1 /*
   2  * Copyright 2000-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 class BlockBegin;
  26 class BlockList;
  27 class LIR_Assembler;
  28 class CodeEmitInfo;
  29 class CodeStub;
  30 class CodeStubList;
  31 class ArrayCopyStub;
  32 class LIR_Op;
  33 class ciType;
  34 class ValueType;
  35 class LIR_OpVisitState;
  36 class FpuStackSim;
  37 
  38 //---------------------------------------------------------------------
  39 //                 LIR Operands
  40 //  LIR_OprDesc
  41 //    LIR_OprPtr
  42 //      LIR_Const
  43 //      LIR_Address
  44 //---------------------------------------------------------------------
  45 class LIR_OprDesc;
  46 class LIR_OprPtr;
  47 class LIR_Const;
  48 class LIR_Address;
  49 class LIR_OprVisitor;
  50 
  51 
  52 typedef LIR_OprDesc* LIR_Opr;
  53 typedef int          RegNr;
  54 
  55 define_array(LIR_OprArray, LIR_Opr)
  56 define_stack(LIR_OprList, LIR_OprArray)
  57 
  58 define_array(LIR_OprRefArray, LIR_Opr*)
  59 define_stack(LIR_OprRefList, LIR_OprRefArray)
  60 
  61 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  62 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  63 
  64 define_array(LIR_OpArray, LIR_Op*)
  65 define_stack(LIR_OpList, LIR_OpArray)
  66 
  67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  68 class LIR_OprPtr: public CompilationResourceObj {
  69  public:
  70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  72 
  73   virtual LIR_Const*  as_constant()              { return NULL; }
  74   virtual LIR_Address* as_address()              { return NULL; }
  75   virtual BasicType type() const                 = 0;
  76   virtual void print_value_on(outputStream* out) const = 0;
  77 };
  78 
  79 
  80 
  81 // LIR constants
  82 class LIR_Const: public LIR_OprPtr {
  83  private:
  84   JavaValue _value;
  85 
  86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  88   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  89 
  90  public:
  91   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  92   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  93   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  94   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  95   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  96   LIR_Const(void* p) {
  97 #ifdef _LP64
  98     assert(sizeof(jlong) >= sizeof(p), "too small");;
  99     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 100 #else
 101     assert(sizeof(jint) >= sizeof(p), "too small");;
 102     _value.set_type(T_INT);     _value.set_jint((jint)p);
 103 #endif
 104   }
 105 
 106   virtual BasicType type()       const { return _value.get_type(); }
 107   virtual LIR_Const* as_constant()     { return this; }
 108 
 109   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 110   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 111   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 112   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 113   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 114   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 115   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 116 
 117 #ifdef _LP64
 118   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 119 #else
 120   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 121 #endif
 122 
 123 
 124   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 125   jint      as_jint_lo_bits() const    {
 126     if (type() == T_DOUBLE) {
 127       return low(jlong_cast(_value.get_jdouble()));
 128     } else {
 129       return as_jint_lo();
 130     }
 131   }
 132   jint      as_jint_hi_bits() const    {
 133     if (type() == T_DOUBLE) {
 134       return high(jlong_cast(_value.get_jdouble()));
 135     } else {
 136       return as_jint_hi();
 137     }
 138   }
 139   jlong      as_jlong_bits() const    {
 140     if (type() == T_DOUBLE) {
 141       return jlong_cast(_value.get_jdouble());
 142     } else {
 143       return as_jlong();
 144     }
 145   }
 146 
 147   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 148 
 149 
 150   bool is_zero_float() {
 151     jfloat f = as_jfloat();
 152     jfloat ok = 0.0f;
 153     return jint_cast(f) == jint_cast(ok);
 154   }
 155 
 156   bool is_one_float() {
 157     jfloat f = as_jfloat();
 158     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 159   }
 160 
 161   bool is_zero_double() {
 162     jdouble d = as_jdouble();
 163     jdouble ok = 0.0;
 164     return jlong_cast(d) == jlong_cast(ok);
 165   }
 166 
 167   bool is_one_double() {
 168     jdouble d = as_jdouble();
 169     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 170   }
 171 };
 172 
 173 
 174 //---------------------LIR Operand descriptor------------------------------------
 175 //
 176 // The class LIR_OprDesc represents a LIR instruction operand;
 177 // it can be a register (ALU/FPU), stack location or a constant;
 178 // Constants and addresses are represented as resource area allocated
 179 // structures (see above).
 180 // Registers and stack locations are inlined into the this pointer
 181 // (see value function).
 182 
 183 class LIR_OprDesc: public CompilationResourceObj {
 184  public:
 185   // value structure:
 186   //     data       opr-type opr-kind
 187   // +--------------+-------+-------+
 188   // [max...........|7 6 5 4|3 2 1 0]
 189   //                             ^
 190   //                    is_pointer bit
 191   //
 192   // lowest bit cleared, means it is a structure pointer
 193   // we need  4 bits to represent types
 194 
 195  private:
 196   friend class LIR_OprFact;
 197 
 198   // Conversion
 199   intptr_t value() const                         { return (intptr_t) this; }
 200 
 201   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 202     return (value() & mask) == masked_value;
 203   }
 204 
 205   enum OprKind {
 206       pointer_value      = 0
 207     , stack_value        = 1
 208     , cpu_register       = 3
 209     , fpu_register       = 5
 210     , illegal_value      = 7
 211   };
 212 
 213   enum OprBits {
 214       pointer_bits   = 1
 215     , kind_bits      = 3
 216     , type_bits      = 4
 217     , size_bits      = 2
 218     , destroys_bits  = 1
 219     , virtual_bits   = 1
 220     , is_xmm_bits    = 1
 221     , last_use_bits  = 1
 222     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 223     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 224                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 225     , data_bits      = BitsPerInt - non_data_bits
 226     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 227   };
 228 
 229   enum OprShift {
 230       kind_shift     = 0
 231     , type_shift     = kind_shift     + kind_bits
 232     , size_shift     = type_shift     + type_bits
 233     , destroys_shift = size_shift     + size_bits
 234     , last_use_shift = destroys_shift + destroys_bits
 235     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 236     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 237     , is_xmm_shift   = virtual_shift + virtual_bits
 238     , data_shift     = is_xmm_shift + is_xmm_bits
 239     , reg1_shift = data_shift
 240     , reg2_shift = data_shift + reg_bits
 241 
 242   };
 243 
 244   enum OprSize {
 245       single_size = 0 << size_shift
 246     , double_size = 1 << size_shift
 247   };
 248 
 249   enum OprMask {
 250       kind_mask      = right_n_bits(kind_bits)
 251     , type_mask      = right_n_bits(type_bits) << type_shift
 252     , size_mask      = right_n_bits(size_bits) << size_shift
 253     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 254     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 255     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 256     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 257     , pointer_mask   = right_n_bits(pointer_bits)
 258     , lower_reg_mask = right_n_bits(reg_bits)
 259     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 260   };
 261 
 262   uintptr_t data() const                         { return value() >> data_shift; }
 263   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 264   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 265   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 266   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 267 
 268   static char type_char(BasicType t);
 269 
 270  public:
 271   enum {
 272     vreg_base = ConcreteRegisterImpl::number_of_registers,
 273     vreg_max = (1 << data_bits) - 1
 274   };
 275 
 276   static inline LIR_Opr illegalOpr();
 277 
 278   enum OprType {
 279       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 280     , int_type      = 1 << type_shift
 281     , long_type     = 2 << type_shift
 282     , object_type   = 3 << type_shift
 283     , pointer_type  = 4 << type_shift
 284     , float_type    = 5 << type_shift
 285     , double_type   = 6 << type_shift
 286   };
 287   friend OprType as_OprType(BasicType t);
 288   friend BasicType as_BasicType(OprType t);
 289 
 290   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 291   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 292 
 293   static OprSize size_for(BasicType t) {
 294     switch (t) {
 295       case T_LONG:
 296       case T_DOUBLE:
 297         return double_size;
 298         break;
 299 
 300       case T_FLOAT:
 301       case T_BOOLEAN:
 302       case T_CHAR:
 303       case T_BYTE:
 304       case T_SHORT:
 305       case T_INT:
 306       case T_OBJECT:
 307       case T_ARRAY:
 308         return single_size;
 309         break;
 310 
 311       default:
 312         ShouldNotReachHere();
 313         return single_size;
 314       }
 315   }
 316 
 317 
 318   void validate_type() const PRODUCT_RETURN;
 319 
 320   BasicType type() const {
 321     if (is_pointer()) {
 322       return pointer()->type();
 323     }
 324     return as_BasicType(type_field());
 325   }
 326 
 327 
 328   ValueType* value_type() const                  { return as_ValueType(type()); }
 329 
 330   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 331 
 332   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 333   // checks whether types are same
 334   bool is_same_type(LIR_Opr opr) const     {
 335     assert(type_field() != unknown_type &&
 336            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 337     return type_field() == opr->type_field();
 338   }
 339   bool is_same_register(LIR_Opr opr) {
 340     return (is_register() && opr->is_register() &&
 341             kind_field() == opr->kind_field() &&
 342             (value() & no_type_mask) == (opr->value() & no_type_mask));
 343   }
 344 
 345   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 346   bool is_illegal() const      { return kind_field() == illegal_value; }
 347   bool is_valid() const        { return kind_field() != illegal_value; }
 348 
 349   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 350   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 351 
 352   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 353   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 354 
 355   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 356   bool is_oop() const;
 357 
 358   // semantic for fpu- and xmm-registers:
 359   // * is_float and is_double return true for xmm_registers
 360   //   (so is_single_fpu and is_single_xmm are true)
 361   // * So you must always check for is_???_xmm prior to is_???_fpu to
 362   //   distinguish between fpu- and xmm-registers
 363 
 364   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 365   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 366   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 367 
 368   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 369   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 370   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 371   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 372   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 373 
 374   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 375   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 376   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 377   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 378   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 379 
 380   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 381   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 382   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 383 
 384   // fast accessor functions for special bits that do not work for pointers
 385   // (in this functions, the check for is_pointer() is omitted)
 386   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 387   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 388   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 389   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 390   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 391 
 392   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 393   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 394   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 395   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 396 
 397 
 398   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 399   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 400   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 401   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 402   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 403   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 404   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 405   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 406   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 407   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 408   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 409   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 410 
 411   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 412   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 413   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 414 
 415   Register as_register()    const;
 416   Register as_register_lo() const;
 417   Register as_register_hi() const;
 418 
 419   Register as_pointer_register() {
 420 #ifdef _LP64
 421     if (is_double_cpu()) {
 422       assert(as_register_lo() == as_register_hi(), "should be a single register");
 423       return as_register_lo();
 424     }
 425 #endif
 426     return as_register();
 427   }
 428 
 429 #ifdef X86
 430   XMMRegister as_xmm_float_reg() const;
 431   XMMRegister as_xmm_double_reg() const;
 432   // for compatibility with RInfo
 433   int fpu () const                                  { return lo_reg_half(); }
 434 #endif // X86
 435 
 436 #ifdef SPARC
 437   FloatRegister as_float_reg   () const;
 438   FloatRegister as_double_reg  () const;
 439 #endif
 440 
 441   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 442   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 443   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 444   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 445   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 446 
 447   void print() const PRODUCT_RETURN;
 448   void print(outputStream* out) const PRODUCT_RETURN;
 449 };
 450 
 451 
 452 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 453   switch (type) {
 454   case T_INT:      return LIR_OprDesc::int_type;
 455   case T_LONG:     return LIR_OprDesc::long_type;
 456   case T_FLOAT:    return LIR_OprDesc::float_type;
 457   case T_DOUBLE:   return LIR_OprDesc::double_type;
 458   case T_OBJECT:
 459   case T_ARRAY:    return LIR_OprDesc::object_type;
 460   case T_ILLEGAL:  // fall through
 461   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 462   }
 463 }
 464 
 465 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 466   switch (t) {
 467   case LIR_OprDesc::int_type:     return T_INT;
 468   case LIR_OprDesc::long_type:    return T_LONG;
 469   case LIR_OprDesc::float_type:   return T_FLOAT;
 470   case LIR_OprDesc::double_type:  return T_DOUBLE;
 471   case LIR_OprDesc::object_type:  return T_OBJECT;
 472   case LIR_OprDesc::unknown_type: // fall through
 473   default: ShouldNotReachHere();  return T_ILLEGAL;
 474   }
 475 }
 476 
 477 
 478 // LIR_Address
 479 class LIR_Address: public LIR_OprPtr {
 480  friend class LIR_OpVisitState;
 481 
 482  public:
 483   // NOTE: currently these must be the log2 of the scale factor (and
 484   // must also be equivalent to the ScaleFactor enum in
 485   // assembler_i486.hpp)
 486   enum Scale {
 487     times_1  =  0,
 488     times_2  =  1,
 489     times_4  =  2,
 490     times_8  =  3
 491   };
 492 
 493  private:
 494   LIR_Opr   _base;
 495   LIR_Opr   _index;
 496   Scale     _scale;
 497   intx      _disp;
 498   BasicType _type;
 499 
 500  public:
 501   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 502        _base(base)
 503      , _index(index)
 504      , _scale(times_1)
 505      , _type(type)
 506      , _disp(0) { verify(); }
 507 
 508   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 509        _base(base)
 510      , _index(LIR_OprDesc::illegalOpr())
 511      , _scale(times_1)
 512      , _type(type)
 513      , _disp(disp) { verify(); }
 514 
 515 #ifdef X86
 516   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 517        _base(base)
 518      , _index(index)
 519      , _scale(scale)
 520      , _type(type)
 521      , _disp(disp) { verify(); }
 522 #endif // X86
 523 
 524   LIR_Opr base()  const                          { return _base;  }
 525   LIR_Opr index() const                          { return _index; }
 526   Scale   scale() const                          { return _scale; }
 527   intx    disp()  const                          { return _disp;  }
 528 
 529   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 530 
 531   virtual LIR_Address* as_address()              { return this;   }
 532   virtual BasicType type() const                 { return _type; }
 533   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 534 
 535   void verify() const PRODUCT_RETURN;
 536 
 537   static Scale scale(BasicType type);
 538 };
 539 
 540 
 541 // operand factory
 542 class LIR_OprFact: public AllStatic {
 543  public:
 544 
 545   static LIR_Opr illegalOpr;
 546 
 547   static LIR_Opr single_cpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::int_type    | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 548   static LIR_Opr single_cpu_oop(int reg)        { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::object_type | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 549   static LIR_Opr double_cpu(int reg1, int reg2) {
 550     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 551     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 552                                (reg2 << LIR_OprDesc::reg2_shift) |
 553                                LIR_OprDesc::long_type            |
 554                                LIR_OprDesc::cpu_register         |
 555                                LIR_OprDesc::double_size);
 556   }
 557 
 558   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 559                                                                              LIR_OprDesc::float_type           |
 560                                                                              LIR_OprDesc::fpu_register         |
 561                                                                              LIR_OprDesc::single_size); }
 562 
 563 #ifdef SPARC
 564   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 565                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 566                                                                              LIR_OprDesc::double_type          |
 567                                                                              LIR_OprDesc::fpu_register         |
 568                                                                              LIR_OprDesc::double_size); }
 569 #endif
 570 #ifdef X86
 571   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 572                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 573                                                                              LIR_OprDesc::double_type          |
 574                                                                              LIR_OprDesc::fpu_register         |
 575                                                                              LIR_OprDesc::double_size); }
 576 
 577   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 578                                                                              LIR_OprDesc::float_type           |
 579                                                                              LIR_OprDesc::fpu_register         |
 580                                                                              LIR_OprDesc::single_size          |
 581                                                                              LIR_OprDesc::is_xmm_mask); }
 582   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 583                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 584                                                                              LIR_OprDesc::double_type          |
 585                                                                              LIR_OprDesc::fpu_register         |
 586                                                                              LIR_OprDesc::double_size          |
 587                                                                              LIR_OprDesc::is_xmm_mask); }
 588 #endif // X86
 589 
 590 
 591   static LIR_Opr virtual_register(int index, BasicType type) {
 592     LIR_Opr res;
 593     switch (type) {
 594       case T_OBJECT: // fall through
 595       case T_ARRAY:
 596         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 597                                             LIR_OprDesc::object_type  |
 598                                             LIR_OprDesc::cpu_register |
 599                                             LIR_OprDesc::single_size  |
 600                                             LIR_OprDesc::virtual_mask);
 601         break;
 602 
 603       case T_INT:
 604         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 605                                   LIR_OprDesc::int_type              |
 606                                   LIR_OprDesc::cpu_register          |
 607                                   LIR_OprDesc::single_size           |
 608                                   LIR_OprDesc::virtual_mask);
 609         break;
 610 
 611       case T_LONG:
 612         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 613                                   LIR_OprDesc::long_type             |
 614                                   LIR_OprDesc::cpu_register          |
 615                                   LIR_OprDesc::double_size           |
 616                                   LIR_OprDesc::virtual_mask);
 617         break;
 618 
 619       case T_FLOAT:
 620         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 621                                   LIR_OprDesc::float_type           |
 622                                   LIR_OprDesc::fpu_register         |
 623                                   LIR_OprDesc::single_size          |
 624                                   LIR_OprDesc::virtual_mask);
 625         break;
 626 
 627       case
 628         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 629                                             LIR_OprDesc::double_type           |
 630                                             LIR_OprDesc::fpu_register          |
 631                                             LIR_OprDesc::double_size           |
 632                                             LIR_OprDesc::virtual_mask);
 633         break;
 634 
 635       default:       ShouldNotReachHere(); res = illegalOpr;
 636     }
 637 
 638 #ifdef ASSERT
 639     res->validate_type();
 640     assert(res->vreg_number() == index, "conversion check");
 641     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 642     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 643 
 644     // old-style calculation; check if old and new method are equal
 645     LIR_OprDesc::OprType t = as_OprType(type);
 646     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 647                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 648                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 649     assert(res == old_res, "old and new method not equal");
 650 #endif
 651 
 652     return res;
 653   }
 654 
 655   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 656   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 657   // index 2.
 658   static LIR_Opr stack(int index, BasicType type) {
 659     LIR_Opr res;
 660     switch (type) {
 661       case T_OBJECT: // fall through
 662       case T_ARRAY:
 663         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 664                                   LIR_OprDesc::object_type           |
 665                                   LIR_OprDesc::stack_value           |
 666                                   LIR_OprDesc::single_size);
 667         break;
 668 
 669       case T_INT:
 670         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 671                                   LIR_OprDesc::int_type              |
 672                                   LIR_OprDesc::stack_value           |
 673                                   LIR_OprDesc::single_size);
 674         break;
 675 
 676       case T_LONG:
 677         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 678                                   LIR_OprDesc::long_type             |
 679                                   LIR_OprDesc::stack_value           |
 680                                   LIR_OprDesc::double_size);
 681         break;
 682 
 683       case T_FLOAT:
 684         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 685                                   LIR_OprDesc::float_type            |
 686                                   LIR_OprDesc::stack_value           |
 687                                   LIR_OprDesc::single_size);
 688         break;
 689       case T_DOUBLE:
 690         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 691                                   LIR_OprDesc::double_type           |
 692                                   LIR_OprDesc::stack_value           |
 693                                   LIR_OprDesc::double_size);
 694         break;
 695 
 696       default:       ShouldNotReachHere(); res = illegalOpr;
 697     }
 698 
 699 #ifdef ASSERT
 700     assert(index >= 0, "index must be positive");
 701     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 702 
 703     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 704                                           LIR_OprDesc::stack_value           |
 705                                           as_OprType(type)                   |
 706                                           LIR_OprDesc::size_for(type));
 707     assert(res == old_res, "old and new method not equal");
 708 #endif
 709 
 710     return res;
 711   }
 712 
 713   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 714   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 715   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 716   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 717   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 718   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 719   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 720   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 721   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 722   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 723 
 724   static LIR_Opr value_type(ValueType* type);
 725   static LIR_Opr dummy_value_type(ValueType* type);
 726 };
 727 
 728 
 729 //-------------------------------------------------------------------------------
 730 //                   LIR Instructions
 731 //-------------------------------------------------------------------------------
 732 //
 733 // Note:
 734 //  - every instruction has a result operand
 735 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 736 //  - every instruction has a LIR_OpCode operand
 737 //  - LIR_OpN, means an instruction that has N input operands
 738 //
 739 // class hierarchy:
 740 //
 741 class  LIR_Op;
 742 class    LIR_Op0;
 743 class      LIR_OpLabel;
 744 class    LIR_Op1;
 745 class      LIR_OpBranch;
 746 class      LIR_OpConvert;
 747 class      LIR_OpAllocObj;
 748 class      LIR_OpRoundFP;
 749 class    LIR_Op2;
 750 class    LIR_OpDelay;
 751 class    LIR_Op3;
 752 class      LIR_OpAllocArray;
 753 class    LIR_OpCall;
 754 class      LIR_OpJavaCall;
 755 class      LIR_OpRTCall;
 756 class    LIR_OpArrayCopy;
 757 class    LIR_OpLock;
 758 class    LIR_OpTypeCheck;
 759 class    LIR_OpCompareAndSwap;
 760 class    LIR_OpProfileCall;
 761 
 762 
 763 // LIR operation codes
 764 enum LIR_Code {
 765     lir_none
 766   , begin_op0
 767       , lir_word_align
 768       , lir_label
 769       , lir_nop
 770       , lir_backwardbranch_target
 771       , lir_std_entry
 772       , lir_osr_entry
 773       , lir_build_frame
 774       , lir_fpop_raw
 775       , lir_24bit_FPU
 776       , lir_reset_FPU
 777       , lir_breakpoint
 778       , lir_rtcall
 779       , lir_membar
 780       , lir_membar_acquire
 781       , lir_membar_release
 782       , lir_get_thread
 783   , end_op0
 784   , begin_op1
 785       , lir_fxch
 786       , lir_fld
 787       , lir_ffree
 788       , lir_push
 789       , lir_pop
 790       , lir_null_check
 791       , lir_return
 792       , lir_leal
 793       , lir_neg
 794       , lir_branch
 795       , lir_cond_float_branch
 796       , lir_move
 797       , lir_prefetchr
 798       , lir_prefetchw
 799       , lir_convert
 800       , lir_alloc_object
 801       , lir_monaddr
 802       , lir_roundfp
 803       , lir_safepoint
 804       , lir_unwind
 805   , end_op1
 806   , begin_op2
 807       , lir_cmp
 808       , lir_cmp_l2i
 809       , lir_ucmp_fd2i
 810       , lir_cmp_fd2i
 811       , lir_cmove
 812       , lir_add
 813       , lir_sub
 814       , lir_mul
 815       , lir_mul_strictfp
 816       , lir_div
 817       , lir_div_strictfp
 818       , lir_rem
 819       , lir_sqrt
 820       , lir_abs
 821       , lir_sin
 822       , lir_cos
 823       , lir_tan
 824       , lir_log
 825       , lir_log10
 826       , lir_logic_and
 827       , lir_logic_or
 828       , lir_logic_xor
 829       , lir_shl
 830       , lir_shr
 831       , lir_ushr
 832       , lir_alloc_array
 833       , lir_throw
 834       , lir_compare_to
 835   , end_op2
 836   , begin_op3
 837       , lir_idiv
 838       , lir_irem
 839   , end_op3
 840   , begin_opJavaCall
 841       , lir_static_call
 842       , lir_optvirtual_call
 843       , lir_icvirtual_call
 844       , lir_virtual_call
 845       , lir_dynamic_call
 846   , end_opJavaCall
 847   , begin_opArrayCopy
 848       , lir_arraycopy
 849   , end_opArrayCopy
 850   , begin_opLock
 851     , lir_lock
 852     , lir_unlock
 853   , end_opLock
 854   , begin_delay_slot
 855     , lir_delay_slot
 856   , end_delay_slot
 857   , begin_opTypeCheck
 858     , lir_instanceof
 859     , lir_checkcast
 860     , lir_store_check
 861   , end_opTypeCheck
 862   , begin_opCompareAndSwap
 863     , lir_cas_long
 864     , lir_cas_obj
 865     , lir_cas_int
 866   , end_opCompareAndSwap
 867   , begin_opMDOProfile
 868     , lir_profile_call
 869   , end_opMDOProfile
 870 };
 871 
 872 
 873 enum LIR_Condition {
 874     lir_cond_equal
 875   , lir_cond_notEqual
 876   , lir_cond_less
 877   , lir_cond_lessEqual
 878   , lir_cond_greaterEqual
 879   , lir_cond_greater
 880   , lir_cond_belowEqual
 881   , lir_cond_aboveEqual
 882   , lir_cond_always
 883   , lir_cond_unknown = -1
 884 };
 885 
 886 
 887 enum LIR_PatchCode {
 888   lir_patch_none,
 889   lir_patch_low,
 890   lir_patch_high,
 891   lir_patch_normal
 892 };
 893 
 894 
 895 enum LIR_MoveKind {
 896   lir_move_normal,
 897   lir_move_volatile,
 898   lir_move_unaligned,
 899   lir_move_max_flag
 900 };
 901 
 902 
 903 // --------------------------------------------------
 904 // LIR_Op
 905 // --------------------------------------------------
 906 class LIR_Op: public CompilationResourceObj {
 907  friend class LIR_OpVisitState;
 908 
 909 #ifdef ASSERT
 910  private:
 911   const char *  _file;
 912   int           _line;
 913 #endif
 914 
 915  protected:
 916   LIR_Opr       _result;
 917   unsigned short _code;
 918   unsigned short _flags;
 919   CodeEmitInfo* _info;
 920   int           _id;     // value id for register allocation
 921   int           _fpu_pop_count;
 922   Instruction*  _source; // for debugging
 923 
 924   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
 925 
 926  protected:
 927   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
 928 
 929  public:
 930   LIR_Op()
 931     : _result(LIR_OprFact::illegalOpr)
 932     , _code(lir_none)
 933     , _flags(0)
 934     , _info(NULL)
 935 #ifdef ASSERT
 936     , _file(NULL)
 937     , _line(0)
 938 #endif
 939     , _fpu_pop_count(0)
 940     , _source(NULL)
 941     , _id(-1)                             {}
 942 
 943   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
 944     : _result(result)
 945     , _code(code)
 946     , _flags(0)
 947     , _info(info)
 948 #ifdef ASSERT
 949     , _file(NULL)
 950     , _line(0)
 951 #endif
 952     , _fpu_pop_count(0)
 953     , _source(NULL)
 954     , _id(-1)                             {}
 955 
 956   CodeEmitInfo* info() const                  { return _info;   }
 957   LIR_Code code()      const                  { return (LIR_Code)_code;   }
 958   LIR_Opr result_opr() const                  { return _result; }
 959   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
 960 
 961 #ifdef ASSERT
 962   void set_file_and_line(const char * file, int line) {
 963     _file = file;
 964     _line = line;
 965   }
 966 #endif
 967 
 968   virtual const char * name() const PRODUCT_RETURN0;
 969 
 970   int id()             const                  { return _id;     }
 971   void set_id(int id)                         { _id = id; }
 972 
 973   // FPU stack simulation helpers -- only used on Intel
 974   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
 975   int  fpu_pop_count() const                  { return _fpu_pop_count; }
 976   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
 977 
 978   Instruction* source() const                 { return _source; }
 979   void set_source(Instruction* ins)           { _source = ins; }
 980 
 981   virtual void emit_code(LIR_Assembler* masm) = 0;
 982   virtual void print_instr(outputStream* out) const   = 0;
 983   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
 984 
 985   virtual LIR_OpCall* as_OpCall() { return NULL; }
 986   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
 987   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
 988   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
 989   virtual LIR_OpLock* as_OpLock() { return NULL; }
 990   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
 991   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
 992   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
 993   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
 994   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
 995   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
 996   virtual LIR_Op0* as_Op0() { return NULL; }
 997   virtual LIR_Op1* as_Op1() { return NULL; }
 998   virtual LIR_Op2* as_Op2() { return NULL; }
 999   virtual LIR_Op3* as_Op3() { return NULL; }
1000   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1001   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1002   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1003   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1004 
1005   virtual void verify() const {}
1006 };
1007 
1008 // for calls
1009 class LIR_OpCall: public LIR_Op {
1010  friend class LIR_OpVisitState;
1011 
1012  protected:
1013   address      _addr;
1014   LIR_OprList* _arguments;
1015  protected:
1016   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1017              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1018     : LIR_Op(code, result, info)
1019     , _arguments(arguments)
1020     , _addr(addr) {}
1021 
1022  public:
1023   address addr() const                           { return _addr; }
1024   const LIR_OprList* arguments() const           { return _arguments; }
1025   virtual LIR_OpCall* as_OpCall()                { return this; }
1026 };
1027 
1028 
1029 // --------------------------------------------------
1030 // LIR_OpJavaCall
1031 // --------------------------------------------------
1032 class LIR_OpJavaCall: public LIR_OpCall {
1033  friend class LIR_OpVisitState;
1034 
1035  private:
1036   ciMethod* _method;
1037   LIR_Opr   _receiver;
1038   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1039 
1040  public:
1041   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1042                  LIR_Opr receiver, LIR_Opr result,
1043                  address addr, LIR_OprList* arguments,
1044                  CodeEmitInfo* info)
1045   : LIR_OpCall(code, addr, result, arguments, info)
1046   , _receiver(receiver)
1047   , _method(method)
1048   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1049   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1050 
1051   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1052                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1053                  LIR_OprList* arguments, CodeEmitInfo* info)
1054   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1055   , _receiver(receiver)
1056   , _method(method)
1057   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1058   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1059 
1060   LIR_Opr receiver() const                       { return _receiver; }
1061   ciMethod* method() const                       { return _method;   }
1062 
1063   // JSR 292 support.
1064   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1065   bool is_method_handle_invoke() const {
1066     return
1067       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
1068       ||
1069       (method()->holder()->name() == ciSymbol::java_dyn_MethodHandle() &&
1070        methodOopDesc::is_method_handle_invoke_name(method()->name()->sid()));
1071   }
1072 
1073   intptr_t vtable_offset() const {
1074     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1075     return (intptr_t) addr();
1076   }
1077 
1078   virtual void emit_code(LIR_Assembler* masm);
1079   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1080   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1081 };
1082 
1083 // --------------------------------------------------
1084 // LIR_OpLabel
1085 // --------------------------------------------------
1086 // Location where a branch can continue
1087 class LIR_OpLabel: public LIR_Op {
1088  friend class LIR_OpVisitState;
1089 
1090  private:
1091   Label* _label;
1092  public:
1093   LIR_OpLabel(Label* lbl)
1094    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1095    , _label(lbl)                                 {}
1096   Label* label() const                           { return _label; }
1097 
1098   virtual void emit_code(LIR_Assembler* masm);
1099   virtual LIR_OpLabel* as_OpLabel() { return this; }
1100   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1101 };
1102 
1103 // LIR_OpArrayCopy
1104 class LIR_OpArrayCopy: public LIR_Op {
1105  friend class LIR_OpVisitState;
1106 
1107  private:
1108   ArrayCopyStub*  _stub;
1109   LIR_Opr   _src;
1110   LIR_Opr   _src_pos;
1111   LIR_Opr   _dst;
1112   LIR_Opr   _dst_pos;
1113   LIR_Opr   _length;
1114   LIR_Opr   _tmp;
1115   ciArrayKlass* _expected_type;
1116   int       _flags;
1117 
1118 public:
1119   enum Flags {
1120     src_null_check         = 1 << 0,
1121     dst_null_check         = 1 << 1,
1122     src_pos_positive_check = 1 << 2,
1123     dst_pos_positive_check = 1 << 3,
1124     length_positive_check  = 1 << 4,
1125     src_range_check        = 1 << 5,
1126     dst_range_check        = 1 << 6,
1127     type_check             = 1 << 7,
1128     all_flags              = (1 << 8) - 1
1129   };
1130 
1131   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1132                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1133 
1134   LIR_Opr src() const                            { return _src; }
1135   LIR_Opr src_pos() const                        { return _src_pos; }
1136   LIR_Opr dst() const                            { return _dst; }
1137   LIR_Opr dst_pos() const                        { return _dst_pos; }
1138   LIR_Opr length() const                         { return _length; }
1139   LIR_Opr tmp() const                            { return _tmp; }
1140   int flags() const                              { return _flags; }
1141   ciArrayKlass* expected_type() const            { return _expected_type; }
1142   ArrayCopyStub* stub() const                    { return _stub; }
1143 
1144   virtual void emit_code(LIR_Assembler* masm);
1145   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1146   void print_instr(outputStream* out) const PRODUCT_RETURN;
1147 };
1148 
1149 
1150 // --------------------------------------------------
1151 // LIR_Op0
1152 // --------------------------------------------------
1153 class LIR_Op0: public LIR_Op {
1154  friend class LIR_OpVisitState;
1155 
1156  public:
1157   LIR_Op0(LIR_Code code)
1158    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1159   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1160    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1161 
1162   virtual void emit_code(LIR_Assembler* masm);
1163   virtual LIR_Op0* as_Op0() { return this; }
1164   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1165 };
1166 
1167 
1168 // --------------------------------------------------
1169 // LIR_Op1
1170 // --------------------------------------------------
1171 
1172 class LIR_Op1: public LIR_Op {
1173  friend class LIR_OpVisitState;
1174 
1175  protected:
1176   LIR_Opr         _opr;   // input operand
1177   BasicType       _type;  // Operand types
1178   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1179 
1180   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1181 
1182   void set_kind(LIR_MoveKind kind) {
1183     assert(code() == lir_move, "must be");
1184     _flags = kind;
1185   }
1186 
1187  public:
1188   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1189     : LIR_Op(code, result, info)
1190     , _opr(opr)
1191     , _patch(patch)
1192     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1193 
1194   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1195     : LIR_Op(code, result, info)
1196     , _opr(opr)
1197     , _patch(patch)
1198     , _type(type)                      {
1199     assert(code == lir_move, "must be");
1200     set_kind(kind);
1201   }
1202 
1203   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1204     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1205     , _opr(opr)
1206     , _patch(lir_patch_none)
1207     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1208 
1209   LIR_Opr in_opr()           const               { return _opr;   }
1210   LIR_PatchCode patch_code() const               { return _patch; }
1211   BasicType type()           const               { return _type;  }
1212 
1213   LIR_MoveKind move_kind() const {
1214     assert(code() == lir_move, "must be");
1215     return (LIR_MoveKind)_flags;
1216   }
1217 
1218   virtual void emit_code(LIR_Assembler* masm);
1219   virtual LIR_Op1* as_Op1() { return this; }
1220   virtual const char * name() const PRODUCT_RETURN0;
1221 
1222   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1223 
1224   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1225   virtual void verify() const;
1226 };
1227 
1228 
1229 // for runtime calls
1230 class LIR_OpRTCall: public LIR_OpCall {
1231  friend class LIR_OpVisitState;
1232 
1233  private:
1234   LIR_Opr _tmp;
1235  public:
1236   LIR_OpRTCall(address addr, LIR_Opr tmp,
1237                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1238     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1239     , _tmp(tmp) {}
1240 
1241   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1242   virtual void emit_code(LIR_Assembler* masm);
1243   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1244 
1245   LIR_Opr tmp() const                            { return _tmp; }
1246 
1247   virtual void verify() const;
1248 };
1249 
1250 
1251 class LIR_OpBranch: public LIR_Op {
1252  friend class LIR_OpVisitState;
1253 
1254  private:
1255   LIR_Condition _cond;
1256   BasicType     _type;
1257   Label*        _label;
1258   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1259   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1260   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1261 
1262  public:
1263   LIR_OpBranch(LIR_Condition cond, Label* lbl)
1264     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1265     , _cond(cond)
1266     , _label(lbl)
1267     , _block(NULL)
1268     , _ublock(NULL)
1269     , _stub(NULL) { }
1270 
1271   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1272   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1273 
1274   // for unordered comparisons
1275   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1276 
1277   LIR_Condition cond()        const              { return _cond;        }
1278   BasicType     type()        const              { return _type;        }
1279   Label*        label()       const              { return _label;       }
1280   BlockBegin*   block()       const              { return _block;       }
1281   BlockBegin*   ublock()      const              { return _ublock;      }
1282   CodeStub*     stub()        const              { return _stub;       }
1283 
1284   void          change_block(BlockBegin* b);
1285   void          change_ublock(BlockBegin* b);
1286   void          negate_cond();
1287 
1288   virtual void emit_code(LIR_Assembler* masm);
1289   virtual LIR_OpBranch* as_OpBranch() { return this; }
1290   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1291 };
1292 
1293 
1294 class ConversionStub;
1295 
1296 class LIR_OpConvert: public LIR_Op1 {
1297  friend class LIR_OpVisitState;
1298 
1299  private:
1300    Bytecodes::Code _bytecode;
1301    ConversionStub* _stub;
1302 
1303  public:
1304    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1305      : LIR_Op1(lir_convert, opr, result)
1306      , _stub(stub)
1307      , _bytecode(code)                           {}
1308 
1309   Bytecodes::Code bytecode() const               { return _bytecode; }
1310   ConversionStub* stub() const                   { return _stub; }
1311 
1312   virtual void emit_code(LIR_Assembler* masm);
1313   virtual LIR_OpConvert* as_OpConvert() { return this; }
1314   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1315 
1316   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1317 };
1318 
1319 
1320 // LIR_OpAllocObj
1321 class LIR_OpAllocObj : public LIR_Op1 {
1322  friend class LIR_OpVisitState;
1323 
1324  private:
1325   LIR_Opr _tmp1;
1326   LIR_Opr _tmp2;
1327   LIR_Opr _tmp3;
1328   LIR_Opr _tmp4;
1329   int     _hdr_size;
1330   int     _obj_size;
1331   CodeStub* _stub;
1332   bool    _init_check;
1333 
1334  public:
1335   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1336                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1337                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1338     : LIR_Op1(lir_alloc_object, klass, result)
1339     , _tmp1(t1)
1340     , _tmp2(t2)
1341     , _tmp3(t3)
1342     , _tmp4(t4)
1343     , _hdr_size(hdr_size)
1344     , _obj_size(obj_size)
1345     , _init_check(init_check)
1346     , _stub(stub)                                { }
1347 
1348   LIR_Opr klass()        const                   { return in_opr();     }
1349   LIR_Opr obj()          const                   { return result_opr(); }
1350   LIR_Opr tmp1()         const                   { return _tmp1;        }
1351   LIR_Opr tmp2()         const                   { return _tmp2;        }
1352   LIR_Opr tmp3()         const                   { return _tmp3;        }
1353   LIR_Opr tmp4()         const                   { return _tmp4;        }
1354   int     header_size()  const                   { return _hdr_size;    }
1355   int     object_size()  const                   { return _obj_size;    }
1356   bool    init_check()   const                   { return _init_check;  }
1357   CodeStub* stub()       const                   { return _stub;        }
1358 
1359   virtual void emit_code(LIR_Assembler* masm);
1360   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1361   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1362 };
1363 
1364 
1365 // LIR_OpRoundFP
1366 class LIR_OpRoundFP : public LIR_Op1 {
1367  friend class LIR_OpVisitState;
1368 
1369  private:
1370   LIR_Opr _tmp;
1371 
1372  public:
1373   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1374     : LIR_Op1(lir_roundfp, reg, result)
1375     , _tmp(stack_loc_temp) {}
1376 
1377   LIR_Opr tmp() const                            { return _tmp; }
1378   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1379   void print_instr(outputStream* out) const PRODUCT_RETURN;
1380 };
1381 
1382 // LIR_OpTypeCheck
1383 class LIR_OpTypeCheck: public LIR_Op {
1384  friend class LIR_OpVisitState;
1385 
1386  private:
1387   LIR_Opr       _object;
1388   LIR_Opr       _array;
1389   ciKlass*      _klass;
1390   LIR_Opr       _tmp1;
1391   LIR_Opr       _tmp2;
1392   LIR_Opr       _tmp3;
1393   bool          _fast_check;
1394   CodeEmitInfo* _info_for_patch;
1395   CodeEmitInfo* _info_for_exception;
1396   CodeStub*     _stub;
1397   // Helpers for Tier1UpdateMethodData
1398   ciMethod*     _profiled_method;
1399   int           _profiled_bci;
1400 
1401 public:
1402   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1403                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1404                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1405                   ciMethod* profiled_method, int profiled_bci);
1406   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1407                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception,
1408                   ciMethod* profiled_method, int profiled_bci);
1409 
1410   LIR_Opr object() const                         { return _object;         }
1411   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1412   LIR_Opr tmp1() const                           { return _tmp1;           }
1413   LIR_Opr tmp2() const                           { return _tmp2;           }
1414   LIR_Opr tmp3() const                           { return _tmp3;           }
1415   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1416   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1417   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1418   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1419   CodeStub* stub() const                         { return _stub;           }
1420 
1421   // methodDataOop profiling
1422   ciMethod* profiled_method()                    { return _profiled_method; }
1423   int       profiled_bci()                       { return _profiled_bci; }
1424 
1425   virtual void emit_code(LIR_Assembler* masm);
1426   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1427   void print_instr(outputStream* out) const PRODUCT_RETURN;
1428 };
1429 
1430 // LIR_Op2
1431 class LIR_Op2: public LIR_Op {
1432  friend class LIR_OpVisitState;
1433 
1434   int  _fpu_stack_size; // for sin/cos implementation on Intel
1435 
1436  protected:
1437   LIR_Opr   _opr1;
1438   LIR_Opr   _opr2;
1439   BasicType _type;
1440   LIR_Opr   _tmp;
1441   LIR_Condition _condition;
1442 
1443   void verify() const;
1444 
1445  public:
1446   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1447     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1448     , _opr1(opr1)
1449     , _opr2(opr2)
1450     , _type(T_ILLEGAL)
1451     , _condition(condition)
1452     , _fpu_stack_size(0)
1453     , _tmp(LIR_OprFact::illegalOpr) {
1454     assert(code == lir_cmp, "code check");
1455   }
1456 
1457   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result)
1458     : LIR_Op(code, result, NULL)
1459     , _opr1(opr1)
1460     , _opr2(opr2)
1461     , _type(T_ILLEGAL)
1462     , _condition(condition)
1463     , _fpu_stack_size(0)
1464     , _tmp(LIR_OprFact::illegalOpr) {
1465     assert(code == lir_cmove, "code check");
1466   }
1467 
1468   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1469           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1470     : LIR_Op(code, result, info)
1471     , _opr1(opr1)
1472     , _opr2(opr2)
1473     , _type(type)
1474     , _condition(lir_cond_unknown)
1475     , _fpu_stack_size(0)
1476     , _tmp(LIR_OprFact::illegalOpr) {
1477     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1478   }
1479 
1480   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
1481     : LIR_Op(code, result, NULL)
1482     , _opr1(opr1)
1483     , _opr2(opr2)
1484     , _type(T_ILLEGAL)
1485     , _condition(lir_cond_unknown)
1486     , _fpu_stack_size(0)
1487     , _tmp(tmp) {
1488     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1489   }
1490 
1491   LIR_Opr in_opr1() const                        { return _opr1; }
1492   LIR_Opr in_opr2() const                        { return _opr2; }
1493   BasicType type()  const                        { return _type; }
1494   LIR_Opr tmp_opr() const                        { return _tmp; }
1495   LIR_Condition condition() const  {
1496     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
1497   }
1498 
1499   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1500   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1501 
1502   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1503   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1504 
1505   virtual void emit_code(LIR_Assembler* masm);
1506   virtual LIR_Op2* as_Op2() { return this; }
1507   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1508 };
1509 
1510 class LIR_OpAllocArray : public LIR_Op {
1511  friend class LIR_OpVisitState;
1512 
1513  private:
1514   LIR_Opr   _klass;
1515   LIR_Opr   _len;
1516   LIR_Opr   _tmp1;
1517   LIR_Opr   _tmp2;
1518   LIR_Opr   _tmp3;
1519   LIR_Opr   _tmp4;
1520   BasicType _type;
1521   CodeStub* _stub;
1522 
1523  public:
1524   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1525     : LIR_Op(lir_alloc_array, result, NULL)
1526     , _klass(klass)
1527     , _len(len)
1528     , _tmp1(t1)
1529     , _tmp2(t2)
1530     , _tmp3(t3)
1531     , _tmp4(t4)
1532     , _type(type)
1533     , _stub(stub) {}
1534 
1535   LIR_Opr   klass()   const                      { return _klass;       }
1536   LIR_Opr   len()     const                      { return _len;         }
1537   LIR_Opr   obj()     const                      { return result_opr(); }
1538   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1539   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1540   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1541   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1542   BasicType type()    const                      { return _type;        }
1543   CodeStub* stub()    const                      { return _stub;        }
1544 
1545   virtual void emit_code(LIR_Assembler* masm);
1546   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1547   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1548 };
1549 
1550 
1551 class LIR_Op3: public LIR_Op {
1552  friend class LIR_OpVisitState;
1553 
1554  private:
1555   LIR_Opr _opr1;
1556   LIR_Opr _opr2;
1557   LIR_Opr _opr3;
1558  public:
1559   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1560     : LIR_Op(code, result, info)
1561     , _opr1(opr1)
1562     , _opr2(opr2)
1563     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1564   LIR_Opr in_opr1() const                        { return _opr1; }
1565   LIR_Opr in_opr2() const                        { return _opr2; }
1566   LIR_Opr in_opr3() const                        { return _opr3; }
1567 
1568   virtual void emit_code(LIR_Assembler* masm);
1569   virtual LIR_Op3* as_Op3() { return this; }
1570   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1571 };
1572 
1573 
1574 //--------------------------------
1575 class LabelObj: public CompilationResourceObj {
1576  private:
1577   Label _label;
1578  public:
1579   LabelObj()                                     {}
1580   Label* label()                                 { return &_label; }
1581 };
1582 
1583 
1584 class LIR_OpLock: public LIR_Op {
1585  friend class LIR_OpVisitState;
1586 
1587  private:
1588   LIR_Opr _hdr;
1589   LIR_Opr _obj;
1590   LIR_Opr _lock;
1591   LIR_Opr _scratch;
1592   CodeStub* _stub;
1593  public:
1594   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1595     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1596     , _hdr(hdr)
1597     , _obj(obj)
1598     , _lock(lock)
1599     , _scratch(scratch)
1600     , _stub(stub)                      {}
1601 
1602   LIR_Opr hdr_opr() const                        { return _hdr; }
1603   LIR_Opr obj_opr() const                        { return _obj; }
1604   LIR_Opr lock_opr() const                       { return _lock; }
1605   LIR_Opr scratch_opr() const                    { return _scratch; }
1606   CodeStub* stub() const                         { return _stub; }
1607 
1608   virtual void emit_code(LIR_Assembler* masm);
1609   virtual LIR_OpLock* as_OpLock() { return this; }
1610   void print_instr(outputStream* out) const PRODUCT_RETURN;
1611 };
1612 
1613 
1614 class LIR_OpDelay: public LIR_Op {
1615  friend class LIR_OpVisitState;
1616 
1617  private:
1618   LIR_Op* _op;
1619 
1620  public:
1621   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1622     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1623     _op(op) {
1624     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1625   }
1626   virtual void emit_code(LIR_Assembler* masm);
1627   virtual LIR_OpDelay* as_OpDelay() { return this; }
1628   void print_instr(outputStream* out) const PRODUCT_RETURN;
1629   LIR_Op* delay_op() const { return _op; }
1630   CodeEmitInfo* call_info() const { return info(); }
1631 };
1632 
1633 
1634 // LIR_OpCompareAndSwap
1635 class LIR_OpCompareAndSwap : public LIR_Op {
1636  friend class LIR_OpVisitState;
1637 
1638  private:
1639   LIR_Opr _addr;
1640   LIR_Opr _cmp_value;
1641   LIR_Opr _new_value;
1642   LIR_Opr _tmp1;
1643   LIR_Opr _tmp2;
1644 
1645  public:
1646   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2)
1647     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1648     , _addr(addr)
1649     , _cmp_value(cmp_value)
1650     , _new_value(new_value)
1651     , _tmp1(t1)
1652     , _tmp2(t2)                                  { }
1653 
1654   LIR_Opr addr()        const                    { return _addr;  }
1655   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1656   LIR_Opr new_value()   const                    { return _new_value; }
1657   LIR_Opr tmp1()        const                    { return _tmp1;      }
1658   LIR_Opr tmp2()        const                    { return _tmp2;      }
1659 
1660   virtual void emit_code(LIR_Assembler* masm);
1661   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1662   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1663 };
1664 
1665 // LIR_OpProfileCall
1666 class LIR_OpProfileCall : public LIR_Op {
1667  friend class LIR_OpVisitState;
1668 
1669  private:
1670   ciMethod* _profiled_method;
1671   int _profiled_bci;
1672   LIR_Opr _mdo;
1673   LIR_Opr _recv;
1674   LIR_Opr _tmp1;
1675   ciKlass* _known_holder;
1676 
1677  public:
1678   // Destroys recv
1679   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1680     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1681     , _profiled_method(profiled_method)
1682     , _profiled_bci(profiled_bci)
1683     , _mdo(mdo)
1684     , _recv(recv)
1685     , _tmp1(t1)
1686     , _known_holder(known_holder)                { }
1687 
1688   ciMethod* profiled_method() const              { return _profiled_method;  }
1689   int       profiled_bci()    const              { return _profiled_bci;     }
1690   LIR_Opr   mdo()             const              { return _mdo;              }
1691   LIR_Opr   recv()            const              { return _recv;             }
1692   LIR_Opr   tmp1()            const              { return _tmp1;             }
1693   ciKlass*  known_holder()    const              { return _known_holder;     }
1694 
1695   virtual void emit_code(LIR_Assembler* masm);
1696   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1697   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1698 };
1699 
1700 
1701 class LIR_InsertionBuffer;
1702 
1703 //--------------------------------LIR_List---------------------------------------------------
1704 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1705 // The LIR instructions are appended by the LIR_List class itself;
1706 //
1707 // Notes:
1708 // - all offsets are(should be) in bytes
1709 // - local positions are specified with an offset, with offset 0 being local 0
1710 
1711 class LIR_List: public CompilationResourceObj {
1712  private:
1713   LIR_OpList  _operations;
1714 
1715   Compilation*  _compilation;
1716 #ifndef PRODUCT
1717   BlockBegin*   _block;
1718 #endif
1719 #ifdef ASSERT
1720   const char *  _file;
1721   int           _line;
1722 #endif
1723 
1724   void append(LIR_Op* op) {
1725     if (op->source() == NULL)
1726       op->set_source(_compilation->current_instruction());
1727 #ifndef PRODUCT
1728     if (PrintIRWithLIR) {
1729       _compilation->maybe_print_current_instruction();
1730       op->print(); tty->cr();
1731     }
1732 #endif // PRODUCT
1733 
1734     _operations.append(op);
1735 
1736 #ifdef ASSERT
1737     op->verify();
1738     op->set_file_and_line(_file, _line);
1739     _file = NULL;
1740     _line = 0;
1741 #endif
1742   }
1743 
1744  public:
1745   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
1746 
1747 #ifdef ASSERT
1748   void set_file_and_line(const char * file, int line);
1749 #endif
1750 
1751   //---------- accessors ---------------
1752   LIR_OpList* instructions_list()                { return &_operations; }
1753   int         length() const                     { return _operations.length(); }
1754   LIR_Op*     at(int i) const                    { return _operations.at(i); }
1755 
1756   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
1757 
1758   // insert LIR_Ops in buffer to right places in LIR_List
1759   void append(LIR_InsertionBuffer* buffer);
1760 
1761   //---------- mutators ---------------
1762   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
1763   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
1764 
1765   //---------- printing -------------
1766   void print_instructions() PRODUCT_RETURN;
1767 
1768 
1769   //---------- instructions -------------
1770   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1771                         address dest, LIR_OprList* arguments,
1772                         CodeEmitInfo* info) {
1773     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
1774   }
1775   void call_static(ciMethod* method, LIR_Opr result,
1776                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1777     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
1778   }
1779   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1780                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1781     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
1782   }
1783   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1784                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
1785     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
1786   }
1787   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1788                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1789     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
1790   }
1791 
1792   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
1793   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
1794   void membar()                                  { append(new LIR_Op0(lir_membar)); }
1795   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
1796   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
1797 
1798   void nop()                                     { append(new LIR_Op0(lir_nop)); }
1799   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
1800 
1801   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
1802   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
1803 
1804   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
1805 
1806   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
1807   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
1808 
1809   // result is a stack location for old backend and vreg for UseLinearScan
1810   // stack_loc_temp is an illegal register for old backend
1811   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
1812   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1813   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1814   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1815   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
1816   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
1817   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
1818 
1819   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
1820 
1821   void oop2reg  (jobject o, LIR_Opr reg)         { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
1822   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
1823 
1824   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
1825 
1826   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
1827 
1828   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
1829 
1830   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
1831   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
1832   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
1833 
1834   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
1835   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1836     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
1837   }
1838   void unwind_exception(LIR_Opr exceptionOop) {
1839     append(new LIR_Op1(lir_unwind, exceptionOop));
1840   }
1841 
1842   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1843     append(new LIR_Op2(lir_compare_to,  left, right, dst));
1844   }
1845 
1846   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
1847   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
1848 
1849   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
1850     append(new LIR_Op2(lir_cmp, condition, left, right, info));
1851   }
1852   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
1853     cmp(condition, left, LIR_OprFact::intConst(right), info);
1854   }
1855 
1856   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
1857   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
1858 
1859   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) {
1860     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst));
1861   }
1862 
1863   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
1864   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
1865   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2);
1866 
1867   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
1868   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
1869   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
1870   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
1871   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
1872   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
1873   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
1874 
1875   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
1876   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
1877   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
1878   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
1879   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
1880   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
1881   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
1882 
1883   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1884   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
1885 
1886   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
1887 
1888   void prefetch(LIR_Address* addr, bool is_store);
1889 
1890   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1891   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1892   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
1893   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
1894   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
1895 
1896   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1897   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1898   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1899   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
1900 
1901   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
1902   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
1903 
1904   // jump is an unconditional branch
1905   void jump(BlockBegin* block) {
1906     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
1907   }
1908   void jump(CodeStub* stub) {
1909     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
1910   }
1911   void branch(LIR_Condition cond, Label* lbl)        { append(new LIR_OpBranch(cond, lbl)); }
1912   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
1913     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
1914     append(new LIR_OpBranch(cond, type, block));
1915   }
1916   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
1917     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
1918     append(new LIR_OpBranch(cond, type, stub));
1919   }
1920   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
1921     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
1922     append(new LIR_OpBranch(cond, type, block, unordered));
1923   }
1924 
1925   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
1926   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
1927   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
1928 
1929   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
1930   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
1931   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
1932 
1933   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
1934   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
1935 
1936   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
1937     append(new LIR_OpRTCall(routine, tmp, result, arguments));
1938   }
1939 
1940   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
1941                     LIR_OprList* arguments, CodeEmitInfo* info) {
1942     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
1943   }
1944 
1945   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
1946   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, CodeStub* stub);
1947   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
1948 
1949   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
1950   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
1951   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
1952 
1953   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
1954 
1955   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
1956 
1957   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
1958                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1959                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
1960                   ciMethod* profiled_method, int profiled_bci);
1961   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch);
1962   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1963 
1964   // methodDataOop profiling
1965   void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) { append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass)); }
1966 };
1967 
1968 void print_LIR(BlockList* blocks);
1969 
1970 class LIR_InsertionBuffer : public CompilationResourceObj {
1971  private:
1972   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
1973 
1974   // list of insertion points. index and count are stored alternately:
1975   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
1976   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
1977   intStack    _index_and_count;
1978 
1979   // the LIR_Ops to be inserted
1980   LIR_OpList  _ops;
1981 
1982   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
1983   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
1984   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
1985 
1986 #ifdef ASSERT
1987   void verify();
1988 #endif
1989  public:
1990   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
1991 
1992   // must be called before using the insertion buffer
1993   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
1994   bool initialized() const  { return _lir != NULL; }
1995   // called automatically when the buffer is appended to the LIR_List
1996   void finish()             { _lir = NULL; }
1997 
1998   // accessors
1999   LIR_List*  lir_list() const             { return _lir; }
2000   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2001   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2002   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2003 
2004   int number_of_ops() const               { return _ops.length(); }
2005   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2006 
2007   // append an instruction to the buffer
2008   void append(int index, LIR_Op* op);
2009 
2010   // instruction
2011   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2012 };
2013 
2014 
2015 //
2016 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2017 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2018 // information about the input, output and temporaries used by the
2019 // op to be recorded.  It also records whether the op has call semantics
2020 // and also records all the CodeEmitInfos used by this op.
2021 //
2022 
2023 
2024 class LIR_OpVisitState: public StackObj {
2025  public:
2026   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2027 
2028   enum {
2029     maxNumberOfOperands = 16,
2030     maxNumberOfInfos = 4
2031   };
2032 
2033  private:
2034   LIR_Op*          _op;
2035 
2036   // optimization: the operands and infos are not stored in a variable-length
2037   //               list, but in a fixed-size array to save time of size checks and resizing
2038   int              _oprs_len[numModes];
2039   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2040   int _info_len;
2041   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2042 
2043   bool             _has_call;
2044   bool             _has_slow_case;
2045 
2046 
2047   // only include register operands
2048   // addresses are decomposed to the base and index registers
2049   // constants and stack operands are ignored
2050   void append(LIR_Opr& opr, OprMode mode) {
2051     assert(opr->is_valid(), "should not call this otherwise");
2052     assert(mode >= 0 && mode < numModes, "bad mode");
2053 
2054     if (opr->is_register()) {
2055        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2056       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2057 
2058     } else if (opr->is_pointer()) {
2059       LIR_Address* address = opr->as_address_ptr();
2060       if (address != NULL) {
2061         // special handling for addresses: add base and index register of the address
2062         // both are always input operands!
2063         if (address->_base->is_valid()) {
2064           assert(address->_base->is_register(), "must be");
2065           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
2066           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
2067         }
2068         if (address->_index->is_valid()) {
2069           assert(address->_index->is_register(), "must be");
2070           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
2071           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
2072         }
2073 
2074       } else {
2075         assert(opr->is_constant(), "constant operands are not processed");
2076       }
2077     } else {
2078       assert(opr->is_stack(), "stack operands are not processed");
2079     }
2080   }
2081 
2082   void append(CodeEmitInfo* info) {
2083     assert(info != NULL, "should not call this otherwise");
2084     assert(_info_len < maxNumberOfInfos, "array overflow");
2085     _info_new[_info_len++] = info;
2086   }
2087 
2088  public:
2089   LIR_OpVisitState()         { reset(); }
2090 
2091   LIR_Op* op() const         { return _op; }
2092   void set_op(LIR_Op* op)    { reset(); _op = op; }
2093 
2094   bool has_call() const      { return _has_call; }
2095   bool has_slow_case() const { return _has_slow_case; }
2096 
2097   void reset() {
2098     _op = NULL;
2099     _has_call = false;
2100     _has_slow_case = false;
2101 
2102     _oprs_len[inputMode] = 0;
2103     _oprs_len[tempMode] = 0;
2104     _oprs_len[outputMode] = 0;
2105     _info_len = 0;
2106   }
2107 
2108 
2109   int opr_count(OprMode mode) const {
2110     assert(mode >= 0 && mode < numModes, "bad mode");
2111     return _oprs_len[mode];
2112   }
2113 
2114   LIR_Opr opr_at(OprMode mode, int index) const {
2115     assert(mode >= 0 && mode < numModes, "bad mode");
2116     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2117     return *_oprs_new[mode][index];
2118   }
2119 
2120   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2121     assert(mode >= 0 && mode < numModes, "bad mode");
2122     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2123     *_oprs_new[mode][index] = opr;
2124   }
2125 
2126   int info_count() const {
2127     return _info_len;
2128   }
2129 
2130   CodeEmitInfo* info_at(int index) const {
2131     assert(index < _info_len, "index out of bounds");
2132     return _info_new[index];
2133   }
2134 
2135   XHandlers* all_xhandler();
2136 
2137   // collects all register operands of the instruction
2138   void visit(LIR_Op* op);
2139 
2140 #if ASSERT
2141   // check that an operation has no operands
2142   bool no_operands(LIR_Op* op);
2143 #endif
2144 
2145   // LIR_Op visitor functions use these to fill in the state
2146   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2147   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2148   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2149   void do_info(CodeEmitInfo* info)        { append(info); }
2150 
2151   void do_stub(CodeStub* stub);
2152   void do_call()                          { _has_call = true; }
2153   void do_slow_case()                     { _has_slow_case = true; }
2154   void do_slow_case(CodeEmitInfo* info) {
2155     _has_slow_case = true;
2156     append(info);
2157   }
2158 };
2159 
2160 
2161 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };