1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
  27 
  28 
  29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  31 // fast versions of NegF/NegD and AbsF/AbsD.
  32 
  33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  36   // of 128-bits operands for SSE instructions.
  37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
  38   // Store the value to a 128-bits operand.
  39   operand[0] = lo;
  40   operand[1] = hi;
  41   return operand;
  42 }
  43 
  44 // Buffer for 128-bits masks used by SSE instructions.
  45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  46 
  47 // Static initialization during VM startup.
  48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  52 
  53 
  54 
  55 NEEDS_CLEANUP // remove this definitions ?
  56 const Register IC_Klass    = rax;   // where the IC klass is cached
  57 const Register SYNC_header = rax;   // synchronization header
  58 const Register SHIFT_count = rcx;   // where count for shift operations must be
  59 
  60 #define __ _masm->
  61 
  62 
  63 static void select_different_registers(Register preserve,
  64                                        Register extra,
  65                                        Register &tmp1,
  66                                        Register &tmp2) {
  67   if (tmp1 == preserve) {
  68     assert_different_registers(tmp1, tmp2, extra);
  69     tmp1 = extra;
  70   } else if (tmp2 == preserve) {
  71     assert_different_registers(tmp1, tmp2, extra);
  72     tmp2 = extra;
  73   }
  74   assert_different_registers(preserve, tmp1, tmp2);
  75 }
  76 
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2,
  83                                        Register &tmp3) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, tmp3, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, tmp3, extra);
  89     tmp2 = extra;
  90   } else if (tmp3 == preserve) {
  91     assert_different_registers(tmp1, tmp2, tmp3, extra);
  92     tmp3 = extra;
  93   }
  94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  95 }
  96 
  97 
  98 
  99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 100   if (opr->is_constant()) {
 101     LIR_Const* constant = opr->as_constant_ptr();
 102     switch (constant->type()) {
 103       case T_INT: {
 104         return true;
 105       }
 106 
 107       default:
 108         return false;
 109     }
 110   }
 111   return false;
 112 }
 113 
 114 
 115 LIR_Opr LIR_Assembler::receiverOpr() {
 116   return FrameMap::receiver_opr;
 117 }
 118 
 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 120   return receiverOpr();
 121 }
 122 
 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
 124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 125 }
 126 
 127 //--------------fpu register translations-----------------------
 128 
 129 
 130 address LIR_Assembler::float_constant(float f) {
 131   address const_addr = __ float_constant(f);
 132   if (const_addr == NULL) {
 133     bailout("const section overflow");
 134     return __ code()->consts()->start();
 135   } else {
 136     return const_addr;
 137   }
 138 }
 139 
 140 
 141 address LIR_Assembler::double_constant(double d) {
 142   address const_addr = __ double_constant(d);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 void LIR_Assembler::set_24bit_FPU() {
 153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 154 }
 155 
 156 void LIR_Assembler::reset_FPU() {
 157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 158 }
 159 
 160 void LIR_Assembler::fpop() {
 161   __ fpop();
 162 }
 163 
 164 void LIR_Assembler::fxch(int i) {
 165   __ fxch(i);
 166 }
 167 
 168 void LIR_Assembler::fld(int i) {
 169   __ fld_s(i);
 170 }
 171 
 172 void LIR_Assembler::ffree(int i) {
 173   __ ffree(i);
 174 }
 175 
 176 void LIR_Assembler::breakpoint() {
 177   __ int3();
 178 }
 179 
 180 void LIR_Assembler::push(LIR_Opr opr) {
 181   if (opr->is_single_cpu()) {
 182     __ push_reg(opr->as_register());
 183   } else if (opr->is_double_cpu()) {
 184     NOT_LP64(__ push_reg(opr->as_register_hi()));
 185     __ push_reg(opr->as_register_lo());
 186   } else if (opr->is_stack()) {
 187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 188   } else if (opr->is_constant()) {
 189     LIR_Const* const_opr = opr->as_constant_ptr();
 190     if (const_opr->type() == T_OBJECT) {
 191       __ push_oop(const_opr->as_jobject());
 192     } else if (const_opr->type() == T_INT) {
 193       __ push_jint(const_opr->as_jint());
 194     } else {
 195       ShouldNotReachHere();
 196     }
 197 
 198   } else {
 199     ShouldNotReachHere();
 200   }
 201 }
 202 
 203 void LIR_Assembler::pop(LIR_Opr opr) {
 204   if (opr->is_single_cpu()) {
 205     __ pop_reg(opr->as_register());
 206   } else {
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 212   return addr->base()->is_illegal() && addr->index()->is_illegal();
 213 }
 214 
 215 //-------------------------------------------
 216 
 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 218   return as_Address(addr, rscratch1);
 219 }
 220 
 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 222   if (addr->base()->is_illegal()) {
 223     assert(addr->index()->is_illegal(), "must be illegal too");
 224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 225     if (! __ reachable(laddr)) {
 226       __ movptr(tmp, laddr.addr());
 227       Address res(tmp, 0);
 228       return res;
 229     } else {
 230       return __ as_Address(laddr);
 231     }
 232   }
 233 
 234   Register base = addr->base()->as_pointer_register();
 235 
 236   if (addr->index()->is_illegal()) {
 237     return Address( base, addr->disp());
 238   } else if (addr->index()->is_cpu_register()) {
 239     Register index = addr->index()->as_pointer_register();
 240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 241   } else if (addr->index()->is_constant()) {
 242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 243     assert(Assembler::is_simm32(addr_offset), "must be");
 244 
 245     return Address(base, addr_offset);
 246   } else {
 247     Unimplemented();
 248     return Address();
 249   }
 250 }
 251 
 252 
 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 254   Address base = as_Address(addr);
 255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 256 }
 257 
 258 
 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 260   return as_Address(addr);
 261 }
 262 
 263 
 264 void LIR_Assembler::osr_entry() {
 265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 267   ValueStack* entry_state = osr_entry->state();
 268   int number_of_locks = entry_state->locks_size();
 269 
 270   // we jump here if osr happens with the interpreter
 271   // state set up to continue at the beginning of the
 272   // loop that triggered osr - in particular, we have
 273   // the following registers setup:
 274   //
 275   // rcx: osr buffer
 276   //
 277 
 278   // build frame
 279   ciMethod* m = compilation()->method();
 280   __ build_frame(initial_frame_size_in_bytes());
 281 
 282   // OSR buffer is
 283   //
 284   // locals[nlocals-1..0]
 285   // monitors[0..number_of_locks]
 286   //
 287   // locals is a direct copy of the interpreter frame so in the osr buffer
 288   // so first slot in the local array is the last local from the interpreter
 289   // and last slot is local[0] (receiver) from the interpreter
 290   //
 291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 293   // in the interpreter frame (the method lock if a sync method)
 294 
 295   // Initialize monitors in the compiled activation.
 296   //   rcx: pointer to osr buffer
 297   //
 298   // All other registers are dead at this point and the locals will be
 299   // copied into place by code emitted in the IR.
 300 
 301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 303     int monitor_offset = BytesPerWord * method()->max_locals() +
 304       (2 * BytesPerWord) * (number_of_locks - 1);
 305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 306     // the OSR buffer using 2 word entries: first the lock and then
 307     // the oop.
 308     for (int i = 0; i < number_of_locks; i++) {
 309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 310 #ifdef ASSERT
 311       // verify the interpreter's monitor has a non-null object
 312       {
 313         Label L;
 314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 315         __ jcc(Assembler::notZero, L);
 316         __ stop("locked object is NULL");
 317         __ bind(L);
 318       }
 319 #endif
 320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 324     }
 325   }
 326 }
 327 
 328 
 329 // inline cache check; done before the frame is built.
 330 int LIR_Assembler::check_icache() {
 331   Register receiver = FrameMap::receiver_opr->as_register();
 332   Register ic_klass = IC_Klass;
 333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 334 
 335   if (!VerifyOops) {
 336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 338       __ nop();
 339     }
 340   }
 341   int offset = __ offset();
 342   __ inline_cache_check(receiver, IC_Klass);
 343   assert(__ offset() % CodeEntryAlignment == 0 || VerifyOops, "alignment must be correct");
 344   if (VerifyOops) {
 345     // force alignment after the cache check.
 346     // It's been verified to be aligned if !VerifyOops
 347     __ align(CodeEntryAlignment);
 348   }
 349   return offset;
 350 }
 351 
 352 
 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 354   jobject o = NULL;
 355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 356   __ movoop(reg, o);
 357   patching_epilog(patch, lir_patch_normal, reg, info);
 358 }
 359 
 360 
 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
 362   if (exception->is_valid()) {
 363     // preserve exception
 364     // note: the monitor_exit runtime call is a leaf routine
 365     //       and cannot block => no GC can happen
 366     // The slow case (MonitorAccessStub) uses the first two stack slots
 367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
 368     __ movptr (Address(rsp, 2*wordSize), exception);
 369   }
 370 
 371   Register obj_reg  = obj_opr->as_register();
 372   Register lock_reg = lock_opr->as_register();
 373 
 374   // setup registers (lock_reg must be rax, for lock_object)
 375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
 376   Register hdr = lock_reg;
 377   assert(new_hdr == SYNC_header, "wrong register");
 378   lock_reg = new_hdr;
 379   // compute pointer to BasicLock
 380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
 381   __ lea(lock_reg, lock_addr);
 382   // unlock object
 383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
 384   // _slow_case_stubs->append(slow_case);
 385   // temporary fix: must be created after exceptionhandler, therefore as call stub
 386   _slow_case_stubs->append(slow_case);
 387   if (UseFastLocking) {
 388     // try inlined fast unlocking first, revert to slow locking if it fails
 389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 392   } else {
 393     // always do slow unlocking
 394     // note: the slow unlocking code could be inlined here, however if we use
 395     //       slow unlocking, speed doesn't matter anyway and this solution is
 396     //       simpler and requires less duplicated code - additionally, the
 397     //       slow unlocking code is the same in either case which simplifies
 398     //       debugging
 399     __ jmp(*slow_case->entry());
 400   }
 401   // done
 402   __ bind(*slow_case->continuation());
 403 
 404   if (exception->is_valid()) {
 405     // restore exception
 406     __ movptr (exception, Address(rsp, 2 * wordSize));
 407   }
 408 }
 409 
 410 // This specifies the rsp decrement needed to build the frame
 411 int LIR_Assembler::initial_frame_size_in_bytes() {
 412   // if rounding, must let FrameMap know!
 413 
 414   // The frame_map records size in slots (32bit word)
 415 
 416   // subtract two words to account for return address and link
 417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 418 }
 419 
 420 
 421 int LIR_Assembler::emit_exception_handler() {
 422   // if the last instruction is a call (typically to do a throw which
 423   // is coming at the end after block reordering) the return address
 424   // must still point into the code area in order to avoid assertion
 425   // failures when searching for the corresponding bci => add a nop
 426   // (was bug 5/14/1999 - gri)
 427   __ nop();
 428 
 429   // generate code for exception handler
 430   address handler_base = __ start_a_stub(exception_handler_size);
 431   if (handler_base == NULL) {
 432     // not enough space left for the handler
 433     bailout("exception handler overflow");
 434     return -1;
 435   }
 436 
 437   int offset = code_offset();
 438 
 439   // the exception oop and pc are in rax, and rdx
 440   // no other registers need to be preserved, so invalidate them
 441   __ invalidate_registers(false, true, true, false, true, true);
 442 
 443   // check that there is really an exception
 444   __ verify_not_null_oop(rax);
 445 
 446   // search an exception handler (rax: exception oop, rdx: throwing pc)
 447   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
 448 
 449   __ stop("should not reach here");
 450 
 451   assert(code_offset() - offset <= exception_handler_size, "overflow");
 452   __ end_a_stub();
 453 
 454   return offset;
 455 }
 456 
 457 
 458 // Emit the code to remove the frame from the stack in the exception
 459 // unwind path.
 460 int LIR_Assembler::emit_unwind_handler() {
 461 #ifndef PRODUCT
 462   if (CommentedAssembly) {
 463     _masm->block_comment("Unwind handler");
 464   }
 465 #endif
 466 
 467   int offset = code_offset();
 468 
 469   // Fetch the exception from TLS and clear out exception related thread state
 470   __ get_thread(rsi);
 471   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
 472   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 473   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 474 
 475   __ bind(_unwind_handler_entry);
 476   __ verify_not_null_oop(rax);
 477   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 478     __ mov(rsi, rax);  // Preserve the exception
 479   }
 480 
 481   // Preform needed unlocking
 482   MonitorExitStub* stub = NULL;
 483   if (method()->is_synchronized()) {
 484     monitor_address(0, FrameMap::rax_opr);
 485     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 486     __ unlock_object(rdi, rbx, rax, *stub->entry());
 487     __ bind(*stub->continuation());
 488   }
 489 
 490   if (compilation()->env()->dtrace_method_probes()) {
 491     __ get_thread(rax);
 492     __ movptr(Address(rsp, 0), rax);
 493     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
 494     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 495   }
 496 
 497   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 498     __ mov(rax, rsi);  // Restore the exception
 499   }
 500 
 501   // remove the activation and dispatch to the unwind handler
 502   __ remove_frame(initial_frame_size_in_bytes());
 503   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 504 
 505   // Emit the slow path assembly
 506   if (stub != NULL) {
 507     stub->emit_code(this);
 508   }
 509 
 510   return offset;
 511 }
 512 
 513 
 514 int LIR_Assembler::emit_deopt_handler() {
 515   // if the last instruction is a call (typically to do a throw which
 516   // is coming at the end after block reordering) the return address
 517   // must still point into the code area in order to avoid assertion
 518   // failures when searching for the corresponding bci => add a nop
 519   // (was bug 5/14/1999 - gri)
 520   __ nop();
 521 
 522   // generate code for exception handler
 523   address handler_base = __ start_a_stub(deopt_handler_size);
 524   if (handler_base == NULL) {
 525     // not enough space left for the handler
 526     bailout("deopt handler overflow");
 527     return -1;
 528   }
 529 
 530   int offset = code_offset();
 531   InternalAddress here(__ pc());
 532 
 533   __ pushptr(here.addr());
 534   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 535 
 536   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 537   __ end_a_stub();
 538 
 539   return offset;
 540 }
 541 
 542 
 543 // This is the fast version of java.lang.String.compare; it has not
 544 // OSR-entry and therefore, we generate a slow version for OSR's
 545 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 546   __ movptr (rbx, rcx); // receiver is in rcx
 547   __ movptr (rax, arg1->as_register());
 548 
 549   // Get addresses of first characters from both Strings
 550   __ movptr (rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 551   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 552   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 553 
 554 
 555   // rbx, may be NULL
 556   add_debug_info_for_null_check_here(info);
 557   __ movptr (rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 558   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 559   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 560 
 561   // compute minimum length (in rax) and difference of lengths (on top of stack)
 562   if (VM_Version::supports_cmov()) {
 563     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 564     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 565     __ mov      (rcx, rbx);
 566     __ subptr   (rbx, rax); // subtract lengths
 567     __ push     (rbx);      // result
 568     __ cmov     (Assembler::lessEqual, rax, rcx);
 569   } else {
 570     Label L;
 571     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 572     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
 573     __ mov      (rax, rbx);
 574     __ subptr   (rbx, rcx);
 575     __ push     (rbx);
 576     __ jcc      (Assembler::lessEqual, L);
 577     __ mov      (rax, rcx);
 578     __ bind (L);
 579   }
 580   // is minimum length 0?
 581   Label noLoop, haveResult;
 582   __ testptr (rax, rax);
 583   __ jcc (Assembler::zero, noLoop);
 584 
 585   // compare first characters
 586   __ load_unsigned_short(rcx, Address(rdi, 0));
 587   __ load_unsigned_short(rbx, Address(rsi, 0));
 588   __ subl(rcx, rbx);
 589   __ jcc(Assembler::notZero, haveResult);
 590   // starting loop
 591   __ decrement(rax); // we already tested index: skip one
 592   __ jcc(Assembler::zero, noLoop);
 593 
 594   // set rsi.edi to the end of the arrays (arrays have same length)
 595   // negate the index
 596 
 597   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 598   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 599   __ negptr(rax);
 600 
 601   // compare the strings in a loop
 602 
 603   Label loop;
 604   __ align(wordSize);
 605   __ bind(loop);
 606   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 607   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 608   __ subl(rcx, rbx);
 609   __ jcc(Assembler::notZero, haveResult);
 610   __ increment(rax);
 611   __ jcc(Assembler::notZero, loop);
 612 
 613   // strings are equal up to min length
 614 
 615   __ bind(noLoop);
 616   __ pop(rax);
 617   return_op(LIR_OprFact::illegalOpr);
 618 
 619   __ bind(haveResult);
 620   // leave instruction is going to discard the TOS value
 621   __ mov (rax, rcx); // result of call is in rax,
 622 }
 623 
 624 
 625 void LIR_Assembler::return_op(LIR_Opr result) {
 626   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 627   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 628     assert(result->fpu() == 0, "result must already be on TOS");
 629   }
 630 
 631   // Pop the stack before the safepoint code
 632   __ remove_frame(initial_frame_size_in_bytes());
 633 
 634   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 635 
 636   // Note: we do not need to round double result; float result has the right precision
 637   // the poll sets the condition code, but no data registers
 638   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 639                               relocInfo::poll_return_type);
 640 
 641   // NOTE: the requires that the polling page be reachable else the reloc
 642   // goes to the movq that loads the address and not the faulting instruction
 643   // which breaks the signal handler code
 644 
 645   __ test32(rax, polling_page);
 646 
 647   __ ret(0);
 648 }
 649 
 650 
 651 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 652   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 653                               relocInfo::poll_type);
 654 
 655   if (info != NULL) {
 656     add_debug_info_for_branch(info);
 657   } else {
 658     ShouldNotReachHere();
 659   }
 660 
 661   int offset = __ offset();
 662 
 663   // NOTE: the requires that the polling page be reachable else the reloc
 664   // goes to the movq that loads the address and not the faulting instruction
 665   // which breaks the signal handler code
 666 
 667   __ test32(rax, polling_page);
 668   return offset;
 669 }
 670 
 671 
 672 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 673   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 674 }
 675 
 676 void LIR_Assembler::swap_reg(Register a, Register b) {
 677   __ xchgptr(a, b);
 678 }
 679 
 680 
 681 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 682   assert(src->is_constant(), "should not call otherwise");
 683   assert(dest->is_register(), "should not call otherwise");
 684   LIR_Const* c = src->as_constant_ptr();
 685 
 686   switch (c->type()) {
 687     case T_INT:
 688     case T_ADDRESS: {
 689       assert(patch_code == lir_patch_none, "no patching handled here");
 690       __ movl(dest->as_register(), c->as_jint());
 691       break;
 692     }
 693 
 694     case T_LONG: {
 695       assert(patch_code == lir_patch_none, "no patching handled here");
 696 #ifdef _LP64
 697       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 698 #else
 699       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 700       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 701 #endif // _LP64
 702       break;
 703     }
 704 
 705     case T_OBJECT: {
 706       if (patch_code != lir_patch_none) {
 707         jobject2reg_with_patching(dest->as_register(), info);
 708       } else {
 709         __ movoop(dest->as_register(), c->as_jobject());
 710       }
 711       break;
 712     }
 713 
 714     case T_FLOAT: {
 715       if (dest->is_single_xmm()) {
 716         if (c->is_zero_float()) {
 717           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 718         } else {
 719           __ movflt(dest->as_xmm_float_reg(),
 720                    InternalAddress(float_constant(c->as_jfloat())));
 721         }
 722       } else {
 723         assert(dest->is_single_fpu(), "must be");
 724         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 725         if (c->is_zero_float()) {
 726           __ fldz();
 727         } else if (c->is_one_float()) {
 728           __ fld1();
 729         } else {
 730           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 731         }
 732       }
 733       break;
 734     }
 735 
 736     case T_DOUBLE: {
 737       if (dest->is_double_xmm()) {
 738         if (c->is_zero_double()) {
 739           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 740         } else {
 741           __ movdbl(dest->as_xmm_double_reg(),
 742                     InternalAddress(double_constant(c->as_jdouble())));
 743         }
 744       } else {
 745         assert(dest->is_double_fpu(), "must be");
 746         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 747         if (c->is_zero_double()) {
 748           __ fldz();
 749         } else if (c->is_one_double()) {
 750           __ fld1();
 751         } else {
 752           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 753         }
 754       }
 755       break;
 756     }
 757 
 758     default:
 759       ShouldNotReachHere();
 760   }
 761 }
 762 
 763 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 764   assert(src->is_constant(), "should not call otherwise");
 765   assert(dest->is_stack(), "should not call otherwise");
 766   LIR_Const* c = src->as_constant_ptr();
 767 
 768   switch (c->type()) {
 769     case T_INT:  // fall through
 770     case T_FLOAT:
 771     case T_ADDRESS:
 772       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 773       break;
 774 
 775     case T_OBJECT:
 776       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 777       break;
 778 
 779     case T_LONG:  // fall through
 780     case T_DOUBLE:
 781 #ifdef _LP64
 782       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 783                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 784 #else
 785       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 786                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 787       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 788                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 789 #endif // _LP64
 790       break;
 791 
 792     default:
 793       ShouldNotReachHere();
 794   }
 795 }
 796 
 797 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
 798   assert(src->is_constant(), "should not call otherwise");
 799   assert(dest->is_address(), "should not call otherwise");
 800   LIR_Const* c = src->as_constant_ptr();
 801   LIR_Address* addr = dest->as_address_ptr();
 802 
 803   int null_check_here = code_offset();
 804   switch (type) {
 805     case T_INT:    // fall through
 806     case T_FLOAT:
 807     case T_ADDRESS:
 808       __ movl(as_Address(addr), c->as_jint_bits());
 809       break;
 810 
 811     case T_OBJECT:  // fall through
 812     case T_ARRAY:
 813       if (c->as_jobject() == NULL) {
 814         __ movptr(as_Address(addr), NULL_WORD);
 815       } else {
 816         if (is_literal_address(addr)) {
 817           ShouldNotReachHere();
 818           __ movoop(as_Address(addr, noreg), c->as_jobject());
 819         } else {
 820 #ifdef _LP64
 821           __ movoop(rscratch1, c->as_jobject());
 822           null_check_here = code_offset();
 823           __ movptr(as_Address_lo(addr), rscratch1);
 824 #else
 825           __ movoop(as_Address(addr), c->as_jobject());
 826 #endif
 827         }
 828       }
 829       break;
 830 
 831     case T_LONG:    // fall through
 832     case T_DOUBLE:
 833 #ifdef _LP64
 834       if (is_literal_address(addr)) {
 835         ShouldNotReachHere();
 836         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 837       } else {
 838         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 839         null_check_here = code_offset();
 840         __ movptr(as_Address_lo(addr), r10);
 841       }
 842 #else
 843       // Always reachable in 32bit so this doesn't produce useless move literal
 844       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 845       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 846 #endif // _LP64
 847       break;
 848 
 849     case T_BOOLEAN: // fall through
 850     case T_BYTE:
 851       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 852       break;
 853 
 854     case T_CHAR:    // fall through
 855     case T_SHORT:
 856       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 857       break;
 858 
 859     default:
 860       ShouldNotReachHere();
 861   };
 862 
 863   if (info != NULL) {
 864     add_debug_info_for_null_check(null_check_here, info);
 865   }
 866 }
 867 
 868 
 869 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 870   assert(src->is_register(), "should not call otherwise");
 871   assert(dest->is_register(), "should not call otherwise");
 872 
 873   // move between cpu-registers
 874   if (dest->is_single_cpu()) {
 875 #ifdef _LP64
 876     if (src->type() == T_LONG) {
 877       // Can do LONG -> OBJECT
 878       move_regs(src->as_register_lo(), dest->as_register());
 879       return;
 880     }
 881 #endif
 882     assert(src->is_single_cpu(), "must match");
 883     if (src->type() == T_OBJECT) {
 884       __ verify_oop(src->as_register());
 885     }
 886     move_regs(src->as_register(), dest->as_register());
 887 
 888   } else if (dest->is_double_cpu()) {
 889 #ifdef _LP64
 890     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 891       // Surprising to me but we can see move of a long to t_object
 892       __ verify_oop(src->as_register());
 893       move_regs(src->as_register(), dest->as_register_lo());
 894       return;
 895     }
 896 #endif
 897     assert(src->is_double_cpu(), "must match");
 898     Register f_lo = src->as_register_lo();
 899     Register f_hi = src->as_register_hi();
 900     Register t_lo = dest->as_register_lo();
 901     Register t_hi = dest->as_register_hi();
 902 #ifdef _LP64
 903     assert(f_hi == f_lo, "must be same");
 904     assert(t_hi == t_lo, "must be same");
 905     move_regs(f_lo, t_lo);
 906 #else
 907     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 908 
 909 
 910     if (f_lo == t_hi && f_hi == t_lo) {
 911       swap_reg(f_lo, f_hi);
 912     } else if (f_hi == t_lo) {
 913       assert(f_lo != t_hi, "overwriting register");
 914       move_regs(f_hi, t_hi);
 915       move_regs(f_lo, t_lo);
 916     } else {
 917       assert(f_hi != t_lo, "overwriting register");
 918       move_regs(f_lo, t_lo);
 919       move_regs(f_hi, t_hi);
 920     }
 921 #endif // LP64
 922 
 923     // special moves from fpu-register to xmm-register
 924     // necessary for method results
 925   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 926     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 927     __ fld_s(Address(rsp, 0));
 928   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 929     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 930     __ fld_d(Address(rsp, 0));
 931   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 932     __ fstp_s(Address(rsp, 0));
 933     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 934   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 935     __ fstp_d(Address(rsp, 0));
 936     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 937 
 938     // move between xmm-registers
 939   } else if (dest->is_single_xmm()) {
 940     assert(src->is_single_xmm(), "must match");
 941     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 942   } else if (dest->is_double_xmm()) {
 943     assert(src->is_double_xmm(), "must match");
 944     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 945 
 946     // move between fpu-registers (no instruction necessary because of fpu-stack)
 947   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 948     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 949     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 950   } else {
 951     ShouldNotReachHere();
 952   }
 953 }
 954 
 955 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 956   assert(src->is_register(), "should not call otherwise");
 957   assert(dest->is_stack(), "should not call otherwise");
 958 
 959   if (src->is_single_cpu()) {
 960     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 961     if (type == T_OBJECT || type == T_ARRAY) {
 962       __ verify_oop(src->as_register());
 963       __ movptr (dst, src->as_register());
 964     } else {
 965       __ movl (dst, src->as_register());
 966     }
 967 
 968   } else if (src->is_double_cpu()) {
 969     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 970     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 971     __ movptr (dstLO, src->as_register_lo());
 972     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 973 
 974   } else if (src->is_single_xmm()) {
 975     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 976     __ movflt(dst_addr, src->as_xmm_float_reg());
 977 
 978   } else if (src->is_double_xmm()) {
 979     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 980     __ movdbl(dst_addr, src->as_xmm_double_reg());
 981 
 982   } else if (src->is_single_fpu()) {
 983     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 984     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 985     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 986     else                   __ fst_s  (dst_addr);
 987 
 988   } else if (src->is_double_fpu()) {
 989     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 990     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 991     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 992     else                   __ fst_d  (dst_addr);
 993 
 994   } else {
 995     ShouldNotReachHere();
 996   }
 997 }
 998 
 999 
1000 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */) {
1001   LIR_Address* to_addr = dest->as_address_ptr();
1002   PatchingStub* patch = NULL;
1003 
1004   if (type == T_ARRAY || type == T_OBJECT) {
1005     __ verify_oop(src->as_register());
1006   }
1007   if (patch_code != lir_patch_none) {
1008     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1009     Address toa = as_Address(to_addr);
1010     assert(toa.disp() != 0, "must have");
1011   }
1012   if (info != NULL) {
1013     add_debug_info_for_null_check_here(info);
1014   }
1015 
1016   switch (type) {
1017     case T_FLOAT: {
1018       if (src->is_single_xmm()) {
1019         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1020       } else {
1021         assert(src->is_single_fpu(), "must be");
1022         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1023         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1024         else                    __ fst_s (as_Address(to_addr));
1025       }
1026       break;
1027     }
1028 
1029     case T_DOUBLE: {
1030       if (src->is_double_xmm()) {
1031         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1032       } else {
1033         assert(src->is_double_fpu(), "must be");
1034         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1035         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1036         else                    __ fst_d (as_Address(to_addr));
1037       }
1038       break;
1039     }
1040 
1041     case T_ADDRESS: // fall through
1042     case T_ARRAY:   // fall through
1043     case T_OBJECT:  // fall through
1044 #ifdef _LP64
1045       __ movptr(as_Address(to_addr), src->as_register());
1046       break;
1047 #endif // _LP64
1048     case T_INT:
1049       __ movl(as_Address(to_addr), src->as_register());
1050       break;
1051 
1052     case T_LONG: {
1053       Register from_lo = src->as_register_lo();
1054       Register from_hi = src->as_register_hi();
1055 #ifdef _LP64
1056       __ movptr(as_Address_lo(to_addr), from_lo);
1057 #else
1058       Register base = to_addr->base()->as_register();
1059       Register index = noreg;
1060       if (to_addr->index()->is_register()) {
1061         index = to_addr->index()->as_register();
1062       }
1063       if (base == from_lo || index == from_lo) {
1064         assert(base != from_hi, "can't be");
1065         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1066         __ movl(as_Address_hi(to_addr), from_hi);
1067         if (patch != NULL) {
1068           patching_epilog(patch, lir_patch_high, base, info);
1069           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1070           patch_code = lir_patch_low;
1071         }
1072         __ movl(as_Address_lo(to_addr), from_lo);
1073       } else {
1074         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1075         __ movl(as_Address_lo(to_addr), from_lo);
1076         if (patch != NULL) {
1077           patching_epilog(patch, lir_patch_low, base, info);
1078           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1079           patch_code = lir_patch_high;
1080         }
1081         __ movl(as_Address_hi(to_addr), from_hi);
1082       }
1083 #endif // _LP64
1084       break;
1085     }
1086 
1087     case T_BYTE:    // fall through
1088     case T_BOOLEAN: {
1089       Register src_reg = src->as_register();
1090       Address dst_addr = as_Address(to_addr);
1091       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1092       __ movb(dst_addr, src_reg);
1093       break;
1094     }
1095 
1096     case T_CHAR:    // fall through
1097     case T_SHORT:
1098       __ movw(as_Address(to_addr), src->as_register());
1099       break;
1100 
1101     default:
1102       ShouldNotReachHere();
1103   }
1104 
1105   if (patch_code != lir_patch_none) {
1106     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1107   }
1108 }
1109 
1110 
1111 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1112   assert(src->is_stack(), "should not call otherwise");
1113   assert(dest->is_register(), "should not call otherwise");
1114 
1115   if (dest->is_single_cpu()) {
1116     if (type == T_ARRAY || type == T_OBJECT) {
1117       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1118       __ verify_oop(dest->as_register());
1119     } else {
1120       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1121     }
1122 
1123   } else if (dest->is_double_cpu()) {
1124     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1125     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1126     __ movptr(dest->as_register_lo(), src_addr_LO);
1127     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1128 
1129   } else if (dest->is_single_xmm()) {
1130     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1131     __ movflt(dest->as_xmm_float_reg(), src_addr);
1132 
1133   } else if (dest->is_double_xmm()) {
1134     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1135     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1136 
1137   } else if (dest->is_single_fpu()) {
1138     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1139     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1140     __ fld_s(src_addr);
1141 
1142   } else if (dest->is_double_fpu()) {
1143     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1144     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1145     __ fld_d(src_addr);
1146 
1147   } else {
1148     ShouldNotReachHere();
1149   }
1150 }
1151 
1152 
1153 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1154   if (src->is_single_stack()) {
1155     if (type == T_OBJECT || type == T_ARRAY) {
1156       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1157       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1158     } else {
1159 #ifndef _LP64
1160       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1161       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1162 #else
1163       //no pushl on 64bits
1164       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1165       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1166 #endif
1167     }
1168 
1169   } else if (src->is_double_stack()) {
1170 #ifdef _LP64
1171     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1172     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1173 #else
1174     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1175     // push and pop the part at src + wordSize, adding wordSize for the previous push
1176     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1177     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1178     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1179 #endif // _LP64
1180 
1181   } else {
1182     ShouldNotReachHere();
1183   }
1184 }
1185 
1186 
1187 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */) {
1188   assert(src->is_address(), "should not call otherwise");
1189   assert(dest->is_register(), "should not call otherwise");
1190 
1191   LIR_Address* addr = src->as_address_ptr();
1192   Address from_addr = as_Address(addr);
1193 
1194   switch (type) {
1195     case T_BOOLEAN: // fall through
1196     case T_BYTE:    // fall through
1197     case T_CHAR:    // fall through
1198     case T_SHORT:
1199       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1200         // on pre P6 processors we may get partial register stalls
1201         // so blow away the value of to_rinfo before loading a
1202         // partial word into it.  Do it here so that it precedes
1203         // the potential patch point below.
1204         __ xorptr(dest->as_register(), dest->as_register());
1205       }
1206       break;
1207   }
1208 
1209   PatchingStub* patch = NULL;
1210   if (patch_code != lir_patch_none) {
1211     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1212     assert(from_addr.disp() != 0, "must have");
1213   }
1214   if (info != NULL) {
1215     add_debug_info_for_null_check_here(info);
1216   }
1217 
1218   switch (type) {
1219     case T_FLOAT: {
1220       if (dest->is_single_xmm()) {
1221         __ movflt(dest->as_xmm_float_reg(), from_addr);
1222       } else {
1223         assert(dest->is_single_fpu(), "must be");
1224         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1225         __ fld_s(from_addr);
1226       }
1227       break;
1228     }
1229 
1230     case T_DOUBLE: {
1231       if (dest->is_double_xmm()) {
1232         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1233       } else {
1234         assert(dest->is_double_fpu(), "must be");
1235         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1236         __ fld_d(from_addr);
1237       }
1238       break;
1239     }
1240 
1241     case T_ADDRESS: // fall through
1242     case T_OBJECT:  // fall through
1243     case T_ARRAY:   // fall through
1244 #ifdef _LP64
1245       __ movptr(dest->as_register(), from_addr);
1246       break;
1247 #endif // _L64
1248     case T_INT:
1249       __ movl(dest->as_register(), from_addr);
1250       break;
1251 
1252     case T_LONG: {
1253       Register to_lo = dest->as_register_lo();
1254       Register to_hi = dest->as_register_hi();
1255 #ifdef _LP64
1256       __ movptr(to_lo, as_Address_lo(addr));
1257 #else
1258       Register base = addr->base()->as_register();
1259       Register index = noreg;
1260       if (addr->index()->is_register()) {
1261         index = addr->index()->as_register();
1262       }
1263       if ((base == to_lo && index == to_hi) ||
1264           (base == to_hi && index == to_lo)) {
1265         // addresses with 2 registers are only formed as a result of
1266         // array access so this code will never have to deal with
1267         // patches or null checks.
1268         assert(info == NULL && patch == NULL, "must be");
1269         __ lea(to_hi, as_Address(addr));
1270         __ movl(to_lo, Address(to_hi, 0));
1271         __ movl(to_hi, Address(to_hi, BytesPerWord));
1272       } else if (base == to_lo || index == to_lo) {
1273         assert(base != to_hi, "can't be");
1274         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1275         __ movl(to_hi, as_Address_hi(addr));
1276         if (patch != NULL) {
1277           patching_epilog(patch, lir_patch_high, base, info);
1278           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1279           patch_code = lir_patch_low;
1280         }
1281         __ movl(to_lo, as_Address_lo(addr));
1282       } else {
1283         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1284         __ movl(to_lo, as_Address_lo(addr));
1285         if (patch != NULL) {
1286           patching_epilog(patch, lir_patch_low, base, info);
1287           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1288           patch_code = lir_patch_high;
1289         }
1290         __ movl(to_hi, as_Address_hi(addr));
1291       }
1292 #endif // _LP64
1293       break;
1294     }
1295 
1296     case T_BOOLEAN: // fall through
1297     case T_BYTE: {
1298       Register dest_reg = dest->as_register();
1299       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1300       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1301         __ movsbl(dest_reg, from_addr);
1302       } else {
1303         __ movb(dest_reg, from_addr);
1304         __ shll(dest_reg, 24);
1305         __ sarl(dest_reg, 24);
1306       }
1307       break;
1308     }
1309 
1310     case T_CHAR: {
1311       Register dest_reg = dest->as_register();
1312       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1313       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1314         __ movzwl(dest_reg, from_addr);
1315       } else {
1316         __ movw(dest_reg, from_addr);
1317       }
1318       break;
1319     }
1320 
1321     case T_SHORT: {
1322       Register dest_reg = dest->as_register();
1323       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1324         __ movswl(dest_reg, from_addr);
1325       } else {
1326         __ movw(dest_reg, from_addr);
1327         __ shll(dest_reg, 16);
1328         __ sarl(dest_reg, 16);
1329       }
1330       break;
1331     }
1332 
1333     default:
1334       ShouldNotReachHere();
1335   }
1336 
1337   if (patch != NULL) {
1338     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1339   }
1340 
1341   if (type == T_ARRAY || type == T_OBJECT) {
1342     __ verify_oop(dest->as_register());
1343   }
1344 }
1345 
1346 
1347 void LIR_Assembler::prefetchr(LIR_Opr src) {
1348   LIR_Address* addr = src->as_address_ptr();
1349   Address from_addr = as_Address(addr);
1350 
1351   if (VM_Version::supports_sse()) {
1352     switch (ReadPrefetchInstr) {
1353       case 0:
1354         __ prefetchnta(from_addr); break;
1355       case 1:
1356         __ prefetcht0(from_addr); break;
1357       case 2:
1358         __ prefetcht2(from_addr); break;
1359       default:
1360         ShouldNotReachHere(); break;
1361     }
1362   } else if (VM_Version::supports_3dnow()) {
1363     __ prefetchr(from_addr);
1364   }
1365 }
1366 
1367 
1368 void LIR_Assembler::prefetchw(LIR_Opr src) {
1369   LIR_Address* addr = src->as_address_ptr();
1370   Address from_addr = as_Address(addr);
1371 
1372   if (VM_Version::supports_sse()) {
1373     switch (AllocatePrefetchInstr) {
1374       case 0:
1375         __ prefetchnta(from_addr); break;
1376       case 1:
1377         __ prefetcht0(from_addr); break;
1378       case 2:
1379         __ prefetcht2(from_addr); break;
1380       case 3:
1381         __ prefetchw(from_addr); break;
1382       default:
1383         ShouldNotReachHere(); break;
1384     }
1385   } else if (VM_Version::supports_3dnow()) {
1386     __ prefetchw(from_addr);
1387   }
1388 }
1389 
1390 
1391 NEEDS_CLEANUP; // This could be static?
1392 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1393   int elem_size = type2aelembytes(type);
1394   switch (elem_size) {
1395     case 1: return Address::times_1;
1396     case 2: return Address::times_2;
1397     case 4: return Address::times_4;
1398     case 8: return Address::times_8;
1399   }
1400   ShouldNotReachHere();
1401   return Address::no_scale;
1402 }
1403 
1404 
1405 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1406   switch (op->code()) {
1407     case lir_idiv:
1408     case lir_irem:
1409       arithmetic_idiv(op->code(),
1410                       op->in_opr1(),
1411                       op->in_opr2(),
1412                       op->in_opr3(),
1413                       op->result_opr(),
1414                       op->info());
1415       break;
1416     default:      ShouldNotReachHere(); break;
1417   }
1418 }
1419 
1420 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1421 #ifdef ASSERT
1422   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1423   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1424   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1425 #endif
1426 
1427   if (op->cond() == lir_cond_always) {
1428     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1429     __ jmp (*(op->label()));
1430   } else {
1431     Assembler::Condition acond = Assembler::zero;
1432     if (op->code() == lir_cond_float_branch) {
1433       assert(op->ublock() != NULL, "must have unordered successor");
1434       __ jcc(Assembler::parity, *(op->ublock()->label()));
1435       switch(op->cond()) {
1436         case lir_cond_equal:        acond = Assembler::equal;      break;
1437         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1438         case lir_cond_less:         acond = Assembler::below;      break;
1439         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1440         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1441         case lir_cond_greater:      acond = Assembler::above;      break;
1442         default:                         ShouldNotReachHere();
1443       }
1444     } else {
1445       switch (op->cond()) {
1446         case lir_cond_equal:        acond = Assembler::equal;       break;
1447         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1448         case lir_cond_less:         acond = Assembler::less;        break;
1449         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1450         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1451         case lir_cond_greater:      acond = Assembler::greater;     break;
1452         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1453         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1454         default:                         ShouldNotReachHere();
1455       }
1456     }
1457     __ jcc(acond,*(op->label()));
1458   }
1459 }
1460 
1461 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1462   LIR_Opr src  = op->in_opr();
1463   LIR_Opr dest = op->result_opr();
1464 
1465   switch (op->bytecode()) {
1466     case Bytecodes::_i2l:
1467 #ifdef _LP64
1468       __ movl2ptr(dest->as_register_lo(), src->as_register());
1469 #else
1470       move_regs(src->as_register(), dest->as_register_lo());
1471       move_regs(src->as_register(), dest->as_register_hi());
1472       __ sarl(dest->as_register_hi(), 31);
1473 #endif // LP64
1474       break;
1475 
1476     case Bytecodes::_l2i:
1477       move_regs(src->as_register_lo(), dest->as_register());
1478       break;
1479 
1480     case Bytecodes::_i2b:
1481       move_regs(src->as_register(), dest->as_register());
1482       __ sign_extend_byte(dest->as_register());
1483       break;
1484 
1485     case Bytecodes::_i2c:
1486       move_regs(src->as_register(), dest->as_register());
1487       __ andl(dest->as_register(), 0xFFFF);
1488       break;
1489 
1490     case Bytecodes::_i2s:
1491       move_regs(src->as_register(), dest->as_register());
1492       __ sign_extend_short(dest->as_register());
1493       break;
1494 
1495 
1496     case Bytecodes::_f2d:
1497     case Bytecodes::_d2f:
1498       if (dest->is_single_xmm()) {
1499         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1500       } else if (dest->is_double_xmm()) {
1501         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1502       } else {
1503         assert(src->fpu() == dest->fpu(), "register must be equal");
1504         // do nothing (float result is rounded later through spilling)
1505       }
1506       break;
1507 
1508     case Bytecodes::_i2f:
1509     case Bytecodes::_i2d:
1510       if (dest->is_single_xmm()) {
1511         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1512       } else if (dest->is_double_xmm()) {
1513         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1514       } else {
1515         assert(dest->fpu() == 0, "result must be on TOS");
1516         __ movl(Address(rsp, 0), src->as_register());
1517         __ fild_s(Address(rsp, 0));
1518       }
1519       break;
1520 
1521     case Bytecodes::_f2i:
1522     case Bytecodes::_d2i:
1523       if (src->is_single_xmm()) {
1524         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1525       } else if (src->is_double_xmm()) {
1526         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1527       } else {
1528         assert(src->fpu() == 0, "input must be on TOS");
1529         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1530         __ fist_s(Address(rsp, 0));
1531         __ movl(dest->as_register(), Address(rsp, 0));
1532         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1533       }
1534 
1535       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1536       assert(op->stub() != NULL, "stub required");
1537       __ cmpl(dest->as_register(), 0x80000000);
1538       __ jcc(Assembler::equal, *op->stub()->entry());
1539       __ bind(*op->stub()->continuation());
1540       break;
1541 
1542     case Bytecodes::_l2f:
1543     case Bytecodes::_l2d:
1544       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1545       assert(dest->fpu() == 0, "result must be on TOS");
1546 
1547       __ movptr(Address(rsp, 0),            src->as_register_lo());
1548       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1549       __ fild_d(Address(rsp, 0));
1550       // float result is rounded later through spilling
1551       break;
1552 
1553     case Bytecodes::_f2l:
1554     case Bytecodes::_d2l:
1555       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1556       assert(src->fpu() == 0, "input must be on TOS");
1557       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1558 
1559       // instruction sequence too long to inline it here
1560       {
1561         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1562       }
1563       break;
1564 
1565     default: ShouldNotReachHere();
1566   }
1567 }
1568 
1569 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1570   if (op->init_check()) {
1571     __ cmpl(Address(op->klass()->as_register(),
1572                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1573             instanceKlass::fully_initialized);
1574     add_debug_info_for_null_check_here(op->stub()->info());
1575     __ jcc(Assembler::notEqual, *op->stub()->entry());
1576   }
1577   __ allocate_object(op->obj()->as_register(),
1578                      op->tmp1()->as_register(),
1579                      op->tmp2()->as_register(),
1580                      op->header_size(),
1581                      op->object_size(),
1582                      op->klass()->as_register(),
1583                      *op->stub()->entry());
1584   __ bind(*op->stub()->continuation());
1585 }
1586 
1587 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1588   if (UseSlowPath ||
1589       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1590       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1591     __ jmp(*op->stub()->entry());
1592   } else {
1593     Register len =  op->len()->as_register();
1594     Register tmp1 = op->tmp1()->as_register();
1595     Register tmp2 = op->tmp2()->as_register();
1596     Register tmp3 = op->tmp3()->as_register();
1597     if (len == tmp1) {
1598       tmp1 = tmp3;
1599     } else if (len == tmp2) {
1600       tmp2 = tmp3;
1601     } else if (len == tmp3) {
1602       // everything is ok
1603     } else {
1604       __ mov(tmp3, len);
1605     }
1606     __ allocate_array(op->obj()->as_register(),
1607                       len,
1608                       tmp1,
1609                       tmp2,
1610                       arrayOopDesc::header_size(op->type()),
1611                       array_element_size(op->type()),
1612                       op->klass()->as_register(),
1613                       *op->stub()->entry());
1614   }
1615   __ bind(*op->stub()->continuation());
1616 }
1617 
1618 void LIR_Assembler::type_profile_helper(Register mdo,
1619                                         ciMethodData *md, ciProfileData *data,
1620                                         Register recv, Label* update_done) {
1621   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1622     Label next_test;
1623     // See if the receiver is receiver[n].
1624     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1625     __ jccb(Assembler::notEqual, next_test);
1626     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1627     __ addptr(data_addr, DataLayout::counter_increment);
1628     __ jmp(*update_done);
1629     __ bind(next_test);
1630   }
1631 
1632   // Didn't find receiver; find next empty slot and fill it in
1633   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1634     Label next_test;
1635     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1636     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1637     __ jccb(Assembler::notEqual, next_test);
1638     __ movptr(recv_addr, recv);
1639     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1640     __ jmp(*update_done);
1641     __ bind(next_test);
1642   }
1643 }
1644 
1645 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1646   // we always need a stub for the failure case.
1647   CodeStub* stub = op->stub();
1648   Register obj = op->object()->as_register();
1649   Register k_RInfo = op->tmp1()->as_register();
1650   Register klass_RInfo = op->tmp2()->as_register();
1651   Register dst = op->result_opr()->as_register();
1652   ciKlass* k = op->klass();
1653   Register Rtmp1 = noreg;
1654 
1655   // check if it needs to be profiled
1656   ciMethodData* md;
1657   ciProfileData* data;
1658 
1659   if (op->should_profile()) {
1660     ciMethod* method = op->profiled_method();
1661     assert(method != NULL, "Should have method");
1662     int bci = op->profiled_bci();
1663     md = method->method_data();
1664     if (md == NULL) {
1665       bailout("out of memory building methodDataOop");
1666       return;
1667     }
1668     data = md->bci_to_data(bci);
1669     assert(data != NULL,                "need data for type check");
1670     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1671   }
1672   Label profile_cast_success, profile_cast_failure;
1673   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1674   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1675 
1676   if (obj == k_RInfo) {
1677     k_RInfo = dst;
1678   } else if (obj == klass_RInfo) {
1679     klass_RInfo = dst;
1680   }
1681   if (k->is_loaded()) {
1682     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1683   } else {
1684     Rtmp1 = op->tmp3()->as_register();
1685     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1686   }
1687 
1688   assert_different_registers(obj, k_RInfo, klass_RInfo);
1689   if (!k->is_loaded()) {
1690     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1691   } else {
1692 #ifdef _LP64
1693     __ movoop(k_RInfo, k->constant_encoding());
1694 #endif // _LP64
1695   }
1696   assert(obj != k_RInfo, "must be different");
1697 
1698   __ cmpptr(obj, (int32_t)NULL_WORD);
1699   if (op->should_profile()) {
1700     Label not_null;
1701     __ jccb(Assembler::notEqual, not_null);
1702     // Object is null; update MDO and exit
1703     Register mdo  = klass_RInfo;
1704     __ movoop(mdo, md->constant_encoding());
1705     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1706     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1707     __ orl(data_addr, header_bits);
1708     __ jmp(*obj_is_null);
1709     __ bind(not_null);
1710   } else {
1711     __ jcc(Assembler::equal, *obj_is_null);
1712   }
1713   __ verify_oop(obj);
1714 
1715   if (op->fast_check()) {
1716     // get object class
1717     // not a safepoint as obj null check happens earlier
1718     if (k->is_loaded()) {
1719 #ifdef _LP64
1720       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1721 #else
1722       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1723 #endif // _LP64
1724     } else {
1725       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1726     }
1727     __ jcc(Assembler::notEqual, *failure_target);
1728     // successful cast, fall through to profile or jump
1729   } else {
1730     // get object class
1731     // not a safepoint as obj null check happens earlier
1732     __ movptr(klass_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1733     if (k->is_loaded()) {
1734       // See if we get an immediate positive hit
1735 #ifdef _LP64
1736       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1737 #else
1738       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1739 #endif // _LP64
1740       if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1741         __ jcc(Assembler::notEqual, *failure_target);
1742         // successful cast, fall through to profile or jump
1743       } else {
1744         // See if we get an immediate positive hit
1745         __ jcc(Assembler::equal, *success_target);
1746         // check for self
1747 #ifdef _LP64
1748         __ cmpptr(klass_RInfo, k_RInfo);
1749 #else
1750         __ cmpoop(klass_RInfo, k->constant_encoding());
1751 #endif // _LP64
1752         __ jcc(Assembler::equal, *success_target);
1753 
1754         __ push(klass_RInfo);
1755 #ifdef _LP64
1756         __ push(k_RInfo);
1757 #else
1758         __ pushoop(k->constant_encoding());
1759 #endif // _LP64
1760         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1761         __ pop(klass_RInfo);
1762         __ pop(klass_RInfo);
1763         // result is a boolean
1764         __ cmpl(klass_RInfo, 0);
1765         __ jcc(Assembler::equal, *failure_target);
1766         // successful cast, fall through to profile or jump
1767       }
1768     } else {
1769       // perform the fast part of the checking logic
1770       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1771       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1772       __ push(klass_RInfo);
1773       __ push(k_RInfo);
1774       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1775       __ pop(klass_RInfo);
1776       __ pop(k_RInfo);
1777       // result is a boolean
1778       __ cmpl(k_RInfo, 0);
1779       __ jcc(Assembler::equal, *failure_target);
1780       // successful cast, fall through to profile or jump
1781     }
1782   }
1783   if (op->should_profile()) {
1784     Register mdo  = klass_RInfo, recv = k_RInfo;
1785     __ bind(profile_cast_success);
1786     __ movoop(mdo, md->constant_encoding());
1787     __ movptr(recv, Address(obj, oopDesc::klass_offset_in_bytes()));
1788     Label update_done;
1789     type_profile_helper(mdo, md, data, recv, success);
1790     __ jmp(*success);
1791 
1792     __ bind(profile_cast_failure);
1793     __ movoop(mdo, md->constant_encoding());
1794     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1795     __ subptr(counter_addr, DataLayout::counter_increment);
1796     __ jmp(*failure);
1797   }
1798   __ jmp(*success);
1799 }
1800 
1801 
1802 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1803   LIR_Code code = op->code();
1804   if (code == lir_store_check) {
1805     Register value = op->object()->as_register();
1806     Register array = op->array()->as_register();
1807     Register k_RInfo = op->tmp1()->as_register();
1808     Register klass_RInfo = op->tmp2()->as_register();
1809     Register Rtmp1 = op->tmp3()->as_register();
1810 
1811     CodeStub* stub = op->stub();
1812 
1813     // check if it needs to be profiled
1814     ciMethodData* md;
1815     ciProfileData* data;
1816 
1817     if (op->should_profile()) {
1818       ciMethod* method = op->profiled_method();
1819       assert(method != NULL, "Should have method");
1820       int bci = op->profiled_bci();
1821       md = method->method_data();
1822       if (md == NULL) {
1823         bailout("out of memory building methodDataOop");
1824         return;
1825       }
1826       data = md->bci_to_data(bci);
1827       assert(data != NULL,                "need data for type check");
1828       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1829     }
1830     Label profile_cast_success, profile_cast_failure, done;
1831     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1832     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1833 
1834     __ cmpptr(value, (int32_t)NULL_WORD);
1835     if (op->should_profile()) {
1836       Label not_null;
1837       __ jccb(Assembler::notEqual, not_null);
1838       // Object is null; update MDO and exit
1839       Register mdo  = klass_RInfo;
1840       __ movoop(mdo, md->constant_encoding());
1841       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1842       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1843       __ orl(data_addr, header_bits);
1844       __ jmp(done);
1845       __ bind(not_null);
1846     } else {
1847       __ jcc(Assembler::equal, done);
1848     }
1849 
1850     add_debug_info_for_null_check_here(op->info_for_exception());
1851     __ movptr(k_RInfo, Address(array, oopDesc::klass_offset_in_bytes()));
1852     __ movptr(klass_RInfo, Address(value, oopDesc::klass_offset_in_bytes()));
1853 
1854     // get instance klass
1855     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1856     // perform the fast part of the checking logic
1857     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1858     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1859     __ push(klass_RInfo);
1860     __ push(k_RInfo);
1861     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1862     __ pop(klass_RInfo);
1863     __ pop(k_RInfo);
1864     // result is a boolean
1865     __ cmpl(k_RInfo, 0);
1866     __ jcc(Assembler::equal, *failure_target);
1867     // fall through to the success case
1868 
1869     if (op->should_profile()) {
1870       Register mdo  = klass_RInfo, recv = k_RInfo;
1871       __ bind(profile_cast_success);
1872       __ movoop(mdo, md->constant_encoding());
1873       __ movptr(recv, Address(value, oopDesc::klass_offset_in_bytes()));
1874       Label update_done;
1875       type_profile_helper(mdo, md, data, recv, &done);
1876       __ jmpb(done);
1877 
1878       __ bind(profile_cast_failure);
1879       __ movoop(mdo, md->constant_encoding());
1880       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1881       __ subptr(counter_addr, DataLayout::counter_increment);
1882       __ jmp(*stub->entry());
1883     }
1884 
1885     __ bind(done);
1886   } else
1887     if (code == lir_checkcast) {
1888       Register obj = op->object()->as_register();
1889       Register dst = op->result_opr()->as_register();
1890       Label success;
1891       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1892       __ bind(success);
1893       if (dst != obj) {
1894         __ mov(dst, obj);
1895       }
1896     } else
1897       if (code == lir_instanceof) {
1898         Register obj = op->object()->as_register();
1899         Register dst = op->result_opr()->as_register();
1900         Label success, failure, done;
1901         emit_typecheck_helper(op, &success, &failure, &failure);
1902         __ bind(failure);
1903         __ xorptr(dst, dst);
1904         __ jmpb(done);
1905         __ bind(success);
1906         __ movptr(dst, 1);
1907         __ bind(done);
1908       } else {
1909         ShouldNotReachHere();
1910       }
1911 
1912 }
1913 
1914 
1915 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1916   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1917     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1918     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1919     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1920     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1921     Register addr = op->addr()->as_register();
1922     if (os::is_MP()) {
1923       __ lock();
1924     }
1925     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1926 
1927   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1928     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1929     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1930     Register newval = op->new_value()->as_register();
1931     Register cmpval = op->cmp_value()->as_register();
1932     assert(cmpval == rax, "wrong register");
1933     assert(newval != NULL, "new val must be register");
1934     assert(cmpval != newval, "cmp and new values must be in different registers");
1935     assert(cmpval != addr, "cmp and addr must be in different registers");
1936     assert(newval != addr, "new value and addr must be in different registers");
1937     if (os::is_MP()) {
1938       __ lock();
1939     }
1940     if ( op->code() == lir_cas_obj) {
1941       __ cmpxchgptr(newval, Address(addr, 0));
1942     } else if (op->code() == lir_cas_int) {
1943       __ cmpxchgl(newval, Address(addr, 0));
1944     }
1945 #ifdef _LP64
1946   } else if (op->code() == lir_cas_long) {
1947     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1948     Register newval = op->new_value()->as_register_lo();
1949     Register cmpval = op->cmp_value()->as_register_lo();
1950     assert(cmpval == rax, "wrong register");
1951     assert(newval != NULL, "new val must be register");
1952     assert(cmpval != newval, "cmp and new values must be in different registers");
1953     assert(cmpval != addr, "cmp and addr must be in different registers");
1954     assert(newval != addr, "new value and addr must be in different registers");
1955     if (os::is_MP()) {
1956       __ lock();
1957     }
1958     __ cmpxchgq(newval, Address(addr, 0));
1959 #endif // _LP64
1960   } else {
1961     Unimplemented();
1962   }
1963 }
1964 
1965 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
1966   Assembler::Condition acond, ncond;
1967   switch (condition) {
1968     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1969     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1970     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1971     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1972     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1973     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1974     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1975     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1976     default:                    ShouldNotReachHere();
1977   }
1978 
1979   if (opr1->is_cpu_register()) {
1980     reg2reg(opr1, result);
1981   } else if (opr1->is_stack()) {
1982     stack2reg(opr1, result, result->type());
1983   } else if (opr1->is_constant()) {
1984     const2reg(opr1, result, lir_patch_none, NULL);
1985   } else {
1986     ShouldNotReachHere();
1987   }
1988 
1989   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
1990     // optimized version that does not require a branch
1991     if (opr2->is_single_cpu()) {
1992       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1993       __ cmov(ncond, result->as_register(), opr2->as_register());
1994     } else if (opr2->is_double_cpu()) {
1995       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1996       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1997       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
1998       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
1999     } else if (opr2->is_single_stack()) {
2000       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2001     } else if (opr2->is_double_stack()) {
2002       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2003       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2004     } else {
2005       ShouldNotReachHere();
2006     }
2007 
2008   } else {
2009     Label skip;
2010     __ jcc (acond, skip);
2011     if (opr2->is_cpu_register()) {
2012       reg2reg(opr2, result);
2013     } else if (opr2->is_stack()) {
2014       stack2reg(opr2, result, result->type());
2015     } else if (opr2->is_constant()) {
2016       const2reg(opr2, result, lir_patch_none, NULL);
2017     } else {
2018       ShouldNotReachHere();
2019     }
2020     __ bind(skip);
2021   }
2022 }
2023 
2024 
2025 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2026   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2027 
2028   if (left->is_single_cpu()) {
2029     assert(left == dest, "left and dest must be equal");
2030     Register lreg = left->as_register();
2031 
2032     if (right->is_single_cpu()) {
2033       // cpu register - cpu register
2034       Register rreg = right->as_register();
2035       switch (code) {
2036         case lir_add: __ addl (lreg, rreg); break;
2037         case lir_sub: __ subl (lreg, rreg); break;
2038         case lir_mul: __ imull(lreg, rreg); break;
2039         default:      ShouldNotReachHere();
2040       }
2041 
2042     } else if (right->is_stack()) {
2043       // cpu register - stack
2044       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2045       switch (code) {
2046         case lir_add: __ addl(lreg, raddr); break;
2047         case lir_sub: __ subl(lreg, raddr); break;
2048         default:      ShouldNotReachHere();
2049       }
2050 
2051     } else if (right->is_constant()) {
2052       // cpu register - constant
2053       jint c = right->as_constant_ptr()->as_jint();
2054       switch (code) {
2055         case lir_add: {
2056           __ incrementl(lreg, c);
2057           break;
2058         }
2059         case lir_sub: {
2060           __ decrementl(lreg, c);
2061           break;
2062         }
2063         default: ShouldNotReachHere();
2064       }
2065 
2066     } else {
2067       ShouldNotReachHere();
2068     }
2069 
2070   } else if (left->is_double_cpu()) {
2071     assert(left == dest, "left and dest must be equal");
2072     Register lreg_lo = left->as_register_lo();
2073     Register lreg_hi = left->as_register_hi();
2074 
2075     if (right->is_double_cpu()) {
2076       // cpu register - cpu register
2077       Register rreg_lo = right->as_register_lo();
2078       Register rreg_hi = right->as_register_hi();
2079       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2080       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2081       switch (code) {
2082         case lir_add:
2083           __ addptr(lreg_lo, rreg_lo);
2084           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2085           break;
2086         case lir_sub:
2087           __ subptr(lreg_lo, rreg_lo);
2088           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2089           break;
2090         case lir_mul:
2091 #ifdef _LP64
2092           __ imulq(lreg_lo, rreg_lo);
2093 #else
2094           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2095           __ imull(lreg_hi, rreg_lo);
2096           __ imull(rreg_hi, lreg_lo);
2097           __ addl (rreg_hi, lreg_hi);
2098           __ mull (rreg_lo);
2099           __ addl (lreg_hi, rreg_hi);
2100 #endif // _LP64
2101           break;
2102         default:
2103           ShouldNotReachHere();
2104       }
2105 
2106     } else if (right->is_constant()) {
2107       // cpu register - constant
2108 #ifdef _LP64
2109       jlong c = right->as_constant_ptr()->as_jlong_bits();
2110       __ movptr(r10, (intptr_t) c);
2111       switch (code) {
2112         case lir_add:
2113           __ addptr(lreg_lo, r10);
2114           break;
2115         case lir_sub:
2116           __ subptr(lreg_lo, r10);
2117           break;
2118         default:
2119           ShouldNotReachHere();
2120       }
2121 #else
2122       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2123       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2124       switch (code) {
2125         case lir_add:
2126           __ addptr(lreg_lo, c_lo);
2127           __ adcl(lreg_hi, c_hi);
2128           break;
2129         case lir_sub:
2130           __ subptr(lreg_lo, c_lo);
2131           __ sbbl(lreg_hi, c_hi);
2132           break;
2133         default:
2134           ShouldNotReachHere();
2135       }
2136 #endif // _LP64
2137 
2138     } else {
2139       ShouldNotReachHere();
2140     }
2141 
2142   } else if (left->is_single_xmm()) {
2143     assert(left == dest, "left and dest must be equal");
2144     XMMRegister lreg = left->as_xmm_float_reg();
2145 
2146     if (right->is_single_xmm()) {
2147       XMMRegister rreg = right->as_xmm_float_reg();
2148       switch (code) {
2149         case lir_add: __ addss(lreg, rreg);  break;
2150         case lir_sub: __ subss(lreg, rreg);  break;
2151         case lir_mul_strictfp: // fall through
2152         case lir_mul: __ mulss(lreg, rreg);  break;
2153         case lir_div_strictfp: // fall through
2154         case lir_div: __ divss(lreg, rreg);  break;
2155         default: ShouldNotReachHere();
2156       }
2157     } else {
2158       Address raddr;
2159       if (right->is_single_stack()) {
2160         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2161       } else if (right->is_constant()) {
2162         // hack for now
2163         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2164       } else {
2165         ShouldNotReachHere();
2166       }
2167       switch (code) {
2168         case lir_add: __ addss(lreg, raddr);  break;
2169         case lir_sub: __ subss(lreg, raddr);  break;
2170         case lir_mul_strictfp: // fall through
2171         case lir_mul: __ mulss(lreg, raddr);  break;
2172         case lir_div_strictfp: // fall through
2173         case lir_div: __ divss(lreg, raddr);  break;
2174         default: ShouldNotReachHere();
2175       }
2176     }
2177 
2178   } else if (left->is_double_xmm()) {
2179     assert(left == dest, "left and dest must be equal");
2180 
2181     XMMRegister lreg = left->as_xmm_double_reg();
2182     if (right->is_double_xmm()) {
2183       XMMRegister rreg = right->as_xmm_double_reg();
2184       switch (code) {
2185         case lir_add: __ addsd(lreg, rreg);  break;
2186         case lir_sub: __ subsd(lreg, rreg);  break;
2187         case lir_mul_strictfp: // fall through
2188         case lir_mul: __ mulsd(lreg, rreg);  break;
2189         case lir_div_strictfp: // fall through
2190         case lir_div: __ divsd(lreg, rreg);  break;
2191         default: ShouldNotReachHere();
2192       }
2193     } else {
2194       Address raddr;
2195       if (right->is_double_stack()) {
2196         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2197       } else if (right->is_constant()) {
2198         // hack for now
2199         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2200       } else {
2201         ShouldNotReachHere();
2202       }
2203       switch (code) {
2204         case lir_add: __ addsd(lreg, raddr);  break;
2205         case lir_sub: __ subsd(lreg, raddr);  break;
2206         case lir_mul_strictfp: // fall through
2207         case lir_mul: __ mulsd(lreg, raddr);  break;
2208         case lir_div_strictfp: // fall through
2209         case lir_div: __ divsd(lreg, raddr);  break;
2210         default: ShouldNotReachHere();
2211       }
2212     }
2213 
2214   } else if (left->is_single_fpu()) {
2215     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2216 
2217     if (right->is_single_fpu()) {
2218       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2219 
2220     } else {
2221       assert(left->fpu_regnr() == 0, "left must be on TOS");
2222       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2223 
2224       Address raddr;
2225       if (right->is_single_stack()) {
2226         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2227       } else if (right->is_constant()) {
2228         address const_addr = float_constant(right->as_jfloat());
2229         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2230         // hack for now
2231         raddr = __ as_Address(InternalAddress(const_addr));
2232       } else {
2233         ShouldNotReachHere();
2234       }
2235 
2236       switch (code) {
2237         case lir_add: __ fadd_s(raddr); break;
2238         case lir_sub: __ fsub_s(raddr); break;
2239         case lir_mul_strictfp: // fall through
2240         case lir_mul: __ fmul_s(raddr); break;
2241         case lir_div_strictfp: // fall through
2242         case lir_div: __ fdiv_s(raddr); break;
2243         default:      ShouldNotReachHere();
2244       }
2245     }
2246 
2247   } else if (left->is_double_fpu()) {
2248     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2249 
2250     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2251       // Double values require special handling for strictfp mul/div on x86
2252       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2253       __ fmulp(left->fpu_regnrLo() + 1);
2254     }
2255 
2256     if (right->is_double_fpu()) {
2257       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2258 
2259     } else {
2260       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2261       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2262 
2263       Address raddr;
2264       if (right->is_double_stack()) {
2265         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2266       } else if (right->is_constant()) {
2267         // hack for now
2268         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2269       } else {
2270         ShouldNotReachHere();
2271       }
2272 
2273       switch (code) {
2274         case lir_add: __ fadd_d(raddr); break;
2275         case lir_sub: __ fsub_d(raddr); break;
2276         case lir_mul_strictfp: // fall through
2277         case lir_mul: __ fmul_d(raddr); break;
2278         case lir_div_strictfp: // fall through
2279         case lir_div: __ fdiv_d(raddr); break;
2280         default: ShouldNotReachHere();
2281       }
2282     }
2283 
2284     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2285       // Double values require special handling for strictfp mul/div on x86
2286       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2287       __ fmulp(dest->fpu_regnrLo() + 1);
2288     }
2289 
2290   } else if (left->is_single_stack() || left->is_address()) {
2291     assert(left == dest, "left and dest must be equal");
2292 
2293     Address laddr;
2294     if (left->is_single_stack()) {
2295       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2296     } else if (left->is_address()) {
2297       laddr = as_Address(left->as_address_ptr());
2298     } else {
2299       ShouldNotReachHere();
2300     }
2301 
2302     if (right->is_single_cpu()) {
2303       Register rreg = right->as_register();
2304       switch (code) {
2305         case lir_add: __ addl(laddr, rreg); break;
2306         case lir_sub: __ subl(laddr, rreg); break;
2307         default:      ShouldNotReachHere();
2308       }
2309     } else if (right->is_constant()) {
2310       jint c = right->as_constant_ptr()->as_jint();
2311       switch (code) {
2312         case lir_add: {
2313           __ incrementl(laddr, c);
2314           break;
2315         }
2316         case lir_sub: {
2317           __ decrementl(laddr, c);
2318           break;
2319         }
2320         default: ShouldNotReachHere();
2321       }
2322     } else {
2323       ShouldNotReachHere();
2324     }
2325 
2326   } else {
2327     ShouldNotReachHere();
2328   }
2329 }
2330 
2331 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2332   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2333   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2334   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2335 
2336   bool left_is_tos = (left_index == 0);
2337   bool dest_is_tos = (dest_index == 0);
2338   int non_tos_index = (left_is_tos ? right_index : left_index);
2339 
2340   switch (code) {
2341     case lir_add:
2342       if (pop_fpu_stack)       __ faddp(non_tos_index);
2343       else if (dest_is_tos)    __ fadd (non_tos_index);
2344       else                     __ fadda(non_tos_index);
2345       break;
2346 
2347     case lir_sub:
2348       if (left_is_tos) {
2349         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2350         else if (dest_is_tos)  __ fsub  (non_tos_index);
2351         else                   __ fsubra(non_tos_index);
2352       } else {
2353         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2354         else if (dest_is_tos)  __ fsubr (non_tos_index);
2355         else                   __ fsuba (non_tos_index);
2356       }
2357       break;
2358 
2359     case lir_mul_strictfp: // fall through
2360     case lir_mul:
2361       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2362       else if (dest_is_tos)    __ fmul (non_tos_index);
2363       else                     __ fmula(non_tos_index);
2364       break;
2365 
2366     case lir_div_strictfp: // fall through
2367     case lir_div:
2368       if (left_is_tos) {
2369         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2370         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2371         else                   __ fdivra(non_tos_index);
2372       } else {
2373         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2374         else if (dest_is_tos)  __ fdivr (non_tos_index);
2375         else                   __ fdiva (non_tos_index);
2376       }
2377       break;
2378 
2379     case lir_rem:
2380       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2381       __ fremr(noreg);
2382       break;
2383 
2384     default:
2385       ShouldNotReachHere();
2386   }
2387 }
2388 
2389 
2390 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2391   if (value->is_double_xmm()) {
2392     switch(code) {
2393       case lir_abs :
2394         {
2395           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2396             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2397           }
2398           __ andpd(dest->as_xmm_double_reg(),
2399                     ExternalAddress((address)double_signmask_pool));
2400         }
2401         break;
2402 
2403       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2404       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2405       default      : ShouldNotReachHere();
2406     }
2407 
2408   } else if (value->is_double_fpu()) {
2409     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2410     switch(code) {
2411       case lir_log   : __ flog() ; break;
2412       case lir_log10 : __ flog10() ; break;
2413       case lir_abs   : __ fabs() ; break;
2414       case lir_sqrt  : __ fsqrt(); break;
2415       case lir_sin   :
2416         // Should consider not saving rbx, if not necessary
2417         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2418         break;
2419       case lir_cos :
2420         // Should consider not saving rbx, if not necessary
2421         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2422         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2423         break;
2424       case lir_tan :
2425         // Should consider not saving rbx, if not necessary
2426         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2427         break;
2428       default      : ShouldNotReachHere();
2429     }
2430   } else {
2431     Unimplemented();
2432   }
2433 }
2434 
2435 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2436   // assert(left->destroys_register(), "check");
2437   if (left->is_single_cpu()) {
2438     Register reg = left->as_register();
2439     if (right->is_constant()) {
2440       int val = right->as_constant_ptr()->as_jint();
2441       switch (code) {
2442         case lir_logic_and: __ andl (reg, val); break;
2443         case lir_logic_or:  __ orl  (reg, val); break;
2444         case lir_logic_xor: __ xorl (reg, val); break;
2445         default: ShouldNotReachHere();
2446       }
2447     } else if (right->is_stack()) {
2448       // added support for stack operands
2449       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2450       switch (code) {
2451         case lir_logic_and: __ andl (reg, raddr); break;
2452         case lir_logic_or:  __ orl  (reg, raddr); break;
2453         case lir_logic_xor: __ xorl (reg, raddr); break;
2454         default: ShouldNotReachHere();
2455       }
2456     } else {
2457       Register rright = right->as_register();
2458       switch (code) {
2459         case lir_logic_and: __ andptr (reg, rright); break;
2460         case lir_logic_or : __ orptr  (reg, rright); break;
2461         case lir_logic_xor: __ xorptr (reg, rright); break;
2462         default: ShouldNotReachHere();
2463       }
2464     }
2465     move_regs(reg, dst->as_register());
2466   } else {
2467     Register l_lo = left->as_register_lo();
2468     Register l_hi = left->as_register_hi();
2469     if (right->is_constant()) {
2470 #ifdef _LP64
2471       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2472       switch (code) {
2473         case lir_logic_and:
2474           __ andq(l_lo, rscratch1);
2475           break;
2476         case lir_logic_or:
2477           __ orq(l_lo, rscratch1);
2478           break;
2479         case lir_logic_xor:
2480           __ xorq(l_lo, rscratch1);
2481           break;
2482         default: ShouldNotReachHere();
2483       }
2484 #else
2485       int r_lo = right->as_constant_ptr()->as_jint_lo();
2486       int r_hi = right->as_constant_ptr()->as_jint_hi();
2487       switch (code) {
2488         case lir_logic_and:
2489           __ andl(l_lo, r_lo);
2490           __ andl(l_hi, r_hi);
2491           break;
2492         case lir_logic_or:
2493           __ orl(l_lo, r_lo);
2494           __ orl(l_hi, r_hi);
2495           break;
2496         case lir_logic_xor:
2497           __ xorl(l_lo, r_lo);
2498           __ xorl(l_hi, r_hi);
2499           break;
2500         default: ShouldNotReachHere();
2501       }
2502 #endif // _LP64
2503     } else {
2504 #ifdef _LP64
2505       Register r_lo;
2506       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2507         r_lo = right->as_register();
2508       } else {
2509         r_lo = right->as_register_lo();
2510       }
2511 #else
2512       Register r_lo = right->as_register_lo();
2513       Register r_hi = right->as_register_hi();
2514       assert(l_lo != r_hi, "overwriting registers");
2515 #endif
2516       switch (code) {
2517         case lir_logic_and:
2518           __ andptr(l_lo, r_lo);
2519           NOT_LP64(__ andptr(l_hi, r_hi);)
2520           break;
2521         case lir_logic_or:
2522           __ orptr(l_lo, r_lo);
2523           NOT_LP64(__ orptr(l_hi, r_hi);)
2524           break;
2525         case lir_logic_xor:
2526           __ xorptr(l_lo, r_lo);
2527           NOT_LP64(__ xorptr(l_hi, r_hi);)
2528           break;
2529         default: ShouldNotReachHere();
2530       }
2531     }
2532 
2533     Register dst_lo = dst->as_register_lo();
2534     Register dst_hi = dst->as_register_hi();
2535 
2536 #ifdef _LP64
2537     move_regs(l_lo, dst_lo);
2538 #else
2539     if (dst_lo == l_hi) {
2540       assert(dst_hi != l_lo, "overwriting registers");
2541       move_regs(l_hi, dst_hi);
2542       move_regs(l_lo, dst_lo);
2543     } else {
2544       assert(dst_lo != l_hi, "overwriting registers");
2545       move_regs(l_lo, dst_lo);
2546       move_regs(l_hi, dst_hi);
2547     }
2548 #endif // _LP64
2549   }
2550 }
2551 
2552 
2553 // we assume that rax, and rdx can be overwritten
2554 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2555 
2556   assert(left->is_single_cpu(),   "left must be register");
2557   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2558   assert(result->is_single_cpu(), "result must be register");
2559 
2560   //  assert(left->destroys_register(), "check");
2561   //  assert(right->destroys_register(), "check");
2562 
2563   Register lreg = left->as_register();
2564   Register dreg = result->as_register();
2565 
2566   if (right->is_constant()) {
2567     int divisor = right->as_constant_ptr()->as_jint();
2568     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2569     if (code == lir_idiv) {
2570       assert(lreg == rax, "must be rax,");
2571       assert(temp->as_register() == rdx, "tmp register must be rdx");
2572       __ cdql(); // sign extend into rdx:rax
2573       if (divisor == 2) {
2574         __ subl(lreg, rdx);
2575       } else {
2576         __ andl(rdx, divisor - 1);
2577         __ addl(lreg, rdx);
2578       }
2579       __ sarl(lreg, log2_intptr(divisor));
2580       move_regs(lreg, dreg);
2581     } else if (code == lir_irem) {
2582       Label done;
2583       __ mov(dreg, lreg);
2584       __ andl(dreg, 0x80000000 | (divisor - 1));
2585       __ jcc(Assembler::positive, done);
2586       __ decrement(dreg);
2587       __ orl(dreg, ~(divisor - 1));
2588       __ increment(dreg);
2589       __ bind(done);
2590     } else {
2591       ShouldNotReachHere();
2592     }
2593   } else {
2594     Register rreg = right->as_register();
2595     assert(lreg == rax, "left register must be rax,");
2596     assert(rreg != rdx, "right register must not be rdx");
2597     assert(temp->as_register() == rdx, "tmp register must be rdx");
2598 
2599     move_regs(lreg, rax);
2600 
2601     int idivl_offset = __ corrected_idivl(rreg);
2602     add_debug_info_for_div0(idivl_offset, info);
2603     if (code == lir_irem) {
2604       move_regs(rdx, dreg); // result is in rdx
2605     } else {
2606       move_regs(rax, dreg);
2607     }
2608   }
2609 }
2610 
2611 
2612 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2613   if (opr1->is_single_cpu()) {
2614     Register reg1 = opr1->as_register();
2615     if (opr2->is_single_cpu()) {
2616       // cpu register - cpu register
2617       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2618         __ cmpptr(reg1, opr2->as_register());
2619       } else {
2620         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2621         __ cmpl(reg1, opr2->as_register());
2622       }
2623     } else if (opr2->is_stack()) {
2624       // cpu register - stack
2625       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2626         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2627       } else {
2628         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2629       }
2630     } else if (opr2->is_constant()) {
2631       // cpu register - constant
2632       LIR_Const* c = opr2->as_constant_ptr();
2633       if (c->type() == T_INT) {
2634         __ cmpl(reg1, c->as_jint());
2635       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2636         // In 64bit oops are single register
2637         jobject o = c->as_jobject();
2638         if (o == NULL) {
2639           __ cmpptr(reg1, (int32_t)NULL_WORD);
2640         } else {
2641 #ifdef _LP64
2642           __ movoop(rscratch1, o);
2643           __ cmpptr(reg1, rscratch1);
2644 #else
2645           __ cmpoop(reg1, c->as_jobject());
2646 #endif // _LP64
2647         }
2648       } else {
2649         ShouldNotReachHere();
2650       }
2651       // cpu register - address
2652     } else if (opr2->is_address()) {
2653       if (op->info() != NULL) {
2654         add_debug_info_for_null_check_here(op->info());
2655       }
2656       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2657     } else {
2658       ShouldNotReachHere();
2659     }
2660 
2661   } else if(opr1->is_double_cpu()) {
2662     Register xlo = opr1->as_register_lo();
2663     Register xhi = opr1->as_register_hi();
2664     if (opr2->is_double_cpu()) {
2665 #ifdef _LP64
2666       __ cmpptr(xlo, opr2->as_register_lo());
2667 #else
2668       // cpu register - cpu register
2669       Register ylo = opr2->as_register_lo();
2670       Register yhi = opr2->as_register_hi();
2671       __ subl(xlo, ylo);
2672       __ sbbl(xhi, yhi);
2673       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2674         __ orl(xhi, xlo);
2675       }
2676 #endif // _LP64
2677     } else if (opr2->is_constant()) {
2678       // cpu register - constant 0
2679       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2680 #ifdef _LP64
2681       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2682 #else
2683       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2684       __ orl(xhi, xlo);
2685 #endif // _LP64
2686     } else {
2687       ShouldNotReachHere();
2688     }
2689 
2690   } else if (opr1->is_single_xmm()) {
2691     XMMRegister reg1 = opr1->as_xmm_float_reg();
2692     if (opr2->is_single_xmm()) {
2693       // xmm register - xmm register
2694       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2695     } else if (opr2->is_stack()) {
2696       // xmm register - stack
2697       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2698     } else if (opr2->is_constant()) {
2699       // xmm register - constant
2700       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2701     } else if (opr2->is_address()) {
2702       // xmm register - address
2703       if (op->info() != NULL) {
2704         add_debug_info_for_null_check_here(op->info());
2705       }
2706       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2707     } else {
2708       ShouldNotReachHere();
2709     }
2710 
2711   } else if (opr1->is_double_xmm()) {
2712     XMMRegister reg1 = opr1->as_xmm_double_reg();
2713     if (opr2->is_double_xmm()) {
2714       // xmm register - xmm register
2715       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2716     } else if (opr2->is_stack()) {
2717       // xmm register - stack
2718       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2719     } else if (opr2->is_constant()) {
2720       // xmm register - constant
2721       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2722     } else if (opr2->is_address()) {
2723       // xmm register - address
2724       if (op->info() != NULL) {
2725         add_debug_info_for_null_check_here(op->info());
2726       }
2727       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2728     } else {
2729       ShouldNotReachHere();
2730     }
2731 
2732   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2733     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2734     assert(opr2->is_fpu_register(), "both must be registers");
2735     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2736 
2737   } else if (opr1->is_address() && opr2->is_constant()) {
2738     LIR_Const* c = opr2->as_constant_ptr();
2739 #ifdef _LP64
2740     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2741       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2742       __ movoop(rscratch1, c->as_jobject());
2743     }
2744 #endif // LP64
2745     if (op->info() != NULL) {
2746       add_debug_info_for_null_check_here(op->info());
2747     }
2748     // special case: address - constant
2749     LIR_Address* addr = opr1->as_address_ptr();
2750     if (c->type() == T_INT) {
2751       __ cmpl(as_Address(addr), c->as_jint());
2752     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2753 #ifdef _LP64
2754       // %%% Make this explode if addr isn't reachable until we figure out a
2755       // better strategy by giving noreg as the temp for as_Address
2756       __ cmpptr(rscratch1, as_Address(addr, noreg));
2757 #else
2758       __ cmpoop(as_Address(addr), c->as_jobject());
2759 #endif // _LP64
2760     } else {
2761       ShouldNotReachHere();
2762     }
2763 
2764   } else {
2765     ShouldNotReachHere();
2766   }
2767 }
2768 
2769 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2770   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2771     if (left->is_single_xmm()) {
2772       assert(right->is_single_xmm(), "must match");
2773       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2774     } else if (left->is_double_xmm()) {
2775       assert(right->is_double_xmm(), "must match");
2776       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2777 
2778     } else {
2779       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2780       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2781 
2782       assert(left->fpu() == 0, "left must be on TOS");
2783       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2784                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2785     }
2786   } else {
2787     assert(code == lir_cmp_l2i, "check");
2788 #ifdef _LP64
2789     Label done;
2790     Register dest = dst->as_register();
2791     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2792     __ movl(dest, -1);
2793     __ jccb(Assembler::less, done);
2794     __ set_byte_if_not_zero(dest);
2795     __ movzbl(dest, dest);
2796     __ bind(done);
2797 #else
2798     __ lcmp2int(left->as_register_hi(),
2799                 left->as_register_lo(),
2800                 right->as_register_hi(),
2801                 right->as_register_lo());
2802     move_regs(left->as_register_hi(), dst->as_register());
2803 #endif // _LP64
2804   }
2805 }
2806 
2807 
2808 void LIR_Assembler::align_call(LIR_Code code) {
2809   if (os::is_MP()) {
2810     // make sure that the displacement word of the call ends up word aligned
2811     int offset = __ offset();
2812     switch (code) {
2813       case lir_static_call:
2814       case lir_optvirtual_call:
2815       case lir_dynamic_call:
2816         offset += NativeCall::displacement_offset;
2817         break;
2818       case lir_icvirtual_call:
2819         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2820       break;
2821       case lir_virtual_call:  // currently, sparc-specific for niagara
2822       default: ShouldNotReachHere();
2823     }
2824     while (offset++ % BytesPerWord != 0) {
2825       __ nop();
2826     }
2827   }
2828 }
2829 
2830 
2831 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2832   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2833          "must be aligned");
2834   __ call(AddressLiteral(op->addr(), rtype));
2835   add_call_info(code_offset(), op->info());
2836 }
2837 
2838 
2839 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2840   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2841   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2842   assert(!os::is_MP() ||
2843          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2844          "must be aligned");
2845   __ call(AddressLiteral(op->addr(), rh));
2846   add_call_info(code_offset(), op->info());
2847 }
2848 
2849 
2850 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2851 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2852   ShouldNotReachHere();
2853 }
2854 
2855 
2856 void LIR_Assembler::emit_static_call_stub() {
2857   address call_pc = __ pc();
2858   address stub = __ start_a_stub(call_stub_size);
2859   if (stub == NULL) {
2860     bailout("static call stub overflow");
2861     return;
2862   }
2863 
2864   int start = __ offset();
2865   if (os::is_MP()) {
2866     // make sure that the displacement word of the call ends up word aligned
2867     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2868     while (offset++ % BytesPerWord != 0) {
2869       __ nop();
2870     }
2871   }
2872   __ relocate(static_stub_Relocation::spec(call_pc));
2873   __ movoop(rbx, (jobject)NULL);
2874   // must be set to -1 at code generation time
2875   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2876   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2877   __ jump(RuntimeAddress(__ pc()));
2878 
2879   assert(__ offset() - start <= call_stub_size, "stub too big");
2880   __ end_a_stub();
2881 }
2882 
2883 
2884 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2885   assert(exceptionOop->as_register() == rax, "must match");
2886   assert(exceptionPC->as_register() == rdx, "must match");
2887 
2888   // exception object is not added to oop map by LinearScan
2889   // (LinearScan assumes that no oops are in fixed registers)
2890   info->add_register_oop(exceptionOop);
2891   Runtime1::StubID unwind_id;
2892 
2893   // get current pc information
2894   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2895   int pc_for_athrow_offset = __ offset();
2896   InternalAddress pc_for_athrow(__ pc());
2897   __ lea(exceptionPC->as_register(), pc_for_athrow);
2898   add_call_info(pc_for_athrow_offset, info); // for exception handler
2899 
2900   __ verify_not_null_oop(rax);
2901   // search an exception handler (rax: exception oop, rdx: throwing pc)
2902   if (compilation()->has_fpu_code()) {
2903     unwind_id = Runtime1::handle_exception_id;
2904   } else {
2905     unwind_id = Runtime1::handle_exception_nofpu_id;
2906   }
2907   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2908 
2909   // enough room for two byte trap
2910   __ nop();
2911 }
2912 
2913 
2914 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2915   assert(exceptionOop->as_register() == rax, "must match");
2916 
2917   __ jmp(_unwind_handler_entry);
2918 }
2919 
2920 
2921 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2922 
2923   // optimized version for linear scan:
2924   // * count must be already in ECX (guaranteed by LinearScan)
2925   // * left and dest must be equal
2926   // * tmp must be unused
2927   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2928   assert(left == dest, "left and dest must be equal");
2929   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2930 
2931   if (left->is_single_cpu()) {
2932     Register value = left->as_register();
2933     assert(value != SHIFT_count, "left cannot be ECX");
2934 
2935     switch (code) {
2936       case lir_shl:  __ shll(value); break;
2937       case lir_shr:  __ sarl(value); break;
2938       case lir_ushr: __ shrl(value); break;
2939       default: ShouldNotReachHere();
2940     }
2941   } else if (left->is_double_cpu()) {
2942     Register lo = left->as_register_lo();
2943     Register hi = left->as_register_hi();
2944     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2945 #ifdef _LP64
2946     switch (code) {
2947       case lir_shl:  __ shlptr(lo);        break;
2948       case lir_shr:  __ sarptr(lo);        break;
2949       case lir_ushr: __ shrptr(lo);        break;
2950       default: ShouldNotReachHere();
2951     }
2952 #else
2953 
2954     switch (code) {
2955       case lir_shl:  __ lshl(hi, lo);        break;
2956       case lir_shr:  __ lshr(hi, lo, true);  break;
2957       case lir_ushr: __ lshr(hi, lo, false); break;
2958       default: ShouldNotReachHere();
2959     }
2960 #endif // LP64
2961   } else {
2962     ShouldNotReachHere();
2963   }
2964 }
2965 
2966 
2967 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2968   if (dest->is_single_cpu()) {
2969     // first move left into dest so that left is not destroyed by the shift
2970     Register value = dest->as_register();
2971     count = count & 0x1F; // Java spec
2972 
2973     move_regs(left->as_register(), value);
2974     switch (code) {
2975       case lir_shl:  __ shll(value, count); break;
2976       case lir_shr:  __ sarl(value, count); break;
2977       case lir_ushr: __ shrl(value, count); break;
2978       default: ShouldNotReachHere();
2979     }
2980   } else if (dest->is_double_cpu()) {
2981 #ifndef _LP64
2982     Unimplemented();
2983 #else
2984     // first move left into dest so that left is not destroyed by the shift
2985     Register value = dest->as_register_lo();
2986     count = count & 0x1F; // Java spec
2987 
2988     move_regs(left->as_register_lo(), value);
2989     switch (code) {
2990       case lir_shl:  __ shlptr(value, count); break;
2991       case lir_shr:  __ sarptr(value, count); break;
2992       case lir_ushr: __ shrptr(value, count); break;
2993       default: ShouldNotReachHere();
2994     }
2995 #endif // _LP64
2996   } else {
2997     ShouldNotReachHere();
2998   }
2999 }
3000 
3001 
3002 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3003   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3004   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3005   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3006   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3007 }
3008 
3009 
3010 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3011   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3012   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3013   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3014   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3015 }
3016 
3017 
3018 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3019   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3020   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3021   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3022   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3023 }
3024 
3025 
3026 // This code replaces a call to arraycopy; no exception may
3027 // be thrown in this code, they must be thrown in the System.arraycopy
3028 // activation frame; we could save some checks if this would not be the case
3029 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3030   ciArrayKlass* default_type = op->expected_type();
3031   Register src = op->src()->as_register();
3032   Register dst = op->dst()->as_register();
3033   Register src_pos = op->src_pos()->as_register();
3034   Register dst_pos = op->dst_pos()->as_register();
3035   Register length  = op->length()->as_register();
3036   Register tmp = op->tmp()->as_register();
3037 
3038   CodeStub* stub = op->stub();
3039   int flags = op->flags();
3040   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3041   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3042 
3043   // if we don't know anything or it's an object array, just go through the generic arraycopy
3044   if (default_type == NULL) {
3045     Label done;
3046     // save outgoing arguments on stack in case call to System.arraycopy is needed
3047     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3048     // for interpreter calling conventions. Now we have to do it in new style conventions.
3049     // For the moment until C1 gets the new register allocator I just force all the
3050     // args to the right place (except the register args) and then on the back side
3051     // reload the register args properly if we go slow path. Yuck
3052 
3053     // These are proper for the calling convention
3054 
3055     store_parameter(length, 2);
3056     store_parameter(dst_pos, 1);
3057     store_parameter(dst, 0);
3058 
3059     // these are just temporary placements until we need to reload
3060     store_parameter(src_pos, 3);
3061     store_parameter(src, 4);
3062     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3063 
3064     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3065 
3066     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3067 #ifdef _LP64
3068     // The arguments are in java calling convention so we can trivially shift them to C
3069     // convention
3070     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3071     __ mov(c_rarg0, j_rarg0);
3072     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3073     __ mov(c_rarg1, j_rarg1);
3074     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3075     __ mov(c_rarg2, j_rarg2);
3076     assert_different_registers(c_rarg3, j_rarg4);
3077     __ mov(c_rarg3, j_rarg3);
3078 #ifdef _WIN64
3079     // Allocate abi space for args but be sure to keep stack aligned
3080     __ subptr(rsp, 6*wordSize);
3081     store_parameter(j_rarg4, 4);
3082     __ call(RuntimeAddress(entry));
3083     __ addptr(rsp, 6*wordSize);
3084 #else
3085     __ mov(c_rarg4, j_rarg4);
3086     __ call(RuntimeAddress(entry));
3087 #endif // _WIN64
3088 #else
3089     __ push(length);
3090     __ push(dst_pos);
3091     __ push(dst);
3092     __ push(src_pos);
3093     __ push(src);
3094     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
3095 
3096 #endif // _LP64
3097 
3098     __ cmpl(rax, 0);
3099     __ jcc(Assembler::equal, *stub->continuation());
3100 
3101     // Reload values from the stack so they are where the stub
3102     // expects them.
3103     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3104     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3105     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3106     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3107     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3108     __ jmp(*stub->entry());
3109 
3110     __ bind(*stub->continuation());
3111     return;
3112   }
3113 
3114   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3115 
3116   int elem_size = type2aelembytes(basic_type);
3117   int shift_amount;
3118   Address::ScaleFactor scale;
3119 
3120   switch (elem_size) {
3121     case 1 :
3122       shift_amount = 0;
3123       scale = Address::times_1;
3124       break;
3125     case 2 :
3126       shift_amount = 1;
3127       scale = Address::times_2;
3128       break;
3129     case 4 :
3130       shift_amount = 2;
3131       scale = Address::times_4;
3132       break;
3133     case 8 :
3134       shift_amount = 3;
3135       scale = Address::times_8;
3136       break;
3137     default:
3138       ShouldNotReachHere();
3139   }
3140 
3141   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3142   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3143   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3144   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3145 
3146   // length and pos's are all sign extended at this point on 64bit
3147 
3148   // test for NULL
3149   if (flags & LIR_OpArrayCopy::src_null_check) {
3150     __ testptr(src, src);
3151     __ jcc(Assembler::zero, *stub->entry());
3152   }
3153   if (flags & LIR_OpArrayCopy::dst_null_check) {
3154     __ testptr(dst, dst);
3155     __ jcc(Assembler::zero, *stub->entry());
3156   }
3157 
3158   // check if negative
3159   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3160     __ testl(src_pos, src_pos);
3161     __ jcc(Assembler::less, *stub->entry());
3162   }
3163   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3164     __ testl(dst_pos, dst_pos);
3165     __ jcc(Assembler::less, *stub->entry());
3166   }
3167   if (flags & LIR_OpArrayCopy::length_positive_check) {
3168     __ testl(length, length);
3169     __ jcc(Assembler::less, *stub->entry());
3170   }
3171 
3172   if (flags & LIR_OpArrayCopy::src_range_check) {
3173     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3174     __ cmpl(tmp, src_length_addr);
3175     __ jcc(Assembler::above, *stub->entry());
3176   }
3177   if (flags & LIR_OpArrayCopy::dst_range_check) {
3178     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3179     __ cmpl(tmp, dst_length_addr);
3180     __ jcc(Assembler::above, *stub->entry());
3181   }
3182 
3183   if (flags & LIR_OpArrayCopy::type_check) {
3184     __ movptr(tmp, src_klass_addr);
3185     __ cmpptr(tmp, dst_klass_addr);
3186     __ jcc(Assembler::notEqual, *stub->entry());
3187   }
3188 
3189 #ifdef ASSERT
3190   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3191     // Sanity check the known type with the incoming class.  For the
3192     // primitive case the types must match exactly with src.klass and
3193     // dst.klass each exactly matching the default type.  For the
3194     // object array case, if no type check is needed then either the
3195     // dst type is exactly the expected type and the src type is a
3196     // subtype which we can't check or src is the same array as dst
3197     // but not necessarily exactly of type default_type.
3198     Label known_ok, halt;
3199     __ movoop(tmp, default_type->constant_encoding());
3200     if (basic_type != T_OBJECT) {
3201       __ cmpptr(tmp, dst_klass_addr);
3202       __ jcc(Assembler::notEqual, halt);
3203       __ cmpptr(tmp, src_klass_addr);
3204       __ jcc(Assembler::equal, known_ok);
3205     } else {
3206       __ cmpptr(tmp, dst_klass_addr);
3207       __ jcc(Assembler::equal, known_ok);
3208       __ cmpptr(src, dst);
3209       __ jcc(Assembler::equal, known_ok);
3210     }
3211     __ bind(halt);
3212     __ stop("incorrect type information in arraycopy");
3213     __ bind(known_ok);
3214   }
3215 #endif
3216 
3217   if (shift_amount > 0 && basic_type != T_OBJECT) {
3218     __ shlptr(length, shift_amount);
3219   }
3220 
3221 #ifdef _LP64
3222   assert_different_registers(c_rarg0, dst, dst_pos, length);
3223   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3224   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3225   assert_different_registers(c_rarg1, length);
3226   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3227   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3228   __ mov(c_rarg2, length);
3229 
3230 #else
3231   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3232   store_parameter(tmp, 0);
3233   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3234   store_parameter(tmp, 1);
3235   store_parameter(length, 2);
3236 #endif // _LP64
3237   if (basic_type == T_OBJECT) {
3238     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
3239   } else {
3240     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
3241   }
3242 
3243   __ bind(*stub->continuation());
3244 }
3245 
3246 
3247 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3248   Register obj = op->obj_opr()->as_register();  // may not be an oop
3249   Register hdr = op->hdr_opr()->as_register();
3250   Register lock = op->lock_opr()->as_register();
3251   if (!UseFastLocking) {
3252     __ jmp(*op->stub()->entry());
3253   } else if (op->code() == lir_lock) {
3254     Register scratch = noreg;
3255     if (UseBiasedLocking) {
3256       scratch = op->scratch_opr()->as_register();
3257     }
3258     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3259     // add debug info for NullPointerException only if one is possible
3260     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3261     if (op->info() != NULL) {
3262       add_debug_info_for_null_check(null_check_offset, op->info());
3263     }
3264     // done
3265   } else if (op->code() == lir_unlock) {
3266     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3267     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3268   } else {
3269     Unimplemented();
3270   }
3271   __ bind(*op->stub()->continuation());
3272 }
3273 
3274 
3275 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3276   ciMethod* method = op->profiled_method();
3277   int bci          = op->profiled_bci();
3278 
3279   // Update counter for all call types
3280   ciMethodData* md = method->method_data();
3281   if (md == NULL) {
3282     bailout("out of memory building methodDataOop");
3283     return;
3284   }
3285   ciProfileData* data = md->bci_to_data(bci);
3286   assert(data->is_CounterData(), "need CounterData for calls");
3287   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3288   Register mdo  = op->mdo()->as_register();
3289   __ movoop(mdo, md->constant_encoding());
3290   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3291   Bytecodes::Code bc = method->java_code_at_bci(bci);
3292   // Perform additional virtual call profiling for invokevirtual and
3293   // invokeinterface bytecodes
3294   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3295       C1ProfileVirtualCalls) {
3296     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3297     Register recv = op->recv()->as_register();
3298     assert_different_registers(mdo, recv);
3299     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3300     ciKlass* known_klass = op->known_holder();
3301     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3302       // We know the type that will be seen at this call site; we can
3303       // statically update the methodDataOop rather than needing to do
3304       // dynamic tests on the receiver type
3305 
3306       // NOTE: we should probably put a lock around this search to
3307       // avoid collisions by concurrent compilations
3308       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3309       uint i;
3310       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3311         ciKlass* receiver = vc_data->receiver(i);
3312         if (known_klass->equals(receiver)) {
3313           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3314           __ addptr(data_addr, DataLayout::counter_increment);
3315           return;
3316         }
3317       }
3318 
3319       // Receiver type not found in profile data; select an empty slot
3320 
3321       // Note that this is less efficient than it should be because it
3322       // always does a write to the receiver part of the
3323       // VirtualCallData rather than just the first time
3324       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3325         ciKlass* receiver = vc_data->receiver(i);
3326         if (receiver == NULL) {
3327           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3328           __ movoop(recv_addr, known_klass->constant_encoding());
3329           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3330           __ addptr(data_addr, DataLayout::counter_increment);
3331           return;
3332         }
3333       }
3334     } else {
3335       __ movptr(recv, Address(recv, oopDesc::klass_offset_in_bytes()));
3336       Label update_done;
3337       type_profile_helper(mdo, md, data, recv, &update_done);
3338       // Receiver did not match any saved receiver and there is no empty row for it.
3339       // Increment total counter to indicate polymorphic case.
3340       __ addptr(counter_addr, DataLayout::counter_increment);
3341 
3342       __ bind(update_done);
3343     }
3344   } else {
3345     // Static call
3346     __ addptr(counter_addr, DataLayout::counter_increment);
3347   }
3348 }
3349 
3350 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3351   Unimplemented();
3352 }
3353 
3354 
3355 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3356   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3357 }
3358 
3359 
3360 void LIR_Assembler::align_backward_branch_target() {
3361   __ align(BytesPerWord);
3362 }
3363 
3364 
3365 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3366   if (left->is_single_cpu()) {
3367     __ negl(left->as_register());
3368     move_regs(left->as_register(), dest->as_register());
3369 
3370   } else if (left->is_double_cpu()) {
3371     Register lo = left->as_register_lo();
3372 #ifdef _LP64
3373     Register dst = dest->as_register_lo();
3374     __ movptr(dst, lo);
3375     __ negptr(dst);
3376 #else
3377     Register hi = left->as_register_hi();
3378     __ lneg(hi, lo);
3379     if (dest->as_register_lo() == hi) {
3380       assert(dest->as_register_hi() != lo, "destroying register");
3381       move_regs(hi, dest->as_register_hi());
3382       move_regs(lo, dest->as_register_lo());
3383     } else {
3384       move_regs(lo, dest->as_register_lo());
3385       move_regs(hi, dest->as_register_hi());
3386     }
3387 #endif // _LP64
3388 
3389   } else if (dest->is_single_xmm()) {
3390     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3391       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3392     }
3393     __ xorps(dest->as_xmm_float_reg(),
3394              ExternalAddress((address)float_signflip_pool));
3395 
3396   } else if (dest->is_double_xmm()) {
3397     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3398       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3399     }
3400     __ xorpd(dest->as_xmm_double_reg(),
3401              ExternalAddress((address)double_signflip_pool));
3402 
3403   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3404     assert(left->fpu() == 0, "arg must be on TOS");
3405     assert(dest->fpu() == 0, "dest must be TOS");
3406     __ fchs();
3407 
3408   } else {
3409     ShouldNotReachHere();
3410   }
3411 }
3412 
3413 
3414 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3415   assert(addr->is_address() && dest->is_register(), "check");
3416   Register reg;
3417   reg = dest->as_pointer_register();
3418   __ lea(reg, as_Address(addr->as_address_ptr()));
3419 }
3420 
3421 
3422 
3423 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3424   assert(!tmp->is_valid(), "don't need temporary");
3425   __ call(RuntimeAddress(dest));
3426   if (info != NULL) {
3427     add_call_info_here(info);
3428   }
3429 }
3430 
3431 
3432 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3433   assert(type == T_LONG, "only for volatile long fields");
3434 
3435   if (info != NULL) {
3436     add_debug_info_for_null_check_here(info);
3437   }
3438 
3439   if (src->is_double_xmm()) {
3440     if (dest->is_double_cpu()) {
3441 #ifdef _LP64
3442       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3443 #else
3444       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3445       __ psrlq(src->as_xmm_double_reg(), 32);
3446       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3447 #endif // _LP64
3448     } else if (dest->is_double_stack()) {
3449       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3450     } else if (dest->is_address()) {
3451       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3452     } else {
3453       ShouldNotReachHere();
3454     }
3455 
3456   } else if (dest->is_double_xmm()) {
3457     if (src->is_double_stack()) {
3458       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3459     } else if (src->is_address()) {
3460       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3461     } else {
3462       ShouldNotReachHere();
3463     }
3464 
3465   } else if (src->is_double_fpu()) {
3466     assert(src->fpu_regnrLo() == 0, "must be TOS");
3467     if (dest->is_double_stack()) {
3468       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3469     } else if (dest->is_address()) {
3470       __ fistp_d(as_Address(dest->as_address_ptr()));
3471     } else {
3472       ShouldNotReachHere();
3473     }
3474 
3475   } else if (dest->is_double_fpu()) {
3476     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3477     if (src->is_double_stack()) {
3478       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3479     } else if (src->is_address()) {
3480       __ fild_d(as_Address(src->as_address_ptr()));
3481     } else {
3482       ShouldNotReachHere();
3483     }
3484   } else {
3485     ShouldNotReachHere();
3486   }
3487 }
3488 
3489 
3490 void LIR_Assembler::membar() {
3491   // QQQ sparc TSO uses this,
3492   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3493 }
3494 
3495 void LIR_Assembler::membar_acquire() {
3496   // No x86 machines currently require load fences
3497   // __ load_fence();
3498 }
3499 
3500 void LIR_Assembler::membar_release() {
3501   // No x86 machines currently require store fences
3502   // __ store_fence();
3503 }
3504 
3505 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3506   assert(result_reg->is_register(), "check");
3507 #ifdef _LP64
3508   // __ get_thread(result_reg->as_register_lo());
3509   __ mov(result_reg->as_register(), r15_thread);
3510 #else
3511   __ get_thread(result_reg->as_register());
3512 #endif // _LP64
3513 }
3514 
3515 
3516 void LIR_Assembler::peephole(LIR_List*) {
3517   // do nothing for now
3518 }
3519 
3520 
3521 #undef __