1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_thread.cpp.incl"
  27 
  28 #ifdef DTRACE_ENABLED
  29 
  30 // Only bother with this argument setup if dtrace is available
  31 
  32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
  33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
  34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
  35   intptr_t, intptr_t, bool);
  36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
  37   intptr_t, intptr_t, bool);
  38 
  39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
  40   {                                                                        \
  41     ResourceMark rm(this);                                                 \
  42     int len = 0;                                                           \
  43     const char* name = (javathread)->get_thread_name();                    \
  44     len = strlen(name);                                                    \
  45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
  46       name, len,                                                           \
  47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
  48       (javathread)->osthread()->thread_id(),                               \
  49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
  50   }
  51 
  52 #else //  ndef DTRACE_ENABLED
  53 
  54 #define DTRACE_THREAD_PROBE(probe, javathread)
  55 
  56 #endif // ndef DTRACE_ENABLED
  57 
  58 // Class hierarchy
  59 // - Thread
  60 //   - VMThread
  61 //   - WatcherThread
  62 //   - ConcurrentMarkSweepThread
  63 //   - JavaThread
  64 //     - CompilerThread
  65 
  66 // ======= Thread ========
  67 
  68 // Support for forcing alignment of thread objects for biased locking
  69 void* Thread::operator new(size_t size) {
  70   if (UseBiasedLocking) {
  71     const int alignment = markOopDesc::biased_lock_alignment;
  72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
  73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
  74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
  75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
  76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
  77            "JavaThread alignment code overflowed allocated storage");
  78     if (TraceBiasedLocking) {
  79       if (aligned_addr != real_malloc_addr)
  80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
  81                       real_malloc_addr, aligned_addr);
  82     }
  83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
  84     return aligned_addr;
  85   } else {
  86     return CHeapObj::operator new(size);
  87   }
  88 }
  89 
  90 void Thread::operator delete(void* p) {
  91   if (UseBiasedLocking) {
  92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
  93     CHeapObj::operator delete(real_malloc_addr);
  94   } else {
  95     CHeapObj::operator delete(p);
  96   }
  97 }
  98 
  99 
 100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 101 // JavaThread
 102 
 103 
 104 Thread::Thread() {
 105   // stack
 106   _stack_base   = NULL;
 107   _stack_size   = 0;
 108   _self_raw_id  = 0;
 109   _lgrp_id      = -1;
 110   _osthread     = NULL;
 111 
 112   // allocated data structures
 113   set_resource_area(new ResourceArea());
 114   set_handle_area(new HandleArea(NULL));
 115   set_active_handles(NULL);
 116   set_free_handle_block(NULL);
 117   set_last_handle_mark(NULL);
 118   set_osthread(NULL);
 119 
 120   // This initial value ==> never claimed.
 121   _oops_do_parity = 0;
 122 
 123   // the handle mark links itself to last_handle_mark
 124   new HandleMark(this);
 125 
 126   // plain initialization
 127   debug_only(_owned_locks = NULL;)
 128   debug_only(_allow_allocation_count = 0;)
 129   NOT_PRODUCT(_allow_safepoint_count = 0;)
 130   NOT_PRODUCT(_skip_gcalot = false;)
 131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 132   _jvmti_env_iteration_count = 0;
 133   _vm_operation_started_count = 0;
 134   _vm_operation_completed_count = 0;
 135   _current_pending_monitor = NULL;
 136   _current_pending_monitor_is_from_java = true;
 137   _current_waiting_monitor = NULL;
 138   _num_nested_signal = 0;
 139   omFreeList = NULL ;
 140   omFreeCount = 0 ;
 141   omFreeProvision = 32 ;
 142 
 143   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 144   _suspend_flags = 0;
 145 
 146   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 147   _hashStateX = os::random() ;
 148   _hashStateY = 842502087 ;
 149   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 150   _hashStateW = 273326509 ;
 151 
 152   _OnTrap   = 0 ;
 153   _schedctl = NULL ;
 154   _Stalled  = 0 ;
 155   _TypeTag  = 0x2BAD ;
 156 
 157   // Many of the following fields are effectively final - immutable
 158   // Note that nascent threads can't use the Native Monitor-Mutex
 159   // construct until the _MutexEvent is initialized ...
 160   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 161   // we might instead use a stack of ParkEvents that we could provision on-demand.
 162   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 163   // and ::Release()
 164   _ParkEvent   = ParkEvent::Allocate (this) ;
 165   _SleepEvent  = ParkEvent::Allocate (this) ;
 166   _MutexEvent  = ParkEvent::Allocate (this) ;
 167   _MuxEvent    = ParkEvent::Allocate (this) ;
 168 
 169 #ifdef CHECK_UNHANDLED_OOPS
 170   if (CheckUnhandledOops) {
 171     _unhandled_oops = new UnhandledOops(this);
 172   }
 173 #endif // CHECK_UNHANDLED_OOPS
 174 #ifdef ASSERT
 175   if (UseBiasedLocking) {
 176     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 177     assert(this == _real_malloc_address ||
 178            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 179            "bug in forced alignment of thread objects");
 180   }
 181 #endif /* ASSERT */
 182 }
 183 
 184 void Thread::initialize_thread_local_storage() {
 185   // Note: Make sure this method only calls
 186   // non-blocking operations. Otherwise, it might not work
 187   // with the thread-startup/safepoint interaction.
 188 
 189   // During Java thread startup, safepoint code should allow this
 190   // method to complete because it may need to allocate memory to
 191   // store information for the new thread.
 192 
 193   // initialize structure dependent on thread local storage
 194   ThreadLocalStorage::set_thread(this);
 195 
 196   // set up any platform-specific state.
 197   os::initialize_thread();
 198 
 199 }
 200 
 201 void Thread::record_stack_base_and_size() {
 202   set_stack_base(os::current_stack_base());
 203   set_stack_size(os::current_stack_size());
 204 }
 205 
 206 
 207 Thread::~Thread() {
 208   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 209   ObjectSynchronizer::omFlush (this) ;
 210 
 211   // deallocate data structures
 212   delete resource_area();
 213   // since the handle marks are using the handle area, we have to deallocated the root
 214   // handle mark before deallocating the thread's handle area,
 215   assert(last_handle_mark() != NULL, "check we have an element");
 216   delete last_handle_mark();
 217   assert(last_handle_mark() == NULL, "check we have reached the end");
 218 
 219   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 220   // We NULL out the fields for good hygiene.
 221   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 222   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 223   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 224   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 225 
 226   delete handle_area();
 227 
 228   // osthread() can be NULL, if creation of thread failed.
 229   if (osthread() != NULL) os::free_thread(osthread());
 230 
 231   delete _SR_lock;
 232 
 233   // clear thread local storage if the Thread is deleting itself
 234   if (this == Thread::current()) {
 235     ThreadLocalStorage::set_thread(NULL);
 236   } else {
 237     // In the case where we're not the current thread, invalidate all the
 238     // caches in case some code tries to get the current thread or the
 239     // thread that was destroyed, and gets stale information.
 240     ThreadLocalStorage::invalidate_all();
 241   }
 242   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 243 }
 244 
 245 // NOTE: dummy function for assertion purpose.
 246 void Thread::run() {
 247   ShouldNotReachHere();
 248 }
 249 
 250 #ifdef ASSERT
 251 // Private method to check for dangling thread pointer
 252 void check_for_dangling_thread_pointer(Thread *thread) {
 253  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 254          "possibility of dangling Thread pointer");
 255 }
 256 #endif
 257 
 258 
 259 #ifndef PRODUCT
 260 // Tracing method for basic thread operations
 261 void Thread::trace(const char* msg, const Thread* const thread) {
 262   if (!TraceThreadEvents) return;
 263   ResourceMark rm;
 264   ThreadCritical tc;
 265   const char *name = "non-Java thread";
 266   int prio = -1;
 267   if (thread->is_Java_thread()
 268       && !thread->is_Compiler_thread()) {
 269     // The Threads_lock must be held to get information about
 270     // this thread but may not be in some situations when
 271     // tracing  thread events.
 272     bool release_Threads_lock = false;
 273     if (!Threads_lock->owned_by_self()) {
 274       Threads_lock->lock();
 275       release_Threads_lock = true;
 276     }
 277     JavaThread* jt = (JavaThread *)thread;
 278     name = (char *)jt->get_thread_name();
 279     oop thread_oop = jt->threadObj();
 280     if (thread_oop != NULL) {
 281       prio = java_lang_Thread::priority(thread_oop);
 282     }
 283     if (release_Threads_lock) {
 284       Threads_lock->unlock();
 285     }
 286   }
 287   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 288 }
 289 #endif
 290 
 291 
 292 ThreadPriority Thread::get_priority(const Thread* const thread) {
 293   trace("get priority", thread);
 294   ThreadPriority priority;
 295   // Can return an error!
 296   (void)os::get_priority(thread, priority);
 297   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 298   return priority;
 299 }
 300 
 301 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 302   trace("set priority", thread);
 303   debug_only(check_for_dangling_thread_pointer(thread);)
 304   // Can return an error!
 305   (void)os::set_priority(thread, priority);
 306 }
 307 
 308 
 309 void Thread::start(Thread* thread) {
 310   trace("start", thread);
 311   // Start is different from resume in that its safety is guaranteed by context or
 312   // being called from a Java method synchronized on the Thread object.
 313   if (!DisableStartThread) {
 314     if (thread->is_Java_thread()) {
 315       // Initialize the thread state to RUNNABLE before starting this thread.
 316       // Can not set it after the thread started because we do not know the
 317       // exact thread state at that time. It could be in MONITOR_WAIT or
 318       // in SLEEPING or some other state.
 319       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 320                                           java_lang_Thread::RUNNABLE);
 321     }
 322     os::start_thread(thread);
 323   }
 324 }
 325 
 326 // Enqueue a VM_Operation to do the job for us - sometime later
 327 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 328   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 329   VMThread::execute(vm_stop);
 330 }
 331 
 332 
 333 //
 334 // Check if an external suspend request has completed (or has been
 335 // cancelled). Returns true if the thread is externally suspended and
 336 // false otherwise.
 337 //
 338 // The bits parameter returns information about the code path through
 339 // the routine. Useful for debugging:
 340 //
 341 // set in is_ext_suspend_completed():
 342 // 0x00000001 - routine was entered
 343 // 0x00000010 - routine return false at end
 344 // 0x00000100 - thread exited (return false)
 345 // 0x00000200 - suspend request cancelled (return false)
 346 // 0x00000400 - thread suspended (return true)
 347 // 0x00001000 - thread is in a suspend equivalent state (return true)
 348 // 0x00002000 - thread is native and walkable (return true)
 349 // 0x00004000 - thread is native_trans and walkable (needed retry)
 350 //
 351 // set in wait_for_ext_suspend_completion():
 352 // 0x00010000 - routine was entered
 353 // 0x00020000 - suspend request cancelled before loop (return false)
 354 // 0x00040000 - thread suspended before loop (return true)
 355 // 0x00080000 - suspend request cancelled in loop (return false)
 356 // 0x00100000 - thread suspended in loop (return true)
 357 // 0x00200000 - suspend not completed during retry loop (return false)
 358 //
 359 
 360 // Helper class for tracing suspend wait debug bits.
 361 //
 362 // 0x00000100 indicates that the target thread exited before it could
 363 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 364 // 0x00080000 each indicate a cancelled suspend request so they don't
 365 // count as wait failures either.
 366 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 367 
 368 class TraceSuspendDebugBits : public StackObj {
 369  private:
 370   JavaThread * jt;
 371   bool         is_wait;
 372   bool         called_by_wait;  // meaningful when !is_wait
 373   uint32_t *   bits;
 374 
 375  public:
 376   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 377                         uint32_t *_bits) {
 378     jt             = _jt;
 379     is_wait        = _is_wait;
 380     called_by_wait = _called_by_wait;
 381     bits           = _bits;
 382   }
 383 
 384   ~TraceSuspendDebugBits() {
 385     if (!is_wait) {
 386 #if 1
 387       // By default, don't trace bits for is_ext_suspend_completed() calls.
 388       // That trace is very chatty.
 389       return;
 390 #else
 391       if (!called_by_wait) {
 392         // If tracing for is_ext_suspend_completed() is enabled, then only
 393         // trace calls to it from wait_for_ext_suspend_completion()
 394         return;
 395       }
 396 #endif
 397     }
 398 
 399     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 400       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 401         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 402         ResourceMark rm;
 403 
 404         tty->print_cr(
 405             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 406             jt->get_thread_name(), *bits);
 407 
 408         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 409       }
 410     }
 411   }
 412 };
 413 #undef DEBUG_FALSE_BITS
 414 
 415 
 416 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 417   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 418 
 419   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 420   bool do_trans_retry;           // flag to force the retry
 421 
 422   *bits |= 0x00000001;
 423 
 424   do {
 425     do_trans_retry = false;
 426 
 427     if (is_exiting()) {
 428       // Thread is in the process of exiting. This is always checked
 429       // first to reduce the risk of dereferencing a freed JavaThread.
 430       *bits |= 0x00000100;
 431       return false;
 432     }
 433 
 434     if (!is_external_suspend()) {
 435       // Suspend request is cancelled. This is always checked before
 436       // is_ext_suspended() to reduce the risk of a rogue resume
 437       // confusing the thread that made the suspend request.
 438       *bits |= 0x00000200;
 439       return false;
 440     }
 441 
 442     if (is_ext_suspended()) {
 443       // thread is suspended
 444       *bits |= 0x00000400;
 445       return true;
 446     }
 447 
 448     // Now that we no longer do hard suspends of threads running
 449     // native code, the target thread can be changing thread state
 450     // while we are in this routine:
 451     //
 452     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 453     //
 454     // We save a copy of the thread state as observed at this moment
 455     // and make our decision about suspend completeness based on the
 456     // copy. This closes the race where the thread state is seen as
 457     // _thread_in_native_trans in the if-thread_blocked check, but is
 458     // seen as _thread_blocked in if-thread_in_native_trans check.
 459     JavaThreadState save_state = thread_state();
 460 
 461     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 462       // If the thread's state is _thread_blocked and this blocking
 463       // condition is known to be equivalent to a suspend, then we can
 464       // consider the thread to be externally suspended. This means that
 465       // the code that sets _thread_blocked has been modified to do
 466       // self-suspension if the blocking condition releases. We also
 467       // used to check for CONDVAR_WAIT here, but that is now covered by
 468       // the _thread_blocked with self-suspension check.
 469       //
 470       // Return true since we wouldn't be here unless there was still an
 471       // external suspend request.
 472       *bits |= 0x00001000;
 473       return true;
 474     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 475       // Threads running native code will self-suspend on native==>VM/Java
 476       // transitions. If its stack is walkable (should always be the case
 477       // unless this function is called before the actual java_suspend()
 478       // call), then the wait is done.
 479       *bits |= 0x00002000;
 480       return true;
 481     } else if (!called_by_wait && !did_trans_retry &&
 482                save_state == _thread_in_native_trans &&
 483                frame_anchor()->walkable()) {
 484       // The thread is transitioning from thread_in_native to another
 485       // thread state. check_safepoint_and_suspend_for_native_trans()
 486       // will force the thread to self-suspend. If it hasn't gotten
 487       // there yet we may have caught the thread in-between the native
 488       // code check above and the self-suspend. Lucky us. If we were
 489       // called by wait_for_ext_suspend_completion(), then it
 490       // will be doing the retries so we don't have to.
 491       //
 492       // Since we use the saved thread state in the if-statement above,
 493       // there is a chance that the thread has already transitioned to
 494       // _thread_blocked by the time we get here. In that case, we will
 495       // make a single unnecessary pass through the logic below. This
 496       // doesn't hurt anything since we still do the trans retry.
 497 
 498       *bits |= 0x00004000;
 499 
 500       // Once the thread leaves thread_in_native_trans for another
 501       // thread state, we break out of this retry loop. We shouldn't
 502       // need this flag to prevent us from getting back here, but
 503       // sometimes paranoia is good.
 504       did_trans_retry = true;
 505 
 506       // We wait for the thread to transition to a more usable state.
 507       for (int i = 1; i <= SuspendRetryCount; i++) {
 508         // We used to do an "os::yield_all(i)" call here with the intention
 509         // that yielding would increase on each retry. However, the parameter
 510         // is ignored on Linux which means the yield didn't scale up. Waiting
 511         // on the SR_lock below provides a much more predictable scale up for
 512         // the delay. It also provides a simple/direct point to check for any
 513         // safepoint requests from the VMThread
 514 
 515         // temporarily drops SR_lock while doing wait with safepoint check
 516         // (if we're a JavaThread - the WatcherThread can also call this)
 517         // and increase delay with each retry
 518         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 519 
 520         // check the actual thread state instead of what we saved above
 521         if (thread_state() != _thread_in_native_trans) {
 522           // the thread has transitioned to another thread state so
 523           // try all the checks (except this one) one more time.
 524           do_trans_retry = true;
 525           break;
 526         }
 527       } // end retry loop
 528 
 529 
 530     }
 531   } while (do_trans_retry);
 532 
 533   *bits |= 0x00000010;
 534   return false;
 535 }
 536 
 537 //
 538 // Wait for an external suspend request to complete (or be cancelled).
 539 // Returns true if the thread is externally suspended and false otherwise.
 540 //
 541 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 542        uint32_t *bits) {
 543   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 544                              false /* !called_by_wait */, bits);
 545 
 546   // local flag copies to minimize SR_lock hold time
 547   bool is_suspended;
 548   bool pending;
 549   uint32_t reset_bits;
 550 
 551   // set a marker so is_ext_suspend_completed() knows we are the caller
 552   *bits |= 0x00010000;
 553 
 554   // We use reset_bits to reinitialize the bits value at the top of
 555   // each retry loop. This allows the caller to make use of any
 556   // unused bits for their own marking purposes.
 557   reset_bits = *bits;
 558 
 559   {
 560     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 561     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 562                                             delay, bits);
 563     pending = is_external_suspend();
 564   }
 565   // must release SR_lock to allow suspension to complete
 566 
 567   if (!pending) {
 568     // A cancelled suspend request is the only false return from
 569     // is_ext_suspend_completed() that keeps us from entering the
 570     // retry loop.
 571     *bits |= 0x00020000;
 572     return false;
 573   }
 574 
 575   if (is_suspended) {
 576     *bits |= 0x00040000;
 577     return true;
 578   }
 579 
 580   for (int i = 1; i <= retries; i++) {
 581     *bits = reset_bits;  // reinit to only track last retry
 582 
 583     // We used to do an "os::yield_all(i)" call here with the intention
 584     // that yielding would increase on each retry. However, the parameter
 585     // is ignored on Linux which means the yield didn't scale up. Waiting
 586     // on the SR_lock below provides a much more predictable scale up for
 587     // the delay. It also provides a simple/direct point to check for any
 588     // safepoint requests from the VMThread
 589 
 590     {
 591       MutexLocker ml(SR_lock());
 592       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 593       // can also call this)  and increase delay with each retry
 594       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 595 
 596       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 597                                               delay, bits);
 598 
 599       // It is possible for the external suspend request to be cancelled
 600       // (by a resume) before the actual suspend operation is completed.
 601       // Refresh our local copy to see if we still need to wait.
 602       pending = is_external_suspend();
 603     }
 604 
 605     if (!pending) {
 606       // A cancelled suspend request is the only false return from
 607       // is_ext_suspend_completed() that keeps us from staying in the
 608       // retry loop.
 609       *bits |= 0x00080000;
 610       return false;
 611     }
 612 
 613     if (is_suspended) {
 614       *bits |= 0x00100000;
 615       return true;
 616     }
 617   } // end retry loop
 618 
 619   // thread did not suspend after all our retries
 620   *bits |= 0x00200000;
 621   return false;
 622 }
 623 
 624 #ifndef PRODUCT
 625 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 626 
 627   // This should not need to be atomic as the only way for simultaneous
 628   // updates is via interrupts. Even then this should be rare or non-existant
 629   // and we don't care that much anyway.
 630 
 631   int index = _jmp_ring_index;
 632   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 633   _jmp_ring[index]._target = (intptr_t) target;
 634   _jmp_ring[index]._instruction = (intptr_t) instr;
 635   _jmp_ring[index]._file = file;
 636   _jmp_ring[index]._line = line;
 637 }
 638 #endif /* PRODUCT */
 639 
 640 // Called by flat profiler
 641 // Callers have already called wait_for_ext_suspend_completion
 642 // The assertion for that is currently too complex to put here:
 643 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 644   bool gotframe = false;
 645   // self suspension saves needed state.
 646   if (has_last_Java_frame() && _anchor.walkable()) {
 647      *_fr = pd_last_frame();
 648      gotframe = true;
 649   }
 650   return gotframe;
 651 }
 652 
 653 void Thread::interrupt(Thread* thread) {
 654   trace("interrupt", thread);
 655   debug_only(check_for_dangling_thread_pointer(thread);)
 656   os::interrupt(thread);
 657 }
 658 
 659 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 660   trace("is_interrupted", thread);
 661   debug_only(check_for_dangling_thread_pointer(thread);)
 662   // Note:  If clear_interrupted==false, this simply fetches and
 663   // returns the value of the field osthread()->interrupted().
 664   return os::is_interrupted(thread, clear_interrupted);
 665 }
 666 
 667 
 668 // GC Support
 669 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 670   jint thread_parity = _oops_do_parity;
 671   if (thread_parity != strong_roots_parity) {
 672     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 673     if (res == thread_parity) return true;
 674     else {
 675       guarantee(res == strong_roots_parity, "Or else what?");
 676       assert(SharedHeap::heap()->n_par_threads() > 0,
 677              "Should only fail when parallel.");
 678       return false;
 679     }
 680   }
 681   assert(SharedHeap::heap()->n_par_threads() > 0,
 682          "Should only fail when parallel.");
 683   return false;
 684 }
 685 
 686 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 687   active_handles()->oops_do(f);
 688   // Do oop for ThreadShadow
 689   f->do_oop((oop*)&_pending_exception);
 690   handle_area()->oops_do(f);
 691 }
 692 
 693 void Thread::nmethods_do(CodeBlobClosure* cf) {
 694   // no nmethods in a generic thread...
 695 }
 696 
 697 void Thread::print_on(outputStream* st) const {
 698   // get_priority assumes osthread initialized
 699   if (osthread() != NULL) {
 700     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 701     osthread()->print_on(st);
 702   }
 703   debug_only(if (WizardMode) print_owned_locks_on(st);)
 704 }
 705 
 706 // Thread::print_on_error() is called by fatal error handler. Don't use
 707 // any lock or allocate memory.
 708 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 709   if      (is_VM_thread())                  st->print("VMThread");
 710   else if (is_Compiler_thread())            st->print("CompilerThread");
 711   else if (is_Java_thread())                st->print("JavaThread");
 712   else if (is_GC_task_thread())             st->print("GCTaskThread");
 713   else if (is_Watcher_thread())             st->print("WatcherThread");
 714   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 715   else st->print("Thread");
 716 
 717   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 718             _stack_base - _stack_size, _stack_base);
 719 
 720   if (osthread()) {
 721     st->print(" [id=%d]", osthread()->thread_id());
 722   }
 723 }
 724 
 725 #ifdef ASSERT
 726 void Thread::print_owned_locks_on(outputStream* st) const {
 727   Monitor *cur = _owned_locks;
 728   if (cur == NULL) {
 729     st->print(" (no locks) ");
 730   } else {
 731     st->print_cr(" Locks owned:");
 732     while(cur) {
 733       cur->print_on(st);
 734       cur = cur->next();
 735     }
 736   }
 737 }
 738 
 739 static int ref_use_count  = 0;
 740 
 741 bool Thread::owns_locks_but_compiled_lock() const {
 742   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 743     if (cur != Compile_lock) return true;
 744   }
 745   return false;
 746 }
 747 
 748 
 749 #endif
 750 
 751 #ifndef PRODUCT
 752 
 753 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 754 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 755 // no threads which allow_vm_block's are held
 756 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 757     // Check if current thread is allowed to block at a safepoint
 758     if (!(_allow_safepoint_count == 0))
 759       fatal("Possible safepoint reached by thread that does not allow it");
 760     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 761       fatal("LEAF method calling lock?");
 762     }
 763 
 764 #ifdef ASSERT
 765     if (potential_vm_operation && is_Java_thread()
 766         && !Universe::is_bootstrapping()) {
 767       // Make sure we do not hold any locks that the VM thread also uses.
 768       // This could potentially lead to deadlocks
 769       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 770         // Threads_lock is special, since the safepoint synchronization will not start before this is
 771         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 772         // since it is used to transfer control between JavaThreads and the VMThread
 773         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 774         if ( (cur->allow_vm_block() &&
 775               cur != Threads_lock &&
 776               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 777               cur != VMOperationRequest_lock &&
 778               cur != VMOperationQueue_lock) ||
 779               cur->rank() == Mutex::special) {
 780           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 781         }
 782       }
 783     }
 784 
 785     if (GCALotAtAllSafepoints) {
 786       // We could enter a safepoint here and thus have a gc
 787       InterfaceSupport::check_gc_alot();
 788     }
 789 #endif
 790 }
 791 #endif
 792 
 793 bool Thread::is_in_stack(address adr) const {
 794   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 795   address end = os::current_stack_pointer();
 796   if (stack_base() >= adr && adr >= end) return true;
 797 
 798   return false;
 799 }
 800 
 801 
 802 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 803 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 804 // used for compilation in the future. If that change is made, the need for these methods
 805 // should be revisited, and they should be removed if possible.
 806 
 807 bool Thread::is_lock_owned(address adr) const {
 808   return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
 809 }
 810 
 811 bool Thread::set_as_starting_thread() {
 812  // NOTE: this must be called inside the main thread.
 813   return os::create_main_thread((JavaThread*)this);
 814 }
 815 
 816 static void initialize_class(symbolHandle class_name, TRAPS) {
 817   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 818   instanceKlass::cast(klass)->initialize(CHECK);
 819 }
 820 
 821 
 822 // Creates the initial ThreadGroup
 823 static Handle create_initial_thread_group(TRAPS) {
 824   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
 825   instanceKlassHandle klass (THREAD, k);
 826 
 827   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 828   {
 829     JavaValue result(T_VOID);
 830     JavaCalls::call_special(&result,
 831                             system_instance,
 832                             klass,
 833                             vmSymbolHandles::object_initializer_name(),
 834                             vmSymbolHandles::void_method_signature(),
 835                             CHECK_NH);
 836   }
 837   Universe::set_system_thread_group(system_instance());
 838 
 839   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 840   {
 841     JavaValue result(T_VOID);
 842     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 843     JavaCalls::call_special(&result,
 844                             main_instance,
 845                             klass,
 846                             vmSymbolHandles::object_initializer_name(),
 847                             vmSymbolHandles::threadgroup_string_void_signature(),
 848                             system_instance,
 849                             string,
 850                             CHECK_NH);
 851   }
 852   return main_instance;
 853 }
 854 
 855 // Creates the initial Thread
 856 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 857   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
 858   instanceKlassHandle klass (THREAD, k);
 859   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 860 
 861   java_lang_Thread::set_thread(thread_oop(), thread);
 862   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 863   thread->set_threadObj(thread_oop());
 864 
 865   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 866 
 867   JavaValue result(T_VOID);
 868   JavaCalls::call_special(&result, thread_oop,
 869                                    klass,
 870                                    vmSymbolHandles::object_initializer_name(),
 871                                    vmSymbolHandles::threadgroup_string_void_signature(),
 872                                    thread_group,
 873                                    string,
 874                                    CHECK_NULL);
 875   return thread_oop();
 876 }
 877 
 878 static void call_initializeSystemClass(TRAPS) {
 879   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 880   instanceKlassHandle klass (THREAD, k);
 881 
 882   JavaValue result(T_VOID);
 883   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
 884                                          vmSymbolHandles::void_method_signature(), CHECK);
 885 }
 886 
 887 #ifdef KERNEL
 888 static void set_jkernel_boot_classloader_hook(TRAPS) {
 889   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
 890   instanceKlassHandle klass (THREAD, k);
 891 
 892   if (k == NULL) {
 893     // sun.jkernel.DownloadManager may not present in the JDK; just return
 894     return;
 895   }
 896 
 897   JavaValue result(T_VOID);
 898   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
 899                                          vmSymbolHandles::void_method_signature(), CHECK);
 900 }
 901 #endif // KERNEL
 902 
 903 static void reset_vm_info_property(TRAPS) {
 904   // the vm info string
 905   ResourceMark rm(THREAD);
 906   const char *vm_info = VM_Version::vm_info_string();
 907 
 908   // java.lang.System class
 909   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 910   instanceKlassHandle klass (THREAD, k);
 911 
 912   // setProperty arguments
 913   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 914   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 915 
 916   // return value
 917   JavaValue r(T_OBJECT);
 918 
 919   // public static String setProperty(String key, String value);
 920   JavaCalls::call_static(&r,
 921                          klass,
 922                          vmSymbolHandles::setProperty_name(),
 923                          vmSymbolHandles::string_string_string_signature(),
 924                          key_str,
 925                          value_str,
 926                          CHECK);
 927 }
 928 
 929 
 930 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
 931   assert(thread_group.not_null(), "thread group should be specified");
 932   assert(threadObj() == NULL, "should only create Java thread object once");
 933 
 934   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
 935   instanceKlassHandle klass (THREAD, k);
 936   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 937 
 938   java_lang_Thread::set_thread(thread_oop(), this);
 939   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 940   set_threadObj(thread_oop());
 941 
 942   JavaValue result(T_VOID);
 943   if (thread_name != NULL) {
 944     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
 945     // Thread gets assigned specified name and null target
 946     JavaCalls::call_special(&result,
 947                             thread_oop,
 948                             klass,
 949                             vmSymbolHandles::object_initializer_name(),
 950                             vmSymbolHandles::threadgroup_string_void_signature(),
 951                             thread_group, // Argument 1
 952                             name,         // Argument 2
 953                             THREAD);
 954   } else {
 955     // Thread gets assigned name "Thread-nnn" and null target
 956     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
 957     JavaCalls::call_special(&result,
 958                             thread_oop,
 959                             klass,
 960                             vmSymbolHandles::object_initializer_name(),
 961                             vmSymbolHandles::threadgroup_runnable_void_signature(),
 962                             thread_group, // Argument 1
 963                             Handle(),     // Argument 2
 964                             THREAD);
 965   }
 966 
 967 
 968   if (daemon) {
 969       java_lang_Thread::set_daemon(thread_oop());
 970   }
 971 
 972   if (HAS_PENDING_EXCEPTION) {
 973     return;
 974   }
 975 
 976   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
 977   Handle threadObj(this, this->threadObj());
 978 
 979   JavaCalls::call_special(&result,
 980                          thread_group,
 981                          group,
 982                          vmSymbolHandles::add_method_name(),
 983                          vmSymbolHandles::thread_void_signature(),
 984                          threadObj,          // Arg 1
 985                          THREAD);
 986 
 987 
 988 }
 989 
 990 // NamedThread --  non-JavaThread subclasses with multiple
 991 // uniquely named instances should derive from this.
 992 NamedThread::NamedThread() : Thread() {
 993   _name = NULL;
 994   _processed_thread = NULL;
 995 }
 996 
 997 NamedThread::~NamedThread() {
 998   if (_name != NULL) {
 999     FREE_C_HEAP_ARRAY(char, _name);
1000     _name = NULL;
1001   }
1002 }
1003 
1004 void NamedThread::set_name(const char* format, ...) {
1005   guarantee(_name == NULL, "Only get to set name once.");
1006   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1007   guarantee(_name != NULL, "alloc failure");
1008   va_list ap;
1009   va_start(ap, format);
1010   jio_vsnprintf(_name, max_name_len, format, ap);
1011   va_end(ap);
1012 }
1013 
1014 // ======= WatcherThread ========
1015 
1016 // The watcher thread exists to simulate timer interrupts.  It should
1017 // be replaced by an abstraction over whatever native support for
1018 // timer interrupts exists on the platform.
1019 
1020 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1021 bool           WatcherThread::_should_terminate = false;
1022 
1023 WatcherThread::WatcherThread() : Thread() {
1024   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1025   if (os::create_thread(this, os::watcher_thread)) {
1026     _watcher_thread = this;
1027 
1028     // Set the watcher thread to the highest OS priority which should not be
1029     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1030     // is created. The only normal thread using this priority is the reference
1031     // handler thread, which runs for very short intervals only.
1032     // If the VMThread's priority is not lower than the WatcherThread profiling
1033     // will be inaccurate.
1034     os::set_priority(this, MaxPriority);
1035     if (!DisableStartThread) {
1036       os::start_thread(this);
1037     }
1038   }
1039 }
1040 
1041 void WatcherThread::run() {
1042   assert(this == watcher_thread(), "just checking");
1043 
1044   this->record_stack_base_and_size();
1045   this->initialize_thread_local_storage();
1046   this->set_active_handles(JNIHandleBlock::allocate_block());
1047   while(!_should_terminate) {
1048     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1049     assert(watcher_thread() == this,  "thread consistency check");
1050 
1051     // Calculate how long it'll be until the next PeriodicTask work
1052     // should be done, and sleep that amount of time.
1053     const size_t time_to_wait = PeriodicTask::time_to_wait();
1054     os::sleep(this, time_to_wait, false);
1055 
1056     if (is_error_reported()) {
1057       // A fatal error has happened, the error handler(VMError::report_and_die)
1058       // should abort JVM after creating an error log file. However in some
1059       // rare cases, the error handler itself might deadlock. Here we try to
1060       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1061       //
1062       // This code is in WatcherThread because WatcherThread wakes up
1063       // periodically so the fatal error handler doesn't need to do anything;
1064       // also because the WatcherThread is less likely to crash than other
1065       // threads.
1066 
1067       for (;;) {
1068         if (!ShowMessageBoxOnError
1069          && (OnError == NULL || OnError[0] == '\0')
1070          && Arguments::abort_hook() == NULL) {
1071              os::sleep(this, 2 * 60 * 1000, false);
1072              fdStream err(defaultStream::output_fd());
1073              err.print_raw_cr("# [ timer expired, abort... ]");
1074              // skip atexit/vm_exit/vm_abort hooks
1075              os::die();
1076         }
1077 
1078         // Wake up 5 seconds later, the fatal handler may reset OnError or
1079         // ShowMessageBoxOnError when it is ready to abort.
1080         os::sleep(this, 5 * 1000, false);
1081       }
1082     }
1083 
1084     PeriodicTask::real_time_tick(time_to_wait);
1085 
1086     // If we have no more tasks left due to dynamic disenrollment,
1087     // shut down the thread since we don't currently support dynamic enrollment
1088     if (PeriodicTask::num_tasks() == 0) {
1089       _should_terminate = true;
1090     }
1091   }
1092 
1093   // Signal that it is terminated
1094   {
1095     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1096     _watcher_thread = NULL;
1097     Terminator_lock->notify();
1098   }
1099 
1100   // Thread destructor usually does this..
1101   ThreadLocalStorage::set_thread(NULL);
1102 }
1103 
1104 void WatcherThread::start() {
1105   if (watcher_thread() == NULL) {
1106     _should_terminate = false;
1107     // Create the single instance of WatcherThread
1108     new WatcherThread();
1109   }
1110 }
1111 
1112 void WatcherThread::stop() {
1113   // it is ok to take late safepoints here, if needed
1114   MutexLocker mu(Terminator_lock);
1115   _should_terminate = true;
1116   while(watcher_thread() != NULL) {
1117     // This wait should make safepoint checks, wait without a timeout,
1118     // and wait as a suspend-equivalent condition.
1119     //
1120     // Note: If the FlatProfiler is running, then this thread is waiting
1121     // for the WatcherThread to terminate and the WatcherThread, via the
1122     // FlatProfiler task, is waiting for the external suspend request on
1123     // this thread to complete. wait_for_ext_suspend_completion() will
1124     // eventually timeout, but that takes time. Making this wait a
1125     // suspend-equivalent condition solves that timeout problem.
1126     //
1127     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1128                           Mutex::_as_suspend_equivalent_flag);
1129   }
1130 }
1131 
1132 void WatcherThread::print_on(outputStream* st) const {
1133   st->print("\"%s\" ", name());
1134   Thread::print_on(st);
1135   st->cr();
1136 }
1137 
1138 // ======= JavaThread ========
1139 
1140 // A JavaThread is a normal Java thread
1141 
1142 void JavaThread::initialize() {
1143   // Initialize fields
1144 
1145   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1146   set_claimed_par_id(-1);
1147 
1148   set_saved_exception_pc(NULL);
1149   set_threadObj(NULL);
1150   _anchor.clear();
1151   set_entry_point(NULL);
1152   set_jni_functions(jni_functions());
1153   set_callee_target(NULL);
1154   set_vm_result(NULL);
1155   set_vm_result_2(NULL);
1156   set_vframe_array_head(NULL);
1157   set_vframe_array_last(NULL);
1158   set_deferred_locals(NULL);
1159   set_deopt_mark(NULL);
1160   clear_must_deopt_id();
1161   set_monitor_chunks(NULL);
1162   set_next(NULL);
1163   set_thread_state(_thread_new);
1164   _terminated = _not_terminated;
1165   _privileged_stack_top = NULL;
1166   _array_for_gc = NULL;
1167   _suspend_equivalent = false;
1168   _in_deopt_handler = 0;
1169   _doing_unsafe_access = false;
1170   _stack_guard_state = stack_guard_unused;
1171   _exception_oop = NULL;
1172   _exception_pc  = 0;
1173   _exception_handler_pc = 0;
1174   _exception_stack_size = 0;
1175   _jvmti_thread_state= NULL;
1176   _should_post_on_exceptions_flag = JNI_FALSE;
1177   _jvmti_get_loaded_classes_closure = NULL;
1178   _interp_only_mode    = 0;
1179   _special_runtime_exit_condition = _no_async_condition;
1180   _pending_async_exception = NULL;
1181   _is_compiling = false;
1182   _thread_stat = NULL;
1183   _thread_stat = new ThreadStatistics();
1184   _blocked_on_compilation = false;
1185   _jni_active_critical = 0;
1186   _do_not_unlock_if_synchronized = false;
1187   _cached_monitor_info = NULL;
1188   _parker = Parker::Allocate(this) ;
1189 
1190 #ifndef PRODUCT
1191   _jmp_ring_index = 0;
1192   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1193     record_jump(NULL, NULL, NULL, 0);
1194   }
1195 #endif /* PRODUCT */
1196 
1197   set_thread_profiler(NULL);
1198   if (FlatProfiler::is_active()) {
1199     // This is where we would decide to either give each thread it's own profiler
1200     // or use one global one from FlatProfiler,
1201     // or up to some count of the number of profiled threads, etc.
1202     ThreadProfiler* pp = new ThreadProfiler();
1203     pp->engage();
1204     set_thread_profiler(pp);
1205   }
1206 
1207   // Setup safepoint state info for this thread
1208   ThreadSafepointState::create(this);
1209 
1210   debug_only(_java_call_counter = 0);
1211 
1212   // JVMTI PopFrame support
1213   _popframe_condition = popframe_inactive;
1214   _popframe_preserved_args = NULL;
1215   _popframe_preserved_args_size = 0;
1216 
1217   pd_initialize();
1218 }
1219 
1220 #ifndef SERIALGC
1221 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1222 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1223 #endif // !SERIALGC
1224 
1225 JavaThread::JavaThread(bool is_attaching) :
1226   Thread()
1227 #ifndef SERIALGC
1228   , _satb_mark_queue(&_satb_mark_queue_set),
1229   _dirty_card_queue(&_dirty_card_queue_set)
1230 #endif // !SERIALGC
1231 {
1232   initialize();
1233   _is_attaching = is_attaching;
1234   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1235 }
1236 
1237 bool JavaThread::reguard_stack(address cur_sp) {
1238   if (_stack_guard_state != stack_guard_yellow_disabled) {
1239     return true; // Stack already guarded or guard pages not needed.
1240   }
1241 
1242   if (register_stack_overflow()) {
1243     // For those architectures which have separate register and
1244     // memory stacks, we must check the register stack to see if
1245     // it has overflowed.
1246     return false;
1247   }
1248 
1249   // Java code never executes within the yellow zone: the latter is only
1250   // there to provoke an exception during stack banging.  If java code
1251   // is executing there, either StackShadowPages should be larger, or
1252   // some exception code in c1, c2 or the interpreter isn't unwinding
1253   // when it should.
1254   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1255 
1256   enable_stack_yellow_zone();
1257   return true;
1258 }
1259 
1260 bool JavaThread::reguard_stack(void) {
1261   return reguard_stack(os::current_stack_pointer());
1262 }
1263 
1264 
1265 void JavaThread::block_if_vm_exited() {
1266   if (_terminated == _vm_exited) {
1267     // _vm_exited is set at safepoint, and Threads_lock is never released
1268     // we will block here forever
1269     Threads_lock->lock_without_safepoint_check();
1270     ShouldNotReachHere();
1271   }
1272 }
1273 
1274 
1275 // Remove this ifdef when C1 is ported to the compiler interface.
1276 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1277 
1278 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1279   Thread()
1280 #ifndef SERIALGC
1281   , _satb_mark_queue(&_satb_mark_queue_set),
1282   _dirty_card_queue(&_dirty_card_queue_set)
1283 #endif // !SERIALGC
1284 {
1285   if (TraceThreadEvents) {
1286     tty->print_cr("creating thread %p", this);
1287   }
1288   initialize();
1289   _is_attaching = false;
1290   set_entry_point(entry_point);
1291   // Create the native thread itself.
1292   // %note runtime_23
1293   os::ThreadType thr_type = os::java_thread;
1294   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1295                                                      os::java_thread;
1296   os::create_thread(this, thr_type, stack_sz);
1297 
1298   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1299   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1300   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1301   // the exception consists of creating the exception object & initializing it, initialization
1302   // will leave the VM via a JavaCall and then all locks must be unlocked).
1303   //
1304   // The thread is still suspended when we reach here. Thread must be explicit started
1305   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1306   // by calling Threads:add. The reason why this is not done here, is because the thread
1307   // object must be fully initialized (take a look at JVM_Start)
1308 }
1309 
1310 JavaThread::~JavaThread() {
1311   if (TraceThreadEvents) {
1312       tty->print_cr("terminate thread %p", this);
1313   }
1314 
1315   // JSR166 -- return the parker to the free list
1316   Parker::Release(_parker);
1317   _parker = NULL ;
1318 
1319   // Free any remaining  previous UnrollBlock
1320   vframeArray* old_array = vframe_array_last();
1321 
1322   if (old_array != NULL) {
1323     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1324     old_array->set_unroll_block(NULL);
1325     delete old_info;
1326     delete old_array;
1327   }
1328 
1329   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1330   if (deferred != NULL) {
1331     // This can only happen if thread is destroyed before deoptimization occurs.
1332     assert(deferred->length() != 0, "empty array!");
1333     do {
1334       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1335       deferred->remove_at(0);
1336       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1337       delete dlv;
1338     } while (deferred->length() != 0);
1339     delete deferred;
1340   }
1341 
1342   // All Java related clean up happens in exit
1343   ThreadSafepointState::destroy(this);
1344   if (_thread_profiler != NULL) delete _thread_profiler;
1345   if (_thread_stat != NULL) delete _thread_stat;
1346 }
1347 
1348 
1349 // The first routine called by a new Java thread
1350 void JavaThread::run() {
1351   // initialize thread-local alloc buffer related fields
1352   this->initialize_tlab();
1353 
1354   // used to test validitity of stack trace backs
1355   this->record_base_of_stack_pointer();
1356 
1357   // Record real stack base and size.
1358   this->record_stack_base_and_size();
1359 
1360   // Initialize thread local storage; set before calling MutexLocker
1361   this->initialize_thread_local_storage();
1362 
1363   this->create_stack_guard_pages();
1364 
1365   // Thread is now sufficient initialized to be handled by the safepoint code as being
1366   // in the VM. Change thread state from _thread_new to _thread_in_vm
1367   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1368 
1369   assert(JavaThread::current() == this, "sanity check");
1370   assert(!Thread::current()->owns_locks(), "sanity check");
1371 
1372   DTRACE_THREAD_PROBE(start, this);
1373 
1374   // This operation might block. We call that after all safepoint checks for a new thread has
1375   // been completed.
1376   this->set_active_handles(JNIHandleBlock::allocate_block());
1377 
1378   if (JvmtiExport::should_post_thread_life()) {
1379     JvmtiExport::post_thread_start(this);
1380   }
1381 
1382   // We call another function to do the rest so we are sure that the stack addresses used
1383   // from there will be lower than the stack base just computed
1384   thread_main_inner();
1385 
1386   // Note, thread is no longer valid at this point!
1387 }
1388 
1389 
1390 void JavaThread::thread_main_inner() {
1391   assert(JavaThread::current() == this, "sanity check");
1392   assert(this->threadObj() != NULL, "just checking");
1393 
1394   // Execute thread entry point. If this thread is being asked to restart,
1395   // or has been stopped before starting, do not reexecute entry point.
1396   // Note: Due to JVM_StopThread we can have pending exceptions already!
1397   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1398     // enter the thread's entry point only if we have no pending exceptions
1399     HandleMark hm(this);
1400     this->entry_point()(this, this);
1401   }
1402 
1403   DTRACE_THREAD_PROBE(stop, this);
1404 
1405   this->exit(false);
1406   delete this;
1407 }
1408 
1409 
1410 static void ensure_join(JavaThread* thread) {
1411   // We do not need to grap the Threads_lock, since we are operating on ourself.
1412   Handle threadObj(thread, thread->threadObj());
1413   assert(threadObj.not_null(), "java thread object must exist");
1414   ObjectLocker lock(threadObj, thread);
1415   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1416   thread->clear_pending_exception();
1417   // It is of profound importance that we set the stillborn bit and reset the thread object,
1418   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1419   // false. So in case another thread is doing a join on this thread , it will detect that the thread
1420   // is dead when it gets notified.
1421   java_lang_Thread::set_stillborn(threadObj());
1422   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1423   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1424   java_lang_Thread::set_thread(threadObj(), NULL);
1425   lock.notify_all(thread);
1426   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1427   thread->clear_pending_exception();
1428 }
1429 
1430 
1431 // For any new cleanup additions, please check to see if they need to be applied to
1432 // cleanup_failed_attach_current_thread as well.
1433 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1434   assert(this == JavaThread::current(),  "thread consistency check");
1435   if (!InitializeJavaLangSystem) return;
1436 
1437   HandleMark hm(this);
1438   Handle uncaught_exception(this, this->pending_exception());
1439   this->clear_pending_exception();
1440   Handle threadObj(this, this->threadObj());
1441   assert(threadObj.not_null(), "Java thread object should be created");
1442 
1443   if (get_thread_profiler() != NULL) {
1444     get_thread_profiler()->disengage();
1445     ResourceMark rm;
1446     get_thread_profiler()->print(get_thread_name());
1447   }
1448 
1449 
1450   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1451   {
1452     EXCEPTION_MARK;
1453 
1454     CLEAR_PENDING_EXCEPTION;
1455   }
1456   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1457   // has to be fixed by a runtime query method
1458   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1459     // JSR-166: change call from from ThreadGroup.uncaughtException to
1460     // java.lang.Thread.dispatchUncaughtException
1461     if (uncaught_exception.not_null()) {
1462       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1463       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1464         (address)uncaught_exception(), (address)threadObj(), (address)group());
1465       {
1466         EXCEPTION_MARK;
1467         // Check if the method Thread.dispatchUncaughtException() exists. If so
1468         // call it.  Otherwise we have an older library without the JSR-166 changes,
1469         // so call ThreadGroup.uncaughtException()
1470         KlassHandle recvrKlass(THREAD, threadObj->klass());
1471         CallInfo callinfo;
1472         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1473         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1474                                            vmSymbolHandles::dispatchUncaughtException_name(),
1475                                            vmSymbolHandles::throwable_void_signature(),
1476                                            KlassHandle(), false, false, THREAD);
1477         CLEAR_PENDING_EXCEPTION;
1478         methodHandle method = callinfo.selected_method();
1479         if (method.not_null()) {
1480           JavaValue result(T_VOID);
1481           JavaCalls::call_virtual(&result,
1482                                   threadObj, thread_klass,
1483                                   vmSymbolHandles::dispatchUncaughtException_name(),
1484                                   vmSymbolHandles::throwable_void_signature(),
1485                                   uncaught_exception,
1486                                   THREAD);
1487         } else {
1488           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1489           JavaValue result(T_VOID);
1490           JavaCalls::call_virtual(&result,
1491                                   group, thread_group,
1492                                   vmSymbolHandles::uncaughtException_name(),
1493                                   vmSymbolHandles::thread_throwable_void_signature(),
1494                                   threadObj,           // Arg 1
1495                                   uncaught_exception,  // Arg 2
1496                                   THREAD);
1497         }
1498         CLEAR_PENDING_EXCEPTION;
1499       }
1500     }
1501 
1502     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1503     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1504     // is deprecated anyhow.
1505     { int count = 3;
1506       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1507         EXCEPTION_MARK;
1508         JavaValue result(T_VOID);
1509         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1510         JavaCalls::call_virtual(&result,
1511                               threadObj, thread_klass,
1512                               vmSymbolHandles::exit_method_name(),
1513                               vmSymbolHandles::void_method_signature(),
1514                               THREAD);
1515         CLEAR_PENDING_EXCEPTION;
1516       }
1517     }
1518 
1519     // notify JVMTI
1520     if (JvmtiExport::should_post_thread_life()) {
1521       JvmtiExport::post_thread_end(this);
1522     }
1523 
1524     // We have notified the agents that we are exiting, before we go on,
1525     // we must check for a pending external suspend request and honor it
1526     // in order to not surprise the thread that made the suspend request.
1527     while (true) {
1528       {
1529         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1530         if (!is_external_suspend()) {
1531           set_terminated(_thread_exiting);
1532           ThreadService::current_thread_exiting(this);
1533           break;
1534         }
1535         // Implied else:
1536         // Things get a little tricky here. We have a pending external
1537         // suspend request, but we are holding the SR_lock so we
1538         // can't just self-suspend. So we temporarily drop the lock
1539         // and then self-suspend.
1540       }
1541 
1542       ThreadBlockInVM tbivm(this);
1543       java_suspend_self();
1544 
1545       // We're done with this suspend request, but we have to loop around
1546       // and check again. Eventually we will get SR_lock without a pending
1547       // external suspend request and will be able to mark ourselves as
1548       // exiting.
1549     }
1550     // no more external suspends are allowed at this point
1551   } else {
1552     // before_exit() has already posted JVMTI THREAD_END events
1553   }
1554 
1555   // Notify waiters on thread object. This has to be done after exit() is called
1556   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1557   // group should have the destroyed bit set before waiters are notified).
1558   ensure_join(this);
1559   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1560 
1561   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1562   // held by this thread must be released.  A detach operation must only
1563   // get here if there are no Java frames on the stack.  Therefore, any
1564   // owned monitors at this point MUST be JNI-acquired monitors which are
1565   // pre-inflated and in the monitor cache.
1566   //
1567   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1568   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1569     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1570     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1571     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1572   }
1573 
1574   // These things needs to be done while we are still a Java Thread. Make sure that thread
1575   // is in a consistent state, in case GC happens
1576   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1577 
1578   if (active_handles() != NULL) {
1579     JNIHandleBlock* block = active_handles();
1580     set_active_handles(NULL);
1581     JNIHandleBlock::release_block(block);
1582   }
1583 
1584   if (free_handle_block() != NULL) {
1585     JNIHandleBlock* block = free_handle_block();
1586     set_free_handle_block(NULL);
1587     JNIHandleBlock::release_block(block);
1588   }
1589 
1590   // These have to be removed while this is still a valid thread.
1591   remove_stack_guard_pages();
1592 
1593   if (UseTLAB) {
1594     tlab().make_parsable(true);  // retire TLAB
1595   }
1596 
1597   if (jvmti_thread_state() != NULL) {
1598     JvmtiExport::cleanup_thread(this);
1599   }
1600 
1601 #ifndef SERIALGC
1602   // We must flush G1-related buffers before removing a thread from
1603   // the list of active threads.
1604   if (UseG1GC) {
1605     flush_barrier_queues();
1606   }
1607 #endif
1608 
1609   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1610   Threads::remove(this);
1611 }
1612 
1613 #ifndef SERIALGC
1614 // Flush G1-related queues.
1615 void JavaThread::flush_barrier_queues() {
1616   satb_mark_queue().flush();
1617   dirty_card_queue().flush();
1618 }
1619 #endif
1620 
1621 void JavaThread::cleanup_failed_attach_current_thread() {
1622   if (get_thread_profiler() != NULL) {
1623     get_thread_profiler()->disengage();
1624     ResourceMark rm;
1625     get_thread_profiler()->print(get_thread_name());
1626   }
1627 
1628   if (active_handles() != NULL) {
1629     JNIHandleBlock* block = active_handles();
1630     set_active_handles(NULL);
1631     JNIHandleBlock::release_block(block);
1632   }
1633 
1634   if (free_handle_block() != NULL) {
1635     JNIHandleBlock* block = free_handle_block();
1636     set_free_handle_block(NULL);
1637     JNIHandleBlock::release_block(block);
1638   }
1639 
1640   // These have to be removed while this is still a valid thread.
1641   remove_stack_guard_pages();
1642 
1643   if (UseTLAB) {
1644     tlab().make_parsable(true);  // retire TLAB, if any
1645   }
1646 
1647 #ifndef SERIALGC
1648   if (UseG1GC) {
1649     flush_barrier_queues();
1650   }
1651 #endif
1652 
1653   Threads::remove(this);
1654   delete this;
1655 }
1656 
1657 
1658 
1659 
1660 JavaThread* JavaThread::active() {
1661   Thread* thread = ThreadLocalStorage::thread();
1662   assert(thread != NULL, "just checking");
1663   if (thread->is_Java_thread()) {
1664     return (JavaThread*) thread;
1665   } else {
1666     assert(thread->is_VM_thread(), "this must be a vm thread");
1667     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1668     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1669     assert(ret->is_Java_thread(), "must be a Java thread");
1670     return ret;
1671   }
1672 }
1673 
1674 bool JavaThread::is_lock_owned(address adr) const {
1675   if (Thread::is_lock_owned(adr)) return true;
1676 
1677   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1678     if (chunk->contains(adr)) return true;
1679   }
1680 
1681   return false;
1682 }
1683 
1684 
1685 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1686   chunk->set_next(monitor_chunks());
1687   set_monitor_chunks(chunk);
1688 }
1689 
1690 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1691   guarantee(monitor_chunks() != NULL, "must be non empty");
1692   if (monitor_chunks() == chunk) {
1693     set_monitor_chunks(chunk->next());
1694   } else {
1695     MonitorChunk* prev = monitor_chunks();
1696     while (prev->next() != chunk) prev = prev->next();
1697     prev->set_next(chunk->next());
1698   }
1699 }
1700 
1701 // JVM support.
1702 
1703 // Note: this function shouldn't block if it's called in
1704 // _thread_in_native_trans state (such as from
1705 // check_special_condition_for_native_trans()).
1706 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1707 
1708   if (has_last_Java_frame() && has_async_condition()) {
1709     // If we are at a polling page safepoint (not a poll return)
1710     // then we must defer async exception because live registers
1711     // will be clobbered by the exception path. Poll return is
1712     // ok because the call we a returning from already collides
1713     // with exception handling registers and so there is no issue.
1714     // (The exception handling path kills call result registers but
1715     //  this is ok since the exception kills the result anyway).
1716 
1717     if (is_at_poll_safepoint()) {
1718       // if the code we are returning to has deoptimized we must defer
1719       // the exception otherwise live registers get clobbered on the
1720       // exception path before deoptimization is able to retrieve them.
1721       //
1722       RegisterMap map(this, false);
1723       frame caller_fr = last_frame().sender(&map);
1724       assert(caller_fr.is_compiled_frame(), "what?");
1725       if (caller_fr.is_deoptimized_frame()) {
1726         if (TraceExceptions) {
1727           ResourceMark rm;
1728           tty->print_cr("deferred async exception at compiled safepoint");
1729         }
1730         return;
1731       }
1732     }
1733   }
1734 
1735   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1736   if (condition == _no_async_condition) {
1737     // Conditions have changed since has_special_runtime_exit_condition()
1738     // was called:
1739     // - if we were here only because of an external suspend request,
1740     //   then that was taken care of above (or cancelled) so we are done
1741     // - if we were here because of another async request, then it has
1742     //   been cleared between the has_special_runtime_exit_condition()
1743     //   and now so again we are done
1744     return;
1745   }
1746 
1747   // Check for pending async. exception
1748   if (_pending_async_exception != NULL) {
1749     // Only overwrite an already pending exception, if it is not a threadDeath.
1750     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1751 
1752       // We cannot call Exceptions::_throw(...) here because we cannot block
1753       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1754 
1755       if (TraceExceptions) {
1756         ResourceMark rm;
1757         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1758         if (has_last_Java_frame() ) {
1759           frame f = last_frame();
1760           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1761         }
1762         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1763       }
1764       _pending_async_exception = NULL;
1765       clear_has_async_exception();
1766     }
1767   }
1768 
1769   if (check_unsafe_error &&
1770       condition == _async_unsafe_access_error && !has_pending_exception()) {
1771     condition = _no_async_condition;  // done
1772     switch (thread_state()) {
1773     case _thread_in_vm:
1774       {
1775         JavaThread* THREAD = this;
1776         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1777       }
1778     case _thread_in_native:
1779       {
1780         ThreadInVMfromNative tiv(this);
1781         JavaThread* THREAD = this;
1782         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1783       }
1784     case _thread_in_Java:
1785       {
1786         ThreadInVMfromJava tiv(this);
1787         JavaThread* THREAD = this;
1788         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1789       }
1790     default:
1791       ShouldNotReachHere();
1792     }
1793   }
1794 
1795   assert(condition == _no_async_condition || has_pending_exception() ||
1796          (!check_unsafe_error && condition == _async_unsafe_access_error),
1797          "must have handled the async condition, if no exception");
1798 }
1799 
1800 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1801   //
1802   // Check for pending external suspend. Internal suspend requests do
1803   // not use handle_special_runtime_exit_condition().
1804   // If JNIEnv proxies are allowed, don't self-suspend if the target
1805   // thread is not the current thread. In older versions of jdbx, jdbx
1806   // threads could call into the VM with another thread's JNIEnv so we
1807   // can be here operating on behalf of a suspended thread (4432884).
1808   bool do_self_suspend = is_external_suspend_with_lock();
1809   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1810     //
1811     // Because thread is external suspended the safepoint code will count
1812     // thread as at a safepoint. This can be odd because we can be here
1813     // as _thread_in_Java which would normally transition to _thread_blocked
1814     // at a safepoint. We would like to mark the thread as _thread_blocked
1815     // before calling java_suspend_self like all other callers of it but
1816     // we must then observe proper safepoint protocol. (We can't leave
1817     // _thread_blocked with a safepoint in progress). However we can be
1818     // here as _thread_in_native_trans so we can't use a normal transition
1819     // constructor/destructor pair because they assert on that type of
1820     // transition. We could do something like:
1821     //
1822     // JavaThreadState state = thread_state();
1823     // set_thread_state(_thread_in_vm);
1824     // {
1825     //   ThreadBlockInVM tbivm(this);
1826     //   java_suspend_self()
1827     // }
1828     // set_thread_state(_thread_in_vm_trans);
1829     // if (safepoint) block;
1830     // set_thread_state(state);
1831     //
1832     // but that is pretty messy. Instead we just go with the way the
1833     // code has worked before and note that this is the only path to
1834     // java_suspend_self that doesn't put the thread in _thread_blocked
1835     // mode.
1836 
1837     frame_anchor()->make_walkable(this);
1838     java_suspend_self();
1839 
1840     // We might be here for reasons in addition to the self-suspend request
1841     // so check for other async requests.
1842   }
1843 
1844   if (check_asyncs) {
1845     check_and_handle_async_exceptions();
1846   }
1847 }
1848 
1849 void JavaThread::send_thread_stop(oop java_throwable)  {
1850   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1851   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1852   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1853 
1854   // Do not throw asynchronous exceptions against the compiler thread
1855   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1856   if (is_Compiler_thread()) return;
1857 
1858   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1859   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1860     java_lang_Thread::set_stillborn(threadObj());
1861   }
1862 
1863   {
1864     // Actually throw the Throwable against the target Thread - however
1865     // only if there is no thread death exception installed already.
1866     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1867       // If the topmost frame is a runtime stub, then we are calling into
1868       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1869       // must deoptimize the caller before continuing, as the compiled  exception handler table
1870       // may not be valid
1871       if (has_last_Java_frame()) {
1872         frame f = last_frame();
1873         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1874           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1875           RegisterMap reg_map(this, UseBiasedLocking);
1876           frame compiled_frame = f.sender(&reg_map);
1877           if (compiled_frame.can_be_deoptimized()) {
1878             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1879           }
1880         }
1881       }
1882 
1883       // Set async. pending exception in thread.
1884       set_pending_async_exception(java_throwable);
1885 
1886       if (TraceExceptions) {
1887        ResourceMark rm;
1888        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1889       }
1890       // for AbortVMOnException flag
1891       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1892     }
1893   }
1894 
1895 
1896   // Interrupt thread so it will wake up from a potential wait()
1897   Thread::interrupt(this);
1898 }
1899 
1900 // External suspension mechanism.
1901 //
1902 // Tell the VM to suspend a thread when ever it knows that it does not hold on
1903 // to any VM_locks and it is at a transition
1904 // Self-suspension will happen on the transition out of the vm.
1905 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
1906 //
1907 // Guarantees on return:
1908 //   + Target thread will not execute any new bytecode (that's why we need to
1909 //     force a safepoint)
1910 //   + Target thread will not enter any new monitors
1911 //
1912 void JavaThread::java_suspend() {
1913   { MutexLocker mu(Threads_lock);
1914     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1915        return;
1916     }
1917   }
1918 
1919   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1920     if (!is_external_suspend()) {
1921       // a racing resume has cancelled us; bail out now
1922       return;
1923     }
1924 
1925     // suspend is done
1926     uint32_t debug_bits = 0;
1927     // Warning: is_ext_suspend_completed() may temporarily drop the
1928     // SR_lock to allow the thread to reach a stable thread state if
1929     // it is currently in a transient thread state.
1930     if (is_ext_suspend_completed(false /* !called_by_wait */,
1931                                  SuspendRetryDelay, &debug_bits) ) {
1932       return;
1933     }
1934   }
1935 
1936   VM_ForceSafepoint vm_suspend;
1937   VMThread::execute(&vm_suspend);
1938 }
1939 
1940 // Part II of external suspension.
1941 // A JavaThread self suspends when it detects a pending external suspend
1942 // request. This is usually on transitions. It is also done in places
1943 // where continuing to the next transition would surprise the caller,
1944 // e.g., monitor entry.
1945 //
1946 // Returns the number of times that the thread self-suspended.
1947 //
1948 // Note: DO NOT call java_suspend_self() when you just want to block current
1949 //       thread. java_suspend_self() is the second stage of cooperative
1950 //       suspension for external suspend requests and should only be used
1951 //       to complete an external suspend request.
1952 //
1953 int JavaThread::java_suspend_self() {
1954   int ret = 0;
1955 
1956   // we are in the process of exiting so don't suspend
1957   if (is_exiting()) {
1958      clear_external_suspend();
1959      return ret;
1960   }
1961 
1962   assert(_anchor.walkable() ||
1963     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1964     "must have walkable stack");
1965 
1966   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1967 
1968   assert(!this->is_ext_suspended(),
1969     "a thread trying to self-suspend should not already be suspended");
1970 
1971   if (this->is_suspend_equivalent()) {
1972     // If we are self-suspending as a result of the lifting of a
1973     // suspend equivalent condition, then the suspend_equivalent
1974     // flag is not cleared until we set the ext_suspended flag so
1975     // that wait_for_ext_suspend_completion() returns consistent
1976     // results.
1977     this->clear_suspend_equivalent();
1978   }
1979 
1980   // A racing resume may have cancelled us before we grabbed SR_lock
1981   // above. Or another external suspend request could be waiting for us
1982   // by the time we return from SR_lock()->wait(). The thread
1983   // that requested the suspension may already be trying to walk our
1984   // stack and if we return now, we can change the stack out from under
1985   // it. This would be a "bad thing (TM)" and cause the stack walker
1986   // to crash. We stay self-suspended until there are no more pending
1987   // external suspend requests.
1988   while (is_external_suspend()) {
1989     ret++;
1990     this->set_ext_suspended();
1991 
1992     // _ext_suspended flag is cleared by java_resume()
1993     while (is_ext_suspended()) {
1994       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
1995     }
1996   }
1997 
1998   return ret;
1999 }
2000 
2001 #ifdef ASSERT
2002 // verify the JavaThread has not yet been published in the Threads::list, and
2003 // hence doesn't need protection from concurrent access at this stage
2004 void JavaThread::verify_not_published() {
2005   if (!Threads_lock->owned_by_self()) {
2006    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2007    assert( !Threads::includes(this),
2008            "java thread shouldn't have been published yet!");
2009   }
2010   else {
2011    assert( !Threads::includes(this),
2012            "java thread shouldn't have been published yet!");
2013   }
2014 }
2015 #endif
2016 
2017 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2018 // progress or when _suspend_flags is non-zero.
2019 // Current thread needs to self-suspend if there is a suspend request and/or
2020 // block if a safepoint is in progress.
2021 // Async exception ISN'T checked.
2022 // Note only the ThreadInVMfromNative transition can call this function
2023 // directly and when thread state is _thread_in_native_trans
2024 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2025   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2026 
2027   JavaThread *curJT = JavaThread::current();
2028   bool do_self_suspend = thread->is_external_suspend();
2029 
2030   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2031 
2032   // If JNIEnv proxies are allowed, don't self-suspend if the target
2033   // thread is not the current thread. In older versions of jdbx, jdbx
2034   // threads could call into the VM with another thread's JNIEnv so we
2035   // can be here operating on behalf of a suspended thread (4432884).
2036   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2037     JavaThreadState state = thread->thread_state();
2038 
2039     // We mark this thread_blocked state as a suspend-equivalent so
2040     // that a caller to is_ext_suspend_completed() won't be confused.
2041     // The suspend-equivalent state is cleared by java_suspend_self().
2042     thread->set_suspend_equivalent();
2043 
2044     // If the safepoint code sees the _thread_in_native_trans state, it will
2045     // wait until the thread changes to other thread state. There is no
2046     // guarantee on how soon we can obtain the SR_lock and complete the
2047     // self-suspend request. It would be a bad idea to let safepoint wait for
2048     // too long. Temporarily change the state to _thread_blocked to
2049     // let the VM thread know that this thread is ready for GC. The problem
2050     // of changing thread state is that safepoint could happen just after
2051     // java_suspend_self() returns after being resumed, and VM thread will
2052     // see the _thread_blocked state. We must check for safepoint
2053     // after restoring the state and make sure we won't leave while a safepoint
2054     // is in progress.
2055     thread->set_thread_state(_thread_blocked);
2056     thread->java_suspend_self();
2057     thread->set_thread_state(state);
2058     // Make sure new state is seen by VM thread
2059     if (os::is_MP()) {
2060       if (UseMembar) {
2061         // Force a fence between the write above and read below
2062         OrderAccess::fence();
2063       } else {
2064         // Must use this rather than serialization page in particular on Windows
2065         InterfaceSupport::serialize_memory(thread);
2066       }
2067     }
2068   }
2069 
2070   if (SafepointSynchronize::do_call_back()) {
2071     // If we are safepointing, then block the caller which may not be
2072     // the same as the target thread (see above).
2073     SafepointSynchronize::block(curJT);
2074   }
2075 
2076   if (thread->is_deopt_suspend()) {
2077     thread->clear_deopt_suspend();
2078     RegisterMap map(thread, false);
2079     frame f = thread->last_frame();
2080     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2081       f = f.sender(&map);
2082     }
2083     if (f.id() == thread->must_deopt_id()) {
2084       thread->clear_must_deopt_id();
2085       // Since we know we're safe to deopt the current state is a safe state
2086       f.deoptimize(thread, true);
2087     } else {
2088       fatal("missed deoptimization!");
2089     }
2090   }
2091 }
2092 
2093 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2094 // progress or when _suspend_flags is non-zero.
2095 // Current thread needs to self-suspend if there is a suspend request and/or
2096 // block if a safepoint is in progress.
2097 // Also check for pending async exception (not including unsafe access error).
2098 // Note only the native==>VM/Java barriers can call this function and when
2099 // thread state is _thread_in_native_trans.
2100 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2101   check_safepoint_and_suspend_for_native_trans(thread);
2102 
2103   if (thread->has_async_exception()) {
2104     // We are in _thread_in_native_trans state, don't handle unsafe
2105     // access error since that may block.
2106     thread->check_and_handle_async_exceptions(false);
2107   }
2108 }
2109 
2110 // We need to guarantee the Threads_lock here, since resumes are not
2111 // allowed during safepoint synchronization
2112 // Can only resume from an external suspension
2113 void JavaThread::java_resume() {
2114   assert_locked_or_safepoint(Threads_lock);
2115 
2116   // Sanity check: thread is gone, has started exiting or the thread
2117   // was not externally suspended.
2118   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2119     return;
2120   }
2121 
2122   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2123 
2124   clear_external_suspend();
2125 
2126   if (is_ext_suspended()) {
2127     clear_ext_suspended();
2128     SR_lock()->notify_all();
2129   }
2130 }
2131 
2132 void JavaThread::create_stack_guard_pages() {
2133   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2134   address low_addr = stack_base() - stack_size();
2135   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2136 
2137   int allocate = os::allocate_stack_guard_pages();
2138   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2139 
2140   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2141     warning("Attempt to allocate stack guard pages failed.");
2142     return;
2143   }
2144 
2145   if (os::guard_memory((char *) low_addr, len)) {
2146     _stack_guard_state = stack_guard_enabled;
2147   } else {
2148     warning("Attempt to protect stack guard pages failed.");
2149     if (os::uncommit_memory((char *) low_addr, len)) {
2150       warning("Attempt to deallocate stack guard pages failed.");
2151     }
2152   }
2153 }
2154 
2155 void JavaThread::remove_stack_guard_pages() {
2156   if (_stack_guard_state == stack_guard_unused) return;
2157   address low_addr = stack_base() - stack_size();
2158   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2159 
2160   if (os::allocate_stack_guard_pages()) {
2161     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2162       _stack_guard_state = stack_guard_unused;
2163     } else {
2164       warning("Attempt to deallocate stack guard pages failed.");
2165     }
2166   } else {
2167     if (_stack_guard_state == stack_guard_unused) return;
2168     if (os::unguard_memory((char *) low_addr, len)) {
2169       _stack_guard_state = stack_guard_unused;
2170     } else {
2171         warning("Attempt to unprotect stack guard pages failed.");
2172     }
2173   }
2174 }
2175 
2176 void JavaThread::enable_stack_yellow_zone() {
2177   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2178   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2179 
2180   // The base notation is from the stacks point of view, growing downward.
2181   // We need to adjust it to work correctly with guard_memory()
2182   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2183 
2184   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2185   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2186 
2187   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2188     _stack_guard_state = stack_guard_enabled;
2189   } else {
2190     warning("Attempt to guard stack yellow zone failed.");
2191   }
2192   enable_register_stack_guard();
2193 }
2194 
2195 void JavaThread::disable_stack_yellow_zone() {
2196   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2197   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2198 
2199   // Simply return if called for a thread that does not use guard pages.
2200   if (_stack_guard_state == stack_guard_unused) return;
2201 
2202   // The base notation is from the stacks point of view, growing downward.
2203   // We need to adjust it to work correctly with guard_memory()
2204   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2205 
2206   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2207     _stack_guard_state = stack_guard_yellow_disabled;
2208   } else {
2209     warning("Attempt to unguard stack yellow zone failed.");
2210   }
2211   disable_register_stack_guard();
2212 }
2213 
2214 void JavaThread::enable_stack_red_zone() {
2215   // The base notation is from the stacks point of view, growing downward.
2216   // We need to adjust it to work correctly with guard_memory()
2217   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2218   address base = stack_red_zone_base() - stack_red_zone_size();
2219 
2220   guarantee(base < stack_base(),"Error calculating stack red zone");
2221   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2222 
2223   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2224     warning("Attempt to guard stack red zone failed.");
2225   }
2226 }
2227 
2228 void JavaThread::disable_stack_red_zone() {
2229   // The base notation is from the stacks point of view, growing downward.
2230   // We need to adjust it to work correctly with guard_memory()
2231   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2232   address base = stack_red_zone_base() - stack_red_zone_size();
2233   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2234     warning("Attempt to unguard stack red zone failed.");
2235   }
2236 }
2237 
2238 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2239   // ignore is there is no stack
2240   if (!has_last_Java_frame()) return;
2241   // traverse the stack frames. Starts from top frame.
2242   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2243     frame* fr = fst.current();
2244     f(fr, fst.register_map());
2245   }
2246 }
2247 
2248 
2249 #ifndef PRODUCT
2250 // Deoptimization
2251 // Function for testing deoptimization
2252 void JavaThread::deoptimize() {
2253   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2254   StackFrameStream fst(this, UseBiasedLocking);
2255   bool deopt = false;           // Dump stack only if a deopt actually happens.
2256   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2257   // Iterate over all frames in the thread and deoptimize
2258   for(; !fst.is_done(); fst.next()) {
2259     if(fst.current()->can_be_deoptimized()) {
2260 
2261       if (only_at) {
2262         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2263         // consists of comma or carriage return separated numbers so
2264         // search for the current bci in that string.
2265         address pc = fst.current()->pc();
2266         nmethod* nm =  (nmethod*) fst.current()->cb();
2267         ScopeDesc* sd = nm->scope_desc_at( pc);
2268         char buffer[8];
2269         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2270         size_t len = strlen(buffer);
2271         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2272         while (found != NULL) {
2273           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2274               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2275             // Check that the bci found is bracketed by terminators.
2276             break;
2277           }
2278           found = strstr(found + 1, buffer);
2279         }
2280         if (!found) {
2281           continue;
2282         }
2283       }
2284 
2285       if (DebugDeoptimization && !deopt) {
2286         deopt = true; // One-time only print before deopt
2287         tty->print_cr("[BEFORE Deoptimization]");
2288         trace_frames();
2289         trace_stack();
2290       }
2291       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2292     }
2293   }
2294 
2295   if (DebugDeoptimization && deopt) {
2296     tty->print_cr("[AFTER Deoptimization]");
2297     trace_frames();
2298   }
2299 }
2300 
2301 
2302 // Make zombies
2303 void JavaThread::make_zombies() {
2304   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2305     if (fst.current()->can_be_deoptimized()) {
2306       // it is a Java nmethod
2307       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2308       nm->make_not_entrant();
2309     }
2310   }
2311 }
2312 #endif // PRODUCT
2313 
2314 
2315 void JavaThread::deoptimized_wrt_marked_nmethods() {
2316   if (!has_last_Java_frame()) return;
2317   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2318   StackFrameStream fst(this, UseBiasedLocking);
2319   for(; !fst.is_done(); fst.next()) {
2320     if (fst.current()->should_be_deoptimized()) {
2321       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2322     }
2323   }
2324 }
2325 
2326 
2327 // GC support
2328 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2329 
2330 void JavaThread::gc_epilogue() {
2331   frames_do(frame_gc_epilogue);
2332 }
2333 
2334 
2335 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2336 
2337 void JavaThread::gc_prologue() {
2338   frames_do(frame_gc_prologue);
2339 }
2340 
2341 // If the caller is a NamedThread, then remember, in the current scope,
2342 // the given JavaThread in its _processed_thread field.
2343 class RememberProcessedThread: public StackObj {
2344   NamedThread* _cur_thr;
2345 public:
2346   RememberProcessedThread(JavaThread* jthr) {
2347     Thread* thread = Thread::current();
2348     if (thread->is_Named_thread()) {
2349       _cur_thr = (NamedThread *)thread;
2350       _cur_thr->set_processed_thread(jthr);
2351     } else {
2352       _cur_thr = NULL;
2353     }
2354   }
2355 
2356   ~RememberProcessedThread() {
2357     if (_cur_thr) {
2358       _cur_thr->set_processed_thread(NULL);
2359     }
2360   }
2361 };
2362 
2363 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2364   // Verify that the deferred card marks have been flushed.
2365   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2366 
2367   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2368   // since there may be more than one thread using each ThreadProfiler.
2369 
2370   // Traverse the GCHandles
2371   Thread::oops_do(f, cf);
2372 
2373   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2374           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2375 
2376   if (has_last_Java_frame()) {
2377     // Record JavaThread to GC thread
2378     RememberProcessedThread rpt(this);
2379 
2380     // Traverse the privileged stack
2381     if (_privileged_stack_top != NULL) {
2382       _privileged_stack_top->oops_do(f);
2383     }
2384 
2385     // traverse the registered growable array
2386     if (_array_for_gc != NULL) {
2387       for (int index = 0; index < _array_for_gc->length(); index++) {
2388         f->do_oop(_array_for_gc->adr_at(index));
2389       }
2390     }
2391 
2392     // Traverse the monitor chunks
2393     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2394       chunk->oops_do(f);
2395     }
2396 
2397     // Traverse the execution stack
2398     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2399       fst.current()->oops_do(f, cf, fst.register_map());
2400     }
2401   }
2402 
2403   // callee_target is never live across a gc point so NULL it here should
2404   // it still contain a methdOop.
2405 
2406   set_callee_target(NULL);
2407 
2408   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2409   // If we have deferred set_locals there might be oops waiting to be
2410   // written
2411   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2412   if (list != NULL) {
2413     for (int i = 0; i < list->length(); i++) {
2414       list->at(i)->oops_do(f);
2415     }
2416   }
2417 
2418   // Traverse instance variables at the end since the GC may be moving things
2419   // around using this function
2420   f->do_oop((oop*) &_threadObj);
2421   f->do_oop((oop*) &_vm_result);
2422   f->do_oop((oop*) &_vm_result_2);
2423   f->do_oop((oop*) &_exception_oop);
2424   f->do_oop((oop*) &_pending_async_exception);
2425 
2426   if (jvmti_thread_state() != NULL) {
2427     jvmti_thread_state()->oops_do(f);
2428   }
2429 }
2430 
2431 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2432   Thread::nmethods_do(cf);  // (super method is a no-op)
2433 
2434   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2435           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2436 
2437   if (has_last_Java_frame()) {
2438     // Traverse the execution stack
2439     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2440       fst.current()->nmethods_do(cf);
2441     }
2442   }
2443 }
2444 
2445 // Printing
2446 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2447   switch (_thread_state) {
2448   case _thread_uninitialized:     return "_thread_uninitialized";
2449   case _thread_new:               return "_thread_new";
2450   case _thread_new_trans:         return "_thread_new_trans";
2451   case _thread_in_native:         return "_thread_in_native";
2452   case _thread_in_native_trans:   return "_thread_in_native_trans";
2453   case _thread_in_vm:             return "_thread_in_vm";
2454   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2455   case _thread_in_Java:           return "_thread_in_Java";
2456   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2457   case _thread_blocked:           return "_thread_blocked";
2458   case _thread_blocked_trans:     return "_thread_blocked_trans";
2459   default:                        return "unknown thread state";
2460   }
2461 }
2462 
2463 #ifndef PRODUCT
2464 void JavaThread::print_thread_state_on(outputStream *st) const {
2465   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2466 };
2467 void JavaThread::print_thread_state() const {
2468   print_thread_state_on(tty);
2469 };
2470 #endif // PRODUCT
2471 
2472 // Called by Threads::print() for VM_PrintThreads operation
2473 void JavaThread::print_on(outputStream *st) const {
2474   st->print("\"%s\" ", get_thread_name());
2475   oop thread_oop = threadObj();
2476   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2477   Thread::print_on(st);
2478   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2479   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2480   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2481     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2482   }
2483 #ifndef PRODUCT
2484   print_thread_state_on(st);
2485   _safepoint_state->print_on(st);
2486 #endif // PRODUCT
2487 }
2488 
2489 // Called by fatal error handler. The difference between this and
2490 // JavaThread::print() is that we can't grab lock or allocate memory.
2491 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2492   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2493   oop thread_obj = threadObj();
2494   if (thread_obj != NULL) {
2495      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2496   }
2497   st->print(" [");
2498   st->print("%s", _get_thread_state_name(_thread_state));
2499   if (osthread()) {
2500     st->print(", id=%d", osthread()->thread_id());
2501   }
2502   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2503             _stack_base - _stack_size, _stack_base);
2504   st->print("]");
2505   return;
2506 }
2507 
2508 // Verification
2509 
2510 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2511 
2512 void JavaThread::verify() {
2513   // Verify oops in the thread.
2514   oops_do(&VerifyOopClosure::verify_oop, NULL);
2515 
2516   // Verify the stack frames.
2517   frames_do(frame_verify);
2518 }
2519 
2520 // CR 6300358 (sub-CR 2137150)
2521 // Most callers of this method assume that it can't return NULL but a
2522 // thread may not have a name whilst it is in the process of attaching to
2523 // the VM - see CR 6412693, and there are places where a JavaThread can be
2524 // seen prior to having it's threadObj set (eg JNI attaching threads and
2525 // if vm exit occurs during initialization). These cases can all be accounted
2526 // for such that this method never returns NULL.
2527 const char* JavaThread::get_thread_name() const {
2528 #ifdef ASSERT
2529   // early safepoints can hit while current thread does not yet have TLS
2530   if (!SafepointSynchronize::is_at_safepoint()) {
2531     Thread *cur = Thread::current();
2532     if (!(cur->is_Java_thread() && cur == this)) {
2533       // Current JavaThreads are allowed to get their own name without
2534       // the Threads_lock.
2535       assert_locked_or_safepoint(Threads_lock);
2536     }
2537   }
2538 #endif // ASSERT
2539     return get_thread_name_string();
2540 }
2541 
2542 // Returns a non-NULL representation of this thread's name, or a suitable
2543 // descriptive string if there is no set name
2544 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2545   const char* name_str;
2546   oop thread_obj = threadObj();
2547   if (thread_obj != NULL) {
2548     typeArrayOop name = java_lang_Thread::name(thread_obj);
2549     if (name != NULL) {
2550       if (buf == NULL) {
2551         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2552       }
2553       else {
2554         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2555       }
2556     }
2557     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2558       name_str = "<no-name - thread is attaching>";
2559     }
2560     else {
2561       name_str = Thread::name();
2562     }
2563   }
2564   else {
2565     name_str = Thread::name();
2566   }
2567   assert(name_str != NULL, "unexpected NULL thread name");
2568   return name_str;
2569 }
2570 
2571 
2572 const char* JavaThread::get_threadgroup_name() const {
2573   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2574   oop thread_obj = threadObj();
2575   if (thread_obj != NULL) {
2576     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2577     if (thread_group != NULL) {
2578       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2579       // ThreadGroup.name can be null
2580       if (name != NULL) {
2581         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2582         return str;
2583       }
2584     }
2585   }
2586   return NULL;
2587 }
2588 
2589 const char* JavaThread::get_parent_name() const {
2590   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2591   oop thread_obj = threadObj();
2592   if (thread_obj != NULL) {
2593     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2594     if (thread_group != NULL) {
2595       oop parent = java_lang_ThreadGroup::parent(thread_group);
2596       if (parent != NULL) {
2597         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2598         // ThreadGroup.name can be null
2599         if (name != NULL) {
2600           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2601           return str;
2602         }
2603       }
2604     }
2605   }
2606   return NULL;
2607 }
2608 
2609 ThreadPriority JavaThread::java_priority() const {
2610   oop thr_oop = threadObj();
2611   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2612   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2613   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2614   return priority;
2615 }
2616 
2617 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2618 
2619   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2620   // Link Java Thread object <-> C++ Thread
2621 
2622   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2623   // and put it into a new Handle.  The Handle "thread_oop" can then
2624   // be used to pass the C++ thread object to other methods.
2625 
2626   // Set the Java level thread object (jthread) field of the
2627   // new thread (a JavaThread *) to C++ thread object using the
2628   // "thread_oop" handle.
2629 
2630   // Set the thread field (a JavaThread *) of the
2631   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2632 
2633   Handle thread_oop(Thread::current(),
2634                     JNIHandles::resolve_non_null(jni_thread));
2635   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2636     "must be initialized");
2637   set_threadObj(thread_oop());
2638   java_lang_Thread::set_thread(thread_oop(), this);
2639 
2640   if (prio == NoPriority) {
2641     prio = java_lang_Thread::priority(thread_oop());
2642     assert(prio != NoPriority, "A valid priority should be present");
2643   }
2644 
2645   // Push the Java priority down to the native thread; needs Threads_lock
2646   Thread::set_priority(this, prio);
2647 
2648   // Add the new thread to the Threads list and set it in motion.
2649   // We must have threads lock in order to call Threads::add.
2650   // It is crucial that we do not block before the thread is
2651   // added to the Threads list for if a GC happens, then the java_thread oop
2652   // will not be visited by GC.
2653   Threads::add(this);
2654 }
2655 
2656 oop JavaThread::current_park_blocker() {
2657   // Support for JSR-166 locks
2658   oop thread_oop = threadObj();
2659   if (thread_oop != NULL &&
2660       JDK_Version::current().supports_thread_park_blocker()) {
2661     return java_lang_Thread::park_blocker(thread_oop);
2662   }
2663   return NULL;
2664 }
2665 
2666 
2667 void JavaThread::print_stack_on(outputStream* st) {
2668   if (!has_last_Java_frame()) return;
2669   ResourceMark rm;
2670   HandleMark   hm;
2671 
2672   RegisterMap reg_map(this);
2673   vframe* start_vf = last_java_vframe(&reg_map);
2674   int count = 0;
2675   for (vframe* f = start_vf; f; f = f->sender() ) {
2676     if (f->is_java_frame()) {
2677       javaVFrame* jvf = javaVFrame::cast(f);
2678       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2679 
2680       // Print out lock information
2681       if (JavaMonitorsInStackTrace) {
2682         jvf->print_lock_info_on(st, count);
2683       }
2684     } else {
2685       // Ignore non-Java frames
2686     }
2687 
2688     // Bail-out case for too deep stacks
2689     count++;
2690     if (MaxJavaStackTraceDepth == count) return;
2691   }
2692 }
2693 
2694 
2695 // JVMTI PopFrame support
2696 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2697   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2698   if (in_bytes(size_in_bytes) != 0) {
2699     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2700     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2701     Copy::conjoint_bytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2702   }
2703 }
2704 
2705 void* JavaThread::popframe_preserved_args() {
2706   return _popframe_preserved_args;
2707 }
2708 
2709 ByteSize JavaThread::popframe_preserved_args_size() {
2710   return in_ByteSize(_popframe_preserved_args_size);
2711 }
2712 
2713 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2714   int sz = in_bytes(popframe_preserved_args_size());
2715   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2716   return in_WordSize(sz / wordSize);
2717 }
2718 
2719 void JavaThread::popframe_free_preserved_args() {
2720   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2721   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2722   _popframe_preserved_args = NULL;
2723   _popframe_preserved_args_size = 0;
2724 }
2725 
2726 #ifndef PRODUCT
2727 
2728 void JavaThread::trace_frames() {
2729   tty->print_cr("[Describe stack]");
2730   int frame_no = 1;
2731   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2732     tty->print("  %d. ", frame_no++);
2733     fst.current()->print_value_on(tty,this);
2734     tty->cr();
2735   }
2736 }
2737 
2738 
2739 void JavaThread::trace_stack_from(vframe* start_vf) {
2740   ResourceMark rm;
2741   int vframe_no = 1;
2742   for (vframe* f = start_vf; f; f = f->sender() ) {
2743     if (f->is_java_frame()) {
2744       javaVFrame::cast(f)->print_activation(vframe_no++);
2745     } else {
2746       f->print();
2747     }
2748     if (vframe_no > StackPrintLimit) {
2749       tty->print_cr("...<more frames>...");
2750       return;
2751     }
2752   }
2753 }
2754 
2755 
2756 void JavaThread::trace_stack() {
2757   if (!has_last_Java_frame()) return;
2758   ResourceMark rm;
2759   HandleMark   hm;
2760   RegisterMap reg_map(this);
2761   trace_stack_from(last_java_vframe(&reg_map));
2762 }
2763 
2764 
2765 #endif // PRODUCT
2766 
2767 
2768 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2769   assert(reg_map != NULL, "a map must be given");
2770   frame f = last_frame();
2771   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2772     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2773   }
2774   return NULL;
2775 }
2776 
2777 
2778 klassOop JavaThread::security_get_caller_class(int depth) {
2779   vframeStream vfst(this);
2780   vfst.security_get_caller_frame(depth);
2781   if (!vfst.at_end()) {
2782     return vfst.method()->method_holder();
2783   }
2784   return NULL;
2785 }
2786 
2787 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2788   assert(thread->is_Compiler_thread(), "must be compiler thread");
2789   CompileBroker::compiler_thread_loop();
2790 }
2791 
2792 // Create a CompilerThread
2793 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2794 : JavaThread(&compiler_thread_entry) {
2795   _env   = NULL;
2796   _log   = NULL;
2797   _task  = NULL;
2798   _queue = queue;
2799   _counters = counters;
2800   _buffer_blob = NULL;
2801 
2802 #ifndef PRODUCT
2803   _ideal_graph_printer = NULL;
2804 #endif
2805 }
2806 
2807 
2808 // ======= Threads ========
2809 
2810 // The Threads class links together all active threads, and provides
2811 // operations over all threads.  It is protected by its own Mutex
2812 // lock, which is also used in other contexts to protect thread
2813 // operations from having the thread being operated on from exiting
2814 // and going away unexpectedly (e.g., safepoint synchronization)
2815 
2816 JavaThread* Threads::_thread_list = NULL;
2817 int         Threads::_number_of_threads = 0;
2818 int         Threads::_number_of_non_daemon_threads = 0;
2819 int         Threads::_return_code = 0;
2820 size_t      JavaThread::_stack_size_at_create = 0;
2821 
2822 // All JavaThreads
2823 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2824 
2825 void os_stream();
2826 
2827 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2828 void Threads::threads_do(ThreadClosure* tc) {
2829   assert_locked_or_safepoint(Threads_lock);
2830   // ALL_JAVA_THREADS iterates through all JavaThreads
2831   ALL_JAVA_THREADS(p) {
2832     tc->do_thread(p);
2833   }
2834   // Someday we could have a table or list of all non-JavaThreads.
2835   // For now, just manually iterate through them.
2836   tc->do_thread(VMThread::vm_thread());
2837   Universe::heap()->gc_threads_do(tc);
2838   WatcherThread *wt = WatcherThread::watcher_thread();
2839   // Strictly speaking, the following NULL check isn't sufficient to make sure
2840   // the data for WatcherThread is still valid upon being examined. However,
2841   // considering that WatchThread terminates when the VM is on the way to
2842   // exit at safepoint, the chance of the above is extremely small. The right
2843   // way to prevent termination of WatcherThread would be to acquire
2844   // Terminator_lock, but we can't do that without violating the lock rank
2845   // checking in some cases.
2846   if (wt != NULL)
2847     tc->do_thread(wt);
2848 
2849   // If CompilerThreads ever become non-JavaThreads, add them here
2850 }
2851 
2852 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2853 
2854   extern void JDK_Version_init();
2855 
2856   // Check version
2857   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2858 
2859   // Initialize the output stream module
2860   ostream_init();
2861 
2862   // Process java launcher properties.
2863   Arguments::process_sun_java_launcher_properties(args);
2864 
2865   // Initialize the os module before using TLS
2866   os::init();
2867 
2868   // Initialize system properties.
2869   Arguments::init_system_properties();
2870 
2871   // So that JDK version can be used as a discrimintor when parsing arguments
2872   JDK_Version_init();
2873 
2874   // Parse arguments
2875   jint parse_result = Arguments::parse(args);
2876   if (parse_result != JNI_OK) return parse_result;
2877 
2878   if (PauseAtStartup) {
2879     os::pause();
2880   }
2881 
2882   HS_DTRACE_PROBE(hotspot, vm__init__begin);
2883 
2884   // Record VM creation timing statistics
2885   TraceVmCreationTime create_vm_timer;
2886   create_vm_timer.start();
2887 
2888   // Timing (must come after argument parsing)
2889   TraceTime timer("Create VM", TraceStartupTime);
2890 
2891   // Initialize the os module after parsing the args
2892   jint os_init_2_result = os::init_2();
2893   if (os_init_2_result != JNI_OK) return os_init_2_result;
2894 
2895   // Initialize output stream logging
2896   ostream_init_log();
2897 
2898   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2899   // Must be before create_vm_init_agents()
2900   if (Arguments::init_libraries_at_startup()) {
2901     convert_vm_init_libraries_to_agents();
2902   }
2903 
2904   // Launch -agentlib/-agentpath and converted -Xrun agents
2905   if (Arguments::init_agents_at_startup()) {
2906     create_vm_init_agents();
2907   }
2908 
2909   // Initialize Threads state
2910   _thread_list = NULL;
2911   _number_of_threads = 0;
2912   _number_of_non_daemon_threads = 0;
2913 
2914   // Initialize TLS
2915   ThreadLocalStorage::init();
2916 
2917   // Initialize global data structures and create system classes in heap
2918   vm_init_globals();
2919 
2920   // Attach the main thread to this os thread
2921   JavaThread* main_thread = new JavaThread();
2922   main_thread->set_thread_state(_thread_in_vm);
2923   // must do this before set_active_handles and initialize_thread_local_storage
2924   // Note: on solaris initialize_thread_local_storage() will (indirectly)
2925   // change the stack size recorded here to one based on the java thread
2926   // stacksize. This adjusted size is what is used to figure the placement
2927   // of the guard pages.
2928   main_thread->record_stack_base_and_size();
2929   main_thread->initialize_thread_local_storage();
2930 
2931   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2932 
2933   if (!main_thread->set_as_starting_thread()) {
2934     vm_shutdown_during_initialization(
2935       "Failed necessary internal allocation. Out of swap space");
2936     delete main_thread;
2937     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2938     return JNI_ENOMEM;
2939   }
2940 
2941   // Enable guard page *after* os::create_main_thread(), otherwise it would
2942   // crash Linux VM, see notes in os_linux.cpp.
2943   main_thread->create_stack_guard_pages();
2944 
2945   // Initialize Java-Leve synchronization subsystem
2946   ObjectSynchronizer::Initialize() ;
2947 
2948   // Initialize global modules
2949   jint status = init_globals();
2950   if (status != JNI_OK) {
2951     delete main_thread;
2952     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2953     return status;
2954   }
2955 
2956   HandleMark hm;
2957 
2958   { MutexLocker mu(Threads_lock);
2959     Threads::add(main_thread);
2960   }
2961 
2962   // Any JVMTI raw monitors entered in onload will transition into
2963   // real raw monitor. VM is setup enough here for raw monitor enter.
2964   JvmtiExport::transition_pending_onload_raw_monitors();
2965 
2966   if (VerifyBeforeGC &&
2967       Universe::heap()->total_collections() >= VerifyGCStartAt) {
2968     Universe::heap()->prepare_for_verify();
2969     Universe::verify();   // make sure we're starting with a clean slate
2970   }
2971 
2972   // Create the VMThread
2973   { TraceTime timer("Start VMThread", TraceStartupTime);
2974     VMThread::create();
2975     Thread* vmthread = VMThread::vm_thread();
2976 
2977     if (!os::create_thread(vmthread, os::vm_thread))
2978       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
2979 
2980     // Wait for the VM thread to become ready, and VMThread::run to initialize
2981     // Monitors can have spurious returns, must always check another state flag
2982     {
2983       MutexLocker ml(Notify_lock);
2984       os::start_thread(vmthread);
2985       while (vmthread->active_handles() == NULL) {
2986         Notify_lock->wait();
2987       }
2988     }
2989   }
2990 
2991   assert (Universe::is_fully_initialized(), "not initialized");
2992   EXCEPTION_MARK;
2993 
2994   // At this point, the Universe is initialized, but we have not executed
2995   // any byte code.  Now is a good time (the only time) to dump out the
2996   // internal state of the JVM for sharing.
2997 
2998   if (DumpSharedSpaces) {
2999     Universe::heap()->preload_and_dump(CHECK_0);
3000     ShouldNotReachHere();
3001   }
3002 
3003   // Always call even when there are not JVMTI environments yet, since environments
3004   // may be attached late and JVMTI must track phases of VM execution
3005   JvmtiExport::enter_start_phase();
3006 
3007   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3008   JvmtiExport::post_vm_start();
3009 
3010   {
3011     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3012 
3013     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3014       create_vm_init_libraries();
3015     }
3016 
3017     if (InitializeJavaLangString) {
3018       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3019     } else {
3020       warning("java.lang.String not initialized");
3021     }
3022 
3023     if (AggressiveOpts) {
3024       {
3025         // Forcibly initialize java/util/HashMap and mutate the private
3026         // static final "frontCacheEnabled" field before we start creating instances
3027 #ifdef ASSERT
3028         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3029         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3030 #endif
3031         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3032         KlassHandle k = KlassHandle(THREAD, k_o);
3033         guarantee(k.not_null(), "Must find java/util/HashMap");
3034         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3035         ik->initialize(CHECK_0);
3036         fieldDescriptor fd;
3037         // Possible we might not find this field; if so, don't break
3038         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3039           k()->bool_field_put(fd.offset(), true);
3040         }
3041       }
3042 
3043       if (UseStringCache) {
3044         // Forcibly initialize java/lang/StringValue and mutate the private
3045         // static final "stringCacheEnabled" field before we start creating instances
3046         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3047         // Possible that StringValue isn't present: if so, silently don't break
3048         if (k_o != NULL) {
3049           KlassHandle k = KlassHandle(THREAD, k_o);
3050           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3051           ik->initialize(CHECK_0);
3052           fieldDescriptor fd;
3053           // Possible we might not find this field: if so, silently don't break
3054           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3055             k()->bool_field_put(fd.offset(), true);
3056           }
3057         }
3058       }
3059     }
3060 
3061     // Initialize java_lang.System (needed before creating the thread)
3062     if (InitializeJavaLangSystem) {
3063       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3064       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3065       Handle thread_group = create_initial_thread_group(CHECK_0);
3066       Universe::set_main_thread_group(thread_group());
3067       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3068       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3069       main_thread->set_threadObj(thread_object);
3070       // Set thread status to running since main thread has
3071       // been started and running.
3072       java_lang_Thread::set_thread_status(thread_object,
3073                                           java_lang_Thread::RUNNABLE);
3074 
3075       // The VM preresolve methods to these classes. Make sure that get initialized
3076       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3077       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3078       // The VM creates & returns objects of this class. Make sure it's initialized.
3079       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3080       call_initializeSystemClass(CHECK_0);
3081     } else {
3082       warning("java.lang.System not initialized");
3083     }
3084 
3085     // an instance of OutOfMemory exception has been allocated earlier
3086     if (InitializeJavaLangExceptionsErrors) {
3087       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3088       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3089       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3090       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3091       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3092       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3093       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3094     } else {
3095       warning("java.lang.OutOfMemoryError has not been initialized");
3096       warning("java.lang.NullPointerException has not been initialized");
3097       warning("java.lang.ClassCastException has not been initialized");
3098       warning("java.lang.ArrayStoreException has not been initialized");
3099       warning("java.lang.ArithmeticException has not been initialized");
3100       warning("java.lang.StackOverflowError has not been initialized");
3101     }
3102 
3103     if (EnableInvokeDynamic) {
3104       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
3105       // the compiler.
3106       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
3107     }
3108   }
3109 
3110   // See        : bugid 4211085.
3111   // Background : the static initializer of java.lang.Compiler tries to read
3112   //              property"java.compiler" and read & write property "java.vm.info".
3113   //              When a security manager is installed through the command line
3114   //              option "-Djava.security.manager", the above properties are not
3115   //              readable and the static initializer for java.lang.Compiler fails
3116   //              resulting in a NoClassDefFoundError.  This can happen in any
3117   //              user code which calls methods in java.lang.Compiler.
3118   // Hack :       the hack is to pre-load and initialize this class, so that only
3119   //              system domains are on the stack when the properties are read.
3120   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3121   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3122   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3123   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3124   //              Once that is done, we should remove this hack.
3125   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3126 
3127   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3128   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3129   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3130   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3131   // This should also be taken out as soon as 4211383 gets fixed.
3132   reset_vm_info_property(CHECK_0);
3133 
3134   quicken_jni_functions();
3135 
3136   // Set flag that basic initialization has completed. Used by exceptions and various
3137   // debug stuff, that does not work until all basic classes have been initialized.
3138   set_init_completed();
3139 
3140   HS_DTRACE_PROBE(hotspot, vm__init__end);
3141 
3142   // record VM initialization completion time
3143   Management::record_vm_init_completed();
3144 
3145   // Compute system loader. Note that this has to occur after set_init_completed, since
3146   // valid exceptions may be thrown in the process.
3147   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3148   // set_init_completed has just been called, causing exceptions not to be shortcut
3149   // anymore. We call vm_exit_during_initialization directly instead.
3150   SystemDictionary::compute_java_system_loader(THREAD);
3151   if (HAS_PENDING_EXCEPTION) {
3152     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3153   }
3154 
3155 #ifdef KERNEL
3156   if (JDK_Version::is_gte_jdk17x_version()) {
3157     set_jkernel_boot_classloader_hook(THREAD);
3158   }
3159 #endif // KERNEL
3160 
3161 #ifndef SERIALGC
3162   // Support for ConcurrentMarkSweep. This should be cleaned up
3163   // and better encapsulated. The ugly nested if test would go away
3164   // once things are properly refactored. XXX YSR
3165   if (UseConcMarkSweepGC || UseG1GC) {
3166     if (UseConcMarkSweepGC) {
3167       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3168     } else {
3169       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3170     }
3171     if (HAS_PENDING_EXCEPTION) {
3172       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3173     }
3174   }
3175 #endif // SERIALGC
3176 
3177   // Always call even when there are not JVMTI environments yet, since environments
3178   // may be attached late and JVMTI must track phases of VM execution
3179   JvmtiExport::enter_live_phase();
3180 
3181   // Signal Dispatcher needs to be started before VMInit event is posted
3182   os::signal_init();
3183 
3184   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3185   if (!DisableAttachMechanism) {
3186     if (StartAttachListener || AttachListener::init_at_startup()) {
3187       AttachListener::init();
3188     }
3189   }
3190 
3191   // Launch -Xrun agents
3192   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3193   // back-end can launch with -Xdebug -Xrunjdwp.
3194   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3195     create_vm_init_libraries();
3196   }
3197 
3198   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3199   JvmtiExport::post_vm_initialized();
3200 
3201   Chunk::start_chunk_pool_cleaner_task();
3202 
3203   // initialize compiler(s)
3204   CompileBroker::compilation_init();
3205 
3206   Management::initialize(THREAD);
3207   if (HAS_PENDING_EXCEPTION) {
3208     // management agent fails to start possibly due to
3209     // configuration problem and is responsible for printing
3210     // stack trace if appropriate. Simply exit VM.
3211     vm_exit(1);
3212   }
3213 
3214   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3215   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3216   if (MemProfiling)                   MemProfiler::engage();
3217   StatSampler::engage();
3218   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3219 
3220   BiasedLocking::init();
3221 
3222 
3223   // Start up the WatcherThread if there are any periodic tasks
3224   // NOTE:  All PeriodicTasks should be registered by now. If they
3225   //   aren't, late joiners might appear to start slowly (we might
3226   //   take a while to process their first tick).
3227   if (PeriodicTask::num_tasks() > 0) {
3228     WatcherThread::start();
3229   }
3230 
3231   create_vm_timer.end();
3232   return JNI_OK;
3233 }
3234 
3235 // type for the Agent_OnLoad and JVM_OnLoad entry points
3236 extern "C" {
3237   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3238 }
3239 // Find a command line agent library and return its entry point for
3240 //         -agentlib:  -agentpath:   -Xrun
3241 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3242 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3243   OnLoadEntry_t on_load_entry = NULL;
3244   void *library = agent->os_lib();  // check if we have looked it up before
3245 
3246   if (library == NULL) {
3247     char buffer[JVM_MAXPATHLEN];
3248     char ebuf[1024];
3249     const char *name = agent->name();
3250 
3251     if (agent->is_absolute_path()) {
3252       library = hpi::dll_load(name, ebuf, sizeof ebuf);
3253       if (library == NULL) {
3254         // If we can't find the agent, exit.
3255         vm_exit_during_initialization("Could not find agent library in absolute path", name);
3256       }
3257     } else {
3258       // Try to load the agent from the standard dll directory
3259       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3260       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3261 #ifdef KERNEL
3262       // Download instrument dll
3263       if (library == NULL && strcmp(name, "instrument") == 0) {
3264         char *props = Arguments::get_kernel_properties();
3265         char *home  = Arguments::get_java_home();
3266         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3267                       " sun.jkernel.DownloadManager -download client_jvm";
3268         int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3269         char *cmd = AllocateHeap(length);
3270         jio_snprintf(cmd, length, fmt, home, props);
3271         int status = os::fork_and_exec(cmd);
3272         FreeHeap(props);
3273         FreeHeap(cmd);
3274         if (status == -1) {
3275           warning(cmd);
3276           vm_exit_during_initialization("fork_and_exec failed: %s",
3277                                          strerror(errno));
3278         }
3279         // when this comes back the instrument.dll should be where it belongs.
3280         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3281       }
3282 #endif // KERNEL
3283       if (library == NULL) { // Try the local directory
3284         char ns[1] = {0};
3285         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3286         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3287         if (library == NULL) {
3288           // If we can't find the agent, exit.
3289           vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
3290         }
3291       }
3292     }
3293     agent->set_os_lib(library);
3294   }
3295 
3296   // Find the OnLoad function.
3297   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3298     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3299     if (on_load_entry != NULL) break;
3300   }
3301   return on_load_entry;
3302 }
3303 
3304 // Find the JVM_OnLoad entry point
3305 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3306   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3307   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3308 }
3309 
3310 // Find the Agent_OnLoad entry point
3311 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3312   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3313   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3314 }
3315 
3316 // For backwards compatibility with -Xrun
3317 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3318 // treated like -agentpath:
3319 // Must be called before agent libraries are created
3320 void Threads::convert_vm_init_libraries_to_agents() {
3321   AgentLibrary* agent;
3322   AgentLibrary* next;
3323 
3324   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3325     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3326     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3327 
3328     // If there is an JVM_OnLoad function it will get called later,
3329     // otherwise see if there is an Agent_OnLoad
3330     if (on_load_entry == NULL) {
3331       on_load_entry = lookup_agent_on_load(agent);
3332       if (on_load_entry != NULL) {
3333         // switch it to the agent list -- so that Agent_OnLoad will be called,
3334         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3335         Arguments::convert_library_to_agent(agent);
3336       } else {
3337         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3338       }
3339     }
3340   }
3341 }
3342 
3343 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3344 // Invokes Agent_OnLoad
3345 // Called very early -- before JavaThreads exist
3346 void Threads::create_vm_init_agents() {
3347   extern struct JavaVM_ main_vm;
3348   AgentLibrary* agent;
3349 
3350   JvmtiExport::enter_onload_phase();
3351   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3352     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3353 
3354     if (on_load_entry != NULL) {
3355       // Invoke the Agent_OnLoad function
3356       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3357       if (err != JNI_OK) {
3358         vm_exit_during_initialization("agent library failed to init", agent->name());
3359       }
3360     } else {
3361       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3362     }
3363   }
3364   JvmtiExport::enter_primordial_phase();
3365 }
3366 
3367 extern "C" {
3368   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3369 }
3370 
3371 void Threads::shutdown_vm_agents() {
3372   // Send any Agent_OnUnload notifications
3373   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3374   extern struct JavaVM_ main_vm;
3375   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3376 
3377     // Find the Agent_OnUnload function.
3378     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3379       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3380                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3381 
3382       // Invoke the Agent_OnUnload function
3383       if (unload_entry != NULL) {
3384         JavaThread* thread = JavaThread::current();
3385         ThreadToNativeFromVM ttn(thread);
3386         HandleMark hm(thread);
3387         (*unload_entry)(&main_vm);
3388         break;
3389       }
3390     }
3391   }
3392 }
3393 
3394 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3395 // Invokes JVM_OnLoad
3396 void Threads::create_vm_init_libraries() {
3397   extern struct JavaVM_ main_vm;
3398   AgentLibrary* agent;
3399 
3400   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3401     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3402 
3403     if (on_load_entry != NULL) {
3404       // Invoke the JVM_OnLoad function
3405       JavaThread* thread = JavaThread::current();
3406       ThreadToNativeFromVM ttn(thread);
3407       HandleMark hm(thread);
3408       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3409       if (err != JNI_OK) {
3410         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3411       }
3412     } else {
3413       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3414     }
3415   }
3416 }
3417 
3418 // Last thread running calls java.lang.Shutdown.shutdown()
3419 void JavaThread::invoke_shutdown_hooks() {
3420   HandleMark hm(this);
3421 
3422   // We could get here with a pending exception, if so clear it now.
3423   if (this->has_pending_exception()) {
3424     this->clear_pending_exception();
3425   }
3426 
3427   EXCEPTION_MARK;
3428   klassOop k =
3429     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3430                                       THREAD);
3431   if (k != NULL) {
3432     // SystemDictionary::resolve_or_null will return null if there was
3433     // an exception.  If we cannot load the Shutdown class, just don't
3434     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3435     // and finalizers (if runFinalizersOnExit is set) won't be run.
3436     // Note that if a shutdown hook was registered or runFinalizersOnExit
3437     // was called, the Shutdown class would have already been loaded
3438     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3439     instanceKlassHandle shutdown_klass (THREAD, k);
3440     JavaValue result(T_VOID);
3441     JavaCalls::call_static(&result,
3442                            shutdown_klass,
3443                            vmSymbolHandles::shutdown_method_name(),
3444                            vmSymbolHandles::void_method_signature(),
3445                            THREAD);
3446   }
3447   CLEAR_PENDING_EXCEPTION;
3448 }
3449 
3450 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3451 // the program falls off the end of main(). Another VM exit path is through
3452 // vm_exit() when the program calls System.exit() to return a value or when
3453 // there is a serious error in VM. The two shutdown paths are not exactly
3454 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3455 // and VM_Exit op at VM level.
3456 //
3457 // Shutdown sequence:
3458 //   + Wait until we are the last non-daemon thread to execute
3459 //     <-- every thing is still working at this moment -->
3460 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3461 //        shutdown hooks, run finalizers if finalization-on-exit
3462 //   + Call before_exit(), prepare for VM exit
3463 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3464 //        currently the only user of this mechanism is File.deleteOnExit())
3465 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3466 //        post thread end and vm death events to JVMTI,
3467 //        stop signal thread
3468 //   + Call JavaThread::exit(), it will:
3469 //      > release JNI handle blocks, remove stack guard pages
3470 //      > remove this thread from Threads list
3471 //     <-- no more Java code from this thread after this point -->
3472 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3473 //     the compiler threads at safepoint
3474 //     <-- do not use anything that could get blocked by Safepoint -->
3475 //   + Disable tracing at JNI/JVM barriers
3476 //   + Set _vm_exited flag for threads that are still running native code
3477 //   + Delete this thread
3478 //   + Call exit_globals()
3479 //      > deletes tty
3480 //      > deletes PerfMemory resources
3481 //   + Return to caller
3482 
3483 bool Threads::destroy_vm() {
3484   JavaThread* thread = JavaThread::current();
3485 
3486   // Wait until we are the last non-daemon thread to execute
3487   { MutexLocker nu(Threads_lock);
3488     while (Threads::number_of_non_daemon_threads() > 1 )
3489       // This wait should make safepoint checks, wait without a timeout,
3490       // and wait as a suspend-equivalent condition.
3491       //
3492       // Note: If the FlatProfiler is running and this thread is waiting
3493       // for another non-daemon thread to finish, then the FlatProfiler
3494       // is waiting for the external suspend request on this thread to
3495       // complete. wait_for_ext_suspend_completion() will eventually
3496       // timeout, but that takes time. Making this wait a suspend-
3497       // equivalent condition solves that timeout problem.
3498       //
3499       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3500                          Mutex::_as_suspend_equivalent_flag);
3501   }
3502 
3503   // Hang forever on exit if we are reporting an error.
3504   if (ShowMessageBoxOnError && is_error_reported()) {
3505     os::infinite_sleep();
3506   }
3507 
3508   if (JDK_Version::is_jdk12x_version()) {
3509     // We are the last thread running, so check if finalizers should be run.
3510     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3511     HandleMark rm(thread);
3512     Universe::run_finalizers_on_exit();
3513   } else {
3514     // run Java level shutdown hooks
3515     thread->invoke_shutdown_hooks();
3516   }
3517 
3518   before_exit(thread);
3519 
3520   thread->exit(true);
3521 
3522   // Stop VM thread.
3523   {
3524     // 4945125 The vm thread comes to a safepoint during exit.
3525     // GC vm_operations can get caught at the safepoint, and the
3526     // heap is unparseable if they are caught. Grab the Heap_lock
3527     // to prevent this. The GC vm_operations will not be able to
3528     // queue until after the vm thread is dead.
3529     MutexLocker ml(Heap_lock);
3530 
3531     VMThread::wait_for_vm_thread_exit();
3532     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3533     VMThread::destroy();
3534   }
3535 
3536   // clean up ideal graph printers
3537 #if defined(COMPILER2) && !defined(PRODUCT)
3538   IdealGraphPrinter::clean_up();
3539 #endif
3540 
3541   // Now, all Java threads are gone except daemon threads. Daemon threads
3542   // running Java code or in VM are stopped by the Safepoint. However,
3543   // daemon threads executing native code are still running.  But they
3544   // will be stopped at native=>Java/VM barriers. Note that we can't
3545   // simply kill or suspend them, as it is inherently deadlock-prone.
3546 
3547 #ifndef PRODUCT
3548   // disable function tracing at JNI/JVM barriers
3549   TraceHPI = false;
3550   TraceJNICalls = false;
3551   TraceJVMCalls = false;
3552   TraceRuntimeCalls = false;
3553 #endif
3554 
3555   VM_Exit::set_vm_exited();
3556 
3557   notify_vm_shutdown();
3558 
3559   delete thread;
3560 
3561   // exit_globals() will delete tty
3562   exit_globals();
3563 
3564   return true;
3565 }
3566 
3567 
3568 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3569   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3570   return is_supported_jni_version(version);
3571 }
3572 
3573 
3574 jboolean Threads::is_supported_jni_version(jint version) {
3575   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3576   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3577   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3578   return JNI_FALSE;
3579 }
3580 
3581 
3582 void Threads::add(JavaThread* p, bool force_daemon) {
3583   // The threads lock must be owned at this point
3584   assert_locked_or_safepoint(Threads_lock);
3585   p->set_next(_thread_list);
3586   _thread_list = p;
3587   _number_of_threads++;
3588   oop threadObj = p->threadObj();
3589   bool daemon = true;
3590   // Bootstrapping problem: threadObj can be null for initial
3591   // JavaThread (or for threads attached via JNI)
3592   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3593     _number_of_non_daemon_threads++;
3594     daemon = false;
3595   }
3596 
3597   ThreadService::add_thread(p, daemon);
3598 
3599   // Possible GC point.
3600   Events::log("Thread added: " INTPTR_FORMAT, p);
3601 }
3602 
3603 void Threads::remove(JavaThread* p) {
3604   // Extra scope needed for Thread_lock, so we can check
3605   // that we do not remove thread without safepoint code notice
3606   { MutexLocker ml(Threads_lock);
3607 
3608     assert(includes(p), "p must be present");
3609 
3610     JavaThread* current = _thread_list;
3611     JavaThread* prev    = NULL;
3612 
3613     while (current != p) {
3614       prev    = current;
3615       current = current->next();
3616     }
3617 
3618     if (prev) {
3619       prev->set_next(current->next());
3620     } else {
3621       _thread_list = p->next();
3622     }
3623     _number_of_threads--;
3624     oop threadObj = p->threadObj();
3625     bool daemon = true;
3626     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3627       _number_of_non_daemon_threads--;
3628       daemon = false;
3629 
3630       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3631       // on destroy_vm will wake up.
3632       if (number_of_non_daemon_threads() == 1)
3633         Threads_lock->notify_all();
3634     }
3635     ThreadService::remove_thread(p, daemon);
3636 
3637     // Make sure that safepoint code disregard this thread. This is needed since
3638     // the thread might mess around with locks after this point. This can cause it
3639     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3640     // of this thread since it is removed from the queue.
3641     p->set_terminated_value();
3642   } // unlock Threads_lock
3643 
3644   // Since Events::log uses a lock, we grab it outside the Threads_lock
3645   Events::log("Thread exited: " INTPTR_FORMAT, p);
3646 }
3647 
3648 // Threads_lock must be held when this is called (or must be called during a safepoint)
3649 bool Threads::includes(JavaThread* p) {
3650   assert(Threads_lock->is_locked(), "sanity check");
3651   ALL_JAVA_THREADS(q) {
3652     if (q == p ) {
3653       return true;
3654     }
3655   }
3656   return false;
3657 }
3658 
3659 // Operations on the Threads list for GC.  These are not explicitly locked,
3660 // but the garbage collector must provide a safe context for them to run.
3661 // In particular, these things should never be called when the Threads_lock
3662 // is held by some other thread. (Note: the Safepoint abstraction also
3663 // uses the Threads_lock to gurantee this property. It also makes sure that
3664 // all threads gets blocked when exiting or starting).
3665 
3666 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3667   ALL_JAVA_THREADS(p) {
3668     p->oops_do(f, cf);
3669   }
3670   VMThread::vm_thread()->oops_do(f, cf);
3671 }
3672 
3673 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3674   // Introduce a mechanism allowing parallel threads to claim threads as
3675   // root groups.  Overhead should be small enough to use all the time,
3676   // even in sequential code.
3677   SharedHeap* sh = SharedHeap::heap();
3678   bool is_par = (sh->n_par_threads() > 0);
3679   int cp = SharedHeap::heap()->strong_roots_parity();
3680   ALL_JAVA_THREADS(p) {
3681     if (p->claim_oops_do(is_par, cp)) {
3682       p->oops_do(f, cf);
3683     }
3684   }
3685   VMThread* vmt = VMThread::vm_thread();
3686   if (vmt->claim_oops_do(is_par, cp))
3687     vmt->oops_do(f, cf);
3688 }
3689 
3690 #ifndef SERIALGC
3691 // Used by ParallelScavenge
3692 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3693   ALL_JAVA_THREADS(p) {
3694     q->enqueue(new ThreadRootsTask(p));
3695   }
3696   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3697 }
3698 
3699 // Used by Parallel Old
3700 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3701   ALL_JAVA_THREADS(p) {
3702     q->enqueue(new ThreadRootsMarkingTask(p));
3703   }
3704   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3705 }
3706 #endif // SERIALGC
3707 
3708 void Threads::nmethods_do(CodeBlobClosure* cf) {
3709   ALL_JAVA_THREADS(p) {
3710     p->nmethods_do(cf);
3711   }
3712   VMThread::vm_thread()->nmethods_do(cf);
3713 }
3714 
3715 void Threads::gc_epilogue() {
3716   ALL_JAVA_THREADS(p) {
3717     p->gc_epilogue();
3718   }
3719 }
3720 
3721 void Threads::gc_prologue() {
3722   ALL_JAVA_THREADS(p) {
3723     p->gc_prologue();
3724   }
3725 }
3726 
3727 void Threads::deoptimized_wrt_marked_nmethods() {
3728   ALL_JAVA_THREADS(p) {
3729     p->deoptimized_wrt_marked_nmethods();
3730   }
3731 }
3732 
3733 
3734 // Get count Java threads that are waiting to enter the specified monitor.
3735 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3736   address monitor, bool doLock) {
3737   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3738     "must grab Threads_lock or be at safepoint");
3739   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3740 
3741   int i = 0;
3742   {
3743     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3744     ALL_JAVA_THREADS(p) {
3745       if (p->is_Compiler_thread()) continue;
3746 
3747       address pending = (address)p->current_pending_monitor();
3748       if (pending == monitor) {             // found a match
3749         if (i < count) result->append(p);   // save the first count matches
3750         i++;
3751       }
3752     }
3753   }
3754   return result;
3755 }
3756 
3757 
3758 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3759   assert(doLock ||
3760          Threads_lock->owned_by_self() ||
3761          SafepointSynchronize::is_at_safepoint(),
3762          "must grab Threads_lock or be at safepoint");
3763 
3764   // NULL owner means not locked so we can skip the search
3765   if (owner == NULL) return NULL;
3766 
3767   {
3768     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3769     ALL_JAVA_THREADS(p) {
3770       // first, see if owner is the address of a Java thread
3771       if (owner == (address)p) return p;
3772     }
3773   }
3774   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3775   if (UseHeavyMonitors) return NULL;
3776 
3777   //
3778   // If we didn't find a matching Java thread and we didn't force use of
3779   // heavyweight monitors, then the owner is the stack address of the
3780   // Lock Word in the owning Java thread's stack.
3781   //
3782   JavaThread* the_owner = NULL;
3783   {
3784     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3785     ALL_JAVA_THREADS(q) {
3786       if (q->is_lock_owned(owner)) {
3787         the_owner = q;
3788         break;
3789       }
3790     }
3791   }
3792   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3793   return the_owner;
3794 }
3795 
3796 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3797 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3798   char buf[32];
3799   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3800 
3801   st->print_cr("Full thread dump %s (%s %s):",
3802                 Abstract_VM_Version::vm_name(),
3803                 Abstract_VM_Version::vm_release(),
3804                 Abstract_VM_Version::vm_info_string()
3805                );
3806   st->cr();
3807 
3808 #ifndef SERIALGC
3809   // Dump concurrent locks
3810   ConcurrentLocksDump concurrent_locks;
3811   if (print_concurrent_locks) {
3812     concurrent_locks.dump_at_safepoint();
3813   }
3814 #endif // SERIALGC
3815 
3816   ALL_JAVA_THREADS(p) {
3817     ResourceMark rm;
3818     p->print_on(st);
3819     if (print_stacks) {
3820       if (internal_format) {
3821         p->trace_stack();
3822       } else {
3823         p->print_stack_on(st);
3824       }
3825     }
3826     st->cr();
3827 #ifndef SERIALGC
3828     if (print_concurrent_locks) {
3829       concurrent_locks.print_locks_on(p, st);
3830     }
3831 #endif // SERIALGC
3832   }
3833 
3834   VMThread::vm_thread()->print_on(st);
3835   st->cr();
3836   Universe::heap()->print_gc_threads_on(st);
3837   WatcherThread* wt = WatcherThread::watcher_thread();
3838   if (wt != NULL) wt->print_on(st);
3839   st->cr();
3840   CompileBroker::print_compiler_threads_on(st);
3841   st->flush();
3842 }
3843 
3844 // Threads::print_on_error() is called by fatal error handler. It's possible
3845 // that VM is not at safepoint and/or current thread is inside signal handler.
3846 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3847 // memory (even in resource area), it might deadlock the error handler.
3848 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3849   bool found_current = false;
3850   st->print_cr("Java Threads: ( => current thread )");
3851   ALL_JAVA_THREADS(thread) {
3852     bool is_current = (current == thread);
3853     found_current = found_current || is_current;
3854 
3855     st->print("%s", is_current ? "=>" : "  ");
3856 
3857     st->print(PTR_FORMAT, thread);
3858     st->print(" ");
3859     thread->print_on_error(st, buf, buflen);
3860     st->cr();
3861   }
3862   st->cr();
3863 
3864   st->print_cr("Other Threads:");
3865   if (VMThread::vm_thread()) {
3866     bool is_current = (current == VMThread::vm_thread());
3867     found_current = found_current || is_current;
3868     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3869 
3870     st->print(PTR_FORMAT, VMThread::vm_thread());
3871     st->print(" ");
3872     VMThread::vm_thread()->print_on_error(st, buf, buflen);
3873     st->cr();
3874   }
3875   WatcherThread* wt = WatcherThread::watcher_thread();
3876   if (wt != NULL) {
3877     bool is_current = (current == wt);
3878     found_current = found_current || is_current;
3879     st->print("%s", is_current ? "=>" : "  ");
3880 
3881     st->print(PTR_FORMAT, wt);
3882     st->print(" ");
3883     wt->print_on_error(st, buf, buflen);
3884     st->cr();
3885   }
3886   if (!found_current) {
3887     st->cr();
3888     st->print("=>" PTR_FORMAT " (exited) ", current);
3889     current->print_on_error(st, buf, buflen);
3890     st->cr();
3891   }
3892 }
3893 
3894 
3895 // Lifecycle management for TSM ParkEvents.
3896 // ParkEvents are type-stable (TSM).
3897 // In our particular implementation they happen to be immortal.
3898 //
3899 // We manage concurrency on the FreeList with a CAS-based
3900 // detach-modify-reattach idiom that avoids the ABA problems
3901 // that would otherwise be present in a simple CAS-based
3902 // push-pop implementation.   (push-one and pop-all)
3903 //
3904 // Caveat: Allocate() and Release() may be called from threads
3905 // other than the thread associated with the Event!
3906 // If we need to call Allocate() when running as the thread in
3907 // question then look for the PD calls to initialize native TLS.
3908 // Native TLS (Win32/Linux/Solaris) can only be initialized or
3909 // accessed by the associated thread.
3910 // See also pd_initialize().
3911 //
3912 // Note that we could defer associating a ParkEvent with a thread
3913 // until the 1st time the thread calls park().  unpark() calls to
3914 // an unprovisioned thread would be ignored.  The first park() call
3915 // for a thread would allocate and associate a ParkEvent and return
3916 // immediately.
3917 
3918 volatile int ParkEvent::ListLock = 0 ;
3919 ParkEvent * volatile ParkEvent::FreeList = NULL ;
3920 
3921 ParkEvent * ParkEvent::Allocate (Thread * t) {
3922   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3923   ParkEvent * ev ;
3924 
3925   // Start by trying to recycle an existing but unassociated
3926   // ParkEvent from the global free list.
3927   for (;;) {
3928     ev = FreeList ;
3929     if (ev == NULL) break ;
3930     // 1: Detach - sequester or privatize the list
3931     // Tantamount to ev = Swap (&FreeList, NULL)
3932     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3933        continue ;
3934     }
3935 
3936     // We've detached the list.  The list in-hand is now
3937     // local to this thread.   This thread can operate on the
3938     // list without risk of interference from other threads.
3939     // 2: Extract -- pop the 1st element from the list.
3940     ParkEvent * List = ev->FreeNext ;
3941     if (List == NULL) break ;
3942     for (;;) {
3943         // 3: Try to reattach the residual list
3944         guarantee (List != NULL, "invariant") ;
3945         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3946         if (Arv == NULL) break ;
3947 
3948         // New nodes arrived.  Try to detach the recent arrivals.
3949         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3950             continue ;
3951         }
3952         guarantee (Arv != NULL, "invariant") ;
3953         // 4: Merge Arv into List
3954         ParkEvent * Tail = List ;
3955         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
3956         Tail->FreeNext = Arv ;
3957     }
3958     break ;
3959   }
3960 
3961   if (ev != NULL) {
3962     guarantee (ev->AssociatedWith == NULL, "invariant") ;
3963   } else {
3964     // Do this the hard way -- materialize a new ParkEvent.
3965     // In rare cases an allocating thread might detach a long list --
3966     // installing null into FreeList -- and then stall or be obstructed.
3967     // A 2nd thread calling Allocate() would see FreeList == null.
3968     // The list held privately by the 1st thread is unavailable to the 2nd thread.
3969     // In that case the 2nd thread would have to materialize a new ParkEvent,
3970     // even though free ParkEvents existed in the system.  In this case we end up
3971     // with more ParkEvents in circulation than we need, but the race is
3972     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
3973     // is equal to the maximum # of threads that existed at any one time.
3974     // Because of the race mentioned above, segments of the freelist
3975     // can be transiently inaccessible.  At worst we may end up with the
3976     // # of ParkEvents in circulation slightly above the ideal.
3977     // Note that if we didn't have the TSM/immortal constraint, then
3978     // when reattaching, above, we could trim the list.
3979     ev = new ParkEvent () ;
3980     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
3981   }
3982   ev->reset() ;                     // courtesy to caller
3983   ev->AssociatedWith = t ;          // Associate ev with t
3984   ev->FreeNext       = NULL ;
3985   return ev ;
3986 }
3987 
3988 void ParkEvent::Release (ParkEvent * ev) {
3989   if (ev == NULL) return ;
3990   guarantee (ev->FreeNext == NULL      , "invariant") ;
3991   ev->AssociatedWith = NULL ;
3992   for (;;) {
3993     // Push ev onto FreeList
3994     // The mechanism is "half" lock-free.
3995     ParkEvent * List = FreeList ;
3996     ev->FreeNext = List ;
3997     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
3998   }
3999 }
4000 
4001 // Override operator new and delete so we can ensure that the
4002 // least significant byte of ParkEvent addresses is 0.
4003 // Beware that excessive address alignment is undesirable
4004 // as it can result in D$ index usage imbalance as
4005 // well as bank access imbalance on Niagara-like platforms,
4006 // although Niagara's hash function should help.
4007 
4008 void * ParkEvent::operator new (size_t sz) {
4009   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
4010 }
4011 
4012 void ParkEvent::operator delete (void * a) {
4013   // ParkEvents are type-stable and immortal ...
4014   ShouldNotReachHere();
4015 }
4016 
4017 
4018 // 6399321 As a temporary measure we copied & modified the ParkEvent::
4019 // allocate() and release() code for use by Parkers.  The Parker:: forms
4020 // will eventually be removed as we consolide and shift over to ParkEvents
4021 // for both builtin synchronization and JSR166 operations.
4022 
4023 volatile int Parker::ListLock = 0 ;
4024 Parker * volatile Parker::FreeList = NULL ;
4025 
4026 Parker * Parker::Allocate (JavaThread * t) {
4027   guarantee (t != NULL, "invariant") ;
4028   Parker * p ;
4029 
4030   // Start by trying to recycle an existing but unassociated
4031   // Parker from the global free list.
4032   for (;;) {
4033     p = FreeList ;
4034     if (p  == NULL) break ;
4035     // 1: Detach
4036     // Tantamount to p = Swap (&FreeList, NULL)
4037     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
4038        continue ;
4039     }
4040 
4041     // We've detached the list.  The list in-hand is now
4042     // local to this thread.   This thread can operate on the
4043     // list without risk of interference from other threads.
4044     // 2: Extract -- pop the 1st element from the list.
4045     Parker * List = p->FreeNext ;
4046     if (List == NULL) break ;
4047     for (;;) {
4048         // 3: Try to reattach the residual list
4049         guarantee (List != NULL, "invariant") ;
4050         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
4051         if (Arv == NULL) break ;
4052 
4053         // New nodes arrived.  Try to detach the recent arrivals.
4054         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
4055             continue ;
4056         }
4057         guarantee (Arv != NULL, "invariant") ;
4058         // 4: Merge Arv into List
4059         Parker * Tail = List ;
4060         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4061         Tail->FreeNext = Arv ;
4062     }
4063     break ;
4064   }
4065 
4066   if (p != NULL) {
4067     guarantee (p->AssociatedWith == NULL, "invariant") ;
4068   } else {
4069     // Do this the hard way -- materialize a new Parker..
4070     // In rare cases an allocating thread might detach
4071     // a long list -- installing null into FreeList --and
4072     // then stall.  Another thread calling Allocate() would see
4073     // FreeList == null and then invoke the ctor.  In this case we
4074     // end up with more Parkers in circulation than we need, but
4075     // the race is rare and the outcome is benign.
4076     // Ideally, the # of extant Parkers is equal to the
4077     // maximum # of threads that existed at any one time.
4078     // Because of the race mentioned above, segments of the
4079     // freelist can be transiently inaccessible.  At worst
4080     // we may end up with the # of Parkers in circulation
4081     // slightly above the ideal.
4082     p = new Parker() ;
4083   }
4084   p->AssociatedWith = t ;          // Associate p with t
4085   p->FreeNext       = NULL ;
4086   return p ;
4087 }
4088 
4089 
4090 void Parker::Release (Parker * p) {
4091   if (p == NULL) return ;
4092   guarantee (p->AssociatedWith != NULL, "invariant") ;
4093   guarantee (p->FreeNext == NULL      , "invariant") ;
4094   p->AssociatedWith = NULL ;
4095   for (;;) {
4096     // Push p onto FreeList
4097     Parker * List = FreeList ;
4098     p->FreeNext = List ;
4099     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4100   }
4101 }
4102 
4103 void Threads::verify() {
4104   ALL_JAVA_THREADS(p) {
4105     p->verify();
4106   }
4107   VMThread* thread = VMThread::vm_thread();
4108   if (thread != NULL) thread->verify();
4109 }