1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_IR.cpp.incl"
  27 
  28 
  29 // Implementation of XHandlers
  30 //
  31 // Note: This code could eventually go away if we are
  32 //       just using the ciExceptionHandlerStream.
  33 
  34 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
  35   ciExceptionHandlerStream s(method);
  36   while (!s.is_done()) {
  37     _list.append(new XHandler(s.handler()));
  38     s.next();
  39   }
  40   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
  41 }
  42 
  43 // deep copy of all XHandler contained in list
  44 XHandlers::XHandlers(XHandlers* other) :
  45   _list(other->length())
  46 {
  47   for (int i = 0; i < other->length(); i++) {
  48     _list.append(new XHandler(other->handler_at(i)));
  49   }
  50 }
  51 
  52 // Returns whether a particular exception type can be caught.  Also
  53 // returns true if klass is unloaded or any exception handler
  54 // classes are unloaded.  type_is_exact indicates whether the throw
  55 // is known to be exactly that class or it might throw a subtype.
  56 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
  57   // the type is unknown so be conservative
  58   if (!klass->is_loaded()) {
  59     return true;
  60   }
  61 
  62   for (int i = 0; i < length(); i++) {
  63     XHandler* handler = handler_at(i);
  64     if (handler->is_catch_all()) {
  65       // catch of ANY
  66       return true;
  67     }
  68     ciInstanceKlass* handler_klass = handler->catch_klass();
  69     // if it's unknown it might be catchable
  70     if (!handler_klass->is_loaded()) {
  71       return true;
  72     }
  73     // if the throw type is definitely a subtype of the catch type
  74     // then it can be caught.
  75     if (klass->is_subtype_of(handler_klass)) {
  76       return true;
  77     }
  78     if (!type_is_exact) {
  79       // If the type isn't exactly known then it can also be caught by
  80       // catch statements where the inexact type is a subtype of the
  81       // catch type.
  82       // given: foo extends bar extends Exception
  83       // throw bar can be caught by catch foo, catch bar, and catch
  84       // Exception, however it can't be caught by any handlers without
  85       // bar in its type hierarchy.
  86       if (handler_klass->is_subtype_of(klass)) {
  87         return true;
  88       }
  89     }
  90   }
  91 
  92   return false;
  93 }
  94 
  95 
  96 bool XHandlers::equals(XHandlers* others) const {
  97   if (others == NULL) return false;
  98   if (length() != others->length()) return false;
  99 
 100   for (int i = 0; i < length(); i++) {
 101     if (!handler_at(i)->equals(others->handler_at(i))) return false;
 102   }
 103   return true;
 104 }
 105 
 106 bool XHandler::equals(XHandler* other) const {
 107   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
 108 
 109   if (entry_pco() != other->entry_pco()) return false;
 110   if (scope_count() != other->scope_count()) return false;
 111   if (_desc != other->_desc) return false;
 112 
 113   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
 114   return true;
 115 }
 116 
 117 
 118 // Implementation of IRScope
 119 
 120 BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
 121   if (entry == NULL) return NULL;
 122   assert(entry->is_set(f), "entry/flag mismatch");
 123   // create header block
 124   BlockBegin* h = new BlockBegin(entry->bci());
 125   BlockEnd* g = new Goto(entry, false);
 126   h->set_next(g, entry->bci());
 127   h->set_end(g);
 128   h->set(f);
 129   // setup header block end state
 130   ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
 131   assert(s->stack_is_empty(), "must have empty stack at entry point");
 132   g->set_state(s);
 133   return h;
 134 }
 135 
 136 
 137 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
 138   GraphBuilder gm(compilation, this);
 139   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
 140   if (compilation->bailed_out()) return NULL;
 141   return gm.start();
 142 }
 143 
 144 
 145 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
 146 : _callees(2)
 147 , _compilation(compilation)
 148 , _lock_stack_size(-1)
 149 , _requires_phi_function(method->max_locals())
 150 {
 151   _caller             = caller;
 152   _caller_bci         = caller == NULL ? -1 : caller_bci;
 153   _caller_state       = NULL; // Must be set later if needed
 154   _level              = caller == NULL ?  0 : caller->level() + 1;
 155   _method             = method;
 156   _xhandlers          = new XHandlers(method);
 157   _number_of_locks    = 0;
 158   _monitor_pairing_ok = method->has_balanced_monitors();
 159   _start              = NULL;
 160 
 161   if (osr_bci == -1) {
 162     _requires_phi_function.clear();
 163   } else {
 164         // selective creation of phi functions is not possibel in osr-methods
 165     _requires_phi_function.set_range(0, method->max_locals());
 166   }
 167 
 168   assert(method->holder()->is_loaded() , "method holder must be loaded");
 169 
 170   // build graph if monitor pairing is ok
 171   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
 172 }
 173 
 174 
 175 int IRScope::max_stack() const {
 176   int my_max = method()->max_stack();
 177   int callee_max = 0;
 178   for (int i = 0; i < number_of_callees(); i++) {
 179     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
 180   }
 181   return my_max + callee_max;
 182 }
 183 
 184 
 185 void IRScope::compute_lock_stack_size() {
 186   if (!InlineMethodsWithExceptionHandlers) {
 187     _lock_stack_size = 0;
 188     return;
 189   }
 190 
 191   // Figure out whether we have to preserve expression stack elements
 192   // for parent scopes, and if so, how many
 193   IRScope* cur_scope = this;
 194   while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
 195     cur_scope = cur_scope->caller();
 196   }
 197   _lock_stack_size = (cur_scope == NULL ? 0 :
 198                       (cur_scope->caller_state() == NULL ? 0 :
 199                        cur_scope->caller_state()->stack_size()));
 200 }
 201 
 202 int IRScope::top_scope_bci() const {
 203   assert(!is_top_scope(), "no correct answer for top scope possible");
 204   const IRScope* scope = this;
 205   while (!scope->caller()->is_top_scope()) {
 206     scope = scope->caller();
 207   }
 208   return scope->caller_bci();
 209 }
 210 
 211 bool IRScopeDebugInfo::should_reexecute() {
 212   ciMethod* cur_method = scope()->method();
 213   int       cur_bci    = bci();
 214   if (cur_method != NULL && cur_bci != SynchronizationEntryBCI) {
 215     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 216     return Interpreter::bytecode_should_reexecute(code);
 217   } else
 218     return false;
 219 }
 220 
 221 
 222 // Implementation of CodeEmitInfo
 223 
 224 // Stack must be NON-null
 225 CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
 226   : _scope(stack->scope())
 227   , _bci(bci)
 228   , _scope_debug_info(NULL)
 229   , _oop_map(NULL)
 230   , _stack(stack)
 231   , _exception_handlers(exception_handlers)
 232   , _next(NULL)
 233   , _id(-1)
 234   , _is_method_handle_invoke(false) {
 235   assert(_stack != NULL, "must be non null");
 236   assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
 237 }
 238 
 239 
 240 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
 241   : _scope(info->_scope)
 242   , _exception_handlers(NULL)
 243   , _bci(info->_bci)
 244   , _scope_debug_info(NULL)
 245   , _oop_map(NULL)
 246   , _is_method_handle_invoke(info->_is_method_handle_invoke) {
 247   if (lock_stack_only) {
 248     if (info->_stack != NULL) {
 249       _stack = info->_stack->copy_locks();
 250     } else {
 251       _stack = NULL;
 252     }
 253   } else {
 254     _stack = info->_stack;
 255   }
 256 
 257   // deep copy of exception handlers
 258   if (info->_exception_handlers != NULL) {
 259     _exception_handlers = new XHandlers(info->_exception_handlers);
 260   }
 261 }
 262 
 263 
 264 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
 265   // record the safepoint before recording the debug info for enclosing scopes
 266   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
 267   _scope_debug_info->record_debug_info(recorder, pc_offset, true/*topmost*/, _is_method_handle_invoke);
 268   recorder->end_safepoint(pc_offset);
 269 }
 270 
 271 
 272 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
 273   assert(_oop_map != NULL, "oop map must already exist");
 274   assert(opr->is_single_cpu(), "should not call otherwise");
 275 
 276   int frame_size = frame_map()->framesize();
 277   int arg_count = frame_map()->oop_map_arg_count();
 278   VMReg name = frame_map()->regname(opr);
 279   _oop_map->set_oop(name);
 280 }
 281 
 282 
 283 
 284 
 285 // Implementation of IR
 286 
 287 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
 288     _locals_size(in_WordSize(-1))
 289   , _num_loops(0) {
 290   // setup IR fields
 291   _compilation = compilation;
 292   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
 293   _code        = NULL;
 294 }
 295 
 296 
 297 void IR::optimize() {
 298   Optimizer opt(this);
 299   if (DoCEE) {
 300     opt.eliminate_conditional_expressions();
 301 #ifndef PRODUCT
 302     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
 303     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
 304 #endif
 305   }
 306   if (EliminateBlocks) {
 307     opt.eliminate_blocks();
 308 #ifndef PRODUCT
 309     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
 310     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
 311 #endif
 312   }
 313   if (EliminateNullChecks) {
 314     opt.eliminate_null_checks();
 315 #ifndef PRODUCT
 316     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
 317     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
 318 #endif
 319   }
 320 }
 321 
 322 
 323 static int sort_pairs(BlockPair** a, BlockPair** b) {
 324   if ((*a)->from() == (*b)->from()) {
 325     return (*a)->to()->block_id() - (*b)->to()->block_id();
 326   } else {
 327     return (*a)->from()->block_id() - (*b)->from()->block_id();
 328   }
 329 }
 330 
 331 
 332 class CriticalEdgeFinder: public BlockClosure {
 333   BlockPairList blocks;
 334   IR*       _ir;
 335 
 336  public:
 337   CriticalEdgeFinder(IR* ir): _ir(ir) {}
 338   void block_do(BlockBegin* bb) {
 339     BlockEnd* be = bb->end();
 340     int nos = be->number_of_sux();
 341     if (nos >= 2) {
 342       for (int i = 0; i < nos; i++) {
 343         BlockBegin* sux = be->sux_at(i);
 344         if (sux->number_of_preds() >= 2) {
 345           blocks.append(new BlockPair(bb, sux));
 346         }
 347       }
 348     }
 349   }
 350 
 351   void split_edges() {
 352     BlockPair* last_pair = NULL;
 353     blocks.sort(sort_pairs);
 354     for (int i = 0; i < blocks.length(); i++) {
 355       BlockPair* pair = blocks.at(i);
 356       if (last_pair != NULL && pair->is_same(last_pair)) continue;
 357       BlockBegin* from = pair->from();
 358       BlockBegin* to = pair->to();
 359       BlockBegin* split = from->insert_block_between(to);
 360 #ifndef PRODUCT
 361       if ((PrintIR || PrintIR1) && Verbose) {
 362         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
 363                       from->block_id(), to->block_id(), split->block_id());
 364       }
 365 #endif
 366       last_pair = pair;
 367     }
 368   }
 369 };
 370 
 371 void IR::split_critical_edges() {
 372   CriticalEdgeFinder cef(this);
 373 
 374   iterate_preorder(&cef);
 375   cef.split_edges();
 376 }
 377 
 378 
 379 class UseCountComputer: public ValueVisitor, BlockClosure {
 380  private:
 381   void visit(Value* n) {
 382     // Local instructions and Phis for expression stack values at the
 383     // start of basic blocks are not added to the instruction list
 384     if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
 385         (*n)->as_Phi() == NULL) {
 386       assert(false, "a node was not appended to the graph");
 387       Compilation::current()->bailout("a node was not appended to the graph");
 388     }
 389     // use n's input if not visited before
 390     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
 391       // note: a) if the instruction is pinned, it will be handled by compute_use_count
 392       //       b) if the instruction has uses, it was touched before
 393       //       => in both cases we don't need to update n's values
 394       uses_do(n);
 395     }
 396     // use n
 397     (*n)->_use_count++;
 398   }
 399 
 400   Values* worklist;
 401   int depth;
 402   enum {
 403     max_recurse_depth = 20
 404   };
 405 
 406   void uses_do(Value* n) {
 407     depth++;
 408     if (depth > max_recurse_depth) {
 409       // don't allow the traversal to recurse too deeply
 410       worklist->push(*n);
 411     } else {
 412       (*n)->input_values_do(this);
 413       // special handling for some instructions
 414       if ((*n)->as_BlockEnd() != NULL) {
 415         // note on BlockEnd:
 416         //   must 'use' the stack only if the method doesn't
 417         //   terminate, however, in those cases stack is empty
 418         (*n)->state_values_do(this);
 419       }
 420     }
 421     depth--;
 422   }
 423 
 424   void block_do(BlockBegin* b) {
 425     depth = 0;
 426     // process all pinned nodes as the roots of expression trees
 427     for (Instruction* n = b; n != NULL; n = n->next()) {
 428       if (n->is_pinned()) uses_do(&n);
 429     }
 430     assert(depth == 0, "should have counted back down");
 431 
 432     // now process any unpinned nodes which recursed too deeply
 433     while (worklist->length() > 0) {
 434       Value t = worklist->pop();
 435       if (!t->is_pinned()) {
 436         // compute the use count
 437         uses_do(&t);
 438 
 439         // pin the instruction so that LIRGenerator doesn't recurse
 440         // too deeply during it's evaluation.
 441         t->pin();
 442       }
 443     }
 444     assert(depth == 0, "should have counted back down");
 445   }
 446 
 447   UseCountComputer() {
 448     worklist = new Values();
 449     depth = 0;
 450   }
 451 
 452  public:
 453   static void compute(BlockList* blocks) {
 454     UseCountComputer ucc;
 455     blocks->iterate_backward(&ucc);
 456   }
 457 };
 458 
 459 
 460 // helper macro for short definition of trace-output inside code
 461 #ifndef PRODUCT
 462   #define TRACE_LINEAR_SCAN(level, code)       \
 463     if (TraceLinearScanLevel >= level) {       \
 464       code;                                    \
 465     }
 466 #else
 467   #define TRACE_LINEAR_SCAN(level, code)
 468 #endif
 469 
 470 class ComputeLinearScanOrder : public StackObj {
 471  private:
 472   int        _max_block_id;        // the highest block_id of a block
 473   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
 474   int        _num_loops;           // total number of loops
 475   bool       _iterative_dominators;// method requires iterative computation of dominatiors
 476 
 477   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
 478 
 479   BitMap     _visited_blocks;      // used for recursive processing of blocks
 480   BitMap     _active_blocks;       // used for recursive processing of blocks
 481   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
 482   intArray   _forward_branches;    // number of incoming forward branches for each block
 483   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
 484   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
 485   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
 486 
 487   // accessors for _visited_blocks and _active_blocks
 488   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
 489   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
 490   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
 491   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
 492   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
 493   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
 494 
 495   // accessors for _forward_branches
 496   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
 497   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
 498 
 499   // accessors for _loop_map
 500   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
 501   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
 502   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
 503 
 504   // count edges between blocks
 505   void count_edges(BlockBegin* cur, BlockBegin* parent);
 506 
 507   // loop detection
 508   void mark_loops();
 509   void clear_non_natural_loops(BlockBegin* start_block);
 510   void assign_loop_depth(BlockBegin* start_block);
 511 
 512   // computation of final block order
 513   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
 514   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
 515   int  compute_weight(BlockBegin* cur);
 516   bool ready_for_processing(BlockBegin* cur);
 517   void sort_into_work_list(BlockBegin* b);
 518   void append_block(BlockBegin* cur);
 519   void compute_order(BlockBegin* start_block);
 520 
 521   // fixup of dominators for non-natural loops
 522   bool compute_dominators_iter();
 523   void compute_dominators();
 524 
 525   // debug functions
 526   NOT_PRODUCT(void print_blocks();)
 527   DEBUG_ONLY(void verify();)
 528 
 529  public:
 530   ComputeLinearScanOrder(BlockBegin* start_block);
 531 
 532   // accessors for final result
 533   BlockList* linear_scan_order() const    { return _linear_scan_order; }
 534   int        num_loops() const            { return _num_loops; }
 535 };
 536 
 537 
 538 ComputeLinearScanOrder::ComputeLinearScanOrder(BlockBegin* start_block) :
 539   _max_block_id(BlockBegin::number_of_blocks()),
 540   _num_blocks(0),
 541   _num_loops(0),
 542   _iterative_dominators(false),
 543   _visited_blocks(_max_block_id),
 544   _active_blocks(_max_block_id),
 545   _dominator_blocks(_max_block_id),
 546   _forward_branches(_max_block_id, 0),
 547   _loop_end_blocks(8),
 548   _work_list(8),
 549   _linear_scan_order(NULL), // initialized later with correct size
 550   _loop_map(0, 0)           // initialized later with correct size
 551 {
 552   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
 553 
 554   init_visited();
 555   count_edges(start_block, NULL);
 556 
 557   if (_num_loops > 0) {
 558     mark_loops();
 559     clear_non_natural_loops(start_block);
 560     assign_loop_depth(start_block);
 561   }
 562 
 563   compute_order(start_block);
 564   compute_dominators();
 565 
 566   NOT_PRODUCT(print_blocks());
 567   DEBUG_ONLY(verify());
 568 }
 569 
 570 
 571 // Traverse the CFG:
 572 // * count total number of blocks
 573 // * count all incoming edges and backward incoming edges
 574 // * number loop header blocks
 575 // * create a list with all loop end blocks
 576 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
 577   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
 578   assert(cur->dominator() == NULL, "dominator already initialized");
 579 
 580   if (is_active(cur)) {
 581     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
 582     assert(is_visited(cur), "block must be visisted when block is active");
 583     assert(parent != NULL, "must have parent");
 584 
 585     cur->set(BlockBegin::linear_scan_loop_header_flag);
 586     cur->set(BlockBegin::backward_branch_target_flag);
 587 
 588     parent->set(BlockBegin::linear_scan_loop_end_flag);
 589 
 590     // When a loop header is also the start of an exception handler, then the backward branch is
 591     // an exception edge. Because such edges are usually critical edges which cannot be split, the
 592     // loop must be excluded here from processing.
 593     if (cur->is_set(BlockBegin::exception_entry_flag)) {
 594       // Make sure that dominators are correct in this weird situation
 595       _iterative_dominators = true;
 596       return;
 597     }
 598     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
 599            "loop end blocks must have one successor (critical edges are split)");
 600 
 601     _loop_end_blocks.append(parent);
 602     return;
 603   }
 604 
 605   // increment number of incoming forward branches
 606   inc_forward_branches(cur);
 607 
 608   if (is_visited(cur)) {
 609     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
 610     return;
 611   }
 612 
 613   _num_blocks++;
 614   set_visited(cur);
 615   set_active(cur);
 616 
 617   // recursive call for all successors
 618   int i;
 619   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 620     count_edges(cur->sux_at(i), cur);
 621   }
 622   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 623     count_edges(cur->exception_handler_at(i), cur);
 624   }
 625 
 626   clear_active(cur);
 627 
 628   // Each loop has a unique number.
 629   // When multiple loops are nested, assign_loop_depth assumes that the
 630   // innermost loop has the lowest number. This is guaranteed by setting
 631   // the loop number after the recursive calls for the successors above
 632   // have returned.
 633   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
 634     assert(cur->loop_index() == -1, "cannot set loop-index twice");
 635     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
 636 
 637     cur->set_loop_index(_num_loops);
 638     _num_loops++;
 639   }
 640 
 641   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
 642 }
 643 
 644 
 645 void ComputeLinearScanOrder::mark_loops() {
 646   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
 647 
 648   _loop_map = BitMap2D(_num_loops, _max_block_id);
 649   _loop_map.clear();
 650 
 651   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
 652     BlockBegin* loop_end   = _loop_end_blocks.at(i);
 653     BlockBegin* loop_start = loop_end->sux_at(0);
 654     int         loop_idx   = loop_start->loop_index();
 655 
 656     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
 657     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
 658     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
 659     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
 660     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
 661     assert(_work_list.is_empty(), "work list must be empty before processing");
 662 
 663     // add the end-block of the loop to the working list
 664     _work_list.push(loop_end);
 665     set_block_in_loop(loop_idx, loop_end);
 666     do {
 667       BlockBegin* cur = _work_list.pop();
 668 
 669       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
 670       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
 671 
 672       // recursive processing of all predecessors ends when start block of loop is reached
 673       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
 674         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
 675           BlockBegin* pred = cur->pred_at(j);
 676 
 677           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
 678             // this predecessor has not been processed yet, so add it to work list
 679             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
 680             _work_list.push(pred);
 681             set_block_in_loop(loop_idx, pred);
 682           }
 683         }
 684       }
 685     } while (!_work_list.is_empty());
 686   }
 687 }
 688 
 689 
 690 // check for non-natural loops (loops where the loop header does not dominate
 691 // all other loop blocks = loops with mulitple entries).
 692 // such loops are ignored
 693 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
 694   for (int i = _num_loops - 1; i >= 0; i--) {
 695     if (is_block_in_loop(i, start_block)) {
 696       // loop i contains the entry block of the method
 697       // -> this is not a natural loop, so ignore it
 698       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
 699 
 700       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
 701         clear_block_in_loop(i, block_id);
 702       }
 703       _iterative_dominators = true;
 704     }
 705   }
 706 }
 707 
 708 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
 709   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
 710   init_visited();
 711 
 712   assert(_work_list.is_empty(), "work list must be empty before processing");
 713   _work_list.append(start_block);
 714 
 715   do {
 716     BlockBegin* cur = _work_list.pop();
 717 
 718     if (!is_visited(cur)) {
 719       set_visited(cur);
 720       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
 721 
 722       // compute loop-depth and loop-index for the block
 723       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
 724       int i;
 725       int loop_depth = 0;
 726       int min_loop_idx = -1;
 727       for (i = _num_loops - 1; i >= 0; i--) {
 728         if (is_block_in_loop(i, cur)) {
 729           loop_depth++;
 730           min_loop_idx = i;
 731         }
 732       }
 733       cur->set_loop_depth(loop_depth);
 734       cur->set_loop_index(min_loop_idx);
 735 
 736       // append all unvisited successors to work list
 737       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 738         _work_list.append(cur->sux_at(i));
 739       }
 740       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 741         _work_list.append(cur->exception_handler_at(i));
 742       }
 743     }
 744   } while (!_work_list.is_empty());
 745 }
 746 
 747 
 748 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
 749   assert(a != NULL && b != NULL, "must have input blocks");
 750 
 751   _dominator_blocks.clear();
 752   while (a != NULL) {
 753     _dominator_blocks.set_bit(a->block_id());
 754     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
 755     a = a->dominator();
 756   }
 757   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
 758     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
 759     b = b->dominator();
 760   }
 761 
 762   assert(b != NULL, "could not find dominator");
 763   return b;
 764 }
 765 
 766 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
 767   if (cur->dominator() == NULL) {
 768     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
 769     cur->set_dominator(parent);
 770 
 771   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
 772     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
 773     assert(cur->number_of_preds() > 1, "");
 774     cur->set_dominator(common_dominator(cur->dominator(), parent));
 775   }
 776 }
 777 
 778 
 779 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
 780   BlockBegin* single_sux = NULL;
 781   if (cur->number_of_sux() == 1) {
 782     single_sux = cur->sux_at(0);
 783   }
 784 
 785   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
 786   int weight = (cur->loop_depth() & 0x7FFF) << 16;
 787 
 788   // general macro for short definition of weight flags
 789   // the first instance of INC_WEIGHT_IF has the highest priority
 790   int cur_bit = 15;
 791   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
 792 
 793   // this is necessery for the (very rare) case that two successing blocks have
 794   // the same loop depth, but a different loop index (can happen for endless loops
 795   // with exception handlers)
 796   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
 797 
 798   // loop end blocks (blocks that end with a backward branch) are added
 799   // after all other blocks of the loop.
 800   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
 801 
 802   // critical edge split blocks are prefered because than they have a bigger
 803   // proability to be completely empty
 804   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
 805 
 806   // exceptions should not be thrown in normal control flow, so these blocks
 807   // are added as late as possible
 808   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
 809   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
 810 
 811   // exceptions handlers are added as late as possible
 812   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
 813 
 814   // guarantee that weight is > 0
 815   weight |= 1;
 816 
 817   #undef INC_WEIGHT_IF
 818   assert(cur_bit >= 0, "too many flags");
 819   assert(weight > 0, "weight cannot become negative");
 820 
 821   return weight;
 822 }
 823 
 824 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
 825   // Discount the edge just traveled.
 826   // When the number drops to zero, all forward branches were processed
 827   if (dec_forward_branches(cur) != 0) {
 828     return false;
 829   }
 830 
 831   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
 832   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
 833   return true;
 834 }
 835 
 836 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
 837   assert(_work_list.index_of(cur) == -1, "block already in work list");
 838 
 839   int cur_weight = compute_weight(cur);
 840 
 841   // the linear_scan_number is used to cache the weight of a block
 842   cur->set_linear_scan_number(cur_weight);
 843 
 844 #ifndef PRODUCT
 845   if (StressLinearScan) {
 846     _work_list.insert_before(0, cur);
 847     return;
 848   }
 849 #endif
 850 
 851   _work_list.append(NULL); // provide space for new element
 852 
 853   int insert_idx = _work_list.length() - 1;
 854   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
 855     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
 856     insert_idx--;
 857   }
 858   _work_list.at_put(insert_idx, cur);
 859 
 860   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
 861   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
 862 
 863 #ifdef ASSERT
 864   for (int i = 0; i < _work_list.length(); i++) {
 865     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
 866     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
 867   }
 868 #endif
 869 }
 870 
 871 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
 872   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
 873   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
 874 
 875   // currently, the linear scan order and code emit order are equal.
 876   // therefore the linear_scan_number and the weight of a block must also
 877   // be equal.
 878   cur->set_linear_scan_number(_linear_scan_order->length());
 879   _linear_scan_order->append(cur);
 880 }
 881 
 882 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
 883   TRACE_LINEAR_SCAN(3, "----- computing final block order");
 884 
 885   // the start block is always the first block in the linear scan order
 886   _linear_scan_order = new BlockList(_num_blocks);
 887   append_block(start_block);
 888 
 889   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
 890   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
 891   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
 892 
 893   BlockBegin* sux_of_osr_entry = NULL;
 894   if (osr_entry != NULL) {
 895     // special handling for osr entry:
 896     // ignore the edge between the osr entry and its successor for processing
 897     // the osr entry block is added manually below
 898     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
 899     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
 900 
 901     sux_of_osr_entry = osr_entry->sux_at(0);
 902     dec_forward_branches(sux_of_osr_entry);
 903 
 904     compute_dominator(osr_entry, start_block);
 905     _iterative_dominators = true;
 906   }
 907   compute_dominator(std_entry, start_block);
 908 
 909   // start processing with standard entry block
 910   assert(_work_list.is_empty(), "list must be empty before processing");
 911 
 912   if (ready_for_processing(std_entry)) {
 913     sort_into_work_list(std_entry);
 914   } else {
 915     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
 916   }
 917 
 918   do {
 919     BlockBegin* cur = _work_list.pop();
 920 
 921     if (cur == sux_of_osr_entry) {
 922       // the osr entry block is ignored in normal processing, it is never added to the
 923       // work list. Instead, it is added as late as possible manually here.
 924       append_block(osr_entry);
 925       compute_dominator(cur, osr_entry);
 926     }
 927     append_block(cur);
 928 
 929     int i;
 930     int num_sux = cur->number_of_sux();
 931     // changed loop order to get "intuitive" order of if- and else-blocks
 932     for (i = 0; i < num_sux; i++) {
 933       BlockBegin* sux = cur->sux_at(i);
 934       compute_dominator(sux, cur);
 935       if (ready_for_processing(sux)) {
 936         sort_into_work_list(sux);
 937       }
 938     }
 939     num_sux = cur->number_of_exception_handlers();
 940     for (i = 0; i < num_sux; i++) {
 941       BlockBegin* sux = cur->exception_handler_at(i);
 942       compute_dominator(sux, cur);
 943       if (ready_for_processing(sux)) {
 944         sort_into_work_list(sux);
 945       }
 946     }
 947   } while (_work_list.length() > 0);
 948 }
 949 
 950 
 951 bool ComputeLinearScanOrder::compute_dominators_iter() {
 952   bool changed = false;
 953   int num_blocks = _linear_scan_order->length();
 954 
 955   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
 956   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
 957   for (int i = 1; i < num_blocks; i++) {
 958     BlockBegin* block = _linear_scan_order->at(i);
 959 
 960     BlockBegin* dominator = block->pred_at(0);
 961     int num_preds = block->number_of_preds();
 962     for (int i = 1; i < num_preds; i++) {
 963       dominator = common_dominator(dominator, block->pred_at(i));
 964     }
 965 
 966     if (dominator != block->dominator()) {
 967       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
 968 
 969       block->set_dominator(dominator);
 970       changed = true;
 971     }
 972   }
 973   return changed;
 974 }
 975 
 976 void ComputeLinearScanOrder::compute_dominators() {
 977   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
 978 
 979   // iterative computation of dominators is only required for methods with non-natural loops
 980   // and OSR-methods. For all other methods, the dominators computed when generating the
 981   // linear scan block order are correct.
 982   if (_iterative_dominators) {
 983     do {
 984       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
 985     } while (compute_dominators_iter());
 986   }
 987 
 988   // check that dominators are correct
 989   assert(!compute_dominators_iter(), "fix point not reached");
 990 }
 991 
 992 
 993 #ifndef PRODUCT
 994 void ComputeLinearScanOrder::print_blocks() {
 995   if (TraceLinearScanLevel >= 2) {
 996     tty->print_cr("----- loop information:");
 997     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
 998       BlockBegin* cur = _linear_scan_order->at(block_idx);
 999 
1000       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
1001       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1002         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
1003       }
1004       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
1005     }
1006   }
1007 
1008   if (TraceLinearScanLevel >= 1) {
1009     tty->print_cr("----- linear-scan block order:");
1010     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1011       BlockBegin* cur = _linear_scan_order->at(block_idx);
1012       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1013 
1014       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
1015       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
1016       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
1017       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
1018 
1019       if (cur->dominator() != NULL) {
1020         tty->print("    dom: B%d ", cur->dominator()->block_id());
1021       } else {
1022         tty->print("    dom: NULL ");
1023       }
1024 
1025       if (cur->number_of_preds() > 0) {
1026         tty->print("    preds: ");
1027         for (int j = 0; j < cur->number_of_preds(); j++) {
1028           BlockBegin* pred = cur->pred_at(j);
1029           tty->print("B%d ", pred->block_id());
1030         }
1031       }
1032       if (cur->number_of_sux() > 0) {
1033         tty->print("    sux: ");
1034         for (int j = 0; j < cur->number_of_sux(); j++) {
1035           BlockBegin* sux = cur->sux_at(j);
1036           tty->print("B%d ", sux->block_id());
1037         }
1038       }
1039       if (cur->number_of_exception_handlers() > 0) {
1040         tty->print("    ex: ");
1041         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1042           BlockBegin* ex = cur->exception_handler_at(j);
1043           tty->print("B%d ", ex->block_id());
1044         }
1045       }
1046       tty->cr();
1047     }
1048   }
1049 }
1050 #endif
1051 
1052 #ifdef ASSERT
1053 void ComputeLinearScanOrder::verify() {
1054   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1055 
1056   if (StressLinearScan) {
1057     // blocks are scrambled when StressLinearScan is used
1058     return;
1059   }
1060 
1061   // check that all successors of a block have a higher linear-scan-number
1062   // and that all predecessors of a block have a lower linear-scan-number
1063   // (only backward branches of loops are ignored)
1064   int i;
1065   for (i = 0; i < _linear_scan_order->length(); i++) {
1066     BlockBegin* cur = _linear_scan_order->at(i);
1067 
1068     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1069     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1070 
1071     int j;
1072     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1073       BlockBegin* sux = cur->sux_at(j);
1074 
1075       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1076       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
1077         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1078       }
1079       if (cur->loop_depth() == sux->loop_depth()) {
1080         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1081       }
1082     }
1083 
1084     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1085       BlockBegin* pred = cur->pred_at(j);
1086 
1087       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1088       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1089         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1090       }
1091       if (cur->loop_depth() == pred->loop_depth()) {
1092         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1093       }
1094 
1095       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1096     }
1097 
1098     // check dominator
1099     if (i == 0) {
1100       assert(cur->dominator() == NULL, "first block has no dominator");
1101     } else {
1102       assert(cur->dominator() != NULL, "all but first block must have dominator");
1103     }
1104     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
1105   }
1106 
1107   // check that all loops are continuous
1108   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1109     int block_idx = 0;
1110     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1111 
1112     // skip blocks before the loop
1113     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1114       block_idx++;
1115     }
1116     // skip blocks of loop
1117     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1118       block_idx++;
1119     }
1120     // after the first non-loop block, there must not be another loop-block
1121     while (block_idx < _num_blocks) {
1122       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1123       block_idx++;
1124     }
1125   }
1126 }
1127 #endif
1128 
1129 
1130 void IR::compute_code() {
1131   assert(is_valid(), "IR must be valid");
1132 
1133   ComputeLinearScanOrder compute_order(start());
1134   _num_loops = compute_order.num_loops();
1135   _code = compute_order.linear_scan_order();
1136 }
1137 
1138 
1139 void IR::compute_use_counts() {
1140   // make sure all values coming out of this block get evaluated.
1141   int num_blocks = _code->length();
1142   for (int i = 0; i < num_blocks; i++) {
1143     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1144   }
1145 
1146   // compute use counts
1147   UseCountComputer::compute(_code);
1148 }
1149 
1150 
1151 void IR::iterate_preorder(BlockClosure* closure) {
1152   assert(is_valid(), "IR must be valid");
1153   start()->iterate_preorder(closure);
1154 }
1155 
1156 
1157 void IR::iterate_postorder(BlockClosure* closure) {
1158   assert(is_valid(), "IR must be valid");
1159   start()->iterate_postorder(closure);
1160 }
1161 
1162 void IR::iterate_linear_scan_order(BlockClosure* closure) {
1163   linear_scan_order()->iterate_forward(closure);
1164 }
1165 
1166 
1167 #ifndef PRODUCT
1168 class BlockPrinter: public BlockClosure {
1169  private:
1170   InstructionPrinter* _ip;
1171   bool                _cfg_only;
1172   bool                _live_only;
1173 
1174  public:
1175   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1176     _ip       = ip;
1177     _cfg_only = cfg_only;
1178     _live_only = live_only;
1179   }
1180 
1181   virtual void block_do(BlockBegin* block) {
1182     if (_cfg_only) {
1183       _ip->print_instr(block); tty->cr();
1184     } else {
1185       block->print_block(*_ip, _live_only);
1186     }
1187   }
1188 };
1189 
1190 
1191 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1192   ttyLocker ttyl;
1193   InstructionPrinter ip(!cfg_only);
1194   BlockPrinter bp(&ip, cfg_only, live_only);
1195   start->iterate_preorder(&bp);
1196   tty->cr();
1197 }
1198 
1199 void IR::print(bool cfg_only, bool live_only) {
1200   if (is_valid()) {
1201     print(start(), cfg_only, live_only);
1202   } else {
1203     tty->print_cr("invalid IR");
1204   }
1205 }
1206 
1207 
1208 define_array(BlockListArray, BlockList*)
1209 define_stack(BlockListList, BlockListArray)
1210 
1211 class PredecessorValidator : public BlockClosure {
1212  private:
1213   BlockListList* _predecessors;
1214   BlockList*     _blocks;
1215 
1216   static int cmp(BlockBegin** a, BlockBegin** b) {
1217     return (*a)->block_id() - (*b)->block_id();
1218   }
1219 
1220  public:
1221   PredecessorValidator(IR* hir) {
1222     ResourceMark rm;
1223     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1224     _blocks = new BlockList();
1225 
1226     int i;
1227     hir->start()->iterate_preorder(this);
1228     if (hir->code() != NULL) {
1229       assert(hir->code()->length() == _blocks->length(), "must match");
1230       for (i = 0; i < _blocks->length(); i++) {
1231         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1232       }
1233     }
1234 
1235     for (i = 0; i < _blocks->length(); i++) {
1236       BlockBegin* block = _blocks->at(i);
1237       BlockList* preds = _predecessors->at(block->block_id());
1238       if (preds == NULL) {
1239         assert(block->number_of_preds() == 0, "should be the same");
1240         continue;
1241       }
1242 
1243       // clone the pred list so we can mutate it
1244       BlockList* pred_copy = new BlockList();
1245       int j;
1246       for (j = 0; j < block->number_of_preds(); j++) {
1247         pred_copy->append(block->pred_at(j));
1248       }
1249       // sort them in the same order
1250       preds->sort(cmp);
1251       pred_copy->sort(cmp);
1252       int length = MIN2(preds->length(), block->number_of_preds());
1253       for (j = 0; j < block->number_of_preds(); j++) {
1254         assert(preds->at(j) == pred_copy->at(j), "must match");
1255       }
1256 
1257       assert(preds->length() == block->number_of_preds(), "should be the same");
1258     }
1259   }
1260 
1261   virtual void block_do(BlockBegin* block) {
1262     _blocks->append(block);
1263     BlockEnd* be = block->end();
1264     int n = be->number_of_sux();
1265     int i;
1266     for (i = 0; i < n; i++) {
1267       BlockBegin* sux = be->sux_at(i);
1268       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1269 
1270       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1271       if (preds == NULL) {
1272         preds = new BlockList();
1273         _predecessors->at_put(sux->block_id(), preds);
1274       }
1275       preds->append(block);
1276     }
1277 
1278     n = block->number_of_exception_handlers();
1279     for (i = 0; i < n; i++) {
1280       BlockBegin* sux = block->exception_handler_at(i);
1281       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1282 
1283       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1284       if (preds == NULL) {
1285         preds = new BlockList();
1286         _predecessors->at_put(sux->block_id(), preds);
1287       }
1288       preds->append(block);
1289     }
1290   }
1291 };
1292 
1293 void IR::verify() {
1294 #ifdef ASSERT
1295   PredecessorValidator pv(this);
1296 #endif
1297 }
1298 
1299 #endif // PRODUCT
1300 
1301 void SubstitutionResolver::visit(Value* v) {
1302   Value v0 = *v;
1303   if (v0) {
1304     Value vs = v0->subst();
1305     if (vs != v0) {
1306       *v = v0->subst();
1307     }
1308   }
1309 }
1310 
1311 #ifdef ASSERT
1312 class SubstitutionChecker: public ValueVisitor {
1313   void visit(Value* v) {
1314     Value v0 = *v;
1315     if (v0) {
1316       Value vs = v0->subst();
1317       assert(vs == v0, "missed substitution");
1318     }
1319   }
1320 };
1321 #endif
1322 
1323 
1324 void SubstitutionResolver::block_do(BlockBegin* block) {
1325   Instruction* last = NULL;
1326   for (Instruction* n = block; n != NULL;) {
1327     n->values_do(this);
1328     // need to remove this instruction from the instruction stream
1329     if (n->subst() != n) {
1330       assert(last != NULL, "must have last");
1331       last->set_next(n->next(), n->next()->bci());
1332     } else {
1333       last = n;
1334     }
1335     n = last->next();
1336   }
1337 
1338 #ifdef ASSERT
1339   SubstitutionChecker check_substitute;
1340   if (block->state()) block->state()->values_do(&check_substitute);
1341   block->block_values_do(&check_substitute);
1342   if (block->end() && block->end()->state()) block->end()->state()->values_do(&check_substitute);
1343 #endif
1344 }