1 /*
   2  * Copyright 2005-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRGenerator.cpp.incl"
  27 
  28 #ifdef ASSERT
  29 #define __ gen()->lir(__FILE__, __LINE__)->
  30 #else
  31 #define __ gen()->lir()->
  32 #endif
  33 
  34 
  35 void PhiResolverState::reset(int max_vregs) {
  36   // Initialize array sizes
  37   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  38   _virtual_operands.trunc_to(0);
  39   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  40   _other_operands.trunc_to(0);
  41   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  42   _vreg_table.trunc_to(0);
  43 }
  44 
  45 
  46 
  47 //--------------------------------------------------------------
  48 // PhiResolver
  49 
  50 // Resolves cycles:
  51 //
  52 //  r1 := r2  becomes  temp := r1
  53 //  r2 := r1           r1 := r2
  54 //                     r2 := temp
  55 // and orders moves:
  56 //
  57 //  r2 := r3  becomes  r1 := r2
  58 //  r1 := r2           r2 := r3
  59 
  60 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  61  : _gen(gen)
  62  , _state(gen->resolver_state())
  63  , _temp(LIR_OprFact::illegalOpr)
  64 {
  65   // reinitialize the shared state arrays
  66   _state.reset(max_vregs);
  67 }
  68 
  69 
  70 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  71   assert(src->is_valid(), "");
  72   assert(dest->is_valid(), "");
  73   __ move(src, dest);
  74 }
  75 
  76 
  77 void PhiResolver::move_temp_to(LIR_Opr dest) {
  78   assert(_temp->is_valid(), "");
  79   emit_move(_temp, dest);
  80   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
  81 }
  82 
  83 
  84 void PhiResolver::move_to_temp(LIR_Opr src) {
  85   assert(_temp->is_illegal(), "");
  86   _temp = _gen->new_register(src->type());
  87   emit_move(src, _temp);
  88 }
  89 
  90 
  91 // Traverse assignment graph in depth first order and generate moves in post order
  92 // ie. two assignments: b := c, a := b start with node c:
  93 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
  94 // Generates moves in this order: move b to a and move c to b
  95 // ie. cycle a := b, b := a start with node a
  96 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
  97 // Generates moves in this order: move b to temp, move a to b, move temp to a
  98 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
  99   if (!dest->visited()) {
 100     dest->set_visited();
 101     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 102       move(dest, dest->destination_at(i));
 103     }
 104   } else if (!dest->start_node()) {
 105     // cylce in graph detected
 106     assert(_loop == NULL, "only one loop valid!");
 107     _loop = dest;
 108     move_to_temp(src->operand());
 109     return;
 110   } // else dest is a start node
 111 
 112   if (!dest->assigned()) {
 113     if (_loop == dest) {
 114       move_temp_to(dest->operand());
 115       dest->set_assigned();
 116     } else if (src != NULL) {
 117       emit_move(src->operand(), dest->operand());
 118       dest->set_assigned();
 119     }
 120   }
 121 }
 122 
 123 
 124 PhiResolver::~PhiResolver() {
 125   int i;
 126   // resolve any cycles in moves from and to virtual registers
 127   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 128     ResolveNode* node = virtual_operands()[i];
 129     if (!node->visited()) {
 130       _loop = NULL;
 131       move(NULL, node);
 132       node->set_start_node();
 133       assert(_temp->is_illegal(), "move_temp_to() call missing");
 134     }
 135   }
 136 
 137   // generate move for move from non virtual register to abitrary destination
 138   for (i = other_operands().length() - 1; i >= 0; i --) {
 139     ResolveNode* node = other_operands()[i];
 140     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 141       emit_move(node->operand(), node->destination_at(j)->operand());
 142     }
 143   }
 144 }
 145 
 146 
 147 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 148   ResolveNode* node;
 149   if (opr->is_virtual()) {
 150     int vreg_num = opr->vreg_number();
 151     node = vreg_table().at_grow(vreg_num, NULL);
 152     assert(node == NULL || node->operand() == opr, "");
 153     if (node == NULL) {
 154       node = new ResolveNode(opr);
 155       vreg_table()[vreg_num] = node;
 156     }
 157     // Make sure that all virtual operands show up in the list when
 158     // they are used as the source of a move.
 159     if (source && !virtual_operands().contains(node)) {
 160       virtual_operands().append(node);
 161     }
 162   } else {
 163     assert(source, "");
 164     node = new ResolveNode(opr);
 165     other_operands().append(node);
 166   }
 167   return node;
 168 }
 169 
 170 
 171 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 172   assert(dest->is_virtual(), "");
 173   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 174   assert(src->is_valid(), "");
 175   assert(dest->is_valid(), "");
 176   ResolveNode* source = source_node(src);
 177   source->append(destination_node(dest));
 178 }
 179 
 180 
 181 //--------------------------------------------------------------
 182 // LIRItem
 183 
 184 void LIRItem::set_result(LIR_Opr opr) {
 185   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 186   value()->set_operand(opr);
 187 
 188   if (opr->is_virtual()) {
 189     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 190   }
 191 
 192   _result = opr;
 193 }
 194 
 195 void LIRItem::load_item() {
 196   if (result()->is_illegal()) {
 197     // update the items result
 198     _result = value()->operand();
 199   }
 200   if (!result()->is_register()) {
 201     LIR_Opr reg = _gen->new_register(value()->type());
 202     __ move(result(), reg);
 203     if (result()->is_constant()) {
 204       _result = reg;
 205     } else {
 206       set_result(reg);
 207     }
 208   }
 209 }
 210 
 211 
 212 void LIRItem::load_for_store(BasicType type) {
 213   if (_gen->can_store_as_constant(value(), type)) {
 214     _result = value()->operand();
 215     if (!_result->is_constant()) {
 216       _result = LIR_OprFact::value_type(value()->type());
 217     }
 218   } else if (type == T_BYTE || type == T_BOOLEAN) {
 219     load_byte_item();
 220   } else {
 221     load_item();
 222   }
 223 }
 224 
 225 void LIRItem::load_item_force(LIR_Opr reg) {
 226   LIR_Opr r = result();
 227   if (r != reg) {
 228     if (r->type() != reg->type()) {
 229       // moves between different types need an intervening spill slot
 230       LIR_Opr tmp = _gen->force_to_spill(r, reg->type());
 231       __ move(tmp, reg);
 232     } else {
 233       __ move(r, reg);
 234     }
 235     _result = reg;
 236   }
 237 }
 238 
 239 ciObject* LIRItem::get_jobject_constant() const {
 240   ObjectType* oc = type()->as_ObjectType();
 241   if (oc) {
 242     return oc->constant_value();
 243   }
 244   return NULL;
 245 }
 246 
 247 
 248 jint LIRItem::get_jint_constant() const {
 249   assert(is_constant() && value() != NULL, "");
 250   assert(type()->as_IntConstant() != NULL, "type check");
 251   return type()->as_IntConstant()->value();
 252 }
 253 
 254 
 255 jint LIRItem::get_address_constant() const {
 256   assert(is_constant() && value() != NULL, "");
 257   assert(type()->as_AddressConstant() != NULL, "type check");
 258   return type()->as_AddressConstant()->value();
 259 }
 260 
 261 
 262 jfloat LIRItem::get_jfloat_constant() const {
 263   assert(is_constant() && value() != NULL, "");
 264   assert(type()->as_FloatConstant() != NULL, "type check");
 265   return type()->as_FloatConstant()->value();
 266 }
 267 
 268 
 269 jdouble LIRItem::get_jdouble_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_DoubleConstant() != NULL, "type check");
 272   return type()->as_DoubleConstant()->value();
 273 }
 274 
 275 
 276 jlong LIRItem::get_jlong_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_LongConstant() != NULL, "type check");
 279   return type()->as_LongConstant()->value();
 280 }
 281 
 282 
 283 
 284 //--------------------------------------------------------------
 285 
 286 
 287 void LIRGenerator::init() {
 288   _bs = Universe::heap()->barrier_set();
 289 }
 290 
 291 
 292 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 293 #ifndef PRODUCT
 294   if (PrintIRWithLIR) {
 295     block->print();
 296   }
 297 #endif
 298 
 299   // set up the list of LIR instructions
 300   assert(block->lir() == NULL, "LIR list already computed for this block");
 301   _lir = new LIR_List(compilation(), block);
 302   block->set_lir(_lir);
 303 
 304   __ branch_destination(block->label());
 305 
 306   if (LIRTraceExecution &&
 307       Compilation::current_compilation()->hir()->start()->block_id() != block->block_id() &&
 308       !block->is_set(BlockBegin::exception_entry_flag)) {
 309     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 310     trace_block_entry(block);
 311   }
 312 }
 313 
 314 
 315 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 316 #ifndef PRODUCT
 317   if (PrintIRWithLIR) {
 318     tty->cr();
 319   }
 320 #endif
 321 
 322   // LIR_Opr for unpinned constants shouldn't be referenced by other
 323   // blocks so clear them out after processing the block.
 324   for (int i = 0; i < _unpinned_constants.length(); i++) {
 325     _unpinned_constants.at(i)->clear_operand();
 326   }
 327   _unpinned_constants.trunc_to(0);
 328 
 329   // clear our any registers for other local constants
 330   _constants.trunc_to(0);
 331   _reg_for_constants.trunc_to(0);
 332 }
 333 
 334 
 335 void LIRGenerator::block_do(BlockBegin* block) {
 336   CHECK_BAILOUT();
 337 
 338   block_do_prolog(block);
 339   set_block(block);
 340 
 341   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 342     if (instr->is_pinned()) do_root(instr);
 343   }
 344 
 345   set_block(NULL);
 346   block_do_epilog(block);
 347 }
 348 
 349 
 350 //-------------------------LIRGenerator-----------------------------
 351 
 352 // This is where the tree-walk starts; instr must be root;
 353 void LIRGenerator::do_root(Value instr) {
 354   CHECK_BAILOUT();
 355 
 356   InstructionMark im(compilation(), instr);
 357 
 358   assert(instr->is_pinned(), "use only with roots");
 359   assert(instr->subst() == instr, "shouldn't have missed substitution");
 360 
 361   instr->visit(this);
 362 
 363   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 364          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 365 }
 366 
 367 
 368 // This is called for each node in tree; the walk stops if a root is reached
 369 void LIRGenerator::walk(Value instr) {
 370   InstructionMark im(compilation(), instr);
 371   //stop walk when encounter a root
 372   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 373     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 374   } else {
 375     assert(instr->subst() == instr, "shouldn't have missed substitution");
 376     instr->visit(this);
 377     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 378   }
 379 }
 380 
 381 
 382 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 383   int index;
 384   Value value;
 385   for_each_stack_value(state, index, value) {
 386     assert(value->subst() == value, "missed substition");
 387     if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 388       walk(value);
 389       assert(value->operand()->is_valid(), "must be evaluated now");
 390     }
 391   }
 392   ValueStack* s = state;
 393   int bci = x->bci();
 394   for_each_state(s) {
 395     IRScope* scope = s->scope();
 396     ciMethod* method = scope->method();
 397 
 398     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 399     if (bci == SynchronizationEntryBCI) {
 400       if (x->as_ExceptionObject() || x->as_Throw()) {
 401         // all locals are dead on exit from the synthetic unlocker
 402         liveness.clear();
 403       } else {
 404         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
 405       }
 406     }
 407     if (!liveness.is_valid()) {
 408       // Degenerate or breakpointed method.
 409       bailout("Degenerate or breakpointed method");
 410     } else {
 411       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 412       for_each_local_value(s, index, value) {
 413         assert(value->subst() == value, "missed substition");
 414         if (liveness.at(index) && !value->type()->is_illegal()) {
 415           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 416             walk(value);
 417             assert(value->operand()->is_valid(), "must be evaluated now");
 418           }
 419         } else {
 420           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 421           s->invalidate_local(index);
 422         }
 423       }
 424     }
 425     bci = scope->caller_bci();
 426   }
 427 
 428   return new CodeEmitInfo(x->bci(), state, ignore_xhandler ? NULL : x->exception_handlers());
 429 }
 430 
 431 
 432 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 433   return state_for(x, x->lock_stack());
 434 }
 435 
 436 
 437 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
 438   if (!obj->is_loaded() || PatchALot) {
 439     assert(info != NULL, "info must be set if class is not loaded");
 440     __ oop2reg_patch(NULL, r, info);
 441   } else {
 442     // no patching needed
 443     __ oop2reg(obj->constant_encoding(), r);
 444   }
 445 }
 446 
 447 
 448 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 449                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 450   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 451   if (index->is_constant()) {
 452     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 453                 index->as_jint(), null_check_info);
 454     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 455   } else {
 456     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 457                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 458     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 459   }
 460 }
 461 
 462 
 463 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 464   CodeStub* stub = new RangeCheckStub(info, index, true);
 465   if (index->is_constant()) {
 466     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 467     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 468   } else {
 469     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 470                 java_nio_Buffer::limit_offset(), T_INT, info);
 471     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 472   }
 473   __ move(index, result);
 474 }
 475 
 476 
 477 // increment a counter returning the incremented value
 478 LIR_Opr LIRGenerator::increment_and_return_counter(LIR_Opr base, int offset, int increment) {
 479   LIR_Address* counter = new LIR_Address(base, offset, T_INT);
 480   LIR_Opr result = new_register(T_INT);
 481   __ load(counter, result);
 482   __ add(result, LIR_OprFact::intConst(increment), result);
 483   __ store(result, counter);
 484   return result;
 485 }
 486 
 487 
 488 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 489   LIR_Opr result_op = result;
 490   LIR_Opr left_op   = left;
 491   LIR_Opr right_op  = right;
 492 
 493   if (TwoOperandLIRForm && left_op != result_op) {
 494     assert(right_op != result_op, "malformed");
 495     __ move(left_op, result_op);
 496     left_op = result_op;
 497   }
 498 
 499   switch(code) {
 500     case Bytecodes::_dadd:
 501     case Bytecodes::_fadd:
 502     case Bytecodes::_ladd:
 503     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 504     case Bytecodes::_fmul:
 505     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 506 
 507     case Bytecodes::_dmul:
 508       {
 509         if (is_strictfp) {
 510           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 511         } else {
 512           __ mul(left_op, right_op, result_op); break;
 513         }
 514       }
 515       break;
 516 
 517     case Bytecodes::_imul:
 518       {
 519         bool    did_strength_reduce = false;
 520 
 521         if (right->is_constant()) {
 522           int c = right->as_jint();
 523           if (is_power_of_2(c)) {
 524             // do not need tmp here
 525             __ shift_left(left_op, exact_log2(c), result_op);
 526             did_strength_reduce = true;
 527           } else {
 528             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 529           }
 530         }
 531         // we couldn't strength reduce so just emit the multiply
 532         if (!did_strength_reduce) {
 533           __ mul(left_op, right_op, result_op);
 534         }
 535       }
 536       break;
 537 
 538     case Bytecodes::_dsub:
 539     case Bytecodes::_fsub:
 540     case Bytecodes::_lsub:
 541     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 542 
 543     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 544     // ldiv and lrem are implemented with a direct runtime call
 545 
 546     case Bytecodes::_ddiv:
 547       {
 548         if (is_strictfp) {
 549           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 550         } else {
 551           __ div (left_op, right_op, result_op); break;
 552         }
 553       }
 554       break;
 555 
 556     case Bytecodes::_drem:
 557     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 558 
 559     default: ShouldNotReachHere();
 560   }
 561 }
 562 
 563 
 564 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 565   arithmetic_op(code, result, left, right, false, tmp);
 566 }
 567 
 568 
 569 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 570   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 571 }
 572 
 573 
 574 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 575   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 576 }
 577 
 578 
 579 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 580   if (TwoOperandLIRForm && value != result_op) {
 581     assert(count != result_op, "malformed");
 582     __ move(value, result_op);
 583     value = result_op;
 584   }
 585 
 586   assert(count->is_constant() || count->is_register(), "must be");
 587   switch(code) {
 588   case Bytecodes::_ishl:
 589   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 590   case Bytecodes::_ishr:
 591   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 592   case Bytecodes::_iushr:
 593   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 594   default: ShouldNotReachHere();
 595   }
 596 }
 597 
 598 
 599 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 600   if (TwoOperandLIRForm && left_op != result_op) {
 601     assert(right_op != result_op, "malformed");
 602     __ move(left_op, result_op);
 603     left_op = result_op;
 604   }
 605 
 606   switch(code) {
 607     case Bytecodes::_iand:
 608     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 609 
 610     case Bytecodes::_ior:
 611     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 612 
 613     case Bytecodes::_ixor:
 614     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 615 
 616     default: ShouldNotReachHere();
 617   }
 618 }
 619 
 620 
 621 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 622   if (!GenerateSynchronizationCode) return;
 623   // for slow path, use debug info for state after successful locking
 624   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 625   __ load_stack_address_monitor(monitor_no, lock);
 626   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 627   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 628 }
 629 
 630 
 631 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, int monitor_no) {
 632   if (!GenerateSynchronizationCode) return;
 633   // setup registers
 634   LIR_Opr hdr = lock;
 635   lock = new_hdr;
 636   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 637   __ load_stack_address_monitor(monitor_no, lock);
 638   __ unlock_object(hdr, object, lock, slow_path);
 639 }
 640 
 641 
 642 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 643   jobject2reg_with_patching(klass_reg, klass, info);
 644   // If klass is not loaded we do not know if the klass has finalizers:
 645   if (UseFastNewInstance && klass->is_loaded()
 646       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 647 
 648     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 649 
 650     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 651 
 652     assert(klass->is_loaded(), "must be loaded");
 653     // allocate space for instance
 654     assert(klass->size_helper() >= 0, "illegal instance size");
 655     const int instance_size = align_object_size(klass->size_helper());
 656     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 657                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 658   } else {
 659     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 660     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 661     __ branch_destination(slow_path->continuation());
 662   }
 663 }
 664 
 665 
 666 static bool is_constant_zero(Instruction* inst) {
 667   IntConstant* c = inst->type()->as_IntConstant();
 668   if (c) {
 669     return (c->value() == 0);
 670   }
 671   return false;
 672 }
 673 
 674 
 675 static bool positive_constant(Instruction* inst) {
 676   IntConstant* c = inst->type()->as_IntConstant();
 677   if (c) {
 678     return (c->value() >= 0);
 679   }
 680   return false;
 681 }
 682 
 683 
 684 static ciArrayKlass* as_array_klass(ciType* type) {
 685   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 686     return (ciArrayKlass*)type;
 687   } else {
 688     return NULL;
 689   }
 690 }
 691 
 692 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 693   Instruction* src     = x->argument_at(0);
 694   Instruction* src_pos = x->argument_at(1);
 695   Instruction* dst     = x->argument_at(2);
 696   Instruction* dst_pos = x->argument_at(3);
 697   Instruction* length  = x->argument_at(4);
 698 
 699   // first try to identify the likely type of the arrays involved
 700   ciArrayKlass* expected_type = NULL;
 701   bool is_exact = false;
 702   {
 703     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 704     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 705     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 706     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 707     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 708       // the types exactly match so the type is fully known
 709       is_exact = true;
 710       expected_type = src_exact_type;
 711     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 712       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 713       ciArrayKlass* src_type = NULL;
 714       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 715         src_type = (ciArrayKlass*) src_exact_type;
 716       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 717         src_type = (ciArrayKlass*) src_declared_type;
 718       }
 719       if (src_type != NULL) {
 720         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 721           is_exact = true;
 722           expected_type = dst_type;
 723         }
 724       }
 725     }
 726     // at least pass along a good guess
 727     if (expected_type == NULL) expected_type = dst_exact_type;
 728     if (expected_type == NULL) expected_type = src_declared_type;
 729     if (expected_type == NULL) expected_type = dst_declared_type;
 730   }
 731 
 732   // if a probable array type has been identified, figure out if any
 733   // of the required checks for a fast case can be elided.
 734   int flags = LIR_OpArrayCopy::all_flags;
 735   if (expected_type != NULL) {
 736     // try to skip null checks
 737     if (src->as_NewArray() != NULL)
 738       flags &= ~LIR_OpArrayCopy::src_null_check;
 739     if (dst->as_NewArray() != NULL)
 740       flags &= ~LIR_OpArrayCopy::dst_null_check;
 741 
 742     // check from incoming constant values
 743     if (positive_constant(src_pos))
 744       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 745     if (positive_constant(dst_pos))
 746       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 747     if (positive_constant(length))
 748       flags &= ~LIR_OpArrayCopy::length_positive_check;
 749 
 750     // see if the range check can be elided, which might also imply
 751     // that src or dst is non-null.
 752     ArrayLength* al = length->as_ArrayLength();
 753     if (al != NULL) {
 754       if (al->array() == src) {
 755         // it's the length of the source array
 756         flags &= ~LIR_OpArrayCopy::length_positive_check;
 757         flags &= ~LIR_OpArrayCopy::src_null_check;
 758         if (is_constant_zero(src_pos))
 759           flags &= ~LIR_OpArrayCopy::src_range_check;
 760       }
 761       if (al->array() == dst) {
 762         // it's the length of the destination array
 763         flags &= ~LIR_OpArrayCopy::length_positive_check;
 764         flags &= ~LIR_OpArrayCopy::dst_null_check;
 765         if (is_constant_zero(dst_pos))
 766           flags &= ~LIR_OpArrayCopy::dst_range_check;
 767       }
 768     }
 769     if (is_exact) {
 770       flags &= ~LIR_OpArrayCopy::type_check;
 771     }
 772   }
 773 
 774   if (src == dst) {
 775     // moving within a single array so no type checks are needed
 776     if (flags & LIR_OpArrayCopy::type_check) {
 777       flags &= ~LIR_OpArrayCopy::type_check;
 778     }
 779   }
 780   *flagsp = flags;
 781   *expected_typep = (ciArrayKlass*)expected_type;
 782 }
 783 
 784 
 785 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 786   assert(opr->is_register(), "why spill if item is not register?");
 787 
 788   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 789     LIR_Opr result = new_register(T_FLOAT);
 790     set_vreg_flag(result, must_start_in_memory);
 791     assert(opr->is_register(), "only a register can be spilled");
 792     assert(opr->value_type()->is_float(), "rounding only for floats available");
 793     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 794     return result;
 795   }
 796   return opr;
 797 }
 798 
 799 
 800 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 801   assert(type2size[t] == type2size[value->type()], "size mismatch");
 802   if (!value->is_register()) {
 803     // force into a register
 804     LIR_Opr r = new_register(value->type());
 805     __ move(value, r);
 806     value = r;
 807   }
 808 
 809   // create a spill location
 810   LIR_Opr tmp = new_register(t);
 811   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 812 
 813   // move from register to spill
 814   __ move(value, tmp);
 815   return tmp;
 816 }
 817 
 818 
 819 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 820   if (if_instr->should_profile()) {
 821     ciMethod* method = if_instr->profiled_method();
 822     assert(method != NULL, "method should be set if branch is profiled");
 823     ciMethodData* md = method->method_data();
 824     if (md == NULL) {
 825       bailout("out of memory building methodDataOop");
 826       return;
 827     }
 828     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 829     assert(data != NULL, "must have profiling data");
 830     assert(data->is_BranchData(), "need BranchData for two-way branches");
 831     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 832     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 833     LIR_Opr md_reg = new_register(T_OBJECT);
 834     __ move(LIR_OprFact::oopConst(md->constant_encoding()), md_reg);
 835     LIR_Opr data_offset_reg = new_register(T_INT);
 836     __ cmove(lir_cond(cond),
 837              LIR_OprFact::intConst(taken_count_offset),
 838              LIR_OprFact::intConst(not_taken_count_offset),
 839              data_offset_reg);
 840     LIR_Opr data_reg = new_register(T_INT);
 841     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, T_INT);
 842     __ move(LIR_OprFact::address(data_addr), data_reg);
 843     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 844     // Use leal instead of add to avoid destroying condition codes on x86
 845     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 846     __ move(data_reg, LIR_OprFact::address(data_addr));
 847   }
 848 }
 849 
 850 
 851 // Phi technique:
 852 // This is about passing live values from one basic block to the other.
 853 // In code generated with Java it is rather rare that more than one
 854 // value is on the stack from one basic block to the other.
 855 // We optimize our technique for efficient passing of one value
 856 // (of type long, int, double..) but it can be extended.
 857 // When entering or leaving a basic block, all registers and all spill
 858 // slots are release and empty. We use the released registers
 859 // and spill slots to pass the live values from one block
 860 // to the other. The topmost value, i.e., the value on TOS of expression
 861 // stack is passed in registers. All other values are stored in spilling
 862 // area. Every Phi has an index which designates its spill slot
 863 // At exit of a basic block, we fill the register(s) and spill slots.
 864 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 865 // and locks necessary registers and spilling slots.
 866 
 867 
 868 // move current value to referenced phi function
 869 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 870   Phi* phi = sux_val->as_Phi();
 871   // cur_val can be null without phi being null in conjunction with inlining
 872   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 873     LIR_Opr operand = cur_val->operand();
 874     if (cur_val->operand()->is_illegal()) {
 875       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 876              "these can be produced lazily");
 877       operand = operand_for_instruction(cur_val);
 878     }
 879     resolver->move(operand, operand_for_instruction(phi));
 880   }
 881 }
 882 
 883 
 884 // Moves all stack values into their PHI position
 885 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 886   BlockBegin* bb = block();
 887   if (bb->number_of_sux() == 1) {
 888     BlockBegin* sux = bb->sux_at(0);
 889     assert(sux->number_of_preds() > 0, "invalid CFG");
 890 
 891     // a block with only one predecessor never has phi functions
 892     if (sux->number_of_preds() > 1) {
 893       int max_phis = cur_state->stack_size() + cur_state->locals_size();
 894       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
 895 
 896       ValueStack* sux_state = sux->state();
 897       Value sux_value;
 898       int index;
 899 
 900       for_each_stack_value(sux_state, index, sux_value) {
 901         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
 902       }
 903 
 904       // Inlining may cause the local state not to match up, so walk up
 905       // the caller state until we get to the same scope as the
 906       // successor and then start processing from there.
 907       while (cur_state->scope() != sux_state->scope()) {
 908         cur_state = cur_state->caller_state();
 909         assert(cur_state != NULL, "scopes don't match up");
 910       }
 911 
 912       for_each_local_value(sux_state, index, sux_value) {
 913         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
 914       }
 915 
 916       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
 917     }
 918   }
 919 }
 920 
 921 
 922 LIR_Opr LIRGenerator::new_register(BasicType type) {
 923   int vreg = _virtual_register_number;
 924   // add a little fudge factor for the bailout, since the bailout is
 925   // only checked periodically.  This gives a few extra registers to
 926   // hand out before we really run out, which helps us keep from
 927   // tripping over assertions.
 928   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
 929     bailout("out of virtual registers");
 930     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
 931       // wrap it around
 932       _virtual_register_number = LIR_OprDesc::vreg_base;
 933     }
 934   }
 935   _virtual_register_number += 1;
 936   if (type == T_ADDRESS) type = T_INT;
 937   return LIR_OprFact::virtual_register(vreg, type);
 938 }
 939 
 940 
 941 // Try to lock using register in hint
 942 LIR_Opr LIRGenerator::rlock(Value instr) {
 943   return new_register(instr->type());
 944 }
 945 
 946 
 947 // does an rlock and sets result
 948 LIR_Opr LIRGenerator::rlock_result(Value x) {
 949   LIR_Opr reg = rlock(x);
 950   set_result(x, reg);
 951   return reg;
 952 }
 953 
 954 
 955 // does an rlock and sets result
 956 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
 957   LIR_Opr reg;
 958   switch (type) {
 959   case T_BYTE:
 960   case T_BOOLEAN:
 961     reg = rlock_byte(type);
 962     break;
 963   default:
 964     reg = rlock(x);
 965     break;
 966   }
 967 
 968   set_result(x, reg);
 969   return reg;
 970 }
 971 
 972 
 973 //---------------------------------------------------------------------
 974 ciObject* LIRGenerator::get_jobject_constant(Value value) {
 975   ObjectType* oc = value->type()->as_ObjectType();
 976   if (oc) {
 977     return oc->constant_value();
 978   }
 979   return NULL;
 980 }
 981 
 982 
 983 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
 984   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
 985   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
 986 
 987   // no moves are created for phi functions at the begin of exception
 988   // handlers, so assign operands manually here
 989   for_each_phi_fun(block(), phi,
 990                    operand_for_instruction(phi));
 991 
 992   LIR_Opr thread_reg = getThreadPointer();
 993   __ move(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
 994           exceptionOopOpr());
 995   __ move(LIR_OprFact::oopConst(NULL),
 996           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
 997   __ move(LIR_OprFact::oopConst(NULL),
 998           new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
 999 
1000   LIR_Opr result = new_register(T_OBJECT);
1001   __ move(exceptionOopOpr(), result);
1002   set_result(x, result);
1003 }
1004 
1005 
1006 //----------------------------------------------------------------------
1007 //----------------------------------------------------------------------
1008 //----------------------------------------------------------------------
1009 //----------------------------------------------------------------------
1010 //                        visitor functions
1011 //----------------------------------------------------------------------
1012 //----------------------------------------------------------------------
1013 //----------------------------------------------------------------------
1014 //----------------------------------------------------------------------
1015 
1016 void LIRGenerator::do_Phi(Phi* x) {
1017   // phi functions are never visited directly
1018   ShouldNotReachHere();
1019 }
1020 
1021 
1022 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1023 void LIRGenerator::do_Constant(Constant* x) {
1024   if (x->state() != NULL) {
1025     // Any constant with a ValueStack requires patching so emit the patch here
1026     LIR_Opr reg = rlock_result(x);
1027     CodeEmitInfo* info = state_for(x, x->state());
1028     __ oop2reg_patch(NULL, reg, info);
1029   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1030     if (!x->is_pinned()) {
1031       // unpinned constants are handled specially so that they can be
1032       // put into registers when they are used multiple times within a
1033       // block.  After the block completes their operand will be
1034       // cleared so that other blocks can't refer to that register.
1035       set_result(x, load_constant(x));
1036     } else {
1037       LIR_Opr res = x->operand();
1038       if (!res->is_valid()) {
1039         res = LIR_OprFact::value_type(x->type());
1040       }
1041       if (res->is_constant()) {
1042         LIR_Opr reg = rlock_result(x);
1043         __ move(res, reg);
1044       } else {
1045         set_result(x, res);
1046       }
1047     }
1048   } else {
1049     set_result(x, LIR_OprFact::value_type(x->type()));
1050   }
1051 }
1052 
1053 
1054 void LIRGenerator::do_Local(Local* x) {
1055   // operand_for_instruction has the side effect of setting the result
1056   // so there's no need to do it here.
1057   operand_for_instruction(x);
1058 }
1059 
1060 
1061 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1062   Unimplemented();
1063 }
1064 
1065 
1066 void LIRGenerator::do_Return(Return* x) {
1067   if (compilation()->env()->dtrace_method_probes()) {
1068     BasicTypeList signature;
1069     signature.append(T_INT);    // thread
1070     signature.append(T_OBJECT); // methodOop
1071     LIR_OprList* args = new LIR_OprList();
1072     args->append(getThreadPointer());
1073     LIR_Opr meth = new_register(T_OBJECT);
1074     __ oop2reg(method()->constant_encoding(), meth);
1075     args->append(meth);
1076     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1077   }
1078 
1079   if (x->type()->is_void()) {
1080     __ return_op(LIR_OprFact::illegalOpr);
1081   } else {
1082     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1083     LIRItem result(x->result(), this);
1084 
1085     result.load_item_force(reg);
1086     __ return_op(result.result());
1087   }
1088   set_no_result(x);
1089 }
1090 
1091 
1092 // Example: object.getClass ()
1093 void LIRGenerator::do_getClass(Intrinsic* x) {
1094   assert(x->number_of_arguments() == 1, "wrong type");
1095 
1096   LIRItem rcvr(x->argument_at(0), this);
1097   rcvr.load_item();
1098   LIR_Opr result = rlock_result(x);
1099 
1100   // need to perform the null check on the rcvr
1101   CodeEmitInfo* info = NULL;
1102   if (x->needs_null_check()) {
1103     info = state_for(x, x->state()->copy_locks());
1104   }
1105   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1106   __ move(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1107                           klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1108 }
1109 
1110 
1111 // Example: Thread.currentThread()
1112 void LIRGenerator::do_currentThread(Intrinsic* x) {
1113   assert(x->number_of_arguments() == 0, "wrong type");
1114   LIR_Opr reg = rlock_result(x);
1115   __ load(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1116 }
1117 
1118 
1119 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1120   assert(x->number_of_arguments() == 1, "wrong type");
1121   LIRItem receiver(x->argument_at(0), this);
1122 
1123   receiver.load_item();
1124   BasicTypeList signature;
1125   signature.append(T_OBJECT); // receiver
1126   LIR_OprList* args = new LIR_OprList();
1127   args->append(receiver.result());
1128   CodeEmitInfo* info = state_for(x, x->state());
1129   call_runtime(&signature, args,
1130                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1131                voidType, info);
1132 
1133   set_no_result(x);
1134 }
1135 
1136 
1137 //------------------------local access--------------------------------------
1138 
1139 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1140   if (x->operand()->is_illegal()) {
1141     Constant* c = x->as_Constant();
1142     if (c != NULL) {
1143       x->set_operand(LIR_OprFact::value_type(c->type()));
1144     } else {
1145       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1146       // allocate a virtual register for this local or phi
1147       x->set_operand(rlock(x));
1148       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1149     }
1150   }
1151   return x->operand();
1152 }
1153 
1154 
1155 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1156   if (opr->is_virtual()) {
1157     return instruction_for_vreg(opr->vreg_number());
1158   }
1159   return NULL;
1160 }
1161 
1162 
1163 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1164   if (reg_num < _instruction_for_operand.length()) {
1165     return _instruction_for_operand.at(reg_num);
1166   }
1167   return NULL;
1168 }
1169 
1170 
1171 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1172   if (_vreg_flags.size_in_bits() == 0) {
1173     BitMap2D temp(100, num_vreg_flags);
1174     temp.clear();
1175     _vreg_flags = temp;
1176   }
1177   _vreg_flags.at_put_grow(vreg_num, f, true);
1178 }
1179 
1180 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1181   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1182     return false;
1183   }
1184   return _vreg_flags.at(vreg_num, f);
1185 }
1186 
1187 
1188 // Block local constant handling.  This code is useful for keeping
1189 // unpinned constants and constants which aren't exposed in the IR in
1190 // registers.  Unpinned Constant instructions have their operands
1191 // cleared when the block is finished so that other blocks can't end
1192 // up referring to their registers.
1193 
1194 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1195   assert(!x->is_pinned(), "only for unpinned constants");
1196   _unpinned_constants.append(x);
1197   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1198 }
1199 
1200 
1201 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1202   BasicType t = c->type();
1203   for (int i = 0; i < _constants.length(); i++) {
1204     LIR_Const* other = _constants.at(i);
1205     if (t == other->type()) {
1206       switch (t) {
1207       case T_INT:
1208       case T_FLOAT:
1209         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1210         break;
1211       case T_LONG:
1212       case T_DOUBLE:
1213         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1214         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1215         break;
1216       case T_OBJECT:
1217         if (c->as_jobject() != other->as_jobject()) continue;
1218         break;
1219       }
1220       return _reg_for_constants.at(i);
1221     }
1222   }
1223 
1224   LIR_Opr result = new_register(t);
1225   __ move((LIR_Opr)c, result);
1226   _constants.append(c);
1227   _reg_for_constants.append(result);
1228   return result;
1229 }
1230 
1231 // Various barriers
1232 
1233 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1234   // Do the pre-write barrier, if any.
1235   switch (_bs->kind()) {
1236 #ifndef SERIALGC
1237     case BarrierSet::G1SATBCT:
1238     case BarrierSet::G1SATBCTLogging:
1239       G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
1240       break;
1241 #endif // SERIALGC
1242     case BarrierSet::CardTableModRef:
1243     case BarrierSet::CardTableExtension:
1244       // No pre barriers
1245       break;
1246     case BarrierSet::ModRef:
1247     case BarrierSet::Other:
1248       // No pre barriers
1249       break;
1250     default      :
1251       ShouldNotReachHere();
1252 
1253   }
1254 }
1255 
1256 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1257   switch (_bs->kind()) {
1258 #ifndef SERIALGC
1259     case BarrierSet::G1SATBCT:
1260     case BarrierSet::G1SATBCTLogging:
1261       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1262       break;
1263 #endif // SERIALGC
1264     case BarrierSet::CardTableModRef:
1265     case BarrierSet::CardTableExtension:
1266       CardTableModRef_post_barrier(addr,  new_val);
1267       break;
1268     case BarrierSet::ModRef:
1269     case BarrierSet::Other:
1270       // No post barriers
1271       break;
1272     default      :
1273       ShouldNotReachHere();
1274     }
1275 }
1276 
1277 ////////////////////////////////////////////////////////////////////////
1278 #ifndef SERIALGC
1279 
1280 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1281   if (G1DisablePreBarrier) return;
1282 
1283   // First we test whether marking is in progress.
1284   BasicType flag_type;
1285   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1286     flag_type = T_INT;
1287   } else {
1288     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1289               "Assumption");
1290     flag_type = T_BYTE;
1291   }
1292   LIR_Opr thrd = getThreadPointer();
1293   LIR_Address* mark_active_flag_addr =
1294     new LIR_Address(thrd,
1295                     in_bytes(JavaThread::satb_mark_queue_offset() +
1296                              PtrQueue::byte_offset_of_active()),
1297                     flag_type);
1298   // Read the marking-in-progress flag.
1299   LIR_Opr flag_val = new_register(T_INT);
1300   __ load(mark_active_flag_addr, flag_val);
1301 
1302   LabelObj* start_store = new LabelObj();
1303 
1304   LIR_PatchCode pre_val_patch_code =
1305     patch ? lir_patch_normal : lir_patch_none;
1306 
1307   LIR_Opr pre_val = new_register(T_OBJECT);
1308 
1309   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1310   if (!addr_opr->is_address()) {
1311     assert(addr_opr->is_register(), "must be");
1312     addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, (intx)0, T_OBJECT));
1313   }
1314   CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
1315                                         info);
1316   __ branch(lir_cond_notEqual, T_INT, slow);
1317   __ branch_destination(slow->continuation());
1318 }
1319 
1320 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1321   if (G1DisablePostBarrier) return;
1322 
1323   // If the "new_val" is a constant NULL, no barrier is necessary.
1324   if (new_val->is_constant() &&
1325       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1326 
1327   if (!new_val->is_register()) {
1328     LIR_Opr new_val_reg = new_register(T_OBJECT);
1329     if (new_val->is_constant()) {
1330       __ move(new_val, new_val_reg);
1331     } else {
1332       __ leal(new_val, new_val_reg);
1333     }
1334     new_val = new_val_reg;
1335   }
1336   assert(new_val->is_register(), "must be a register at this point");
1337 
1338   if (addr->is_address()) {
1339     LIR_Address* address = addr->as_address_ptr();
1340     LIR_Opr ptr = new_register(T_OBJECT);
1341     if (!address->index()->is_valid() && address->disp() == 0) {
1342       __ move(address->base(), ptr);
1343     } else {
1344       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1345       __ leal(addr, ptr);
1346     }
1347     addr = ptr;
1348   }
1349   assert(addr->is_register(), "must be a register at this point");
1350 
1351   LIR_Opr xor_res = new_pointer_register();
1352   LIR_Opr xor_shift_res = new_pointer_register();
1353   if (TwoOperandLIRForm ) {
1354     __ move(addr, xor_res);
1355     __ logical_xor(xor_res, new_val, xor_res);
1356     __ move(xor_res, xor_shift_res);
1357     __ unsigned_shift_right(xor_shift_res,
1358                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1359                             xor_shift_res,
1360                             LIR_OprDesc::illegalOpr());
1361   } else {
1362     __ logical_xor(addr, new_val, xor_res);
1363     __ unsigned_shift_right(xor_res,
1364                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1365                             xor_shift_res,
1366                             LIR_OprDesc::illegalOpr());
1367   }
1368 
1369   if (!new_val->is_register()) {
1370     LIR_Opr new_val_reg = new_register(T_OBJECT);
1371     __ leal(new_val, new_val_reg);
1372     new_val = new_val_reg;
1373   }
1374   assert(new_val->is_register(), "must be a register at this point");
1375 
1376   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1377 
1378   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1379   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1380   __ branch_destination(slow->continuation());
1381 }
1382 
1383 #endif // SERIALGC
1384 ////////////////////////////////////////////////////////////////////////
1385 
1386 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1387 
1388   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1389   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1390   if (addr->is_address()) {
1391     LIR_Address* address = addr->as_address_ptr();
1392     LIR_Opr ptr = new_register(T_OBJECT);
1393     if (!address->index()->is_valid() && address->disp() == 0) {
1394       __ move(address->base(), ptr);
1395     } else {
1396       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1397       __ leal(addr, ptr);
1398     }
1399     addr = ptr;
1400   }
1401   assert(addr->is_register(), "must be a register at this point");
1402 
1403   LIR_Opr tmp = new_pointer_register();
1404   if (TwoOperandLIRForm) {
1405     __ move(addr, tmp);
1406     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1407   } else {
1408     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1409   }
1410   if (can_inline_as_constant(card_table_base)) {
1411     __ move(LIR_OprFact::intConst(0),
1412               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1413   } else {
1414     __ move(LIR_OprFact::intConst(0),
1415               new LIR_Address(tmp, load_constant(card_table_base),
1416                               T_BYTE));
1417   }
1418 }
1419 
1420 
1421 //------------------------field access--------------------------------------
1422 
1423 // Comment copied form templateTable_i486.cpp
1424 // ----------------------------------------------------------------------------
1425 // Volatile variables demand their effects be made known to all CPU's in
1426 // order.  Store buffers on most chips allow reads & writes to reorder; the
1427 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1428 // memory barrier (i.e., it's not sufficient that the interpreter does not
1429 // reorder volatile references, the hardware also must not reorder them).
1430 //
1431 // According to the new Java Memory Model (JMM):
1432 // (1) All volatiles are serialized wrt to each other.
1433 // ALSO reads & writes act as aquire & release, so:
1434 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1435 // the read float up to before the read.  It's OK for non-volatile memory refs
1436 // that happen before the volatile read to float down below it.
1437 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1438 // that happen BEFORE the write float down to after the write.  It's OK for
1439 // non-volatile memory refs that happen after the volatile write to float up
1440 // before it.
1441 //
1442 // We only put in barriers around volatile refs (they are expensive), not
1443 // _between_ memory refs (that would require us to track the flavor of the
1444 // previous memory refs).  Requirements (2) and (3) require some barriers
1445 // before volatile stores and after volatile loads.  These nearly cover
1446 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1447 // case is placed after volatile-stores although it could just as well go
1448 // before volatile-loads.
1449 
1450 
1451 void LIRGenerator::do_StoreField(StoreField* x) {
1452   bool needs_patching = x->needs_patching();
1453   bool is_volatile = x->field()->is_volatile();
1454   BasicType field_type = x->field_type();
1455   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1456 
1457   CodeEmitInfo* info = NULL;
1458   if (needs_patching) {
1459     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1460     info = state_for(x, x->state_before());
1461   } else if (x->needs_null_check()) {
1462     NullCheck* nc = x->explicit_null_check();
1463     if (nc == NULL) {
1464       info = state_for(x, x->lock_stack());
1465     } else {
1466       info = state_for(nc);
1467     }
1468   }
1469 
1470 
1471   LIRItem object(x->obj(), this);
1472   LIRItem value(x->value(),  this);
1473 
1474   object.load_item();
1475 
1476   if (is_volatile || needs_patching) {
1477     // load item if field is volatile (fewer special cases for volatiles)
1478     // load item if field not initialized
1479     // load item if field not constant
1480     // because of code patching we cannot inline constants
1481     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1482       value.load_byte_item();
1483     } else  {
1484       value.load_item();
1485     }
1486   } else {
1487     value.load_for_store(field_type);
1488   }
1489 
1490   set_no_result(x);
1491 
1492   if (PrintNotLoaded && needs_patching) {
1493     tty->print_cr("   ###class not loaded at store_%s bci %d",
1494                   x->is_static() ?  "static" : "field", x->bci());
1495   }
1496 
1497   if (x->needs_null_check() &&
1498       (needs_patching ||
1499        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1500     // emit an explicit null check because the offset is too large
1501     __ null_check(object.result(), new CodeEmitInfo(info));
1502   }
1503 
1504   LIR_Address* address;
1505   if (needs_patching) {
1506     // we need to patch the offset in the instruction so don't allow
1507     // generate_address to try to be smart about emitting the -1.
1508     // Otherwise the patching code won't know how to find the
1509     // instruction to patch.
1510     address = new LIR_Address(object.result(), max_jint, field_type);
1511   } else {
1512     address = generate_address(object.result(), x->offset(), field_type);
1513   }
1514 
1515   if (is_volatile && os::is_MP()) {
1516     __ membar_release();
1517   }
1518 
1519   if (is_oop) {
1520     // Do the pre-write barrier, if any.
1521     pre_barrier(LIR_OprFact::address(address),
1522                 needs_patching,
1523                 (info ? new CodeEmitInfo(info) : NULL));
1524   }
1525 
1526   if (is_volatile) {
1527     assert(!needs_patching && x->is_loaded(),
1528            "how do we know it's volatile if it's not loaded");
1529     volatile_field_store(value.result(), address, info);
1530   } else {
1531     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1532     __ store(value.result(), address, info, patch_code);
1533   }
1534 
1535   if (is_oop) {
1536     // Store to object so mark the card of the header
1537     post_barrier(object.result(), value.result());
1538   }
1539 
1540   if (is_volatile && os::is_MP()) {
1541     __ membar();
1542   }
1543 }
1544 
1545 
1546 void LIRGenerator::do_LoadField(LoadField* x) {
1547   bool needs_patching = x->needs_patching();
1548   bool is_volatile = x->field()->is_volatile();
1549   BasicType field_type = x->field_type();
1550 
1551   CodeEmitInfo* info = NULL;
1552   if (needs_patching) {
1553     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1554     info = state_for(x, x->state_before());
1555   } else if (x->needs_null_check()) {
1556     NullCheck* nc = x->explicit_null_check();
1557     if (nc == NULL) {
1558       info = state_for(x, x->lock_stack());
1559     } else {
1560       info = state_for(nc);
1561     }
1562   }
1563 
1564   LIRItem object(x->obj(), this);
1565 
1566   object.load_item();
1567 
1568   if (PrintNotLoaded && needs_patching) {
1569     tty->print_cr("   ###class not loaded at load_%s bci %d",
1570                   x->is_static() ?  "static" : "field", x->bci());
1571   }
1572 
1573   if (x->needs_null_check() &&
1574       (needs_patching ||
1575        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1576     // emit an explicit null check because the offset is too large
1577     __ null_check(object.result(), new CodeEmitInfo(info));
1578   }
1579 
1580   LIR_Opr reg = rlock_result(x, field_type);
1581   LIR_Address* address;
1582   if (needs_patching) {
1583     // we need to patch the offset in the instruction so don't allow
1584     // generate_address to try to be smart about emitting the -1.
1585     // Otherwise the patching code won't know how to find the
1586     // instruction to patch.
1587     address = new LIR_Address(object.result(), max_jint, field_type);
1588   } else {
1589     address = generate_address(object.result(), x->offset(), field_type);
1590   }
1591 
1592   if (is_volatile) {
1593     assert(!needs_patching && x->is_loaded(),
1594            "how do we know it's volatile if it's not loaded");
1595     volatile_field_load(address, reg, info);
1596   } else {
1597     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1598     __ load(address, reg, info, patch_code);
1599   }
1600 
1601   if (is_volatile && os::is_MP()) {
1602     __ membar_acquire();
1603   }
1604 }
1605 
1606 
1607 //------------------------java.nio.Buffer.checkIndex------------------------
1608 
1609 // int java.nio.Buffer.checkIndex(int)
1610 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1611   // NOTE: by the time we are in checkIndex() we are guaranteed that
1612   // the buffer is non-null (because checkIndex is package-private and
1613   // only called from within other methods in the buffer).
1614   assert(x->number_of_arguments() == 2, "wrong type");
1615   LIRItem buf  (x->argument_at(0), this);
1616   LIRItem index(x->argument_at(1), this);
1617   buf.load_item();
1618   index.load_item();
1619 
1620   LIR_Opr result = rlock_result(x);
1621   if (GenerateRangeChecks) {
1622     CodeEmitInfo* info = state_for(x);
1623     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1624     if (index.result()->is_constant()) {
1625       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1626       __ branch(lir_cond_belowEqual, T_INT, stub);
1627     } else {
1628       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1629                   java_nio_Buffer::limit_offset(), T_INT, info);
1630       __ branch(lir_cond_aboveEqual, T_INT, stub);
1631     }
1632     __ move(index.result(), result);
1633   } else {
1634     // Just load the index into the result register
1635     __ move(index.result(), result);
1636   }
1637 }
1638 
1639 
1640 //------------------------array access--------------------------------------
1641 
1642 
1643 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1644   LIRItem array(x->array(), this);
1645   array.load_item();
1646   LIR_Opr reg = rlock_result(x);
1647 
1648   CodeEmitInfo* info = NULL;
1649   if (x->needs_null_check()) {
1650     NullCheck* nc = x->explicit_null_check();
1651     if (nc == NULL) {
1652       info = state_for(x);
1653     } else {
1654       info = state_for(nc);
1655     }
1656   }
1657   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1658 }
1659 
1660 
1661 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1662   bool use_length = x->length() != NULL;
1663   LIRItem array(x->array(), this);
1664   LIRItem index(x->index(), this);
1665   LIRItem length(this);
1666   bool needs_range_check = true;
1667 
1668   if (use_length) {
1669     needs_range_check = x->compute_needs_range_check();
1670     if (needs_range_check) {
1671       length.set_instruction(x->length());
1672       length.load_item();
1673     }
1674   }
1675 
1676   array.load_item();
1677   if (index.is_constant() && can_inline_as_constant(x->index())) {
1678     // let it be a constant
1679     index.dont_load_item();
1680   } else {
1681     index.load_item();
1682   }
1683 
1684   CodeEmitInfo* range_check_info = state_for(x);
1685   CodeEmitInfo* null_check_info = NULL;
1686   if (x->needs_null_check()) {
1687     NullCheck* nc = x->explicit_null_check();
1688     if (nc != NULL) {
1689       null_check_info = state_for(nc);
1690     } else {
1691       null_check_info = range_check_info;
1692     }
1693   }
1694 
1695   // emit array address setup early so it schedules better
1696   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1697 
1698   if (GenerateRangeChecks && needs_range_check) {
1699     if (use_length) {
1700       // TODO: use a (modified) version of array_range_check that does not require a
1701       //       constant length to be loaded to a register
1702       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1703       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1704     } else {
1705       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1706       // The range check performs the null check, so clear it out for the load
1707       null_check_info = NULL;
1708     }
1709   }
1710 
1711   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1712 }
1713 
1714 
1715 void LIRGenerator::do_NullCheck(NullCheck* x) {
1716   if (x->can_trap()) {
1717     LIRItem value(x->obj(), this);
1718     value.load_item();
1719     CodeEmitInfo* info = state_for(x);
1720     __ null_check(value.result(), info);
1721   }
1722 }
1723 
1724 
1725 void LIRGenerator::do_Throw(Throw* x) {
1726   LIRItem exception(x->exception(), this);
1727   exception.load_item();
1728   set_no_result(x);
1729   LIR_Opr exception_opr = exception.result();
1730   CodeEmitInfo* info = state_for(x, x->state());
1731 
1732 #ifndef PRODUCT
1733   if (PrintC1Statistics) {
1734     increment_counter(Runtime1::throw_count_address());
1735   }
1736 #endif
1737 
1738   // check if the instruction has an xhandler in any of the nested scopes
1739   bool unwind = false;
1740   if (info->exception_handlers()->length() == 0) {
1741     // this throw is not inside an xhandler
1742     unwind = true;
1743   } else {
1744     // get some idea of the throw type
1745     bool type_is_exact = true;
1746     ciType* throw_type = x->exception()->exact_type();
1747     if (throw_type == NULL) {
1748       type_is_exact = false;
1749       throw_type = x->exception()->declared_type();
1750     }
1751     if (throw_type != NULL && throw_type->is_instance_klass()) {
1752       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1753       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1754     }
1755   }
1756 
1757   // do null check before moving exception oop into fixed register
1758   // to avoid a fixed interval with an oop during the null check.
1759   // Use a copy of the CodeEmitInfo because debug information is
1760   // different for null_check and throw.
1761   if (GenerateCompilerNullChecks &&
1762       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1763     // if the exception object wasn't created using new then it might be null.
1764     __ null_check(exception_opr, new CodeEmitInfo(info, true));
1765   }
1766 
1767   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1768     // we need to go through the exception lookup path to get JVMTI
1769     // notification done
1770     unwind = false;
1771   }
1772 
1773   // move exception oop into fixed register
1774   __ move(exception_opr, exceptionOopOpr());
1775 
1776   if (unwind) {
1777     __ unwind_exception(exceptionOopOpr());
1778   } else {
1779     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1780   }
1781 }
1782 
1783 
1784 void LIRGenerator::do_RoundFP(RoundFP* x) {
1785   LIRItem input(x->input(), this);
1786   input.load_item();
1787   LIR_Opr input_opr = input.result();
1788   assert(input_opr->is_register(), "why round if value is not in a register?");
1789   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1790   if (input_opr->is_single_fpu()) {
1791     set_result(x, round_item(input_opr)); // This code path not currently taken
1792   } else {
1793     LIR_Opr result = new_register(T_DOUBLE);
1794     set_vreg_flag(result, must_start_in_memory);
1795     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1796     set_result(x, result);
1797   }
1798 }
1799 
1800 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1801   LIRItem base(x->base(), this);
1802   LIRItem idx(this);
1803 
1804   base.load_item();
1805   if (x->has_index()) {
1806     idx.set_instruction(x->index());
1807     idx.load_nonconstant();
1808   }
1809 
1810   LIR_Opr reg = rlock_result(x, x->basic_type());
1811 
1812   int   log2_scale = 0;
1813   if (x->has_index()) {
1814     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1815     log2_scale = x->log2_scale();
1816   }
1817 
1818   assert(!x->has_index() || idx.value() == x->index(), "should match");
1819 
1820   LIR_Opr base_op = base.result();
1821 #ifndef _LP64
1822   if (x->base()->type()->tag() == longTag) {
1823     base_op = new_register(T_INT);
1824     __ convert(Bytecodes::_l2i, base.result(), base_op);
1825   } else {
1826     assert(x->base()->type()->tag() == intTag, "must be");
1827   }
1828 #endif
1829 
1830   BasicType dst_type = x->basic_type();
1831   LIR_Opr index_op = idx.result();
1832 
1833   LIR_Address* addr;
1834   if (index_op->is_constant()) {
1835     assert(log2_scale == 0, "must not have a scale");
1836     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
1837   } else {
1838 #ifdef X86
1839 #ifdef _LP64
1840     if (!index_op->is_illegal() && index_op->type() == T_INT) {
1841       LIR_Opr tmp = new_pointer_register();
1842       __ convert(Bytecodes::_i2l, index_op, tmp);
1843       index_op = tmp;
1844     }
1845 #endif
1846     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
1847 #else
1848     if (index_op->is_illegal() || log2_scale == 0) {
1849 #ifdef _LP64
1850       if (!index_op->is_illegal() && index_op->type() == T_INT) {
1851         LIR_Opr tmp = new_pointer_register();
1852         __ convert(Bytecodes::_i2l, index_op, tmp);
1853         index_op = tmp;
1854       }
1855 #endif
1856       addr = new LIR_Address(base_op, index_op, dst_type);
1857     } else {
1858       LIR_Opr tmp = new_pointer_register();
1859       __ shift_left(index_op, log2_scale, tmp);
1860       addr = new LIR_Address(base_op, tmp, dst_type);
1861     }
1862 #endif
1863   }
1864 
1865   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
1866     __ unaligned_move(addr, reg);
1867   } else {
1868     __ move(addr, reg);
1869   }
1870 }
1871 
1872 
1873 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
1874   int  log2_scale = 0;
1875   BasicType type = x->basic_type();
1876 
1877   if (x->has_index()) {
1878     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1879     log2_scale = x->log2_scale();
1880   }
1881 
1882   LIRItem base(x->base(), this);
1883   LIRItem value(x->value(), this);
1884   LIRItem idx(this);
1885 
1886   base.load_item();
1887   if (x->has_index()) {
1888     idx.set_instruction(x->index());
1889     idx.load_item();
1890   }
1891 
1892   if (type == T_BYTE || type == T_BOOLEAN) {
1893     value.load_byte_item();
1894   } else {
1895     value.load_item();
1896   }
1897 
1898   set_no_result(x);
1899 
1900   LIR_Opr base_op = base.result();
1901 #ifndef _LP64
1902   if (x->base()->type()->tag() == longTag) {
1903     base_op = new_register(T_INT);
1904     __ convert(Bytecodes::_l2i, base.result(), base_op);
1905   } else {
1906     assert(x->base()->type()->tag() == intTag, "must be");
1907   }
1908 #endif
1909 
1910   LIR_Opr index_op = idx.result();
1911   if (log2_scale != 0) {
1912     // temporary fix (platform dependent code without shift on Intel would be better)
1913     index_op = new_pointer_register();
1914 #ifdef _LP64
1915     if(idx.result()->type() == T_INT) {
1916       __ convert(Bytecodes::_i2l, idx.result(), index_op);
1917     } else {
1918 #endif
1919       __ move(idx.result(), index_op);
1920 #ifdef _LP64
1921     }
1922 #endif
1923     __ shift_left(index_op, log2_scale, index_op);
1924   }
1925 #ifdef _LP64
1926   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
1927     LIR_Opr tmp = new_pointer_register();
1928     __ convert(Bytecodes::_i2l, index_op, tmp);
1929     index_op = tmp;
1930   }
1931 #endif
1932 
1933   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
1934   __ move(value.result(), addr);
1935 }
1936 
1937 
1938 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
1939   BasicType type = x->basic_type();
1940   LIRItem src(x->object(), this);
1941   LIRItem off(x->offset(), this);
1942 
1943   off.load_item();
1944   src.load_item();
1945 
1946   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
1947 
1948   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
1949   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
1950   if (x->is_volatile() && os::is_MP()) __ membar();
1951 }
1952 
1953 
1954 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
1955   BasicType type = x->basic_type();
1956   LIRItem src(x->object(), this);
1957   LIRItem off(x->offset(), this);
1958   LIRItem data(x->value(), this);
1959 
1960   src.load_item();
1961   if (type == T_BOOLEAN || type == T_BYTE) {
1962     data.load_byte_item();
1963   } else {
1964     data.load_item();
1965   }
1966   off.load_item();
1967 
1968   set_no_result(x);
1969 
1970   if (x->is_volatile() && os::is_MP()) __ membar_release();
1971   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
1972 }
1973 
1974 
1975 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
1976   LIRItem src(x->object(), this);
1977   LIRItem off(x->offset(), this);
1978 
1979   src.load_item();
1980   if (off.is_constant() && can_inline_as_constant(x->offset())) {
1981     // let it be a constant
1982     off.dont_load_item();
1983   } else {
1984     off.load_item();
1985   }
1986 
1987   set_no_result(x);
1988 
1989   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
1990   __ prefetch(addr, is_store);
1991 }
1992 
1993 
1994 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
1995   do_UnsafePrefetch(x, false);
1996 }
1997 
1998 
1999 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2000   do_UnsafePrefetch(x, true);
2001 }
2002 
2003 
2004 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2005   int lng = x->length();
2006 
2007   for (int i = 0; i < lng; i++) {
2008     SwitchRange* one_range = x->at(i);
2009     int low_key = one_range->low_key();
2010     int high_key = one_range->high_key();
2011     BlockBegin* dest = one_range->sux();
2012     if (low_key == high_key) {
2013       __ cmp(lir_cond_equal, value, low_key);
2014       __ branch(lir_cond_equal, T_INT, dest);
2015     } else if (high_key - low_key == 1) {
2016       __ cmp(lir_cond_equal, value, low_key);
2017       __ branch(lir_cond_equal, T_INT, dest);
2018       __ cmp(lir_cond_equal, value, high_key);
2019       __ branch(lir_cond_equal, T_INT, dest);
2020     } else {
2021       LabelObj* L = new LabelObj();
2022       __ cmp(lir_cond_less, value, low_key);
2023       __ branch(lir_cond_less, L->label());
2024       __ cmp(lir_cond_lessEqual, value, high_key);
2025       __ branch(lir_cond_lessEqual, T_INT, dest);
2026       __ branch_destination(L->label());
2027     }
2028   }
2029   __ jump(default_sux);
2030 }
2031 
2032 
2033 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2034   SwitchRangeList* res = new SwitchRangeList();
2035   int len = x->length();
2036   if (len > 0) {
2037     BlockBegin* sux = x->sux_at(0);
2038     int key = x->lo_key();
2039     BlockBegin* default_sux = x->default_sux();
2040     SwitchRange* range = new SwitchRange(key, sux);
2041     for (int i = 0; i < len; i++, key++) {
2042       BlockBegin* new_sux = x->sux_at(i);
2043       if (sux == new_sux) {
2044         // still in same range
2045         range->set_high_key(key);
2046       } else {
2047         // skip tests which explicitly dispatch to the default
2048         if (sux != default_sux) {
2049           res->append(range);
2050         }
2051         range = new SwitchRange(key, new_sux);
2052       }
2053       sux = new_sux;
2054     }
2055     if (res->length() == 0 || res->last() != range)  res->append(range);
2056   }
2057   return res;
2058 }
2059 
2060 
2061 // we expect the keys to be sorted by increasing value
2062 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2063   SwitchRangeList* res = new SwitchRangeList();
2064   int len = x->length();
2065   if (len > 0) {
2066     BlockBegin* default_sux = x->default_sux();
2067     int key = x->key_at(0);
2068     BlockBegin* sux = x->sux_at(0);
2069     SwitchRange* range = new SwitchRange(key, sux);
2070     for (int i = 1; i < len; i++) {
2071       int new_key = x->key_at(i);
2072       BlockBegin* new_sux = x->sux_at(i);
2073       if (key+1 == new_key && sux == new_sux) {
2074         // still in same range
2075         range->set_high_key(new_key);
2076       } else {
2077         // skip tests which explicitly dispatch to the default
2078         if (range->sux() != default_sux) {
2079           res->append(range);
2080         }
2081         range = new SwitchRange(new_key, new_sux);
2082       }
2083       key = new_key;
2084       sux = new_sux;
2085     }
2086     if (res->length() == 0 || res->last() != range)  res->append(range);
2087   }
2088   return res;
2089 }
2090 
2091 
2092 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2093   LIRItem tag(x->tag(), this);
2094   tag.load_item();
2095   set_no_result(x);
2096 
2097   if (x->is_safepoint()) {
2098     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2099   }
2100 
2101   // move values into phi locations
2102   move_to_phi(x->state());
2103 
2104   int lo_key = x->lo_key();
2105   int hi_key = x->hi_key();
2106   int len = x->length();
2107   CodeEmitInfo* info = state_for(x, x->state());
2108   LIR_Opr value = tag.result();
2109   if (UseTableRanges) {
2110     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2111   } else {
2112     for (int i = 0; i < len; i++) {
2113       __ cmp(lir_cond_equal, value, i + lo_key);
2114       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2115     }
2116     __ jump(x->default_sux());
2117   }
2118 }
2119 
2120 
2121 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2122   LIRItem tag(x->tag(), this);
2123   tag.load_item();
2124   set_no_result(x);
2125 
2126   if (x->is_safepoint()) {
2127     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2128   }
2129 
2130   // move values into phi locations
2131   move_to_phi(x->state());
2132 
2133   LIR_Opr value = tag.result();
2134   if (UseTableRanges) {
2135     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2136   } else {
2137     int len = x->length();
2138     for (int i = 0; i < len; i++) {
2139       __ cmp(lir_cond_equal, value, x->key_at(i));
2140       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2141     }
2142     __ jump(x->default_sux());
2143   }
2144 }
2145 
2146 
2147 void LIRGenerator::do_Goto(Goto* x) {
2148   set_no_result(x);
2149 
2150   if (block()->next()->as_OsrEntry()) {
2151     // need to free up storage used for OSR entry point
2152     LIR_Opr osrBuffer = block()->next()->operand();
2153     BasicTypeList signature;
2154     signature.append(T_INT);
2155     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2156     __ move(osrBuffer, cc->args()->at(0));
2157     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2158                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2159   }
2160 
2161   if (x->is_safepoint()) {
2162     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2163 
2164     // increment backedge counter if needed
2165     increment_backedge_counter(state_for(x, state));
2166 
2167     CodeEmitInfo* safepoint_info = state_for(x, state);
2168     __ safepoint(safepoint_poll_register(), safepoint_info);
2169   }
2170 
2171   // emit phi-instruction move after safepoint since this simplifies
2172   // describing the state as the safepoint.
2173   move_to_phi(x->state());
2174 
2175   __ jump(x->default_sux());
2176 }
2177 
2178 
2179 void LIRGenerator::do_Base(Base* x) {
2180   __ std_entry(LIR_OprFact::illegalOpr);
2181   // Emit moves from physical registers / stack slots to virtual registers
2182   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2183   IRScope* irScope = compilation()->hir()->top_scope();
2184   int java_index = 0;
2185   for (int i = 0; i < args->length(); i++) {
2186     LIR_Opr src = args->at(i);
2187     assert(!src->is_illegal(), "check");
2188     BasicType t = src->type();
2189 
2190     // Types which are smaller than int are passed as int, so
2191     // correct the type which passed.
2192     switch (t) {
2193     case T_BYTE:
2194     case T_BOOLEAN:
2195     case T_SHORT:
2196     case T_CHAR:
2197       t = T_INT;
2198       break;
2199     }
2200 
2201     LIR_Opr dest = new_register(t);
2202     __ move(src, dest);
2203 
2204     // Assign new location to Local instruction for this local
2205     Local* local = x->state()->local_at(java_index)->as_Local();
2206     assert(local != NULL, "Locals for incoming arguments must have been created");
2207     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2208     local->set_operand(dest);
2209     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2210     java_index += type2size[t];
2211   }
2212 
2213   if (compilation()->env()->dtrace_method_probes()) {
2214     BasicTypeList signature;
2215     signature.append(T_INT);    // thread
2216     signature.append(T_OBJECT); // methodOop
2217     LIR_OprList* args = new LIR_OprList();
2218     args->append(getThreadPointer());
2219     LIR_Opr meth = new_register(T_OBJECT);
2220     __ oop2reg(method()->constant_encoding(), meth);
2221     args->append(meth);
2222     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2223   }
2224 
2225   if (method()->is_synchronized()) {
2226     LIR_Opr obj;
2227     if (method()->is_static()) {
2228       obj = new_register(T_OBJECT);
2229       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2230     } else {
2231       Local* receiver = x->state()->local_at(0)->as_Local();
2232       assert(receiver != NULL, "must already exist");
2233       obj = receiver->operand();
2234     }
2235     assert(obj->is_valid(), "must be valid");
2236 
2237     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2238       LIR_Opr lock = new_register(T_INT);
2239       __ load_stack_address_monitor(0, lock);
2240 
2241       CodeEmitInfo* info = new CodeEmitInfo(SynchronizationEntryBCI, scope()->start()->state(), NULL);
2242       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2243 
2244       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2245       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2246     }
2247   }
2248 
2249   // increment invocation counters if needed
2250   increment_invocation_counter(new CodeEmitInfo(0, scope()->start()->state(), NULL));
2251 
2252   // all blocks with a successor must end with an unconditional jump
2253   // to the successor even if they are consecutive
2254   __ jump(x->default_sux());
2255 }
2256 
2257 
2258 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2259   // construct our frame and model the production of incoming pointer
2260   // to the OSR buffer.
2261   __ osr_entry(LIR_Assembler::osrBufferPointer());
2262   LIR_Opr result = rlock_result(x);
2263   __ move(LIR_Assembler::osrBufferPointer(), result);
2264 }
2265 
2266 
2267 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2268   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2269   for (; i < args->length(); i++) {
2270     LIRItem* param = args->at(i);
2271     LIR_Opr loc = arg_list->at(i);
2272     if (loc->is_register()) {
2273       param->load_item_force(loc);
2274     } else {
2275       LIR_Address* addr = loc->as_address_ptr();
2276       param->load_for_store(addr->type());
2277       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2278         __ unaligned_move(param->result(), addr);
2279       } else {
2280         __ move(param->result(), addr);
2281       }
2282     }
2283   }
2284 
2285   if (x->has_receiver()) {
2286     LIRItem* receiver = args->at(0);
2287     LIR_Opr loc = arg_list->at(0);
2288     if (loc->is_register()) {
2289       receiver->load_item_force(loc);
2290     } else {
2291       assert(loc->is_address(), "just checking");
2292       receiver->load_for_store(T_OBJECT);
2293       __ move(receiver->result(), loc);
2294     }
2295   }
2296 }
2297 
2298 
2299 // Visits all arguments, returns appropriate items without loading them
2300 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2301   LIRItemList* argument_items = new LIRItemList();
2302   if (x->has_receiver()) {
2303     LIRItem* receiver = new LIRItem(x->receiver(), this);
2304     argument_items->append(receiver);
2305   }
2306   if (x->is_invokedynamic()) {
2307     // Insert a dummy for the synthetic MethodHandle argument.
2308     argument_items->append(NULL);
2309   }
2310   int idx = x->has_receiver() ? 1 : 0;
2311   for (int i = 0; i < x->number_of_arguments(); i++) {
2312     LIRItem* param = new LIRItem(x->argument_at(i), this);
2313     argument_items->append(param);
2314     idx += (param->type()->is_double_word() ? 2 : 1);
2315   }
2316   return argument_items;
2317 }
2318 
2319 
2320 // The invoke with receiver has following phases:
2321 //   a) traverse and load/lock receiver;
2322 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2323 //   c) push receiver on stack
2324 //   d) load each of the items and push on stack
2325 //   e) unlock receiver
2326 //   f) move receiver into receiver-register %o0
2327 //   g) lock result registers and emit call operation
2328 //
2329 // Before issuing a call, we must spill-save all values on stack
2330 // that are in caller-save register. "spill-save" moves thos registers
2331 // either in a free callee-save register or spills them if no free
2332 // callee save register is available.
2333 //
2334 // The problem is where to invoke spill-save.
2335 // - if invoked between e) and f), we may lock callee save
2336 //   register in "spill-save" that destroys the receiver register
2337 //   before f) is executed
2338 // - if we rearange the f) to be earlier, by loading %o0, it
2339 //   may destroy a value on the stack that is currently in %o0
2340 //   and is waiting to be spilled
2341 // - if we keep the receiver locked while doing spill-save,
2342 //   we cannot spill it as it is spill-locked
2343 //
2344 void LIRGenerator::do_Invoke(Invoke* x) {
2345   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2346 
2347   LIR_OprList* arg_list = cc->args();
2348   LIRItemList* args = invoke_visit_arguments(x);
2349   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2350 
2351   // setup result register
2352   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2353   if (x->type() != voidType) {
2354     result_register = result_register_for(x->type());
2355   }
2356 
2357   CodeEmitInfo* info = state_for(x, x->state());
2358 
2359   // invokedynamics can deoptimize.
2360   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2361 
2362   invoke_load_arguments(x, args, arg_list);
2363 
2364   if (x->has_receiver()) {
2365     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2366     receiver = args->at(0)->result();
2367   }
2368 
2369   // emit invoke code
2370   bool optimized = x->target_is_loaded() && x->target_is_final();
2371   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2372 
2373   // JSR 292
2374   // Preserve the SP over MethodHandle call sites.
2375   ciMethod* target = x->target();
2376   if (target->is_method_handle_invoke()) {
2377     info->set_is_method_handle_invoke(true);
2378     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2379   }
2380 
2381   switch (x->code()) {
2382     case Bytecodes::_invokestatic:
2383       __ call_static(target, result_register,
2384                      SharedRuntime::get_resolve_static_call_stub(),
2385                      arg_list, info);
2386       break;
2387     case Bytecodes::_invokespecial:
2388     case Bytecodes::_invokevirtual:
2389     case Bytecodes::_invokeinterface:
2390       // for final target we still produce an inline cache, in order
2391       // to be able to call mixed mode
2392       if (x->code() == Bytecodes::_invokespecial || optimized) {
2393         __ call_opt_virtual(target, receiver, result_register,
2394                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2395                             arg_list, info);
2396       } else if (x->vtable_index() < 0) {
2397         __ call_icvirtual(target, receiver, result_register,
2398                           SharedRuntime::get_resolve_virtual_call_stub(),
2399                           arg_list, info);
2400       } else {
2401         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2402         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2403         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2404       }
2405       break;
2406     case Bytecodes::_invokedynamic: {
2407       ciBytecodeStream bcs(x->scope()->method());
2408       bcs.force_bci(x->bci());
2409       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2410       ciCPCache* cpcache = bcs.get_cpcache();
2411 
2412       // Get CallSite offset from constant pool cache pointer.
2413       int index = bcs.get_method_index();
2414       size_t call_site_offset = cpcache->get_f1_offset(index);
2415 
2416       // If this invokedynamic call site hasn't been executed yet in
2417       // the interpreter, the CallSite object in the constant pool
2418       // cache is still null and we need to deoptimize.
2419       if (cpcache->is_f1_null_at(index)) {
2420         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2421         // clone all handlers.  This is handled transparently in other
2422         // places by the CodeEmitInfo cloning logic but is handled
2423         // specially here because a stub isn't being used.
2424         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2425 
2426         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2427         __ jump(deopt_stub);
2428       }
2429 
2430       // Use the receiver register for the synthetic MethodHandle
2431       // argument.
2432       receiver = LIR_Assembler::receiverOpr();
2433       LIR_Opr tmp = new_register(objectType);
2434 
2435       // Load CallSite object from constant pool cache.
2436       __ oop2reg(cpcache->constant_encoding(), tmp);
2437       __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2438 
2439       // Load target MethodHandle from CallSite object.
2440       __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2441 
2442       __ call_dynamic(target, receiver, result_register,
2443                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
2444                       arg_list, info);
2445       break;
2446     }
2447     default:
2448       ShouldNotReachHere();
2449       break;
2450   }
2451 
2452   // JSR 292
2453   // Restore the SP after MethodHandle call sites.
2454   if (target->is_method_handle_invoke()) {
2455     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2456   }
2457 
2458   if (x->type()->is_float() || x->type()->is_double()) {
2459     // Force rounding of results from non-strictfp when in strictfp
2460     // scope (or when we don't know the strictness of the callee, to
2461     // be safe.)
2462     if (method()->is_strict()) {
2463       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2464         result_register = round_item(result_register);
2465       }
2466     }
2467   }
2468 
2469   if (result_register->is_valid()) {
2470     LIR_Opr result = rlock_result(x);
2471     __ move(result_register, result);
2472   }
2473 }
2474 
2475 
2476 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2477   assert(x->number_of_arguments() == 1, "wrong type");
2478   LIRItem value       (x->argument_at(0), this);
2479   LIR_Opr reg = rlock_result(x);
2480   value.load_item();
2481   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2482   __ move(tmp, reg);
2483 }
2484 
2485 
2486 
2487 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2488 void LIRGenerator::do_IfOp(IfOp* x) {
2489 #ifdef ASSERT
2490   {
2491     ValueTag xtag = x->x()->type()->tag();
2492     ValueTag ttag = x->tval()->type()->tag();
2493     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2494     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2495     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2496   }
2497 #endif
2498 
2499   LIRItem left(x->x(), this);
2500   LIRItem right(x->y(), this);
2501   left.load_item();
2502   if (can_inline_as_constant(right.value())) {
2503     right.dont_load_item();
2504   } else {
2505     right.load_item();
2506   }
2507 
2508   LIRItem t_val(x->tval(), this);
2509   LIRItem f_val(x->fval(), this);
2510   t_val.dont_load_item();
2511   f_val.dont_load_item();
2512   LIR_Opr reg = rlock_result(x);
2513 
2514   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2515   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
2516 }
2517 
2518 
2519 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2520   switch (x->id()) {
2521   case vmIntrinsics::_intBitsToFloat      :
2522   case vmIntrinsics::_doubleToRawLongBits :
2523   case vmIntrinsics::_longBitsToDouble    :
2524   case vmIntrinsics::_floatToRawIntBits   : {
2525     do_FPIntrinsics(x);
2526     break;
2527   }
2528 
2529   case vmIntrinsics::_currentTimeMillis: {
2530     assert(x->number_of_arguments() == 0, "wrong type");
2531     LIR_Opr reg = result_register_for(x->type());
2532     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2533                          reg, new LIR_OprList());
2534     LIR_Opr result = rlock_result(x);
2535     __ move(reg, result);
2536     break;
2537   }
2538 
2539   case vmIntrinsics::_nanoTime: {
2540     assert(x->number_of_arguments() == 0, "wrong type");
2541     LIR_Opr reg = result_register_for(x->type());
2542     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2543                          reg, new LIR_OprList());
2544     LIR_Opr result = rlock_result(x);
2545     __ move(reg, result);
2546     break;
2547   }
2548 
2549   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2550   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2551   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2552 
2553   case vmIntrinsics::_dlog:           // fall through
2554   case vmIntrinsics::_dlog10:         // fall through
2555   case vmIntrinsics::_dabs:           // fall through
2556   case vmIntrinsics::_dsqrt:          // fall through
2557   case vmIntrinsics::_dtan:           // fall through
2558   case vmIntrinsics::_dsin :          // fall through
2559   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2560   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2561 
2562   // java.nio.Buffer.checkIndex
2563   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2564 
2565   case vmIntrinsics::_compareAndSwapObject:
2566     do_CompareAndSwap(x, objectType);
2567     break;
2568   case vmIntrinsics::_compareAndSwapInt:
2569     do_CompareAndSwap(x, intType);
2570     break;
2571   case vmIntrinsics::_compareAndSwapLong:
2572     do_CompareAndSwap(x, longType);
2573     break;
2574 
2575     // sun.misc.AtomicLongCSImpl.attemptUpdate
2576   case vmIntrinsics::_attemptUpdate:
2577     do_AttemptUpdate(x);
2578     break;
2579 
2580   default: ShouldNotReachHere(); break;
2581   }
2582 }
2583 
2584 
2585 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2586   // Need recv in a temporary register so it interferes with the other temporaries
2587   LIR_Opr recv = LIR_OprFact::illegalOpr;
2588   LIR_Opr mdo = new_register(T_OBJECT);
2589   LIR_Opr tmp = new_register(T_INT);
2590   if (x->recv() != NULL) {
2591     LIRItem value(x->recv(), this);
2592     value.load_item();
2593     recv = new_register(T_OBJECT);
2594     __ move(value.result(), recv);
2595   }
2596   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2597 }
2598 
2599 
2600 void LIRGenerator::do_ProfileCounter(ProfileCounter* x) {
2601   LIRItem mdo(x->mdo(), this);
2602   mdo.load_item();
2603 
2604   increment_counter(new LIR_Address(mdo.result(), x->offset(), T_INT), x->increment());
2605 }
2606 
2607 
2608 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
2609   LIRItemList args(1);
2610   LIRItem value(arg1, this);
2611   args.append(&value);
2612   BasicTypeList signature;
2613   signature.append(as_BasicType(arg1->type()));
2614 
2615   return call_runtime(&signature, &args, entry, result_type, info);
2616 }
2617 
2618 
2619 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
2620   LIRItemList args(2);
2621   LIRItem value1(arg1, this);
2622   LIRItem value2(arg2, this);
2623   args.append(&value1);
2624   args.append(&value2);
2625   BasicTypeList signature;
2626   signature.append(as_BasicType(arg1->type()));
2627   signature.append(as_BasicType(arg2->type()));
2628 
2629   return call_runtime(&signature, &args, entry, result_type, info);
2630 }
2631 
2632 
2633 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
2634                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2635   // get a result register
2636   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2637   LIR_Opr result = LIR_OprFact::illegalOpr;
2638   if (result_type->tag() != voidTag) {
2639     result = new_register(result_type);
2640     phys_reg = result_register_for(result_type);
2641   }
2642 
2643   // move the arguments into the correct location
2644   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2645   assert(cc->length() == args->length(), "argument mismatch");
2646   for (int i = 0; i < args->length(); i++) {
2647     LIR_Opr arg = args->at(i);
2648     LIR_Opr loc = cc->at(i);
2649     if (loc->is_register()) {
2650       __ move(arg, loc);
2651     } else {
2652       LIR_Address* addr = loc->as_address_ptr();
2653 //           if (!can_store_as_constant(arg)) {
2654 //             LIR_Opr tmp = new_register(arg->type());
2655 //             __ move(arg, tmp);
2656 //             arg = tmp;
2657 //           }
2658       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2659         __ unaligned_move(arg, addr);
2660       } else {
2661         __ move(arg, addr);
2662       }
2663     }
2664   }
2665 
2666   if (info) {
2667     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2668   } else {
2669     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2670   }
2671   if (result->is_valid()) {
2672     __ move(phys_reg, result);
2673   }
2674   return result;
2675 }
2676 
2677 
2678 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
2679                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2680   // get a result register
2681   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2682   LIR_Opr result = LIR_OprFact::illegalOpr;
2683   if (result_type->tag() != voidTag) {
2684     result = new_register(result_type);
2685     phys_reg = result_register_for(result_type);
2686   }
2687 
2688   // move the arguments into the correct location
2689   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2690 
2691   assert(cc->length() == args->length(), "argument mismatch");
2692   for (int i = 0; i < args->length(); i++) {
2693     LIRItem* arg = args->at(i);
2694     LIR_Opr loc = cc->at(i);
2695     if (loc->is_register()) {
2696       arg->load_item_force(loc);
2697     } else {
2698       LIR_Address* addr = loc->as_address_ptr();
2699       arg->load_for_store(addr->type());
2700       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2701         __ unaligned_move(arg->result(), addr);
2702       } else {
2703         __ move(arg->result(), addr);
2704       }
2705     }
2706   }
2707 
2708   if (info) {
2709     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2710   } else {
2711     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2712   }
2713   if (result->is_valid()) {
2714     __ move(phys_reg, result);
2715   }
2716   return result;
2717 }
2718 
2719 
2720 
2721 void LIRGenerator::increment_invocation_counter(CodeEmitInfo* info, bool backedge) {
2722 #ifdef TIERED
2723   if (_compilation->env()->comp_level() == CompLevel_fast_compile &&
2724       (method()->code_size() >= Tier1BytecodeLimit || backedge)) {
2725     int limit = InvocationCounter::Tier1InvocationLimit;
2726     int offset = in_bytes(methodOopDesc::invocation_counter_offset() +
2727                           InvocationCounter::counter_offset());
2728     if (backedge) {
2729       limit = InvocationCounter::Tier1BackEdgeLimit;
2730       offset = in_bytes(methodOopDesc::backedge_counter_offset() +
2731                         InvocationCounter::counter_offset());
2732     }
2733 
2734     LIR_Opr meth = new_register(T_OBJECT);
2735     __ oop2reg(method()->constant_encoding(), meth);
2736     LIR_Opr result = increment_and_return_counter(meth, offset, InvocationCounter::count_increment);
2737     __ cmp(lir_cond_aboveEqual, result, LIR_OprFact::intConst(limit));
2738     CodeStub* overflow = new CounterOverflowStub(info, info->bci());
2739     __ branch(lir_cond_aboveEqual, T_INT, overflow);
2740     __ branch_destination(overflow->continuation());
2741   }
2742 #endif
2743 }