1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_ASSEMBLER_X86_HPP
  27 
  28 class BiasedLockingCounters;
  29 
  30 // Contains all the definitions needed for x86 assembly code generation.
  31 
  32 // Calling convention
  33 class Argument VALUE_OBJ_CLASS_SPEC {
  34  public:
  35   enum {
  36 #ifdef _LP64
  37 #ifdef _WIN64
  38     n_int_register_parameters_c   = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...)
  39     n_float_register_parameters_c = 4,  // xmm0 - xmm3 (c_farg0, c_farg1, ... )
  40 #else
  41     n_int_register_parameters_c   = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...)
  42     n_float_register_parameters_c = 8,  // xmm0 - xmm7 (c_farg0, c_farg1, ... )
  43 #endif // _WIN64
  44     n_int_register_parameters_j   = 6, // j_rarg0, j_rarg1, ...
  45     n_float_register_parameters_j = 8  // j_farg0, j_farg1, ...
  46 #else
  47     n_register_parameters = 0   // 0 registers used to pass arguments
  48 #endif // _LP64
  49   };
  50 };
  51 
  52 
  53 #ifdef _LP64
  54 // Symbolically name the register arguments used by the c calling convention.
  55 // Windows is different from linux/solaris. So much for standards...
  56 
  57 #ifdef _WIN64
  58 
  59 REGISTER_DECLARATION(Register, c_rarg0, rcx);
  60 REGISTER_DECLARATION(Register, c_rarg1, rdx);
  61 REGISTER_DECLARATION(Register, c_rarg2, r8);
  62 REGISTER_DECLARATION(Register, c_rarg3, r9);
  63 
  64 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  65 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  66 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  67 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  68 
  69 #else
  70 
  71 REGISTER_DECLARATION(Register, c_rarg0, rdi);
  72 REGISTER_DECLARATION(Register, c_rarg1, rsi);
  73 REGISTER_DECLARATION(Register, c_rarg2, rdx);
  74 REGISTER_DECLARATION(Register, c_rarg3, rcx);
  75 REGISTER_DECLARATION(Register, c_rarg4, r8);
  76 REGISTER_DECLARATION(Register, c_rarg5, r9);
  77 
  78 REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0);
  79 REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1);
  80 REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2);
  81 REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3);
  82 REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4);
  83 REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5);
  84 REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6);
  85 REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7);
  86 
  87 #endif // _WIN64
  88 
  89 // Symbolically name the register arguments used by the Java calling convention.
  90 // We have control over the convention for java so we can do what we please.
  91 // What pleases us is to offset the java calling convention so that when
  92 // we call a suitable jni method the arguments are lined up and we don't
  93 // have to do little shuffling. A suitable jni method is non-static and a
  94 // small number of arguments (two fewer args on windows)
  95 //
  96 //        |-------------------------------------------------------|
  97 //        | c_rarg0   c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5    |
  98 //        |-------------------------------------------------------|
  99 //        | rcx       rdx      r8      r9      rdi*    rsi*       | windows (* not a c_rarg)
 100 //        | rdi       rsi      rdx     rcx     r8      r9         | solaris/linux
 101 //        |-------------------------------------------------------|
 102 //        | j_rarg5   j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4    |
 103 //        |-------------------------------------------------------|
 104 
 105 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
 106 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
 107 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
 108 // Windows runs out of register args here
 109 #ifdef _WIN64
 110 REGISTER_DECLARATION(Register, j_rarg3, rdi);
 111 REGISTER_DECLARATION(Register, j_rarg4, rsi);
 112 #else
 113 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
 114 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
 115 #endif /* _WIN64 */
 116 REGISTER_DECLARATION(Register, j_rarg5, c_rarg0);
 117 
 118 REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0);
 119 REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1);
 120 REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2);
 121 REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3);
 122 REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4);
 123 REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5);
 124 REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6);
 125 REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7);
 126 
 127 REGISTER_DECLARATION(Register, rscratch1, r10);  // volatile
 128 REGISTER_DECLARATION(Register, rscratch2, r11);  // volatile
 129 
 130 REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved
 131 REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved
 132 
 133 #else
 134 // rscratch1 will apear in 32bit code that is dead but of course must compile
 135 // Using noreg ensures if the dead code is incorrectly live and executed it
 136 // will cause an assertion failure
 137 #define rscratch1 noreg
 138 #define rscratch2 noreg
 139 
 140 #endif // _LP64
 141 
 142 // JSR 292 fixed register usages:
 143 REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp);
 144 
 145 // Address is an abstraction used to represent a memory location
 146 // using any of the amd64 addressing modes with one object.
 147 //
 148 // Note: A register location is represented via a Register, not
 149 //       via an address for efficiency & simplicity reasons.
 150 
 151 class ArrayAddress;
 152 
 153 class Address VALUE_OBJ_CLASS_SPEC {
 154  public:
 155   enum ScaleFactor {
 156     no_scale = -1,
 157     times_1  =  0,
 158     times_2  =  1,
 159     times_4  =  2,
 160     times_8  =  3,
 161     times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4)
 162   };
 163   static ScaleFactor times(int size) {
 164     assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size");
 165     if (size == 8)  return times_8;
 166     if (size == 4)  return times_4;
 167     if (size == 2)  return times_2;
 168     return times_1;
 169   }
 170   static int scale_size(ScaleFactor scale) {
 171     assert(scale != no_scale, "");
 172     assert(((1 << (int)times_1) == 1 &&
 173             (1 << (int)times_2) == 2 &&
 174             (1 << (int)times_4) == 4 &&
 175             (1 << (int)times_8) == 8), "");
 176     return (1 << (int)scale);
 177   }
 178 
 179  private:
 180   Register         _base;
 181   Register         _index;
 182   ScaleFactor      _scale;
 183   int              _disp;
 184   RelocationHolder _rspec;
 185 
 186   // Easily misused constructors make them private
 187   // %%% can we make these go away?
 188   NOT_LP64(Address(address loc, RelocationHolder spec);)
 189   Address(int disp, address loc, relocInfo::relocType rtype);
 190   Address(int disp, address loc, RelocationHolder spec);
 191 
 192  public:
 193 
 194  int disp() { return _disp; }
 195   // creation
 196   Address()
 197     : _base(noreg),
 198       _index(noreg),
 199       _scale(no_scale),
 200       _disp(0) {
 201   }
 202 
 203   // No default displacement otherwise Register can be implicitly
 204   // converted to 0(Register) which is quite a different animal.
 205 
 206   Address(Register base, int disp)
 207     : _base(base),
 208       _index(noreg),
 209       _scale(no_scale),
 210       _disp(disp) {
 211   }
 212 
 213   Address(Register base, Register index, ScaleFactor scale, int disp = 0)
 214     : _base (base),
 215       _index(index),
 216       _scale(scale),
 217       _disp (disp) {
 218     assert(!index->is_valid() == (scale == Address::no_scale),
 219            "inconsistent address");
 220   }
 221 
 222   Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0)
 223     : _base (base),
 224       _index(index.register_or_noreg()),
 225       _scale(scale),
 226       _disp (disp + (index.constant_or_zero() * scale_size(scale))) {
 227     if (!index.is_register())  scale = Address::no_scale;
 228     assert(!_index->is_valid() == (scale == Address::no_scale),
 229            "inconsistent address");
 230   }
 231 
 232   Address plus_disp(int disp) const {
 233     Address a = (*this);
 234     a._disp += disp;
 235     return a;
 236   }
 237 
 238   // The following two overloads are used in connection with the
 239   // ByteSize type (see sizes.hpp).  They simplify the use of
 240   // ByteSize'd arguments in assembly code. Note that their equivalent
 241   // for the optimized build are the member functions with int disp
 242   // argument since ByteSize is mapped to an int type in that case.
 243   //
 244   // Note: DO NOT introduce similar overloaded functions for WordSize
 245   // arguments as in the optimized mode, both ByteSize and WordSize
 246   // are mapped to the same type and thus the compiler cannot make a
 247   // distinction anymore (=> compiler errors).
 248 
 249 #ifdef ASSERT
 250   Address(Register base, ByteSize disp)
 251     : _base(base),
 252       _index(noreg),
 253       _scale(no_scale),
 254       _disp(in_bytes(disp)) {
 255   }
 256 
 257   Address(Register base, Register index, ScaleFactor scale, ByteSize disp)
 258     : _base(base),
 259       _index(index),
 260       _scale(scale),
 261       _disp(in_bytes(disp)) {
 262     assert(!index->is_valid() == (scale == Address::no_scale),
 263            "inconsistent address");
 264   }
 265 
 266   Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp)
 267     : _base (base),
 268       _index(index.register_or_noreg()),
 269       _scale(scale),
 270       _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) {
 271     if (!index.is_register())  scale = Address::no_scale;
 272     assert(!_index->is_valid() == (scale == Address::no_scale),
 273            "inconsistent address");
 274   }
 275 
 276 #endif // ASSERT
 277 
 278   // accessors
 279   bool        uses(Register reg) const { return _base == reg || _index == reg; }
 280   Register    base()             const { return _base;  }
 281   Register    index()            const { return _index; }
 282   ScaleFactor scale()            const { return _scale; }
 283   int         disp()             const { return _disp;  }
 284 
 285   // Convert the raw encoding form into the form expected by the constructor for
 286   // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 287   // that to noreg for the Address constructor.
 288   static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop);
 289 
 290   static Address make_array(ArrayAddress);
 291 
 292  private:
 293   bool base_needs_rex() const {
 294     return _base != noreg && _base->encoding() >= 8;
 295   }
 296 
 297   bool index_needs_rex() const {
 298     return _index != noreg &&_index->encoding() >= 8;
 299   }
 300 
 301   relocInfo::relocType reloc() const { return _rspec.type(); }
 302 
 303   friend class Assembler;
 304   friend class MacroAssembler;
 305   friend class LIR_Assembler; // base/index/scale/disp
 306 };
 307 
 308 //
 309 // AddressLiteral has been split out from Address because operands of this type
 310 // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out
 311 // the few instructions that need to deal with address literals are unique and the
 312 // MacroAssembler does not have to implement every instruction in the Assembler
 313 // in order to search for address literals that may need special handling depending
 314 // on the instruction and the platform. As small step on the way to merging i486/amd64
 315 // directories.
 316 //
 317 class AddressLiteral VALUE_OBJ_CLASS_SPEC {
 318   friend class ArrayAddress;
 319   RelocationHolder _rspec;
 320   // Typically we use AddressLiterals we want to use their rval
 321   // However in some situations we want the lval (effect address) of the item.
 322   // We provide a special factory for making those lvals.
 323   bool _is_lval;
 324 
 325   // If the target is far we'll need to load the ea of this to
 326   // a register to reach it. Otherwise if near we can do rip
 327   // relative addressing.
 328 
 329   address          _target;
 330 
 331  protected:
 332   // creation
 333   AddressLiteral()
 334     : _is_lval(false),
 335       _target(NULL)
 336   {}
 337 
 338   public:
 339 
 340 
 341   AddressLiteral(address target, relocInfo::relocType rtype);
 342 
 343   AddressLiteral(address target, RelocationHolder const& rspec)
 344     : _rspec(rspec),
 345       _is_lval(false),
 346       _target(target)
 347   {}
 348 
 349   AddressLiteral addr() {
 350     AddressLiteral ret = *this;
 351     ret._is_lval = true;
 352     return ret;
 353   }
 354 
 355 
 356  private:
 357 
 358   address target() { return _target; }
 359   bool is_lval() { return _is_lval; }
 360 
 361   relocInfo::relocType reloc() const { return _rspec.type(); }
 362   const RelocationHolder& rspec() const { return _rspec; }
 363 
 364   friend class Assembler;
 365   friend class MacroAssembler;
 366   friend class Address;
 367   friend class LIR_Assembler;
 368 };
 369 
 370 // Convience classes
 371 class RuntimeAddress: public AddressLiteral {
 372 
 373   public:
 374 
 375   RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {}
 376 
 377 };
 378 
 379 class OopAddress: public AddressLiteral {
 380 
 381   public:
 382 
 383   OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){}
 384 
 385 };
 386 
 387 class ExternalAddress: public AddressLiteral {
 388 
 389   public:
 390 
 391   ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){}
 392 
 393 };
 394 
 395 class InternalAddress: public AddressLiteral {
 396 
 397   public:
 398 
 399   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 400 
 401 };
 402 
 403 // x86 can do array addressing as a single operation since disp can be an absolute
 404 // address amd64 can't. We create a class that expresses the concept but does extra
 405 // magic on amd64 to get the final result
 406 
 407 class ArrayAddress VALUE_OBJ_CLASS_SPEC {
 408   private:
 409 
 410   AddressLiteral _base;
 411   Address        _index;
 412 
 413   public:
 414 
 415   ArrayAddress() {};
 416   ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {};
 417   AddressLiteral base() { return _base; }
 418   Address index() { return _index; }
 419 
 420 };
 421 
 422 const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize);
 423 
 424 // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction
 425 // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write
 426 // is what you get. The Assembler is generating code into a CodeBuffer.
 427 
 428 class Assembler : public AbstractAssembler  {
 429   friend class AbstractAssembler; // for the non-virtual hack
 430   friend class LIR_Assembler; // as_Address()
 431   friend class StubGenerator;
 432 
 433  public:
 434   enum Condition {                     // The x86 condition codes used for conditional jumps/moves.
 435     zero          = 0x4,
 436     notZero       = 0x5,
 437     equal         = 0x4,
 438     notEqual      = 0x5,
 439     less          = 0xc,
 440     lessEqual     = 0xe,
 441     greater       = 0xf,
 442     greaterEqual  = 0xd,
 443     below         = 0x2,
 444     belowEqual    = 0x6,
 445     above         = 0x7,
 446     aboveEqual    = 0x3,
 447     overflow      = 0x0,
 448     noOverflow    = 0x1,
 449     carrySet      = 0x2,
 450     carryClear    = 0x3,
 451     negative      = 0x8,
 452     positive      = 0x9,
 453     parity        = 0xa,
 454     noParity      = 0xb
 455   };
 456 
 457   enum Prefix {
 458     // segment overrides
 459     CS_segment = 0x2e,
 460     SS_segment = 0x36,
 461     DS_segment = 0x3e,
 462     ES_segment = 0x26,
 463     FS_segment = 0x64,
 464     GS_segment = 0x65,
 465 
 466     REX        = 0x40,
 467 
 468     REX_B      = 0x41,
 469     REX_X      = 0x42,
 470     REX_XB     = 0x43,
 471     REX_R      = 0x44,
 472     REX_RB     = 0x45,
 473     REX_RX     = 0x46,
 474     REX_RXB    = 0x47,
 475 
 476     REX_W      = 0x48,
 477 
 478     REX_WB     = 0x49,
 479     REX_WX     = 0x4A,
 480     REX_WXB    = 0x4B,
 481     REX_WR     = 0x4C,
 482     REX_WRB    = 0x4D,
 483     REX_WRX    = 0x4E,
 484     REX_WRXB   = 0x4F
 485   };
 486 
 487   enum WhichOperand {
 488     // input to locate_operand, and format code for relocations
 489     imm_operand  = 0,            // embedded 32-bit|64-bit immediate operand
 490     disp32_operand = 1,          // embedded 32-bit displacement or address
 491     call32_operand = 2,          // embedded 32-bit self-relative displacement
 492 #ifndef _LP64
 493     _WhichOperand_limit = 3
 494 #else
 495      narrow_oop_operand = 3,     // embedded 32-bit immediate narrow oop
 496     _WhichOperand_limit = 4
 497 #endif
 498   };
 499 
 500 
 501 
 502   // NOTE: The general philopsophy of the declarations here is that 64bit versions
 503   // of instructions are freely declared without the need for wrapping them an ifdef.
 504   // (Some dangerous instructions are ifdef's out of inappropriate jvm's.)
 505   // In the .cpp file the implementations are wrapped so that they are dropped out
 506   // of the resulting jvm. This is done mostly to keep the footprint of KERNEL
 507   // to the size it was prior to merging up the 32bit and 64bit assemblers.
 508   //
 509   // This does mean you'll get a linker/runtime error if you use a 64bit only instruction
 510   // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down.
 511 
 512 private:
 513 
 514 
 515   // 64bit prefixes
 516   int prefix_and_encode(int reg_enc, bool byteinst = false);
 517   int prefixq_and_encode(int reg_enc);
 518 
 519   int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false);
 520   int prefixq_and_encode(int dst_enc, int src_enc);
 521 
 522   void prefix(Register reg);
 523   void prefix(Address adr);
 524   void prefixq(Address adr);
 525 
 526   void prefix(Address adr, Register reg,  bool byteinst = false);
 527   void prefixq(Address adr, Register reg);
 528 
 529   void prefix(Address adr, XMMRegister reg);
 530 
 531   void prefetch_prefix(Address src);
 532 
 533   // Helper functions for groups of instructions
 534   void emit_arith_b(int op1, int op2, Register dst, int imm8);
 535 
 536   void emit_arith(int op1, int op2, Register dst, int32_t imm32);
 537   // only 32bit??
 538   void emit_arith(int op1, int op2, Register dst, jobject obj);
 539   void emit_arith(int op1, int op2, Register dst, Register src);
 540 
 541   void emit_operand(Register reg,
 542                     Register base, Register index, Address::ScaleFactor scale,
 543                     int disp,
 544                     RelocationHolder const& rspec,
 545                     int rip_relative_correction = 0);
 546 
 547   void emit_operand(Register reg, Address adr, int rip_relative_correction = 0);
 548 
 549   // operands that only take the original 32bit registers
 550   void emit_operand32(Register reg, Address adr);
 551 
 552   void emit_operand(XMMRegister reg,
 553                     Register base, Register index, Address::ScaleFactor scale,
 554                     int disp,
 555                     RelocationHolder const& rspec);
 556 
 557   void emit_operand(XMMRegister reg, Address adr);
 558 
 559   void emit_operand(MMXRegister reg, Address adr);
 560 
 561   // workaround gcc (3.2.1-7) bug
 562   void emit_operand(Address adr, MMXRegister reg);
 563 
 564 
 565   // Immediate-to-memory forms
 566   void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32);
 567 
 568   void emit_farith(int b1, int b2, int i);
 569 
 570 
 571  protected:
 572   #ifdef ASSERT
 573   void check_relocation(RelocationHolder const& rspec, int format);
 574   #endif
 575 
 576   inline void emit_long64(jlong x);
 577 
 578   void emit_data(jint data, relocInfo::relocType    rtype, int format);
 579   void emit_data(jint data, RelocationHolder const& rspec, int format);
 580   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
 581   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
 582 
 583   bool reachable(AddressLiteral adr) NOT_LP64({ return true;});
 584 
 585   // These are all easily abused and hence protected
 586 
 587   // 32BIT ONLY SECTION
 588 #ifndef _LP64
 589   // Make these disappear in 64bit mode since they would never be correct
 590   void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec);   // 32BIT ONLY
 591   void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 592 
 593   void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec);    // 32BIT ONLY
 594   void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec);     // 32BIT ONLY
 595 
 596   void push_literal32(int32_t imm32, RelocationHolder const& rspec);                 // 32BIT ONLY
 597 #else
 598   // 64BIT ONLY SECTION
 599   void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec);   // 64BIT ONLY
 600 
 601   void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec);
 602   void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec);
 603 
 604   void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec);
 605   void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec);
 606 #endif // _LP64
 607 
 608   // These are unique in that we are ensured by the caller that the 32bit
 609   // relative in these instructions will always be able to reach the potentially
 610   // 64bit address described by entry. Since they can take a 64bit address they
 611   // don't have the 32 suffix like the other instructions in this class.
 612 
 613   void call_literal(address entry, RelocationHolder const& rspec);
 614   void jmp_literal(address entry, RelocationHolder const& rspec);
 615 
 616   // Avoid using directly section
 617   // Instructions in this section are actually usable by anyone without danger
 618   // of failure but have performance issues that are addressed my enhanced
 619   // instructions which will do the proper thing base on the particular cpu.
 620   // We protect them because we don't trust you...
 621 
 622   // Don't use next inc() and dec() methods directly. INC & DEC instructions
 623   // could cause a partial flag stall since they don't set CF flag.
 624   // Use MacroAssembler::decrement() & MacroAssembler::increment() methods
 625   // which call inc() & dec() or add() & sub() in accordance with
 626   // the product flag UseIncDec value.
 627 
 628   void decl(Register dst);
 629   void decl(Address dst);
 630   void decq(Register dst);
 631   void decq(Address dst);
 632 
 633   void incl(Register dst);
 634   void incl(Address dst);
 635   void incq(Register dst);
 636   void incq(Address dst);
 637 
 638   // New cpus require use of movsd and movss to avoid partial register stall
 639   // when loading from memory. But for old Opteron use movlpd instead of movsd.
 640   // The selection is done in MacroAssembler::movdbl() and movflt().
 641 
 642   // Move Scalar Single-Precision Floating-Point Values
 643   void movss(XMMRegister dst, Address src);
 644   void movss(XMMRegister dst, XMMRegister src);
 645   void movss(Address dst, XMMRegister src);
 646 
 647   // Move Scalar Double-Precision Floating-Point Values
 648   void movsd(XMMRegister dst, Address src);
 649   void movsd(XMMRegister dst, XMMRegister src);
 650   void movsd(Address dst, XMMRegister src);
 651   void movlpd(XMMRegister dst, Address src);
 652 
 653   // New cpus require use of movaps and movapd to avoid partial register stall
 654   // when moving between registers.
 655   void movaps(XMMRegister dst, XMMRegister src);
 656   void movapd(XMMRegister dst, XMMRegister src);
 657 
 658   // End avoid using directly
 659 
 660 
 661   // Instruction prefixes
 662   void prefix(Prefix p);
 663 
 664   public:
 665 
 666   // Creation
 667   Assembler(CodeBuffer* code) : AbstractAssembler(code) {}
 668 
 669   // Decoding
 670   static address locate_operand(address inst, WhichOperand which);
 671   static address locate_next_instruction(address inst);
 672 
 673   // Utilities
 674 
 675 #ifdef _LP64
 676  static bool is_simm(int64_t x, int nbits) { return -(CONST64(1) << (nbits-1)) <= x &&
 677                                                     x < (CONST64(1) << (nbits-1)); }
 678  static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; }
 679 #else
 680  static bool is_simm(int32_t x, int nbits) { return -(1 << (nbits-1)) <= x &&
 681                                                     x < (1 << (nbits-1)); }
 682  static bool is_simm32(int32_t x) { return true; }
 683 #endif // _LP64
 684 
 685   static bool is_polling_page_far() NOT_LP64({ return false;});
 686 
 687   // Generic instructions
 688   // Does 32bit or 64bit as needed for the platform. In some sense these
 689   // belong in macro assembler but there is no need for both varieties to exist
 690 
 691   void lea(Register dst, Address src);
 692 
 693   void mov(Register dst, Register src);
 694 
 695   void pusha();
 696   void popa();
 697 
 698   void pushf();
 699   void popf();
 700 
 701   void push(int32_t imm32);
 702 
 703   void push(Register src);
 704 
 705   void pop(Register dst);
 706 
 707   // These are dummies to prevent surprise implicit conversions to Register
 708   void push(void* v);
 709   void pop(void* v);
 710 
 711   // These do register sized moves/scans
 712   void rep_mov();
 713   void rep_set();
 714   void repne_scan();
 715 #ifdef _LP64
 716   void repne_scanl();
 717 #endif
 718 
 719   // Vanilla instructions in lexical order
 720 
 721   void adcl(Address dst, int32_t imm32);
 722   void adcl(Address dst, Register src);
 723   void adcl(Register dst, int32_t imm32);
 724   void adcl(Register dst, Address src);
 725   void adcl(Register dst, Register src);
 726 
 727   void adcq(Register dst, int32_t imm32);
 728   void adcq(Register dst, Address src);
 729   void adcq(Register dst, Register src);
 730 
 731   void addl(Address dst, int32_t imm32);
 732   void addl(Address dst, Register src);
 733   void addl(Register dst, int32_t imm32);
 734   void addl(Register dst, Address src);
 735   void addl(Register dst, Register src);
 736 
 737   void addq(Address dst, int32_t imm32);
 738   void addq(Address dst, Register src);
 739   void addq(Register dst, int32_t imm32);
 740   void addq(Register dst, Address src);
 741   void addq(Register dst, Register src);
 742 
 743   void addr_nop_4();
 744   void addr_nop_5();
 745   void addr_nop_7();
 746   void addr_nop_8();
 747 
 748   // Add Scalar Double-Precision Floating-Point Values
 749   void addsd(XMMRegister dst, Address src);
 750   void addsd(XMMRegister dst, XMMRegister src);
 751 
 752   // Add Scalar Single-Precision Floating-Point Values
 753   void addss(XMMRegister dst, Address src);
 754   void addss(XMMRegister dst, XMMRegister src);
 755 
 756   void andl(Register dst, int32_t imm32);
 757   void andl(Register dst, Address src);
 758   void andl(Register dst, Register src);
 759 
 760   void andq(Register dst, int32_t imm32);
 761   void andq(Register dst, Address src);
 762   void andq(Register dst, Register src);
 763 
 764   // Bitwise Logical AND of Packed Double-Precision Floating-Point Values
 765   void andpd(XMMRegister dst, Address src);
 766   void andpd(XMMRegister dst, XMMRegister src);
 767 
 768   void bsfl(Register dst, Register src);
 769   void bsrl(Register dst, Register src);
 770 
 771 #ifdef _LP64
 772   void bsfq(Register dst, Register src);
 773   void bsrq(Register dst, Register src);
 774 #endif
 775 
 776   void bswapl(Register reg);
 777 
 778   void bswapq(Register reg);
 779 
 780   void call(Label& L, relocInfo::relocType rtype);
 781   void call(Register reg);  // push pc; pc <- reg
 782   void call(Address adr);   // push pc; pc <- adr
 783 
 784   void cdql();
 785 
 786   void cdqq();
 787 
 788   void cld() { emit_byte(0xfc); }
 789 
 790   void clflush(Address adr);
 791 
 792   void cmovl(Condition cc, Register dst, Register src);
 793   void cmovl(Condition cc, Register dst, Address src);
 794 
 795   void cmovq(Condition cc, Register dst, Register src);
 796   void cmovq(Condition cc, Register dst, Address src);
 797 
 798 
 799   void cmpb(Address dst, int imm8);
 800 
 801   void cmpl(Address dst, int32_t imm32);
 802 
 803   void cmpl(Register dst, int32_t imm32);
 804   void cmpl(Register dst, Register src);
 805   void cmpl(Register dst, Address src);
 806 
 807   void cmpq(Address dst, int32_t imm32);
 808   void cmpq(Address dst, Register src);
 809 
 810   void cmpq(Register dst, int32_t imm32);
 811   void cmpq(Register dst, Register src);
 812   void cmpq(Register dst, Address src);
 813 
 814   // these are dummies used to catch attempting to convert NULL to Register
 815   void cmpl(Register dst, void* junk); // dummy
 816   void cmpq(Register dst, void* junk); // dummy
 817 
 818   void cmpw(Address dst, int imm16);
 819 
 820   void cmpxchg8 (Address adr);
 821 
 822   void cmpxchgl(Register reg, Address adr);
 823 
 824   void cmpxchgq(Register reg, Address adr);
 825 
 826   // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
 827   void comisd(XMMRegister dst, Address src);
 828 
 829   // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
 830   void comiss(XMMRegister dst, Address src);
 831 
 832   // Identify processor type and features
 833   void cpuid() {
 834     emit_byte(0x0F);
 835     emit_byte(0xA2);
 836   }
 837 
 838   // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value
 839   void cvtsd2ss(XMMRegister dst, XMMRegister src);
 840 
 841   // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value
 842   void cvtsi2sdl(XMMRegister dst, Register src);
 843   void cvtsi2sdq(XMMRegister dst, Register src);
 844 
 845   // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value
 846   void cvtsi2ssl(XMMRegister dst, Register src);
 847   void cvtsi2ssq(XMMRegister dst, Register src);
 848 
 849   // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value
 850   void cvtdq2pd(XMMRegister dst, XMMRegister src);
 851 
 852   // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value
 853   void cvtdq2ps(XMMRegister dst, XMMRegister src);
 854 
 855   // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value
 856   void cvtss2sd(XMMRegister dst, XMMRegister src);
 857 
 858   // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer
 859   void cvttsd2sil(Register dst, Address src);
 860   void cvttsd2sil(Register dst, XMMRegister src);
 861   void cvttsd2siq(Register dst, XMMRegister src);
 862 
 863   // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer
 864   void cvttss2sil(Register dst, XMMRegister src);
 865   void cvttss2siq(Register dst, XMMRegister src);
 866 
 867   // Divide Scalar Double-Precision Floating-Point Values
 868   void divsd(XMMRegister dst, Address src);
 869   void divsd(XMMRegister dst, XMMRegister src);
 870 
 871   // Divide Scalar Single-Precision Floating-Point Values
 872   void divss(XMMRegister dst, Address src);
 873   void divss(XMMRegister dst, XMMRegister src);
 874 
 875   void emms();
 876 
 877   void fabs();
 878 
 879   void fadd(int i);
 880 
 881   void fadd_d(Address src);
 882   void fadd_s(Address src);
 883 
 884   // "Alternate" versions of x87 instructions place result down in FPU
 885   // stack instead of on TOS
 886 
 887   void fadda(int i); // "alternate" fadd
 888   void faddp(int i = 1);
 889 
 890   void fchs();
 891 
 892   void fcom(int i);
 893 
 894   void fcomp(int i = 1);
 895   void fcomp_d(Address src);
 896   void fcomp_s(Address src);
 897 
 898   void fcompp();
 899 
 900   void fcos();
 901 
 902   void fdecstp();
 903 
 904   void fdiv(int i);
 905   void fdiv_d(Address src);
 906   void fdivr_s(Address src);
 907   void fdiva(int i);  // "alternate" fdiv
 908   void fdivp(int i = 1);
 909 
 910   void fdivr(int i);
 911   void fdivr_d(Address src);
 912   void fdiv_s(Address src);
 913 
 914   void fdivra(int i); // "alternate" reversed fdiv
 915 
 916   void fdivrp(int i = 1);
 917 
 918   void ffree(int i = 0);
 919 
 920   void fild_d(Address adr);
 921   void fild_s(Address adr);
 922 
 923   void fincstp();
 924 
 925   void finit();
 926 
 927   void fist_s (Address adr);
 928   void fistp_d(Address adr);
 929   void fistp_s(Address adr);
 930 
 931   void fld1();
 932 
 933   void fld_d(Address adr);
 934   void fld_s(Address adr);
 935   void fld_s(int index);
 936   void fld_x(Address adr);  // extended-precision (80-bit) format
 937 
 938   void fldcw(Address src);
 939 
 940   void fldenv(Address src);
 941 
 942   void fldlg2();
 943 
 944   void fldln2();
 945 
 946   void fldz();
 947 
 948   void flog();
 949   void flog10();
 950 
 951   void fmul(int i);
 952 
 953   void fmul_d(Address src);
 954   void fmul_s(Address src);
 955 
 956   void fmula(int i);  // "alternate" fmul
 957 
 958   void fmulp(int i = 1);
 959 
 960   void fnsave(Address dst);
 961 
 962   void fnstcw(Address src);
 963 
 964   void fnstsw_ax();
 965 
 966   void fprem();
 967   void fprem1();
 968 
 969   void frstor(Address src);
 970 
 971   void fsin();
 972 
 973   void fsqrt();
 974 
 975   void fst_d(Address adr);
 976   void fst_s(Address adr);
 977 
 978   void fstp_d(Address adr);
 979   void fstp_d(int index);
 980   void fstp_s(Address adr);
 981   void fstp_x(Address adr); // extended-precision (80-bit) format
 982 
 983   void fsub(int i);
 984   void fsub_d(Address src);
 985   void fsub_s(Address src);
 986 
 987   void fsuba(int i);  // "alternate" fsub
 988 
 989   void fsubp(int i = 1);
 990 
 991   void fsubr(int i);
 992   void fsubr_d(Address src);
 993   void fsubr_s(Address src);
 994 
 995   void fsubra(int i); // "alternate" reversed fsub
 996 
 997   void fsubrp(int i = 1);
 998 
 999   void ftan();
1000 
1001   void ftst();
1002 
1003   void fucomi(int i = 1);
1004   void fucomip(int i = 1);
1005 
1006   void fwait();
1007 
1008   void fxch(int i = 1);
1009 
1010   void fxrstor(Address src);
1011 
1012   void fxsave(Address dst);
1013 
1014   void fyl2x();
1015 
1016   void hlt();
1017 
1018   void idivl(Register src);
1019   void divl(Register src); // Unsigned division
1020 
1021   void idivq(Register src);
1022 
1023   void imull(Register dst, Register src);
1024   void imull(Register dst, Register src, int value);
1025 
1026   void imulq(Register dst, Register src);
1027   void imulq(Register dst, Register src, int value);
1028 
1029 
1030   // jcc is the generic conditional branch generator to run-
1031   // time routines, jcc is used for branches to labels. jcc
1032   // takes a branch opcode (cc) and a label (L) and generates
1033   // either a backward branch or a forward branch and links it
1034   // to the label fixup chain. Usage:
1035   //
1036   // Label L;      // unbound label
1037   // jcc(cc, L);   // forward branch to unbound label
1038   // bind(L);      // bind label to the current pc
1039   // jcc(cc, L);   // backward branch to bound label
1040   // bind(L);      // illegal: a label may be bound only once
1041   //
1042   // Note: The same Label can be used for forward and backward branches
1043   // but it may be bound only once.
1044 
1045   void jcc(Condition cc, Label& L,
1046            relocInfo::relocType rtype = relocInfo::none);
1047 
1048   // Conditional jump to a 8-bit offset to L.
1049   // WARNING: be very careful using this for forward jumps.  If the label is
1050   // not bound within an 8-bit offset of this instruction, a run-time error
1051   // will occur.
1052   void jccb(Condition cc, Label& L);
1053 
1054   void jmp(Address entry);    // pc <- entry
1055 
1056   // Label operations & relative jumps (PPUM Appendix D)
1057   void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none);   // unconditional jump to L
1058 
1059   void jmp(Register entry); // pc <- entry
1060 
1061   // Unconditional 8-bit offset jump to L.
1062   // WARNING: be very careful using this for forward jumps.  If the label is
1063   // not bound within an 8-bit offset of this instruction, a run-time error
1064   // will occur.
1065   void jmpb(Label& L);
1066 
1067   void ldmxcsr( Address src );
1068 
1069   void leal(Register dst, Address src);
1070 
1071   void leaq(Register dst, Address src);
1072 
1073   void lfence() {
1074     emit_byte(0x0F);
1075     emit_byte(0xAE);
1076     emit_byte(0xE8);
1077   }
1078 
1079   void lock();
1080 
1081   void lzcntl(Register dst, Register src);
1082 
1083 #ifdef _LP64
1084   void lzcntq(Register dst, Register src);
1085 #endif
1086 
1087   enum Membar_mask_bits {
1088     StoreStore = 1 << 3,
1089     LoadStore  = 1 << 2,
1090     StoreLoad  = 1 << 1,
1091     LoadLoad   = 1 << 0
1092   };
1093 
1094   // Serializes memory and blows flags
1095   void membar(Membar_mask_bits order_constraint) {
1096     if (os::is_MP()) {
1097       // We only have to handle StoreLoad
1098       if (order_constraint & StoreLoad) {
1099         // All usable chips support "locked" instructions which suffice
1100         // as barriers, and are much faster than the alternative of
1101         // using cpuid instruction. We use here a locked add [esp],0.
1102         // This is conveniently otherwise a no-op except for blowing
1103         // flags.
1104         // Any change to this code may need to revisit other places in
1105         // the code where this idiom is used, in particular the
1106         // orderAccess code.
1107         lock();
1108         addl(Address(rsp, 0), 0);// Assert the lock# signal here
1109       }
1110     }
1111   }
1112 
1113   void mfence();
1114 
1115   // Moves
1116 
1117   void mov64(Register dst, int64_t imm64);
1118 
1119   void movb(Address dst, Register src);
1120   void movb(Address dst, int imm8);
1121   void movb(Register dst, Address src);
1122 
1123   void movdl(XMMRegister dst, Register src);
1124   void movdl(Register dst, XMMRegister src);
1125   void movdl(XMMRegister dst, Address src);
1126 
1127   // Move Double Quadword
1128   void movdq(XMMRegister dst, Register src);
1129   void movdq(Register dst, XMMRegister src);
1130 
1131   // Move Aligned Double Quadword
1132   void movdqa(Address     dst, XMMRegister src);
1133   void movdqa(XMMRegister dst, Address src);
1134   void movdqa(XMMRegister dst, XMMRegister src);
1135 
1136   // Move Unaligned Double Quadword
1137   void movdqu(Address     dst, XMMRegister src);
1138   void movdqu(XMMRegister dst, Address src);
1139   void movdqu(XMMRegister dst, XMMRegister src);
1140 
1141   void movl(Register dst, int32_t imm32);
1142   void movl(Address dst, int32_t imm32);
1143   void movl(Register dst, Register src);
1144   void movl(Register dst, Address src);
1145   void movl(Address dst, Register src);
1146 
1147   // These dummies prevent using movl from converting a zero (like NULL) into Register
1148   // by giving the compiler two choices it can't resolve
1149 
1150   void movl(Address  dst, void* junk);
1151   void movl(Register dst, void* junk);
1152 
1153 #ifdef _LP64
1154   void movq(Register dst, Register src);
1155   void movq(Register dst, Address src);
1156   void movq(Address  dst, Register src);
1157 #endif
1158 
1159   void movq(Address     dst, MMXRegister src );
1160   void movq(MMXRegister dst, Address src );
1161 
1162 #ifdef _LP64
1163   // These dummies prevent using movq from converting a zero (like NULL) into Register
1164   // by giving the compiler two choices it can't resolve
1165 
1166   void movq(Address  dst, void* dummy);
1167   void movq(Register dst, void* dummy);
1168 #endif
1169 
1170   // Move Quadword
1171   void movq(Address     dst, XMMRegister src);
1172   void movq(XMMRegister dst, Address src);
1173 
1174   void movsbl(Register dst, Address src);
1175   void movsbl(Register dst, Register src);
1176 
1177 #ifdef _LP64
1178   void movsbq(Register dst, Address src);
1179   void movsbq(Register dst, Register src);
1180 
1181   // Move signed 32bit immediate to 64bit extending sign
1182   void movslq(Address  dst, int32_t imm64);
1183   void movslq(Register dst, int32_t imm64);
1184 
1185   void movslq(Register dst, Address src);
1186   void movslq(Register dst, Register src);
1187   void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous
1188 #endif
1189 
1190   void movswl(Register dst, Address src);
1191   void movswl(Register dst, Register src);
1192 
1193 #ifdef _LP64
1194   void movswq(Register dst, Address src);
1195   void movswq(Register dst, Register src);
1196 #endif
1197 
1198   void movw(Address dst, int imm16);
1199   void movw(Register dst, Address src);
1200   void movw(Address dst, Register src);
1201 
1202   void movzbl(Register dst, Address src);
1203   void movzbl(Register dst, Register src);
1204 
1205 #ifdef _LP64
1206   void movzbq(Register dst, Address src);
1207   void movzbq(Register dst, Register src);
1208 #endif
1209 
1210   void movzwl(Register dst, Address src);
1211   void movzwl(Register dst, Register src);
1212 
1213 #ifdef _LP64
1214   void movzwq(Register dst, Address src);
1215   void movzwq(Register dst, Register src);
1216 #endif
1217 
1218   void mull(Address src);
1219   void mull(Register src);
1220 
1221   // Multiply Scalar Double-Precision Floating-Point Values
1222   void mulsd(XMMRegister dst, Address src);
1223   void mulsd(XMMRegister dst, XMMRegister src);
1224 
1225   // Multiply Scalar Single-Precision Floating-Point Values
1226   void mulss(XMMRegister dst, Address src);
1227   void mulss(XMMRegister dst, XMMRegister src);
1228 
1229   void negl(Register dst);
1230 
1231 #ifdef _LP64
1232   void negq(Register dst);
1233 #endif
1234 
1235   void nop(int i = 1);
1236 
1237   void notl(Register dst);
1238 
1239 #ifdef _LP64
1240   void notq(Register dst);
1241 #endif
1242 
1243   void orl(Address dst, int32_t imm32);
1244   void orl(Register dst, int32_t imm32);
1245   void orl(Register dst, Address src);
1246   void orl(Register dst, Register src);
1247 
1248   void orq(Address dst, int32_t imm32);
1249   void orq(Register dst, int32_t imm32);
1250   void orq(Register dst, Address src);
1251   void orq(Register dst, Register src);
1252 
1253   // SSE4.2 string instructions
1254   void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8);
1255   void pcmpestri(XMMRegister xmm1, Address src, int imm8);
1256 
1257 #ifndef _LP64 // no 32bit push/pop on amd64
1258   void popl(Address dst);
1259 #endif
1260 
1261 #ifdef _LP64
1262   void popq(Address dst);
1263 #endif
1264 
1265   void popcntl(Register dst, Address src);
1266   void popcntl(Register dst, Register src);
1267 
1268 #ifdef _LP64
1269   void popcntq(Register dst, Address src);
1270   void popcntq(Register dst, Register src);
1271 #endif
1272 
1273   // Prefetches (SSE, SSE2, 3DNOW only)
1274 
1275   void prefetchnta(Address src);
1276   void prefetchr(Address src);
1277   void prefetcht0(Address src);
1278   void prefetcht1(Address src);
1279   void prefetcht2(Address src);
1280   void prefetchw(Address src);
1281 
1282   // POR - Bitwise logical OR
1283   void por(XMMRegister dst, XMMRegister src);
1284 
1285   // Shuffle Packed Doublewords
1286   void pshufd(XMMRegister dst, XMMRegister src, int mode);
1287   void pshufd(XMMRegister dst, Address src,     int mode);
1288 
1289   // Shuffle Packed Low Words
1290   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1291   void pshuflw(XMMRegister dst, Address src,     int mode);
1292 
1293   // Shift Right by bits Logical Quadword Immediate
1294   void psrlq(XMMRegister dst, int shift);
1295 
1296   // Shift Right by bytes Logical DoubleQuadword Immediate
1297   void psrldq(XMMRegister dst, int shift);
1298 
1299   // Logical Compare Double Quadword
1300   void ptest(XMMRegister dst, XMMRegister src);
1301   void ptest(XMMRegister dst, Address src);
1302 
1303   // Interleave Low Bytes
1304   void punpcklbw(XMMRegister dst, XMMRegister src);
1305 
1306 #ifndef _LP64 // no 32bit push/pop on amd64
1307   void pushl(Address src);
1308 #endif
1309 
1310   void pushq(Address src);
1311 
1312   // Xor Packed Byte Integer Values
1313   void pxor(XMMRegister dst, Address src);
1314   void pxor(XMMRegister dst, XMMRegister src);
1315 
1316   void rcll(Register dst, int imm8);
1317 
1318   void rclq(Register dst, int imm8);
1319 
1320   void ret(int imm16);
1321 
1322   void sahf();
1323 
1324   void sarl(Register dst, int imm8);
1325   void sarl(Register dst);
1326 
1327   void sarq(Register dst, int imm8);
1328   void sarq(Register dst);
1329 
1330   void sbbl(Address dst, int32_t imm32);
1331   void sbbl(Register dst, int32_t imm32);
1332   void sbbl(Register dst, Address src);
1333   void sbbl(Register dst, Register src);
1334 
1335   void sbbq(Address dst, int32_t imm32);
1336   void sbbq(Register dst, int32_t imm32);
1337   void sbbq(Register dst, Address src);
1338   void sbbq(Register dst, Register src);
1339 
1340   void setb(Condition cc, Register dst);
1341 
1342   void shldl(Register dst, Register src);
1343 
1344   void shll(Register dst, int imm8);
1345   void shll(Register dst);
1346 
1347   void shlq(Register dst, int imm8);
1348   void shlq(Register dst);
1349 
1350   void shrdl(Register dst, Register src);
1351 
1352   void shrl(Register dst, int imm8);
1353   void shrl(Register dst);
1354 
1355   void shrq(Register dst, int imm8);
1356   void shrq(Register dst);
1357 
1358   void smovl(); // QQQ generic?
1359 
1360   // Compute Square Root of Scalar Double-Precision Floating-Point Value
1361   void sqrtsd(XMMRegister dst, Address src);
1362   void sqrtsd(XMMRegister dst, XMMRegister src);
1363 
1364   // Compute Square Root of Scalar Single-Precision Floating-Point Value
1365   void sqrtss(XMMRegister dst, Address src);
1366   void sqrtss(XMMRegister dst, XMMRegister src);
1367 
1368   void std() { emit_byte(0xfd); }
1369 
1370   void stmxcsr( Address dst );
1371 
1372   void subl(Address dst, int32_t imm32);
1373   void subl(Address dst, Register src);
1374   void subl(Register dst, int32_t imm32);
1375   void subl(Register dst, Address src);
1376   void subl(Register dst, Register src);
1377 
1378   void subq(Address dst, int32_t imm32);
1379   void subq(Address dst, Register src);
1380   void subq(Register dst, int32_t imm32);
1381   void subq(Register dst, Address src);
1382   void subq(Register dst, Register src);
1383 
1384 
1385   // Subtract Scalar Double-Precision Floating-Point Values
1386   void subsd(XMMRegister dst, Address src);
1387   void subsd(XMMRegister dst, XMMRegister src);
1388 
1389   // Subtract Scalar Single-Precision Floating-Point Values
1390   void subss(XMMRegister dst, Address src);
1391   void subss(XMMRegister dst, XMMRegister src);
1392 
1393   void testb(Register dst, int imm8);
1394 
1395   void testl(Register dst, int32_t imm32);
1396   void testl(Register dst, Register src);
1397   void testl(Register dst, Address src);
1398 
1399   void testq(Register dst, int32_t imm32);
1400   void testq(Register dst, Register src);
1401 
1402 
1403   // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS
1404   void ucomisd(XMMRegister dst, Address src);
1405   void ucomisd(XMMRegister dst, XMMRegister src);
1406 
1407   // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS
1408   void ucomiss(XMMRegister dst, Address src);
1409   void ucomiss(XMMRegister dst, XMMRegister src);
1410 
1411   void xaddl(Address dst, Register src);
1412 
1413   void xaddq(Address dst, Register src);
1414 
1415   void xchgl(Register reg, Address adr);
1416   void xchgl(Register dst, Register src);
1417 
1418   void xchgq(Register reg, Address adr);
1419   void xchgq(Register dst, Register src);
1420 
1421   void xorl(Register dst, int32_t imm32);
1422   void xorl(Register dst, Address src);
1423   void xorl(Register dst, Register src);
1424 
1425   void xorq(Register dst, Address src);
1426   void xorq(Register dst, Register src);
1427 
1428   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1429   void xorpd(XMMRegister dst, Address src);
1430   void xorpd(XMMRegister dst, XMMRegister src);
1431 
1432   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1433   void xorps(XMMRegister dst, Address src);
1434   void xorps(XMMRegister dst, XMMRegister src);
1435 
1436   void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0
1437 };
1438 
1439 
1440 // MacroAssembler extends Assembler by frequently used macros.
1441 //
1442 // Instructions for which a 'better' code sequence exists depending
1443 // on arguments should also go in here.
1444 
1445 class MacroAssembler: public Assembler {
1446   friend class LIR_Assembler;
1447   friend class Runtime1;      // as_Address()
1448  protected:
1449 
1450   Address as_Address(AddressLiteral adr);
1451   Address as_Address(ArrayAddress adr);
1452 
1453   // Support for VM calls
1454   //
1455   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
1456   // may customize this version by overriding it for its purposes (e.g., to save/restore
1457   // additional registers when doing a VM call).
1458 #ifdef CC_INTERP
1459   // c++ interpreter never wants to use interp_masm version of call_VM
1460   #define VIRTUAL
1461 #else
1462   #define VIRTUAL virtual
1463 #endif
1464 
1465   VIRTUAL void call_VM_leaf_base(
1466     address entry_point,               // the entry point
1467     int     number_of_arguments        // the number of arguments to pop after the call
1468   );
1469 
1470   // This is the base routine called by the different versions of call_VM. The interpreter
1471   // may customize this version by overriding it for its purposes (e.g., to save/restore
1472   // additional registers when doing a VM call).
1473   //
1474   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
1475   // returns the register which contains the thread upon return. If a thread register has been
1476   // specified, the return value will correspond to that register. If no last_java_sp is specified
1477   // (noreg) than rsp will be used instead.
1478   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
1479     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
1480     Register java_thread,              // the thread if computed before     ; use noreg otherwise
1481     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
1482     address  entry_point,              // the entry point
1483     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
1484     bool     check_exceptions          // whether to check for pending exceptions after return
1485   );
1486 
1487   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
1488   // The implementation is only non-empty for the InterpreterMacroAssembler,
1489   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
1490   virtual void check_and_handle_popframe(Register java_thread);
1491   virtual void check_and_handle_earlyret(Register java_thread);
1492 
1493   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
1494 
1495   // helpers for FPU flag access
1496   // tmp is a temporary register, if none is available use noreg
1497   void save_rax   (Register tmp);
1498   void restore_rax(Register tmp);
1499 
1500  public:
1501   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
1502 
1503   // Support for NULL-checks
1504   //
1505   // Generates code that causes a NULL OS exception if the content of reg is NULL.
1506   // If the accessed location is M[reg + offset] and the offset is known, provide the
1507   // offset. No explicit code generation is needed if the offset is within a certain
1508   // range (0 <= offset <= page_size).
1509 
1510   void null_check(Register reg, int offset = -1);
1511   static bool needs_explicit_null_check(intptr_t offset);
1512 
1513   // Required platform-specific helpers for Label::patch_instructions.
1514   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
1515   void pd_patch_instruction(address branch, address target);
1516 #ifndef PRODUCT
1517   static void pd_print_patched_instruction(address branch);
1518 #endif
1519 
1520   // The following 4 methods return the offset of the appropriate move instruction
1521 
1522   // Support for fast byte/short loading with zero extension (depending on particular CPU)
1523   int load_unsigned_byte(Register dst, Address src);
1524   int load_unsigned_short(Register dst, Address src);
1525 
1526   // Support for fast byte/short loading with sign extension (depending on particular CPU)
1527   int load_signed_byte(Register dst, Address src);
1528   int load_signed_short(Register dst, Address src);
1529 
1530   // Support for sign-extension (hi:lo = extend_sign(lo))
1531   void extend_sign(Register hi, Register lo);
1532 
1533   // Load and store values by size and signed-ness
1534   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
1535   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
1536 
1537   // Support for inc/dec with optimal instruction selection depending on value
1538 
1539   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
1540   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
1541 
1542   void decrementl(Address dst, int value = 1);
1543   void decrementl(Register reg, int value = 1);
1544 
1545   void decrementq(Register reg, int value = 1);
1546   void decrementq(Address dst, int value = 1);
1547 
1548   void incrementl(Address dst, int value = 1);
1549   void incrementl(Register reg, int value = 1);
1550 
1551   void incrementq(Register reg, int value = 1);
1552   void incrementq(Address dst, int value = 1);
1553 
1554 
1555   // Support optimal SSE move instructions.
1556   void movflt(XMMRegister dst, XMMRegister src) {
1557     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
1558     else                       { movss (dst, src); return; }
1559   }
1560   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
1561   void movflt(XMMRegister dst, AddressLiteral src);
1562   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
1563 
1564   void movdbl(XMMRegister dst, XMMRegister src) {
1565     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
1566     else                       { movsd (dst, src); return; }
1567   }
1568 
1569   void movdbl(XMMRegister dst, AddressLiteral src);
1570 
1571   void movdbl(XMMRegister dst, Address src) {
1572     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
1573     else                         { movlpd(dst, src); return; }
1574   }
1575   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
1576 
1577   void incrementl(AddressLiteral dst);
1578   void incrementl(ArrayAddress dst);
1579 
1580   // Alignment
1581   void align(int modulus);
1582 
1583   // Misc
1584   void fat_nop(); // 5 byte nop
1585 
1586   // Stack frame creation/removal
1587   void enter();
1588   void leave();
1589 
1590   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
1591   // The pointer will be loaded into the thread register.
1592   void get_thread(Register thread);
1593 
1594 
1595   // Support for VM calls
1596   //
1597   // It is imperative that all calls into the VM are handled via the call_VM macros.
1598   // They make sure that the stack linkage is setup correctly. call_VM's correspond
1599   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
1600 
1601 
1602   void call_VM(Register oop_result,
1603                address entry_point,
1604                bool check_exceptions = true);
1605   void call_VM(Register oop_result,
1606                address entry_point,
1607                Register arg_1,
1608                bool check_exceptions = true);
1609   void call_VM(Register oop_result,
1610                address entry_point,
1611                Register arg_1, Register arg_2,
1612                bool check_exceptions = true);
1613   void call_VM(Register oop_result,
1614                address entry_point,
1615                Register arg_1, Register arg_2, Register arg_3,
1616                bool check_exceptions = true);
1617 
1618   // Overloadings with last_Java_sp
1619   void call_VM(Register oop_result,
1620                Register last_java_sp,
1621                address entry_point,
1622                int number_of_arguments = 0,
1623                bool check_exceptions = true);
1624   void call_VM(Register oop_result,
1625                Register last_java_sp,
1626                address entry_point,
1627                Register arg_1, bool
1628                check_exceptions = true);
1629   void call_VM(Register oop_result,
1630                Register last_java_sp,
1631                address entry_point,
1632                Register arg_1, Register arg_2,
1633                bool check_exceptions = true);
1634   void call_VM(Register oop_result,
1635                Register last_java_sp,
1636                address entry_point,
1637                Register arg_1, Register arg_2, Register arg_3,
1638                bool check_exceptions = true);
1639 
1640   void call_VM_leaf(address entry_point,
1641                     int number_of_arguments = 0);
1642   void call_VM_leaf(address entry_point,
1643                     Register arg_1);
1644   void call_VM_leaf(address entry_point,
1645                     Register arg_1, Register arg_2);
1646   void call_VM_leaf(address entry_point,
1647                     Register arg_1, Register arg_2, Register arg_3);
1648 
1649   // last Java Frame (fills frame anchor)
1650   void set_last_Java_frame(Register thread,
1651                            Register last_java_sp,
1652                            Register last_java_fp,
1653                            address last_java_pc);
1654 
1655   // thread in the default location (r15_thread on 64bit)
1656   void set_last_Java_frame(Register last_java_sp,
1657                            Register last_java_fp,
1658                            address last_java_pc);
1659 
1660   void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc);
1661 
1662   // thread in the default location (r15_thread on 64bit)
1663   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
1664 
1665   // Stores
1666   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
1667   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
1668 
1669   void g1_write_barrier_pre(Register obj,
1670 #ifndef _LP64
1671                             Register thread,
1672 #endif
1673                             Register tmp,
1674                             Register tmp2,
1675                             bool     tosca_live);
1676   void g1_write_barrier_post(Register store_addr,
1677                              Register new_val,
1678 #ifndef _LP64
1679                              Register thread,
1680 #endif
1681                              Register tmp,
1682                              Register tmp2);
1683 
1684 
1685   // split store_check(Register obj) to enhance instruction interleaving
1686   void store_check_part_1(Register obj);
1687   void store_check_part_2(Register obj);
1688 
1689   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
1690   void c2bool(Register x);
1691 
1692   // C++ bool manipulation
1693 
1694   void movbool(Register dst, Address src);
1695   void movbool(Address dst, bool boolconst);
1696   void movbool(Address dst, Register src);
1697   void testbool(Register dst);
1698 
1699   // oop manipulations
1700   void load_klass(Register dst, Register src);
1701   void store_klass(Register dst, Register src);
1702 
1703   void load_heap_oop(Register dst, Address src);
1704   void store_heap_oop(Address dst, Register src);
1705 
1706   // Used for storing NULL. All other oop constants should be
1707   // stored using routines that take a jobject.
1708   void store_heap_oop_null(Address dst);
1709 
1710   void load_prototype_header(Register dst, Register src);
1711 
1712 #ifdef _LP64
1713   void store_klass_gap(Register dst, Register src);
1714 
1715   // This dummy is to prevent a call to store_heap_oop from
1716   // converting a zero (like NULL) into a Register by giving
1717   // the compiler two choices it can't resolve
1718 
1719   void store_heap_oop(Address dst, void* dummy);
1720 
1721   void encode_heap_oop(Register r);
1722   void decode_heap_oop(Register r);
1723   void encode_heap_oop_not_null(Register r);
1724   void decode_heap_oop_not_null(Register r);
1725   void encode_heap_oop_not_null(Register dst, Register src);
1726   void decode_heap_oop_not_null(Register dst, Register src);
1727 
1728   void set_narrow_oop(Register dst, jobject obj);
1729   void set_narrow_oop(Address dst, jobject obj);
1730   void cmp_narrow_oop(Register dst, jobject obj);
1731   void cmp_narrow_oop(Address dst, jobject obj);
1732 
1733   // if heap base register is used - reinit it with the correct value
1734   void reinit_heapbase();
1735 
1736   DEBUG_ONLY(void verify_heapbase(const char* msg);)
1737 
1738 #endif // _LP64
1739 
1740   // Int division/remainder for Java
1741   // (as idivl, but checks for special case as described in JVM spec.)
1742   // returns idivl instruction offset for implicit exception handling
1743   int corrected_idivl(Register reg);
1744 
1745   // Long division/remainder for Java
1746   // (as idivq, but checks for special case as described in JVM spec.)
1747   // returns idivq instruction offset for implicit exception handling
1748   int corrected_idivq(Register reg);
1749 
1750   void int3();
1751 
1752   // Long operation macros for a 32bit cpu
1753   // Long negation for Java
1754   void lneg(Register hi, Register lo);
1755 
1756   // Long multiplication for Java
1757   // (destroys contents of eax, ebx, ecx and edx)
1758   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
1759 
1760   // Long shifts for Java
1761   // (semantics as described in JVM spec.)
1762   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
1763   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
1764 
1765   // Long compare for Java
1766   // (semantics as described in JVM spec.)
1767   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
1768 
1769 
1770   // misc
1771 
1772   // Sign extension
1773   void sign_extend_short(Register reg);
1774   void sign_extend_byte(Register reg);
1775 
1776   // Division by power of 2, rounding towards 0
1777   void division_with_shift(Register reg, int shift_value);
1778 
1779   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
1780   //
1781   // CF (corresponds to C0) if x < y
1782   // PF (corresponds to C2) if unordered
1783   // ZF (corresponds to C3) if x = y
1784   //
1785   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1786   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
1787   void fcmp(Register tmp);
1788   // Variant of the above which allows y to be further down the stack
1789   // and which only pops x and y if specified. If pop_right is
1790   // specified then pop_left must also be specified.
1791   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
1792 
1793   // Floating-point comparison for Java
1794   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
1795   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
1796   // (semantics as described in JVM spec.)
1797   void fcmp2int(Register dst, bool unordered_is_less);
1798   // Variant of the above which allows y to be further down the stack
1799   // and which only pops x and y if specified. If pop_right is
1800   // specified then pop_left must also be specified.
1801   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
1802 
1803   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
1804   // tmp is a temporary register, if none is available use noreg
1805   void fremr(Register tmp);
1806 
1807 
1808   // same as fcmp2int, but using SSE2
1809   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1810   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
1811 
1812   // Inlined sin/cos generator for Java; must not use CPU instruction
1813   // directly on Intel as it does not have high enough precision
1814   // outside of the range [-pi/4, pi/4]. Extra argument indicate the
1815   // number of FPU stack slots in use; all but the topmost will
1816   // require saving if a slow case is necessary. Assumes argument is
1817   // on FP TOS; result is on FP TOS.  No cpu registers are changed by
1818   // this code.
1819   void trigfunc(char trig, int num_fpu_regs_in_use = 1);
1820 
1821   // branch to L if FPU flag C2 is set/not set
1822   // tmp is a temporary register, if none is available use noreg
1823   void jC2 (Register tmp, Label& L);
1824   void jnC2(Register tmp, Label& L);
1825 
1826   // Pop ST (ffree & fincstp combined)
1827   void fpop();
1828 
1829   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1830   void push_fTOS();
1831 
1832   // pops double TOS element from CPU stack and pushes on FPU stack
1833   void pop_fTOS();
1834 
1835   void empty_FPU_stack();
1836 
1837   void push_IU_state();
1838   void pop_IU_state();
1839 
1840   void push_FPU_state();
1841   void pop_FPU_state();
1842 
1843   void push_CPU_state();
1844   void pop_CPU_state();
1845 
1846   // Round up to a power of two
1847   void round_to(Register reg, int modulus);
1848 
1849   // Callee saved registers handling
1850   void push_callee_saved_registers();
1851   void pop_callee_saved_registers();
1852 
1853   // allocation
1854   void eden_allocate(
1855     Register obj,                      // result: pointer to object after successful allocation
1856     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1857     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1858     Register t1,                       // temp register
1859     Label&   slow_case                 // continuation point if fast allocation fails
1860   );
1861   void tlab_allocate(
1862     Register obj,                      // result: pointer to object after successful allocation
1863     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
1864     int      con_size_in_bytes,        // object size in bytes if   known at compile time
1865     Register t1,                       // temp register
1866     Register t2,                       // temp register
1867     Label&   slow_case                 // continuation point if fast allocation fails
1868   );
1869   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
1870   void incr_allocated_bytes(Register thread,
1871                             Register var_size_in_bytes, int con_size_in_bytes,
1872                             Register t1 = noreg);
1873 
1874   // interface method calling
1875   void lookup_interface_method(Register recv_klass,
1876                                Register intf_klass,
1877                                RegisterOrConstant itable_index,
1878                                Register method_result,
1879                                Register scan_temp,
1880                                Label& no_such_interface);
1881 
1882   // Test sub_klass against super_klass, with fast and slow paths.
1883 
1884   // The fast path produces a tri-state answer: yes / no / maybe-slow.
1885   // One of the three labels can be NULL, meaning take the fall-through.
1886   // If super_check_offset is -1, the value is loaded up from super_klass.
1887   // No registers are killed, except temp_reg.
1888   void check_klass_subtype_fast_path(Register sub_klass,
1889                                      Register super_klass,
1890                                      Register temp_reg,
1891                                      Label* L_success,
1892                                      Label* L_failure,
1893                                      Label* L_slow_path,
1894                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
1895 
1896   // The rest of the type check; must be wired to a corresponding fast path.
1897   // It does not repeat the fast path logic, so don't use it standalone.
1898   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1899   // Updates the sub's secondary super cache as necessary.
1900   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1901   void check_klass_subtype_slow_path(Register sub_klass,
1902                                      Register super_klass,
1903                                      Register temp_reg,
1904                                      Register temp2_reg,
1905                                      Label* L_success,
1906                                      Label* L_failure,
1907                                      bool set_cond_codes = false);
1908 
1909   // Simplified, combined version, good for typical uses.
1910   // Falls through on failure.
1911   void check_klass_subtype(Register sub_klass,
1912                            Register super_klass,
1913                            Register temp_reg,
1914                            Label& L_success);
1915 
1916   // method handles (JSR 292)
1917   void check_method_handle_type(Register mtype_reg, Register mh_reg,
1918                                 Register temp_reg,
1919                                 Label& wrong_method_type);
1920   void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
1921                                   Register temp_reg);
1922   void jump_to_method_handle_entry(Register mh_reg, Register temp_reg);
1923   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1924 
1925 
1926   //----
1927   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
1928 
1929   // Debugging
1930 
1931   // only if +VerifyOops
1932   void verify_oop(Register reg, const char* s = "broken oop");
1933   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
1934 
1935   // only if +VerifyFPU
1936   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1937 
1938   // prints msg, dumps registers and stops execution
1939   void stop(const char* msg);
1940 
1941   // prints msg and continues
1942   void warn(const char* msg);
1943 
1944   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
1945   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1946 
1947   void os_breakpoint();
1948 
1949   void untested()                                { stop("untested"); }
1950 
1951   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
1952 
1953   void should_not_reach_here()                   { stop("should not reach here"); }
1954 
1955   void print_CPU_state();
1956 
1957   // Stack overflow checking
1958   void bang_stack_with_offset(int offset) {
1959     // stack grows down, caller passes positive offset
1960     assert(offset > 0, "must bang with negative offset");
1961     movl(Address(rsp, (-offset)), rax);
1962   }
1963 
1964   // Writes to stack successive pages until offset reached to check for
1965   // stack overflow + shadow pages.  Also, clobbers tmp
1966   void bang_stack_size(Register size, Register tmp);
1967 
1968   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
1969                                                 Register tmp,
1970                                                 int offset);
1971 
1972   // Support for serializing memory accesses between threads
1973   void serialize_memory(Register thread, Register tmp);
1974 
1975   void verify_tlab();
1976 
1977   // Biased locking support
1978   // lock_reg and obj_reg must be loaded up with the appropriate values.
1979   // swap_reg must be rax, and is killed.
1980   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
1981   // be killed; if not supplied, push/pop will be used internally to
1982   // allocate a temporary (inefficient, avoid if possible).
1983   // Optional slow case is for implementations (interpreter and C1) which branch to
1984   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
1985   // Returns offset of first potentially-faulting instruction for null
1986   // check info (currently consumed only by C1). If
1987   // swap_reg_contains_mark is true then returns -1 as it is assumed
1988   // the calling code has already passed any potential faults.
1989   int biased_locking_enter(Register lock_reg, Register obj_reg,
1990                            Register swap_reg, Register tmp_reg,
1991                            bool swap_reg_contains_mark,
1992                            Label& done, Label* slow_case = NULL,
1993                            BiasedLockingCounters* counters = NULL);
1994   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
1995 
1996 
1997   Condition negate_condition(Condition cond);
1998 
1999   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
2000   // operands. In general the names are modified to avoid hiding the instruction in Assembler
2001   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
2002   // here in MacroAssembler. The major exception to this rule is call
2003 
2004   // Arithmetics
2005 
2006 
2007   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
2008   void addptr(Address dst, Register src);
2009 
2010   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
2011   void addptr(Register dst, int32_t src);
2012   void addptr(Register dst, Register src);
2013 
2014   void andptr(Register dst, int32_t src);
2015   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
2016 
2017   void cmp8(AddressLiteral src1, int imm);
2018 
2019   // renamed to drag out the casting of address to int32_t/intptr_t
2020   void cmp32(Register src1, int32_t imm);
2021 
2022   void cmp32(AddressLiteral src1, int32_t imm);
2023   // compare reg - mem, or reg - &mem
2024   void cmp32(Register src1, AddressLiteral src2);
2025 
2026   void cmp32(Register src1, Address src2);
2027 
2028 #ifndef _LP64
2029   void cmpoop(Address dst, jobject obj);
2030   void cmpoop(Register dst, jobject obj);
2031 #endif // _LP64
2032 
2033   // NOTE src2 must be the lval. This is NOT an mem-mem compare
2034   void cmpptr(Address src1, AddressLiteral src2);
2035 
2036   void cmpptr(Register src1, AddressLiteral src2);
2037 
2038   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2039   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2040   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2041 
2042   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2043   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
2044 
2045   // cmp64 to avoild hiding cmpq
2046   void cmp64(Register src1, AddressLiteral src);
2047 
2048   void cmpxchgptr(Register reg, Address adr);
2049 
2050   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
2051 
2052 
2053   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
2054 
2055 
2056   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
2057 
2058   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
2059 
2060   void shlptr(Register dst, int32_t shift);
2061   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
2062 
2063   void shrptr(Register dst, int32_t shift);
2064   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
2065 
2066   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
2067   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
2068 
2069   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2070 
2071   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
2072   void subptr(Register dst, int32_t src);
2073   void subptr(Register dst, Register src);
2074 
2075 
2076   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2077   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
2078 
2079   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2080   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
2081 
2082   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
2083 
2084 
2085 
2086   // Helper functions for statistics gathering.
2087   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
2088   void cond_inc32(Condition cond, AddressLiteral counter_addr);
2089   // Unconditional atomic increment.
2090   void atomic_incl(AddressLiteral counter_addr);
2091 
2092   void lea(Register dst, AddressLiteral adr);
2093   void lea(Address dst, AddressLiteral adr);
2094   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
2095 
2096   void leal32(Register dst, Address src) { leal(dst, src); }
2097   
2098   // Import other testl() methods from the parent class or else
2099   // they will be hidden by the following overriding declaration.
2100   using Assembler::testl; 
2101   void testl(Register dst, AddressLiteral src);
2102 
2103   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2104   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2105   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
2106 
2107   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
2108   void testptr(Register src1, Register src2);
2109 
2110   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2111   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
2112 
2113   // Calls
2114 
2115   void call(Label& L, relocInfo::relocType rtype);
2116   void call(Register entry);
2117 
2118   // NOTE: this call tranfers to the effective address of entry NOT
2119   // the address contained by entry. This is because this is more natural
2120   // for jumps/calls.
2121   void call(AddressLiteral entry);
2122 
2123   // Jumps
2124 
2125   // NOTE: these jumps tranfer to the effective address of dst NOT
2126   // the address contained by dst. This is because this is more natural
2127   // for jumps/calls.
2128   void jump(AddressLiteral dst);
2129   void jump_cc(Condition cc, AddressLiteral dst);
2130 
2131   // 32bit can do a case table jump in one instruction but we no longer allow the base
2132   // to be installed in the Address class. This jump will tranfers to the address
2133   // contained in the location described by entry (not the address of entry)
2134   void jump(ArrayAddress entry);
2135 
2136   // Floating
2137 
2138   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
2139   void andpd(XMMRegister dst, AddressLiteral src);
2140 
2141   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
2142   void comiss(XMMRegister dst, AddressLiteral src);
2143 
2144   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
2145   void comisd(XMMRegister dst, AddressLiteral src);
2146 
2147   void fadd_s(Address src)        { Assembler::fadd_s(src); }
2148   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
2149 
2150   void fldcw(Address src) { Assembler::fldcw(src); }
2151   void fldcw(AddressLiteral src);
2152 
2153   void fld_s(int index)   { Assembler::fld_s(index); }
2154   void fld_s(Address src) { Assembler::fld_s(src); }
2155   void fld_s(AddressLiteral src);
2156 
2157   void fld_d(Address src) { Assembler::fld_d(src); }
2158   void fld_d(AddressLiteral src);
2159 
2160   void fld_x(Address src) { Assembler::fld_x(src); }
2161   void fld_x(AddressLiteral src);
2162 
2163   void fmul_s(Address src)        { Assembler::fmul_s(src); }
2164   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
2165 
2166   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
2167   void ldmxcsr(AddressLiteral src);
2168 
2169 private:
2170   // these are private because users should be doing movflt/movdbl
2171 
2172   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
2173   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
2174   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
2175   void movss(XMMRegister dst, AddressLiteral src);
2176 
2177   void movlpd(XMMRegister dst, Address src)      {Assembler::movlpd(dst, src); }
2178   void movlpd(XMMRegister dst, AddressLiteral src);
2179 
2180 public:
2181 
2182   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
2183   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
2184   void addsd(XMMRegister dst, AddressLiteral src) { Assembler::addsd(dst, as_Address(src)); }
2185 
2186   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
2187   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
2188   void addss(XMMRegister dst, AddressLiteral src) { Assembler::addss(dst, as_Address(src)); }
2189 
2190   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
2191   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
2192   void divsd(XMMRegister dst, AddressLiteral src) { Assembler::divsd(dst, as_Address(src)); }
2193 
2194   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
2195   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
2196   void divss(XMMRegister dst, AddressLiteral src) { Assembler::divss(dst, as_Address(src)); }
2197 
2198   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
2199   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
2200   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
2201   void movsd(XMMRegister dst, AddressLiteral src) { Assembler::movsd(dst, as_Address(src)); }
2202 
2203   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
2204   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
2205   void mulsd(XMMRegister dst, AddressLiteral src) { Assembler::mulsd(dst, as_Address(src)); }
2206 
2207   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
2208   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
2209   void mulss(XMMRegister dst, AddressLiteral src) { Assembler::mulss(dst, as_Address(src)); }
2210 
2211   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
2212   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
2213   void sqrtsd(XMMRegister dst, AddressLiteral src) { Assembler::sqrtsd(dst, as_Address(src)); }
2214 
2215   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
2216   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
2217   void sqrtss(XMMRegister dst, AddressLiteral src) { Assembler::sqrtss(dst, as_Address(src)); }
2218 
2219   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
2220   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
2221   void subsd(XMMRegister dst, AddressLiteral src) { Assembler::subsd(dst, as_Address(src)); }
2222 
2223   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
2224   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
2225   void subss(XMMRegister dst, AddressLiteral src) { Assembler::subss(dst, as_Address(src)); }
2226 
2227   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
2228   void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); }
2229   void ucomiss(XMMRegister dst, AddressLiteral src);
2230 
2231   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
2232   void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); }
2233   void ucomisd(XMMRegister dst, AddressLiteral src);
2234 
2235   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
2236   void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); }
2237   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
2238   void xorpd(XMMRegister dst, AddressLiteral src);
2239 
2240   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
2241   void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); }
2242   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
2243   void xorps(XMMRegister dst, AddressLiteral src);
2244 
2245   // Data
2246 
2247   void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2248 
2249   void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2250   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); }
2251 
2252   void movoop(Register dst, jobject obj);
2253   void movoop(Address dst, jobject obj);
2254 
2255   void movptr(ArrayAddress dst, Register src);
2256   // can this do an lea?
2257   void movptr(Register dst, ArrayAddress src);
2258 
2259   void movptr(Register dst, Address src);
2260 
2261   void movptr(Register dst, AddressLiteral src);
2262 
2263   void movptr(Register dst, intptr_t src);
2264   void movptr(Register dst, Register src);
2265   void movptr(Address dst, intptr_t src);
2266 
2267   void movptr(Address dst, Register src);
2268 
2269 #ifdef _LP64
2270   // Generally the next two are only used for moving NULL
2271   // Although there are situations in initializing the mark word where
2272   // they could be used. They are dangerous.
2273 
2274   // They only exist on LP64 so that int32_t and intptr_t are not the same
2275   // and we have ambiguous declarations.
2276 
2277   void movptr(Address dst, int32_t imm32);
2278   void movptr(Register dst, int32_t imm32);
2279 #endif // _LP64
2280 
2281   // to avoid hiding movl
2282   void mov32(AddressLiteral dst, Register src);
2283   void mov32(Register dst, AddressLiteral src);
2284 
2285   // to avoid hiding movb
2286   void movbyte(ArrayAddress dst, int src);
2287 
2288   // Can push value or effective address
2289   void pushptr(AddressLiteral src);
2290 
2291   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
2292   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
2293 
2294   void pushoop(jobject obj);
2295 
2296   // sign extend as need a l to ptr sized element
2297   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
2298   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
2299 
2300   // IndexOf strings.
2301   // Small strings are loaded through stack if they cross page boundary.
2302   void string_indexof(Register str1, Register str2,
2303                       Register cnt1, Register cnt2,
2304                       int int_cnt2,  Register result,
2305                       XMMRegister vec, Register tmp);
2306 
2307   // IndexOf for constant substrings with size >= 8 elements
2308   // which don't need to be loaded through stack.
2309   void string_indexofC8(Register str1, Register str2,
2310                       Register cnt1, Register cnt2,
2311                       int int_cnt2,  Register result,
2312                       XMMRegister vec, Register tmp);
2313 
2314     // Smallest code: we don't need to load through stack,
2315     // check string tail.
2316 
2317   // Compare strings.
2318   void string_compare(Register str1, Register str2,
2319                       Register cnt1, Register cnt2, Register result,
2320                       XMMRegister vec1);
2321 
2322   // Compare char[] arrays.
2323   void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
2324                           Register limit, Register result, Register chr,
2325                           XMMRegister vec1, XMMRegister vec2);
2326 
2327   // Fill primitive arrays
2328   void generate_fill(BasicType t, bool aligned,
2329                      Register to, Register value, Register count,
2330                      Register rtmp, XMMRegister xtmp);
2331 
2332 #undef VIRTUAL
2333 
2334 };
2335 
2336 /**
2337  * class SkipIfEqual:
2338  *
2339  * Instantiating this class will result in assembly code being output that will
2340  * jump around any code emitted between the creation of the instance and it's
2341  * automatic destruction at the end of a scope block, depending on the value of
2342  * the flag passed to the constructor, which will be checked at run-time.
2343  */
2344 class SkipIfEqual {
2345  private:
2346   MacroAssembler* _masm;
2347   Label _label;
2348 
2349  public:
2350    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
2351    ~SkipIfEqual();
2352 };
2353 
2354 #ifdef ASSERT
2355 inline bool AbstractAssembler::pd_check_instruction_mark() { return true; }
2356 #endif
2357 
2358 #endif // CPU_X86_VM_ASSEMBLER_X86_HPP