1 /*
   2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
  27 
  28 
  29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  31 // fast versions of NegF/NegD and AbsF/AbsD.
  32 
  33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  36   // of 128-bits operands for SSE instructions.
  37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
  38   // Store the value to a 128-bits operand.
  39   operand[0] = lo;
  40   operand[1] = hi;
  41   return operand;
  42 }
  43 
  44 // Buffer for 128-bits masks used by SSE instructions.
  45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  46 
  47 // Static initialization during VM startup.
  48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  52 
  53 
  54 
  55 NEEDS_CLEANUP // remove this definitions ?
  56 const Register IC_Klass    = rax;   // where the IC klass is cached
  57 const Register SYNC_header = rax;   // synchronization header
  58 const Register SHIFT_count = rcx;   // where count for shift operations must be
  59 
  60 #define __ _masm->
  61 
  62 
  63 static void select_different_registers(Register preserve,
  64                                        Register extra,
  65                                        Register &tmp1,
  66                                        Register &tmp2) {
  67   if (tmp1 == preserve) {
  68     assert_different_registers(tmp1, tmp2, extra);
  69     tmp1 = extra;
  70   } else if (tmp2 == preserve) {
  71     assert_different_registers(tmp1, tmp2, extra);
  72     tmp2 = extra;
  73   }
  74   assert_different_registers(preserve, tmp1, tmp2);
  75 }
  76 
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2,
  83                                        Register &tmp3) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, tmp3, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, tmp3, extra);
  89     tmp2 = extra;
  90   } else if (tmp3 == preserve) {
  91     assert_different_registers(tmp1, tmp2, tmp3, extra);
  92     tmp3 = extra;
  93   }
  94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  95 }
  96 
  97 
  98 
  99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 100   if (opr->is_constant()) {
 101     LIR_Const* constant = opr->as_constant_ptr();
 102     switch (constant->type()) {
 103       case T_INT: {
 104         return true;
 105       }
 106 
 107       default:
 108         return false;
 109     }
 110   }
 111   return false;
 112 }
 113 
 114 
 115 LIR_Opr LIR_Assembler::receiverOpr() {
 116   return FrameMap::receiver_opr;
 117 }
 118 
 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 120   return receiverOpr();
 121 }
 122 
 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
 124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 125 }
 126 
 127 //--------------fpu register translations-----------------------
 128 
 129 
 130 address LIR_Assembler::float_constant(float f) {
 131   address const_addr = __ float_constant(f);
 132   if (const_addr == NULL) {
 133     bailout("const section overflow");
 134     return __ code()->consts()->start();
 135   } else {
 136     return const_addr;
 137   }
 138 }
 139 
 140 
 141 address LIR_Assembler::double_constant(double d) {
 142   address const_addr = __ double_constant(d);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 void LIR_Assembler::set_24bit_FPU() {
 153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 154 }
 155 
 156 void LIR_Assembler::reset_FPU() {
 157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 158 }
 159 
 160 void LIR_Assembler::fpop() {
 161   __ fpop();
 162 }
 163 
 164 void LIR_Assembler::fxch(int i) {
 165   __ fxch(i);
 166 }
 167 
 168 void LIR_Assembler::fld(int i) {
 169   __ fld_s(i);
 170 }
 171 
 172 void LIR_Assembler::ffree(int i) {
 173   __ ffree(i);
 174 }
 175 
 176 void LIR_Assembler::breakpoint() {
 177   __ int3();
 178 }
 179 
 180 void LIR_Assembler::push(LIR_Opr opr) {
 181   if (opr->is_single_cpu()) {
 182     __ push_reg(opr->as_register());
 183   } else if (opr->is_double_cpu()) {
 184     NOT_LP64(__ push_reg(opr->as_register_hi()));
 185     __ push_reg(opr->as_register_lo());
 186   } else if (opr->is_stack()) {
 187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 188   } else if (opr->is_constant()) {
 189     LIR_Const* const_opr = opr->as_constant_ptr();
 190     if (const_opr->type() == T_OBJECT) {
 191       __ push_oop(const_opr->as_jobject());
 192     } else if (const_opr->type() == T_INT) {
 193       __ push_jint(const_opr->as_jint());
 194     } else {
 195       ShouldNotReachHere();
 196     }
 197 
 198   } else {
 199     ShouldNotReachHere();
 200   }
 201 }
 202 
 203 void LIR_Assembler::pop(LIR_Opr opr) {
 204   if (opr->is_single_cpu()) {
 205     __ pop_reg(opr->as_register());
 206   } else {
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 212   return addr->base()->is_illegal() && addr->index()->is_illegal();
 213 }
 214 
 215 //-------------------------------------------
 216 
 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 218   return as_Address(addr, rscratch1);
 219 }
 220 
 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 222   if (addr->base()->is_illegal()) {
 223     assert(addr->index()->is_illegal(), "must be illegal too");
 224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 225     if (! __ reachable(laddr)) {
 226       __ movptr(tmp, laddr.addr());
 227       Address res(tmp, 0);
 228       return res;
 229     } else {
 230       return __ as_Address(laddr);
 231     }
 232   }
 233 
 234   Register base = addr->base()->as_pointer_register();
 235 
 236   if (addr->index()->is_illegal()) {
 237     return Address( base, addr->disp());
 238   } else if (addr->index()->is_cpu_register()) {
 239     Register index = addr->index()->as_pointer_register();
 240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 241   } else if (addr->index()->is_constant()) {
 242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 243     assert(Assembler::is_simm32(addr_offset), "must be");
 244 
 245     return Address(base, addr_offset);
 246   } else {
 247     Unimplemented();
 248     return Address();
 249   }
 250 }
 251 
 252 
 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 254   Address base = as_Address(addr);
 255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 256 }
 257 
 258 
 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 260   return as_Address(addr);
 261 }
 262 
 263 
 264 void LIR_Assembler::osr_entry() {
 265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 267   ValueStack* entry_state = osr_entry->state();
 268   int number_of_locks = entry_state->locks_size();
 269 
 270   // we jump here if osr happens with the interpreter
 271   // state set up to continue at the beginning of the
 272   // loop that triggered osr - in particular, we have
 273   // the following registers setup:
 274   //
 275   // rcx: osr buffer
 276   //
 277 
 278   // build frame
 279   ciMethod* m = compilation()->method();
 280   __ build_frame(initial_frame_size_in_bytes());
 281 
 282   // OSR buffer is
 283   //
 284   // locals[nlocals-1..0]
 285   // monitors[0..number_of_locks]
 286   //
 287   // locals is a direct copy of the interpreter frame so in the osr buffer
 288   // so first slot in the local array is the last local from the interpreter
 289   // and last slot is local[0] (receiver) from the interpreter
 290   //
 291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 293   // in the interpreter frame (the method lock if a sync method)
 294 
 295   // Initialize monitors in the compiled activation.
 296   //   rcx: pointer to osr buffer
 297   //
 298   // All other registers are dead at this point and the locals will be
 299   // copied into place by code emitted in the IR.
 300 
 301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 303     int monitor_offset = BytesPerWord * method()->max_locals() +
 304       (2 * BytesPerWord) * (number_of_locks - 1);
 305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 306     // the OSR buffer using 2 word entries: first the lock and then
 307     // the oop.
 308     for (int i = 0; i < number_of_locks; i++) {
 309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 310 #ifdef ASSERT
 311       // verify the interpreter's monitor has a non-null object
 312       {
 313         Label L;
 314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 315         __ jcc(Assembler::notZero, L);
 316         __ stop("locked object is NULL");
 317         __ bind(L);
 318       }
 319 #endif
 320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 324     }
 325   }
 326 }
 327 
 328 
 329 // inline cache check; done before the frame is built.
 330 int LIR_Assembler::check_icache() {
 331   Register receiver = FrameMap::receiver_opr->as_register();
 332   Register ic_klass = IC_Klass;
 333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 334 
 335   if (!VerifyOops) {
 336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 338       __ nop();
 339     }
 340   }
 341   int offset = __ offset();
 342   __ inline_cache_check(receiver, IC_Klass);
 343   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
 344   if (VerifyOops) {
 345     // force alignment after the cache check.
 346     // It's been verified to be aligned if !VerifyOops
 347     __ align(CodeEntryAlignment);
 348   }
 349   return offset;
 350 }
 351 
 352 
 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 354   jobject o = NULL;
 355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 356   __ movoop(reg, o);
 357   patching_epilog(patch, lir_patch_normal, reg, info);
 358 }
 359 
 360 
 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
 362   if (exception->is_valid()) {
 363     // preserve exception
 364     // note: the monitor_exit runtime call is a leaf routine
 365     //       and cannot block => no GC can happen
 366     // The slow case (MonitorAccessStub) uses the first two stack slots
 367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
 368     __ movptr (Address(rsp, 2*wordSize), exception);
 369   }
 370 
 371   Register obj_reg  = obj_opr->as_register();
 372   Register lock_reg = lock_opr->as_register();
 373 
 374   // setup registers (lock_reg must be rax, for lock_object)
 375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
 376   Register hdr = lock_reg;
 377   assert(new_hdr == SYNC_header, "wrong register");
 378   lock_reg = new_hdr;
 379   // compute pointer to BasicLock
 380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
 381   __ lea(lock_reg, lock_addr);
 382   // unlock object
 383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
 384   // _slow_case_stubs->append(slow_case);
 385   // temporary fix: must be created after exceptionhandler, therefore as call stub
 386   _slow_case_stubs->append(slow_case);
 387   if (UseFastLocking) {
 388     // try inlined fast unlocking first, revert to slow locking if it fails
 389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 392   } else {
 393     // always do slow unlocking
 394     // note: the slow unlocking code could be inlined here, however if we use
 395     //       slow unlocking, speed doesn't matter anyway and this solution is
 396     //       simpler and requires less duplicated code - additionally, the
 397     //       slow unlocking code is the same in either case which simplifies
 398     //       debugging
 399     __ jmp(*slow_case->entry());
 400   }
 401   // done
 402   __ bind(*slow_case->continuation());
 403 
 404   if (exception->is_valid()) {
 405     // restore exception
 406     __ movptr (exception, Address(rsp, 2 * wordSize));
 407   }
 408 }
 409 
 410 // This specifies the rsp decrement needed to build the frame
 411 int LIR_Assembler::initial_frame_size_in_bytes() {
 412   // if rounding, must let FrameMap know!
 413 
 414   // The frame_map records size in slots (32bit word)
 415 
 416   // subtract two words to account for return address and link
 417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 418 }
 419 
 420 
 421 int LIR_Assembler::emit_exception_handler() {
 422   // if the last instruction is a call (typically to do a throw which
 423   // is coming at the end after block reordering) the return address
 424   // must still point into the code area in order to avoid assertion
 425   // failures when searching for the corresponding bci => add a nop
 426   // (was bug 5/14/1999 - gri)
 427   __ nop();
 428 
 429   // generate code for exception handler
 430   address handler_base = __ start_a_stub(exception_handler_size);
 431   if (handler_base == NULL) {
 432     // not enough space left for the handler
 433     bailout("exception handler overflow");
 434     return -1;
 435   }
 436 
 437   int offset = code_offset();
 438 
 439   // the exception oop and pc are in rax, and rdx
 440   // no other registers need to be preserved, so invalidate them
 441   __ invalidate_registers(false, true, true, false, true, true);
 442 
 443   // check that there is really an exception
 444   __ verify_not_null_oop(rax);
 445 
 446   // search an exception handler (rax: exception oop, rdx: throwing pc)
 447   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
 448 
 449   __ stop("should not reach here");
 450 
 451   assert(code_offset() - offset <= exception_handler_size, "overflow");
 452   __ end_a_stub();
 453 
 454   return offset;
 455 }
 456 
 457 
 458 // Emit the code to remove the frame from the stack in the exception
 459 // unwind path.
 460 int LIR_Assembler::emit_unwind_handler() {
 461 #ifndef PRODUCT
 462   if (CommentedAssembly) {
 463     _masm->block_comment("Unwind handler");
 464   }
 465 #endif
 466 
 467   int offset = code_offset();
 468 
 469   // Fetch the exception from TLS and clear out exception related thread state
 470   __ get_thread(rsi);
 471   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
 472   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 473   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 474 
 475   __ bind(_unwind_handler_entry);
 476   __ verify_not_null_oop(rax);
 477   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 478     __ mov(rsi, rax);  // Preserve the exception
 479   }
 480 
 481   // Preform needed unlocking
 482   MonitorExitStub* stub = NULL;
 483   if (method()->is_synchronized()) {
 484     monitor_address(0, FrameMap::rax_opr);
 485     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 486     __ unlock_object(rdi, rbx, rax, *stub->entry());
 487     __ bind(*stub->continuation());
 488   }
 489 
 490   if (compilation()->env()->dtrace_method_probes()) {
 491     __ movoop(Address(rsp, 0), method()->constant_encoding());
 492     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 493   }
 494 
 495   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 496     __ mov(rax, rsi);  // Restore the exception
 497   }
 498 
 499   // remove the activation and dispatch to the unwind handler
 500   __ remove_frame(initial_frame_size_in_bytes());
 501   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 502 
 503   // Emit the slow path assembly
 504   if (stub != NULL) {
 505     stub->emit_code(this);
 506   }
 507 
 508   return offset;
 509 }
 510 
 511 
 512 int LIR_Assembler::emit_deopt_handler() {
 513   // if the last instruction is a call (typically to do a throw which
 514   // is coming at the end after block reordering) the return address
 515   // must still point into the code area in order to avoid assertion
 516   // failures when searching for the corresponding bci => add a nop
 517   // (was bug 5/14/1999 - gri)
 518   __ nop();
 519 
 520   // generate code for exception handler
 521   address handler_base = __ start_a_stub(deopt_handler_size);
 522   if (handler_base == NULL) {
 523     // not enough space left for the handler
 524     bailout("deopt handler overflow");
 525     return -1;
 526   }
 527 
 528   int offset = code_offset();
 529   InternalAddress here(__ pc());
 530 
 531   __ pushptr(here.addr());
 532   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 533 
 534   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 535   __ end_a_stub();
 536 
 537   return offset;
 538 }
 539 
 540 
 541 // This is the fast version of java.lang.String.compare; it has not
 542 // OSR-entry and therefore, we generate a slow version for OSR's
 543 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 544   __ movptr (rbx, rcx); // receiver is in rcx
 545   __ movptr (rax, arg1->as_register());
 546 
 547   // Get addresses of first characters from both Strings
 548   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 549   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 550   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 551 
 552 
 553   // rbx, may be NULL
 554   add_debug_info_for_null_check_here(info);
 555   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 556   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 557   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 558 
 559   // compute minimum length (in rax) and difference of lengths (on top of stack)
 560   if (VM_Version::supports_cmov()) {
 561     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 562     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 563     __ mov      (rcx, rbx);
 564     __ subptr   (rbx, rax); // subtract lengths
 565     __ push     (rbx);      // result
 566     __ cmov     (Assembler::lessEqual, rax, rcx);
 567   } else {
 568     Label L;
 569     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 570     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
 571     __ mov      (rax, rbx);
 572     __ subptr   (rbx, rcx);
 573     __ push     (rbx);
 574     __ jcc      (Assembler::lessEqual, L);
 575     __ mov      (rax, rcx);
 576     __ bind (L);
 577   }
 578   // is minimum length 0?
 579   Label noLoop, haveResult;
 580   __ testptr (rax, rax);
 581   __ jcc (Assembler::zero, noLoop);
 582 
 583   // compare first characters
 584   __ load_unsigned_short(rcx, Address(rdi, 0));
 585   __ load_unsigned_short(rbx, Address(rsi, 0));
 586   __ subl(rcx, rbx);
 587   __ jcc(Assembler::notZero, haveResult);
 588   // starting loop
 589   __ decrement(rax); // we already tested index: skip one
 590   __ jcc(Assembler::zero, noLoop);
 591 
 592   // set rsi.edi to the end of the arrays (arrays have same length)
 593   // negate the index
 594 
 595   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 596   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 597   __ negptr(rax);
 598 
 599   // compare the strings in a loop
 600 
 601   Label loop;
 602   __ align(wordSize);
 603   __ bind(loop);
 604   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 605   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 606   __ subl(rcx, rbx);
 607   __ jcc(Assembler::notZero, haveResult);
 608   __ increment(rax);
 609   __ jcc(Assembler::notZero, loop);
 610 
 611   // strings are equal up to min length
 612 
 613   __ bind(noLoop);
 614   __ pop(rax);
 615   return_op(LIR_OprFact::illegalOpr);
 616 
 617   __ bind(haveResult);
 618   // leave instruction is going to discard the TOS value
 619   __ mov (rax, rcx); // result of call is in rax,
 620 }
 621 
 622 
 623 void LIR_Assembler::return_op(LIR_Opr result) {
 624   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 625   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 626     assert(result->fpu() == 0, "result must already be on TOS");
 627   }
 628 
 629   // Pop the stack before the safepoint code
 630   __ remove_frame(initial_frame_size_in_bytes());
 631 
 632   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 633 
 634   // Note: we do not need to round double result; float result has the right precision
 635   // the poll sets the condition code, but no data registers
 636   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 637                               relocInfo::poll_return_type);
 638 
 639   // NOTE: the requires that the polling page be reachable else the reloc
 640   // goes to the movq that loads the address and not the faulting instruction
 641   // which breaks the signal handler code
 642 
 643   __ test32(rax, polling_page);
 644 
 645   __ ret(0);
 646 }
 647 
 648 
 649 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 650   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 651                               relocInfo::poll_type);
 652 
 653   if (info != NULL) {
 654     add_debug_info_for_branch(info);
 655   } else {
 656     ShouldNotReachHere();
 657   }
 658 
 659   int offset = __ offset();
 660 
 661   // NOTE: the requires that the polling page be reachable else the reloc
 662   // goes to the movq that loads the address and not the faulting instruction
 663   // which breaks the signal handler code
 664 
 665   __ test32(rax, polling_page);
 666   return offset;
 667 }
 668 
 669 
 670 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 671   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 672 }
 673 
 674 void LIR_Assembler::swap_reg(Register a, Register b) {
 675   __ xchgptr(a, b);
 676 }
 677 
 678 
 679 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 680   assert(src->is_constant(), "should not call otherwise");
 681   assert(dest->is_register(), "should not call otherwise");
 682   LIR_Const* c = src->as_constant_ptr();
 683 
 684   switch (c->type()) {
 685     case T_INT:
 686     case T_ADDRESS: {
 687       assert(patch_code == lir_patch_none, "no patching handled here");
 688       __ movl(dest->as_register(), c->as_jint());
 689       break;
 690     }
 691 
 692     case T_LONG: {
 693       assert(patch_code == lir_patch_none, "no patching handled here");
 694 #ifdef _LP64
 695       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 696 #else
 697       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 698       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 699 #endif // _LP64
 700       break;
 701     }
 702 
 703     case T_OBJECT: {
 704       if (patch_code != lir_patch_none) {
 705         jobject2reg_with_patching(dest->as_register(), info);
 706       } else {
 707         __ movoop(dest->as_register(), c->as_jobject());
 708       }
 709       break;
 710     }
 711 
 712     case T_FLOAT: {
 713       if (dest->is_single_xmm()) {
 714         if (c->is_zero_float()) {
 715           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 716         } else {
 717           __ movflt(dest->as_xmm_float_reg(),
 718                    InternalAddress(float_constant(c->as_jfloat())));
 719         }
 720       } else {
 721         assert(dest->is_single_fpu(), "must be");
 722         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 723         if (c->is_zero_float()) {
 724           __ fldz();
 725         } else if (c->is_one_float()) {
 726           __ fld1();
 727         } else {
 728           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 729         }
 730       }
 731       break;
 732     }
 733 
 734     case T_DOUBLE: {
 735       if (dest->is_double_xmm()) {
 736         if (c->is_zero_double()) {
 737           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 738         } else {
 739           __ movdbl(dest->as_xmm_double_reg(),
 740                     InternalAddress(double_constant(c->as_jdouble())));
 741         }
 742       } else {
 743         assert(dest->is_double_fpu(), "must be");
 744         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 745         if (c->is_zero_double()) {
 746           __ fldz();
 747         } else if (c->is_one_double()) {
 748           __ fld1();
 749         } else {
 750           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 751         }
 752       }
 753       break;
 754     }
 755 
 756     default:
 757       ShouldNotReachHere();
 758   }
 759 }
 760 
 761 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 762   assert(src->is_constant(), "should not call otherwise");
 763   assert(dest->is_stack(), "should not call otherwise");
 764   LIR_Const* c = src->as_constant_ptr();
 765 
 766   switch (c->type()) {
 767     case T_INT:  // fall through
 768     case T_FLOAT:
 769     case T_ADDRESS:
 770       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 771       break;
 772 
 773     case T_OBJECT:
 774       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 775       break;
 776 
 777     case T_LONG:  // fall through
 778     case T_DOUBLE:
 779 #ifdef _LP64
 780       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 781                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 782 #else
 783       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 784                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 785       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 786                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 787 #endif // _LP64
 788       break;
 789 
 790     default:
 791       ShouldNotReachHere();
 792   }
 793 }
 794 
 795 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
 796   assert(src->is_constant(), "should not call otherwise");
 797   assert(dest->is_address(), "should not call otherwise");
 798   LIR_Const* c = src->as_constant_ptr();
 799   LIR_Address* addr = dest->as_address_ptr();
 800 
 801   int null_check_here = code_offset();
 802   switch (type) {
 803     case T_INT:    // fall through
 804     case T_FLOAT:
 805     case T_ADDRESS:
 806       __ movl(as_Address(addr), c->as_jint_bits());
 807       break;
 808 
 809     case T_OBJECT:  // fall through
 810     case T_ARRAY:
 811       if (c->as_jobject() == NULL) {
 812         __ movptr(as_Address(addr), NULL_WORD);
 813       } else {
 814         if (is_literal_address(addr)) {
 815           ShouldNotReachHere();
 816           __ movoop(as_Address(addr, noreg), c->as_jobject());
 817         } else {
 818 #ifdef _LP64
 819           __ movoop(rscratch1, c->as_jobject());
 820           null_check_here = code_offset();
 821           __ movptr(as_Address_lo(addr), rscratch1);
 822 #else
 823           __ movoop(as_Address(addr), c->as_jobject());
 824 #endif
 825         }
 826       }
 827       break;
 828 
 829     case T_LONG:    // fall through
 830     case T_DOUBLE:
 831 #ifdef _LP64
 832       if (is_literal_address(addr)) {
 833         ShouldNotReachHere();
 834         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 835       } else {
 836         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 837         null_check_here = code_offset();
 838         __ movptr(as_Address_lo(addr), r10);
 839       }
 840 #else
 841       // Always reachable in 32bit so this doesn't produce useless move literal
 842       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 843       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 844 #endif // _LP64
 845       break;
 846 
 847     case T_BOOLEAN: // fall through
 848     case T_BYTE:
 849       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 850       break;
 851 
 852     case T_CHAR:    // fall through
 853     case T_SHORT:
 854       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 855       break;
 856 
 857     default:
 858       ShouldNotReachHere();
 859   };
 860 
 861   if (info != NULL) {
 862     add_debug_info_for_null_check(null_check_here, info);
 863   }
 864 }
 865 
 866 
 867 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 868   assert(src->is_register(), "should not call otherwise");
 869   assert(dest->is_register(), "should not call otherwise");
 870 
 871   // move between cpu-registers
 872   if (dest->is_single_cpu()) {
 873 #ifdef _LP64
 874     if (src->type() == T_LONG) {
 875       // Can do LONG -> OBJECT
 876       move_regs(src->as_register_lo(), dest->as_register());
 877       return;
 878     }
 879 #endif
 880     assert(src->is_single_cpu(), "must match");
 881     if (src->type() == T_OBJECT) {
 882       __ verify_oop(src->as_register());
 883     }
 884     move_regs(src->as_register(), dest->as_register());
 885 
 886   } else if (dest->is_double_cpu()) {
 887 #ifdef _LP64
 888     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 889       // Surprising to me but we can see move of a long to t_object
 890       __ verify_oop(src->as_register());
 891       move_regs(src->as_register(), dest->as_register_lo());
 892       return;
 893     }
 894 #endif
 895     assert(src->is_double_cpu(), "must match");
 896     Register f_lo = src->as_register_lo();
 897     Register f_hi = src->as_register_hi();
 898     Register t_lo = dest->as_register_lo();
 899     Register t_hi = dest->as_register_hi();
 900 #ifdef _LP64
 901     assert(f_hi == f_lo, "must be same");
 902     assert(t_hi == t_lo, "must be same");
 903     move_regs(f_lo, t_lo);
 904 #else
 905     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 906 
 907 
 908     if (f_lo == t_hi && f_hi == t_lo) {
 909       swap_reg(f_lo, f_hi);
 910     } else if (f_hi == t_lo) {
 911       assert(f_lo != t_hi, "overwriting register");
 912       move_regs(f_hi, t_hi);
 913       move_regs(f_lo, t_lo);
 914     } else {
 915       assert(f_hi != t_lo, "overwriting register");
 916       move_regs(f_lo, t_lo);
 917       move_regs(f_hi, t_hi);
 918     }
 919 #endif // LP64
 920 
 921     // special moves from fpu-register to xmm-register
 922     // necessary for method results
 923   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 924     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 925     __ fld_s(Address(rsp, 0));
 926   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 927     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 928     __ fld_d(Address(rsp, 0));
 929   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 930     __ fstp_s(Address(rsp, 0));
 931     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 932   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 933     __ fstp_d(Address(rsp, 0));
 934     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 935 
 936     // move between xmm-registers
 937   } else if (dest->is_single_xmm()) {
 938     assert(src->is_single_xmm(), "must match");
 939     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 940   } else if (dest->is_double_xmm()) {
 941     assert(src->is_double_xmm(), "must match");
 942     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 943 
 944     // move between fpu-registers (no instruction necessary because of fpu-stack)
 945   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 946     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 947     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 948   } else {
 949     ShouldNotReachHere();
 950   }
 951 }
 952 
 953 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 954   assert(src->is_register(), "should not call otherwise");
 955   assert(dest->is_stack(), "should not call otherwise");
 956 
 957   if (src->is_single_cpu()) {
 958     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 959     if (type == T_OBJECT || type == T_ARRAY) {
 960       __ verify_oop(src->as_register());
 961       __ movptr (dst, src->as_register());
 962     } else {
 963       __ movl (dst, src->as_register());
 964     }
 965 
 966   } else if (src->is_double_cpu()) {
 967     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 968     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 969     __ movptr (dstLO, src->as_register_lo());
 970     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 971 
 972   } else if (src->is_single_xmm()) {
 973     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 974     __ movflt(dst_addr, src->as_xmm_float_reg());
 975 
 976   } else if (src->is_double_xmm()) {
 977     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 978     __ movdbl(dst_addr, src->as_xmm_double_reg());
 979 
 980   } else if (src->is_single_fpu()) {
 981     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 982     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 983     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 984     else                   __ fst_s  (dst_addr);
 985 
 986   } else if (src->is_double_fpu()) {
 987     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 988     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 989     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 990     else                   __ fst_d  (dst_addr);
 991 
 992   } else {
 993     ShouldNotReachHere();
 994   }
 995 }
 996 
 997 
 998 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
 999   LIR_Address* to_addr = dest->as_address_ptr();
1000   PatchingStub* patch = NULL;
1001 
1002   if (type == T_ARRAY || type == T_OBJECT) {
1003     __ verify_oop(src->as_register());
1004   }
1005   if (patch_code != lir_patch_none) {
1006     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1007     Address toa = as_Address(to_addr);
1008     assert(toa.disp() != 0, "must have");
1009   }
1010   if (info != NULL) {
1011     add_debug_info_for_null_check_here(info);
1012   }
1013 
1014   switch (type) {
1015     case T_FLOAT: {
1016       if (src->is_single_xmm()) {
1017         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1018       } else {
1019         assert(src->is_single_fpu(), "must be");
1020         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1021         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1022         else                    __ fst_s (as_Address(to_addr));
1023       }
1024       break;
1025     }
1026 
1027     case T_DOUBLE: {
1028       if (src->is_double_xmm()) {
1029         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1030       } else {
1031         assert(src->is_double_fpu(), "must be");
1032         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1033         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1034         else                    __ fst_d (as_Address(to_addr));
1035       }
1036       break;
1037     }
1038 
1039     case T_ADDRESS: // fall through
1040     case T_ARRAY:   // fall through
1041     case T_OBJECT:  // fall through
1042 #ifdef _LP64
1043       __ movptr(as_Address(to_addr), src->as_register());
1044       break;
1045 #endif // _LP64
1046     case T_INT:
1047       __ movl(as_Address(to_addr), src->as_register());
1048       break;
1049 
1050     case T_LONG: {
1051       Register from_lo = src->as_register_lo();
1052       Register from_hi = src->as_register_hi();
1053 #ifdef _LP64
1054       __ movptr(as_Address_lo(to_addr), from_lo);
1055 #else
1056       Register base = to_addr->base()->as_register();
1057       Register index = noreg;
1058       if (to_addr->index()->is_register()) {
1059         index = to_addr->index()->as_register();
1060       }
1061       if (base == from_lo || index == from_lo) {
1062         assert(base != from_hi, "can't be");
1063         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1064         __ movl(as_Address_hi(to_addr), from_hi);
1065         if (patch != NULL) {
1066           patching_epilog(patch, lir_patch_high, base, info);
1067           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1068           patch_code = lir_patch_low;
1069         }
1070         __ movl(as_Address_lo(to_addr), from_lo);
1071       } else {
1072         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1073         __ movl(as_Address_lo(to_addr), from_lo);
1074         if (patch != NULL) {
1075           patching_epilog(patch, lir_patch_low, base, info);
1076           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1077           patch_code = lir_patch_high;
1078         }
1079         __ movl(as_Address_hi(to_addr), from_hi);
1080       }
1081 #endif // _LP64
1082       break;
1083     }
1084 
1085     case T_BYTE:    // fall through
1086     case T_BOOLEAN: {
1087       Register src_reg = src->as_register();
1088       Address dst_addr = as_Address(to_addr);
1089       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1090       __ movb(dst_addr, src_reg);
1091       break;
1092     }
1093 
1094     case T_CHAR:    // fall through
1095     case T_SHORT:
1096       __ movw(as_Address(to_addr), src->as_register());
1097       break;
1098 
1099     default:
1100       ShouldNotReachHere();
1101   }
1102 
1103   if (patch_code != lir_patch_none) {
1104     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1105   }
1106 }
1107 
1108 
1109 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1110   assert(src->is_stack(), "should not call otherwise");
1111   assert(dest->is_register(), "should not call otherwise");
1112 
1113   if (dest->is_single_cpu()) {
1114     if (type == T_ARRAY || type == T_OBJECT) {
1115       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1116       __ verify_oop(dest->as_register());
1117     } else {
1118       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1119     }
1120 
1121   } else if (dest->is_double_cpu()) {
1122     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1123     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1124     __ movptr(dest->as_register_lo(), src_addr_LO);
1125     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1126 
1127   } else if (dest->is_single_xmm()) {
1128     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1129     __ movflt(dest->as_xmm_float_reg(), src_addr);
1130 
1131   } else if (dest->is_double_xmm()) {
1132     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1133     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1134 
1135   } else if (dest->is_single_fpu()) {
1136     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1137     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1138     __ fld_s(src_addr);
1139 
1140   } else if (dest->is_double_fpu()) {
1141     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1142     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1143     __ fld_d(src_addr);
1144 
1145   } else {
1146     ShouldNotReachHere();
1147   }
1148 }
1149 
1150 
1151 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1152   if (src->is_single_stack()) {
1153     if (type == T_OBJECT || type == T_ARRAY) {
1154       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1155       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1156     } else {
1157 #ifndef _LP64
1158       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1159       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1160 #else
1161       //no pushl on 64bits
1162       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1163       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1164 #endif
1165     }
1166 
1167   } else if (src->is_double_stack()) {
1168 #ifdef _LP64
1169     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1170     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1171 #else
1172     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1173     // push and pop the part at src + wordSize, adding wordSize for the previous push
1174     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1175     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1176     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1177 #endif // _LP64
1178 
1179   } else {
1180     ShouldNotReachHere();
1181   }
1182 }
1183 
1184 
1185 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
1186   assert(src->is_address(), "should not call otherwise");
1187   assert(dest->is_register(), "should not call otherwise");
1188 
1189   LIR_Address* addr = src->as_address_ptr();
1190   Address from_addr = as_Address(addr);
1191 
1192   switch (type) {
1193     case T_BOOLEAN: // fall through
1194     case T_BYTE:    // fall through
1195     case T_CHAR:    // fall through
1196     case T_SHORT:
1197       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1198         // on pre P6 processors we may get partial register stalls
1199         // so blow away the value of to_rinfo before loading a
1200         // partial word into it.  Do it here so that it precedes
1201         // the potential patch point below.
1202         __ xorptr(dest->as_register(), dest->as_register());
1203       }
1204       break;
1205   }
1206 
1207   PatchingStub* patch = NULL;
1208   if (patch_code != lir_patch_none) {
1209     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1210     assert(from_addr.disp() != 0, "must have");
1211   }
1212   if (info != NULL) {
1213     add_debug_info_for_null_check_here(info);
1214   }
1215 
1216   switch (type) {
1217     case T_FLOAT: {
1218       if (dest->is_single_xmm()) {
1219         __ movflt(dest->as_xmm_float_reg(), from_addr);
1220       } else {
1221         assert(dest->is_single_fpu(), "must be");
1222         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1223         __ fld_s(from_addr);
1224       }
1225       break;
1226     }
1227 
1228     case T_DOUBLE: {
1229       if (dest->is_double_xmm()) {
1230         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1231       } else {
1232         assert(dest->is_double_fpu(), "must be");
1233         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1234         __ fld_d(from_addr);
1235       }
1236       break;
1237     }
1238 
1239     case T_ADDRESS: // fall through
1240     case T_OBJECT:  // fall through
1241     case T_ARRAY:   // fall through
1242 #ifdef _LP64
1243       __ movptr(dest->as_register(), from_addr);
1244       break;
1245 #endif // _L64
1246     case T_INT:
1247       __ movl(dest->as_register(), from_addr);
1248       break;
1249 
1250     case T_LONG: {
1251       Register to_lo = dest->as_register_lo();
1252       Register to_hi = dest->as_register_hi();
1253 #ifdef _LP64
1254       __ movptr(to_lo, as_Address_lo(addr));
1255 #else
1256       Register base = addr->base()->as_register();
1257       Register index = noreg;
1258       if (addr->index()->is_register()) {
1259         index = addr->index()->as_register();
1260       }
1261       if ((base == to_lo && index == to_hi) ||
1262           (base == to_hi && index == to_lo)) {
1263         // addresses with 2 registers are only formed as a result of
1264         // array access so this code will never have to deal with
1265         // patches or null checks.
1266         assert(info == NULL && patch == NULL, "must be");
1267         __ lea(to_hi, as_Address(addr));
1268         __ movl(to_lo, Address(to_hi, 0));
1269         __ movl(to_hi, Address(to_hi, BytesPerWord));
1270       } else if (base == to_lo || index == to_lo) {
1271         assert(base != to_hi, "can't be");
1272         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1273         __ movl(to_hi, as_Address_hi(addr));
1274         if (patch != NULL) {
1275           patching_epilog(patch, lir_patch_high, base, info);
1276           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1277           patch_code = lir_patch_low;
1278         }
1279         __ movl(to_lo, as_Address_lo(addr));
1280       } else {
1281         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1282         __ movl(to_lo, as_Address_lo(addr));
1283         if (patch != NULL) {
1284           patching_epilog(patch, lir_patch_low, base, info);
1285           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1286           patch_code = lir_patch_high;
1287         }
1288         __ movl(to_hi, as_Address_hi(addr));
1289       }
1290 #endif // _LP64
1291       break;
1292     }
1293 
1294     case T_BOOLEAN: // fall through
1295     case T_BYTE: {
1296       Register dest_reg = dest->as_register();
1297       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1298       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1299         __ movsbl(dest_reg, from_addr);
1300       } else {
1301         __ movb(dest_reg, from_addr);
1302         __ shll(dest_reg, 24);
1303         __ sarl(dest_reg, 24);
1304       }
1305       break;
1306     }
1307 
1308     case T_CHAR: {
1309       Register dest_reg = dest->as_register();
1310       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1311       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1312         __ movzwl(dest_reg, from_addr);
1313       } else {
1314         __ movw(dest_reg, from_addr);
1315       }
1316       break;
1317     }
1318 
1319     case T_SHORT: {
1320       Register dest_reg = dest->as_register();
1321       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1322         __ movswl(dest_reg, from_addr);
1323       } else {
1324         __ movw(dest_reg, from_addr);
1325         __ shll(dest_reg, 16);
1326         __ sarl(dest_reg, 16);
1327       }
1328       break;
1329     }
1330 
1331     default:
1332       ShouldNotReachHere();
1333   }
1334 
1335   if (patch != NULL) {
1336     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1337   }
1338 
1339   if (type == T_ARRAY || type == T_OBJECT) {
1340     __ verify_oop(dest->as_register());
1341   }
1342 }
1343 
1344 
1345 void LIR_Assembler::prefetchr(LIR_Opr src) {
1346   LIR_Address* addr = src->as_address_ptr();
1347   Address from_addr = as_Address(addr);
1348 
1349   if (VM_Version::supports_sse()) {
1350     switch (ReadPrefetchInstr) {
1351       case 0:
1352         __ prefetchnta(from_addr); break;
1353       case 1:
1354         __ prefetcht0(from_addr); break;
1355       case 2:
1356         __ prefetcht2(from_addr); break;
1357       default:
1358         ShouldNotReachHere(); break;
1359     }
1360   } else if (VM_Version::supports_3dnow()) {
1361     __ prefetchr(from_addr);
1362   }
1363 }
1364 
1365 
1366 void LIR_Assembler::prefetchw(LIR_Opr src) {
1367   LIR_Address* addr = src->as_address_ptr();
1368   Address from_addr = as_Address(addr);
1369 
1370   if (VM_Version::supports_sse()) {
1371     switch (AllocatePrefetchInstr) {
1372       case 0:
1373         __ prefetchnta(from_addr); break;
1374       case 1:
1375         __ prefetcht0(from_addr); break;
1376       case 2:
1377         __ prefetcht2(from_addr); break;
1378       case 3:
1379         __ prefetchw(from_addr); break;
1380       default:
1381         ShouldNotReachHere(); break;
1382     }
1383   } else if (VM_Version::supports_3dnow()) {
1384     __ prefetchw(from_addr);
1385   }
1386 }
1387 
1388 
1389 NEEDS_CLEANUP; // This could be static?
1390 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1391   int elem_size = type2aelembytes(type);
1392   switch (elem_size) {
1393     case 1: return Address::times_1;
1394     case 2: return Address::times_2;
1395     case 4: return Address::times_4;
1396     case 8: return Address::times_8;
1397   }
1398   ShouldNotReachHere();
1399   return Address::no_scale;
1400 }
1401 
1402 
1403 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1404   switch (op->code()) {
1405     case lir_idiv:
1406     case lir_irem:
1407       arithmetic_idiv(op->code(),
1408                       op->in_opr1(),
1409                       op->in_opr2(),
1410                       op->in_opr3(),
1411                       op->result_opr(),
1412                       op->info());
1413       break;
1414     default:      ShouldNotReachHere(); break;
1415   }
1416 }
1417 
1418 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1419 #ifdef ASSERT
1420   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1421   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1422   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1423 #endif
1424 
1425   if (op->cond() == lir_cond_always) {
1426     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1427     __ jmp (*(op->label()));
1428   } else {
1429     Assembler::Condition acond = Assembler::zero;
1430     if (op->code() == lir_cond_float_branch) {
1431       assert(op->ublock() != NULL, "must have unordered successor");
1432       __ jcc(Assembler::parity, *(op->ublock()->label()));
1433       switch(op->cond()) {
1434         case lir_cond_equal:        acond = Assembler::equal;      break;
1435         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1436         case lir_cond_less:         acond = Assembler::below;      break;
1437         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1438         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1439         case lir_cond_greater:      acond = Assembler::above;      break;
1440         default:                         ShouldNotReachHere();
1441       }
1442     } else {
1443       switch (op->cond()) {
1444         case lir_cond_equal:        acond = Assembler::equal;       break;
1445         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1446         case lir_cond_less:         acond = Assembler::less;        break;
1447         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1448         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1449         case lir_cond_greater:      acond = Assembler::greater;     break;
1450         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1451         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1452         default:                         ShouldNotReachHere();
1453       }
1454     }
1455     __ jcc(acond,*(op->label()));
1456   }
1457 }
1458 
1459 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1460   LIR_Opr src  = op->in_opr();
1461   LIR_Opr dest = op->result_opr();
1462 
1463   switch (op->bytecode()) {
1464     case Bytecodes::_i2l:
1465 #ifdef _LP64
1466       __ movl2ptr(dest->as_register_lo(), src->as_register());
1467 #else
1468       move_regs(src->as_register(), dest->as_register_lo());
1469       move_regs(src->as_register(), dest->as_register_hi());
1470       __ sarl(dest->as_register_hi(), 31);
1471 #endif // LP64
1472       break;
1473 
1474     case Bytecodes::_l2i:
1475       move_regs(src->as_register_lo(), dest->as_register());
1476       break;
1477 
1478     case Bytecodes::_i2b:
1479       move_regs(src->as_register(), dest->as_register());
1480       __ sign_extend_byte(dest->as_register());
1481       break;
1482 
1483     case Bytecodes::_i2c:
1484       move_regs(src->as_register(), dest->as_register());
1485       __ andl(dest->as_register(), 0xFFFF);
1486       break;
1487 
1488     case Bytecodes::_i2s:
1489       move_regs(src->as_register(), dest->as_register());
1490       __ sign_extend_short(dest->as_register());
1491       break;
1492 
1493 
1494     case Bytecodes::_f2d:
1495     case Bytecodes::_d2f:
1496       if (dest->is_single_xmm()) {
1497         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1498       } else if (dest->is_double_xmm()) {
1499         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1500       } else {
1501         assert(src->fpu() == dest->fpu(), "register must be equal");
1502         // do nothing (float result is rounded later through spilling)
1503       }
1504       break;
1505 
1506     case Bytecodes::_i2f:
1507     case Bytecodes::_i2d:
1508       if (dest->is_single_xmm()) {
1509         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1510       } else if (dest->is_double_xmm()) {
1511         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1512       } else {
1513         assert(dest->fpu() == 0, "result must be on TOS");
1514         __ movl(Address(rsp, 0), src->as_register());
1515         __ fild_s(Address(rsp, 0));
1516       }
1517       break;
1518 
1519     case Bytecodes::_f2i:
1520     case Bytecodes::_d2i:
1521       if (src->is_single_xmm()) {
1522         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1523       } else if (src->is_double_xmm()) {
1524         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1525       } else {
1526         assert(src->fpu() == 0, "input must be on TOS");
1527         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1528         __ fist_s(Address(rsp, 0));
1529         __ movl(dest->as_register(), Address(rsp, 0));
1530         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1531       }
1532 
1533       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1534       assert(op->stub() != NULL, "stub required");
1535       __ cmpl(dest->as_register(), 0x80000000);
1536       __ jcc(Assembler::equal, *op->stub()->entry());
1537       __ bind(*op->stub()->continuation());
1538       break;
1539 
1540     case Bytecodes::_l2f:
1541     case Bytecodes::_l2d:
1542       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1543       assert(dest->fpu() == 0, "result must be on TOS");
1544 
1545       __ movptr(Address(rsp, 0),            src->as_register_lo());
1546       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1547       __ fild_d(Address(rsp, 0));
1548       // float result is rounded later through spilling
1549       break;
1550 
1551     case Bytecodes::_f2l:
1552     case Bytecodes::_d2l:
1553       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1554       assert(src->fpu() == 0, "input must be on TOS");
1555       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1556 
1557       // instruction sequence too long to inline it here
1558       {
1559         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1560       }
1561       break;
1562 
1563     default: ShouldNotReachHere();
1564   }
1565 }
1566 
1567 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1568   if (op->init_check()) {
1569     __ cmpl(Address(op->klass()->as_register(),
1570                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1571             instanceKlass::fully_initialized);
1572     add_debug_info_for_null_check_here(op->stub()->info());
1573     __ jcc(Assembler::notEqual, *op->stub()->entry());
1574   }
1575   __ allocate_object(op->obj()->as_register(),
1576                      op->tmp1()->as_register(),
1577                      op->tmp2()->as_register(),
1578                      op->header_size(),
1579                      op->object_size(),
1580                      op->klass()->as_register(),
1581                      *op->stub()->entry());
1582   __ bind(*op->stub()->continuation());
1583 }
1584 
1585 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1586   if (UseSlowPath ||
1587       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1588       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1589     __ jmp(*op->stub()->entry());
1590   } else {
1591     Register len =  op->len()->as_register();
1592     Register tmp1 = op->tmp1()->as_register();
1593     Register tmp2 = op->tmp2()->as_register();
1594     Register tmp3 = op->tmp3()->as_register();
1595     if (len == tmp1) {
1596       tmp1 = tmp3;
1597     } else if (len == tmp2) {
1598       tmp2 = tmp3;
1599     } else if (len == tmp3) {
1600       // everything is ok
1601     } else {
1602       __ mov(tmp3, len);
1603     }
1604     __ allocate_array(op->obj()->as_register(),
1605                       len,
1606                       tmp1,
1607                       tmp2,
1608                       arrayOopDesc::header_size(op->type()),
1609                       array_element_size(op->type()),
1610                       op->klass()->as_register(),
1611                       *op->stub()->entry());
1612   }
1613   __ bind(*op->stub()->continuation());
1614 }
1615 
1616 
1617 
1618 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1619   LIR_Code code = op->code();
1620   if (code == lir_store_check) {
1621     Register value = op->object()->as_register();
1622     Register array = op->array()->as_register();
1623     Register k_RInfo = op->tmp1()->as_register();
1624     Register klass_RInfo = op->tmp2()->as_register();
1625     Register Rtmp1 = op->tmp3()->as_register();
1626 
1627     CodeStub* stub = op->stub();
1628     Label done;
1629     __ cmpptr(value, (int32_t)NULL_WORD);
1630     __ jcc(Assembler::equal, done);
1631     add_debug_info_for_null_check_here(op->info_for_exception());
1632     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
1633     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
1634 
1635     // get instance klass
1636     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1637     // perform the fast part of the checking logic
1638     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
1639     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1640     __ push(klass_RInfo);
1641     __ push(k_RInfo);
1642     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1643     __ pop(klass_RInfo);
1644     __ pop(k_RInfo);
1645     // result is a boolean
1646     __ cmpl(k_RInfo, 0);
1647     __ jcc(Assembler::equal, *stub->entry());
1648     __ bind(done);
1649   } else if (op->code() == lir_checkcast) {
1650     // we always need a stub for the failure case.
1651     CodeStub* stub = op->stub();
1652     Register obj = op->object()->as_register();
1653     Register k_RInfo = op->tmp1()->as_register();
1654     Register klass_RInfo = op->tmp2()->as_register();
1655     Register dst = op->result_opr()->as_register();
1656     ciKlass* k = op->klass();
1657     Register Rtmp1 = noreg;
1658 
1659     Label done;
1660     if (obj == k_RInfo) {
1661       k_RInfo = dst;
1662     } else if (obj == klass_RInfo) {
1663       klass_RInfo = dst;
1664     }
1665     if (k->is_loaded()) {
1666       select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1667     } else {
1668       Rtmp1 = op->tmp3()->as_register();
1669       select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1670     }
1671 
1672     assert_different_registers(obj, k_RInfo, klass_RInfo);
1673     if (!k->is_loaded()) {
1674       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1675     } else {
1676 #ifdef _LP64
1677       __ movoop(k_RInfo, k->constant_encoding());
1678 #else
1679       k_RInfo = noreg;
1680 #endif // _LP64
1681     }
1682     assert(obj != k_RInfo, "must be different");
1683     __ cmpptr(obj, (int32_t)NULL_WORD);
1684     if (op->profiled_method() != NULL) {
1685       ciMethod* method = op->profiled_method();
1686       int bci          = op->profiled_bci();
1687 
1688       Label profile_done;
1689       __ jcc(Assembler::notEqual, profile_done);
1690       // Object is null; update methodDataOop
1691       ciMethodData* md = method->method_data();
1692       if (md == NULL) {
1693         bailout("out of memory building methodDataOop");
1694         return;
1695       }
1696       ciProfileData* data = md->bci_to_data(bci);
1697       assert(data != NULL,       "need data for checkcast");
1698       assert(data->is_BitData(), "need BitData for checkcast");
1699       Register mdo  = klass_RInfo;
1700       __ movoop(mdo, md->constant_encoding());
1701       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1702       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1703       __ orl(data_addr, header_bits);
1704       __ jmp(done);
1705       __ bind(profile_done);
1706     } else {
1707       __ jcc(Assembler::equal, done);
1708     }
1709     __ verify_oop(obj);
1710 
1711     if (op->fast_check()) {
1712       // get object classo
1713       // not a safepoint as obj null check happens earlier
1714       if (k->is_loaded()) {
1715 #ifdef _LP64
1716         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1717 #else
1718         __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1719 #endif // _LP64
1720       } else {
1721         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1722 
1723       }
1724       __ jcc(Assembler::notEqual, *stub->entry());
1725       __ bind(done);
1726     } else {
1727       // get object class
1728       // not a safepoint as obj null check happens earlier
1729       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1730       if (k->is_loaded()) {
1731         // See if we get an immediate positive hit
1732 #ifdef _LP64
1733         __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1734 #else
1735         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1736 #endif // _LP64
1737         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1738           __ jcc(Assembler::notEqual, *stub->entry());
1739         } else {
1740           // See if we get an immediate positive hit
1741           __ jcc(Assembler::equal, done);
1742           // check for self
1743 #ifdef _LP64
1744           __ cmpptr(klass_RInfo, k_RInfo);
1745 #else
1746           __ cmpoop(klass_RInfo, k->constant_encoding());
1747 #endif // _LP64
1748           __ jcc(Assembler::equal, done);
1749 
1750           __ push(klass_RInfo);
1751 #ifdef _LP64
1752           __ push(k_RInfo);
1753 #else
1754           __ pushoop(k->constant_encoding());
1755 #endif // _LP64
1756           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1757           __ pop(klass_RInfo);
1758           __ pop(klass_RInfo);
1759           // result is a boolean
1760           __ cmpl(klass_RInfo, 0);
1761           __ jcc(Assembler::equal, *stub->entry());
1762         }
1763         __ bind(done);
1764       } else {
1765         // perform the fast part of the checking logic
1766         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, &done, stub->entry(), NULL);
1767         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1768         __ push(klass_RInfo);
1769         __ push(k_RInfo);
1770         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1771         __ pop(klass_RInfo);
1772         __ pop(k_RInfo);
1773         // result is a boolean
1774         __ cmpl(k_RInfo, 0);
1775         __ jcc(Assembler::equal, *stub->entry());
1776         __ bind(done);
1777       }
1778 
1779     }
1780     if (dst != obj) {
1781       __ mov(dst, obj);
1782     }
1783   } else if (code == lir_instanceof) {
1784     Register obj = op->object()->as_register();
1785     Register k_RInfo = op->tmp1()->as_register();
1786     Register klass_RInfo = op->tmp2()->as_register();
1787     Register dst = op->result_opr()->as_register();
1788     ciKlass* k = op->klass();
1789 
1790     Label done;
1791     Label zero;
1792     Label one;
1793     if (obj == k_RInfo) {
1794       k_RInfo = klass_RInfo;
1795       klass_RInfo = obj;
1796     }
1797     // patching may screw with our temporaries on sparc,
1798     // so let's do it before loading the class
1799     if (!k->is_loaded()) {
1800       jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1801     } else {
1802       LP64_ONLY(__ movoop(k_RInfo, k->constant_encoding()));
1803     }
1804     assert(obj != k_RInfo, "must be different");
1805 
1806     __ verify_oop(obj);
1807     if (op->fast_check()) {
1808       __ cmpptr(obj, (int32_t)NULL_WORD);
1809       __ jcc(Assembler::equal, zero);
1810       // get object class
1811       // not a safepoint as obj null check happens earlier
1812       if (LP64_ONLY(false &&) k->is_loaded()) {
1813         NOT_LP64(__ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding()));
1814         k_RInfo = noreg;
1815       } else {
1816         __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1817 
1818       }
1819       __ jcc(Assembler::equal, one);
1820     } else {
1821       // get object class
1822       // not a safepoint as obj null check happens earlier
1823       __ cmpptr(obj, (int32_t)NULL_WORD);
1824       __ jcc(Assembler::equal, zero);
1825       __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1826 
1827 #ifndef _LP64
1828       if (k->is_loaded()) {
1829         // See if we get an immediate positive hit
1830         __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1831         __ jcc(Assembler::equal, one);
1832         if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() == k->super_check_offset()) {
1833           // check for self
1834           __ cmpoop(klass_RInfo, k->constant_encoding());
1835           __ jcc(Assembler::equal, one);
1836           __ push(klass_RInfo);
1837           __ pushoop(k->constant_encoding());
1838           __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1839           __ pop(klass_RInfo);
1840           __ pop(dst);
1841           __ jmp(done);
1842         }
1843       }
1844         else // next block is unconditional if LP64:
1845 #endif // LP64
1846       {
1847         assert(dst != klass_RInfo && dst != k_RInfo, "need 3 registers");
1848 
1849         // perform the fast part of the checking logic
1850         __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, dst, &one, &zero, NULL);
1851         // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1852         __ push(klass_RInfo);
1853         __ push(k_RInfo);
1854         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1855         __ pop(klass_RInfo);
1856         __ pop(dst);
1857         __ jmp(done);
1858       }
1859     }
1860     __ bind(zero);
1861     __ xorptr(dst, dst);
1862     __ jmp(done);
1863     __ bind(one);
1864     __ movptr(dst, 1);
1865     __ bind(done);
1866   } else {
1867     ShouldNotReachHere();
1868   }
1869 
1870 }
1871 
1872 
1873 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1874   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1875     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1876     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1877     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1878     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1879     Register addr = op->addr()->as_register();
1880     if (os::is_MP()) {
1881       __ lock();
1882     }
1883     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1884 
1885   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1886     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1887     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1888     Register newval = op->new_value()->as_register();
1889     Register cmpval = op->cmp_value()->as_register();
1890     assert(cmpval == rax, "wrong register");
1891     assert(newval != NULL, "new val must be register");
1892     assert(cmpval != newval, "cmp and new values must be in different registers");
1893     assert(cmpval != addr, "cmp and addr must be in different registers");
1894     assert(newval != addr, "new value and addr must be in different registers");
1895     if (os::is_MP()) {
1896       __ lock();
1897     }
1898     if ( op->code() == lir_cas_obj) {
1899       __ cmpxchgptr(newval, Address(addr, 0));
1900     } else if (op->code() == lir_cas_int) {
1901       __ cmpxchgl(newval, Address(addr, 0));
1902     } else {
1903       LP64_ONLY(__ cmpxchgq(newval, Address(addr, 0)));
1904     }
1905 #ifdef _LP64
1906   } else if (op->code() == lir_cas_long) {
1907     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1908     Register newval = op->new_value()->as_register_lo();
1909     Register cmpval = op->cmp_value()->as_register_lo();
1910     assert(cmpval == rax, "wrong register");
1911     assert(newval != NULL, "new val must be register");
1912     assert(cmpval != newval, "cmp and new values must be in different registers");
1913     assert(cmpval != addr, "cmp and addr must be in different registers");
1914     assert(newval != addr, "new value and addr must be in different registers");
1915     if (os::is_MP()) {
1916       __ lock();
1917     }
1918     __ cmpxchgq(newval, Address(addr, 0));
1919 #endif // _LP64
1920   } else {
1921     Unimplemented();
1922   }
1923 }
1924 
1925 
1926 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1927   Assembler::Condition acond, ncond;
1928   switch (condition) {
1929     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1930     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1931     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1932     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1933     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1934     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1935     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1936     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1937     default:                    ShouldNotReachHere();
1938   }
1939 
1940   if (opr1->is_cpu_register()) {
1941     reg2reg(opr1, result);
1942   } else if (opr1->is_stack()) {
1943     stack2reg(opr1, result, result->type());
1944   } else if (opr1->is_constant()) {
1945     const2reg(opr1, result, lir_patch_none, NULL);
1946   } else {
1947     ShouldNotReachHere();
1948   }
1949 
1950   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1951     // optimized version that does not require a branch
1952     if (opr2->is_single_cpu()) {
1953       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1954       __ cmov(ncond, result->as_register(), opr2->as_register());
1955     } else if (opr2->is_double_cpu()) {
1956       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1957       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1958       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1959       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
1960     } else if (opr2->is_single_stack()) {
1961       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
1962     } else if (opr2->is_double_stack()) {
1963       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
1964       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
1965     } else {
1966       ShouldNotReachHere();
1967     }
1968 
1969   } else {
1970     Label skip;
1971     __ jcc (acond, skip);
1972     if (opr2->is_cpu_register()) {
1973       reg2reg(opr2, result);
1974     } else if (opr2->is_stack()) {
1975       stack2reg(opr2, result, result->type());
1976     } else if (opr2->is_constant()) {
1977       const2reg(opr2, result, lir_patch_none, NULL);
1978     } else {
1979       ShouldNotReachHere();
1980     }
1981     __ bind(skip);
1982   }
1983 }
1984 
1985 
1986 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1987   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1988 
1989   if (left->is_single_cpu()) {
1990     assert(left == dest, "left and dest must be equal");
1991     Register lreg = left->as_register();
1992 
1993     if (right->is_single_cpu()) {
1994       // cpu register - cpu register
1995       Register rreg = right->as_register();
1996       switch (code) {
1997         case lir_add: __ addl (lreg, rreg); break;
1998         case lir_sub: __ subl (lreg, rreg); break;
1999         case lir_mul: __ imull(lreg, rreg); break;
2000         default:      ShouldNotReachHere();
2001       }
2002 
2003     } else if (right->is_stack()) {
2004       // cpu register - stack
2005       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2006       switch (code) {
2007         case lir_add: __ addl(lreg, raddr); break;
2008         case lir_sub: __ subl(lreg, raddr); break;
2009         default:      ShouldNotReachHere();
2010       }
2011 
2012     } else if (right->is_constant()) {
2013       // cpu register - constant
2014       jint c = right->as_constant_ptr()->as_jint();
2015       switch (code) {
2016         case lir_add: {
2017           __ increment(lreg, c);
2018           break;
2019         }
2020         case lir_sub: {
2021           __ decrement(lreg, c);
2022           break;
2023         }
2024         default: ShouldNotReachHere();
2025       }
2026 
2027     } else {
2028       ShouldNotReachHere();
2029     }
2030 
2031   } else if (left->is_double_cpu()) {
2032     assert(left == dest, "left and dest must be equal");
2033     Register lreg_lo = left->as_register_lo();
2034     Register lreg_hi = left->as_register_hi();
2035 
2036     if (right->is_double_cpu()) {
2037       // cpu register - cpu register
2038       Register rreg_lo = right->as_register_lo();
2039       Register rreg_hi = right->as_register_hi();
2040       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2041       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2042       switch (code) {
2043         case lir_add:
2044           __ addptr(lreg_lo, rreg_lo);
2045           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2046           break;
2047         case lir_sub:
2048           __ subptr(lreg_lo, rreg_lo);
2049           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2050           break;
2051         case lir_mul:
2052 #ifdef _LP64
2053           __ imulq(lreg_lo, rreg_lo);
2054 #else
2055           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2056           __ imull(lreg_hi, rreg_lo);
2057           __ imull(rreg_hi, lreg_lo);
2058           __ addl (rreg_hi, lreg_hi);
2059           __ mull (rreg_lo);
2060           __ addl (lreg_hi, rreg_hi);
2061 #endif // _LP64
2062           break;
2063         default:
2064           ShouldNotReachHere();
2065       }
2066 
2067     } else if (right->is_constant()) {
2068       // cpu register - constant
2069 #ifdef _LP64
2070       jlong c = right->as_constant_ptr()->as_jlong_bits();
2071       __ movptr(r10, (intptr_t) c);
2072       switch (code) {
2073         case lir_add:
2074           __ addptr(lreg_lo, r10);
2075           break;
2076         case lir_sub:
2077           __ subptr(lreg_lo, r10);
2078           break;
2079         default:
2080           ShouldNotReachHere();
2081       }
2082 #else
2083       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2084       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2085       switch (code) {
2086         case lir_add:
2087           __ addptr(lreg_lo, c_lo);
2088           __ adcl(lreg_hi, c_hi);
2089           break;
2090         case lir_sub:
2091           __ subptr(lreg_lo, c_lo);
2092           __ sbbl(lreg_hi, c_hi);
2093           break;
2094         default:
2095           ShouldNotReachHere();
2096       }
2097 #endif // _LP64
2098 
2099     } else {
2100       ShouldNotReachHere();
2101     }
2102 
2103   } else if (left->is_single_xmm()) {
2104     assert(left == dest, "left and dest must be equal");
2105     XMMRegister lreg = left->as_xmm_float_reg();
2106 
2107     if (right->is_single_xmm()) {
2108       XMMRegister rreg = right->as_xmm_float_reg();
2109       switch (code) {
2110         case lir_add: __ addss(lreg, rreg);  break;
2111         case lir_sub: __ subss(lreg, rreg);  break;
2112         case lir_mul_strictfp: // fall through
2113         case lir_mul: __ mulss(lreg, rreg);  break;
2114         case lir_div_strictfp: // fall through
2115         case lir_div: __ divss(lreg, rreg);  break;
2116         default: ShouldNotReachHere();
2117       }
2118     } else {
2119       Address raddr;
2120       if (right->is_single_stack()) {
2121         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2122       } else if (right->is_constant()) {
2123         // hack for now
2124         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2125       } else {
2126         ShouldNotReachHere();
2127       }
2128       switch (code) {
2129         case lir_add: __ addss(lreg, raddr);  break;
2130         case lir_sub: __ subss(lreg, raddr);  break;
2131         case lir_mul_strictfp: // fall through
2132         case lir_mul: __ mulss(lreg, raddr);  break;
2133         case lir_div_strictfp: // fall through
2134         case lir_div: __ divss(lreg, raddr);  break;
2135         default: ShouldNotReachHere();
2136       }
2137     }
2138 
2139   } else if (left->is_double_xmm()) {
2140     assert(left == dest, "left and dest must be equal");
2141 
2142     XMMRegister lreg = left->as_xmm_double_reg();
2143     if (right->is_double_xmm()) {
2144       XMMRegister rreg = right->as_xmm_double_reg();
2145       switch (code) {
2146         case lir_add: __ addsd(lreg, rreg);  break;
2147         case lir_sub: __ subsd(lreg, rreg);  break;
2148         case lir_mul_strictfp: // fall through
2149         case lir_mul: __ mulsd(lreg, rreg);  break;
2150         case lir_div_strictfp: // fall through
2151         case lir_div: __ divsd(lreg, rreg);  break;
2152         default: ShouldNotReachHere();
2153       }
2154     } else {
2155       Address raddr;
2156       if (right->is_double_stack()) {
2157         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2158       } else if (right->is_constant()) {
2159         // hack for now
2160         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2161       } else {
2162         ShouldNotReachHere();
2163       }
2164       switch (code) {
2165         case lir_add: __ addsd(lreg, raddr);  break;
2166         case lir_sub: __ subsd(lreg, raddr);  break;
2167         case lir_mul_strictfp: // fall through
2168         case lir_mul: __ mulsd(lreg, raddr);  break;
2169         case lir_div_strictfp: // fall through
2170         case lir_div: __ divsd(lreg, raddr);  break;
2171         default: ShouldNotReachHere();
2172       }
2173     }
2174 
2175   } else if (left->is_single_fpu()) {
2176     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2177 
2178     if (right->is_single_fpu()) {
2179       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2180 
2181     } else {
2182       assert(left->fpu_regnr() == 0, "left must be on TOS");
2183       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2184 
2185       Address raddr;
2186       if (right->is_single_stack()) {
2187         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2188       } else if (right->is_constant()) {
2189         address const_addr = float_constant(right->as_jfloat());
2190         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2191         // hack for now
2192         raddr = __ as_Address(InternalAddress(const_addr));
2193       } else {
2194         ShouldNotReachHere();
2195       }
2196 
2197       switch (code) {
2198         case lir_add: __ fadd_s(raddr); break;
2199         case lir_sub: __ fsub_s(raddr); break;
2200         case lir_mul_strictfp: // fall through
2201         case lir_mul: __ fmul_s(raddr); break;
2202         case lir_div_strictfp: // fall through
2203         case lir_div: __ fdiv_s(raddr); break;
2204         default:      ShouldNotReachHere();
2205       }
2206     }
2207 
2208   } else if (left->is_double_fpu()) {
2209     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2210 
2211     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2212       // Double values require special handling for strictfp mul/div on x86
2213       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2214       __ fmulp(left->fpu_regnrLo() + 1);
2215     }
2216 
2217     if (right->is_double_fpu()) {
2218       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2219 
2220     } else {
2221       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2222       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2223 
2224       Address raddr;
2225       if (right->is_double_stack()) {
2226         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2227       } else if (right->is_constant()) {
2228         // hack for now
2229         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2230       } else {
2231         ShouldNotReachHere();
2232       }
2233 
2234       switch (code) {
2235         case lir_add: __ fadd_d(raddr); break;
2236         case lir_sub: __ fsub_d(raddr); break;
2237         case lir_mul_strictfp: // fall through
2238         case lir_mul: __ fmul_d(raddr); break;
2239         case lir_div_strictfp: // fall through
2240         case lir_div: __ fdiv_d(raddr); break;
2241         default: ShouldNotReachHere();
2242       }
2243     }
2244 
2245     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2246       // Double values require special handling for strictfp mul/div on x86
2247       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2248       __ fmulp(dest->fpu_regnrLo() + 1);
2249     }
2250 
2251   } else if (left->is_single_stack() || left->is_address()) {
2252     assert(left == dest, "left and dest must be equal");
2253 
2254     Address laddr;
2255     if (left->is_single_stack()) {
2256       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2257     } else if (left->is_address()) {
2258       laddr = as_Address(left->as_address_ptr());
2259     } else {
2260       ShouldNotReachHere();
2261     }
2262 
2263     if (right->is_single_cpu()) {
2264       Register rreg = right->as_register();
2265       switch (code) {
2266         case lir_add: __ addl(laddr, rreg); break;
2267         case lir_sub: __ subl(laddr, rreg); break;
2268         default:      ShouldNotReachHere();
2269       }
2270     } else if (right->is_constant()) {
2271       jint c = right->as_constant_ptr()->as_jint();
2272       switch (code) {
2273         case lir_add: {
2274           __ incrementl(laddr, c);
2275           break;
2276         }
2277         case lir_sub: {
2278           __ decrementl(laddr, c);
2279           break;
2280         }
2281         default: ShouldNotReachHere();
2282       }
2283     } else {
2284       ShouldNotReachHere();
2285     }
2286 
2287   } else {
2288     ShouldNotReachHere();
2289   }
2290 }
2291 
2292 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2293   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2294   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2295   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2296 
2297   bool left_is_tos = (left_index == 0);
2298   bool dest_is_tos = (dest_index == 0);
2299   int non_tos_index = (left_is_tos ? right_index : left_index);
2300 
2301   switch (code) {
2302     case lir_add:
2303       if (pop_fpu_stack)       __ faddp(non_tos_index);
2304       else if (dest_is_tos)    __ fadd (non_tos_index);
2305       else                     __ fadda(non_tos_index);
2306       break;
2307 
2308     case lir_sub:
2309       if (left_is_tos) {
2310         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2311         else if (dest_is_tos)  __ fsub  (non_tos_index);
2312         else                   __ fsubra(non_tos_index);
2313       } else {
2314         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2315         else if (dest_is_tos)  __ fsubr (non_tos_index);
2316         else                   __ fsuba (non_tos_index);
2317       }
2318       break;
2319 
2320     case lir_mul_strictfp: // fall through
2321     case lir_mul:
2322       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2323       else if (dest_is_tos)    __ fmul (non_tos_index);
2324       else                     __ fmula(non_tos_index);
2325       break;
2326 
2327     case lir_div_strictfp: // fall through
2328     case lir_div:
2329       if (left_is_tos) {
2330         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2331         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2332         else                   __ fdivra(non_tos_index);
2333       } else {
2334         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2335         else if (dest_is_tos)  __ fdivr (non_tos_index);
2336         else                   __ fdiva (non_tos_index);
2337       }
2338       break;
2339 
2340     case lir_rem:
2341       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2342       __ fremr(noreg);
2343       break;
2344 
2345     default:
2346       ShouldNotReachHere();
2347   }
2348 }
2349 
2350 
2351 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2352   if (value->is_double_xmm()) {
2353     switch(code) {
2354       case lir_abs :
2355         {
2356           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2357             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2358           }
2359           __ andpd(dest->as_xmm_double_reg(),
2360                     ExternalAddress((address)double_signmask_pool));
2361         }
2362         break;
2363 
2364       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2365       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2366       default      : ShouldNotReachHere();
2367     }
2368 
2369   } else if (value->is_double_fpu()) {
2370     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2371     switch(code) {
2372       case lir_log   : __ flog() ; break;
2373       case lir_log10 : __ flog10() ; break;
2374       case lir_abs   : __ fabs() ; break;
2375       case lir_sqrt  : __ fsqrt(); break;
2376       case lir_sin   :
2377         // Should consider not saving rbx, if not necessary
2378         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2379         break;
2380       case lir_cos :
2381         // Should consider not saving rbx, if not necessary
2382         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2383         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2384         break;
2385       case lir_tan :
2386         // Should consider not saving rbx, if not necessary
2387         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2388         break;
2389       default      : ShouldNotReachHere();
2390     }
2391   } else {
2392     Unimplemented();
2393   }
2394 }
2395 
2396 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2397   // assert(left->destroys_register(), "check");
2398   if (left->is_single_cpu()) {
2399     Register reg = left->as_register();
2400     if (right->is_constant()) {
2401       int val = right->as_constant_ptr()->as_jint();
2402       switch (code) {
2403         case lir_logic_and: __ andl (reg, val); break;
2404         case lir_logic_or:  __ orl  (reg, val); break;
2405         case lir_logic_xor: __ xorl (reg, val); break;
2406         default: ShouldNotReachHere();
2407       }
2408     } else if (right->is_stack()) {
2409       // added support for stack operands
2410       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2411       switch (code) {
2412         case lir_logic_and: __ andl (reg, raddr); break;
2413         case lir_logic_or:  __ orl  (reg, raddr); break;
2414         case lir_logic_xor: __ xorl (reg, raddr); break;
2415         default: ShouldNotReachHere();
2416       }
2417     } else {
2418       Register rright = right->as_register();
2419       switch (code) {
2420         case lir_logic_and: __ andptr (reg, rright); break;
2421         case lir_logic_or : __ orptr  (reg, rright); break;
2422         case lir_logic_xor: __ xorptr (reg, rright); break;
2423         default: ShouldNotReachHere();
2424       }
2425     }
2426     move_regs(reg, dst->as_register());
2427   } else {
2428     Register l_lo = left->as_register_lo();
2429     Register l_hi = left->as_register_hi();
2430     if (right->is_constant()) {
2431 #ifdef _LP64
2432       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2433       switch (code) {
2434         case lir_logic_and:
2435           __ andq(l_lo, rscratch1);
2436           break;
2437         case lir_logic_or:
2438           __ orq(l_lo, rscratch1);
2439           break;
2440         case lir_logic_xor:
2441           __ xorq(l_lo, rscratch1);
2442           break;
2443         default: ShouldNotReachHere();
2444       }
2445 #else
2446       int r_lo = right->as_constant_ptr()->as_jint_lo();
2447       int r_hi = right->as_constant_ptr()->as_jint_hi();
2448       switch (code) {
2449         case lir_logic_and:
2450           __ andl(l_lo, r_lo);
2451           __ andl(l_hi, r_hi);
2452           break;
2453         case lir_logic_or:
2454           __ orl(l_lo, r_lo);
2455           __ orl(l_hi, r_hi);
2456           break;
2457         case lir_logic_xor:
2458           __ xorl(l_lo, r_lo);
2459           __ xorl(l_hi, r_hi);
2460           break;
2461         default: ShouldNotReachHere();
2462       }
2463 #endif // _LP64
2464     } else {
2465 #ifdef _LP64
2466       Register r_lo;
2467       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2468         r_lo = right->as_register();
2469       } else {
2470         r_lo = right->as_register_lo();
2471       }
2472 #else
2473       Register r_lo = right->as_register_lo();
2474       Register r_hi = right->as_register_hi();
2475       assert(l_lo != r_hi, "overwriting registers");
2476 #endif
2477       switch (code) {
2478         case lir_logic_and:
2479           __ andptr(l_lo, r_lo);
2480           NOT_LP64(__ andptr(l_hi, r_hi);)
2481           break;
2482         case lir_logic_or:
2483           __ orptr(l_lo, r_lo);
2484           NOT_LP64(__ orptr(l_hi, r_hi);)
2485           break;
2486         case lir_logic_xor:
2487           __ xorptr(l_lo, r_lo);
2488           NOT_LP64(__ xorptr(l_hi, r_hi);)
2489           break;
2490         default: ShouldNotReachHere();
2491       }
2492     }
2493 
2494     Register dst_lo = dst->as_register_lo();
2495     Register dst_hi = dst->as_register_hi();
2496 
2497 #ifdef _LP64
2498     move_regs(l_lo, dst_lo);
2499 #else
2500     if (dst_lo == l_hi) {
2501       assert(dst_hi != l_lo, "overwriting registers");
2502       move_regs(l_hi, dst_hi);
2503       move_regs(l_lo, dst_lo);
2504     } else {
2505       assert(dst_lo != l_hi, "overwriting registers");
2506       move_regs(l_lo, dst_lo);
2507       move_regs(l_hi, dst_hi);
2508     }
2509 #endif // _LP64
2510   }
2511 }
2512 
2513 
2514 // we assume that rax, and rdx can be overwritten
2515 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2516 
2517   assert(left->is_single_cpu(),   "left must be register");
2518   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2519   assert(result->is_single_cpu(), "result must be register");
2520 
2521   //  assert(left->destroys_register(), "check");
2522   //  assert(right->destroys_register(), "check");
2523 
2524   Register lreg = left->as_register();
2525   Register dreg = result->as_register();
2526 
2527   if (right->is_constant()) {
2528     int divisor = right->as_constant_ptr()->as_jint();
2529     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2530     if (code == lir_idiv) {
2531       assert(lreg == rax, "must be rax,");
2532       assert(temp->as_register() == rdx, "tmp register must be rdx");
2533       __ cdql(); // sign extend into rdx:rax
2534       if (divisor == 2) {
2535         __ subl(lreg, rdx);
2536       } else {
2537         __ andl(rdx, divisor - 1);
2538         __ addl(lreg, rdx);
2539       }
2540       __ sarl(lreg, log2_intptr(divisor));
2541       move_regs(lreg, dreg);
2542     } else if (code == lir_irem) {
2543       Label done;
2544       __ mov(dreg, lreg);
2545       __ andl(dreg, 0x80000000 | (divisor - 1));
2546       __ jcc(Assembler::positive, done);
2547       __ decrement(dreg);
2548       __ orl(dreg, ~(divisor - 1));
2549       __ increment(dreg);
2550       __ bind(done);
2551     } else {
2552       ShouldNotReachHere();
2553     }
2554   } else {
2555     Register rreg = right->as_register();
2556     assert(lreg == rax, "left register must be rax,");
2557     assert(rreg != rdx, "right register must not be rdx");
2558     assert(temp->as_register() == rdx, "tmp register must be rdx");
2559 
2560     move_regs(lreg, rax);
2561 
2562     int idivl_offset = __ corrected_idivl(rreg);
2563     add_debug_info_for_div0(idivl_offset, info);
2564     if (code == lir_irem) {
2565       move_regs(rdx, dreg); // result is in rdx
2566     } else {
2567       move_regs(rax, dreg);
2568     }
2569   }
2570 }
2571 
2572 
2573 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2574   if (opr1->is_single_cpu()) {
2575     Register reg1 = opr1->as_register();
2576     if (opr2->is_single_cpu()) {
2577       // cpu register - cpu register
2578       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2579         __ cmpptr(reg1, opr2->as_register());
2580       } else {
2581         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2582         __ cmpl(reg1, opr2->as_register());
2583       }
2584     } else if (opr2->is_stack()) {
2585       // cpu register - stack
2586       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2587         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2588       } else {
2589         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2590       }
2591     } else if (opr2->is_constant()) {
2592       // cpu register - constant
2593       LIR_Const* c = opr2->as_constant_ptr();
2594       if (c->type() == T_INT) {
2595         __ cmpl(reg1, c->as_jint());
2596       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2597         // In 64bit oops are single register
2598         jobject o = c->as_jobject();
2599         if (o == NULL) {
2600           __ cmpptr(reg1, (int32_t)NULL_WORD);
2601         } else {
2602 #ifdef _LP64
2603           __ movoop(rscratch1, o);
2604           __ cmpptr(reg1, rscratch1);
2605 #else
2606           __ cmpoop(reg1, c->as_jobject());
2607 #endif // _LP64
2608         }
2609       } else {
2610         ShouldNotReachHere();
2611       }
2612       // cpu register - address
2613     } else if (opr2->is_address()) {
2614       if (op->info() != NULL) {
2615         add_debug_info_for_null_check_here(op->info());
2616       }
2617       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2618     } else {
2619       ShouldNotReachHere();
2620     }
2621 
2622   } else if(opr1->is_double_cpu()) {
2623     Register xlo = opr1->as_register_lo();
2624     Register xhi = opr1->as_register_hi();
2625     if (opr2->is_double_cpu()) {
2626 #ifdef _LP64
2627       __ cmpptr(xlo, opr2->as_register_lo());
2628 #else
2629       // cpu register - cpu register
2630       Register ylo = opr2->as_register_lo();
2631       Register yhi = opr2->as_register_hi();
2632       __ subl(xlo, ylo);
2633       __ sbbl(xhi, yhi);
2634       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2635         __ orl(xhi, xlo);
2636       }
2637 #endif // _LP64
2638     } else if (opr2->is_constant()) {
2639       // cpu register - constant 0
2640       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2641 #ifdef _LP64
2642       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2643 #else
2644       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2645       __ orl(xhi, xlo);
2646 #endif // _LP64
2647     } else {
2648       ShouldNotReachHere();
2649     }
2650 
2651   } else if (opr1->is_single_xmm()) {
2652     XMMRegister reg1 = opr1->as_xmm_float_reg();
2653     if (opr2->is_single_xmm()) {
2654       // xmm register - xmm register
2655       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2656     } else if (opr2->is_stack()) {
2657       // xmm register - stack
2658       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2659     } else if (opr2->is_constant()) {
2660       // xmm register - constant
2661       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2662     } else if (opr2->is_address()) {
2663       // xmm register - address
2664       if (op->info() != NULL) {
2665         add_debug_info_for_null_check_here(op->info());
2666       }
2667       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2668     } else {
2669       ShouldNotReachHere();
2670     }
2671 
2672   } else if (opr1->is_double_xmm()) {
2673     XMMRegister reg1 = opr1->as_xmm_double_reg();
2674     if (opr2->is_double_xmm()) {
2675       // xmm register - xmm register
2676       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2677     } else if (opr2->is_stack()) {
2678       // xmm register - stack
2679       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2680     } else if (opr2->is_constant()) {
2681       // xmm register - constant
2682       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2683     } else if (opr2->is_address()) {
2684       // xmm register - address
2685       if (op->info() != NULL) {
2686         add_debug_info_for_null_check_here(op->info());
2687       }
2688       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2689     } else {
2690       ShouldNotReachHere();
2691     }
2692 
2693   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2694     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2695     assert(opr2->is_fpu_register(), "both must be registers");
2696     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2697 
2698   } else if (opr1->is_address() && opr2->is_constant()) {
2699     LIR_Const* c = opr2->as_constant_ptr();
2700 #ifdef _LP64
2701     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2702       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2703       __ movoop(rscratch1, c->as_jobject());
2704     }
2705 #endif // LP64
2706     if (op->info() != NULL) {
2707       add_debug_info_for_null_check_here(op->info());
2708     }
2709     // special case: address - constant
2710     LIR_Address* addr = opr1->as_address_ptr();
2711     if (c->type() == T_INT) {
2712       __ cmpl(as_Address(addr), c->as_jint());
2713     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2714 #ifdef _LP64
2715       // %%% Make this explode if addr isn't reachable until we figure out a
2716       // better strategy by giving noreg as the temp for as_Address
2717       __ cmpptr(rscratch1, as_Address(addr, noreg));
2718 #else
2719       __ cmpoop(as_Address(addr), c->as_jobject());
2720 #endif // _LP64
2721     } else {
2722       ShouldNotReachHere();
2723     }
2724 
2725   } else {
2726     ShouldNotReachHere();
2727   }
2728 }
2729 
2730 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2731   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2732     if (left->is_single_xmm()) {
2733       assert(right->is_single_xmm(), "must match");
2734       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2735     } else if (left->is_double_xmm()) {
2736       assert(right->is_double_xmm(), "must match");
2737       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2738 
2739     } else {
2740       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2741       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2742 
2743       assert(left->fpu() == 0, "left must be on TOS");
2744       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2745                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2746     }
2747   } else {
2748     assert(code == lir_cmp_l2i, "check");
2749 #ifdef _LP64
2750     Label done;
2751     Register dest = dst->as_register();
2752     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2753     __ movl(dest, -1);
2754     __ jccb(Assembler::less, done);
2755     __ set_byte_if_not_zero(dest);
2756     __ movzbl(dest, dest);
2757     __ bind(done);
2758 #else
2759     __ lcmp2int(left->as_register_hi(),
2760                 left->as_register_lo(),
2761                 right->as_register_hi(),
2762                 right->as_register_lo());
2763     move_regs(left->as_register_hi(), dst->as_register());
2764 #endif // _LP64
2765   }
2766 }
2767 
2768 
2769 void LIR_Assembler::align_call(LIR_Code code) {
2770   if (os::is_MP()) {
2771     // make sure that the displacement word of the call ends up word aligned
2772     int offset = __ offset();
2773     switch (code) {
2774       case lir_static_call:
2775       case lir_optvirtual_call:
2776       case lir_dynamic_call:
2777         offset += NativeCall::displacement_offset;
2778         break;
2779       case lir_icvirtual_call:
2780         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2781       break;
2782       case lir_virtual_call:  // currently, sparc-specific for niagara
2783       default: ShouldNotReachHere();
2784     }
2785     while (offset++ % BytesPerWord != 0) {
2786       __ nop();
2787     }
2788   }
2789 }
2790 
2791 
2792 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2793   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2794          "must be aligned");
2795   __ call(AddressLiteral(op->addr(), rtype));
2796   add_call_info(code_offset(), op->info());
2797 }
2798 
2799 
2800 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2801   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2802   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2803   assert(!os::is_MP() ||
2804          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2805          "must be aligned");
2806   __ call(AddressLiteral(op->addr(), rh));
2807   add_call_info(code_offset(), op->info());
2808 }
2809 
2810 
2811 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2812 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2813   ShouldNotReachHere();
2814 }
2815 
2816 
2817 void LIR_Assembler::emit_static_call_stub() {
2818   address call_pc = __ pc();
2819   address stub = __ start_a_stub(call_stub_size);
2820   if (stub == NULL) {
2821     bailout("static call stub overflow");
2822     return;
2823   }
2824 
2825   int start = __ offset();
2826   if (os::is_MP()) {
2827     // make sure that the displacement word of the call ends up word aligned
2828     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2829     while (offset++ % BytesPerWord != 0) {
2830       __ nop();
2831     }
2832   }
2833   __ relocate(static_stub_Relocation::spec(call_pc));
2834   __ movoop(rbx, (jobject)NULL);
2835   // must be set to -1 at code generation time
2836   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2837   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2838   __ jump(RuntimeAddress(__ pc()));
2839 
2840   assert(__ offset() - start <= call_stub_size, "stub too big");
2841   __ end_a_stub();
2842 }
2843 
2844 
2845 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2846   assert(exceptionOop->as_register() == rax, "must match");
2847   assert(exceptionPC->as_register() == rdx, "must match");
2848 
2849   // exception object is not added to oop map by LinearScan
2850   // (LinearScan assumes that no oops are in fixed registers)
2851   info->add_register_oop(exceptionOop);
2852   Runtime1::StubID unwind_id;
2853 
2854   // get current pc information
2855   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2856   int pc_for_athrow_offset = __ offset();
2857   InternalAddress pc_for_athrow(__ pc());
2858   __ lea(exceptionPC->as_register(), pc_for_athrow);
2859   add_call_info(pc_for_athrow_offset, info); // for exception handler
2860 
2861   __ verify_not_null_oop(rax);
2862   // search an exception handler (rax: exception oop, rdx: throwing pc)
2863   if (compilation()->has_fpu_code()) {
2864     unwind_id = Runtime1::handle_exception_id;
2865   } else {
2866     unwind_id = Runtime1::handle_exception_nofpu_id;
2867   }
2868   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2869 
2870   // enough room for two byte trap
2871   __ nop();
2872 }
2873 
2874 
2875 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2876   assert(exceptionOop->as_register() == rax, "must match");
2877 
2878   __ jmp(_unwind_handler_entry);
2879 }
2880 
2881 
2882 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2883 
2884   // optimized version for linear scan:
2885   // * count must be already in ECX (guaranteed by LinearScan)
2886   // * left and dest must be equal
2887   // * tmp must be unused
2888   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2889   assert(left == dest, "left and dest must be equal");
2890   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2891 
2892   if (left->is_single_cpu()) {
2893     Register value = left->as_register();
2894     assert(value != SHIFT_count, "left cannot be ECX");
2895 
2896     switch (code) {
2897       case lir_shl:  __ shll(value); break;
2898       case lir_shr:  __ sarl(value); break;
2899       case lir_ushr: __ shrl(value); break;
2900       default: ShouldNotReachHere();
2901     }
2902   } else if (left->is_double_cpu()) {
2903     Register lo = left->as_register_lo();
2904     Register hi = left->as_register_hi();
2905     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2906 #ifdef _LP64
2907     switch (code) {
2908       case lir_shl:  __ shlptr(lo);        break;
2909       case lir_shr:  __ sarptr(lo);        break;
2910       case lir_ushr: __ shrptr(lo);        break;
2911       default: ShouldNotReachHere();
2912     }
2913 #else
2914 
2915     switch (code) {
2916       case lir_shl:  __ lshl(hi, lo);        break;
2917       case lir_shr:  __ lshr(hi, lo, true);  break;
2918       case lir_ushr: __ lshr(hi, lo, false); break;
2919       default: ShouldNotReachHere();
2920     }
2921 #endif // LP64
2922   } else {
2923     ShouldNotReachHere();
2924   }
2925 }
2926 
2927 
2928 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2929   if (dest->is_single_cpu()) {
2930     // first move left into dest so that left is not destroyed by the shift
2931     Register value = dest->as_register();
2932     count = count & 0x1F; // Java spec
2933 
2934     move_regs(left->as_register(), value);
2935     switch (code) {
2936       case lir_shl:  __ shll(value, count); break;
2937       case lir_shr:  __ sarl(value, count); break;
2938       case lir_ushr: __ shrl(value, count); break;
2939       default: ShouldNotReachHere();
2940     }
2941   } else if (dest->is_double_cpu()) {
2942 #ifndef _LP64
2943     Unimplemented();
2944 #else
2945     // first move left into dest so that left is not destroyed by the shift
2946     Register value = dest->as_register_lo();
2947     count = count & 0x1F; // Java spec
2948 
2949     move_regs(left->as_register_lo(), value);
2950     switch (code) {
2951       case lir_shl:  __ shlptr(value, count); break;
2952       case lir_shr:  __ sarptr(value, count); break;
2953       case lir_ushr: __ shrptr(value, count); break;
2954       default: ShouldNotReachHere();
2955     }
2956 #endif // _LP64
2957   } else {
2958     ShouldNotReachHere();
2959   }
2960 }
2961 
2962 
2963 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2964   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2965   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2966   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2967   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
2968 }
2969 
2970 
2971 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
2972   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2973   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2974   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2975   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
2976 }
2977 
2978 
2979 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
2980   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2981   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2982   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2983   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
2984 }
2985 
2986 
2987 // This code replaces a call to arraycopy; no exception may
2988 // be thrown in this code, they must be thrown in the System.arraycopy
2989 // activation frame; we could save some checks if this would not be the case
2990 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2991   ciArrayKlass* default_type = op->expected_type();
2992   Register src = op->src()->as_register();
2993   Register dst = op->dst()->as_register();
2994   Register src_pos = op->src_pos()->as_register();
2995   Register dst_pos = op->dst_pos()->as_register();
2996   Register length  = op->length()->as_register();
2997   Register tmp = op->tmp()->as_register();
2998 
2999   CodeStub* stub = op->stub();
3000   int flags = op->flags();
3001   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3002   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3003 
3004   // if we don't know anything or it's an object array, just go through the generic arraycopy
3005   if (default_type == NULL) {
3006     Label done;
3007     // save outgoing arguments on stack in case call to System.arraycopy is needed
3008     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3009     // for interpreter calling conventions. Now we have to do it in new style conventions.
3010     // For the moment until C1 gets the new register allocator I just force all the
3011     // args to the right place (except the register args) and then on the back side
3012     // reload the register args properly if we go slow path. Yuck
3013 
3014     // These are proper for the calling convention
3015 
3016     store_parameter(length, 2);
3017     store_parameter(dst_pos, 1);
3018     store_parameter(dst, 0);
3019 
3020     // these are just temporary placements until we need to reload
3021     store_parameter(src_pos, 3);
3022     store_parameter(src, 4);
3023     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3024 
3025     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3026 
3027     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3028 #ifdef _LP64
3029     // The arguments are in java calling convention so we can trivially shift them to C
3030     // convention
3031     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3032     __ mov(c_rarg0, j_rarg0);
3033     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3034     __ mov(c_rarg1, j_rarg1);
3035     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3036     __ mov(c_rarg2, j_rarg2);
3037     assert_different_registers(c_rarg3, j_rarg4);
3038     __ mov(c_rarg3, j_rarg3);
3039 #ifdef _WIN64
3040     // Allocate abi space for args but be sure to keep stack aligned
3041     __ subptr(rsp, 6*wordSize);
3042     store_parameter(j_rarg4, 4);
3043     __ call(RuntimeAddress(entry));
3044     __ addptr(rsp, 6*wordSize);
3045 #else
3046     __ mov(c_rarg4, j_rarg4);
3047     __ call(RuntimeAddress(entry));
3048 #endif // _WIN64
3049 #else
3050     __ push(length);
3051     __ push(dst_pos);
3052     __ push(dst);
3053     __ push(src_pos);
3054     __ push(src);
3055     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
3056 
3057 #endif // _LP64
3058 
3059     __ cmpl(rax, 0);
3060     __ jcc(Assembler::equal, *stub->continuation());
3061 
3062     // Reload values from the stack so they are where the stub
3063     // expects them.
3064     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3065     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3066     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3067     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3068     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3069     __ jmp(*stub->entry());
3070 
3071     __ bind(*stub->continuation());
3072     return;
3073   }
3074 
3075   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3076 
3077   int elem_size = type2aelembytes(basic_type);
3078   int shift_amount;
3079   Address::ScaleFactor scale;
3080 
3081   switch (elem_size) {
3082     case 1 :
3083       shift_amount = 0;
3084       scale = Address::times_1;
3085       break;
3086     case 2 :
3087       shift_amount = 1;
3088       scale = Address::times_2;
3089       break;
3090     case 4 :
3091       shift_amount = 2;
3092       scale = Address::times_4;
3093       break;
3094     case 8 :
3095       shift_amount = 3;
3096       scale = Address::times_8;
3097       break;
3098     default:
3099       ShouldNotReachHere();
3100   }
3101 
3102   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3103   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3104   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3105   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3106 
3107   // length and pos's are all sign extended at this point on 64bit
3108 
3109   // test for NULL
3110   if (flags & LIR_OpArrayCopy::src_null_check) {
3111     __ testptr(src, src);
3112     __ jcc(Assembler::zero, *stub->entry());
3113   }
3114   if (flags & LIR_OpArrayCopy::dst_null_check) {
3115     __ testptr(dst, dst);
3116     __ jcc(Assembler::zero, *stub->entry());
3117   }
3118 
3119   // check if negative
3120   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3121     __ testl(src_pos, src_pos);
3122     __ jcc(Assembler::less, *stub->entry());
3123   }
3124   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3125     __ testl(dst_pos, dst_pos);
3126     __ jcc(Assembler::less, *stub->entry());
3127   }
3128   if (flags & LIR_OpArrayCopy::length_positive_check) {
3129     __ testl(length, length);
3130     __ jcc(Assembler::less, *stub->entry());
3131   }
3132 
3133   if (flags & LIR_OpArrayCopy::src_range_check) {
3134     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3135     __ cmpl(tmp, src_length_addr);
3136     __ jcc(Assembler::above, *stub->entry());
3137   }
3138   if (flags & LIR_OpArrayCopy::dst_range_check) {
3139     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3140     __ cmpl(tmp, dst_length_addr);
3141     __ jcc(Assembler::above, *stub->entry());
3142   }
3143 
3144   if (flags & LIR_OpArrayCopy::type_check) {
3145     __ movptr(tmp, src_klass_addr);
3146     __ cmpptr(tmp, dst_klass_addr);
3147     __ jcc(Assembler::notEqual, *stub->entry());
3148   }
3149 
3150 #ifdef ASSERT
3151   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3152     // Sanity check the known type with the incoming class.  For the
3153     // primitive case the types must match exactly with src.klass and
3154     // dst.klass each exactly matching the default type.  For the
3155     // object array case, if no type check is needed then either the
3156     // dst type is exactly the expected type and the src type is a
3157     // subtype which we can't check or src is the same array as dst
3158     // but not necessarily exactly of type default_type.
3159     Label known_ok, halt;
3160     __ movoop(tmp, default_type->constant_encoding());
3161     if (basic_type != T_OBJECT) {
3162       __ cmpptr(tmp, dst_klass_addr);
3163       __ jcc(Assembler::notEqual, halt);
3164       __ cmpptr(tmp, src_klass_addr);
3165       __ jcc(Assembler::equal, known_ok);
3166     } else {
3167       __ cmpptr(tmp, dst_klass_addr);
3168       __ jcc(Assembler::equal, known_ok);
3169       __ cmpptr(src, dst);
3170       __ jcc(Assembler::equal, known_ok);
3171     }
3172     __ bind(halt);
3173     __ stop("incorrect type information in arraycopy");
3174     __ bind(known_ok);
3175   }
3176 #endif
3177 
3178   if (shift_amount > 0 && basic_type != T_OBJECT) {
3179     __ shlptr(length, shift_amount);
3180   }
3181 
3182 #ifdef _LP64
3183   assert_different_registers(c_rarg0, dst, dst_pos, length);
3184   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3185   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3186   assert_different_registers(c_rarg1, length);
3187   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3188   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3189   __ mov(c_rarg2, length);
3190 
3191 #else
3192   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3193   store_parameter(tmp, 0);
3194   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3195   store_parameter(tmp, 1);
3196   store_parameter(length, 2);
3197 #endif // _LP64
3198   if (basic_type == T_OBJECT) {
3199     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
3200   } else {
3201     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
3202   }
3203 
3204   __ bind(*stub->continuation());
3205 }
3206 
3207 
3208 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3209   Register obj = op->obj_opr()->as_register();  // may not be an oop
3210   Register hdr = op->hdr_opr()->as_register();
3211   Register lock = op->lock_opr()->as_register();
3212   if (!UseFastLocking) {
3213     __ jmp(*op->stub()->entry());
3214   } else if (op->code() == lir_lock) {
3215     Register scratch = noreg;
3216     if (UseBiasedLocking) {
3217       scratch = op->scratch_opr()->as_register();
3218     }
3219     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3220     // add debug info for NullPointerException only if one is possible
3221     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3222     if (op->info() != NULL) {
3223       add_debug_info_for_null_check(null_check_offset, op->info());
3224     }
3225     // done
3226   } else if (op->code() == lir_unlock) {
3227     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3228     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3229   } else {
3230     Unimplemented();
3231   }
3232   __ bind(*op->stub()->continuation());
3233 }
3234 
3235 
3236 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3237   ciMethod* method = op->profiled_method();
3238   int bci          = op->profiled_bci();
3239 
3240   // Update counter for all call types
3241   ciMethodData* md = method->method_data();
3242   if (md == NULL) {
3243     bailout("out of memory building methodDataOop");
3244     return;
3245   }
3246   ciProfileData* data = md->bci_to_data(bci);
3247   assert(data->is_CounterData(), "need CounterData for calls");
3248   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3249   Register mdo  = op->mdo()->as_register();
3250   __ movoop(mdo, md->constant_encoding());
3251   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3252   Bytecodes::Code bc = method->java_code_at_bci(bci);
3253   // Perform additional virtual call profiling for invokevirtual and
3254   // invokeinterface bytecodes
3255   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3256       Tier1ProfileVirtualCalls) {
3257     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3258     Register recv = op->recv()->as_register();
3259     assert_different_registers(mdo, recv);
3260     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3261     ciKlass* known_klass = op->known_holder();
3262     if (Tier1OptimizeVirtualCallProfiling && known_klass != NULL) {
3263       // We know the type that will be seen at this call site; we can
3264       // statically update the methodDataOop rather than needing to do
3265       // dynamic tests on the receiver type
3266 
3267       // NOTE: we should probably put a lock around this search to
3268       // avoid collisions by concurrent compilations
3269       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3270       uint i;
3271       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3272         ciKlass* receiver = vc_data->receiver(i);
3273         if (known_klass->equals(receiver)) {
3274           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3275           __ addl(data_addr, DataLayout::counter_increment);
3276           return;
3277         }
3278       }
3279 
3280       // Receiver type not found in profile data; select an empty slot
3281 
3282       // Note that this is less efficient than it should be because it
3283       // always does a write to the receiver part of the
3284       // VirtualCallData rather than just the first time
3285       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3286         ciKlass* receiver = vc_data->receiver(i);
3287         if (receiver == NULL) {
3288           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3289           __ movoop(recv_addr, known_klass->constant_encoding());
3290           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3291           __ addl(data_addr, DataLayout::counter_increment);
3292           return;
3293         }
3294       }
3295     } else {
3296       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
3297       Label update_done;
3298       uint i;
3299       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3300         Label next_test;
3301         // See if the receiver is receiver[n].
3302         __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))));
3303         __ jcc(Assembler::notEqual, next_test);
3304         Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3305         __ addl(data_addr, DataLayout::counter_increment);
3306         __ jmp(update_done);
3307         __ bind(next_test);
3308       }
3309 
3310       // Didn't find receiver; find next empty slot and fill it in
3311       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3312         Label next_test;
3313         Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3314         __ cmpptr(recv_addr, (int32_t)NULL_WORD);
3315         __ jcc(Assembler::notEqual, next_test);
3316         __ movptr(recv_addr, recv);
3317         __ movl(Address(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))), DataLayout::counter_increment);
3318         __ jmp(update_done);
3319         __ bind(next_test);
3320       }
3321       // Receiver did not match any saved receiver and there is no empty row for it.
3322       // Increment total counter to indicate polymorphic case.
3323       __ addl(counter_addr, DataLayout::counter_increment);
3324 
3325       __ bind(update_done);
3326     }
3327   } else {
3328     // Static call
3329     __ addl(counter_addr, DataLayout::counter_increment);
3330   }
3331 }
3332 
3333 
3334 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3335   Unimplemented();
3336 }
3337 
3338 
3339 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3340   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3341 }
3342 
3343 
3344 void LIR_Assembler::align_backward_branch_target() {
3345   __ align(BytesPerWord);
3346 }
3347 
3348 
3349 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3350   if (left->is_single_cpu()) {
3351     __ negl(left->as_register());
3352     move_regs(left->as_register(), dest->as_register());
3353 
3354   } else if (left->is_double_cpu()) {
3355     Register lo = left->as_register_lo();
3356 #ifdef _LP64
3357     Register dst = dest->as_register_lo();
3358     __ movptr(dst, lo);
3359     __ negptr(dst);
3360 #else
3361     Register hi = left->as_register_hi();
3362     __ lneg(hi, lo);
3363     if (dest->as_register_lo() == hi) {
3364       assert(dest->as_register_hi() != lo, "destroying register");
3365       move_regs(hi, dest->as_register_hi());
3366       move_regs(lo, dest->as_register_lo());
3367     } else {
3368       move_regs(lo, dest->as_register_lo());
3369       move_regs(hi, dest->as_register_hi());
3370     }
3371 #endif // _LP64
3372 
3373   } else if (dest->is_single_xmm()) {
3374     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3375       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3376     }
3377     __ xorps(dest->as_xmm_float_reg(),
3378              ExternalAddress((address)float_signflip_pool));
3379 
3380   } else if (dest->is_double_xmm()) {
3381     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3382       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3383     }
3384     __ xorpd(dest->as_xmm_double_reg(),
3385              ExternalAddress((address)double_signflip_pool));
3386 
3387   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3388     assert(left->fpu() == 0, "arg must be on TOS");
3389     assert(dest->fpu() == 0, "dest must be TOS");
3390     __ fchs();
3391 
3392   } else {
3393     ShouldNotReachHere();
3394   }
3395 }
3396 
3397 
3398 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3399   assert(addr->is_address() && dest->is_register(), "check");
3400   Register reg;
3401   reg = dest->as_pointer_register();
3402   __ lea(reg, as_Address(addr->as_address_ptr()));
3403 }
3404 
3405 
3406 
3407 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3408   assert(!tmp->is_valid(), "don't need temporary");
3409   __ call(RuntimeAddress(dest));
3410   if (info != NULL) {
3411     add_call_info_here(info);
3412   }
3413 }
3414 
3415 
3416 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3417   assert(type == T_LONG, "only for volatile long fields");
3418 
3419   if (info != NULL) {
3420     add_debug_info_for_null_check_here(info);
3421   }
3422 
3423   if (src->is_double_xmm()) {
3424     if (dest->is_double_cpu()) {
3425 #ifdef _LP64
3426       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3427 #else
3428       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3429       __ psrlq(src->as_xmm_double_reg(), 32);
3430       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3431 #endif // _LP64
3432     } else if (dest->is_double_stack()) {
3433       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3434     } else if (dest->is_address()) {
3435       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3436     } else {
3437       ShouldNotReachHere();
3438     }
3439 
3440   } else if (dest->is_double_xmm()) {
3441     if (src->is_double_stack()) {
3442       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3443     } else if (src->is_address()) {
3444       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3445     } else {
3446       ShouldNotReachHere();
3447     }
3448 
3449   } else if (src->is_double_fpu()) {
3450     assert(src->fpu_regnrLo() == 0, "must be TOS");
3451     if (dest->is_double_stack()) {
3452       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3453     } else if (dest->is_address()) {
3454       __ fistp_d(as_Address(dest->as_address_ptr()));
3455     } else {
3456       ShouldNotReachHere();
3457     }
3458 
3459   } else if (dest->is_double_fpu()) {
3460     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3461     if (src->is_double_stack()) {
3462       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3463     } else if (src->is_address()) {
3464       __ fild_d(as_Address(src->as_address_ptr()));
3465     } else {
3466       ShouldNotReachHere();
3467     }
3468   } else {
3469     ShouldNotReachHere();
3470   }
3471 }
3472 
3473 
3474 void LIR_Assembler::membar() {
3475   // QQQ sparc TSO uses this,
3476   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3477 }
3478 
3479 void LIR_Assembler::membar_acquire() {
3480   // No x86 machines currently require load fences
3481   // __ load_fence();
3482 }
3483 
3484 void LIR_Assembler::membar_release() {
3485   // No x86 machines currently require store fences
3486   // __ store_fence();
3487 }
3488 
3489 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3490   assert(result_reg->is_register(), "check");
3491 #ifdef _LP64
3492   // __ get_thread(result_reg->as_register_lo());
3493   __ mov(result_reg->as_register(), r15_thread);
3494 #else
3495   __ get_thread(result_reg->as_register());
3496 #endif // _LP64
3497 }
3498 
3499 
3500 void LIR_Assembler::peephole(LIR_List*) {
3501   // do nothing for now
3502 }
3503 
3504 
3505 #undef __