1 /*
   2  * Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "assembler_x86.inline.hpp"
  28 #include "code/relocInfo.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "runtime/safepoint.hpp"
  32 
  33 
  34 void Relocation::pd_set_data_value(address x, intptr_t o) {
  35 #ifdef AMD64
  36   x += o;
  37   typedef Assembler::WhichOperand WhichOperand;
  38   WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm, call32, narrow oop
  39   assert(which == Assembler::disp32_operand ||
  40          which == Assembler::narrow_oop_operand ||
  41          which == Assembler::imm_operand, "format unpacks ok");
  42   if (which == Assembler::imm_operand) {
  43     *pd_address_in_code() = x;
  44   } else if (which == Assembler::narrow_oop_operand) {
  45     address disp = Assembler::locate_operand(addr(), which);
  46     *(int32_t*) disp = oopDesc::encode_heap_oop((oop)x);
  47   } else {
  48     // Note:  Use runtime_call_type relocations for call32_operand.
  49     address ip = addr();
  50     address disp = Assembler::locate_operand(ip, which);
  51     address next_ip = Assembler::locate_next_instruction(ip);
  52     *(int32_t*) disp = x - next_ip;
  53   }
  54 #else
  55   *pd_address_in_code() = x + o;
  56 #endif // AMD64
  57 }
  58 
  59 
  60 address Relocation::pd_call_destination(address orig_addr) {
  61   intptr_t adj = 0;
  62   if (orig_addr != NULL) {
  63     // We just moved this call instruction from orig_addr to addr().
  64     // This means its target will appear to have grown by addr() - orig_addr.
  65     adj = -( addr() - orig_addr );
  66   }
  67   NativeInstruction* ni = nativeInstruction_at(addr());
  68   if (ni->is_call()) {
  69     return nativeCall_at(addr())->destination() + adj;
  70   } else if (ni->is_jump()) {
  71     return nativeJump_at(addr())->jump_destination() + adj;
  72   } else if (ni->is_cond_jump()) {
  73     return nativeGeneralJump_at(addr())->jump_destination() + adj;
  74   } else if (ni->is_mov_literal64()) {
  75     return (address) ((NativeMovConstReg*)ni)->data();
  76   } else {
  77     ShouldNotReachHere();
  78     return NULL;
  79   }
  80 }
  81 
  82 
  83 void Relocation::pd_set_call_destination(address x) {
  84   NativeInstruction* ni = nativeInstruction_at(addr());
  85   if (ni->is_call()) {
  86     nativeCall_at(addr())->set_destination(x);
  87   } else if (ni->is_jump()) {
  88     NativeJump* nj = nativeJump_at(addr());
  89 
  90     // Unresolved jumps are recognized by a destination of -1
  91     // However 64bit can't actually produce such an address
  92     // and encodes a jump to self but jump_destination will
  93     // return a -1 as the signal. We must not relocate this
  94     // jmp or the ic code will not see it as unresolved.
  95 
  96     if (nj->jump_destination() == (address) -1) {
  97       x = addr(); // jump to self
  98     }
  99     nj->set_jump_destination(x);
 100   } else if (ni->is_cond_jump()) {
 101     // %%%% kludge this, for now, until we get a jump_destination method
 102     address old_dest = nativeGeneralJump_at(addr())->jump_destination();
 103     address disp = Assembler::locate_operand(addr(), Assembler::call32_operand);
 104     *(jint*)disp += (x - old_dest);
 105   } else if (ni->is_mov_literal64()) {
 106     ((NativeMovConstReg*)ni)->set_data((intptr_t)x);
 107   } else {
 108     ShouldNotReachHere();
 109   }
 110 }
 111 
 112 
 113 address* Relocation::pd_address_in_code() {
 114   // All embedded Intel addresses are stored in 32-bit words.
 115   // Since the addr points at the start of the instruction,
 116   // we must parse the instruction a bit to find the embedded word.
 117   assert(is_data(), "must be a DataRelocation");
 118   typedef Assembler::WhichOperand WhichOperand;
 119   WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32
 120 #ifdef AMD64
 121   assert(which == Assembler::disp32_operand ||
 122          which == Assembler::call32_operand ||
 123          which == Assembler::imm_operand, "format unpacks ok");
 124   if (which != Assembler::imm_operand) {
 125     // The "address" in the code is a displacement can't return it as
 126     // and address* since it is really a jint*
 127     ShouldNotReachHere();
 128     return NULL;
 129   }
 130 #else
 131   assert(which == Assembler::disp32_operand || which == Assembler::imm_operand, "format unpacks ok");
 132 #endif // AMD64
 133   return (address*) Assembler::locate_operand(addr(), which);
 134 }
 135 
 136 
 137 address Relocation::pd_get_address_from_code() {
 138 #ifdef AMD64
 139   // All embedded Intel addresses are stored in 32-bit words.
 140   // Since the addr points at the start of the instruction,
 141   // we must parse the instruction a bit to find the embedded word.
 142   assert(is_data(), "must be a DataRelocation");
 143   typedef Assembler::WhichOperand WhichOperand;
 144   WhichOperand which = (WhichOperand) format(); // that is, disp32 or imm/imm32
 145   assert(which == Assembler::disp32_operand ||
 146          which == Assembler::call32_operand ||
 147          which == Assembler::imm_operand, "format unpacks ok");
 148   if (which != Assembler::imm_operand) {
 149     address ip = addr();
 150     address disp = Assembler::locate_operand(ip, which);
 151     address next_ip = Assembler::locate_next_instruction(ip);
 152     address a = next_ip + *(int32_t*) disp;
 153     return a;
 154   }
 155 #endif // AMD64
 156   return *pd_address_in_code();
 157 }
 158 
 159 int Relocation::pd_breakpoint_size() {
 160   // minimum breakpoint size, in short words
 161   return NativeIllegalInstruction::instruction_size / sizeof(short);
 162 }
 163 
 164 void Relocation::pd_swap_in_breakpoint(address x, short* instrs, int instrlen) {
 165   Untested("pd_swap_in_breakpoint");
 166   if (instrs != NULL) {
 167     assert(instrlen * sizeof(short) == NativeIllegalInstruction::instruction_size, "enough instrlen in reloc. data");
 168     for (int i = 0; i < instrlen; i++) {
 169       instrs[i] = ((short*)x)[i];
 170     }
 171   }
 172   NativeIllegalInstruction::insert(x);
 173 }
 174 
 175 
 176 void Relocation::pd_swap_out_breakpoint(address x, short* instrs, int instrlen) {
 177   Untested("pd_swap_out_breakpoint");
 178   assert(NativeIllegalInstruction::instruction_size == sizeof(short), "right address unit for update");
 179   NativeInstruction* ni = nativeInstruction_at(x);
 180   *(short*)ni->addr_at(0) = instrs[0];
 181 }
 182 
 183 void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 184 #ifdef _LP64
 185   typedef Assembler::WhichOperand WhichOperand;
 186   WhichOperand which = (WhichOperand) format();
 187   // This format is imm but it is really disp32
 188   which = Assembler::disp32_operand;
 189   address orig_addr = old_addr_for(addr(), src, dest);
 190   NativeInstruction* oni = nativeInstruction_at(orig_addr);
 191   int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which);
 192   // This poll_addr is incorrect by the size of the instruction it is irrelevant
 193   intptr_t poll_addr = (intptr_t)oni + *orig_disp;
 194 
 195   NativeInstruction* ni = nativeInstruction_at(addr());
 196   intptr_t new_disp = poll_addr - (intptr_t) ni;
 197 
 198   int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which);
 199   * disp = (int32_t)new_disp;
 200 
 201 #endif // _LP64
 202 }
 203 
 204 void poll_return_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
 205 #ifdef _LP64
 206   typedef Assembler::WhichOperand WhichOperand;
 207   WhichOperand which = (WhichOperand) format();
 208   // This format is imm but it is really disp32
 209   which = Assembler::disp32_operand;
 210   address orig_addr = old_addr_for(addr(), src, dest);
 211   NativeInstruction* oni = nativeInstruction_at(orig_addr);
 212   int32_t* orig_disp = (int32_t*) Assembler::locate_operand(orig_addr, which);
 213   // This poll_addr is incorrect by the size of the instruction it is irrelevant
 214   intptr_t poll_addr = (intptr_t)oni + *orig_disp;
 215 
 216   NativeInstruction* ni = nativeInstruction_at(addr());
 217   intptr_t new_disp = poll_addr - (intptr_t) ni;
 218 
 219   int32_t* disp = (int32_t*) Assembler::locate_operand(addr(), which);
 220   * disp = (int32_t)new_disp;
 221 #endif // _LP64
 222 }