_object_klass(src);
4735     Node* dest_klass = load_object_klass(dest);
4736 
4737     // Generate the subtype check.
4738     // This might fold up statically, or then again it might not.
4739     //
4740     // Non-static example:  Copying List<String>.elements to a new String[].
4741     // The backing store for a List<String> is always an Object[],
4742     // but its elements are always type String, if the generic types
4743     // are correct at the source level.
4744     //
4745     // Test S[] against D[], not S against D, because (probably)
4746     // the secondary supertype cache is less busy for S[] than S.
4747     // This usually only matters when D is an interface.
4748     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4749     // Plug failing path into checked_oop_disjoint_arraycopy
4750     if (not_subtype_ctrl != top()) {
4751       PreserveJVMState pjvms(this);
4752       set_control(not_subtype_ctrl);
4753       // (At this point we can assume disjoint_bases, since types differ.)
4754       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4755       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4756       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4757       Node* dest_elem_klass = _gvn.transform(n1);
4758       Node* cv = generate_checkcast_arraycopy(adr_type,
4759                                               dest_elem_klass,
4760                                               src, src_offset, dest, dest_offset,
4761                                               copy_length);
4762       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4763       checked_control = control();
4764       checked_i_o     = i_o();
4765       checked_mem     = memory(adr_type);
4766       checked_value   = cv;
4767     }
4768     // At this point we know we do not need type checks on oop stores.
4769 
4770     // Let's see if we need card marks:
4771     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4772       // If we do not need card marks, copy using the jint or jlong stub.
4773       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4774       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4775              "sizes agree");
4776     }
4777   }
4778 
4779   if (!stopped()) {
4780     // Generate the fast path, if possible.
4781     PreserveJVMState pjvms(this);
4782     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4783                                  src, src_offset, dest, dest_offset,
4784                                  ConvI2X(copy_length));
4785 
4786     // Present the results of the fast call.
4787     result_region->init_req(fast_path, control());
4788     result_i_o   ->init_req(fast_path, i_o());
4789     result_memory->init_req(fast_path, memory(adr_type));
4790   }
4791 
4792   // Here are all the slow paths up to this point, in one bundle:
4793   slow_control = top();
4794   if (slow_region != NULL)
4795     slow_control = _gvn.transform(slow_region);
4796   debug_only(slow_region = (RegionNode*)badAddress);
4797 
4798   set_control(checked_control);
4799   if (!stopped()) {
4800     // Clean up after the checked call.
4801     // The returned value is either 0 or -1^K,
4802     // where K = number of partially transferred array elements.
4803     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4804     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4805     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4806 
4807     // If it is 0, we are done, so transfer to the end.
4808     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4809     result_region->init_req(checked_path, checks_done);
4810     result_i_o   ->init_req(checked_path, checked_i_o);
4811     result_memory->init_req(checked_path, checked_mem);
4812 
4813     // If it is not zero, merge into the slow call.
4814     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4815     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4816     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4817     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4818     record_for_igvn(slow_reg2);
4819     slow_reg2  ->init_req(1, slow_control);
4820     slow_i_o2  ->init_req(1, slow_i_o);
4821     slow_mem2  ->init_req(1, slow_mem);
4822     slow_reg2  ->init_req(2, control());
4823     slow_i_o2  ->init_req(2, checked_i_o);
4824     slow_mem2  ->init_req(2, checked_mem);
4825 
4826     slow_control = _gvn.transform(slow_reg2);
4827     slow_i_o     = _gvn.transform(slow_i_o2);
4828     slow_mem     = _gvn.transform(slow_mem2);
4829 
4830     if (alloc != NULL) {
4831       // We'll restart from the very beginning, after zeroing the whole thing.
4832       // This can cause double writes, but that's OK since dest is brand new.
4833       // So we ignore the low 31 bits of the value returned from the stub.
4834     } else {
4835       // We must continue the copy exactly where it failed, or else
4836       // another thread might see the wrong number of writes to dest.
4837       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4838       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4839       slow_offset->init_req(1, intcon(0));
4840       slow_offset->init_req(2, checked_offset);
4841       slow_offset  = _gvn.transform(slow_offset);
4842 
4843       // Adjust the arguments by the conditionally incoming offset.
4844       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4845       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4846       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4847 
4848       // Tweak the node variables to adjust the code produced below:
4849       src_offset  = src_off_plus;
4850       dest_offset = dest_off_plus;
4851       copy_length = length_minus;
4852     }
4853   }
4854 
4855   set_control(slow_control);
4856   if (!stopped()) {
4857     // Generate the slow path, if needed.
4858     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4859 
4860     set_memory(slow_mem, adr_type);
4861     set_i_o(slow_i_o);
4862 
4863     if (must_clear_dest) {
4864       generate_clear_array(adr_type, dest, basic_elem_type,
4865                            intcon(0), NULL,
4866                            alloc->in(AllocateNode::AllocSize));
4867     }
4868 
4869     generate_slow_arraycopy(adr_type,
4870                             src, src_offset, dest, dest_offset,
4871                             copy_length);
4872 
4873     result_region->init_req(slow_call_path, control());
4874     result_i_o   ->init_req(slow_call_path, i_o());
4875     result_memory->init_req(slow_call_path, memory(adr_type));
4876   }
4877 
4878   // Remove unused edges.
4879   for (uint i = 1; i < result_region->req(); i++) {
4880     if (result_region->in(i) == NULL)
4881       result_region->init_req(i, top());
4882   }
4883 
4884   // Finished; return the combined state.
4885   set_control( _gvn.transform(result_region) );
4886   set_i_o(     _gvn.transform(result_i_o)    );
4887   set_memory(  _gvn.transform(result_memory), adr_type );
4888 
4889   // The memory edges above are precise in order to model effects around
4890   // array copies accurately to allow value numbering of field loads around
4891   // arraycopy.  Such field loads, both before and after, are common in Java
4892   // collections and similar classes involving header/array data structures.
4893   //
4894   // But with low number of register or when some registers are used or killed
4895   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4896   // The next memory barrier is added to avoid it. If the arraycopy can be
4897   // optimized away (which it can, sometimes) then we can manually remove
4898   // the membar also.
4899   //
4900   // Do not let reads from the cloned object float above the arraycopy.
4901   if (InsertMemBarAfterArraycopy || alloc != NULL)
4902     insert_mem_bar(Op_MemBarCPUOrder);
4903 }
4904 
4905 
4906 // Helper function which determines if an arraycopy immediately follows
4907 // an allocation, with no intervening tests or other escapes for the object.
4908 AllocateArrayNode*
4909 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4910                                            RegionNode* slow_region) {
4911   if (stopped())             return NULL;  // no fast path
4912   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4913 
4914   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4915   if (alloc == NULL)  return NULL;
4916 
4917   Node* rawmem = memory(Compile::AliasIdxRaw);
4918   // Is the allocation's memory state untouched?
4919   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4920     // Bail out if there have been raw-memory effects since the allocation.
4921     // (Example:  There might have been a call or safepoint.)
4922     return NULL;
4923   }
4924   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4925   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4926     return NULL;
4927   }
4928 
4929   // There must be no unexpected observers of this allocation.
4930   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4931     Node* obs = ptr->fast_out(i);
4932     if (obs != this->map()) {
4933       return NULL;
4934     }
4935   }
4936 
4937   // This arraycopy must unconditionally follow the allocation of the ptr.
4938   Node* alloc_ctl = ptr->in(0);
4939   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4940 
4941   Node* ctl = control();
4942   while (ctl != alloc_ctl) {
4943     // There may be guards which feed into the slow_region.
4944     // Any other control flow means that we might not get a chance
4945     // to finish initializing the allocated object.
4946     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4947       IfNode* iff = ctl->in(0)->as_If();
4948       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4949       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4950       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4951         ctl = iff->in(0);       // This test feeds the known slow_region.
4952         continue;
4953       }
4954       // One more try:  Various low-level checks bottom out in
4955       // uncommon traps.  If the debug-info of the trap omits
4956       // any reference to the allocation, as we've already
4957       // observed, then there can be no objection to the trap.
4958       bool found_trap = false;
4959       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4960         Node* obs = not_ctl->fast_out(j);
4961         if (obs->in(0) == not_ctl && obs->is_Call() &&
4962             (obs->as_Call()->entry_point() ==
4963              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
4964           found_trap = true; break;
4965         }
4966       }
4967       if (found_trap) {
4968         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4969         continue;
4970       }
4971     }
4972     return NULL;
4973   }
4974 
4975   // If we get this far, we have an allocation which immediately
4976   // precedes the arraycopy, and we can take over zeroing the new object.
4977   // The arraycopy will finish the initialization, and provide
4978   // a new control state to which we will anchor the destination pointer.
4979 
4980   return alloc;
4981 }
4982 
4983 // Helper for initialization of arrays, creating a ClearArray.
4984 // It writes zero bits in [start..end), within the body of an array object.
4985 // The memory effects are all chained onto the 'adr_type' alias category.
4986 //
4987 // Since the object is otherwise uninitialized, we are free
4988 // to put a little "slop" around the edges of the cleared area,
4989 // as long as it does not go back into the array's header,
4990 // or beyond the array end within the heap.
4991 //
4992 // The lower edge can be rounded down to the nearest jint and the
4993 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
4994 //
4995 // Arguments:
4996 //   adr_type           memory slice where writes are generated
4997 //   dest               oop of the destination array
4998 //   basic_elem_type    element type of the destination
4999 //   slice_idx          array index of first element to store
5000 //   slice_len          number of elements to store (or NULL)
5001 //   dest_size          total size in bytes of the array object
5002 //
5003 // Exactly one of slice_len or dest_size must be non-NULL.
5004 // If dest_size is non-NULL, zeroing extends to the end of the object.
5005 // If slice_len is non-NULL, the slice_idx value must be a constant.
5006 void
5007 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5008                                      Node* dest,
5009                                      BasicType basic_elem_type,
5010                                      Node* slice_idx,
5011                                      Node* slice_len,
5012                                      Node* dest_size) {
5013   // one or the other but not both of slice_len and dest_size:
5014   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5015   if (slice_len == NULL)  slice_len = top();
5016   if (dest_size == NULL)  dest_size = top();
5017 
5018   // operate on this memory slice:
5019   Node* mem = memory(adr_type); // memory slice to operate on
5020 
5021   // scaling and rounding of indexes:
5022   int scale = exact_log2(type2aelembytes(basic_elem_type));
5023   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5024   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5025   int bump_bit  = (-1 << scale) & BytesPerInt;
5026 
5027   // determine constant starts and ends
5028   const intptr_t BIG_NEG = -128;
5029   assert(BIG_NEG + 2*abase < 0, "neg enough");
5030   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5031   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5032   if (slice_len_con == 0) {
5033     return;                     // nothing to do here
5034   }
5035   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5036   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5037   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5038     assert(end_con < 0, "not two cons");
5039     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5040                        BytesPerLong);
5041   }
5042 
5043   if (start_con >= 0 && end_con >= 0) {
5044     // Constant start and end.  Simple.
5045     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5046                                        start_con, end_con, &_gvn);
5047   } else if (start_con >= 0 && dest_size != top()) {
5048     // Constant start, pre-rounded end after the tail of the array.
5049     Node* end = dest_size;
5050     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5051                                        start_con, end, &_gvn);
5052   } else if (start_con >= 0 && slice_len != top()) {
5053     // Constant start, non-constant end.  End needs rounding up.
5054     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5055     intptr_t end_base  = abase + (slice_idx_con << scale);
5056     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5057     Node*    end       = ConvI2X(slice_len);
5058     if (scale != 0)
5059       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
5060     end_base += end_round;
5061     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
5062     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
5063     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5064                                        start_con, end, &_gvn);
5065   } else if (start_con < 0 && dest_size != top()) {
5066     // Non-constant start, pre-rounded end after the tail of the array.
5067     // This is almost certainly a "round-to-end" operation.
5068     Node* start = slice_idx;
5069     start = ConvI2X(start);
5070     if (scale != 0)
5071       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
5072     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
5073     if ((bump_bit | clear_low) != 0) {
5074       int to_clear = (bump_bit | clear_low);
5075       // Align up mod 8, then store a jint zero unconditionally
5076       // just before the mod-8 boundary.
5077       if (((abase + bump_bit) & ~to_clear) - bump_bit
5078           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5079         bump_bit = 0;
5080         assert((abase & to_clear) == 0, "array base must be long-aligned");
5081       } else {
5082         // Bump 'start' up to (or past) the next jint boundary:
5083         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
5084         assert((abase & clear_low) == 0, "array base must be int-aligned");
5085       }
5086       // Round bumped 'start' down to jlong boundary in body of array.
5087       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
5088       if (bump_bit != 0) {
5089         // Store a zero to the immediately preceding jint:
5090         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
5091         Node* p1 = basic_plus_adr(dest, x1);
5092         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5093         mem = _gvn.transform(mem);
5094       }
5095     }
5096     Node* end = dest_size; // pre-rounded
5097     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5098                                        start, end, &_gvn);
5099   } else {
5100     // Non-constant start, unrounded non-constant end.
5101     // (Nobody zeroes a random midsection of an array using this routine.)
5102     ShouldNotReachHere();       // fix caller
5103   }
5104 
5105   // Done.
5106   set_memory(mem, adr_type);
5107 }
5108 
5109 
5110 bool
5111 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5112                                          BasicType basic_elem_type,
5113                                          AllocateNode* alloc,
5114                                          Node* src,  Node* src_offset,
5115                                          Node* dest, Node* dest_offset,
5116                                          Node* dest_size) {
5117   // See if there is an advantage from block transfer.
5118   int scale = exact_log2(type2aelembytes(basic_elem_type));
5119   if (scale >= LogBytesPerLong)
5120     return false;               // it is already a block transfer
5121 
5122   // Look at the alignment of the starting offsets.
5123   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5124   const intptr_t BIG_NEG = -128;
5125   assert(BIG_NEG + 2*abase < 0, "neg enough");
5126 
5127   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
5128   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
5129   if (src_off < 0 || dest_off < 0)
5130     // At present, we can only understand constants.
5131     return false;
5132 
5133   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5134     // Non-aligned; too bad.
5135     // One more chance:  Pick off an initial 32-bit word.
5136     // This is a common case, since abase can be odd mod 8.
5137     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5138         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5139       Node* sptr = basic_plus_adr(src,  src_off);
5140       Node* dptr = basic_plus_adr(dest, dest_off);
5141       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5142       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5143       src_off += BytesPerInt;
5144       dest_off += BytesPerInt;
5145     } else {
5146       return false;
5147     }
5148   }
5149   assert(src_off % BytesPerLong == 0, "");
5150   assert(dest_off % BytesPerLong == 0, "");
5151 
5152   // Do this copy by giant steps.
5153   Node* sptr  = basic_plus_adr(src,  src_off);
5154   Node* dptr  = basic_plus_adr(dest, dest_off);
5155   Node* countx = dest_size;
5156   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5157   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5158 
5159   bool disjoint_bases = true;   // since alloc != NULL
5160   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5161                                sptr, NULL, dptr, NULL, countx);
5162 
5163   return true;
5164 }
5165 
5166 
5167 // Helper function; generates code for the slow case.
5168 // We make a call to a runtime method which emulates the native method,
5169 // but without the native wrapper overhead.
5170 void
5171 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5172                                         Node* src,  Node* src_offset,
5173                                         Node* dest, Node* dest_offset,
5174                                         Node* copy_length) {
5175   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5176                                  OptoRuntime::slow_arraycopy_Type(),
5177                                  OptoRuntime::slow_arraycopy_Java(),
5178                                  "slow_arraycopy", adr_type,
5179                                  src, src_offset, dest, dest_offset,
5180                                  copy_length);
5181 
5182   // Handle exceptions thrown by this fellow:
5183   make_slow_call_ex(call, env()->Throwable_klass(), false);
5184 }
5185 
5186 // Helper function; generates code for cases requiring runtime checks.
5187 Node*
5188 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5189                                              Node* dest_elem_klass,
5190                                              Node* src,  Node* src_offset,
5191                                              Node* dest, Node* dest_offset,
5192                                              Node* copy_length) {
5193   if (stopped())  return NULL;
5194 
5195   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
5196   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5197     return NULL;
5198   }
5199 
5200   // Pick out the parameters required to perform a store-check
5201   // for the target array.  This is an optimistic check.  It will
5202   // look in each non-null element's class, at the desired klass's
5203   // super_check_offset, for the desired klass.
5204   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
5205   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5206   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
5207   Node* check_offset = _gvn.transform(n3);
5208   Node* check_value  = dest_elem_klass;
5209 
5210   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5211   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5212 
5213   // (We know the arrays are never conjoint, because their types differ.)
5214   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5215                                  OptoRuntime::checkcast_arraycopy_Type(),
5216                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5217                                  // five arguments, of which two are
5218                                  // intptr_t (jlong in LP64)
5219                                  src_start, dest_start,
5220                                  copy_length XTOP,
5221                                  check_offset XTOP,
5222                                  check_value);
5223 
5224   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5225 }
5226 
5227 
5228 // Helper function; generates code for cases requiring runtime checks.
5229 Node*
5230 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5231                                            Node* src,  Node* src_offset,
5232                                            Node* dest, Node* dest_offset,
5233                                            Node* copy_length) {
5234   if (stopped())  return NULL;
5235 
5236   address copyfunc_addr = StubRoutines::generic_arraycopy();
5237   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5238     return NULL;
5239   }
5240 
5241   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5242                     OptoRuntime::generic_arraycopy_Type(),
5243                     copyfunc_addr, "generic_arraycopy", adr_type,
5244                     src, src_offset, dest, dest_offset, copy_length);
5245 
5246   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5247 }
5248 
5249 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5250 void
5251 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5252                                              BasicType basic_elem_type,
5253                                              bool disjoint_bases,
5254                                              Node* src,  Node* src_offset,
5255                                              Node* dest, Node* dest_offset,
5256                                              Node* copy_length) {
5257   if (stopped())  return;               // nothing to do
5258 
5259   Node* src_start  = src;
5260   Node* dest_start = dest;
5261   if (src_offset != NULL || dest_offset != NULL) {
5262     assert(src_offset != NULL && dest_offset != NULL, "");
5263     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5264     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5265   }
5266 
5267   // Figure out which arraycopy runtime method to call.
5268   const char* copyfunc_name = "arraycopy";
5269   address     copyfunc_addr =
5270       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5271                           disjoint_bases, copyfunc_name);
5272 
5273   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5274   make_runtime_call(RC_LEAF|RC_NO_FP,
5275                     OptoRuntime::fast_arraycopy_Type(),
5276                     copyfunc_addr, copyfunc_name, adr_type,
5277                     src_start, dest_start, copy_length XTOP);
5278 }