1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_LIRAssembler_x86.cpp.incl"
  27 
  28 
  29 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  30 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  31 // fast versions of NegF/NegD and AbsF/AbsD.
  32 
  33 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  34 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  35   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  36   // of 128-bits operands for SSE instructions.
  37   jlong *operand = (jlong*)(((long)adr)&((long)(~0xF)));
  38   // Store the value to a 128-bits operand.
  39   operand[0] = lo;
  40   operand[1] = hi;
  41   return operand;
  42 }
  43 
  44 // Buffer for 128-bits masks used by SSE instructions.
  45 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  46 
  47 // Static initialization during VM startup.
  48 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  49 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  50 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  51 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  52 
  53 
  54 
  55 NEEDS_CLEANUP // remove this definitions ?
  56 const Register IC_Klass    = rax;   // where the IC klass is cached
  57 const Register SYNC_header = rax;   // synchronization header
  58 const Register SHIFT_count = rcx;   // where count for shift operations must be
  59 
  60 #define __ _masm->
  61 
  62 
  63 static void select_different_registers(Register preserve,
  64                                        Register extra,
  65                                        Register &tmp1,
  66                                        Register &tmp2) {
  67   if (tmp1 == preserve) {
  68     assert_different_registers(tmp1, tmp2, extra);
  69     tmp1 = extra;
  70   } else if (tmp2 == preserve) {
  71     assert_different_registers(tmp1, tmp2, extra);
  72     tmp2 = extra;
  73   }
  74   assert_different_registers(preserve, tmp1, tmp2);
  75 }
  76 
  77 
  78 
  79 static void select_different_registers(Register preserve,
  80                                        Register extra,
  81                                        Register &tmp1,
  82                                        Register &tmp2,
  83                                        Register &tmp3) {
  84   if (tmp1 == preserve) {
  85     assert_different_registers(tmp1, tmp2, tmp3, extra);
  86     tmp1 = extra;
  87   } else if (tmp2 == preserve) {
  88     assert_different_registers(tmp1, tmp2, tmp3, extra);
  89     tmp2 = extra;
  90   } else if (tmp3 == preserve) {
  91     assert_different_registers(tmp1, tmp2, tmp3, extra);
  92     tmp3 = extra;
  93   }
  94   assert_different_registers(preserve, tmp1, tmp2, tmp3);
  95 }
  96 
  97 
  98 
  99 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 100   if (opr->is_constant()) {
 101     LIR_Const* constant = opr->as_constant_ptr();
 102     switch (constant->type()) {
 103       case T_INT: {
 104         return true;
 105       }
 106 
 107       default:
 108         return false;
 109     }
 110   }
 111   return false;
 112 }
 113 
 114 
 115 LIR_Opr LIR_Assembler::receiverOpr() {
 116   return FrameMap::receiver_opr;
 117 }
 118 
 119 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
 120   return receiverOpr();
 121 }
 122 
 123 LIR_Opr LIR_Assembler::osrBufferPointer() {
 124   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 125 }
 126 
 127 //--------------fpu register translations-----------------------
 128 
 129 
 130 address LIR_Assembler::float_constant(float f) {
 131   address const_addr = __ float_constant(f);
 132   if (const_addr == NULL) {
 133     bailout("const section overflow");
 134     return __ code()->consts()->start();
 135   } else {
 136     return const_addr;
 137   }
 138 }
 139 
 140 
 141 address LIR_Assembler::double_constant(double d) {
 142   address const_addr = __ double_constant(d);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 void LIR_Assembler::set_24bit_FPU() {
 153   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 154 }
 155 
 156 void LIR_Assembler::reset_FPU() {
 157   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 158 }
 159 
 160 void LIR_Assembler::fpop() {
 161   __ fpop();
 162 }
 163 
 164 void LIR_Assembler::fxch(int i) {
 165   __ fxch(i);
 166 }
 167 
 168 void LIR_Assembler::fld(int i) {
 169   __ fld_s(i);
 170 }
 171 
 172 void LIR_Assembler::ffree(int i) {
 173   __ ffree(i);
 174 }
 175 
 176 void LIR_Assembler::breakpoint() {
 177   __ int3();
 178 }
 179 
 180 void LIR_Assembler::push(LIR_Opr opr) {
 181   if (opr->is_single_cpu()) {
 182     __ push_reg(opr->as_register());
 183   } else if (opr->is_double_cpu()) {
 184     NOT_LP64(__ push_reg(opr->as_register_hi()));
 185     __ push_reg(opr->as_register_lo());
 186   } else if (opr->is_stack()) {
 187     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 188   } else if (opr->is_constant()) {
 189     LIR_Const* const_opr = opr->as_constant_ptr();
 190     if (const_opr->type() == T_OBJECT) {
 191       __ push_oop(const_opr->as_jobject());
 192     } else if (const_opr->type() == T_INT) {
 193       __ push_jint(const_opr->as_jint());
 194     } else {
 195       ShouldNotReachHere();
 196     }
 197 
 198   } else {
 199     ShouldNotReachHere();
 200   }
 201 }
 202 
 203 void LIR_Assembler::pop(LIR_Opr opr) {
 204   if (opr->is_single_cpu()) {
 205     __ pop_reg(opr->as_register());
 206   } else {
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 212   return addr->base()->is_illegal() && addr->index()->is_illegal();
 213 }
 214 
 215 //-------------------------------------------
 216 
 217 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 218   return as_Address(addr, rscratch1);
 219 }
 220 
 221 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 222   if (addr->base()->is_illegal()) {
 223     assert(addr->index()->is_illegal(), "must be illegal too");
 224     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 225     if (! __ reachable(laddr)) {
 226       __ movptr(tmp, laddr.addr());
 227       Address res(tmp, 0);
 228       return res;
 229     } else {
 230       return __ as_Address(laddr);
 231     }
 232   }
 233 
 234   Register base = addr->base()->as_pointer_register();
 235 
 236   if (addr->index()->is_illegal()) {
 237     return Address( base, addr->disp());
 238   } else if (addr->index()->is_cpu_register()) {
 239     Register index = addr->index()->as_pointer_register();
 240     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 241   } else if (addr->index()->is_constant()) {
 242     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 243     assert(Assembler::is_simm32(addr_offset), "must be");
 244 
 245     return Address(base, addr_offset);
 246   } else {
 247     Unimplemented();
 248     return Address();
 249   }
 250 }
 251 
 252 
 253 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 254   Address base = as_Address(addr);
 255   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 256 }
 257 
 258 
 259 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 260   return as_Address(addr);
 261 }
 262 
 263 
 264 void LIR_Assembler::osr_entry() {
 265   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 266   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 267   ValueStack* entry_state = osr_entry->state();
 268   int number_of_locks = entry_state->locks_size();
 269 
 270   // we jump here if osr happens with the interpreter
 271   // state set up to continue at the beginning of the
 272   // loop that triggered osr - in particular, we have
 273   // the following registers setup:
 274   //
 275   // rcx: osr buffer
 276   //
 277 
 278   // build frame
 279   ciMethod* m = compilation()->method();
 280   __ build_frame(initial_frame_size_in_bytes());
 281 
 282   // OSR buffer is
 283   //
 284   // locals[nlocals-1..0]
 285   // monitors[0..number_of_locks]
 286   //
 287   // locals is a direct copy of the interpreter frame so in the osr buffer
 288   // so first slot in the local array is the last local from the interpreter
 289   // and last slot is local[0] (receiver) from the interpreter
 290   //
 291   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 292   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 293   // in the interpreter frame (the method lock if a sync method)
 294 
 295   // Initialize monitors in the compiled activation.
 296   //   rcx: pointer to osr buffer
 297   //
 298   // All other registers are dead at this point and the locals will be
 299   // copied into place by code emitted in the IR.
 300 
 301   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 302   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 303     int monitor_offset = BytesPerWord * method()->max_locals() +
 304       (2 * BytesPerWord) * (number_of_locks - 1);
 305     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 306     // the OSR buffer using 2 word entries: first the lock and then
 307     // the oop.
 308     for (int i = 0; i < number_of_locks; i++) {
 309       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 310 #ifdef ASSERT
 311       // verify the interpreter's monitor has a non-null object
 312       {
 313         Label L;
 314         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 315         __ jcc(Assembler::notZero, L);
 316         __ stop("locked object is NULL");
 317         __ bind(L);
 318       }
 319 #endif
 320       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 321       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 322       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 323       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 324     }
 325   }
 326 }
 327 
 328 
 329 // inline cache check; done before the frame is built.
 330 int LIR_Assembler::check_icache() {
 331   Register receiver = FrameMap::receiver_opr->as_register();
 332   Register ic_klass = IC_Klass;
 333   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 334   const bool do_post_padding = VerifyOops || UseCompressedOops;
 335   if (!do_post_padding) {
 336     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 337     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 338       __ nop();
 339     }
 340   }
 341   int offset = __ offset();
 342   __ inline_cache_check(receiver, IC_Klass);
 343   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 344   if (do_post_padding) {
 345     // force alignment after the cache check.
 346     // It's been verified to be aligned if !VerifyOops
 347     __ align(CodeEntryAlignment);
 348   }
 349   return offset;
 350 }
 351 
 352 
 353 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 354   jobject o = NULL;
 355   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 356   __ movoop(reg, o);
 357   patching_epilog(patch, lir_patch_normal, reg, info);
 358 }
 359 
 360 
 361 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register new_hdr, int monitor_no, Register exception) {
 362   if (exception->is_valid()) {
 363     // preserve exception
 364     // note: the monitor_exit runtime call is a leaf routine
 365     //       and cannot block => no GC can happen
 366     // The slow case (MonitorAccessStub) uses the first two stack slots
 367     // ([esp+0] and [esp+4]), therefore we store the exception at [esp+8]
 368     __ movptr (Address(rsp, 2*wordSize), exception);
 369   }
 370 
 371   Register obj_reg  = obj_opr->as_register();
 372   Register lock_reg = lock_opr->as_register();
 373 
 374   // setup registers (lock_reg must be rax, for lock_object)
 375   assert(obj_reg != SYNC_header && lock_reg != SYNC_header, "rax, must be available here");
 376   Register hdr = lock_reg;
 377   assert(new_hdr == SYNC_header, "wrong register");
 378   lock_reg = new_hdr;
 379   // compute pointer to BasicLock
 380   Address lock_addr = frame_map()->address_for_monitor_lock(monitor_no);
 381   __ lea(lock_reg, lock_addr);
 382   // unlock object
 383   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, true, monitor_no);
 384   // _slow_case_stubs->append(slow_case);
 385   // temporary fix: must be created after exceptionhandler, therefore as call stub
 386   _slow_case_stubs->append(slow_case);
 387   if (UseFastLocking) {
 388     // try inlined fast unlocking first, revert to slow locking if it fails
 389     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 390     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 391     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 392   } else {
 393     // always do slow unlocking
 394     // note: the slow unlocking code could be inlined here, however if we use
 395     //       slow unlocking, speed doesn't matter anyway and this solution is
 396     //       simpler and requires less duplicated code - additionally, the
 397     //       slow unlocking code is the same in either case which simplifies
 398     //       debugging
 399     __ jmp(*slow_case->entry());
 400   }
 401   // done
 402   __ bind(*slow_case->continuation());
 403 
 404   if (exception->is_valid()) {
 405     // restore exception
 406     __ movptr (exception, Address(rsp, 2 * wordSize));
 407   }
 408 }
 409 
 410 // This specifies the rsp decrement needed to build the frame
 411 int LIR_Assembler::initial_frame_size_in_bytes() {
 412   // if rounding, must let FrameMap know!
 413 
 414   // The frame_map records size in slots (32bit word)
 415 
 416   // subtract two words to account for return address and link
 417   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 418 }
 419 
 420 
 421 int LIR_Assembler::emit_exception_handler() {
 422   // if the last instruction is a call (typically to do a throw which
 423   // is coming at the end after block reordering) the return address
 424   // must still point into the code area in order to avoid assertion
 425   // failures when searching for the corresponding bci => add a nop
 426   // (was bug 5/14/1999 - gri)
 427   __ nop();
 428 
 429   // generate code for exception handler
 430   address handler_base = __ start_a_stub(exception_handler_size);
 431   if (handler_base == NULL) {
 432     // not enough space left for the handler
 433     bailout("exception handler overflow");
 434     return -1;
 435   }
 436 
 437   int offset = code_offset();
 438 
 439   // the exception oop and pc are in rax, and rdx
 440   // no other registers need to be preserved, so invalidate them
 441   __ invalidate_registers(false, true, true, false, true, true);
 442 
 443   // check that there is really an exception
 444   __ verify_not_null_oop(rax);
 445 
 446   // search an exception handler (rax: exception oop, rdx: throwing pc)
 447   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_nofpu_id)));
 448 
 449   __ stop("should not reach here");
 450 
 451   assert(code_offset() - offset <= exception_handler_size, "overflow");
 452   __ end_a_stub();
 453 
 454   return offset;
 455 }
 456 
 457 
 458 // Emit the code to remove the frame from the stack in the exception
 459 // unwind path.
 460 int LIR_Assembler::emit_unwind_handler() {
 461 #ifndef PRODUCT
 462   if (CommentedAssembly) {
 463     _masm->block_comment("Unwind handler");
 464   }
 465 #endif
 466 
 467   int offset = code_offset();
 468 
 469   // Fetch the exception from TLS and clear out exception related thread state
 470   __ get_thread(rsi);
 471   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
 472   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 473   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 474 
 475   __ bind(_unwind_handler_entry);
 476   __ verify_not_null_oop(rax);
 477   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 478     __ mov(rsi, rax);  // Preserve the exception
 479   }
 480 
 481   // Preform needed unlocking
 482   MonitorExitStub* stub = NULL;
 483   if (method()->is_synchronized()) {
 484     monitor_address(0, FrameMap::rax_opr);
 485     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 486     __ unlock_object(rdi, rbx, rax, *stub->entry());
 487     __ bind(*stub->continuation());
 488   }
 489 
 490   if (compilation()->env()->dtrace_method_probes()) {
 491     __ get_thread(rax);
 492     __ movptr(Address(rsp, 0), rax);
 493     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
 494     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 495   }
 496 
 497   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 498     __ mov(rax, rsi);  // Restore the exception
 499   }
 500 
 501   // remove the activation and dispatch to the unwind handler
 502   __ remove_frame(initial_frame_size_in_bytes());
 503   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 504 
 505   // Emit the slow path assembly
 506   if (stub != NULL) {
 507     stub->emit_code(this);
 508   }
 509 
 510   return offset;
 511 }
 512 
 513 
 514 int LIR_Assembler::emit_deopt_handler() {
 515   // if the last instruction is a call (typically to do a throw which
 516   // is coming at the end after block reordering) the return address
 517   // must still point into the code area in order to avoid assertion
 518   // failures when searching for the corresponding bci => add a nop
 519   // (was bug 5/14/1999 - gri)
 520   __ nop();
 521 
 522   // generate code for exception handler
 523   address handler_base = __ start_a_stub(deopt_handler_size);
 524   if (handler_base == NULL) {
 525     // not enough space left for the handler
 526     bailout("deopt handler overflow");
 527     return -1;
 528   }
 529 
 530   int offset = code_offset();
 531   InternalAddress here(__ pc());
 532 
 533   __ pushptr(here.addr());
 534   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 535 
 536   assert(code_offset() - offset <= deopt_handler_size, "overflow");
 537   __ end_a_stub();
 538 
 539   return offset;
 540 }
 541 
 542 
 543 // This is the fast version of java.lang.String.compare; it has not
 544 // OSR-entry and therefore, we generate a slow version for OSR's
 545 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 546   __ movptr (rbx, rcx); // receiver is in rcx
 547   __ movptr (rax, arg1->as_register());
 548 
 549   // Get addresses of first characters from both Strings
 550   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 551   __ movptr (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 552   __ lea    (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 553 
 554 
 555   // rbx, may be NULL
 556   add_debug_info_for_null_check_here(info);
 557   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 558   __ movptr (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 559   __ lea    (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 560 
 561   // compute minimum length (in rax) and difference of lengths (on top of stack)
 562   if (VM_Version::supports_cmov()) {
 563     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 564     __ movl     (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 565     __ mov      (rcx, rbx);
 566     __ subptr   (rbx, rax); // subtract lengths
 567     __ push     (rbx);      // result
 568     __ cmov     (Assembler::lessEqual, rax, rcx);
 569   } else {
 570     Label L;
 571     __ movl     (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 572     __ movl     (rcx, Address(rax, java_lang_String::count_offset_in_bytes()));
 573     __ mov      (rax, rbx);
 574     __ subptr   (rbx, rcx);
 575     __ push     (rbx);
 576     __ jcc      (Assembler::lessEqual, L);
 577     __ mov      (rax, rcx);
 578     __ bind (L);
 579   }
 580   // is minimum length 0?
 581   Label noLoop, haveResult;
 582   __ testptr (rax, rax);
 583   __ jcc (Assembler::zero, noLoop);
 584 
 585   // compare first characters
 586   __ load_unsigned_short(rcx, Address(rdi, 0));
 587   __ load_unsigned_short(rbx, Address(rsi, 0));
 588   __ subl(rcx, rbx);
 589   __ jcc(Assembler::notZero, haveResult);
 590   // starting loop
 591   __ decrement(rax); // we already tested index: skip one
 592   __ jcc(Assembler::zero, noLoop);
 593 
 594   // set rsi.edi to the end of the arrays (arrays have same length)
 595   // negate the index
 596 
 597   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 598   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 599   __ negptr(rax);
 600 
 601   // compare the strings in a loop
 602 
 603   Label loop;
 604   __ align(wordSize);
 605   __ bind(loop);
 606   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 607   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 608   __ subl(rcx, rbx);
 609   __ jcc(Assembler::notZero, haveResult);
 610   __ increment(rax);
 611   __ jcc(Assembler::notZero, loop);
 612 
 613   // strings are equal up to min length
 614 
 615   __ bind(noLoop);
 616   __ pop(rax);
 617   return_op(LIR_OprFact::illegalOpr);
 618 
 619   __ bind(haveResult);
 620   // leave instruction is going to discard the TOS value
 621   __ mov (rax, rcx); // result of call is in rax,
 622 }
 623 
 624 
 625 void LIR_Assembler::return_op(LIR_Opr result) {
 626   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 627   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 628     assert(result->fpu() == 0, "result must already be on TOS");
 629   }
 630 
 631   // Pop the stack before the safepoint code
 632   __ remove_frame(initial_frame_size_in_bytes());
 633 
 634   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 635 
 636   // Note: we do not need to round double result; float result has the right precision
 637   // the poll sets the condition code, but no data registers
 638   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 639                               relocInfo::poll_return_type);
 640 
 641   // NOTE: the requires that the polling page be reachable else the reloc
 642   // goes to the movq that loads the address and not the faulting instruction
 643   // which breaks the signal handler code
 644 
 645   __ test32(rax, polling_page);
 646 
 647   __ ret(0);
 648 }
 649 
 650 
 651 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 652   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 653                               relocInfo::poll_type);
 654 
 655   if (info != NULL) {
 656     add_debug_info_for_branch(info);
 657   } else {
 658     ShouldNotReachHere();
 659   }
 660 
 661   int offset = __ offset();
 662 
 663   // NOTE: the requires that the polling page be reachable else the reloc
 664   // goes to the movq that loads the address and not the faulting instruction
 665   // which breaks the signal handler code
 666 
 667   __ test32(rax, polling_page);
 668   return offset;
 669 }
 670 
 671 
 672 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 673   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 674 }
 675 
 676 void LIR_Assembler::swap_reg(Register a, Register b) {
 677   __ xchgptr(a, b);
 678 }
 679 
 680 
 681 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 682   assert(src->is_constant(), "should not call otherwise");
 683   assert(dest->is_register(), "should not call otherwise");
 684   LIR_Const* c = src->as_constant_ptr();
 685 
 686   switch (c->type()) {
 687     case T_INT: {
 688       assert(patch_code == lir_patch_none, "no patching handled here");
 689       __ movl(dest->as_register(), c->as_jint());
 690       break;
 691     }
 692 
 693     case T_ADDRESS: {
 694       assert(patch_code == lir_patch_none, "no patching handled here");
 695       __ movptr(dest->as_register(), c->as_jint());
 696       break;
 697     }
 698 
 699     case T_LONG: {
 700       assert(patch_code == lir_patch_none, "no patching handled here");
 701 #ifdef _LP64
 702       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 703 #else
 704       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 705       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 706 #endif // _LP64
 707       break;
 708     }
 709 
 710     case T_OBJECT: {
 711       if (patch_code != lir_patch_none) {
 712         jobject2reg_with_patching(dest->as_register(), info);
 713       } else {
 714         __ movoop(dest->as_register(), c->as_jobject());
 715       }
 716       break;
 717     }
 718 
 719     case T_FLOAT: {
 720       if (dest->is_single_xmm()) {
 721         if (c->is_zero_float()) {
 722           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 723         } else {
 724           __ movflt(dest->as_xmm_float_reg(),
 725                    InternalAddress(float_constant(c->as_jfloat())));
 726         }
 727       } else {
 728         assert(dest->is_single_fpu(), "must be");
 729         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 730         if (c->is_zero_float()) {
 731           __ fldz();
 732         } else if (c->is_one_float()) {
 733           __ fld1();
 734         } else {
 735           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 736         }
 737       }
 738       break;
 739     }
 740 
 741     case T_DOUBLE: {
 742       if (dest->is_double_xmm()) {
 743         if (c->is_zero_double()) {
 744           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 745         } else {
 746           __ movdbl(dest->as_xmm_double_reg(),
 747                     InternalAddress(double_constant(c->as_jdouble())));
 748         }
 749       } else {
 750         assert(dest->is_double_fpu(), "must be");
 751         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 752         if (c->is_zero_double()) {
 753           __ fldz();
 754         } else if (c->is_one_double()) {
 755           __ fld1();
 756         } else {
 757           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 758         }
 759       }
 760       break;
 761     }
 762 
 763     default:
 764       ShouldNotReachHere();
 765   }
 766 }
 767 
 768 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 769   assert(src->is_constant(), "should not call otherwise");
 770   assert(dest->is_stack(), "should not call otherwise");
 771   LIR_Const* c = src->as_constant_ptr();
 772 
 773   switch (c->type()) {
 774     case T_INT:  // fall through
 775     case T_FLOAT:
 776       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 777       break;
 778 
 779     case T_ADDRESS:
 780     __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 781       break;
 782 
 783     case T_OBJECT:
 784       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 785       break;
 786 
 787     case T_LONG:  // fall through
 788     case T_DOUBLE:
 789 #ifdef _LP64
 790       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 791                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 792 #else
 793       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 794                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 795       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 796                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 797 #endif // _LP64
 798       break;
 799 
 800     default:
 801       ShouldNotReachHere();
 802   }
 803 }
 804 
 805 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 806   assert(src->is_constant(), "should not call otherwise");
 807   assert(dest->is_address(), "should not call otherwise");
 808   LIR_Const* c = src->as_constant_ptr();
 809   LIR_Address* addr = dest->as_address_ptr();
 810 
 811   int null_check_here = code_offset();
 812   switch (type) {
 813     case T_INT:    // fall through
 814     case T_FLOAT:
 815       __ movl(as_Address(addr), c->as_jint_bits());
 816       break;
 817 
 818     case T_ADDRESS:
 819       __ movptr(as_Address(addr), c->as_jint_bits());
 820       break;
 821 
 822     case T_OBJECT:  // fall through
 823     case T_ARRAY:
 824       if (c->as_jobject() == NULL) {
 825 #ifdef _LP64
 826         if (UseCompressedOops && !wide) {
 827           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 828         } else {
 829           __ movptr(as_Address(addr), NULL_WORD);
 830         }
 831 #else
 832         __ movptr(as_Address(addr), NULL_WORD);
 833 #endif
 834       } else {
 835         if (is_literal_address(addr)) {
 836           ShouldNotReachHere();
 837           __ movoop(as_Address(addr, noreg), c->as_jobject());
 838         } else {
 839 #ifdef _LP64
 840           __ movoop(rscratch1, c->as_jobject());
 841           if (UseCompressedOops && !wide) {
 842             __ encode_heap_oop(rscratch1);
 843             null_check_here = code_offset();
 844             __ movl(as_Address_lo(addr), rscratch1);
 845           } else {
 846             null_check_here = code_offset();
 847             __ movptr(as_Address_lo(addr), rscratch1);
 848           }
 849 #else
 850           __ movoop(as_Address(addr), c->as_jobject());
 851 #endif
 852         }
 853       }
 854       break;
 855 
 856     case T_LONG:    // fall through
 857     case T_DOUBLE:
 858 #ifdef _LP64
 859       if (is_literal_address(addr)) {
 860         ShouldNotReachHere();
 861         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 862       } else {
 863         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 864         null_check_here = code_offset();
 865         __ movptr(as_Address_lo(addr), r10);
 866       }
 867 #else
 868       // Always reachable in 32bit so this doesn't produce useless move literal
 869       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 870       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 871 #endif // _LP64
 872       break;
 873 
 874     case T_BOOLEAN: // fall through
 875     case T_BYTE:
 876       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 877       break;
 878 
 879     case T_CHAR:    // fall through
 880     case T_SHORT:
 881       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 882       break;
 883 
 884     default:
 885       ShouldNotReachHere();
 886   };
 887 
 888   if (info != NULL) {
 889     add_debug_info_for_null_check(null_check_here, info);
 890   }
 891 }
 892 
 893 
 894 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 895   assert(src->is_register(), "should not call otherwise");
 896   assert(dest->is_register(), "should not call otherwise");
 897 
 898   // move between cpu-registers
 899   if (dest->is_single_cpu()) {
 900 #ifdef _LP64
 901     if (src->type() == T_LONG) {
 902       // Can do LONG -> OBJECT
 903       move_regs(src->as_register_lo(), dest->as_register());
 904       return;
 905     }
 906 #endif
 907     assert(src->is_single_cpu(), "must match");
 908     if (src->type() == T_OBJECT) {
 909       __ verify_oop(src->as_register());
 910     }
 911     move_regs(src->as_register(), dest->as_register());
 912 
 913   } else if (dest->is_double_cpu()) {
 914 #ifdef _LP64
 915     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 916       // Surprising to me but we can see move of a long to t_object
 917       __ verify_oop(src->as_register());
 918       move_regs(src->as_register(), dest->as_register_lo());
 919       return;
 920     }
 921 #endif
 922     assert(src->is_double_cpu(), "must match");
 923     Register f_lo = src->as_register_lo();
 924     Register f_hi = src->as_register_hi();
 925     Register t_lo = dest->as_register_lo();
 926     Register t_hi = dest->as_register_hi();
 927 #ifdef _LP64
 928     assert(f_hi == f_lo, "must be same");
 929     assert(t_hi == t_lo, "must be same");
 930     move_regs(f_lo, t_lo);
 931 #else
 932     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 933 
 934 
 935     if (f_lo == t_hi && f_hi == t_lo) {
 936       swap_reg(f_lo, f_hi);
 937     } else if (f_hi == t_lo) {
 938       assert(f_lo != t_hi, "overwriting register");
 939       move_regs(f_hi, t_hi);
 940       move_regs(f_lo, t_lo);
 941     } else {
 942       assert(f_hi != t_lo, "overwriting register");
 943       move_regs(f_lo, t_lo);
 944       move_regs(f_hi, t_hi);
 945     }
 946 #endif // LP64
 947 
 948     // special moves from fpu-register to xmm-register
 949     // necessary for method results
 950   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 951     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 952     __ fld_s(Address(rsp, 0));
 953   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 954     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 955     __ fld_d(Address(rsp, 0));
 956   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 957     __ fstp_s(Address(rsp, 0));
 958     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 959   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 960     __ fstp_d(Address(rsp, 0));
 961     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 962 
 963     // move between xmm-registers
 964   } else if (dest->is_single_xmm()) {
 965     assert(src->is_single_xmm(), "must match");
 966     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 967   } else if (dest->is_double_xmm()) {
 968     assert(src->is_double_xmm(), "must match");
 969     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 970 
 971     // move between fpu-registers (no instruction necessary because of fpu-stack)
 972   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 973     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 974     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 975   } else {
 976     ShouldNotReachHere();
 977   }
 978 }
 979 
 980 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 981   assert(src->is_register(), "should not call otherwise");
 982   assert(dest->is_stack(), "should not call otherwise");
 983 
 984   if (src->is_single_cpu()) {
 985     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 986     if (type == T_OBJECT || type == T_ARRAY) {
 987       __ verify_oop(src->as_register());
 988       __ movptr (dst, src->as_register());
 989     } else {
 990       __ movl (dst, src->as_register());
 991     }
 992 
 993   } else if (src->is_double_cpu()) {
 994     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 995     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 996     __ movptr (dstLO, src->as_register_lo());
 997     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 998 
 999   } else if (src->is_single_xmm()) {
1000     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1001     __ movflt(dst_addr, src->as_xmm_float_reg());
1002 
1003   } else if (src->is_double_xmm()) {
1004     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1005     __ movdbl(dst_addr, src->as_xmm_double_reg());
1006 
1007   } else if (src->is_single_fpu()) {
1008     assert(src->fpu_regnr() == 0, "argument must be on TOS");
1009     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1010     if (pop_fpu_stack)     __ fstp_s (dst_addr);
1011     else                   __ fst_s  (dst_addr);
1012 
1013   } else if (src->is_double_fpu()) {
1014     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1015     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1016     if (pop_fpu_stack)     __ fstp_d (dst_addr);
1017     else                   __ fst_d  (dst_addr);
1018 
1019   } else {
1020     ShouldNotReachHere();
1021   }
1022 }
1023 
1024 
1025 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool /* unaligned */, bool wide) {
1026   LIR_Address* to_addr = dest->as_address_ptr();
1027   PatchingStub* patch = NULL;
1028 
1029 #ifdef _LP64
1030   Register compressed_src = rscratch1;
1031 #endif
1032 
1033   if (type == T_ARRAY || type == T_OBJECT) {
1034     __ verify_oop(src->as_register());
1035 #ifdef _LP64
1036     if (UseCompressedOops && !wide) {
1037       __ movptr(compressed_src, src->as_register());
1038       __ encode_heap_oop(compressed_src);
1039     }
1040 #endif
1041   }
1042 
1043   if (patch_code != lir_patch_none) {
1044     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1045     Address toa = as_Address(to_addr);
1046     assert(toa.disp() != 0, "must have");
1047   }
1048 
1049   int null_check_here = code_offset();
1050   switch (type) {
1051     case T_FLOAT: {
1052       if (src->is_single_xmm()) {
1053         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1054       } else {
1055         assert(src->is_single_fpu(), "must be");
1056         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1057         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1058         else                    __ fst_s (as_Address(to_addr));
1059       }
1060       break;
1061     }
1062 
1063     case T_DOUBLE: {
1064       if (src->is_double_xmm()) {
1065         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1066       } else {
1067         assert(src->is_double_fpu(), "must be");
1068         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1069         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1070         else                    __ fst_d (as_Address(to_addr));
1071       }
1072       break;
1073     }
1074 
1075     case T_ARRAY:   // fall through
1076     case T_OBJECT:  // fall through
1077 #ifdef _LP64
1078       if (UseCompressedOops && !wide) {
1079         __ movl(as_Address(to_addr), compressed_src);
1080       } else {
1081         __ movptr(as_Address(to_addr), src->as_register());
1082       }
1083       break;
1084 #endif // _LP64
1085     case T_ADDRESS:
1086       __ movptr(as_Address(to_addr), src->as_register());
1087       break;
1088     case T_INT:
1089       __ movl(as_Address(to_addr), src->as_register());
1090       break;
1091 
1092     case T_LONG: {
1093       Register from_lo = src->as_register_lo();
1094       Register from_hi = src->as_register_hi();
1095 #ifdef _LP64
1096       __ movptr(as_Address_lo(to_addr), from_lo);
1097 #else
1098       Register base = to_addr->base()->as_register();
1099       Register index = noreg;
1100       if (to_addr->index()->is_register()) {
1101         index = to_addr->index()->as_register();
1102       }
1103       if (base == from_lo || index == from_lo) {
1104         assert(base != from_hi, "can't be");
1105         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1106         __ movl(as_Address_hi(to_addr), from_hi);
1107         if (patch != NULL) {
1108           patching_epilog(patch, lir_patch_high, base, info);
1109           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1110           patch_code = lir_patch_low;
1111         }
1112         __ movl(as_Address_lo(to_addr), from_lo);
1113       } else {
1114         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1115         __ movl(as_Address_lo(to_addr), from_lo);
1116         if (patch != NULL) {
1117           patching_epilog(patch, lir_patch_low, base, info);
1118           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1119           patch_code = lir_patch_high;
1120         }
1121         __ movl(as_Address_hi(to_addr), from_hi);
1122       }
1123 #endif // _LP64
1124       break;
1125     }
1126 
1127     case T_BYTE:    // fall through
1128     case T_BOOLEAN: {
1129       Register src_reg = src->as_register();
1130       Address dst_addr = as_Address(to_addr);
1131       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1132       __ movb(dst_addr, src_reg);
1133       break;
1134     }
1135 
1136     case T_CHAR:    // fall through
1137     case T_SHORT:
1138       __ movw(as_Address(to_addr), src->as_register());
1139       break;
1140 
1141     default:
1142       ShouldNotReachHere();
1143   }
1144   if (info != NULL) {
1145     add_debug_info_for_null_check(null_check_here, info);
1146   }
1147 
1148   if (patch_code != lir_patch_none) {
1149     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1150   }
1151 }
1152 
1153 
1154 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1155   assert(src->is_stack(), "should not call otherwise");
1156   assert(dest->is_register(), "should not call otherwise");
1157 
1158   if (dest->is_single_cpu()) {
1159     if (type == T_ARRAY || type == T_OBJECT) {
1160       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1161       __ verify_oop(dest->as_register());
1162     } else {
1163       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1164     }
1165 
1166   } else if (dest->is_double_cpu()) {
1167     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1168     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1169     __ movptr(dest->as_register_lo(), src_addr_LO);
1170     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1171 
1172   } else if (dest->is_single_xmm()) {
1173     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1174     __ movflt(dest->as_xmm_float_reg(), src_addr);
1175 
1176   } else if (dest->is_double_xmm()) {
1177     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1178     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1179 
1180   } else if (dest->is_single_fpu()) {
1181     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1182     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1183     __ fld_s(src_addr);
1184 
1185   } else if (dest->is_double_fpu()) {
1186     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1187     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1188     __ fld_d(src_addr);
1189 
1190   } else {
1191     ShouldNotReachHere();
1192   }
1193 }
1194 
1195 
1196 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1197   if (src->is_single_stack()) {
1198     if (type == T_OBJECT || type == T_ARRAY) {
1199       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1200       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1201     } else {
1202 #ifndef _LP64
1203       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1204       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1205 #else
1206       //no pushl on 64bits
1207       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1208       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1209 #endif
1210     }
1211 
1212   } else if (src->is_double_stack()) {
1213 #ifdef _LP64
1214     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1215     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1216 #else
1217     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1218     // push and pop the part at src + wordSize, adding wordSize for the previous push
1219     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1220     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1221     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1222 #endif // _LP64
1223 
1224   } else {
1225     ShouldNotReachHere();
1226   }
1227 }
1228 
1229 
1230 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool /* unaligned */, bool wide) {
1231   assert(src->is_address(), "should not call otherwise");
1232   assert(dest->is_register(), "should not call otherwise");
1233 
1234   LIR_Address* addr = src->as_address_ptr();
1235   Address from_addr = as_Address(addr);
1236 
1237   switch (type) {
1238     case T_BOOLEAN: // fall through
1239     case T_BYTE:    // fall through
1240     case T_CHAR:    // fall through
1241     case T_SHORT:
1242       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1243         // on pre P6 processors we may get partial register stalls
1244         // so blow away the value of to_rinfo before loading a
1245         // partial word into it.  Do it here so that it precedes
1246         // the potential patch point below.
1247         __ xorptr(dest->as_register(), dest->as_register());
1248       }
1249       break;
1250   }
1251 
1252   PatchingStub* patch = NULL;
1253   if (patch_code != lir_patch_none) {
1254     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1255     assert(from_addr.disp() != 0, "must have");
1256   }
1257   if (info != NULL) {
1258     add_debug_info_for_null_check_here(info);
1259   }
1260 
1261   switch (type) {
1262     case T_FLOAT: {
1263       if (dest->is_single_xmm()) {
1264         __ movflt(dest->as_xmm_float_reg(), from_addr);
1265       } else {
1266         assert(dest->is_single_fpu(), "must be");
1267         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1268         __ fld_s(from_addr);
1269       }
1270       break;
1271     }
1272 
1273     case T_DOUBLE: {
1274       if (dest->is_double_xmm()) {
1275         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1276       } else {
1277         assert(dest->is_double_fpu(), "must be");
1278         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1279         __ fld_d(from_addr);
1280       }
1281       break;
1282     }
1283 
1284     case T_OBJECT:  // fall through
1285     case T_ARRAY:   // fall through
1286 #ifdef _LP64
1287       if (UseCompressedOops && !wide) {
1288         __ movl(dest->as_register(), from_addr);
1289       } else {
1290         __ movptr(dest->as_register(), from_addr);
1291       }
1292       break;
1293 #endif // _L64
1294     case T_ADDRESS:
1295       __ movptr(dest->as_register(), from_addr);
1296       break;
1297     case T_INT:
1298       __ movl(dest->as_register(), from_addr);
1299       break;
1300 
1301     case T_LONG: {
1302       Register to_lo = dest->as_register_lo();
1303       Register to_hi = dest->as_register_hi();
1304 #ifdef _LP64
1305       __ movptr(to_lo, as_Address_lo(addr));
1306 #else
1307       Register base = addr->base()->as_register();
1308       Register index = noreg;
1309       if (addr->index()->is_register()) {
1310         index = addr->index()->as_register();
1311       }
1312       if ((base == to_lo && index == to_hi) ||
1313           (base == to_hi && index == to_lo)) {
1314         // addresses with 2 registers are only formed as a result of
1315         // array access so this code will never have to deal with
1316         // patches or null checks.
1317         assert(info == NULL && patch == NULL, "must be");
1318         __ lea(to_hi, as_Address(addr));
1319         __ movl(to_lo, Address(to_hi, 0));
1320         __ movl(to_hi, Address(to_hi, BytesPerWord));
1321       } else if (base == to_lo || index == to_lo) {
1322         assert(base != to_hi, "can't be");
1323         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1324         __ movl(to_hi, as_Address_hi(addr));
1325         if (patch != NULL) {
1326           patching_epilog(patch, lir_patch_high, base, info);
1327           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1328           patch_code = lir_patch_low;
1329         }
1330         __ movl(to_lo, as_Address_lo(addr));
1331       } else {
1332         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1333         __ movl(to_lo, as_Address_lo(addr));
1334         if (patch != NULL) {
1335           patching_epilog(patch, lir_patch_low, base, info);
1336           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1337           patch_code = lir_patch_high;
1338         }
1339         __ movl(to_hi, as_Address_hi(addr));
1340       }
1341 #endif // _LP64
1342       break;
1343     }
1344 
1345     case T_BOOLEAN: // fall through
1346     case T_BYTE: {
1347       Register dest_reg = dest->as_register();
1348       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1349       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1350         __ movsbl(dest_reg, from_addr);
1351       } else {
1352         __ movb(dest_reg, from_addr);
1353         __ shll(dest_reg, 24);
1354         __ sarl(dest_reg, 24);
1355       }
1356       break;
1357     }
1358 
1359     case T_CHAR: {
1360       Register dest_reg = dest->as_register();
1361       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1362       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1363         __ movzwl(dest_reg, from_addr);
1364       } else {
1365         __ movw(dest_reg, from_addr);
1366       }
1367       break;
1368     }
1369 
1370     case T_SHORT: {
1371       Register dest_reg = dest->as_register();
1372       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1373         __ movswl(dest_reg, from_addr);
1374       } else {
1375         __ movw(dest_reg, from_addr);
1376         __ shll(dest_reg, 16);
1377         __ sarl(dest_reg, 16);
1378       }
1379       break;
1380     }
1381 
1382     default:
1383       ShouldNotReachHere();
1384   }
1385 
1386   if (patch != NULL) {
1387     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1388   }
1389 
1390   if (type == T_ARRAY || type == T_OBJECT) {
1391 #ifdef _LP64
1392     if (UseCompressedOops && !wide) {
1393       __ decode_heap_oop(dest->as_register());
1394     }
1395 #endif
1396     __ verify_oop(dest->as_register());
1397   }
1398 }
1399 
1400 
1401 void LIR_Assembler::prefetchr(LIR_Opr src) {
1402   LIR_Address* addr = src->as_address_ptr();
1403   Address from_addr = as_Address(addr);
1404 
1405   if (VM_Version::supports_sse()) {
1406     switch (ReadPrefetchInstr) {
1407       case 0:
1408         __ prefetchnta(from_addr); break;
1409       case 1:
1410         __ prefetcht0(from_addr); break;
1411       case 2:
1412         __ prefetcht2(from_addr); break;
1413       default:
1414         ShouldNotReachHere(); break;
1415     }
1416   } else if (VM_Version::supports_3dnow()) {
1417     __ prefetchr(from_addr);
1418   }
1419 }
1420 
1421 
1422 void LIR_Assembler::prefetchw(LIR_Opr src) {
1423   LIR_Address* addr = src->as_address_ptr();
1424   Address from_addr = as_Address(addr);
1425 
1426   if (VM_Version::supports_sse()) {
1427     switch (AllocatePrefetchInstr) {
1428       case 0:
1429         __ prefetchnta(from_addr); break;
1430       case 1:
1431         __ prefetcht0(from_addr); break;
1432       case 2:
1433         __ prefetcht2(from_addr); break;
1434       case 3:
1435         __ prefetchw(from_addr); break;
1436       default:
1437         ShouldNotReachHere(); break;
1438     }
1439   } else if (VM_Version::supports_3dnow()) {
1440     __ prefetchw(from_addr);
1441   }
1442 }
1443 
1444 
1445 NEEDS_CLEANUP; // This could be static?
1446 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1447   int elem_size = type2aelembytes(type);
1448   switch (elem_size) {
1449     case 1: return Address::times_1;
1450     case 2: return Address::times_2;
1451     case 4: return Address::times_4;
1452     case 8: return Address::times_8;
1453   }
1454   ShouldNotReachHere();
1455   return Address::no_scale;
1456 }
1457 
1458 
1459 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1460   switch (op->code()) {
1461     case lir_idiv:
1462     case lir_irem:
1463       arithmetic_idiv(op->code(),
1464                       op->in_opr1(),
1465                       op->in_opr2(),
1466                       op->in_opr3(),
1467                       op->result_opr(),
1468                       op->info());
1469       break;
1470     default:      ShouldNotReachHere(); break;
1471   }
1472 }
1473 
1474 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1475 #ifdef ASSERT
1476   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1477   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1478   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1479 #endif
1480 
1481   if (op->cond() == lir_cond_always) {
1482     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1483     __ jmp (*(op->label()));
1484   } else {
1485     Assembler::Condition acond = Assembler::zero;
1486     if (op->code() == lir_cond_float_branch) {
1487       assert(op->ublock() != NULL, "must have unordered successor");
1488       __ jcc(Assembler::parity, *(op->ublock()->label()));
1489       switch(op->cond()) {
1490         case lir_cond_equal:        acond = Assembler::equal;      break;
1491         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1492         case lir_cond_less:         acond = Assembler::below;      break;
1493         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1494         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1495         case lir_cond_greater:      acond = Assembler::above;      break;
1496         default:                         ShouldNotReachHere();
1497       }
1498     } else {
1499       switch (op->cond()) {
1500         case lir_cond_equal:        acond = Assembler::equal;       break;
1501         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1502         case lir_cond_less:         acond = Assembler::less;        break;
1503         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1504         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1505         case lir_cond_greater:      acond = Assembler::greater;     break;
1506         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1507         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1508         default:                         ShouldNotReachHere();
1509       }
1510     }
1511     __ jcc(acond,*(op->label()));
1512   }
1513 }
1514 
1515 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1516   LIR_Opr src  = op->in_opr();
1517   LIR_Opr dest = op->result_opr();
1518 
1519   switch (op->bytecode()) {
1520     case Bytecodes::_i2l:
1521 #ifdef _LP64
1522       __ movl2ptr(dest->as_register_lo(), src->as_register());
1523 #else
1524       move_regs(src->as_register(), dest->as_register_lo());
1525       move_regs(src->as_register(), dest->as_register_hi());
1526       __ sarl(dest->as_register_hi(), 31);
1527 #endif // LP64
1528       break;
1529 
1530     case Bytecodes::_l2i:
1531       move_regs(src->as_register_lo(), dest->as_register());
1532       break;
1533 
1534     case Bytecodes::_i2b:
1535       move_regs(src->as_register(), dest->as_register());
1536       __ sign_extend_byte(dest->as_register());
1537       break;
1538 
1539     case Bytecodes::_i2c:
1540       move_regs(src->as_register(), dest->as_register());
1541       __ andl(dest->as_register(), 0xFFFF);
1542       break;
1543 
1544     case Bytecodes::_i2s:
1545       move_regs(src->as_register(), dest->as_register());
1546       __ sign_extend_short(dest->as_register());
1547       break;
1548 
1549 
1550     case Bytecodes::_f2d:
1551     case Bytecodes::_d2f:
1552       if (dest->is_single_xmm()) {
1553         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1554       } else if (dest->is_double_xmm()) {
1555         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1556       } else {
1557         assert(src->fpu() == dest->fpu(), "register must be equal");
1558         // do nothing (float result is rounded later through spilling)
1559       }
1560       break;
1561 
1562     case Bytecodes::_i2f:
1563     case Bytecodes::_i2d:
1564       if (dest->is_single_xmm()) {
1565         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1566       } else if (dest->is_double_xmm()) {
1567         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1568       } else {
1569         assert(dest->fpu() == 0, "result must be on TOS");
1570         __ movl(Address(rsp, 0), src->as_register());
1571         __ fild_s(Address(rsp, 0));
1572       }
1573       break;
1574 
1575     case Bytecodes::_f2i:
1576     case Bytecodes::_d2i:
1577       if (src->is_single_xmm()) {
1578         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1579       } else if (src->is_double_xmm()) {
1580         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1581       } else {
1582         assert(src->fpu() == 0, "input must be on TOS");
1583         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1584         __ fist_s(Address(rsp, 0));
1585         __ movl(dest->as_register(), Address(rsp, 0));
1586         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1587       }
1588 
1589       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1590       assert(op->stub() != NULL, "stub required");
1591       __ cmpl(dest->as_register(), 0x80000000);
1592       __ jcc(Assembler::equal, *op->stub()->entry());
1593       __ bind(*op->stub()->continuation());
1594       break;
1595 
1596     case Bytecodes::_l2f:
1597     case Bytecodes::_l2d:
1598       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1599       assert(dest->fpu() == 0, "result must be on TOS");
1600 
1601       __ movptr(Address(rsp, 0),            src->as_register_lo());
1602       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1603       __ fild_d(Address(rsp, 0));
1604       // float result is rounded later through spilling
1605       break;
1606 
1607     case Bytecodes::_f2l:
1608     case Bytecodes::_d2l:
1609       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1610       assert(src->fpu() == 0, "input must be on TOS");
1611       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1612 
1613       // instruction sequence too long to inline it here
1614       {
1615         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1616       }
1617       break;
1618 
1619     default: ShouldNotReachHere();
1620   }
1621 }
1622 
1623 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1624   if (op->init_check()) {
1625     __ cmpl(Address(op->klass()->as_register(),
1626                     instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc)),
1627             instanceKlass::fully_initialized);
1628     add_debug_info_for_null_check_here(op->stub()->info());
1629     __ jcc(Assembler::notEqual, *op->stub()->entry());
1630   }
1631   __ allocate_object(op->obj()->as_register(),
1632                      op->tmp1()->as_register(),
1633                      op->tmp2()->as_register(),
1634                      op->header_size(),
1635                      op->object_size(),
1636                      op->klass()->as_register(),
1637                      *op->stub()->entry());
1638   __ bind(*op->stub()->continuation());
1639 }
1640 
1641 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1642   if (UseSlowPath ||
1643       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1644       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1645     __ jmp(*op->stub()->entry());
1646   } else {
1647     Register len =  op->len()->as_register();
1648     Register tmp1 = op->tmp1()->as_register();
1649     Register tmp2 = op->tmp2()->as_register();
1650     Register tmp3 = op->tmp3()->as_register();
1651     if (len == tmp1) {
1652       tmp1 = tmp3;
1653     } else if (len == tmp2) {
1654       tmp2 = tmp3;
1655     } else if (len == tmp3) {
1656       // everything is ok
1657     } else {
1658       __ mov(tmp3, len);
1659     }
1660     __ allocate_array(op->obj()->as_register(),
1661                       len,
1662                       tmp1,
1663                       tmp2,
1664                       arrayOopDesc::header_size(op->type()),
1665                       array_element_size(op->type()),
1666                       op->klass()->as_register(),
1667                       *op->stub()->entry());
1668   }
1669   __ bind(*op->stub()->continuation());
1670 }
1671 
1672 void LIR_Assembler::type_profile_helper(Register mdo,
1673                                         ciMethodData *md, ciProfileData *data,
1674                                         Register recv, Label* update_done) {
1675   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1676     Label next_test;
1677     // See if the receiver is receiver[n].
1678     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1679     __ jccb(Assembler::notEqual, next_test);
1680     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1681     __ addptr(data_addr, DataLayout::counter_increment);
1682     __ jmp(*update_done);
1683     __ bind(next_test);
1684   }
1685 
1686   // Didn't find receiver; find next empty slot and fill it in
1687   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1688     Label next_test;
1689     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1690     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1691     __ jccb(Assembler::notEqual, next_test);
1692     __ movptr(recv_addr, recv);
1693     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1694     __ jmp(*update_done);
1695     __ bind(next_test);
1696   }
1697 }
1698 
1699 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1700   // we always need a stub for the failure case.
1701   CodeStub* stub = op->stub();
1702   Register obj = op->object()->as_register();
1703   Register k_RInfo = op->tmp1()->as_register();
1704   Register klass_RInfo = op->tmp2()->as_register();
1705   Register dst = op->result_opr()->as_register();
1706   ciKlass* k = op->klass();
1707   Register Rtmp1 = noreg;
1708 
1709   // check if it needs to be profiled
1710   ciMethodData* md;
1711   ciProfileData* data;
1712 
1713   if (op->should_profile()) {
1714     ciMethod* method = op->profiled_method();
1715     assert(method != NULL, "Should have method");
1716     int bci = op->profiled_bci();
1717     md = method->method_data();
1718     if (md == NULL) {
1719       bailout("out of memory building methodDataOop");
1720       return;
1721     }
1722     data = md->bci_to_data(bci);
1723     assert(data != NULL,                "need data for type check");
1724     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1725   }
1726   Label profile_cast_success, profile_cast_failure;
1727   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1728   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1729 
1730   if (obj == k_RInfo) {
1731     k_RInfo = dst;
1732   } else if (obj == klass_RInfo) {
1733     klass_RInfo = dst;
1734   }
1735   if (k->is_loaded() && LP64_ONLY(!UseCompressedOops) NOT_LP64(true)) {
1736     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1737   } else {
1738     Rtmp1 = op->tmp3()->as_register();
1739     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1740   }
1741 
1742   assert_different_registers(obj, k_RInfo, klass_RInfo);
1743   if (!k->is_loaded()) {
1744     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1745   } else {
1746 #ifdef _LP64
1747     __ movoop(k_RInfo, k->constant_encoding());
1748 #endif // _LP64
1749   }
1750   assert(obj != k_RInfo, "must be different");
1751 
1752   __ cmpptr(obj, (int32_t)NULL_WORD);
1753   if (op->should_profile()) {
1754     Label not_null;
1755     __ jccb(Assembler::notEqual, not_null);
1756     // Object is null; update MDO and exit
1757     Register mdo  = klass_RInfo;
1758     __ movoop(mdo, md->constant_encoding());
1759     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1760     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1761     __ orl(data_addr, header_bits);
1762     __ jmp(*obj_is_null);
1763     __ bind(not_null);
1764   } else {
1765     __ jcc(Assembler::equal, *obj_is_null);
1766   }
1767   __ verify_oop(obj);
1768 
1769   if (op->fast_check()) {
1770     // get object class
1771     // not a safepoint as obj null check happens earlier
1772 #ifdef _LP64
1773     if (UseCompressedOops) {
1774       __ load_klass(Rtmp1, obj);
1775       __ cmpl(k_RInfo, Rtmp1);
1776     } else {
1777       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1778     }
1779 #else
1780     if (k->is_loaded()) {
1781       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1782     } else {
1783       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1784     }
1785 #endif
1786     __ jcc(Assembler::notEqual, *failure_target);
1787     // successful cast, fall through to profile or jump
1788   } else {
1789     // get object class
1790     // not a safepoint as obj null check happens earlier
1791     __ load_klass(klass_RInfo, obj);
1792     if (k->is_loaded()) {
1793       // See if we get an immediate positive hit
1794 #ifdef _LP64
1795       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1796 #else
1797       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1798 #endif // _LP64
1799       if (sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() != k->super_check_offset()) {
1800         __ jcc(Assembler::notEqual, *failure_target);
1801         // successful cast, fall through to profile or jump
1802       } else {
1803         // See if we get an immediate positive hit
1804         __ jcc(Assembler::equal, *success_target);
1805         // check for self
1806 #ifdef _LP64
1807         __ cmpptr(klass_RInfo, k_RInfo);
1808 #else
1809         __ cmpoop(klass_RInfo, k->constant_encoding());
1810 #endif // _LP64
1811         __ jcc(Assembler::equal, *success_target);
1812 
1813         __ push(klass_RInfo);
1814 #ifdef _LP64
1815         __ push(k_RInfo);
1816 #else
1817         __ pushoop(k->constant_encoding());
1818 #endif // _LP64
1819         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1820         __ pop(klass_RInfo);
1821         __ pop(klass_RInfo);
1822         // result is a boolean
1823         __ cmpl(klass_RInfo, 0);
1824         __ jcc(Assembler::equal, *failure_target);
1825         // successful cast, fall through to profile or jump
1826       }
1827     } else {
1828       // perform the fast part of the checking logic
1829       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1830       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1831       __ push(klass_RInfo);
1832       __ push(k_RInfo);
1833       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1834       __ pop(klass_RInfo);
1835       __ pop(k_RInfo);
1836       // result is a boolean
1837       __ cmpl(k_RInfo, 0);
1838       __ jcc(Assembler::equal, *failure_target);
1839       // successful cast, fall through to profile or jump
1840     }
1841   }
1842   if (op->should_profile()) {
1843     Register mdo  = klass_RInfo, recv = k_RInfo;
1844     __ bind(profile_cast_success);
1845     __ movoop(mdo, md->constant_encoding());
1846     __ load_klass(recv, obj);
1847     Label update_done;
1848     type_profile_helper(mdo, md, data, recv, success);
1849     __ jmp(*success);
1850 
1851     __ bind(profile_cast_failure);
1852     __ movoop(mdo, md->constant_encoding());
1853     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1854     __ subptr(counter_addr, DataLayout::counter_increment);
1855     __ jmp(*failure);
1856   }
1857   __ jmp(*success);
1858 }
1859 
1860 
1861 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1862   LIR_Code code = op->code();
1863   if (code == lir_store_check) {
1864     Register value = op->object()->as_register();
1865     Register array = op->array()->as_register();
1866     Register k_RInfo = op->tmp1()->as_register();
1867     Register klass_RInfo = op->tmp2()->as_register();
1868     Register Rtmp1 = op->tmp3()->as_register();
1869 
1870     CodeStub* stub = op->stub();
1871 
1872     // check if it needs to be profiled
1873     ciMethodData* md;
1874     ciProfileData* data;
1875 
1876     if (op->should_profile()) {
1877       ciMethod* method = op->profiled_method();
1878       assert(method != NULL, "Should have method");
1879       int bci = op->profiled_bci();
1880       md = method->method_data();
1881       if (md == NULL) {
1882         bailout("out of memory building methodDataOop");
1883         return;
1884       }
1885       data = md->bci_to_data(bci);
1886       assert(data != NULL,                "need data for type check");
1887       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1888     }
1889     Label profile_cast_success, profile_cast_failure, done;
1890     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1891     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1892 
1893     __ cmpptr(value, (int32_t)NULL_WORD);
1894     if (op->should_profile()) {
1895       Label not_null;
1896       __ jccb(Assembler::notEqual, not_null);
1897       // Object is null; update MDO and exit
1898       Register mdo  = klass_RInfo;
1899       __ movoop(mdo, md->constant_encoding());
1900       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1901       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1902       __ orl(data_addr, header_bits);
1903       __ jmp(done);
1904       __ bind(not_null);
1905     } else {
1906       __ jcc(Assembler::equal, done);
1907     }
1908 
1909     add_debug_info_for_null_check_here(op->info_for_exception());
1910     __ load_klass(k_RInfo, array);
1911     __ load_klass(klass_RInfo, value);
1912 
1913     // get instance klass (it's already uncompressed)
1914     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)));
1915     // perform the fast part of the checking logic
1916     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1917     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1918     __ push(klass_RInfo);
1919     __ push(k_RInfo);
1920     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1921     __ pop(klass_RInfo);
1922     __ pop(k_RInfo);
1923     // result is a boolean
1924     __ cmpl(k_RInfo, 0);
1925     __ jcc(Assembler::equal, *failure_target);
1926     // fall through to the success case
1927 
1928     if (op->should_profile()) {
1929       Register mdo  = klass_RInfo, recv = k_RInfo;
1930       __ bind(profile_cast_success);
1931       __ movoop(mdo, md->constant_encoding());
1932       __ load_klass(recv, value);
1933       Label update_done;
1934       type_profile_helper(mdo, md, data, recv, &done);
1935       __ jmpb(done);
1936 
1937       __ bind(profile_cast_failure);
1938       __ movoop(mdo, md->constant_encoding());
1939       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1940       __ subptr(counter_addr, DataLayout::counter_increment);
1941       __ jmp(*stub->entry());
1942     }
1943 
1944     __ bind(done);
1945   } else
1946     if (code == lir_checkcast) {
1947       Register obj = op->object()->as_register();
1948       Register dst = op->result_opr()->as_register();
1949       Label success;
1950       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1951       __ bind(success);
1952       if (dst != obj) {
1953         __ mov(dst, obj);
1954       }
1955     } else
1956       if (code == lir_instanceof) {
1957         Register obj = op->object()->as_register();
1958         Register dst = op->result_opr()->as_register();
1959         Label success, failure, done;
1960         emit_typecheck_helper(op, &success, &failure, &failure);
1961         __ bind(failure);
1962         __ xorptr(dst, dst);
1963         __ jmpb(done);
1964         __ bind(success);
1965         __ movptr(dst, 1);
1966         __ bind(done);
1967       } else {
1968         ShouldNotReachHere();
1969       }
1970 
1971 }
1972 
1973 
1974 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1975   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1976     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1977     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1978     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1979     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1980     Register addr = op->addr()->as_register();
1981     if (os::is_MP()) {
1982       __ lock();
1983     }
1984     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1985 
1986   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1987     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1988     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1989     Register newval = op->new_value()->as_register();
1990     Register cmpval = op->cmp_value()->as_register();
1991     assert(cmpval == rax, "wrong register");
1992     assert(newval != NULL, "new val must be register");
1993     assert(cmpval != newval, "cmp and new values must be in different registers");
1994     assert(cmpval != addr, "cmp and addr must be in different registers");
1995     assert(newval != addr, "new value and addr must be in different registers");
1996 
1997     if ( op->code() == lir_cas_obj) {
1998 #ifdef _LP64
1999       if (UseCompressedOops) {
2000         __ mov(rscratch1, cmpval);
2001         __ encode_heap_oop(cmpval);
2002         __ mov(rscratch2, newval);
2003         __ encode_heap_oop(rscratch2);
2004         if (os::is_MP()) {
2005           __ lock();
2006         }
2007         __ cmpxchgl(rscratch2, Address(addr, 0));
2008         __ mov(cmpval, rscratch1);
2009       } else
2010 #endif
2011       {
2012         if (os::is_MP()) {
2013           __ lock();
2014         }
2015         __ cmpxchgptr(newval, Address(addr, 0));
2016       }
2017     } else {
2018       assert(op->code() == lir_cas_int, "lir_cas_int expected");
2019       if (os::is_MP()) {
2020         __ lock();
2021       }
2022       __ cmpxchgl(newval, Address(addr, 0));
2023     }
2024 #ifdef _LP64
2025   } else if (op->code() == lir_cas_long) {
2026     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
2027     Register newval = op->new_value()->as_register_lo();
2028     Register cmpval = op->cmp_value()->as_register_lo();
2029     assert(cmpval == rax, "wrong register");
2030     assert(newval != NULL, "new val must be register");
2031     assert(cmpval != newval, "cmp and new values must be in different registers");
2032     assert(cmpval != addr, "cmp and addr must be in different registers");
2033     assert(newval != addr, "new value and addr must be in different registers");
2034     if (os::is_MP()) {
2035       __ lock();
2036     }
2037     __ cmpxchgq(newval, Address(addr, 0));
2038 #endif // _LP64
2039   } else {
2040     Unimplemented();
2041   }
2042 }
2043 
2044 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
2045   Assembler::Condition acond, ncond;
2046   switch (condition) {
2047     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2048     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2049     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2050     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2051     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2052     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2053     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2054     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2055     default:                    ShouldNotReachHere();
2056   }
2057 
2058   if (opr1->is_cpu_register()) {
2059     reg2reg(opr1, result);
2060   } else if (opr1->is_stack()) {
2061     stack2reg(opr1, result, result->type());
2062   } else if (opr1->is_constant()) {
2063     const2reg(opr1, result, lir_patch_none, NULL);
2064   } else {
2065     ShouldNotReachHere();
2066   }
2067 
2068   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2069     // optimized version that does not require a branch
2070     if (opr2->is_single_cpu()) {
2071       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2072       __ cmov(ncond, result->as_register(), opr2->as_register());
2073     } else if (opr2->is_double_cpu()) {
2074       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2075       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2076       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2077       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2078     } else if (opr2->is_single_stack()) {
2079       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2080     } else if (opr2->is_double_stack()) {
2081       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2082       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2083     } else {
2084       ShouldNotReachHere();
2085     }
2086 
2087   } else {
2088     Label skip;
2089     __ jcc (acond, skip);
2090     if (opr2->is_cpu_register()) {
2091       reg2reg(opr2, result);
2092     } else if (opr2->is_stack()) {
2093       stack2reg(opr2, result, result->type());
2094     } else if (opr2->is_constant()) {
2095       const2reg(opr2, result, lir_patch_none, NULL);
2096     } else {
2097       ShouldNotReachHere();
2098     }
2099     __ bind(skip);
2100   }
2101 }
2102 
2103 
2104 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2105   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2106 
2107   if (left->is_single_cpu()) {
2108     assert(left == dest, "left and dest must be equal");
2109     Register lreg = left->as_register();
2110 
2111     if (right->is_single_cpu()) {
2112       // cpu register - cpu register
2113       Register rreg = right->as_register();
2114       switch (code) {
2115         case lir_add: __ addl (lreg, rreg); break;
2116         case lir_sub: __ subl (lreg, rreg); break;
2117         case lir_mul: __ imull(lreg, rreg); break;
2118         default:      ShouldNotReachHere();
2119       }
2120 
2121     } else if (right->is_stack()) {
2122       // cpu register - stack
2123       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2124       switch (code) {
2125         case lir_add: __ addl(lreg, raddr); break;
2126         case lir_sub: __ subl(lreg, raddr); break;
2127         default:      ShouldNotReachHere();
2128       }
2129 
2130     } else if (right->is_constant()) {
2131       // cpu register - constant
2132       jint c = right->as_constant_ptr()->as_jint();
2133       switch (code) {
2134         case lir_add: {
2135           __ incrementl(lreg, c);
2136           break;
2137         }
2138         case lir_sub: {
2139           __ decrementl(lreg, c);
2140           break;
2141         }
2142         default: ShouldNotReachHere();
2143       }
2144 
2145     } else {
2146       ShouldNotReachHere();
2147     }
2148 
2149   } else if (left->is_double_cpu()) {
2150     assert(left == dest, "left and dest must be equal");
2151     Register lreg_lo = left->as_register_lo();
2152     Register lreg_hi = left->as_register_hi();
2153 
2154     if (right->is_double_cpu()) {
2155       // cpu register - cpu register
2156       Register rreg_lo = right->as_register_lo();
2157       Register rreg_hi = right->as_register_hi();
2158       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2159       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2160       switch (code) {
2161         case lir_add:
2162           __ addptr(lreg_lo, rreg_lo);
2163           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2164           break;
2165         case lir_sub:
2166           __ subptr(lreg_lo, rreg_lo);
2167           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2168           break;
2169         case lir_mul:
2170 #ifdef _LP64
2171           __ imulq(lreg_lo, rreg_lo);
2172 #else
2173           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2174           __ imull(lreg_hi, rreg_lo);
2175           __ imull(rreg_hi, lreg_lo);
2176           __ addl (rreg_hi, lreg_hi);
2177           __ mull (rreg_lo);
2178           __ addl (lreg_hi, rreg_hi);
2179 #endif // _LP64
2180           break;
2181         default:
2182           ShouldNotReachHere();
2183       }
2184 
2185     } else if (right->is_constant()) {
2186       // cpu register - constant
2187 #ifdef _LP64
2188       jlong c = right->as_constant_ptr()->as_jlong_bits();
2189       __ movptr(r10, (intptr_t) c);
2190       switch (code) {
2191         case lir_add:
2192           __ addptr(lreg_lo, r10);
2193           break;
2194         case lir_sub:
2195           __ subptr(lreg_lo, r10);
2196           break;
2197         default:
2198           ShouldNotReachHere();
2199       }
2200 #else
2201       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2202       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2203       switch (code) {
2204         case lir_add:
2205           __ addptr(lreg_lo, c_lo);
2206           __ adcl(lreg_hi, c_hi);
2207           break;
2208         case lir_sub:
2209           __ subptr(lreg_lo, c_lo);
2210           __ sbbl(lreg_hi, c_hi);
2211           break;
2212         default:
2213           ShouldNotReachHere();
2214       }
2215 #endif // _LP64
2216 
2217     } else {
2218       ShouldNotReachHere();
2219     }
2220 
2221   } else if (left->is_single_xmm()) {
2222     assert(left == dest, "left and dest must be equal");
2223     XMMRegister lreg = left->as_xmm_float_reg();
2224 
2225     if (right->is_single_xmm()) {
2226       XMMRegister rreg = right->as_xmm_float_reg();
2227       switch (code) {
2228         case lir_add: __ addss(lreg, rreg);  break;
2229         case lir_sub: __ subss(lreg, rreg);  break;
2230         case lir_mul_strictfp: // fall through
2231         case lir_mul: __ mulss(lreg, rreg);  break;
2232         case lir_div_strictfp: // fall through
2233         case lir_div: __ divss(lreg, rreg);  break;
2234         default: ShouldNotReachHere();
2235       }
2236     } else {
2237       Address raddr;
2238       if (right->is_single_stack()) {
2239         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2240       } else if (right->is_constant()) {
2241         // hack for now
2242         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2243       } else {
2244         ShouldNotReachHere();
2245       }
2246       switch (code) {
2247         case lir_add: __ addss(lreg, raddr);  break;
2248         case lir_sub: __ subss(lreg, raddr);  break;
2249         case lir_mul_strictfp: // fall through
2250         case lir_mul: __ mulss(lreg, raddr);  break;
2251         case lir_div_strictfp: // fall through
2252         case lir_div: __ divss(lreg, raddr);  break;
2253         default: ShouldNotReachHere();
2254       }
2255     }
2256 
2257   } else if (left->is_double_xmm()) {
2258     assert(left == dest, "left and dest must be equal");
2259 
2260     XMMRegister lreg = left->as_xmm_double_reg();
2261     if (right->is_double_xmm()) {
2262       XMMRegister rreg = right->as_xmm_double_reg();
2263       switch (code) {
2264         case lir_add: __ addsd(lreg, rreg);  break;
2265         case lir_sub: __ subsd(lreg, rreg);  break;
2266         case lir_mul_strictfp: // fall through
2267         case lir_mul: __ mulsd(lreg, rreg);  break;
2268         case lir_div_strictfp: // fall through
2269         case lir_div: __ divsd(lreg, rreg);  break;
2270         default: ShouldNotReachHere();
2271       }
2272     } else {
2273       Address raddr;
2274       if (right->is_double_stack()) {
2275         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2276       } else if (right->is_constant()) {
2277         // hack for now
2278         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2279       } else {
2280         ShouldNotReachHere();
2281       }
2282       switch (code) {
2283         case lir_add: __ addsd(lreg, raddr);  break;
2284         case lir_sub: __ subsd(lreg, raddr);  break;
2285         case lir_mul_strictfp: // fall through
2286         case lir_mul: __ mulsd(lreg, raddr);  break;
2287         case lir_div_strictfp: // fall through
2288         case lir_div: __ divsd(lreg, raddr);  break;
2289         default: ShouldNotReachHere();
2290       }
2291     }
2292 
2293   } else if (left->is_single_fpu()) {
2294     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2295 
2296     if (right->is_single_fpu()) {
2297       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2298 
2299     } else {
2300       assert(left->fpu_regnr() == 0, "left must be on TOS");
2301       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2302 
2303       Address raddr;
2304       if (right->is_single_stack()) {
2305         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2306       } else if (right->is_constant()) {
2307         address const_addr = float_constant(right->as_jfloat());
2308         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2309         // hack for now
2310         raddr = __ as_Address(InternalAddress(const_addr));
2311       } else {
2312         ShouldNotReachHere();
2313       }
2314 
2315       switch (code) {
2316         case lir_add: __ fadd_s(raddr); break;
2317         case lir_sub: __ fsub_s(raddr); break;
2318         case lir_mul_strictfp: // fall through
2319         case lir_mul: __ fmul_s(raddr); break;
2320         case lir_div_strictfp: // fall through
2321         case lir_div: __ fdiv_s(raddr); break;
2322         default:      ShouldNotReachHere();
2323       }
2324     }
2325 
2326   } else if (left->is_double_fpu()) {
2327     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2328 
2329     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2330       // Double values require special handling for strictfp mul/div on x86
2331       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2332       __ fmulp(left->fpu_regnrLo() + 1);
2333     }
2334 
2335     if (right->is_double_fpu()) {
2336       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2337 
2338     } else {
2339       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2340       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2341 
2342       Address raddr;
2343       if (right->is_double_stack()) {
2344         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2345       } else if (right->is_constant()) {
2346         // hack for now
2347         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2348       } else {
2349         ShouldNotReachHere();
2350       }
2351 
2352       switch (code) {
2353         case lir_add: __ fadd_d(raddr); break;
2354         case lir_sub: __ fsub_d(raddr); break;
2355         case lir_mul_strictfp: // fall through
2356         case lir_mul: __ fmul_d(raddr); break;
2357         case lir_div_strictfp: // fall through
2358         case lir_div: __ fdiv_d(raddr); break;
2359         default: ShouldNotReachHere();
2360       }
2361     }
2362 
2363     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2364       // Double values require special handling for strictfp mul/div on x86
2365       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2366       __ fmulp(dest->fpu_regnrLo() + 1);
2367     }
2368 
2369   } else if (left->is_single_stack() || left->is_address()) {
2370     assert(left == dest, "left and dest must be equal");
2371 
2372     Address laddr;
2373     if (left->is_single_stack()) {
2374       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2375     } else if (left->is_address()) {
2376       laddr = as_Address(left->as_address_ptr());
2377     } else {
2378       ShouldNotReachHere();
2379     }
2380 
2381     if (right->is_single_cpu()) {
2382       Register rreg = right->as_register();
2383       switch (code) {
2384         case lir_add: __ addl(laddr, rreg); break;
2385         case lir_sub: __ subl(laddr, rreg); break;
2386         default:      ShouldNotReachHere();
2387       }
2388     } else if (right->is_constant()) {
2389       jint c = right->as_constant_ptr()->as_jint();
2390       switch (code) {
2391         case lir_add: {
2392           __ incrementl(laddr, c);
2393           break;
2394         }
2395         case lir_sub: {
2396           __ decrementl(laddr, c);
2397           break;
2398         }
2399         default: ShouldNotReachHere();
2400       }
2401     } else {
2402       ShouldNotReachHere();
2403     }
2404 
2405   } else {
2406     ShouldNotReachHere();
2407   }
2408 }
2409 
2410 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2411   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2412   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2413   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2414 
2415   bool left_is_tos = (left_index == 0);
2416   bool dest_is_tos = (dest_index == 0);
2417   int non_tos_index = (left_is_tos ? right_index : left_index);
2418 
2419   switch (code) {
2420     case lir_add:
2421       if (pop_fpu_stack)       __ faddp(non_tos_index);
2422       else if (dest_is_tos)    __ fadd (non_tos_index);
2423       else                     __ fadda(non_tos_index);
2424       break;
2425 
2426     case lir_sub:
2427       if (left_is_tos) {
2428         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2429         else if (dest_is_tos)  __ fsub  (non_tos_index);
2430         else                   __ fsubra(non_tos_index);
2431       } else {
2432         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2433         else if (dest_is_tos)  __ fsubr (non_tos_index);
2434         else                   __ fsuba (non_tos_index);
2435       }
2436       break;
2437 
2438     case lir_mul_strictfp: // fall through
2439     case lir_mul:
2440       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2441       else if (dest_is_tos)    __ fmul (non_tos_index);
2442       else                     __ fmula(non_tos_index);
2443       break;
2444 
2445     case lir_div_strictfp: // fall through
2446     case lir_div:
2447       if (left_is_tos) {
2448         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2449         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2450         else                   __ fdivra(non_tos_index);
2451       } else {
2452         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2453         else if (dest_is_tos)  __ fdivr (non_tos_index);
2454         else                   __ fdiva (non_tos_index);
2455       }
2456       break;
2457 
2458     case lir_rem:
2459       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2460       __ fremr(noreg);
2461       break;
2462 
2463     default:
2464       ShouldNotReachHere();
2465   }
2466 }
2467 
2468 
2469 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2470   if (value->is_double_xmm()) {
2471     switch(code) {
2472       case lir_abs :
2473         {
2474           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2475             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2476           }
2477           __ andpd(dest->as_xmm_double_reg(),
2478                     ExternalAddress((address)double_signmask_pool));
2479         }
2480         break;
2481 
2482       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2483       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2484       default      : ShouldNotReachHere();
2485     }
2486 
2487   } else if (value->is_double_fpu()) {
2488     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2489     switch(code) {
2490       case lir_log   : __ flog() ; break;
2491       case lir_log10 : __ flog10() ; break;
2492       case lir_abs   : __ fabs() ; break;
2493       case lir_sqrt  : __ fsqrt(); break;
2494       case lir_sin   :
2495         // Should consider not saving rbx, if not necessary
2496         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2497         break;
2498       case lir_cos :
2499         // Should consider not saving rbx, if not necessary
2500         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2501         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2502         break;
2503       case lir_tan :
2504         // Should consider not saving rbx, if not necessary
2505         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2506         break;
2507       default      : ShouldNotReachHere();
2508     }
2509   } else {
2510     Unimplemented();
2511   }
2512 }
2513 
2514 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2515   // assert(left->destroys_register(), "check");
2516   if (left->is_single_cpu()) {
2517     Register reg = left->as_register();
2518     if (right->is_constant()) {
2519       int val = right->as_constant_ptr()->as_jint();
2520       switch (code) {
2521         case lir_logic_and: __ andl (reg, val); break;
2522         case lir_logic_or:  __ orl  (reg, val); break;
2523         case lir_logic_xor: __ xorl (reg, val); break;
2524         default: ShouldNotReachHere();
2525       }
2526     } else if (right->is_stack()) {
2527       // added support for stack operands
2528       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2529       switch (code) {
2530         case lir_logic_and: __ andl (reg, raddr); break;
2531         case lir_logic_or:  __ orl  (reg, raddr); break;
2532         case lir_logic_xor: __ xorl (reg, raddr); break;
2533         default: ShouldNotReachHere();
2534       }
2535     } else {
2536       Register rright = right->as_register();
2537       switch (code) {
2538         case lir_logic_and: __ andptr (reg, rright); break;
2539         case lir_logic_or : __ orptr  (reg, rright); break;
2540         case lir_logic_xor: __ xorptr (reg, rright); break;
2541         default: ShouldNotReachHere();
2542       }
2543     }
2544     move_regs(reg, dst->as_register());
2545   } else {
2546     Register l_lo = left->as_register_lo();
2547     Register l_hi = left->as_register_hi();
2548     if (right->is_constant()) {
2549 #ifdef _LP64
2550       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2551       switch (code) {
2552         case lir_logic_and:
2553           __ andq(l_lo, rscratch1);
2554           break;
2555         case lir_logic_or:
2556           __ orq(l_lo, rscratch1);
2557           break;
2558         case lir_logic_xor:
2559           __ xorq(l_lo, rscratch1);
2560           break;
2561         default: ShouldNotReachHere();
2562       }
2563 #else
2564       int r_lo = right->as_constant_ptr()->as_jint_lo();
2565       int r_hi = right->as_constant_ptr()->as_jint_hi();
2566       switch (code) {
2567         case lir_logic_and:
2568           __ andl(l_lo, r_lo);
2569           __ andl(l_hi, r_hi);
2570           break;
2571         case lir_logic_or:
2572           __ orl(l_lo, r_lo);
2573           __ orl(l_hi, r_hi);
2574           break;
2575         case lir_logic_xor:
2576           __ xorl(l_lo, r_lo);
2577           __ xorl(l_hi, r_hi);
2578           break;
2579         default: ShouldNotReachHere();
2580       }
2581 #endif // _LP64
2582     } else {
2583 #ifdef _LP64
2584       Register r_lo;
2585       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2586         r_lo = right->as_register();
2587       } else {
2588         r_lo = right->as_register_lo();
2589       }
2590 #else
2591       Register r_lo = right->as_register_lo();
2592       Register r_hi = right->as_register_hi();
2593       assert(l_lo != r_hi, "overwriting registers");
2594 #endif
2595       switch (code) {
2596         case lir_logic_and:
2597           __ andptr(l_lo, r_lo);
2598           NOT_LP64(__ andptr(l_hi, r_hi);)
2599           break;
2600         case lir_logic_or:
2601           __ orptr(l_lo, r_lo);
2602           NOT_LP64(__ orptr(l_hi, r_hi);)
2603           break;
2604         case lir_logic_xor:
2605           __ xorptr(l_lo, r_lo);
2606           NOT_LP64(__ xorptr(l_hi, r_hi);)
2607           break;
2608         default: ShouldNotReachHere();
2609       }
2610     }
2611 
2612     Register dst_lo = dst->as_register_lo();
2613     Register dst_hi = dst->as_register_hi();
2614 
2615 #ifdef _LP64
2616     move_regs(l_lo, dst_lo);
2617 #else
2618     if (dst_lo == l_hi) {
2619       assert(dst_hi != l_lo, "overwriting registers");
2620       move_regs(l_hi, dst_hi);
2621       move_regs(l_lo, dst_lo);
2622     } else {
2623       assert(dst_lo != l_hi, "overwriting registers");
2624       move_regs(l_lo, dst_lo);
2625       move_regs(l_hi, dst_hi);
2626     }
2627 #endif // _LP64
2628   }
2629 }
2630 
2631 
2632 // we assume that rax, and rdx can be overwritten
2633 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2634 
2635   assert(left->is_single_cpu(),   "left must be register");
2636   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2637   assert(result->is_single_cpu(), "result must be register");
2638 
2639   //  assert(left->destroys_register(), "check");
2640   //  assert(right->destroys_register(), "check");
2641 
2642   Register lreg = left->as_register();
2643   Register dreg = result->as_register();
2644 
2645   if (right->is_constant()) {
2646     int divisor = right->as_constant_ptr()->as_jint();
2647     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2648     if (code == lir_idiv) {
2649       assert(lreg == rax, "must be rax,");
2650       assert(temp->as_register() == rdx, "tmp register must be rdx");
2651       __ cdql(); // sign extend into rdx:rax
2652       if (divisor == 2) {
2653         __ subl(lreg, rdx);
2654       } else {
2655         __ andl(rdx, divisor - 1);
2656         __ addl(lreg, rdx);
2657       }
2658       __ sarl(lreg, log2_intptr(divisor));
2659       move_regs(lreg, dreg);
2660     } else if (code == lir_irem) {
2661       Label done;
2662       __ mov(dreg, lreg);
2663       __ andl(dreg, 0x80000000 | (divisor - 1));
2664       __ jcc(Assembler::positive, done);
2665       __ decrement(dreg);
2666       __ orl(dreg, ~(divisor - 1));
2667       __ increment(dreg);
2668       __ bind(done);
2669     } else {
2670       ShouldNotReachHere();
2671     }
2672   } else {
2673     Register rreg = right->as_register();
2674     assert(lreg == rax, "left register must be rax,");
2675     assert(rreg != rdx, "right register must not be rdx");
2676     assert(temp->as_register() == rdx, "tmp register must be rdx");
2677 
2678     move_regs(lreg, rax);
2679 
2680     int idivl_offset = __ corrected_idivl(rreg);
2681     add_debug_info_for_div0(idivl_offset, info);
2682     if (code == lir_irem) {
2683       move_regs(rdx, dreg); // result is in rdx
2684     } else {
2685       move_regs(rax, dreg);
2686     }
2687   }
2688 }
2689 
2690 
2691 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2692   if (opr1->is_single_cpu()) {
2693     Register reg1 = opr1->as_register();
2694     if (opr2->is_single_cpu()) {
2695       // cpu register - cpu register
2696       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2697         __ cmpptr(reg1, opr2->as_register());
2698       } else {
2699         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2700         __ cmpl(reg1, opr2->as_register());
2701       }
2702     } else if (opr2->is_stack()) {
2703       // cpu register - stack
2704       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2705         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2706       } else {
2707         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2708       }
2709     } else if (opr2->is_constant()) {
2710       // cpu register - constant
2711       LIR_Const* c = opr2->as_constant_ptr();
2712       if (c->type() == T_INT) {
2713         __ cmpl(reg1, c->as_jint());
2714       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2715         // In 64bit oops are single register
2716         jobject o = c->as_jobject();
2717         if (o == NULL) {
2718           __ cmpptr(reg1, (int32_t)NULL_WORD);
2719         } else {
2720 #ifdef _LP64
2721           __ movoop(rscratch1, o);
2722           __ cmpptr(reg1, rscratch1);
2723 #else
2724           __ cmpoop(reg1, c->as_jobject());
2725 #endif // _LP64
2726         }
2727       } else {
2728         ShouldNotReachHere();
2729       }
2730       // cpu register - address
2731     } else if (opr2->is_address()) {
2732       if (op->info() != NULL) {
2733         add_debug_info_for_null_check_here(op->info());
2734       }
2735       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2736     } else {
2737       ShouldNotReachHere();
2738     }
2739 
2740   } else if(opr1->is_double_cpu()) {
2741     Register xlo = opr1->as_register_lo();
2742     Register xhi = opr1->as_register_hi();
2743     if (opr2->is_double_cpu()) {
2744 #ifdef _LP64
2745       __ cmpptr(xlo, opr2->as_register_lo());
2746 #else
2747       // cpu register - cpu register
2748       Register ylo = opr2->as_register_lo();
2749       Register yhi = opr2->as_register_hi();
2750       __ subl(xlo, ylo);
2751       __ sbbl(xhi, yhi);
2752       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2753         __ orl(xhi, xlo);
2754       }
2755 #endif // _LP64
2756     } else if (opr2->is_constant()) {
2757       // cpu register - constant 0
2758       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2759 #ifdef _LP64
2760       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2761 #else
2762       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2763       __ orl(xhi, xlo);
2764 #endif // _LP64
2765     } else {
2766       ShouldNotReachHere();
2767     }
2768 
2769   } else if (opr1->is_single_xmm()) {
2770     XMMRegister reg1 = opr1->as_xmm_float_reg();
2771     if (opr2->is_single_xmm()) {
2772       // xmm register - xmm register
2773       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2774     } else if (opr2->is_stack()) {
2775       // xmm register - stack
2776       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2777     } else if (opr2->is_constant()) {
2778       // xmm register - constant
2779       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2780     } else if (opr2->is_address()) {
2781       // xmm register - address
2782       if (op->info() != NULL) {
2783         add_debug_info_for_null_check_here(op->info());
2784       }
2785       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2786     } else {
2787       ShouldNotReachHere();
2788     }
2789 
2790   } else if (opr1->is_double_xmm()) {
2791     XMMRegister reg1 = opr1->as_xmm_double_reg();
2792     if (opr2->is_double_xmm()) {
2793       // xmm register - xmm register
2794       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2795     } else if (opr2->is_stack()) {
2796       // xmm register - stack
2797       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2798     } else if (opr2->is_constant()) {
2799       // xmm register - constant
2800       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2801     } else if (opr2->is_address()) {
2802       // xmm register - address
2803       if (op->info() != NULL) {
2804         add_debug_info_for_null_check_here(op->info());
2805       }
2806       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2807     } else {
2808       ShouldNotReachHere();
2809     }
2810 
2811   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2812     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2813     assert(opr2->is_fpu_register(), "both must be registers");
2814     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2815 
2816   } else if (opr1->is_address() && opr2->is_constant()) {
2817     LIR_Const* c = opr2->as_constant_ptr();
2818 #ifdef _LP64
2819     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2820       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2821       __ movoop(rscratch1, c->as_jobject());
2822     }
2823 #endif // LP64
2824     if (op->info() != NULL) {
2825       add_debug_info_for_null_check_here(op->info());
2826     }
2827     // special case: address - constant
2828     LIR_Address* addr = opr1->as_address_ptr();
2829     if (c->type() == T_INT) {
2830       __ cmpl(as_Address(addr), c->as_jint());
2831     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2832 #ifdef _LP64
2833       // %%% Make this explode if addr isn't reachable until we figure out a
2834       // better strategy by giving noreg as the temp for as_Address
2835       __ cmpptr(rscratch1, as_Address(addr, noreg));
2836 #else
2837       __ cmpoop(as_Address(addr), c->as_jobject());
2838 #endif // _LP64
2839     } else {
2840       ShouldNotReachHere();
2841     }
2842 
2843   } else {
2844     ShouldNotReachHere();
2845   }
2846 }
2847 
2848 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2849   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2850     if (left->is_single_xmm()) {
2851       assert(right->is_single_xmm(), "must match");
2852       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2853     } else if (left->is_double_xmm()) {
2854       assert(right->is_double_xmm(), "must match");
2855       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2856 
2857     } else {
2858       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2859       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2860 
2861       assert(left->fpu() == 0, "left must be on TOS");
2862       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2863                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2864     }
2865   } else {
2866     assert(code == lir_cmp_l2i, "check");
2867 #ifdef _LP64
2868     Label done;
2869     Register dest = dst->as_register();
2870     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2871     __ movl(dest, -1);
2872     __ jccb(Assembler::less, done);
2873     __ set_byte_if_not_zero(dest);
2874     __ movzbl(dest, dest);
2875     __ bind(done);
2876 #else
2877     __ lcmp2int(left->as_register_hi(),
2878                 left->as_register_lo(),
2879                 right->as_register_hi(),
2880                 right->as_register_lo());
2881     move_regs(left->as_register_hi(), dst->as_register());
2882 #endif // _LP64
2883   }
2884 }
2885 
2886 
2887 void LIR_Assembler::align_call(LIR_Code code) {
2888   if (os::is_MP()) {
2889     // make sure that the displacement word of the call ends up word aligned
2890     int offset = __ offset();
2891     switch (code) {
2892       case lir_static_call:
2893       case lir_optvirtual_call:
2894       case lir_dynamic_call:
2895         offset += NativeCall::displacement_offset;
2896         break;
2897       case lir_icvirtual_call:
2898         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2899       break;
2900       case lir_virtual_call:  // currently, sparc-specific for niagara
2901       default: ShouldNotReachHere();
2902     }
2903     while (offset++ % BytesPerWord != 0) {
2904       __ nop();
2905     }
2906   }
2907 }
2908 
2909 
2910 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2911   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2912          "must be aligned");
2913   __ call(AddressLiteral(op->addr(), rtype));
2914   add_call_info(code_offset(), op->info());
2915 }
2916 
2917 
2918 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2919   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2920   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2921   assert(!os::is_MP() ||
2922          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2923          "must be aligned");
2924   __ call(AddressLiteral(op->addr(), rh));
2925   add_call_info(code_offset(), op->info());
2926 }
2927 
2928 
2929 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2930 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2931   ShouldNotReachHere();
2932 }
2933 
2934 
2935 void LIR_Assembler::emit_static_call_stub() {
2936   address call_pc = __ pc();
2937   address stub = __ start_a_stub(call_stub_size);
2938   if (stub == NULL) {
2939     bailout("static call stub overflow");
2940     return;
2941   }
2942 
2943   int start = __ offset();
2944   if (os::is_MP()) {
2945     // make sure that the displacement word of the call ends up word aligned
2946     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2947     while (offset++ % BytesPerWord != 0) {
2948       __ nop();
2949     }
2950   }
2951   __ relocate(static_stub_Relocation::spec(call_pc));
2952   __ movoop(rbx, (jobject)NULL);
2953   // must be set to -1 at code generation time
2954   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2955   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2956   __ jump(RuntimeAddress(__ pc()));
2957 
2958   assert(__ offset() - start <= call_stub_size, "stub too big");
2959   __ end_a_stub();
2960 }
2961 
2962 
2963 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2964   assert(exceptionOop->as_register() == rax, "must match");
2965   assert(exceptionPC->as_register() == rdx, "must match");
2966 
2967   // exception object is not added to oop map by LinearScan
2968   // (LinearScan assumes that no oops are in fixed registers)
2969   info->add_register_oop(exceptionOop);
2970   Runtime1::StubID unwind_id;
2971 
2972   // get current pc information
2973   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2974   int pc_for_athrow_offset = __ offset();
2975   InternalAddress pc_for_athrow(__ pc());
2976   __ lea(exceptionPC->as_register(), pc_for_athrow);
2977   add_call_info(pc_for_athrow_offset, info); // for exception handler
2978 
2979   __ verify_not_null_oop(rax);
2980   // search an exception handler (rax: exception oop, rdx: throwing pc)
2981   if (compilation()->has_fpu_code()) {
2982     unwind_id = Runtime1::handle_exception_id;
2983   } else {
2984     unwind_id = Runtime1::handle_exception_nofpu_id;
2985   }
2986   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2987 
2988   // enough room for two byte trap
2989   __ nop();
2990 }
2991 
2992 
2993 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2994   assert(exceptionOop->as_register() == rax, "must match");
2995 
2996   __ jmp(_unwind_handler_entry);
2997 }
2998 
2999 
3000 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
3001 
3002   // optimized version for linear scan:
3003   // * count must be already in ECX (guaranteed by LinearScan)
3004   // * left and dest must be equal
3005   // * tmp must be unused
3006   assert(count->as_register() == SHIFT_count, "count must be in ECX");
3007   assert(left == dest, "left and dest must be equal");
3008   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
3009 
3010   if (left->is_single_cpu()) {
3011     Register value = left->as_register();
3012     assert(value != SHIFT_count, "left cannot be ECX");
3013 
3014     switch (code) {
3015       case lir_shl:  __ shll(value); break;
3016       case lir_shr:  __ sarl(value); break;
3017       case lir_ushr: __ shrl(value); break;
3018       default: ShouldNotReachHere();
3019     }
3020   } else if (left->is_double_cpu()) {
3021     Register lo = left->as_register_lo();
3022     Register hi = left->as_register_hi();
3023     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
3024 #ifdef _LP64
3025     switch (code) {
3026       case lir_shl:  __ shlptr(lo);        break;
3027       case lir_shr:  __ sarptr(lo);        break;
3028       case lir_ushr: __ shrptr(lo);        break;
3029       default: ShouldNotReachHere();
3030     }
3031 #else
3032 
3033     switch (code) {
3034       case lir_shl:  __ lshl(hi, lo);        break;
3035       case lir_shr:  __ lshr(hi, lo, true);  break;
3036       case lir_ushr: __ lshr(hi, lo, false); break;
3037       default: ShouldNotReachHere();
3038     }
3039 #endif // LP64
3040   } else {
3041     ShouldNotReachHere();
3042   }
3043 }
3044 
3045 
3046 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3047   if (dest->is_single_cpu()) {
3048     // first move left into dest so that left is not destroyed by the shift
3049     Register value = dest->as_register();
3050     count = count & 0x1F; // Java spec
3051 
3052     move_regs(left->as_register(), value);
3053     switch (code) {
3054       case lir_shl:  __ shll(value, count); break;
3055       case lir_shr:  __ sarl(value, count); break;
3056       case lir_ushr: __ shrl(value, count); break;
3057       default: ShouldNotReachHere();
3058     }
3059   } else if (dest->is_double_cpu()) {
3060 #ifndef _LP64
3061     Unimplemented();
3062 #else
3063     // first move left into dest so that left is not destroyed by the shift
3064     Register value = dest->as_register_lo();
3065     count = count & 0x1F; // Java spec
3066 
3067     move_regs(left->as_register_lo(), value);
3068     switch (code) {
3069       case lir_shl:  __ shlptr(value, count); break;
3070       case lir_shr:  __ sarptr(value, count); break;
3071       case lir_ushr: __ shrptr(value, count); break;
3072       default: ShouldNotReachHere();
3073     }
3074 #endif // _LP64
3075   } else {
3076     ShouldNotReachHere();
3077   }
3078 }
3079 
3080 
3081 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3082   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3083   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3084   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3085   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3086 }
3087 
3088 
3089 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3090   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3091   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3092   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3093   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3094 }
3095 
3096 
3097 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3098   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3099   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3100   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3101   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3102 }
3103 
3104 
3105 // This code replaces a call to arraycopy; no exception may
3106 // be thrown in this code, they must be thrown in the System.arraycopy
3107 // activation frame; we could save some checks if this would not be the case
3108 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3109   ciArrayKlass* default_type = op->expected_type();
3110   Register src = op->src()->as_register();
3111   Register dst = op->dst()->as_register();
3112   Register src_pos = op->src_pos()->as_register();
3113   Register dst_pos = op->dst_pos()->as_register();
3114   Register length  = op->length()->as_register();
3115   Register tmp = op->tmp()->as_register();
3116 
3117   CodeStub* stub = op->stub();
3118   int flags = op->flags();
3119   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3120   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3121 
3122   // if we don't know anything or it's an object array, just go through the generic arraycopy
3123   if (default_type == NULL) {
3124     Label done;
3125     // save outgoing arguments on stack in case call to System.arraycopy is needed
3126     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3127     // for interpreter calling conventions. Now we have to do it in new style conventions.
3128     // For the moment until C1 gets the new register allocator I just force all the
3129     // args to the right place (except the register args) and then on the back side
3130     // reload the register args properly if we go slow path. Yuck
3131 
3132     // These are proper for the calling convention
3133 
3134     store_parameter(length, 2);
3135     store_parameter(dst_pos, 1);
3136     store_parameter(dst, 0);
3137 
3138     // these are just temporary placements until we need to reload
3139     store_parameter(src_pos, 3);
3140     store_parameter(src, 4);
3141     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3142 
3143     address entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3144 
3145     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3146 #ifdef _LP64
3147     // The arguments are in java calling convention so we can trivially shift them to C
3148     // convention
3149     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3150     __ mov(c_rarg0, j_rarg0);
3151     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3152     __ mov(c_rarg1, j_rarg1);
3153     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3154     __ mov(c_rarg2, j_rarg2);
3155     assert_different_registers(c_rarg3, j_rarg4);
3156     __ mov(c_rarg3, j_rarg3);
3157 #ifdef _WIN64
3158     // Allocate abi space for args but be sure to keep stack aligned
3159     __ subptr(rsp, 6*wordSize);
3160     store_parameter(j_rarg4, 4);
3161     __ call(RuntimeAddress(entry));
3162     __ addptr(rsp, 6*wordSize);
3163 #else
3164     __ mov(c_rarg4, j_rarg4);
3165     __ call(RuntimeAddress(entry));
3166 #endif // _WIN64
3167 #else
3168     __ push(length);
3169     __ push(dst_pos);
3170     __ push(dst);
3171     __ push(src_pos);
3172     __ push(src);
3173     __ call_VM_leaf(entry, 5); // removes pushed parameter from the stack
3174 
3175 #endif // _LP64
3176 
3177     __ cmpl(rax, 0);
3178     __ jcc(Assembler::equal, *stub->continuation());
3179 
3180     // Reload values from the stack so they are where the stub
3181     // expects them.
3182     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3183     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3184     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3185     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3186     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3187     __ jmp(*stub->entry());
3188 
3189     __ bind(*stub->continuation());
3190     return;
3191   }
3192 
3193   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3194 
3195   int elem_size = type2aelembytes(basic_type);
3196   int shift_amount;
3197   Address::ScaleFactor scale;
3198 
3199   switch (elem_size) {
3200     case 1 :
3201       shift_amount = 0;
3202       scale = Address::times_1;
3203       break;
3204     case 2 :
3205       shift_amount = 1;
3206       scale = Address::times_2;
3207       break;
3208     case 4 :
3209       shift_amount = 2;
3210       scale = Address::times_4;
3211       break;
3212     case 8 :
3213       shift_amount = 3;
3214       scale = Address::times_8;
3215       break;
3216     default:
3217       ShouldNotReachHere();
3218   }
3219 
3220   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3221   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3222   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3223   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3224 
3225   // length and pos's are all sign extended at this point on 64bit
3226 
3227   // test for NULL
3228   if (flags & LIR_OpArrayCopy::src_null_check) {
3229     __ testptr(src, src);
3230     __ jcc(Assembler::zero, *stub->entry());
3231   }
3232   if (flags & LIR_OpArrayCopy::dst_null_check) {
3233     __ testptr(dst, dst);
3234     __ jcc(Assembler::zero, *stub->entry());
3235   }
3236 
3237   // check if negative
3238   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3239     __ testl(src_pos, src_pos);
3240     __ jcc(Assembler::less, *stub->entry());
3241   }
3242   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3243     __ testl(dst_pos, dst_pos);
3244     __ jcc(Assembler::less, *stub->entry());
3245   }
3246   if (flags & LIR_OpArrayCopy::length_positive_check) {
3247     __ testl(length, length);
3248     __ jcc(Assembler::less, *stub->entry());
3249   }
3250 
3251   if (flags & LIR_OpArrayCopy::src_range_check) {
3252     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3253     __ cmpl(tmp, src_length_addr);
3254     __ jcc(Assembler::above, *stub->entry());
3255   }
3256   if (flags & LIR_OpArrayCopy::dst_range_check) {
3257     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3258     __ cmpl(tmp, dst_length_addr);
3259     __ jcc(Assembler::above, *stub->entry());
3260   }
3261 
3262   if (flags & LIR_OpArrayCopy::type_check) {
3263 #ifdef _LP64
3264     if (UseCompressedOops) {
3265       __ movl(tmp, src_klass_addr);
3266       __ cmpl(tmp, dst_klass_addr);
3267     } else
3268 #endif
3269     {
3270       __ movptr(tmp, src_klass_addr);
3271       __ cmpptr(tmp, dst_klass_addr);
3272     }
3273     __ jcc(Assembler::notEqual, *stub->entry());
3274   }
3275 
3276 #ifdef ASSERT
3277   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3278     // Sanity check the known type with the incoming class.  For the
3279     // primitive case the types must match exactly with src.klass and
3280     // dst.klass each exactly matching the default type.  For the
3281     // object array case, if no type check is needed then either the
3282     // dst type is exactly the expected type and the src type is a
3283     // subtype which we can't check or src is the same array as dst
3284     // but not necessarily exactly of type default_type.
3285     Label known_ok, halt;
3286     __ movoop(tmp, default_type->constant_encoding());
3287 #ifdef _LP64
3288     if (UseCompressedOops) {
3289       __ encode_heap_oop(tmp);
3290     }
3291 #endif
3292 
3293     if (basic_type != T_OBJECT) {
3294 #ifdef _LP64
3295       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3296       else
3297 #endif
3298         __ cmpptr(tmp, dst_klass_addr);
3299       __ jcc(Assembler::notEqual, halt);
3300 #ifdef _LP64
3301       if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
3302       else
3303 #endif
3304         __ cmpptr(tmp, src_klass_addr);
3305       __ jcc(Assembler::equal, known_ok);
3306     } else {
3307 #ifdef _LP64
3308       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3309       else
3310 #endif
3311         __ cmpptr(tmp, dst_klass_addr);
3312       __ jcc(Assembler::equal, known_ok);
3313       __ cmpptr(src, dst);
3314       __ jcc(Assembler::equal, known_ok);
3315     }
3316     __ bind(halt);
3317     __ stop("incorrect type information in arraycopy");
3318     __ bind(known_ok);
3319   }
3320 #endif
3321 
3322   if (shift_amount > 0 && basic_type != T_OBJECT) {
3323     __ shlptr(length, shift_amount);
3324   }
3325 
3326 #ifdef _LP64
3327   assert_different_registers(c_rarg0, dst, dst_pos, length);
3328   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3329   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3330   assert_different_registers(c_rarg1, length);
3331   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3332   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3333   __ mov(c_rarg2, length);
3334 
3335 #else
3336   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3337   store_parameter(tmp, 0);
3338   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3339   store_parameter(tmp, 1);
3340   store_parameter(length, 2);
3341 #endif // _LP64
3342   if (basic_type == T_OBJECT) {
3343     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy), 0);
3344   } else {
3345     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy), 0);
3346   }
3347 
3348   __ bind(*stub->continuation());
3349 }
3350 
3351 
3352 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3353   Register obj = op->obj_opr()->as_register();  // may not be an oop
3354   Register hdr = op->hdr_opr()->as_register();
3355   Register lock = op->lock_opr()->as_register();
3356   if (!UseFastLocking) {
3357     __ jmp(*op->stub()->entry());
3358   } else if (op->code() == lir_lock) {
3359     Register scratch = noreg;
3360     if (UseBiasedLocking) {
3361       scratch = op->scratch_opr()->as_register();
3362     }
3363     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3364     // add debug info for NullPointerException only if one is possible
3365     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3366     if (op->info() != NULL) {
3367       add_debug_info_for_null_check(null_check_offset, op->info());
3368     }
3369     // done
3370   } else if (op->code() == lir_unlock) {
3371     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3372     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3373   } else {
3374     Unimplemented();
3375   }
3376   __ bind(*op->stub()->continuation());
3377 }
3378 
3379 
3380 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3381   ciMethod* method = op->profiled_method();
3382   int bci          = op->profiled_bci();
3383 
3384   // Update counter for all call types
3385   ciMethodData* md = method->method_data();
3386   if (md == NULL) {
3387     bailout("out of memory building methodDataOop");
3388     return;
3389   }
3390   ciProfileData* data = md->bci_to_data(bci);
3391   assert(data->is_CounterData(), "need CounterData for calls");
3392   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3393   Register mdo  = op->mdo()->as_register();
3394   __ movoop(mdo, md->constant_encoding());
3395   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3396   Bytecodes::Code bc = method->java_code_at_bci(bci);
3397   // Perform additional virtual call profiling for invokevirtual and
3398   // invokeinterface bytecodes
3399   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3400       C1ProfileVirtualCalls) {
3401     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3402     Register recv = op->recv()->as_register();
3403     assert_different_registers(mdo, recv);
3404     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3405     ciKlass* known_klass = op->known_holder();
3406     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3407       // We know the type that will be seen at this call site; we can
3408       // statically update the methodDataOop rather than needing to do
3409       // dynamic tests on the receiver type
3410 
3411       // NOTE: we should probably put a lock around this search to
3412       // avoid collisions by concurrent compilations
3413       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3414       uint i;
3415       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3416         ciKlass* receiver = vc_data->receiver(i);
3417         if (known_klass->equals(receiver)) {
3418           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3419           __ addptr(data_addr, DataLayout::counter_increment);
3420           return;
3421         }
3422       }
3423 
3424       // Receiver type not found in profile data; select an empty slot
3425 
3426       // Note that this is less efficient than it should be because it
3427       // always does a write to the receiver part of the
3428       // VirtualCallData rather than just the first time
3429       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3430         ciKlass* receiver = vc_data->receiver(i);
3431         if (receiver == NULL) {
3432           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3433           __ movoop(recv_addr, known_klass->constant_encoding());
3434           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3435           __ addptr(data_addr, DataLayout::counter_increment);
3436           return;
3437         }
3438       }
3439     } else {
3440       __ load_klass(recv, recv);
3441       Label update_done;
3442       type_profile_helper(mdo, md, data, recv, &update_done);
3443       // Receiver did not match any saved receiver and there is no empty row for it.
3444       // Increment total counter to indicate polymorphic case.
3445       __ addptr(counter_addr, DataLayout::counter_increment);
3446 
3447       __ bind(update_done);
3448     }
3449   } else {
3450     // Static call
3451     __ addptr(counter_addr, DataLayout::counter_increment);
3452   }
3453 }
3454 
3455 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3456   Unimplemented();
3457 }
3458 
3459 
3460 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3461   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3462 }
3463 
3464 
3465 void LIR_Assembler::align_backward_branch_target() {
3466   __ align(BytesPerWord);
3467 }
3468 
3469 
3470 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3471   if (left->is_single_cpu()) {
3472     __ negl(left->as_register());
3473     move_regs(left->as_register(), dest->as_register());
3474 
3475   } else if (left->is_double_cpu()) {
3476     Register lo = left->as_register_lo();
3477 #ifdef _LP64
3478     Register dst = dest->as_register_lo();
3479     __ movptr(dst, lo);
3480     __ negptr(dst);
3481 #else
3482     Register hi = left->as_register_hi();
3483     __ lneg(hi, lo);
3484     if (dest->as_register_lo() == hi) {
3485       assert(dest->as_register_hi() != lo, "destroying register");
3486       move_regs(hi, dest->as_register_hi());
3487       move_regs(lo, dest->as_register_lo());
3488     } else {
3489       move_regs(lo, dest->as_register_lo());
3490       move_regs(hi, dest->as_register_hi());
3491     }
3492 #endif // _LP64
3493 
3494   } else if (dest->is_single_xmm()) {
3495     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3496       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3497     }
3498     __ xorps(dest->as_xmm_float_reg(),
3499              ExternalAddress((address)float_signflip_pool));
3500 
3501   } else if (dest->is_double_xmm()) {
3502     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3503       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3504     }
3505     __ xorpd(dest->as_xmm_double_reg(),
3506              ExternalAddress((address)double_signflip_pool));
3507 
3508   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3509     assert(left->fpu() == 0, "arg must be on TOS");
3510     assert(dest->fpu() == 0, "dest must be TOS");
3511     __ fchs();
3512 
3513   } else {
3514     ShouldNotReachHere();
3515   }
3516 }
3517 
3518 
3519 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3520   assert(addr->is_address() && dest->is_register(), "check");
3521   Register reg;
3522   reg = dest->as_pointer_register();
3523   __ lea(reg, as_Address(addr->as_address_ptr()));
3524 }
3525 
3526 
3527 
3528 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3529   assert(!tmp->is_valid(), "don't need temporary");
3530   __ call(RuntimeAddress(dest));
3531   if (info != NULL) {
3532     add_call_info_here(info);
3533   }
3534 }
3535 
3536 
3537 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3538   assert(type == T_LONG, "only for volatile long fields");
3539 
3540   if (info != NULL) {
3541     add_debug_info_for_null_check_here(info);
3542   }
3543 
3544   if (src->is_double_xmm()) {
3545     if (dest->is_double_cpu()) {
3546 #ifdef _LP64
3547       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3548 #else
3549       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3550       __ psrlq(src->as_xmm_double_reg(), 32);
3551       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3552 #endif // _LP64
3553     } else if (dest->is_double_stack()) {
3554       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3555     } else if (dest->is_address()) {
3556       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3557     } else {
3558       ShouldNotReachHere();
3559     }
3560 
3561   } else if (dest->is_double_xmm()) {
3562     if (src->is_double_stack()) {
3563       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3564     } else if (src->is_address()) {
3565       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3566     } else {
3567       ShouldNotReachHere();
3568     }
3569 
3570   } else if (src->is_double_fpu()) {
3571     assert(src->fpu_regnrLo() == 0, "must be TOS");
3572     if (dest->is_double_stack()) {
3573       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3574     } else if (dest->is_address()) {
3575       __ fistp_d(as_Address(dest->as_address_ptr()));
3576     } else {
3577       ShouldNotReachHere();
3578     }
3579 
3580   } else if (dest->is_double_fpu()) {
3581     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3582     if (src->is_double_stack()) {
3583       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3584     } else if (src->is_address()) {
3585       __ fild_d(as_Address(src->as_address_ptr()));
3586     } else {
3587       ShouldNotReachHere();
3588     }
3589   } else {
3590     ShouldNotReachHere();
3591   }
3592 }
3593 
3594 
3595 void LIR_Assembler::membar() {
3596   // QQQ sparc TSO uses this,
3597   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3598 }
3599 
3600 void LIR_Assembler::membar_acquire() {
3601   // No x86 machines currently require load fences
3602   // __ load_fence();
3603 }
3604 
3605 void LIR_Assembler::membar_release() {
3606   // No x86 machines currently require store fences
3607   // __ store_fence();
3608 }
3609 
3610 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3611   assert(result_reg->is_register(), "check");
3612 #ifdef _LP64
3613   // __ get_thread(result_reg->as_register_lo());
3614   __ mov(result_reg->as_register(), r15_thread);
3615 #else
3616   __ get_thread(result_reg->as_register());
3617 #endif // _LP64
3618 }
3619 
3620 
3621 void LIR_Assembler::peephole(LIR_List*) {
3622   // do nothing for now
3623 }
3624 
3625 
3626 #undef __