1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_c1_GraphBuilder.cpp.incl"
  27 
  28 class BlockListBuilder VALUE_OBJ_CLASS_SPEC {
  29  private:
  30   Compilation* _compilation;
  31   IRScope*     _scope;
  32 
  33   BlockList    _blocks;                // internal list of all blocks
  34   BlockList*   _bci2block;             // mapping from bci to blocks for GraphBuilder
  35 
  36   // fields used by mark_loops
  37   BitMap       _active;                // for iteration of control flow graph
  38   BitMap       _visited;               // for iteration of control flow graph
  39   intArray     _loop_map;              // caches the information if a block is contained in a loop
  40   int          _next_loop_index;       // next free loop number
  41   int          _next_block_number;     // for reverse postorder numbering of blocks
  42 
  43   // accessors
  44   Compilation*  compilation() const              { return _compilation; }
  45   IRScope*      scope() const                    { return _scope; }
  46   ciMethod*     method() const                   { return scope()->method(); }
  47   XHandlers*    xhandlers() const                { return scope()->xhandlers(); }
  48 
  49   // unified bailout support
  50   void          bailout(const char* msg) const   { compilation()->bailout(msg); }
  51   bool          bailed_out() const               { return compilation()->bailed_out(); }
  52 
  53   // helper functions
  54   BlockBegin* make_block_at(int bci, BlockBegin* predecessor);
  55   void handle_exceptions(BlockBegin* current, int cur_bci);
  56   void handle_jsr(BlockBegin* current, int sr_bci, int next_bci);
  57   void store_one(BlockBegin* current, int local);
  58   void store_two(BlockBegin* current, int local);
  59   void set_entries(int osr_bci);
  60   void set_leaders();
  61 
  62   void make_loop_header(BlockBegin* block);
  63   void mark_loops();
  64   int  mark_loops(BlockBegin* b, bool in_subroutine);
  65 
  66   // debugging
  67 #ifndef PRODUCT
  68   void print();
  69 #endif
  70 
  71  public:
  72   // creation
  73   BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci);
  74 
  75   // accessors for GraphBuilder
  76   BlockList*    bci2block() const                { return _bci2block; }
  77 };
  78 
  79 
  80 // Implementation of BlockListBuilder
  81 
  82 BlockListBuilder::BlockListBuilder(Compilation* compilation, IRScope* scope, int osr_bci)
  83  : _compilation(compilation)
  84  , _scope(scope)
  85  , _blocks(16)
  86  , _bci2block(new BlockList(scope->method()->code_size(), NULL))
  87  , _next_block_number(0)
  88  , _active()         // size not known yet
  89  , _visited()        // size not known yet
  90  , _next_loop_index(0)
  91  , _loop_map() // size not known yet
  92 {
  93   set_entries(osr_bci);
  94   set_leaders();
  95   CHECK_BAILOUT();
  96 
  97   mark_loops();
  98   NOT_PRODUCT(if (PrintInitialBlockList) print());
  99 
 100 #ifndef PRODUCT
 101   if (PrintCFGToFile) {
 102     stringStream title;
 103     title.print("BlockListBuilder ");
 104     scope->method()->print_name(&title);
 105     CFGPrinter::print_cfg(_bci2block, title.as_string(), false, false);
 106   }
 107 #endif
 108 }
 109 
 110 
 111 void BlockListBuilder::set_entries(int osr_bci) {
 112   // generate start blocks
 113   BlockBegin* std_entry = make_block_at(0, NULL);
 114   if (scope()->caller() == NULL) {
 115     std_entry->set(BlockBegin::std_entry_flag);
 116   }
 117   if (osr_bci != -1) {
 118     BlockBegin* osr_entry = make_block_at(osr_bci, NULL);
 119     osr_entry->set(BlockBegin::osr_entry_flag);
 120   }
 121 
 122   // generate exception entry blocks
 123   XHandlers* list = xhandlers();
 124   const int n = list->length();
 125   for (int i = 0; i < n; i++) {
 126     XHandler* h = list->handler_at(i);
 127     BlockBegin* entry = make_block_at(h->handler_bci(), NULL);
 128     entry->set(BlockBegin::exception_entry_flag);
 129     h->set_entry_block(entry);
 130   }
 131 }
 132 
 133 
 134 BlockBegin* BlockListBuilder::make_block_at(int cur_bci, BlockBegin* predecessor) {
 135   assert(method()->bci_block_start().at(cur_bci), "wrong block starts of MethodLivenessAnalyzer");
 136 
 137   BlockBegin* block = _bci2block->at(cur_bci);
 138   if (block == NULL) {
 139     block = new BlockBegin(cur_bci);
 140     block->init_stores_to_locals(method()->max_locals());
 141     _bci2block->at_put(cur_bci, block);
 142     _blocks.append(block);
 143 
 144     assert(predecessor == NULL || predecessor->bci() < cur_bci, "targets for backward branches must already exist");
 145   }
 146 
 147   if (predecessor != NULL) {
 148     if (block->is_set(BlockBegin::exception_entry_flag)) {
 149       BAILOUT_("Exception handler can be reached by both normal and exceptional control flow", block);
 150     }
 151 
 152     predecessor->add_successor(block);
 153     block->increment_total_preds();
 154   }
 155 
 156   return block;
 157 }
 158 
 159 
 160 inline void BlockListBuilder::store_one(BlockBegin* current, int local) {
 161   current->stores_to_locals().set_bit(local);
 162 }
 163 inline void BlockListBuilder::store_two(BlockBegin* current, int local) {
 164   store_one(current, local);
 165   store_one(current, local + 1);
 166 }
 167 
 168 
 169 void BlockListBuilder::handle_exceptions(BlockBegin* current, int cur_bci) {
 170   // Draws edges from a block to its exception handlers
 171   XHandlers* list = xhandlers();
 172   const int n = list->length();
 173 
 174   for (int i = 0; i < n; i++) {
 175     XHandler* h = list->handler_at(i);
 176 
 177     if (h->covers(cur_bci)) {
 178       BlockBegin* entry = h->entry_block();
 179       assert(entry != NULL && entry == _bci2block->at(h->handler_bci()), "entry must be set");
 180       assert(entry->is_set(BlockBegin::exception_entry_flag), "flag must be set");
 181 
 182       // add each exception handler only once
 183       if (!current->is_successor(entry)) {
 184         current->add_successor(entry);
 185         entry->increment_total_preds();
 186       }
 187 
 188       // stop when reaching catchall
 189       if (h->catch_type() == 0) break;
 190     }
 191   }
 192 }
 193 
 194 void BlockListBuilder::handle_jsr(BlockBegin* current, int sr_bci, int next_bci) {
 195   // start a new block after jsr-bytecode and link this block into cfg
 196   make_block_at(next_bci, current);
 197 
 198   // start a new block at the subroutine entry at mark it with special flag
 199   BlockBegin* sr_block = make_block_at(sr_bci, current);
 200   if (!sr_block->is_set(BlockBegin::subroutine_entry_flag)) {
 201     sr_block->set(BlockBegin::subroutine_entry_flag);
 202   }
 203 }
 204 
 205 
 206 void BlockListBuilder::set_leaders() {
 207   bool has_xhandlers = xhandlers()->has_handlers();
 208   BlockBegin* current = NULL;
 209 
 210   // The information which bci starts a new block simplifies the analysis
 211   // Without it, backward branches could jump to a bci where no block was created
 212   // during bytecode iteration. This would require the creation of a new block at the
 213   // branch target and a modification of the successor lists.
 214   BitMap bci_block_start = method()->bci_block_start();
 215 
 216   ciBytecodeStream s(method());
 217   while (s.next() != ciBytecodeStream::EOBC()) {
 218     int cur_bci = s.cur_bci();
 219 
 220     if (bci_block_start.at(cur_bci)) {
 221       current = make_block_at(cur_bci, current);
 222     }
 223     assert(current != NULL, "must have current block");
 224 
 225     if (has_xhandlers && GraphBuilder::can_trap(method(), s.cur_bc())) {
 226       handle_exceptions(current, cur_bci);
 227     }
 228 
 229     switch (s.cur_bc()) {
 230       // track stores to local variables for selective creation of phi functions
 231       case Bytecodes::_iinc:     store_one(current, s.get_index()); break;
 232       case Bytecodes::_istore:   store_one(current, s.get_index()); break;
 233       case Bytecodes::_lstore:   store_two(current, s.get_index()); break;
 234       case Bytecodes::_fstore:   store_one(current, s.get_index()); break;
 235       case Bytecodes::_dstore:   store_two(current, s.get_index()); break;
 236       case Bytecodes::_astore:   store_one(current, s.get_index()); break;
 237       case Bytecodes::_istore_0: store_one(current, 0); break;
 238       case Bytecodes::_istore_1: store_one(current, 1); break;
 239       case Bytecodes::_istore_2: store_one(current, 2); break;
 240       case Bytecodes::_istore_3: store_one(current, 3); break;
 241       case Bytecodes::_lstore_0: store_two(current, 0); break;
 242       case Bytecodes::_lstore_1: store_two(current, 1); break;
 243       case Bytecodes::_lstore_2: store_two(current, 2); break;
 244       case Bytecodes::_lstore_3: store_two(current, 3); break;
 245       case Bytecodes::_fstore_0: store_one(current, 0); break;
 246       case Bytecodes::_fstore_1: store_one(current, 1); break;
 247       case Bytecodes::_fstore_2: store_one(current, 2); break;
 248       case Bytecodes::_fstore_3: store_one(current, 3); break;
 249       case Bytecodes::_dstore_0: store_two(current, 0); break;
 250       case Bytecodes::_dstore_1: store_two(current, 1); break;
 251       case Bytecodes::_dstore_2: store_two(current, 2); break;
 252       case Bytecodes::_dstore_3: store_two(current, 3); break;
 253       case Bytecodes::_astore_0: store_one(current, 0); break;
 254       case Bytecodes::_astore_1: store_one(current, 1); break;
 255       case Bytecodes::_astore_2: store_one(current, 2); break;
 256       case Bytecodes::_astore_3: store_one(current, 3); break;
 257 
 258       // track bytecodes that affect the control flow
 259       case Bytecodes::_athrow:  // fall through
 260       case Bytecodes::_ret:     // fall through
 261       case Bytecodes::_ireturn: // fall through
 262       case Bytecodes::_lreturn: // fall through
 263       case Bytecodes::_freturn: // fall through
 264       case Bytecodes::_dreturn: // fall through
 265       case Bytecodes::_areturn: // fall through
 266       case Bytecodes::_return:
 267         current = NULL;
 268         break;
 269 
 270       case Bytecodes::_ifeq:      // fall through
 271       case Bytecodes::_ifne:      // fall through
 272       case Bytecodes::_iflt:      // fall through
 273       case Bytecodes::_ifge:      // fall through
 274       case Bytecodes::_ifgt:      // fall through
 275       case Bytecodes::_ifle:      // fall through
 276       case Bytecodes::_if_icmpeq: // fall through
 277       case Bytecodes::_if_icmpne: // fall through
 278       case Bytecodes::_if_icmplt: // fall through
 279       case Bytecodes::_if_icmpge: // fall through
 280       case Bytecodes::_if_icmpgt: // fall through
 281       case Bytecodes::_if_icmple: // fall through
 282       case Bytecodes::_if_acmpeq: // fall through
 283       case Bytecodes::_if_acmpne: // fall through
 284       case Bytecodes::_ifnull:    // fall through
 285       case Bytecodes::_ifnonnull:
 286         make_block_at(s.next_bci(), current);
 287         make_block_at(s.get_dest(), current);
 288         current = NULL;
 289         break;
 290 
 291       case Bytecodes::_goto:
 292         make_block_at(s.get_dest(), current);
 293         current = NULL;
 294         break;
 295 
 296       case Bytecodes::_goto_w:
 297         make_block_at(s.get_far_dest(), current);
 298         current = NULL;
 299         break;
 300 
 301       case Bytecodes::_jsr:
 302         handle_jsr(current, s.get_dest(), s.next_bci());
 303         current = NULL;
 304         break;
 305 
 306       case Bytecodes::_jsr_w:
 307         handle_jsr(current, s.get_far_dest(), s.next_bci());
 308         current = NULL;
 309         break;
 310 
 311       case Bytecodes::_tableswitch: {
 312         // set block for each case
 313         Bytecode_tableswitch *switch_ = Bytecode_tableswitch_at(s.cur_bcp());
 314         int l = switch_->length();
 315         for (int i = 0; i < l; i++) {
 316           make_block_at(cur_bci + switch_->dest_offset_at(i), current);
 317         }
 318         make_block_at(cur_bci + switch_->default_offset(), current);
 319         current = NULL;
 320         break;
 321       }
 322 
 323       case Bytecodes::_lookupswitch: {
 324         // set block for each case
 325         Bytecode_lookupswitch *switch_ = Bytecode_lookupswitch_at(s.cur_bcp());
 326         int l = switch_->number_of_pairs();
 327         for (int i = 0; i < l; i++) {
 328           make_block_at(cur_bci + switch_->pair_at(i)->offset(), current);
 329         }
 330         make_block_at(cur_bci + switch_->default_offset(), current);
 331         current = NULL;
 332         break;
 333       }
 334     }
 335   }
 336 }
 337 
 338 
 339 void BlockListBuilder::mark_loops() {
 340   ResourceMark rm;
 341 
 342   _active = BitMap(BlockBegin::number_of_blocks());         _active.clear();
 343   _visited = BitMap(BlockBegin::number_of_blocks());        _visited.clear();
 344   _loop_map = intArray(BlockBegin::number_of_blocks(), 0);
 345   _next_loop_index = 0;
 346   _next_block_number = _blocks.length();
 347 
 348   // recursively iterate the control flow graph
 349   mark_loops(_bci2block->at(0), false);
 350   assert(_next_block_number >= 0, "invalid block numbers");
 351 }
 352 
 353 void BlockListBuilder::make_loop_header(BlockBegin* block) {
 354   if (block->is_set(BlockBegin::exception_entry_flag)) {
 355     // exception edges may look like loops but don't mark them as such
 356     // since it screws up block ordering.
 357     return;
 358   }
 359   if (!block->is_set(BlockBegin::parser_loop_header_flag)) {
 360     block->set(BlockBegin::parser_loop_header_flag);
 361 
 362     assert(_loop_map.at(block->block_id()) == 0, "must not be set yet");
 363     assert(0 <= _next_loop_index && _next_loop_index < BitsPerInt, "_next_loop_index is used as a bit-index in integer");
 364     _loop_map.at_put(block->block_id(), 1 << _next_loop_index);
 365     if (_next_loop_index < 31) _next_loop_index++;
 366   } else {
 367     // block already marked as loop header
 368     assert(is_power_of_2((unsigned int)_loop_map.at(block->block_id())), "exactly one bit must be set");
 369   }
 370 }
 371 
 372 int BlockListBuilder::mark_loops(BlockBegin* block, bool in_subroutine) {
 373   int block_id = block->block_id();
 374 
 375   if (_visited.at(block_id)) {
 376     if (_active.at(block_id)) {
 377       // reached block via backward branch
 378       make_loop_header(block);
 379     }
 380     // return cached loop information for this block
 381     return _loop_map.at(block_id);
 382   }
 383 
 384   if (block->is_set(BlockBegin::subroutine_entry_flag)) {
 385     in_subroutine = true;
 386   }
 387 
 388   // set active and visited bits before successors are processed
 389   _visited.set_bit(block_id);
 390   _active.set_bit(block_id);
 391 
 392   intptr_t loop_state = 0;
 393   for (int i = block->number_of_sux() - 1; i >= 0; i--) {
 394     // recursively process all successors
 395     loop_state |= mark_loops(block->sux_at(i), in_subroutine);
 396   }
 397 
 398   // clear active-bit after all successors are processed
 399   _active.clear_bit(block_id);
 400 
 401   // reverse-post-order numbering of all blocks
 402   block->set_depth_first_number(_next_block_number);
 403   _next_block_number--;
 404 
 405   if (loop_state != 0 || in_subroutine ) {
 406     // block is contained at least in one loop, so phi functions are necessary
 407     // phi functions are also necessary for all locals stored in a subroutine
 408     scope()->requires_phi_function().set_union(block->stores_to_locals());
 409   }
 410 
 411   if (block->is_set(BlockBegin::parser_loop_header_flag)) {
 412     int header_loop_state = _loop_map.at(block_id);
 413     assert(is_power_of_2((unsigned)header_loop_state), "exactly one bit must be set");
 414 
 415     // If the highest bit is set (i.e. when integer value is negative), the method
 416     // has 32 or more loops. This bit is never cleared because it is used for multiple loops
 417     if (header_loop_state >= 0) {
 418       clear_bits(loop_state, header_loop_state);
 419     }
 420   }
 421 
 422   // cache and return loop information for this block
 423   _loop_map.at_put(block_id, loop_state);
 424   return loop_state;
 425 }
 426 
 427 
 428 #ifndef PRODUCT
 429 
 430 int compare_depth_first(BlockBegin** a, BlockBegin** b) {
 431   return (*a)->depth_first_number() - (*b)->depth_first_number();
 432 }
 433 
 434 void BlockListBuilder::print() {
 435   tty->print("----- initial block list of BlockListBuilder for method ");
 436   method()->print_short_name();
 437   tty->cr();
 438 
 439   // better readability if blocks are sorted in processing order
 440   _blocks.sort(compare_depth_first);
 441 
 442   for (int i = 0; i < _blocks.length(); i++) {
 443     BlockBegin* cur = _blocks.at(i);
 444     tty->print("%4d: B%-4d bci: %-4d  preds: %-4d ", cur->depth_first_number(), cur->block_id(), cur->bci(), cur->total_preds());
 445 
 446     tty->print(cur->is_set(BlockBegin::std_entry_flag)               ? " std" : "    ");
 447     tty->print(cur->is_set(BlockBegin::osr_entry_flag)               ? " osr" : "    ");
 448     tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
 449     tty->print(cur->is_set(BlockBegin::subroutine_entry_flag)        ? " sr" : "   ");
 450     tty->print(cur->is_set(BlockBegin::parser_loop_header_flag)      ? " lh" : "   ");
 451 
 452     if (cur->number_of_sux() > 0) {
 453       tty->print("    sux: ");
 454       for (int j = 0; j < cur->number_of_sux(); j++) {
 455         BlockBegin* sux = cur->sux_at(j);
 456         tty->print("B%d ", sux->block_id());
 457       }
 458     }
 459     tty->cr();
 460   }
 461 }
 462 
 463 #endif
 464 
 465 
 466 // A simple growable array of Values indexed by ciFields
 467 class FieldBuffer: public CompilationResourceObj {
 468  private:
 469   GrowableArray<Value> _values;
 470 
 471  public:
 472   FieldBuffer() {}
 473 
 474   void kill() {
 475     _values.trunc_to(0);
 476   }
 477 
 478   Value at(ciField* field) {
 479     assert(field->holder()->is_loaded(), "must be a loaded field");
 480     int offset = field->offset();
 481     if (offset < _values.length()) {
 482       return _values.at(offset);
 483     } else {
 484       return NULL;
 485     }
 486   }
 487 
 488   void at_put(ciField* field, Value value) {
 489     assert(field->holder()->is_loaded(), "must be a loaded field");
 490     int offset = field->offset();
 491     _values.at_put_grow(offset, value, NULL);
 492   }
 493 
 494 };
 495 
 496 
 497 // MemoryBuffer is fairly simple model of the current state of memory.
 498 // It partitions memory into several pieces.  The first piece is
 499 // generic memory where little is known about the owner of the memory.
 500 // This is conceptually represented by the tuple <O, F, V> which says
 501 // that the field F of object O has value V.  This is flattened so
 502 // that F is represented by the offset of the field and the parallel
 503 // arrays _objects and _values are used for O and V.  Loads of O.F can
 504 // simply use V.  Newly allocated objects are kept in a separate list
 505 // along with a parallel array for each object which represents the
 506 // current value of its fields.  Stores of the default value to fields
 507 // which have never been stored to before are eliminated since they
 508 // are redundant.  Once newly allocated objects are stored into
 509 // another object or they are passed out of the current compile they
 510 // are treated like generic memory.
 511 
 512 class MemoryBuffer: public CompilationResourceObj {
 513  private:
 514   FieldBuffer                 _values;
 515   GrowableArray<Value>        _objects;
 516   GrowableArray<Value>        _newobjects;
 517   GrowableArray<FieldBuffer*> _fields;
 518 
 519  public:
 520   MemoryBuffer() {}
 521 
 522   StoreField* store(StoreField* st) {
 523     if (!EliminateFieldAccess) {
 524       return st;
 525     }
 526 
 527     Value object = st->obj();
 528     Value value = st->value();
 529     ciField* field = st->field();
 530     if (field->holder()->is_loaded()) {
 531       int offset = field->offset();
 532       int index = _newobjects.find(object);
 533       if (index != -1) {
 534         // newly allocated object with no other stores performed on this field
 535         FieldBuffer* buf = _fields.at(index);
 536         if (buf->at(field) == NULL && is_default_value(value)) {
 537 #ifndef PRODUCT
 538           if (PrintIRDuringConstruction && Verbose) {
 539             tty->print_cr("Eliminated store for object %d:", index);
 540             st->print_line();
 541           }
 542 #endif
 543           return NULL;
 544         } else {
 545           buf->at_put(field, value);
 546         }
 547       } else {
 548         _objects.at_put_grow(offset, object, NULL);
 549         _values.at_put(field, value);
 550       }
 551 
 552       store_value(value);
 553     } else {
 554       // if we held onto field names we could alias based on names but
 555       // we don't know what's being stored to so kill it all.
 556       kill();
 557     }
 558     return st;
 559   }
 560 
 561 
 562   // return true if this value correspond to the default value of a field.
 563   bool is_default_value(Value value) {
 564     Constant* con = value->as_Constant();
 565     if (con) {
 566       switch (con->type()->tag()) {
 567         case intTag:    return con->type()->as_IntConstant()->value() == 0;
 568         case longTag:   return con->type()->as_LongConstant()->value() == 0;
 569         case floatTag:  return jint_cast(con->type()->as_FloatConstant()->value()) == 0;
 570         case doubleTag: return jlong_cast(con->type()->as_DoubleConstant()->value()) == jlong_cast(0);
 571         case objectTag: return con->type() == objectNull;
 572         default:  ShouldNotReachHere();
 573       }
 574     }
 575     return false;
 576   }
 577 
 578 
 579   // return either the actual value of a load or the load itself
 580   Value load(LoadField* load) {
 581     if (!EliminateFieldAccess) {
 582       return load;
 583     }
 584 
 585     if (RoundFPResults && UseSSE < 2 && load->type()->is_float_kind()) {
 586       // can't skip load since value might get rounded as a side effect
 587       return load;
 588     }
 589 
 590     ciField* field = load->field();
 591     Value object   = load->obj();
 592     if (field->holder()->is_loaded() && !field->is_volatile()) {
 593       int offset = field->offset();
 594       Value result = NULL;
 595       int index = _newobjects.find(object);
 596       if (index != -1) {
 597         result = _fields.at(index)->at(field);
 598       } else if (_objects.at_grow(offset, NULL) == object) {
 599         result = _values.at(field);
 600       }
 601       if (result != NULL) {
 602 #ifndef PRODUCT
 603         if (PrintIRDuringConstruction && Verbose) {
 604           tty->print_cr("Eliminated load: ");
 605           load->print_line();
 606         }
 607 #endif
 608         assert(result->type()->tag() == load->type()->tag(), "wrong types");
 609         return result;
 610       }
 611     }
 612     return load;
 613   }
 614 
 615   // Record this newly allocated object
 616   void new_instance(NewInstance* object) {
 617     int index = _newobjects.length();
 618     _newobjects.append(object);
 619     if (_fields.at_grow(index, NULL) == NULL) {
 620       _fields.at_put(index, new FieldBuffer());
 621     } else {
 622       _fields.at(index)->kill();
 623     }
 624   }
 625 
 626   void store_value(Value value) {
 627     int index = _newobjects.find(value);
 628     if (index != -1) {
 629       // stored a newly allocated object into another object.
 630       // Assume we've lost track of it as separate slice of memory.
 631       // We could do better by keeping track of whether individual
 632       // fields could alias each other.
 633       _newobjects.remove_at(index);
 634       // pull out the field info and store it at the end up the list
 635       // of field info list to be reused later.
 636       _fields.append(_fields.at(index));
 637       _fields.remove_at(index);
 638     }
 639   }
 640 
 641   void kill() {
 642     _newobjects.trunc_to(0);
 643     _objects.trunc_to(0);
 644     _values.kill();
 645   }
 646 };
 647 
 648 
 649 // Implementation of GraphBuilder's ScopeData
 650 
 651 GraphBuilder::ScopeData::ScopeData(ScopeData* parent)
 652   : _parent(parent)
 653   , _bci2block(NULL)
 654   , _scope(NULL)
 655   , _has_handler(false)
 656   , _stream(NULL)
 657   , _work_list(NULL)
 658   , _parsing_jsr(false)
 659   , _jsr_xhandlers(NULL)
 660   , _caller_stack_size(-1)
 661   , _continuation(NULL)
 662   , _num_returns(0)
 663   , _cleanup_block(NULL)
 664   , _cleanup_return_prev(NULL)
 665   , _cleanup_state(NULL)
 666 {
 667   if (parent != NULL) {
 668     _max_inline_size = (intx) ((float) NestedInliningSizeRatio * (float) parent->max_inline_size() / 100.0f);
 669   } else {
 670     _max_inline_size = MaxInlineSize;
 671   }
 672   if (_max_inline_size < MaxTrivialSize) {
 673     _max_inline_size = MaxTrivialSize;
 674   }
 675 }
 676 
 677 
 678 void GraphBuilder::kill_all() {
 679   if (UseLocalValueNumbering) {
 680     vmap()->kill_all();
 681   }
 682   _memory->kill();
 683 }
 684 
 685 
 686 BlockBegin* GraphBuilder::ScopeData::block_at(int bci) {
 687   if (parsing_jsr()) {
 688     // It is necessary to clone all blocks associated with a
 689     // subroutine, including those for exception handlers in the scope
 690     // of the method containing the jsr (because those exception
 691     // handlers may contain ret instructions in some cases).
 692     BlockBegin* block = bci2block()->at(bci);
 693     if (block != NULL && block == parent()->bci2block()->at(bci)) {
 694       BlockBegin* new_block = new BlockBegin(block->bci());
 695 #ifndef PRODUCT
 696       if (PrintInitialBlockList) {
 697         tty->print_cr("CFG: cloned block %d (bci %d) as block %d for jsr",
 698                       block->block_id(), block->bci(), new_block->block_id());
 699       }
 700 #endif
 701       // copy data from cloned blocked
 702       new_block->set_depth_first_number(block->depth_first_number());
 703       if (block->is_set(BlockBegin::parser_loop_header_flag)) new_block->set(BlockBegin::parser_loop_header_flag);
 704       // Preserve certain flags for assertion checking
 705       if (block->is_set(BlockBegin::subroutine_entry_flag)) new_block->set(BlockBegin::subroutine_entry_flag);
 706       if (block->is_set(BlockBegin::exception_entry_flag))  new_block->set(BlockBegin::exception_entry_flag);
 707 
 708       // copy was_visited_flag to allow early detection of bailouts
 709       // if a block that is used in a jsr has already been visited before,
 710       // it is shared between the normal control flow and a subroutine
 711       // BlockBegin::try_merge returns false when the flag is set, this leads
 712       // to a compilation bailout
 713       if (block->is_set(BlockBegin::was_visited_flag))  new_block->set(BlockBegin::was_visited_flag);
 714 
 715       bci2block()->at_put(bci, new_block);
 716       block = new_block;
 717     }
 718     return block;
 719   } else {
 720     return bci2block()->at(bci);
 721   }
 722 }
 723 
 724 
 725 XHandlers* GraphBuilder::ScopeData::xhandlers() const {
 726   if (_jsr_xhandlers == NULL) {
 727     assert(!parsing_jsr(), "");
 728     return scope()->xhandlers();
 729   }
 730   assert(parsing_jsr(), "");
 731   return _jsr_xhandlers;
 732 }
 733 
 734 
 735 void GraphBuilder::ScopeData::set_scope(IRScope* scope) {
 736   _scope = scope;
 737   bool parent_has_handler = false;
 738   if (parent() != NULL) {
 739     parent_has_handler = parent()->has_handler();
 740   }
 741   _has_handler = parent_has_handler || scope->xhandlers()->has_handlers();
 742 }
 743 
 744 
 745 void GraphBuilder::ScopeData::set_inline_cleanup_info(BlockBegin* block,
 746                                                       Instruction* return_prev,
 747                                                       ValueStack* return_state) {
 748   _cleanup_block       = block;
 749   _cleanup_return_prev = return_prev;
 750   _cleanup_state       = return_state;
 751 }
 752 
 753 
 754 void GraphBuilder::ScopeData::add_to_work_list(BlockBegin* block) {
 755   if (_work_list == NULL) {
 756     _work_list = new BlockList();
 757   }
 758 
 759   if (!block->is_set(BlockBegin::is_on_work_list_flag)) {
 760     // Do not start parsing the continuation block while in a
 761     // sub-scope
 762     if (parsing_jsr()) {
 763       if (block == jsr_continuation()) {
 764         return;
 765       }
 766     } else {
 767       if (block == continuation()) {
 768         return;
 769       }
 770     }
 771     block->set(BlockBegin::is_on_work_list_flag);
 772     _work_list->push(block);
 773 
 774     sort_top_into_worklist(_work_list, block);
 775   }
 776 }
 777 
 778 
 779 void GraphBuilder::sort_top_into_worklist(BlockList* worklist, BlockBegin* top) {
 780   assert(worklist->top() == top, "");
 781   // sort block descending into work list
 782   const int dfn = top->depth_first_number();
 783   assert(dfn != -1, "unknown depth first number");
 784   int i = worklist->length()-2;
 785   while (i >= 0) {
 786     BlockBegin* b = worklist->at(i);
 787     if (b->depth_first_number() < dfn) {
 788       worklist->at_put(i+1, b);
 789     } else {
 790       break;
 791     }
 792     i --;
 793   }
 794   if (i >= -1) worklist->at_put(i + 1, top);
 795 }
 796 
 797 
 798 BlockBegin* GraphBuilder::ScopeData::remove_from_work_list() {
 799   if (is_work_list_empty()) {
 800     return NULL;
 801   }
 802   return _work_list->pop();
 803 }
 804 
 805 
 806 bool GraphBuilder::ScopeData::is_work_list_empty() const {
 807   return (_work_list == NULL || _work_list->length() == 0);
 808 }
 809 
 810 
 811 void GraphBuilder::ScopeData::setup_jsr_xhandlers() {
 812   assert(parsing_jsr(), "");
 813   // clone all the exception handlers from the scope
 814   XHandlers* handlers = new XHandlers(scope()->xhandlers());
 815   const int n = handlers->length();
 816   for (int i = 0; i < n; i++) {
 817     // The XHandlers need to be adjusted to dispatch to the cloned
 818     // handler block instead of the default one but the synthetic
 819     // unlocker needs to be handled specially.  The synthetic unlocker
 820     // should be left alone since there can be only one and all code
 821     // should dispatch to the same one.
 822     XHandler* h = handlers->handler_at(i);
 823     assert(h->handler_bci() != SynchronizationEntryBCI, "must be real");
 824     h->set_entry_block(block_at(h->handler_bci()));
 825   }
 826   _jsr_xhandlers = handlers;
 827 }
 828 
 829 
 830 int GraphBuilder::ScopeData::num_returns() {
 831   if (parsing_jsr()) {
 832     return parent()->num_returns();
 833   }
 834   return _num_returns;
 835 }
 836 
 837 
 838 void GraphBuilder::ScopeData::incr_num_returns() {
 839   if (parsing_jsr()) {
 840     parent()->incr_num_returns();
 841   } else {
 842     ++_num_returns;
 843   }
 844 }
 845 
 846 
 847 // Implementation of GraphBuilder
 848 
 849 #define INLINE_BAILOUT(msg)        { inline_bailout(msg); return false; }
 850 
 851 
 852 void GraphBuilder::load_constant() {
 853   ciConstant con = stream()->get_constant();
 854   if (con.basic_type() == T_ILLEGAL) {
 855     BAILOUT("could not resolve a constant");
 856   } else {
 857     ValueType* t = illegalType;
 858     ValueStack* patch_state = NULL;
 859     switch (con.basic_type()) {
 860       case T_BOOLEAN: t = new IntConstant     (con.as_boolean()); break;
 861       case T_BYTE   : t = new IntConstant     (con.as_byte   ()); break;
 862       case T_CHAR   : t = new IntConstant     (con.as_char   ()); break;
 863       case T_SHORT  : t = new IntConstant     (con.as_short  ()); break;
 864       case T_INT    : t = new IntConstant     (con.as_int    ()); break;
 865       case T_LONG   : t = new LongConstant    (con.as_long   ()); break;
 866       case T_FLOAT  : t = new FloatConstant   (con.as_float  ()); break;
 867       case T_DOUBLE : t = new DoubleConstant  (con.as_double ()); break;
 868       case T_ARRAY  : t = new ArrayConstant   (con.as_object ()->as_array   ()); break;
 869       case T_OBJECT :
 870        {
 871         ciObject* obj = con.as_object();
 872         if (!obj->is_loaded()
 873             || (PatchALot && obj->klass() != ciEnv::current()->String_klass())) {
 874           patch_state = copy_state_before();
 875           t = new ObjectConstant(obj);
 876         } else {
 877           assert(!obj->is_klass(), "must be java_mirror of klass");
 878           t = new InstanceConstant(obj->as_instance());
 879         }
 880         break;
 881        }
 882       default       : ShouldNotReachHere();
 883     }
 884     Value x;
 885     if (patch_state != NULL) {
 886       x = new Constant(t, patch_state);
 887     } else {
 888       x = new Constant(t);
 889     }
 890     push(t, append(x));
 891   }
 892 }
 893 
 894 
 895 void GraphBuilder::load_local(ValueType* type, int index) {
 896   Value x = state()->local_at(index);
 897   assert(x != NULL && !x->type()->is_illegal(), "access of illegal local variable");
 898   push(type, x);
 899 }
 900 
 901 
 902 void GraphBuilder::store_local(ValueType* type, int index) {
 903   Value x = pop(type);
 904   store_local(state(), x, type, index);
 905 }
 906 
 907 
 908 void GraphBuilder::store_local(ValueStack* state, Value x, ValueType* type, int index) {
 909   if (parsing_jsr()) {
 910     // We need to do additional tracking of the location of the return
 911     // address for jsrs since we don't handle arbitrary jsr/ret
 912     // constructs. Here we are figuring out in which circumstances we
 913     // need to bail out.
 914     if (x->type()->is_address()) {
 915       scope_data()->set_jsr_return_address_local(index);
 916 
 917       // Also check parent jsrs (if any) at this time to see whether
 918       // they are using this local. We don't handle skipping over a
 919       // ret.
 920       for (ScopeData* cur_scope_data = scope_data()->parent();
 921            cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
 922            cur_scope_data = cur_scope_data->parent()) {
 923         if (cur_scope_data->jsr_return_address_local() == index) {
 924           BAILOUT("subroutine overwrites return address from previous subroutine");
 925         }
 926       }
 927     } else if (index == scope_data()->jsr_return_address_local()) {
 928       scope_data()->set_jsr_return_address_local(-1);
 929     }
 930   }
 931 
 932   state->store_local(index, round_fp(x));
 933 }
 934 
 935 
 936 void GraphBuilder::load_indexed(BasicType type) {
 937   ValueStack* state_before = copy_state_for_exception();
 938   Value index = ipop();
 939   Value array = apop();
 940   Value length = NULL;
 941   if (CSEArrayLength ||
 942       (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
 943       (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
 944     length = append(new ArrayLength(array, state_before));
 945   }
 946   push(as_ValueType(type), append(new LoadIndexed(array, index, length, type, state_before)));
 947 }
 948 
 949 
 950 void GraphBuilder::store_indexed(BasicType type) {
 951   ValueStack* state_before = copy_state_for_exception();
 952   Value value = pop(as_ValueType(type));
 953   Value index = ipop();
 954   Value array = apop();
 955   Value length = NULL;
 956   if (CSEArrayLength ||
 957       (array->as_AccessField() && array->as_AccessField()->field()->is_constant()) ||
 958       (array->as_NewArray() && array->as_NewArray()->length() && array->as_NewArray()->length()->type()->is_constant())) {
 959     length = append(new ArrayLength(array, state_before));
 960   }
 961   StoreIndexed* result = new StoreIndexed(array, index, length, type, value, state_before);
 962   append(result);
 963   _memory->store_value(value);
 964 
 965   if (type == T_OBJECT && is_profiling()) {
 966     // Note that we'd collect profile data in this method if we wanted it.
 967     compilation()->set_would_profile(true);
 968 
 969     if (profile_checkcasts()) {
 970       result->set_profiled_method(method());
 971       result->set_profiled_bci(bci());
 972       result->set_should_profile(true);
 973     }
 974   }
 975 }
 976 
 977 
 978 void GraphBuilder::stack_op(Bytecodes::Code code) {
 979   switch (code) {
 980     case Bytecodes::_pop:
 981       { state()->raw_pop();
 982       }
 983       break;
 984     case Bytecodes::_pop2:
 985       { state()->raw_pop();
 986         state()->raw_pop();
 987       }
 988       break;
 989     case Bytecodes::_dup:
 990       { Value w = state()->raw_pop();
 991         state()->raw_push(w);
 992         state()->raw_push(w);
 993       }
 994       break;
 995     case Bytecodes::_dup_x1:
 996       { Value w1 = state()->raw_pop();
 997         Value w2 = state()->raw_pop();
 998         state()->raw_push(w1);
 999         state()->raw_push(w2);
1000         state()->raw_push(w1);
1001       }
1002       break;
1003     case Bytecodes::_dup_x2:
1004       { Value w1 = state()->raw_pop();
1005         Value w2 = state()->raw_pop();
1006         Value w3 = state()->raw_pop();
1007         state()->raw_push(w1);
1008         state()->raw_push(w3);
1009         state()->raw_push(w2);
1010         state()->raw_push(w1);
1011       }
1012       break;
1013     case Bytecodes::_dup2:
1014       { Value w1 = state()->raw_pop();
1015         Value w2 = state()->raw_pop();
1016         state()->raw_push(w2);
1017         state()->raw_push(w1);
1018         state()->raw_push(w2);
1019         state()->raw_push(w1);
1020       }
1021       break;
1022     case Bytecodes::_dup2_x1:
1023       { Value w1 = state()->raw_pop();
1024         Value w2 = state()->raw_pop();
1025         Value w3 = state()->raw_pop();
1026         state()->raw_push(w2);
1027         state()->raw_push(w1);
1028         state()->raw_push(w3);
1029         state()->raw_push(w2);
1030         state()->raw_push(w1);
1031       }
1032       break;
1033     case Bytecodes::_dup2_x2:
1034       { Value w1 = state()->raw_pop();
1035         Value w2 = state()->raw_pop();
1036         Value w3 = state()->raw_pop();
1037         Value w4 = state()->raw_pop();
1038         state()->raw_push(w2);
1039         state()->raw_push(w1);
1040         state()->raw_push(w4);
1041         state()->raw_push(w3);
1042         state()->raw_push(w2);
1043         state()->raw_push(w1);
1044       }
1045       break;
1046     case Bytecodes::_swap:
1047       { Value w1 = state()->raw_pop();
1048         Value w2 = state()->raw_pop();
1049         state()->raw_push(w1);
1050         state()->raw_push(w2);
1051       }
1052       break;
1053     default:
1054       ShouldNotReachHere();
1055       break;
1056   }
1057 }
1058 
1059 
1060 void GraphBuilder::arithmetic_op(ValueType* type, Bytecodes::Code code, ValueStack* state_before) {
1061   Value y = pop(type);
1062   Value x = pop(type);
1063   // NOTE: strictfp can be queried from current method since we don't
1064   // inline methods with differing strictfp bits
1065   Value res = new ArithmeticOp(code, x, y, method()->is_strict(), state_before);
1066   // Note: currently single-precision floating-point rounding on Intel is handled at the LIRGenerator level
1067   res = append(res);
1068   if (method()->is_strict()) {
1069     res = round_fp(res);
1070   }
1071   push(type, res);
1072 }
1073 
1074 
1075 void GraphBuilder::negate_op(ValueType* type) {
1076   push(type, append(new NegateOp(pop(type))));
1077 }
1078 
1079 
1080 void GraphBuilder::shift_op(ValueType* type, Bytecodes::Code code) {
1081   Value s = ipop();
1082   Value x = pop(type);
1083   // try to simplify
1084   // Note: This code should go into the canonicalizer as soon as it can
1085   //       can handle canonicalized forms that contain more than one node.
1086   if (CanonicalizeNodes && code == Bytecodes::_iushr) {
1087     // pattern: x >>> s
1088     IntConstant* s1 = s->type()->as_IntConstant();
1089     if (s1 != NULL) {
1090       // pattern: x >>> s1, with s1 constant
1091       ShiftOp* l = x->as_ShiftOp();
1092       if (l != NULL && l->op() == Bytecodes::_ishl) {
1093         // pattern: (a << b) >>> s1
1094         IntConstant* s0 = l->y()->type()->as_IntConstant();
1095         if (s0 != NULL) {
1096           // pattern: (a << s0) >>> s1
1097           const int s0c = s0->value() & 0x1F; // only the low 5 bits are significant for shifts
1098           const int s1c = s1->value() & 0x1F; // only the low 5 bits are significant for shifts
1099           if (s0c == s1c) {
1100             if (s0c == 0) {
1101               // pattern: (a << 0) >>> 0 => simplify to: a
1102               ipush(l->x());
1103             } else {
1104               // pattern: (a << s0c) >>> s0c => simplify to: a & m, with m constant
1105               assert(0 < s0c && s0c < BitsPerInt, "adjust code below to handle corner cases");
1106               const int m = (1 << (BitsPerInt - s0c)) - 1;
1107               Value s = append(new Constant(new IntConstant(m)));
1108               ipush(append(new LogicOp(Bytecodes::_iand, l->x(), s)));
1109             }
1110             return;
1111           }
1112         }
1113       }
1114     }
1115   }
1116   // could not simplify
1117   push(type, append(new ShiftOp(code, x, s)));
1118 }
1119 
1120 
1121 void GraphBuilder::logic_op(ValueType* type, Bytecodes::Code code) {
1122   Value y = pop(type);
1123   Value x = pop(type);
1124   push(type, append(new LogicOp(code, x, y)));
1125 }
1126 
1127 
1128 void GraphBuilder::compare_op(ValueType* type, Bytecodes::Code code) {
1129   ValueStack* state_before = copy_state_before();
1130   Value y = pop(type);
1131   Value x = pop(type);
1132   ipush(append(new CompareOp(code, x, y, state_before)));
1133 }
1134 
1135 
1136 void GraphBuilder::convert(Bytecodes::Code op, BasicType from, BasicType to) {
1137   push(as_ValueType(to), append(new Convert(op, pop(as_ValueType(from)), as_ValueType(to))));
1138 }
1139 
1140 
1141 void GraphBuilder::increment() {
1142   int index = stream()->get_index();
1143   int delta = stream()->is_wide() ? (signed short)Bytes::get_Java_u2(stream()->cur_bcp() + 4) : (signed char)(stream()->cur_bcp()[2]);
1144   load_local(intType, index);
1145   ipush(append(new Constant(new IntConstant(delta))));
1146   arithmetic_op(intType, Bytecodes::_iadd);
1147   store_local(intType, index);
1148 }
1149 
1150 
1151 void GraphBuilder::_goto(int from_bci, int to_bci) {
1152   Goto *x = new Goto(block_at(to_bci), to_bci <= from_bci);
1153   if (is_profiling()) {
1154     compilation()->set_would_profile(true);
1155   }
1156   if (profile_branches()) {
1157     x->set_profiled_method(method());
1158     x->set_profiled_bci(bci());
1159     x->set_should_profile(true);
1160   }
1161   append(x);
1162 }
1163 
1164 
1165 void GraphBuilder::if_node(Value x, If::Condition cond, Value y, ValueStack* state_before) {
1166   BlockBegin* tsux = block_at(stream()->get_dest());
1167   BlockBegin* fsux = block_at(stream()->next_bci());
1168   bool is_bb = tsux->bci() < stream()->cur_bci() || fsux->bci() < stream()->cur_bci();
1169   Instruction *i = append(new If(x, cond, false, y, tsux, fsux, is_bb ? state_before : NULL, is_bb));
1170 
1171   if (is_profiling()) {
1172     If* if_node = i->as_If();
1173     if (if_node != NULL) {
1174       // Note that we'd collect profile data in this method if we wanted it.
1175       compilation()->set_would_profile(true);
1176       // At level 2 we need the proper bci to count backedges
1177       if_node->set_profiled_bci(bci());
1178       if (profile_branches()) {
1179         // Successors can be rotated by the canonicalizer, check for this case.
1180         if_node->set_profiled_method(method());
1181         if_node->set_should_profile(true);
1182         if (if_node->tsux() == fsux) {
1183           if_node->set_swapped(true);
1184         }
1185       }
1186       return;
1187     }
1188 
1189     // Check if this If was reduced to Goto.
1190     Goto *goto_node = i->as_Goto();
1191     if (goto_node != NULL) {
1192       compilation()->set_would_profile(true);
1193       if (profile_branches()) {
1194         goto_node->set_profiled_method(method());
1195         goto_node->set_profiled_bci(bci());
1196         goto_node->set_should_profile(true);
1197         // Find out which successor is used.
1198         if (goto_node->default_sux() == tsux) {
1199           goto_node->set_direction(Goto::taken);
1200         } else if (goto_node->default_sux() == fsux) {
1201           goto_node->set_direction(Goto::not_taken);
1202         } else {
1203           ShouldNotReachHere();
1204         }
1205       }
1206       return;
1207     }
1208   }
1209 }
1210 
1211 
1212 void GraphBuilder::if_zero(ValueType* type, If::Condition cond) {
1213   Value y = append(new Constant(intZero));
1214   ValueStack* state_before = copy_state_before();
1215   Value x = ipop();
1216   if_node(x, cond, y, state_before);
1217 }
1218 
1219 
1220 void GraphBuilder::if_null(ValueType* type, If::Condition cond) {
1221   Value y = append(new Constant(objectNull));
1222   ValueStack* state_before = copy_state_before();
1223   Value x = apop();
1224   if_node(x, cond, y, state_before);
1225 }
1226 
1227 
1228 void GraphBuilder::if_same(ValueType* type, If::Condition cond) {
1229   ValueStack* state_before = copy_state_before();
1230   Value y = pop(type);
1231   Value x = pop(type);
1232   if_node(x, cond, y, state_before);
1233 }
1234 
1235 
1236 void GraphBuilder::jsr(int dest) {
1237   // We only handle well-formed jsrs (those which are "block-structured").
1238   // If the bytecodes are strange (jumping out of a jsr block) then we
1239   // might end up trying to re-parse a block containing a jsr which
1240   // has already been activated. Watch for this case and bail out.
1241   for (ScopeData* cur_scope_data = scope_data();
1242        cur_scope_data != NULL && cur_scope_data->parsing_jsr() && cur_scope_data->scope() == scope();
1243        cur_scope_data = cur_scope_data->parent()) {
1244     if (cur_scope_data->jsr_entry_bci() == dest) {
1245       BAILOUT("too-complicated jsr/ret structure");
1246     }
1247   }
1248 
1249   push(addressType, append(new Constant(new AddressConstant(next_bci()))));
1250   if (!try_inline_jsr(dest)) {
1251     return; // bailed out while parsing and inlining subroutine
1252   }
1253 }
1254 
1255 
1256 void GraphBuilder::ret(int local_index) {
1257   if (!parsing_jsr()) BAILOUT("ret encountered while not parsing subroutine");
1258 
1259   if (local_index != scope_data()->jsr_return_address_local()) {
1260     BAILOUT("can not handle complicated jsr/ret constructs");
1261   }
1262 
1263   // Rets simply become (NON-SAFEPOINT) gotos to the jsr continuation
1264   append(new Goto(scope_data()->jsr_continuation(), false));
1265 }
1266 
1267 
1268 void GraphBuilder::table_switch() {
1269   Bytecode_tableswitch* switch_ = Bytecode_tableswitch_at(method()->code() + bci());
1270   const int l = switch_->length();
1271   if (CanonicalizeNodes && l == 1) {
1272     // total of 2 successors => use If instead of switch
1273     // Note: This code should go into the canonicalizer as soon as it can
1274     //       can handle canonicalized forms that contain more than one node.
1275     Value key = append(new Constant(new IntConstant(switch_->low_key())));
1276     BlockBegin* tsux = block_at(bci() + switch_->dest_offset_at(0));
1277     BlockBegin* fsux = block_at(bci() + switch_->default_offset());
1278     bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1279     ValueStack* state_before = is_bb ? copy_state_before() : NULL;
1280     append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1281   } else {
1282     // collect successors
1283     BlockList* sux = new BlockList(l + 1, NULL);
1284     int i;
1285     bool has_bb = false;
1286     for (i = 0; i < l; i++) {
1287       sux->at_put(i, block_at(bci() + switch_->dest_offset_at(i)));
1288       if (switch_->dest_offset_at(i) < 0) has_bb = true;
1289     }
1290     // add default successor
1291     sux->at_put(i, block_at(bci() + switch_->default_offset()));
1292     ValueStack* state_before = has_bb ? copy_state_before() : NULL;
1293     append(new TableSwitch(ipop(), sux, switch_->low_key(), state_before, has_bb));
1294   }
1295 }
1296 
1297 
1298 void GraphBuilder::lookup_switch() {
1299   Bytecode_lookupswitch* switch_ = Bytecode_lookupswitch_at(method()->code() + bci());
1300   const int l = switch_->number_of_pairs();
1301   if (CanonicalizeNodes && l == 1) {
1302     // total of 2 successors => use If instead of switch
1303     // Note: This code should go into the canonicalizer as soon as it can
1304     //       can handle canonicalized forms that contain more than one node.
1305     // simplify to If
1306     LookupswitchPair* pair = switch_->pair_at(0);
1307     Value key = append(new Constant(new IntConstant(pair->match())));
1308     BlockBegin* tsux = block_at(bci() + pair->offset());
1309     BlockBegin* fsux = block_at(bci() + switch_->default_offset());
1310     bool is_bb = tsux->bci() < bci() || fsux->bci() < bci();
1311     ValueStack* state_before = is_bb ? copy_state_before() : NULL;
1312     append(new If(ipop(), If::eql, true, key, tsux, fsux, state_before, is_bb));
1313   } else {
1314     // collect successors & keys
1315     BlockList* sux = new BlockList(l + 1, NULL);
1316     intArray* keys = new intArray(l, 0);
1317     int i;
1318     bool has_bb = false;
1319     for (i = 0; i < l; i++) {
1320       LookupswitchPair* pair = switch_->pair_at(i);
1321       if (pair->offset() < 0) has_bb = true;
1322       sux->at_put(i, block_at(bci() + pair->offset()));
1323       keys->at_put(i, pair->match());
1324     }
1325     // add default successor
1326     sux->at_put(i, block_at(bci() + switch_->default_offset()));
1327     ValueStack* state_before = has_bb ? copy_state_before() : NULL;
1328     append(new LookupSwitch(ipop(), sux, keys, state_before, has_bb));
1329   }
1330 }
1331 
1332 void GraphBuilder::call_register_finalizer() {
1333   // If the receiver requires finalization then emit code to perform
1334   // the registration on return.
1335 
1336   // Gather some type information about the receiver
1337   Value receiver = state()->local_at(0);
1338   assert(receiver != NULL, "must have a receiver");
1339   ciType* declared_type = receiver->declared_type();
1340   ciType* exact_type = receiver->exact_type();
1341   if (exact_type == NULL &&
1342       receiver->as_Local() &&
1343       receiver->as_Local()->java_index() == 0) {
1344     ciInstanceKlass* ik = compilation()->method()->holder();
1345     if (ik->is_final()) {
1346       exact_type = ik;
1347     } else if (UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1348       // test class is leaf class
1349       compilation()->dependency_recorder()->assert_leaf_type(ik);
1350       exact_type = ik;
1351     } else {
1352       declared_type = ik;
1353     }
1354   }
1355 
1356   // see if we know statically that registration isn't required
1357   bool needs_check = true;
1358   if (exact_type != NULL) {
1359     needs_check = exact_type->as_instance_klass()->has_finalizer();
1360   } else if (declared_type != NULL) {
1361     ciInstanceKlass* ik = declared_type->as_instance_klass();
1362     if (!Dependencies::has_finalizable_subclass(ik)) {
1363       compilation()->dependency_recorder()->assert_has_no_finalizable_subclasses(ik);
1364       needs_check = false;
1365     }
1366   }
1367 
1368   if (needs_check) {
1369     // Perform the registration of finalizable objects.
1370     ValueStack* state_before = copy_state_for_exception();
1371     load_local(objectType, 0);
1372     append_split(new Intrinsic(voidType, vmIntrinsics::_Object_init,
1373                                state()->pop_arguments(1),
1374                                true, state_before, true));
1375   }
1376 }
1377 
1378 
1379 void GraphBuilder::method_return(Value x) {
1380   if (RegisterFinalizersAtInit &&
1381       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1382     call_register_finalizer();
1383   }
1384 
1385   // Check to see whether we are inlining. If so, Return
1386   // instructions become Gotos to the continuation point.
1387   if (continuation() != NULL) {
1388     assert(!method()->is_synchronized() || InlineSynchronizedMethods, "can not inline synchronized methods yet");
1389 
1390     // If the inlined method is synchronized, the monitor must be
1391     // released before we jump to the continuation block.
1392     if (method()->is_synchronized()) {
1393       assert(state()->locks_size() == 1, "receiver must be locked here");
1394       monitorexit(state()->lock_at(0), SynchronizationEntryBCI);
1395     }
1396 
1397     // State at end of inlined method is the state of the caller
1398     // without the method parameters on stack, including the
1399     // return value, if any, of the inlined method on operand stack.
1400     set_state(state()->caller_state()->copy_for_parsing());
1401     if (x != NULL) {
1402       state()->push(x->type(), x);
1403     }
1404     Goto* goto_callee = new Goto(continuation(), false);
1405 
1406     // See whether this is the first return; if so, store off some
1407     // of the state for later examination
1408     if (num_returns() == 0) {
1409       set_inline_cleanup_info(_block, _last, state());
1410     }
1411 
1412     // The current bci() is in the wrong scope, so use the bci() of
1413     // the continuation point.
1414     append_with_bci(goto_callee, scope_data()->continuation()->bci());
1415     incr_num_returns();
1416 
1417     return;
1418   }
1419 
1420   state()->truncate_stack(0);
1421   if (method()->is_synchronized()) {
1422     // perform the unlocking before exiting the method
1423     Value receiver;
1424     if (!method()->is_static()) {
1425       receiver = _initial_state->local_at(0);
1426     } else {
1427       receiver = append(new Constant(new ClassConstant(method()->holder())));
1428     }
1429     append_split(new MonitorExit(receiver, state()->unlock()));
1430   }
1431 
1432   append(new Return(x));
1433 }
1434 
1435 
1436 void GraphBuilder::access_field(Bytecodes::Code code) {
1437   bool will_link;
1438   ciField* field = stream()->get_field(will_link);
1439   ciInstanceKlass* holder = field->holder();
1440   BasicType field_type = field->type()->basic_type();
1441   ValueType* type = as_ValueType(field_type);
1442   // call will_link again to determine if the field is valid.
1443   const bool is_loaded = holder->is_loaded() &&
1444                          field->will_link(method()->holder(), code);
1445   const bool is_initialized = is_loaded && holder->is_initialized();
1446 
1447   ValueStack* state_before = NULL;
1448   if (!is_initialized || PatchALot) {
1449     // save state before instruction for debug info when
1450     // deoptimization happens during patching
1451     state_before = copy_state_before();
1452   }
1453 
1454   Value obj = NULL;
1455   if (code == Bytecodes::_getstatic || code == Bytecodes::_putstatic) {
1456     // commoning of class constants should only occur if the class is
1457     // fully initialized and resolved in this constant pool.  The will_link test
1458     // above essentially checks if this class is resolved in this constant pool
1459     // so, the is_initialized flag should be suffiect.
1460     if (state_before != NULL) {
1461       // build a patching constant
1462       obj = new Constant(new ClassConstant(holder), state_before);
1463     } else {
1464       obj = new Constant(new ClassConstant(holder));
1465     }
1466   }
1467 
1468 
1469   const int offset = is_loaded ? field->offset() : -1;
1470   switch (code) {
1471     case Bytecodes::_getstatic: {
1472       // check for compile-time constants, i.e., initialized static final fields
1473       Instruction* constant = NULL;
1474       if (field->is_constant() && !PatchALot) {
1475         ciConstant field_val = field->constant_value();
1476         BasicType field_type = field_val.basic_type();
1477         switch (field_type) {
1478         case T_ARRAY:
1479         case T_OBJECT:
1480           if (field_val.as_object()->should_be_constant()) {
1481             constant =  new Constant(as_ValueType(field_val));
1482           }
1483           break;
1484 
1485         default:
1486           constant = new Constant(as_ValueType(field_val));
1487         }
1488       }
1489       if (constant != NULL) {
1490         push(type, append(constant));
1491       } else {
1492         if (state_before == NULL) {
1493           state_before = copy_state_for_exception();
1494         }
1495         push(type, append(new LoadField(append(obj), offset, field, true,
1496                                         state_before, is_loaded, is_initialized)));
1497       }
1498       break;
1499     }
1500     case Bytecodes::_putstatic:
1501       { Value val = pop(type);
1502         if (state_before == NULL) {
1503           state_before = copy_state_for_exception();
1504         }
1505         append(new StoreField(append(obj), offset, field, val, true, state_before, is_loaded, is_initialized));
1506       }
1507       break;
1508     case Bytecodes::_getfield :
1509       {
1510         if (state_before == NULL) {
1511           state_before = copy_state_for_exception();
1512         }
1513         LoadField* load = new LoadField(apop(), offset, field, false, state_before, is_loaded, true);
1514         Value replacement = is_loaded ? _memory->load(load) : load;
1515         if (replacement != load) {
1516           assert(replacement->is_linked() || !replacement->can_be_linked(), "should already by linked");
1517           push(type, replacement);
1518         } else {
1519           push(type, append(load));
1520         }
1521         break;
1522       }
1523 
1524     case Bytecodes::_putfield :
1525       { Value val = pop(type);
1526         if (state_before == NULL) {
1527           state_before = copy_state_for_exception();
1528         }
1529         StoreField* store = new StoreField(apop(), offset, field, val, false, state_before, is_loaded, true);
1530         if (is_loaded) store = _memory->store(store);
1531         if (store != NULL) {
1532           append(store);
1533         }
1534       }
1535       break;
1536     default                   :
1537       ShouldNotReachHere();
1538       break;
1539   }
1540 }
1541 
1542 
1543 Dependencies* GraphBuilder::dependency_recorder() const {
1544   assert(DeoptC1, "need debug information");
1545   return compilation()->dependency_recorder();
1546 }
1547 
1548 
1549 void GraphBuilder::invoke(Bytecodes::Code code) {
1550   bool will_link;
1551   ciMethod* target = stream()->get_method(will_link);
1552   // we have to make sure the argument size (incl. the receiver)
1553   // is correct for compilation (the call would fail later during
1554   // linkage anyway) - was bug (gri 7/28/99)
1555   if (target->is_loaded() && target->is_static() != (code == Bytecodes::_invokestatic)) BAILOUT("will cause link error");
1556   ciInstanceKlass* klass = target->holder();
1557 
1558   // check if CHA possible: if so, change the code to invoke_special
1559   ciInstanceKlass* calling_klass = method()->holder();
1560   ciKlass* holder = stream()->get_declared_method_holder();
1561   ciInstanceKlass* callee_holder = ciEnv::get_instance_klass_for_declared_method_holder(holder);
1562   ciInstanceKlass* actual_recv = callee_holder;
1563 
1564   // some methods are obviously bindable without any type checks so
1565   // convert them directly to an invokespecial.
1566   if (target->is_loaded() && !target->is_abstract() &&
1567       target->can_be_statically_bound() && code == Bytecodes::_invokevirtual) {
1568     code = Bytecodes::_invokespecial;
1569   }
1570 
1571   // NEEDS_CLEANUP
1572   // I've added the target-is_loaded() test below but I don't really understand
1573   // how klass->is_loaded() can be true and yet target->is_loaded() is false.
1574   // this happened while running the JCK invokevirtual tests under doit.  TKR
1575   ciMethod* cha_monomorphic_target = NULL;
1576   ciMethod* exact_target = NULL;
1577   if (UseCHA && DeoptC1 && klass->is_loaded() && target->is_loaded() &&
1578       !target->is_method_handle_invoke()) {
1579     Value receiver = NULL;
1580     ciInstanceKlass* receiver_klass = NULL;
1581     bool type_is_exact = false;
1582     // try to find a precise receiver type
1583     if (will_link && !target->is_static()) {
1584       int index = state()->stack_size() - (target->arg_size_no_receiver() + 1);
1585       receiver = state()->stack_at(index);
1586       ciType* type = receiver->exact_type();
1587       if (type != NULL && type->is_loaded() &&
1588           type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
1589         receiver_klass = (ciInstanceKlass*) type;
1590         type_is_exact = true;
1591       }
1592       if (type == NULL) {
1593         type = receiver->declared_type();
1594         if (type != NULL && type->is_loaded() &&
1595             type->is_instance_klass() && !type->as_instance_klass()->is_interface()) {
1596           receiver_klass = (ciInstanceKlass*) type;
1597           if (receiver_klass->is_leaf_type() && !receiver_klass->is_final()) {
1598             // Insert a dependency on this type since
1599             // find_monomorphic_target may assume it's already done.
1600             dependency_recorder()->assert_leaf_type(receiver_klass);
1601             type_is_exact = true;
1602           }
1603         }
1604       }
1605     }
1606     if (receiver_klass != NULL && type_is_exact &&
1607         receiver_klass->is_loaded() && code != Bytecodes::_invokespecial) {
1608       // If we have the exact receiver type we can bind directly to
1609       // the method to call.
1610       exact_target = target->resolve_invoke(calling_klass, receiver_klass);
1611       if (exact_target != NULL) {
1612         target = exact_target;
1613         code = Bytecodes::_invokespecial;
1614       }
1615     }
1616     if (receiver_klass != NULL &&
1617         receiver_klass->is_subtype_of(actual_recv) &&
1618         actual_recv->is_initialized()) {
1619       actual_recv = receiver_klass;
1620     }
1621 
1622     if ((code == Bytecodes::_invokevirtual && callee_holder->is_initialized()) ||
1623         (code == Bytecodes::_invokeinterface && callee_holder->is_initialized() && !actual_recv->is_interface())) {
1624       // Use CHA on the receiver to select a more precise method.
1625       cha_monomorphic_target = target->find_monomorphic_target(calling_klass, callee_holder, actual_recv);
1626     } else if (code == Bytecodes::_invokeinterface && callee_holder->is_loaded() && receiver != NULL) {
1627       // if there is only one implementor of this interface then we
1628       // may be able bind this invoke directly to the implementing
1629       // klass but we need both a dependence on the single interface
1630       // and on the method we bind to.  Additionally since all we know
1631       // about the receiver type is the it's supposed to implement the
1632       // interface we have to insert a check that it's the class we
1633       // expect.  Interface types are not checked by the verifier so
1634       // they are roughly equivalent to Object.
1635       ciInstanceKlass* singleton = NULL;
1636       if (target->holder()->nof_implementors() == 1) {
1637         singleton = target->holder()->implementor(0);
1638       }
1639       if (singleton) {
1640         cha_monomorphic_target = target->find_monomorphic_target(calling_klass, target->holder(), singleton);
1641         if (cha_monomorphic_target != NULL) {
1642           // If CHA is able to bind this invoke then update the class
1643           // to match that class, otherwise klass will refer to the
1644           // interface.
1645           klass = cha_monomorphic_target->holder();
1646           actual_recv = target->holder();
1647 
1648           // insert a check it's really the expected class.
1649           CheckCast* c = new CheckCast(klass, receiver, copy_state_for_exception());
1650           c->set_incompatible_class_change_check();
1651           c->set_direct_compare(klass->is_final());
1652           append_split(c);
1653         }
1654       }
1655     }
1656   }
1657 
1658   if (cha_monomorphic_target != NULL) {
1659     if (cha_monomorphic_target->is_abstract()) {
1660       // Do not optimize for abstract methods
1661       cha_monomorphic_target = NULL;
1662     }
1663   }
1664 
1665   if (cha_monomorphic_target != NULL) {
1666     if (!(target->is_final_method())) {
1667       // If we inlined because CHA revealed only a single target method,
1668       // then we are dependent on that target method not getting overridden
1669       // by dynamic class loading.  Be sure to test the "static" receiver
1670       // dest_method here, as opposed to the actual receiver, which may
1671       // falsely lead us to believe that the receiver is final or private.
1672       dependency_recorder()->assert_unique_concrete_method(actual_recv, cha_monomorphic_target);
1673     }
1674     code = Bytecodes::_invokespecial;
1675   }
1676   // check if we could do inlining
1677   if (!PatchALot && Inline && klass->is_loaded() &&
1678       (klass->is_initialized() || klass->is_interface() && target->holder()->is_initialized())
1679       && target->will_link(klass, callee_holder, code)) {
1680     // callee is known => check if we have static binding
1681     assert(target->is_loaded(), "callee must be known");
1682     if (code == Bytecodes::_invokestatic
1683      || code == Bytecodes::_invokespecial
1684      || code == Bytecodes::_invokevirtual && target->is_final_method()
1685     ) {
1686       // static binding => check if callee is ok
1687       ciMethod* inline_target = (cha_monomorphic_target != NULL)
1688                                   ? cha_monomorphic_target
1689                                   : target;
1690       bool res = try_inline(inline_target, (cha_monomorphic_target != NULL) || (exact_target != NULL));
1691       CHECK_BAILOUT();
1692 
1693 #ifndef PRODUCT
1694       // printing
1695       if (PrintInlining && !res) {
1696         // if it was successfully inlined, then it was already printed.
1697         print_inline_result(inline_target, res);
1698       }
1699 #endif
1700       clear_inline_bailout();
1701       if (res) {
1702         // Register dependence if JVMTI has either breakpoint
1703         // setting or hotswapping of methods capabilities since they may
1704         // cause deoptimization.
1705         if (compilation()->env()->jvmti_can_hotswap_or_post_breakpoint()) {
1706           dependency_recorder()->assert_evol_method(inline_target);
1707         }
1708         return;
1709       }
1710     }
1711   }
1712   // If we attempted an inline which did not succeed because of a
1713   // bailout during construction of the callee graph, the entire
1714   // compilation has to be aborted. This is fairly rare and currently
1715   // seems to only occur for jasm-generated classes which contain
1716   // jsr/ret pairs which are not associated with finally clauses and
1717   // do not have exception handlers in the containing method, and are
1718   // therefore not caught early enough to abort the inlining without
1719   // corrupting the graph. (We currently bail out with a non-empty
1720   // stack at a ret in these situations.)
1721   CHECK_BAILOUT();
1722 
1723   // inlining not successful => standard invoke
1724   bool is_loaded = target->is_loaded();
1725   bool has_receiver =
1726     code == Bytecodes::_invokespecial   ||
1727     code == Bytecodes::_invokevirtual   ||
1728     code == Bytecodes::_invokeinterface;
1729   bool is_invokedynamic = code == Bytecodes::_invokedynamic;
1730   ValueType* result_type = as_ValueType(target->return_type());
1731 
1732   // We require the debug info to be the "state before" because
1733   // invokedynamics may deoptimize.
1734   ValueStack* state_before = is_invokedynamic ? copy_state_before() : copy_state_exhandling();
1735 
1736   Values* args = state()->pop_arguments(target->arg_size_no_receiver());
1737   Value recv = has_receiver ? apop() : NULL;
1738   int vtable_index = methodOopDesc::invalid_vtable_index;
1739 
1740 #ifdef SPARC
1741   // Currently only supported on Sparc.
1742   // The UseInlineCaches only controls dispatch to invokevirtuals for
1743   // loaded classes which we weren't able to statically bind.
1744   if (!UseInlineCaches && is_loaded && code == Bytecodes::_invokevirtual
1745       && !target->can_be_statically_bound()) {
1746     // Find a vtable index if one is available
1747     vtable_index = target->resolve_vtable_index(calling_klass, callee_holder);
1748   }
1749 #endif
1750 
1751   if (recv != NULL &&
1752       (code == Bytecodes::_invokespecial ||
1753        !is_loaded || target->is_final())) {
1754     // invokespecial always needs a NULL check.  invokevirtual where
1755     // the target is final or where it's not known that whether the
1756     // target is final requires a NULL check.  Otherwise normal
1757     // invokevirtual will perform the null check during the lookup
1758     // logic or the unverified entry point.  Profiling of calls
1759     // requires that the null check is performed in all cases.
1760     null_check(recv);
1761   }
1762 
1763   if (is_profiling()) {
1764     if (recv != NULL && profile_calls()) {
1765       null_check(recv);
1766     }
1767     // Note that we'd collect profile data in this method if we wanted it.
1768     compilation()->set_would_profile(true);
1769 
1770     if (profile_calls()) {
1771       assert(cha_monomorphic_target == NULL || exact_target == NULL, "both can not be set");
1772       ciKlass* target_klass = NULL;
1773       if (cha_monomorphic_target != NULL) {
1774         target_klass = cha_monomorphic_target->holder();
1775       } else if (exact_target != NULL) {
1776         target_klass = exact_target->holder();
1777       }
1778       profile_call(recv, target_klass);
1779     }
1780   }
1781 
1782   Invoke* result = new Invoke(code, result_type, recv, args, vtable_index, target, state_before);
1783   // push result
1784   append_split(result);
1785 
1786   if (result_type != voidType) {
1787     if (method()->is_strict()) {
1788       push(result_type, round_fp(result));
1789     } else {
1790       push(result_type, result);
1791     }
1792   }
1793 }
1794 
1795 
1796 void GraphBuilder::new_instance(int klass_index) {
1797   ValueStack* state_before = copy_state_exhandling();
1798   bool will_link;
1799   ciKlass* klass = stream()->get_klass(will_link);
1800   assert(klass->is_instance_klass(), "must be an instance klass");
1801   NewInstance* new_instance = new NewInstance(klass->as_instance_klass(), state_before);
1802   _memory->new_instance(new_instance);
1803   apush(append_split(new_instance));
1804 }
1805 
1806 
1807 void GraphBuilder::new_type_array() {
1808   ValueStack* state_before = copy_state_exhandling();
1809   apush(append_split(new NewTypeArray(ipop(), (BasicType)stream()->get_index(), state_before)));
1810 }
1811 
1812 
1813 void GraphBuilder::new_object_array() {
1814   bool will_link;
1815   ciKlass* klass = stream()->get_klass(will_link);
1816   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
1817   NewArray* n = new NewObjectArray(klass, ipop(), state_before);
1818   apush(append_split(n));
1819 }
1820 
1821 
1822 bool GraphBuilder::direct_compare(ciKlass* k) {
1823   if (k->is_loaded() && k->is_instance_klass() && !UseSlowPath) {
1824     ciInstanceKlass* ik = k->as_instance_klass();
1825     if (ik->is_final()) {
1826       return true;
1827     } else {
1828       if (DeoptC1 && UseCHA && !(ik->has_subklass() || ik->is_interface())) {
1829         // test class is leaf class
1830         dependency_recorder()->assert_leaf_type(ik);
1831         return true;
1832       }
1833     }
1834   }
1835   return false;
1836 }
1837 
1838 
1839 void GraphBuilder::check_cast(int klass_index) {
1840   bool will_link;
1841   ciKlass* klass = stream()->get_klass(will_link);
1842   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_for_exception();
1843   CheckCast* c = new CheckCast(klass, apop(), state_before);
1844   apush(append_split(c));
1845   c->set_direct_compare(direct_compare(klass));
1846 
1847   if (is_profiling()) {
1848     // Note that we'd collect profile data in this method if we wanted it.
1849     compilation()->set_would_profile(true);
1850 
1851     if (profile_checkcasts()) {
1852       c->set_profiled_method(method());
1853       c->set_profiled_bci(bci());
1854       c->set_should_profile(true);
1855     }
1856   }
1857 }
1858 
1859 
1860 void GraphBuilder::instance_of(int klass_index) {
1861   bool will_link;
1862   ciKlass* klass = stream()->get_klass(will_link);
1863   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
1864   InstanceOf* i = new InstanceOf(klass, apop(), state_before);
1865   ipush(append_split(i));
1866   i->set_direct_compare(direct_compare(klass));
1867 
1868   if (is_profiling()) {
1869     // Note that we'd collect profile data in this method if we wanted it.
1870     compilation()->set_would_profile(true);
1871 
1872     if (profile_checkcasts()) {
1873       i->set_profiled_method(method());
1874       i->set_profiled_bci(bci());
1875       i->set_should_profile(true);
1876     }
1877   }
1878 }
1879 
1880 
1881 void GraphBuilder::monitorenter(Value x, int bci) {
1882   // save state before locking in case of deoptimization after a NullPointerException
1883   ValueStack* state_before = copy_state_for_exception_with_bci(bci);
1884   append_with_bci(new MonitorEnter(x, state()->lock(x), state_before), bci);
1885   kill_all();
1886 }
1887 
1888 
1889 void GraphBuilder::monitorexit(Value x, int bci) {
1890   append_with_bci(new MonitorExit(x, state()->unlock()), bci);
1891   kill_all();
1892 }
1893 
1894 
1895 void GraphBuilder::new_multi_array(int dimensions) {
1896   bool will_link;
1897   ciKlass* klass = stream()->get_klass(will_link);
1898   ValueStack* state_before = !klass->is_loaded() || PatchALot ? copy_state_before() : copy_state_exhandling();
1899 
1900   Values* dims = new Values(dimensions, NULL);
1901   // fill in all dimensions
1902   int i = dimensions;
1903   while (i-- > 0) dims->at_put(i, ipop());
1904   // create array
1905   NewArray* n = new NewMultiArray(klass, dims, state_before);
1906   apush(append_split(n));
1907 }
1908 
1909 
1910 void GraphBuilder::throw_op(int bci) {
1911   // We require that the debug info for a Throw be the "state before"
1912   // the Throw (i.e., exception oop is still on TOS)
1913   ValueStack* state_before = copy_state_before_with_bci(bci);
1914   Throw* t = new Throw(apop(), state_before);
1915   // operand stack not needed after a throw
1916   state()->truncate_stack(0);
1917   append_with_bci(t, bci);
1918 }
1919 
1920 
1921 Value GraphBuilder::round_fp(Value fp_value) {
1922   // no rounding needed if SSE2 is used
1923   if (RoundFPResults && UseSSE < 2) {
1924     // Must currently insert rounding node for doubleword values that
1925     // are results of expressions (i.e., not loads from memory or
1926     // constants)
1927     if (fp_value->type()->tag() == doubleTag &&
1928         fp_value->as_Constant() == NULL &&
1929         fp_value->as_Local() == NULL &&       // method parameters need no rounding
1930         fp_value->as_RoundFP() == NULL) {
1931       return append(new RoundFP(fp_value));
1932     }
1933   }
1934   return fp_value;
1935 }
1936 
1937 
1938 Instruction* GraphBuilder::append_with_bci(Instruction* instr, int bci) {
1939   Canonicalizer canon(compilation(), instr, bci);
1940   Instruction* i1 = canon.canonical();
1941   if (i1->is_linked() || !i1->can_be_linked()) {
1942     // Canonicalizer returned an instruction which was already
1943     // appended so simply return it.
1944     return i1;
1945   }
1946 
1947   if (UseLocalValueNumbering) {
1948     // Lookup the instruction in the ValueMap and add it to the map if
1949     // it's not found.
1950     Instruction* i2 = vmap()->find_insert(i1);
1951     if (i2 != i1) {
1952       // found an entry in the value map, so just return it.
1953       assert(i2->is_linked(), "should already be linked");
1954       return i2;
1955     }
1956     ValueNumberingEffects vne(vmap());
1957     i1->visit(&vne);
1958   }
1959 
1960   // i1 was not eliminated => append it
1961   assert(i1->next() == NULL, "shouldn't already be linked");
1962   _last = _last->set_next(i1, canon.bci());
1963 
1964   if (++_instruction_count >= InstructionCountCutoff && !bailed_out()) {
1965     // set the bailout state but complete normal processing.  We
1966     // might do a little more work before noticing the bailout so we
1967     // want processing to continue normally until it's noticed.
1968     bailout("Method and/or inlining is too large");
1969   }
1970 
1971 #ifndef PRODUCT
1972   if (PrintIRDuringConstruction) {
1973     InstructionPrinter ip;
1974     ip.print_line(i1);
1975     if (Verbose) {
1976       state()->print();
1977     }
1978   }
1979 #endif
1980 
1981   // save state after modification of operand stack for StateSplit instructions
1982   StateSplit* s = i1->as_StateSplit();
1983   if (s != NULL) {
1984     if (EliminateFieldAccess) {
1985       Intrinsic* intrinsic = s->as_Intrinsic();
1986       if (s->as_Invoke() != NULL || (intrinsic && !intrinsic->preserves_state())) {
1987         _memory->kill();
1988       }
1989     }
1990     s->set_state(state()->copy(ValueStack::StateAfter, canon.bci()));
1991   }
1992 
1993   // set up exception handlers for this instruction if necessary
1994   if (i1->can_trap()) {
1995     i1->set_exception_handlers(handle_exception(i1));
1996     assert(i1->exception_state() != NULL || !i1->needs_exception_state() || bailed_out(), "handle_exception must set exception state");
1997   }
1998   return i1;
1999 }
2000 
2001 
2002 Instruction* GraphBuilder::append(Instruction* instr) {
2003   assert(instr->as_StateSplit() == NULL || instr->as_BlockEnd() != NULL, "wrong append used");
2004   return append_with_bci(instr, bci());
2005 }
2006 
2007 
2008 Instruction* GraphBuilder::append_split(StateSplit* instr) {
2009   return append_with_bci(instr, bci());
2010 }
2011 
2012 
2013 void GraphBuilder::null_check(Value value) {
2014   if (value->as_NewArray() != NULL || value->as_NewInstance() != NULL) {
2015     return;
2016   } else {
2017     Constant* con = value->as_Constant();
2018     if (con) {
2019       ObjectType* c = con->type()->as_ObjectType();
2020       if (c && c->is_loaded()) {
2021         ObjectConstant* oc = c->as_ObjectConstant();
2022         if (!oc || !oc->value()->is_null_object()) {
2023           return;
2024         }
2025       }
2026     }
2027   }
2028   append(new NullCheck(value, copy_state_for_exception()));
2029 }
2030 
2031 
2032 
2033 XHandlers* GraphBuilder::handle_exception(Instruction* instruction) {
2034   if (!has_handler() && (!instruction->needs_exception_state() || instruction->exception_state() != NULL)) {
2035     assert(instruction->exception_state() == NULL
2036            || instruction->exception_state()->kind() == ValueStack::EmptyExceptionState
2037            || (instruction->exception_state()->kind() == ValueStack::ExceptionState && _compilation->env()->jvmti_can_access_local_variables()),
2038            "exception_state should be of exception kind");
2039     return new XHandlers();
2040   }
2041 
2042   XHandlers*  exception_handlers = new XHandlers();
2043   ScopeData*  cur_scope_data = scope_data();
2044   ValueStack* cur_state = instruction->state_before();
2045   ValueStack* prev_state = NULL;
2046   int scope_count = 0;
2047 
2048   assert(cur_state != NULL, "state_before must be set");
2049   do {
2050     int cur_bci = cur_state->bci();
2051     assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2052     assert(cur_bci == SynchronizationEntryBCI || cur_bci == cur_scope_data->stream()->cur_bci(), "invalid bci");
2053 
2054     // join with all potential exception handlers
2055     XHandlers* list = cur_scope_data->xhandlers();
2056     const int n = list->length();
2057     for (int i = 0; i < n; i++) {
2058       XHandler* h = list->handler_at(i);
2059       if (h->covers(cur_bci)) {
2060         // h is a potential exception handler => join it
2061         compilation()->set_has_exception_handlers(true);
2062 
2063         BlockBegin* entry = h->entry_block();
2064         if (entry == block()) {
2065           // It's acceptable for an exception handler to cover itself
2066           // but we don't handle that in the parser currently.  It's
2067           // very rare so we bailout instead of trying to handle it.
2068           BAILOUT_("exception handler covers itself", exception_handlers);
2069         }
2070         assert(entry->bci() == h->handler_bci(), "must match");
2071         assert(entry->bci() == -1 || entry == cur_scope_data->block_at(entry->bci()), "blocks must correspond");
2072 
2073         // previously this was a BAILOUT, but this is not necessary
2074         // now because asynchronous exceptions are not handled this way.
2075         assert(entry->state() == NULL || cur_state->total_locks_size() == entry->state()->total_locks_size(), "locks do not match");
2076 
2077         // xhandler start with an empty expression stack
2078         if (cur_state->stack_size() != 0) {
2079           cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2080         }
2081         if (instruction->exception_state() == NULL) {
2082           instruction->set_exception_state(cur_state);
2083         }
2084 
2085         // Note: Usually this join must work. However, very
2086         // complicated jsr-ret structures where we don't ret from
2087         // the subroutine can cause the objects on the monitor
2088         // stacks to not match because blocks can be parsed twice.
2089         // The only test case we've seen so far which exhibits this
2090         // problem is caught by the infinite recursion test in
2091         // GraphBuilder::jsr() if the join doesn't work.
2092         if (!entry->try_merge(cur_state)) {
2093           BAILOUT_("error while joining with exception handler, prob. due to complicated jsr/rets", exception_handlers);
2094         }
2095 
2096         // add current state for correct handling of phi functions at begin of xhandler
2097         int phi_operand = entry->add_exception_state(cur_state);
2098 
2099         // add entry to the list of xhandlers of this block
2100         _block->add_exception_handler(entry);
2101 
2102         // add back-edge from xhandler entry to this block
2103         if (!entry->is_predecessor(_block)) {
2104           entry->add_predecessor(_block);
2105         }
2106 
2107         // clone XHandler because phi_operand and scope_count can not be shared
2108         XHandler* new_xhandler = new XHandler(h);
2109         new_xhandler->set_phi_operand(phi_operand);
2110         new_xhandler->set_scope_count(scope_count);
2111         exception_handlers->append(new_xhandler);
2112 
2113         // fill in exception handler subgraph lazily
2114         assert(!entry->is_set(BlockBegin::was_visited_flag), "entry must not be visited yet");
2115         cur_scope_data->add_to_work_list(entry);
2116 
2117         // stop when reaching catchall
2118         if (h->catch_type() == 0) {
2119           return exception_handlers;
2120         }
2121       }
2122     }
2123 
2124     if (exception_handlers->length() == 0) {
2125       // This scope and all callees do not handle exceptions, so the local
2126       // variables of this scope are not needed. However, the scope itself is
2127       // required for a correct exception stack trace -> clear out the locals.
2128       if (_compilation->env()->jvmti_can_access_local_variables()) {
2129         cur_state = cur_state->copy(ValueStack::ExceptionState, cur_state->bci());
2130       } else {
2131         cur_state = cur_state->copy(ValueStack::EmptyExceptionState, cur_state->bci());
2132       }
2133       if (prev_state != NULL) {
2134         prev_state->set_caller_state(cur_state);
2135       }
2136       if (instruction->exception_state() == NULL) {
2137         instruction->set_exception_state(cur_state);
2138       }
2139     }
2140 
2141     // Set up iteration for next time.
2142     // If parsing a jsr, do not grab exception handlers from the
2143     // parent scopes for this method (already got them, and they
2144     // needed to be cloned)
2145 
2146     while (cur_scope_data->parsing_jsr()) {
2147       cur_scope_data = cur_scope_data->parent();
2148     }
2149 
2150     assert(cur_scope_data->scope() == cur_state->scope(), "scopes do not match");
2151     assert(cur_state->locks_size() == 0 || cur_state->locks_size() == 1, "unlocking must be done in a catchall exception handler");
2152 
2153     prev_state = cur_state;
2154     cur_state = cur_state->caller_state();
2155     cur_scope_data = cur_scope_data->parent();
2156     scope_count++;
2157   } while (cur_scope_data != NULL);
2158 
2159   return exception_handlers;
2160 }
2161 
2162 
2163 // Helper class for simplifying Phis.
2164 class PhiSimplifier : public BlockClosure {
2165  private:
2166   bool _has_substitutions;
2167   Value simplify(Value v);
2168 
2169  public:
2170   PhiSimplifier(BlockBegin* start) : _has_substitutions(false) {
2171     start->iterate_preorder(this);
2172     if (_has_substitutions) {
2173       SubstitutionResolver sr(start);
2174     }
2175   }
2176   void block_do(BlockBegin* b);
2177   bool has_substitutions() const { return _has_substitutions; }
2178 };
2179 
2180 
2181 Value PhiSimplifier::simplify(Value v) {
2182   Phi* phi = v->as_Phi();
2183 
2184   if (phi == NULL) {
2185     // no phi function
2186     return v;
2187   } else if (v->has_subst()) {
2188     // already substituted; subst can be phi itself -> simplify
2189     return simplify(v->subst());
2190   } else if (phi->is_set(Phi::cannot_simplify)) {
2191     // already tried to simplify phi before
2192     return phi;
2193   } else if (phi->is_set(Phi::visited)) {
2194     // break cycles in phi functions
2195     return phi;
2196   } else if (phi->type()->is_illegal()) {
2197     // illegal phi functions are ignored anyway
2198     return phi;
2199 
2200   } else {
2201     // mark phi function as processed to break cycles in phi functions
2202     phi->set(Phi::visited);
2203 
2204     // simplify x = [y, x] and x = [y, y] to y
2205     Value subst = NULL;
2206     int opd_count = phi->operand_count();
2207     for (int i = 0; i < opd_count; i++) {
2208       Value opd = phi->operand_at(i);
2209       assert(opd != NULL, "Operand must exist!");
2210 
2211       if (opd->type()->is_illegal()) {
2212         // if one operand is illegal, the entire phi function is illegal
2213         phi->make_illegal();
2214         phi->clear(Phi::visited);
2215         return phi;
2216       }
2217 
2218       Value new_opd = simplify(opd);
2219       assert(new_opd != NULL, "Simplified operand must exist!");
2220 
2221       if (new_opd != phi && new_opd != subst) {
2222         if (subst == NULL) {
2223           subst = new_opd;
2224         } else {
2225           // no simplification possible
2226           phi->set(Phi::cannot_simplify);
2227           phi->clear(Phi::visited);
2228           return phi;
2229         }
2230       }
2231     }
2232 
2233     // sucessfully simplified phi function
2234     assert(subst != NULL, "illegal phi function");
2235     _has_substitutions = true;
2236     phi->clear(Phi::visited);
2237     phi->set_subst(subst);
2238 
2239 #ifndef PRODUCT
2240     if (PrintPhiFunctions) {
2241       tty->print_cr("simplified phi function %c%d to %c%d (Block B%d)", phi->type()->tchar(), phi->id(), subst->type()->tchar(), subst->id(), phi->block()->block_id());
2242     }
2243 #endif
2244 
2245     return subst;
2246   }
2247 }
2248 
2249 
2250 void PhiSimplifier::block_do(BlockBegin* b) {
2251   for_each_phi_fun(b, phi,
2252     simplify(phi);
2253   );
2254 
2255 #ifdef ASSERT
2256   for_each_phi_fun(b, phi,
2257                    assert(phi->operand_count() != 1 || phi->subst() != phi, "missed trivial simplification");
2258   );
2259 
2260   ValueStack* state = b->state()->caller_state();
2261   for_each_state_value(state, value,
2262     Phi* phi = value->as_Phi();
2263     assert(phi == NULL || phi->block() != b, "must not have phi function to simplify in caller state");
2264   );
2265 #endif
2266 }
2267 
2268 // This method is called after all blocks are filled with HIR instructions
2269 // It eliminates all Phi functions of the form x = [y, y] and x = [y, x]
2270 void GraphBuilder::eliminate_redundant_phis(BlockBegin* start) {
2271   PhiSimplifier simplifier(start);
2272 }
2273 
2274 
2275 void GraphBuilder::connect_to_end(BlockBegin* beg) {
2276   // setup iteration
2277   kill_all();
2278   _block = beg;
2279   _state = beg->state()->copy_for_parsing();
2280   _last  = beg;
2281   iterate_bytecodes_for_block(beg->bci());
2282 }
2283 
2284 
2285 BlockEnd* GraphBuilder::iterate_bytecodes_for_block(int bci) {
2286 #ifndef PRODUCT
2287   if (PrintIRDuringConstruction) {
2288     tty->cr();
2289     InstructionPrinter ip;
2290     ip.print_instr(_block); tty->cr();
2291     ip.print_stack(_block->state()); tty->cr();
2292     ip.print_inline_level(_block);
2293     ip.print_head();
2294     tty->print_cr("locals size: %d stack size: %d", state()->locals_size(), state()->stack_size());
2295   }
2296 #endif
2297   _skip_block = false;
2298   assert(state() != NULL, "ValueStack missing!");
2299   ciBytecodeStream s(method());
2300   s.reset_to_bci(bci);
2301   int prev_bci = bci;
2302   scope_data()->set_stream(&s);
2303   // iterate
2304   Bytecodes::Code code = Bytecodes::_illegal;
2305   bool push_exception = false;
2306 
2307   if (block()->is_set(BlockBegin::exception_entry_flag) && block()->next() == NULL) {
2308     // first thing in the exception entry block should be the exception object.
2309     push_exception = true;
2310   }
2311 
2312   while (!bailed_out() && last()->as_BlockEnd() == NULL &&
2313          (code = stream()->next()) != ciBytecodeStream::EOBC() &&
2314          (block_at(s.cur_bci()) == NULL || block_at(s.cur_bci()) == block())) {
2315     assert(state()->kind() == ValueStack::Parsing, "invalid state kind");
2316 
2317     // Check for active jsr during OSR compilation
2318     if (compilation()->is_osr_compile()
2319         && scope()->is_top_scope()
2320         && parsing_jsr()
2321         && s.cur_bci() == compilation()->osr_bci()) {
2322       bailout("OSR not supported while a jsr is active");
2323     }
2324 
2325     if (push_exception) {
2326       apush(append(new ExceptionObject()));
2327       push_exception = false;
2328     }
2329 
2330     // handle bytecode
2331     switch (code) {
2332       case Bytecodes::_nop            : /* nothing to do */ break;
2333       case Bytecodes::_aconst_null    : apush(append(new Constant(objectNull            ))); break;
2334       case Bytecodes::_iconst_m1      : ipush(append(new Constant(new IntConstant   (-1)))); break;
2335       case Bytecodes::_iconst_0       : ipush(append(new Constant(intZero               ))); break;
2336       case Bytecodes::_iconst_1       : ipush(append(new Constant(intOne                ))); break;
2337       case Bytecodes::_iconst_2       : ipush(append(new Constant(new IntConstant   ( 2)))); break;
2338       case Bytecodes::_iconst_3       : ipush(append(new Constant(new IntConstant   ( 3)))); break;
2339       case Bytecodes::_iconst_4       : ipush(append(new Constant(new IntConstant   ( 4)))); break;
2340       case Bytecodes::_iconst_5       : ipush(append(new Constant(new IntConstant   ( 5)))); break;
2341       case Bytecodes::_lconst_0       : lpush(append(new Constant(new LongConstant  ( 0)))); break;
2342       case Bytecodes::_lconst_1       : lpush(append(new Constant(new LongConstant  ( 1)))); break;
2343       case Bytecodes::_fconst_0       : fpush(append(new Constant(new FloatConstant ( 0)))); break;
2344       case Bytecodes::_fconst_1       : fpush(append(new Constant(new FloatConstant ( 1)))); break;
2345       case Bytecodes::_fconst_2       : fpush(append(new Constant(new FloatConstant ( 2)))); break;
2346       case Bytecodes::_dconst_0       : dpush(append(new Constant(new DoubleConstant( 0)))); break;
2347       case Bytecodes::_dconst_1       : dpush(append(new Constant(new DoubleConstant( 1)))); break;
2348       case Bytecodes::_bipush         : ipush(append(new Constant(new IntConstant(((signed char*)s.cur_bcp())[1])))); break;
2349       case Bytecodes::_sipush         : ipush(append(new Constant(new IntConstant((short)Bytes::get_Java_u2(s.cur_bcp()+1))))); break;
2350       case Bytecodes::_ldc            : // fall through
2351       case Bytecodes::_ldc_w          : // fall through
2352       case Bytecodes::_ldc2_w         : load_constant(); break;
2353       case Bytecodes::_iload          : load_local(intType     , s.get_index()); break;
2354       case Bytecodes::_lload          : load_local(longType    , s.get_index()); break;
2355       case Bytecodes::_fload          : load_local(floatType   , s.get_index()); break;
2356       case Bytecodes::_dload          : load_local(doubleType  , s.get_index()); break;
2357       case Bytecodes::_aload          : load_local(instanceType, s.get_index()); break;
2358       case Bytecodes::_iload_0        : load_local(intType   , 0); break;
2359       case Bytecodes::_iload_1        : load_local(intType   , 1); break;
2360       case Bytecodes::_iload_2        : load_local(intType   , 2); break;
2361       case Bytecodes::_iload_3        : load_local(intType   , 3); break;
2362       case Bytecodes::_lload_0        : load_local(longType  , 0); break;
2363       case Bytecodes::_lload_1        : load_local(longType  , 1); break;
2364       case Bytecodes::_lload_2        : load_local(longType  , 2); break;
2365       case Bytecodes::_lload_3        : load_local(longType  , 3); break;
2366       case Bytecodes::_fload_0        : load_local(floatType , 0); break;
2367       case Bytecodes::_fload_1        : load_local(floatType , 1); break;
2368       case Bytecodes::_fload_2        : load_local(floatType , 2); break;
2369       case Bytecodes::_fload_3        : load_local(floatType , 3); break;
2370       case Bytecodes::_dload_0        : load_local(doubleType, 0); break;
2371       case Bytecodes::_dload_1        : load_local(doubleType, 1); break;
2372       case Bytecodes::_dload_2        : load_local(doubleType, 2); break;
2373       case Bytecodes::_dload_3        : load_local(doubleType, 3); break;
2374       case Bytecodes::_aload_0        : load_local(objectType, 0); break;
2375       case Bytecodes::_aload_1        : load_local(objectType, 1); break;
2376       case Bytecodes::_aload_2        : load_local(objectType, 2); break;
2377       case Bytecodes::_aload_3        : load_local(objectType, 3); break;
2378       case Bytecodes::_iaload         : load_indexed(T_INT   ); break;
2379       case Bytecodes::_laload         : load_indexed(T_LONG  ); break;
2380       case Bytecodes::_faload         : load_indexed(T_FLOAT ); break;
2381       case Bytecodes::_daload         : load_indexed(T_DOUBLE); break;
2382       case Bytecodes::_aaload         : load_indexed(T_OBJECT); break;
2383       case Bytecodes::_baload         : load_indexed(T_BYTE  ); break;
2384       case Bytecodes::_caload         : load_indexed(T_CHAR  ); break;
2385       case Bytecodes::_saload         : load_indexed(T_SHORT ); break;
2386       case Bytecodes::_istore         : store_local(intType   , s.get_index()); break;
2387       case Bytecodes::_lstore         : store_local(longType  , s.get_index()); break;
2388       case Bytecodes::_fstore         : store_local(floatType , s.get_index()); break;
2389       case Bytecodes::_dstore         : store_local(doubleType, s.get_index()); break;
2390       case Bytecodes::_astore         : store_local(objectType, s.get_index()); break;
2391       case Bytecodes::_istore_0       : store_local(intType   , 0); break;
2392       case Bytecodes::_istore_1       : store_local(intType   , 1); break;
2393       case Bytecodes::_istore_2       : store_local(intType   , 2); break;
2394       case Bytecodes::_istore_3       : store_local(intType   , 3); break;
2395       case Bytecodes::_lstore_0       : store_local(longType  , 0); break;
2396       case Bytecodes::_lstore_1       : store_local(longType  , 1); break;
2397       case Bytecodes::_lstore_2       : store_local(longType  , 2); break;
2398       case Bytecodes::_lstore_3       : store_local(longType  , 3); break;
2399       case Bytecodes::_fstore_0       : store_local(floatType , 0); break;
2400       case Bytecodes::_fstore_1       : store_local(floatType , 1); break;
2401       case Bytecodes::_fstore_2       : store_local(floatType , 2); break;
2402       case Bytecodes::_fstore_3       : store_local(floatType , 3); break;
2403       case Bytecodes::_dstore_0       : store_local(doubleType, 0); break;
2404       case Bytecodes::_dstore_1       : store_local(doubleType, 1); break;
2405       case Bytecodes::_dstore_2       : store_local(doubleType, 2); break;
2406       case Bytecodes::_dstore_3       : store_local(doubleType, 3); break;
2407       case Bytecodes::_astore_0       : store_local(objectType, 0); break;
2408       case Bytecodes::_astore_1       : store_local(objectType, 1); break;
2409       case Bytecodes::_astore_2       : store_local(objectType, 2); break;
2410       case Bytecodes::_astore_3       : store_local(objectType, 3); break;
2411       case Bytecodes::_iastore        : store_indexed(T_INT   ); break;
2412       case Bytecodes::_lastore        : store_indexed(T_LONG  ); break;
2413       case Bytecodes::_fastore        : store_indexed(T_FLOAT ); break;
2414       case Bytecodes::_dastore        : store_indexed(T_DOUBLE); break;
2415       case Bytecodes::_aastore        : store_indexed(T_OBJECT); break;
2416       case Bytecodes::_bastore        : store_indexed(T_BYTE  ); break;
2417       case Bytecodes::_castore        : store_indexed(T_CHAR  ); break;
2418       case Bytecodes::_sastore        : store_indexed(T_SHORT ); break;
2419       case Bytecodes::_pop            : // fall through
2420       case Bytecodes::_pop2           : // fall through
2421       case Bytecodes::_dup            : // fall through
2422       case Bytecodes::_dup_x1         : // fall through
2423       case Bytecodes::_dup_x2         : // fall through
2424       case Bytecodes::_dup2           : // fall through
2425       case Bytecodes::_dup2_x1        : // fall through
2426       case Bytecodes::_dup2_x2        : // fall through
2427       case Bytecodes::_swap           : stack_op(code); break;
2428       case Bytecodes::_iadd           : arithmetic_op(intType   , code); break;
2429       case Bytecodes::_ladd           : arithmetic_op(longType  , code); break;
2430       case Bytecodes::_fadd           : arithmetic_op(floatType , code); break;
2431       case Bytecodes::_dadd           : arithmetic_op(doubleType, code); break;
2432       case Bytecodes::_isub           : arithmetic_op(intType   , code); break;
2433       case Bytecodes::_lsub           : arithmetic_op(longType  , code); break;
2434       case Bytecodes::_fsub           : arithmetic_op(floatType , code); break;
2435       case Bytecodes::_dsub           : arithmetic_op(doubleType, code); break;
2436       case Bytecodes::_imul           : arithmetic_op(intType   , code); break;
2437       case Bytecodes::_lmul           : arithmetic_op(longType  , code); break;
2438       case Bytecodes::_fmul           : arithmetic_op(floatType , code); break;
2439       case Bytecodes::_dmul           : arithmetic_op(doubleType, code); break;
2440       case Bytecodes::_idiv           : arithmetic_op(intType   , code, copy_state_for_exception()); break;
2441       case Bytecodes::_ldiv           : arithmetic_op(longType  , code, copy_state_for_exception()); break;
2442       case Bytecodes::_fdiv           : arithmetic_op(floatType , code); break;
2443       case Bytecodes::_ddiv           : arithmetic_op(doubleType, code); break;
2444       case Bytecodes::_irem           : arithmetic_op(intType   , code, copy_state_for_exception()); break;
2445       case Bytecodes::_lrem           : arithmetic_op(longType  , code, copy_state_for_exception()); break;
2446       case Bytecodes::_frem           : arithmetic_op(floatType , code); break;
2447       case Bytecodes::_drem           : arithmetic_op(doubleType, code); break;
2448       case Bytecodes::_ineg           : negate_op(intType   ); break;
2449       case Bytecodes::_lneg           : negate_op(longType  ); break;
2450       case Bytecodes::_fneg           : negate_op(floatType ); break;
2451       case Bytecodes::_dneg           : negate_op(doubleType); break;
2452       case Bytecodes::_ishl           : shift_op(intType , code); break;
2453       case Bytecodes::_lshl           : shift_op(longType, code); break;
2454       case Bytecodes::_ishr           : shift_op(intType , code); break;
2455       case Bytecodes::_lshr           : shift_op(longType, code); break;
2456       case Bytecodes::_iushr          : shift_op(intType , code); break;
2457       case Bytecodes::_lushr          : shift_op(longType, code); break;
2458       case Bytecodes::_iand           : logic_op(intType , code); break;
2459       case Bytecodes::_land           : logic_op(longType, code); break;
2460       case Bytecodes::_ior            : logic_op(intType , code); break;
2461       case Bytecodes::_lor            : logic_op(longType, code); break;
2462       case Bytecodes::_ixor           : logic_op(intType , code); break;
2463       case Bytecodes::_lxor           : logic_op(longType, code); break;
2464       case Bytecodes::_iinc           : increment(); break;
2465       case Bytecodes::_i2l            : convert(code, T_INT   , T_LONG  ); break;
2466       case Bytecodes::_i2f            : convert(code, T_INT   , T_FLOAT ); break;
2467       case Bytecodes::_i2d            : convert(code, T_INT   , T_DOUBLE); break;
2468       case Bytecodes::_l2i            : convert(code, T_LONG  , T_INT   ); break;
2469       case Bytecodes::_l2f            : convert(code, T_LONG  , T_FLOAT ); break;
2470       case Bytecodes::_l2d            : convert(code, T_LONG  , T_DOUBLE); break;
2471       case Bytecodes::_f2i            : convert(code, T_FLOAT , T_INT   ); break;
2472       case Bytecodes::_f2l            : convert(code, T_FLOAT , T_LONG  ); break;
2473       case Bytecodes::_f2d            : convert(code, T_FLOAT , T_DOUBLE); break;
2474       case Bytecodes::_d2i            : convert(code, T_DOUBLE, T_INT   ); break;
2475       case Bytecodes::_d2l            : convert(code, T_DOUBLE, T_LONG  ); break;
2476       case Bytecodes::_d2f            : convert(code, T_DOUBLE, T_FLOAT ); break;
2477       case Bytecodes::_i2b            : convert(code, T_INT   , T_BYTE  ); break;
2478       case Bytecodes::_i2c            : convert(code, T_INT   , T_CHAR  ); break;
2479       case Bytecodes::_i2s            : convert(code, T_INT   , T_SHORT ); break;
2480       case Bytecodes::_lcmp           : compare_op(longType  , code); break;
2481       case Bytecodes::_fcmpl          : compare_op(floatType , code); break;
2482       case Bytecodes::_fcmpg          : compare_op(floatType , code); break;
2483       case Bytecodes::_dcmpl          : compare_op(doubleType, code); break;
2484       case Bytecodes::_dcmpg          : compare_op(doubleType, code); break;
2485       case Bytecodes::_ifeq           : if_zero(intType   , If::eql); break;
2486       case Bytecodes::_ifne           : if_zero(intType   , If::neq); break;
2487       case Bytecodes::_iflt           : if_zero(intType   , If::lss); break;
2488       case Bytecodes::_ifge           : if_zero(intType   , If::geq); break;
2489       case Bytecodes::_ifgt           : if_zero(intType   , If::gtr); break;
2490       case Bytecodes::_ifle           : if_zero(intType   , If::leq); break;
2491       case Bytecodes::_if_icmpeq      : if_same(intType   , If::eql); break;
2492       case Bytecodes::_if_icmpne      : if_same(intType   , If::neq); break;
2493       case Bytecodes::_if_icmplt      : if_same(intType   , If::lss); break;
2494       case Bytecodes::_if_icmpge      : if_same(intType   , If::geq); break;
2495       case Bytecodes::_if_icmpgt      : if_same(intType   , If::gtr); break;
2496       case Bytecodes::_if_icmple      : if_same(intType   , If::leq); break;
2497       case Bytecodes::_if_acmpeq      : if_same(objectType, If::eql); break;
2498       case Bytecodes::_if_acmpne      : if_same(objectType, If::neq); break;
2499       case Bytecodes::_goto           : _goto(s.cur_bci(), s.get_dest()); break;
2500       case Bytecodes::_jsr            : jsr(s.get_dest()); break;
2501       case Bytecodes::_ret            : ret(s.get_index()); break;
2502       case Bytecodes::_tableswitch    : table_switch(); break;
2503       case Bytecodes::_lookupswitch   : lookup_switch(); break;
2504       case Bytecodes::_ireturn        : method_return(ipop()); break;
2505       case Bytecodes::_lreturn        : method_return(lpop()); break;
2506       case Bytecodes::_freturn        : method_return(fpop()); break;
2507       case Bytecodes::_dreturn        : method_return(dpop()); break;
2508       case Bytecodes::_areturn        : method_return(apop()); break;
2509       case Bytecodes::_return         : method_return(NULL  ); break;
2510       case Bytecodes::_getstatic      : // fall through
2511       case Bytecodes::_putstatic      : // fall through
2512       case Bytecodes::_getfield       : // fall through
2513       case Bytecodes::_putfield       : access_field(code); break;
2514       case Bytecodes::_invokevirtual  : // fall through
2515       case Bytecodes::_invokespecial  : // fall through
2516       case Bytecodes::_invokestatic   : // fall through
2517       case Bytecodes::_invokedynamic  : // fall through
2518       case Bytecodes::_invokeinterface: invoke(code); break;
2519       case Bytecodes::_new            : new_instance(s.get_index_u2()); break;
2520       case Bytecodes::_newarray       : new_type_array(); break;
2521       case Bytecodes::_anewarray      : new_object_array(); break;
2522       case Bytecodes::_arraylength    : { ValueStack* state_before = copy_state_for_exception(); ipush(append(new ArrayLength(apop(), state_before))); break; }
2523       case Bytecodes::_athrow         : throw_op(s.cur_bci()); break;
2524       case Bytecodes::_checkcast      : check_cast(s.get_index_u2()); break;
2525       case Bytecodes::_instanceof     : instance_of(s.get_index_u2()); break;
2526       case Bytecodes::_monitorenter   : monitorenter(apop(), s.cur_bci()); break;
2527       case Bytecodes::_monitorexit    : monitorexit (apop(), s.cur_bci()); break;
2528       case Bytecodes::_wide           : ShouldNotReachHere(); break;
2529       case Bytecodes::_multianewarray : new_multi_array(s.cur_bcp()[3]); break;
2530       case Bytecodes::_ifnull         : if_null(objectType, If::eql); break;
2531       case Bytecodes::_ifnonnull      : if_null(objectType, If::neq); break;
2532       case Bytecodes::_goto_w         : _goto(s.cur_bci(), s.get_far_dest()); break;
2533       case Bytecodes::_jsr_w          : jsr(s.get_far_dest()); break;
2534       case Bytecodes::_breakpoint     : BAILOUT_("concurrent setting of breakpoint", NULL);
2535       default                         : ShouldNotReachHere(); break;
2536     }
2537     // save current bci to setup Goto at the end
2538     prev_bci = s.cur_bci();
2539   }
2540   CHECK_BAILOUT_(NULL);
2541   // stop processing of this block (see try_inline_full)
2542   if (_skip_block) {
2543     _skip_block = false;
2544     assert(_last && _last->as_BlockEnd(), "");
2545     return _last->as_BlockEnd();
2546   }
2547   // if there are any, check if last instruction is a BlockEnd instruction
2548   BlockEnd* end = last()->as_BlockEnd();
2549   if (end == NULL) {
2550     // all blocks must end with a BlockEnd instruction => add a Goto
2551     end = new Goto(block_at(s.cur_bci()), false);
2552     append(end);
2553   }
2554   assert(end == last()->as_BlockEnd(), "inconsistency");
2555 
2556   assert(end->state() != NULL, "state must already be present");
2557   assert(end->as_Return() == NULL || end->as_Throw() == NULL || end->state()->stack_size() == 0, "stack not needed for return and throw");
2558 
2559   // connect to begin & set state
2560   // NOTE that inlining may have changed the block we are parsing
2561   block()->set_end(end);
2562   // propagate state
2563   for (int i = end->number_of_sux() - 1; i >= 0; i--) {
2564     BlockBegin* sux = end->sux_at(i);
2565     assert(sux->is_predecessor(block()), "predecessor missing");
2566     // be careful, bailout if bytecodes are strange
2567     if (!sux->try_merge(end->state())) BAILOUT_("block join failed", NULL);
2568     scope_data()->add_to_work_list(end->sux_at(i));
2569   }
2570 
2571   scope_data()->set_stream(NULL);
2572 
2573   // done
2574   return end;
2575 }
2576 
2577 
2578 void GraphBuilder::iterate_all_blocks(bool start_in_current_block_for_inlining) {
2579   do {
2580     if (start_in_current_block_for_inlining && !bailed_out()) {
2581       iterate_bytecodes_for_block(0);
2582       start_in_current_block_for_inlining = false;
2583     } else {
2584       BlockBegin* b;
2585       while ((b = scope_data()->remove_from_work_list()) != NULL) {
2586         if (!b->is_set(BlockBegin::was_visited_flag)) {
2587           if (b->is_set(BlockBegin::osr_entry_flag)) {
2588             // we're about to parse the osr entry block, so make sure
2589             // we setup the OSR edge leading into this block so that
2590             // Phis get setup correctly.
2591             setup_osr_entry_block();
2592             // this is no longer the osr entry block, so clear it.
2593             b->clear(BlockBegin::osr_entry_flag);
2594           }
2595           b->set(BlockBegin::was_visited_flag);
2596           connect_to_end(b);
2597         }
2598       }
2599     }
2600   } while (!bailed_out() && !scope_data()->is_work_list_empty());
2601 }
2602 
2603 
2604 bool GraphBuilder::_can_trap      [Bytecodes::number_of_java_codes];
2605 
2606 void GraphBuilder::initialize() {
2607   // the following bytecodes are assumed to potentially
2608   // throw exceptions in compiled code - note that e.g.
2609   // monitorexit & the return bytecodes do not throw
2610   // exceptions since monitor pairing proved that they
2611   // succeed (if monitor pairing succeeded)
2612   Bytecodes::Code can_trap_list[] =
2613     { Bytecodes::_ldc
2614     , Bytecodes::_ldc_w
2615     , Bytecodes::_ldc2_w
2616     , Bytecodes::_iaload
2617     , Bytecodes::_laload
2618     , Bytecodes::_faload
2619     , Bytecodes::_daload
2620     , Bytecodes::_aaload
2621     , Bytecodes::_baload
2622     , Bytecodes::_caload
2623     , Bytecodes::_saload
2624     , Bytecodes::_iastore
2625     , Bytecodes::_lastore
2626     , Bytecodes::_fastore
2627     , Bytecodes::_dastore
2628     , Bytecodes::_aastore
2629     , Bytecodes::_bastore
2630     , Bytecodes::_castore
2631     , Bytecodes::_sastore
2632     , Bytecodes::_idiv
2633     , Bytecodes::_ldiv
2634     , Bytecodes::_irem
2635     , Bytecodes::_lrem
2636     , Bytecodes::_getstatic
2637     , Bytecodes::_putstatic
2638     , Bytecodes::_getfield
2639     , Bytecodes::_putfield
2640     , Bytecodes::_invokevirtual
2641     , Bytecodes::_invokespecial
2642     , Bytecodes::_invokestatic
2643     , Bytecodes::_invokedynamic
2644     , Bytecodes::_invokeinterface
2645     , Bytecodes::_new
2646     , Bytecodes::_newarray
2647     , Bytecodes::_anewarray
2648     , Bytecodes::_arraylength
2649     , Bytecodes::_athrow
2650     , Bytecodes::_checkcast
2651     , Bytecodes::_instanceof
2652     , Bytecodes::_monitorenter
2653     , Bytecodes::_multianewarray
2654     };
2655 
2656   // inititialize trap tables
2657   for (int i = 0; i < Bytecodes::number_of_java_codes; i++) {
2658     _can_trap[i] = false;
2659   }
2660   // set standard trap info
2661   for (uint j = 0; j < ARRAY_SIZE(can_trap_list); j++) {
2662     _can_trap[can_trap_list[j]] = true;
2663   }
2664 }
2665 
2666 
2667 BlockBegin* GraphBuilder::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
2668   assert(entry->is_set(f), "entry/flag mismatch");
2669   // create header block
2670   BlockBegin* h = new BlockBegin(entry->bci());
2671   h->set_depth_first_number(0);
2672 
2673   Value l = h;
2674   BlockEnd* g = new Goto(entry, false);
2675   l->set_next(g, entry->bci());
2676   h->set_end(g);
2677   h->set(f);
2678   // setup header block end state
2679   ValueStack* s = state->copy(ValueStack::StateAfter, entry->bci()); // can use copy since stack is empty (=> no phis)
2680   assert(s->stack_is_empty(), "must have empty stack at entry point");
2681   g->set_state(s);
2682   return h;
2683 }
2684 
2685 
2686 
2687 BlockBegin* GraphBuilder::setup_start_block(int osr_bci, BlockBegin* std_entry, BlockBegin* osr_entry, ValueStack* state) {
2688   BlockBegin* start = new BlockBegin(0);
2689 
2690   // This code eliminates the empty start block at the beginning of
2691   // each method.  Previously, each method started with the
2692   // start-block created below, and this block was followed by the
2693   // header block that was always empty.  This header block is only
2694   // necesary if std_entry is also a backward branch target because
2695   // then phi functions may be necessary in the header block.  It's
2696   // also necessary when profiling so that there's a single block that
2697   // can increment the interpreter_invocation_count.
2698   BlockBegin* new_header_block;
2699   if (std_entry->number_of_preds() > 0 || count_invocations() || count_backedges()) {
2700     new_header_block = header_block(std_entry, BlockBegin::std_entry_flag, state);
2701   } else {
2702     new_header_block = std_entry;
2703   }
2704 
2705   // setup start block (root for the IR graph)
2706   Base* base =
2707     new Base(
2708       new_header_block,
2709       osr_entry
2710     );
2711   start->set_next(base, 0);
2712   start->set_end(base);
2713   // create & setup state for start block
2714   start->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
2715   base->set_state(state->copy(ValueStack::StateAfter, std_entry->bci()));
2716 
2717   if (base->std_entry()->state() == NULL) {
2718     // setup states for header blocks
2719     base->std_entry()->merge(state);
2720   }
2721 
2722   assert(base->std_entry()->state() != NULL, "");
2723   return start;
2724 }
2725 
2726 
2727 void GraphBuilder::setup_osr_entry_block() {
2728   assert(compilation()->is_osr_compile(), "only for osrs");
2729 
2730   int osr_bci = compilation()->osr_bci();
2731   ciBytecodeStream s(method());
2732   s.reset_to_bci(osr_bci);
2733   s.next();
2734   scope_data()->set_stream(&s);
2735 
2736   // create a new block to be the osr setup code
2737   _osr_entry = new BlockBegin(osr_bci);
2738   _osr_entry->set(BlockBegin::osr_entry_flag);
2739   _osr_entry->set_depth_first_number(0);
2740   BlockBegin* target = bci2block()->at(osr_bci);
2741   assert(target != NULL && target->is_set(BlockBegin::osr_entry_flag), "must be there");
2742   // the osr entry has no values for locals
2743   ValueStack* state = target->state()->copy();
2744   _osr_entry->set_state(state);
2745 
2746   kill_all();
2747   _block = _osr_entry;
2748   _state = _osr_entry->state()->copy();
2749   assert(_state->bci() == osr_bci, "mismatch");
2750   _last  = _osr_entry;
2751   Value e = append(new OsrEntry());
2752   e->set_needs_null_check(false);
2753 
2754   // OSR buffer is
2755   //
2756   // locals[nlocals-1..0]
2757   // monitors[number_of_locks-1..0]
2758   //
2759   // locals is a direct copy of the interpreter frame so in the osr buffer
2760   // so first slot in the local array is the last local from the interpreter
2761   // and last slot is local[0] (receiver) from the interpreter
2762   //
2763   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
2764   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
2765   // in the interpreter frame (the method lock if a sync method)
2766 
2767   // Initialize monitors in the compiled activation.
2768 
2769   int index;
2770   Value local;
2771 
2772   // find all the locals that the interpreter thinks contain live oops
2773   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci);
2774 
2775   // compute the offset into the locals so that we can treat the buffer
2776   // as if the locals were still in the interpreter frame
2777   int locals_offset = BytesPerWord * (method()->max_locals() - 1);
2778   for_each_local_value(state, index, local) {
2779     int offset = locals_offset - (index + local->type()->size() - 1) * BytesPerWord;
2780     Value get;
2781     if (local->type()->is_object_kind() && !live_oops.at(index)) {
2782       // The interpreter thinks this local is dead but the compiler
2783       // doesn't so pretend that the interpreter passed in null.
2784       get = append(new Constant(objectNull));
2785     } else {
2786       get = append(new UnsafeGetRaw(as_BasicType(local->type()), e,
2787                                     append(new Constant(new IntConstant(offset))),
2788                                     0,
2789                                     true));
2790     }
2791     _state->store_local(index, get);
2792   }
2793 
2794   // the storage for the OSR buffer is freed manually in the LIRGenerator.
2795 
2796   assert(state->caller_state() == NULL, "should be top scope");
2797   state->clear_locals();
2798   Goto* g = new Goto(target, false);
2799   append(g);
2800   _osr_entry->set_end(g);
2801   target->merge(_osr_entry->end()->state());
2802 
2803   scope_data()->set_stream(NULL);
2804 }
2805 
2806 
2807 ValueStack* GraphBuilder::state_at_entry() {
2808   ValueStack* state = new ValueStack(scope(), NULL);
2809 
2810   // Set up locals for receiver
2811   int idx = 0;
2812   if (!method()->is_static()) {
2813     // we should always see the receiver
2814     state->store_local(idx, new Local(objectType, idx));
2815     idx = 1;
2816   }
2817 
2818   // Set up locals for incoming arguments
2819   ciSignature* sig = method()->signature();
2820   for (int i = 0; i < sig->count(); i++) {
2821     ciType* type = sig->type_at(i);
2822     BasicType basic_type = type->basic_type();
2823     // don't allow T_ARRAY to propagate into locals types
2824     if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2825     ValueType* vt = as_ValueType(basic_type);
2826     state->store_local(idx, new Local(vt, idx));
2827     idx += type->size();
2828   }
2829 
2830   // lock synchronized method
2831   if (method()->is_synchronized()) {
2832     state->lock(NULL);
2833   }
2834 
2835   return state;
2836 }
2837 
2838 
2839 GraphBuilder::GraphBuilder(Compilation* compilation, IRScope* scope)
2840   : _scope_data(NULL)
2841   , _instruction_count(0)
2842   , _osr_entry(NULL)
2843   , _memory(new MemoryBuffer())
2844   , _compilation(compilation)
2845   , _inline_bailout_msg(NULL)
2846 {
2847   int osr_bci = compilation->osr_bci();
2848 
2849   // determine entry points and bci2block mapping
2850   BlockListBuilder blm(compilation, scope, osr_bci);
2851   CHECK_BAILOUT();
2852 
2853   BlockList* bci2block = blm.bci2block();
2854   BlockBegin* start_block = bci2block->at(0);
2855 
2856   push_root_scope(scope, bci2block, start_block);
2857 
2858   // setup state for std entry
2859   _initial_state = state_at_entry();
2860   start_block->merge(_initial_state);
2861 
2862   // complete graph
2863   _vmap        = new ValueMap();
2864   switch (scope->method()->intrinsic_id()) {
2865   case vmIntrinsics::_dabs          : // fall through
2866   case vmIntrinsics::_dsqrt         : // fall through
2867   case vmIntrinsics::_dsin          : // fall through
2868   case vmIntrinsics::_dcos          : // fall through
2869   case vmIntrinsics::_dtan          : // fall through
2870   case vmIntrinsics::_dlog          : // fall through
2871   case vmIntrinsics::_dlog10        : // fall through
2872     {
2873       // Compiles where the root method is an intrinsic need a special
2874       // compilation environment because the bytecodes for the method
2875       // shouldn't be parsed during the compilation, only the special
2876       // Intrinsic node should be emitted.  If this isn't done the the
2877       // code for the inlined version will be different than the root
2878       // compiled version which could lead to monotonicity problems on
2879       // intel.
2880 
2881       // Set up a stream so that appending instructions works properly.
2882       ciBytecodeStream s(scope->method());
2883       s.reset_to_bci(0);
2884       scope_data()->set_stream(&s);
2885       s.next();
2886 
2887       // setup the initial block state
2888       _block = start_block;
2889       _state = start_block->state()->copy_for_parsing();
2890       _last  = start_block;
2891       load_local(doubleType, 0);
2892 
2893       // Emit the intrinsic node.
2894       bool result = try_inline_intrinsics(scope->method());
2895       if (!result) BAILOUT("failed to inline intrinsic");
2896       method_return(dpop());
2897 
2898       // connect the begin and end blocks and we're all done.
2899       BlockEnd* end = last()->as_BlockEnd();
2900       block()->set_end(end);
2901       break;
2902     }
2903   default:
2904     scope_data()->add_to_work_list(start_block);
2905     iterate_all_blocks();
2906     break;
2907   }
2908   CHECK_BAILOUT();
2909 
2910   _start = setup_start_block(osr_bci, start_block, _osr_entry, _initial_state);
2911 
2912   eliminate_redundant_phis(_start);
2913 
2914   NOT_PRODUCT(if (PrintValueNumbering && Verbose) print_stats());
2915   // for osr compile, bailout if some requirements are not fulfilled
2916   if (osr_bci != -1) {
2917     BlockBegin* osr_block = blm.bci2block()->at(osr_bci);
2918     assert(osr_block->is_set(BlockBegin::was_visited_flag),"osr entry must have been visited for osr compile");
2919 
2920     // check if osr entry point has empty stack - we cannot handle non-empty stacks at osr entry points
2921     if (!osr_block->state()->stack_is_empty()) {
2922       BAILOUT("stack not empty at OSR entry point");
2923     }
2924   }
2925 #ifndef PRODUCT
2926   if (PrintCompilation && Verbose) tty->print_cr("Created %d Instructions", _instruction_count);
2927 #endif
2928 }
2929 
2930 
2931 ValueStack* GraphBuilder::copy_state_before() {
2932   return copy_state_before_with_bci(bci());
2933 }
2934 
2935 ValueStack* GraphBuilder::copy_state_exhandling() {
2936   return copy_state_exhandling_with_bci(bci());
2937 }
2938 
2939 ValueStack* GraphBuilder::copy_state_for_exception() {
2940   return copy_state_for_exception_with_bci(bci());
2941 }
2942 
2943 ValueStack* GraphBuilder::copy_state_before_with_bci(int bci) {
2944   return state()->copy(ValueStack::StateBefore, bci);
2945 }
2946 
2947 ValueStack* GraphBuilder::copy_state_exhandling_with_bci(int bci) {
2948   if (!has_handler()) return NULL;
2949   return state()->copy(ValueStack::StateBefore, bci);
2950 }
2951 
2952 ValueStack* GraphBuilder::copy_state_for_exception_with_bci(int bci) {
2953   ValueStack* s = copy_state_exhandling_with_bci(bci);
2954   if (s == NULL) {
2955     if (_compilation->env()->jvmti_can_access_local_variables()) {
2956       s = state()->copy(ValueStack::ExceptionState, bci);
2957     } else {
2958       s = state()->copy(ValueStack::EmptyExceptionState, bci);
2959     }
2960   }
2961   return s;
2962 }
2963 
2964 int GraphBuilder::recursive_inline_level(ciMethod* cur_callee) const {
2965   int recur_level = 0;
2966   for (IRScope* s = scope(); s != NULL; s = s->caller()) {
2967     if (s->method() == cur_callee) {
2968       ++recur_level;
2969     }
2970   }
2971   return recur_level;
2972 }
2973 
2974 
2975 bool GraphBuilder::try_inline(ciMethod* callee, bool holder_known) {
2976   // Clear out any existing inline bailout condition
2977   clear_inline_bailout();
2978 
2979   if (callee->should_exclude()) {
2980     // callee is excluded
2981     INLINE_BAILOUT("excluded by CompilerOracle")
2982   } else if (!callee->can_be_compiled()) {
2983     // callee is not compilable (prob. has breakpoints)
2984     INLINE_BAILOUT("not compilable")
2985   } else if (callee->intrinsic_id() != vmIntrinsics::_none && try_inline_intrinsics(callee)) {
2986     // intrinsics can be native or not
2987     return true;
2988   } else if (callee->is_native()) {
2989     // non-intrinsic natives cannot be inlined
2990     INLINE_BAILOUT("non-intrinsic native")
2991   } else if (callee->is_abstract()) {
2992     INLINE_BAILOUT("abstract")
2993   } else {
2994     return try_inline_full(callee, holder_known);
2995   }
2996 }
2997 
2998 
2999 bool GraphBuilder::try_inline_intrinsics(ciMethod* callee) {
3000   if (!InlineNatives           ) INLINE_BAILOUT("intrinsic method inlining disabled");
3001   if (callee->is_synchronized()) {
3002     // We don't currently support any synchronized intrinsics
3003     return false;
3004   }
3005 
3006   // callee seems like a good candidate
3007   // determine id
3008   bool preserves_state = false;
3009   bool cantrap = true;
3010   vmIntrinsics::ID id = callee->intrinsic_id();
3011   switch (id) {
3012     case vmIntrinsics::_arraycopy     :
3013       if (!InlineArrayCopy) return false;
3014       break;
3015 
3016     case vmIntrinsics::_currentTimeMillis:
3017     case vmIntrinsics::_nanoTime:
3018       preserves_state = true;
3019       cantrap = false;
3020       break;
3021 
3022     case vmIntrinsics::_floatToRawIntBits   :
3023     case vmIntrinsics::_intBitsToFloat      :
3024     case vmIntrinsics::_doubleToRawLongBits :
3025     case vmIntrinsics::_longBitsToDouble    :
3026       if (!InlineMathNatives) return false;
3027       preserves_state = true;
3028       cantrap = false;
3029       break;
3030 
3031     case vmIntrinsics::_getClass      :
3032       if (!InlineClassNatives) return false;
3033       preserves_state = true;
3034       break;
3035 
3036     case vmIntrinsics::_currentThread :
3037       if (!InlineThreadNatives) return false;
3038       preserves_state = true;
3039       cantrap = false;
3040       break;
3041 
3042     case vmIntrinsics::_dabs          : // fall through
3043     case vmIntrinsics::_dsqrt         : // fall through
3044     case vmIntrinsics::_dsin          : // fall through
3045     case vmIntrinsics::_dcos          : // fall through
3046     case vmIntrinsics::_dtan          : // fall through
3047     case vmIntrinsics::_dlog          : // fall through
3048     case vmIntrinsics::_dlog10        : // fall through
3049       if (!InlineMathNatives) return false;
3050       cantrap = false;
3051       preserves_state = true;
3052       break;
3053 
3054     // sun/misc/AtomicLong.attemptUpdate
3055     case vmIntrinsics::_attemptUpdate :
3056       if (!VM_Version::supports_cx8()) return false;
3057       if (!InlineAtomicLong) return false;
3058       preserves_state = true;
3059       break;
3060 
3061     // Use special nodes for Unsafe instructions so we can more easily
3062     // perform an address-mode optimization on the raw variants
3063     case vmIntrinsics::_getObject : return append_unsafe_get_obj(callee, T_OBJECT,  false);
3064     case vmIntrinsics::_getBoolean: return append_unsafe_get_obj(callee, T_BOOLEAN, false);
3065     case vmIntrinsics::_getByte   : return append_unsafe_get_obj(callee, T_BYTE,    false);
3066     case vmIntrinsics::_getShort  : return append_unsafe_get_obj(callee, T_SHORT,   false);
3067     case vmIntrinsics::_getChar   : return append_unsafe_get_obj(callee, T_CHAR,    false);
3068     case vmIntrinsics::_getInt    : return append_unsafe_get_obj(callee, T_INT,     false);
3069     case vmIntrinsics::_getLong   : return append_unsafe_get_obj(callee, T_LONG,    false);
3070     case vmIntrinsics::_getFloat  : return append_unsafe_get_obj(callee, T_FLOAT,   false);
3071     case vmIntrinsics::_getDouble : return append_unsafe_get_obj(callee, T_DOUBLE,  false);
3072 
3073     case vmIntrinsics::_putObject : return append_unsafe_put_obj(callee, T_OBJECT,  false);
3074     case vmIntrinsics::_putBoolean: return append_unsafe_put_obj(callee, T_BOOLEAN, false);
3075     case vmIntrinsics::_putByte   : return append_unsafe_put_obj(callee, T_BYTE,    false);
3076     case vmIntrinsics::_putShort  : return append_unsafe_put_obj(callee, T_SHORT,   false);
3077     case vmIntrinsics::_putChar   : return append_unsafe_put_obj(callee, T_CHAR,    false);
3078     case vmIntrinsics::_putInt    : return append_unsafe_put_obj(callee, T_INT,     false);
3079     case vmIntrinsics::_putLong   : return append_unsafe_put_obj(callee, T_LONG,    false);
3080     case vmIntrinsics::_putFloat  : return append_unsafe_put_obj(callee, T_FLOAT,   false);
3081     case vmIntrinsics::_putDouble : return append_unsafe_put_obj(callee, T_DOUBLE,  false);
3082 
3083     case vmIntrinsics::_getObjectVolatile : return append_unsafe_get_obj(callee, T_OBJECT,  true);
3084     case vmIntrinsics::_getBooleanVolatile: return append_unsafe_get_obj(callee, T_BOOLEAN, true);
3085     case vmIntrinsics::_getByteVolatile   : return append_unsafe_get_obj(callee, T_BYTE,    true);
3086     case vmIntrinsics::_getShortVolatile  : return append_unsafe_get_obj(callee, T_SHORT,   true);
3087     case vmIntrinsics::_getCharVolatile   : return append_unsafe_get_obj(callee, T_CHAR,    true);
3088     case vmIntrinsics::_getIntVolatile    : return append_unsafe_get_obj(callee, T_INT,     true);
3089     case vmIntrinsics::_getLongVolatile   : return append_unsafe_get_obj(callee, T_LONG,    true);
3090     case vmIntrinsics::_getFloatVolatile  : return append_unsafe_get_obj(callee, T_FLOAT,   true);
3091     case vmIntrinsics::_getDoubleVolatile : return append_unsafe_get_obj(callee, T_DOUBLE,  true);
3092 
3093     case vmIntrinsics::_putObjectVolatile : return append_unsafe_put_obj(callee, T_OBJECT,  true);
3094     case vmIntrinsics::_putBooleanVolatile: return append_unsafe_put_obj(callee, T_BOOLEAN, true);
3095     case vmIntrinsics::_putByteVolatile   : return append_unsafe_put_obj(callee, T_BYTE,    true);
3096     case vmIntrinsics::_putShortVolatile  : return append_unsafe_put_obj(callee, T_SHORT,   true);
3097     case vmIntrinsics::_putCharVolatile   : return append_unsafe_put_obj(callee, T_CHAR,    true);
3098     case vmIntrinsics::_putIntVolatile    : return append_unsafe_put_obj(callee, T_INT,     true);
3099     case vmIntrinsics::_putLongVolatile   : return append_unsafe_put_obj(callee, T_LONG,    true);
3100     case vmIntrinsics::_putFloatVolatile  : return append_unsafe_put_obj(callee, T_FLOAT,   true);
3101     case vmIntrinsics::_putDoubleVolatile : return append_unsafe_put_obj(callee, T_DOUBLE,  true);
3102 
3103     case vmIntrinsics::_getByte_raw   : return append_unsafe_get_raw(callee, T_BYTE);
3104     case vmIntrinsics::_getShort_raw  : return append_unsafe_get_raw(callee, T_SHORT);
3105     case vmIntrinsics::_getChar_raw   : return append_unsafe_get_raw(callee, T_CHAR);
3106     case vmIntrinsics::_getInt_raw    : return append_unsafe_get_raw(callee, T_INT);
3107     case vmIntrinsics::_getLong_raw   : return append_unsafe_get_raw(callee, T_LONG);
3108     case vmIntrinsics::_getFloat_raw  : return append_unsafe_get_raw(callee, T_FLOAT);
3109     case vmIntrinsics::_getDouble_raw : return append_unsafe_get_raw(callee, T_DOUBLE);
3110 
3111     case vmIntrinsics::_putByte_raw   : return append_unsafe_put_raw(callee, T_BYTE);
3112     case vmIntrinsics::_putShort_raw  : return append_unsafe_put_raw(callee, T_SHORT);
3113     case vmIntrinsics::_putChar_raw   : return append_unsafe_put_raw(callee, T_CHAR);
3114     case vmIntrinsics::_putInt_raw    : return append_unsafe_put_raw(callee, T_INT);
3115     case vmIntrinsics::_putLong_raw   : return append_unsafe_put_raw(callee, T_LONG);
3116     case vmIntrinsics::_putFloat_raw  : return append_unsafe_put_raw(callee, T_FLOAT);
3117     case vmIntrinsics::_putDouble_raw : return append_unsafe_put_raw(callee, T_DOUBLE);
3118 
3119     case vmIntrinsics::_prefetchRead        : return append_unsafe_prefetch(callee, false, false);
3120     case vmIntrinsics::_prefetchWrite       : return append_unsafe_prefetch(callee, false, true);
3121     case vmIntrinsics::_prefetchReadStatic  : return append_unsafe_prefetch(callee, true,  false);
3122     case vmIntrinsics::_prefetchWriteStatic : return append_unsafe_prefetch(callee, true,  true);
3123 
3124     case vmIntrinsics::_checkIndex    :
3125       if (!InlineNIOCheckIndex) return false;
3126       preserves_state = true;
3127       break;
3128     case vmIntrinsics::_putOrderedObject : return append_unsafe_put_obj(callee, T_OBJECT,  true);
3129     case vmIntrinsics::_putOrderedInt    : return append_unsafe_put_obj(callee, T_INT,     true);
3130     case vmIntrinsics::_putOrderedLong   : return append_unsafe_put_obj(callee, T_LONG,    true);
3131 
3132     case vmIntrinsics::_compareAndSwapLong:
3133       if (!VM_Version::supports_cx8()) return false;
3134       // fall through
3135     case vmIntrinsics::_compareAndSwapInt:
3136     case vmIntrinsics::_compareAndSwapObject:
3137       append_unsafe_CAS(callee);
3138       return true;
3139 
3140     default                       : return false; // do not inline
3141   }
3142   // create intrinsic node
3143   const bool has_receiver = !callee->is_static();
3144   ValueType* result_type = as_ValueType(callee->return_type());
3145   ValueStack* state_before = copy_state_for_exception();
3146 
3147   Values* args = state()->pop_arguments(callee->arg_size());
3148 
3149   if (is_profiling()) {
3150     // Don't profile in the special case where the root method
3151     // is the intrinsic
3152     if (callee != method()) {
3153       // Note that we'd collect profile data in this method if we wanted it.
3154       compilation()->set_would_profile(true);
3155       if (profile_calls()) {
3156         Value recv = NULL;
3157         if (has_receiver) {
3158           recv = args->at(0);
3159           null_check(recv);
3160         }
3161         profile_call(recv, NULL);
3162       }
3163     }
3164   }
3165 
3166   Intrinsic* result = new Intrinsic(result_type, id, args, has_receiver, state_before,
3167                                     preserves_state, cantrap);
3168   // append instruction & push result
3169   Value value = append_split(result);
3170   if (result_type != voidType) push(result_type, value);
3171 
3172 #ifndef PRODUCT
3173   // printing
3174   if (PrintInlining) {
3175     print_inline_result(callee, true);
3176   }
3177 #endif
3178 
3179   // done
3180   return true;
3181 }
3182 
3183 
3184 bool GraphBuilder::try_inline_jsr(int jsr_dest_bci) {
3185   // Introduce a new callee continuation point - all Ret instructions
3186   // will be replaced with Gotos to this point.
3187   BlockBegin* cont = block_at(next_bci());
3188   assert(cont != NULL, "continuation must exist (BlockListBuilder starts a new block after a jsr");
3189 
3190   // Note: can not assign state to continuation yet, as we have to
3191   // pick up the state from the Ret instructions.
3192 
3193   // Push callee scope
3194   push_scope_for_jsr(cont, jsr_dest_bci);
3195 
3196   // Temporarily set up bytecode stream so we can append instructions
3197   // (only using the bci of this stream)
3198   scope_data()->set_stream(scope_data()->parent()->stream());
3199 
3200   BlockBegin* jsr_start_block = block_at(jsr_dest_bci);
3201   assert(jsr_start_block != NULL, "jsr start block must exist");
3202   assert(!jsr_start_block->is_set(BlockBegin::was_visited_flag), "should not have visited jsr yet");
3203   Goto* goto_sub = new Goto(jsr_start_block, false);
3204   // Must copy state to avoid wrong sharing when parsing bytecodes
3205   assert(jsr_start_block->state() == NULL, "should have fresh jsr starting block");
3206   jsr_start_block->set_state(copy_state_before_with_bci(jsr_dest_bci));
3207   append(goto_sub);
3208   _block->set_end(goto_sub);
3209   _last = _block = jsr_start_block;
3210 
3211   // Clear out bytecode stream
3212   scope_data()->set_stream(NULL);
3213 
3214   scope_data()->add_to_work_list(jsr_start_block);
3215 
3216   // Ready to resume parsing in subroutine
3217   iterate_all_blocks();
3218 
3219   // If we bailed out during parsing, return immediately (this is bad news)
3220   CHECK_BAILOUT_(false);
3221 
3222   // Detect whether the continuation can actually be reached. If not,
3223   // it has not had state set by the join() operations in
3224   // iterate_bytecodes_for_block()/ret() and we should not touch the
3225   // iteration state. The calling activation of
3226   // iterate_bytecodes_for_block will then complete normally.
3227   if (cont->state() != NULL) {
3228     if (!cont->is_set(BlockBegin::was_visited_flag)) {
3229       // add continuation to work list instead of parsing it immediately
3230       scope_data()->parent()->add_to_work_list(cont);
3231     }
3232   }
3233 
3234   assert(jsr_continuation() == cont, "continuation must not have changed");
3235   assert(!jsr_continuation()->is_set(BlockBegin::was_visited_flag) ||
3236          jsr_continuation()->is_set(BlockBegin::parser_loop_header_flag),
3237          "continuation can only be visited in case of backward branches");
3238   assert(_last && _last->as_BlockEnd(), "block must have end");
3239 
3240   // continuation is in work list, so end iteration of current block
3241   _skip_block = true;
3242   pop_scope_for_jsr();
3243 
3244   return true;
3245 }
3246 
3247 
3248 // Inline the entry of a synchronized method as a monitor enter and
3249 // register the exception handler which releases the monitor if an
3250 // exception is thrown within the callee. Note that the monitor enter
3251 // cannot throw an exception itself, because the receiver is
3252 // guaranteed to be non-null by the explicit null check at the
3253 // beginning of inlining.
3254 void GraphBuilder::inline_sync_entry(Value lock, BlockBegin* sync_handler) {
3255   assert(lock != NULL && sync_handler != NULL, "lock or handler missing");
3256 
3257   monitorenter(lock, SynchronizationEntryBCI);
3258   assert(_last->as_MonitorEnter() != NULL, "monitor enter expected");
3259   _last->set_needs_null_check(false);
3260 
3261   sync_handler->set(BlockBegin::exception_entry_flag);
3262   sync_handler->set(BlockBegin::is_on_work_list_flag);
3263 
3264   ciExceptionHandler* desc = new ciExceptionHandler(method()->holder(), 0, method()->code_size(), -1, 0);
3265   XHandler* h = new XHandler(desc);
3266   h->set_entry_block(sync_handler);
3267   scope_data()->xhandlers()->append(h);
3268   scope_data()->set_has_handler();
3269 }
3270 
3271 
3272 // If an exception is thrown and not handled within an inlined
3273 // synchronized method, the monitor must be released before the
3274 // exception is rethrown in the outer scope. Generate the appropriate
3275 // instructions here.
3276 void GraphBuilder::fill_sync_handler(Value lock, BlockBegin* sync_handler, bool default_handler) {
3277   BlockBegin* orig_block = _block;
3278   ValueStack* orig_state = _state;
3279   Instruction* orig_last = _last;
3280   _last = _block = sync_handler;
3281   _state = sync_handler->state()->copy();
3282 
3283   assert(sync_handler != NULL, "handler missing");
3284   assert(!sync_handler->is_set(BlockBegin::was_visited_flag), "is visited here");
3285 
3286   assert(lock != NULL || default_handler, "lock or handler missing");
3287 
3288   XHandler* h = scope_data()->xhandlers()->remove_last();
3289   assert(h->entry_block() == sync_handler, "corrupt list of handlers");
3290 
3291   block()->set(BlockBegin::was_visited_flag);
3292   Value exception = append_with_bci(new ExceptionObject(), SynchronizationEntryBCI);
3293   assert(exception->is_pinned(), "must be");
3294 
3295   int bci = SynchronizationEntryBCI;
3296   if (lock) {
3297     assert(state()->locks_size() > 0 && state()->lock_at(state()->locks_size() - 1) == lock, "lock is missing");
3298     if (!lock->is_linked()) {
3299       lock = append_with_bci(lock, -1);
3300     }
3301 
3302     // exit the monitor in the context of the synchronized method
3303     monitorexit(lock, SynchronizationEntryBCI);
3304 
3305     // exit the context of the synchronized method
3306     if (!default_handler) {
3307       pop_scope();
3308       bci = _state->caller_state()->bci();
3309       _state = _state->caller_state()->copy_for_parsing();
3310     }
3311   }
3312 
3313   // perform the throw as if at the the call site
3314   apush(exception);
3315   throw_op(bci);
3316 
3317   BlockEnd* end = last()->as_BlockEnd();
3318   block()->set_end(end);
3319 
3320   _block = orig_block;
3321   _state = orig_state;
3322   _last = orig_last;
3323 }
3324 
3325 
3326 bool GraphBuilder::try_inline_full(ciMethod* callee, bool holder_known) {
3327   assert(!callee->is_native(), "callee must not be native");
3328   if (count_backedges() && callee->has_loops()) {
3329     INLINE_BAILOUT("too complex for tiered");
3330   }
3331   // first perform tests of things it's not possible to inline
3332   if (callee->has_exception_handlers() &&
3333       !InlineMethodsWithExceptionHandlers) INLINE_BAILOUT("callee has exception handlers");
3334   if (callee->is_synchronized() &&
3335       !InlineSynchronizedMethods         ) INLINE_BAILOUT("callee is synchronized");
3336   if (!callee->holder()->is_initialized()) INLINE_BAILOUT("callee's klass not initialized yet");
3337   if (!callee->has_balanced_monitors())    INLINE_BAILOUT("callee's monitors do not match");
3338 
3339   // Proper inlining of methods with jsrs requires a little more work.
3340   if (callee->has_jsrs()                 ) INLINE_BAILOUT("jsrs not handled properly by inliner yet");
3341 
3342   // now perform tests that are based on flag settings
3343   if (inline_level() > MaxInlineLevel                         ) INLINE_BAILOUT("too-deep inlining");
3344   if (recursive_inline_level(callee) > MaxRecursiveInlineLevel) INLINE_BAILOUT("too-deep recursive inlining");
3345   if (callee->code_size() > max_inline_size()                 ) INLINE_BAILOUT("callee is too large");
3346 
3347   // don't inline throwable methods unless the inlining tree is rooted in a throwable class
3348   if (callee->name() == ciSymbol::object_initializer_name() &&
3349       callee->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
3350     // Throwable constructor call
3351     IRScope* top = scope();
3352     while (top->caller() != NULL) {
3353       top = top->caller();
3354     }
3355     if (!top->method()->holder()->is_subclass_of(ciEnv::current()->Throwable_klass())) {
3356       INLINE_BAILOUT("don't inline Throwable constructors");
3357     }
3358   }
3359 
3360   // When SSE2 is used on intel, then no special handling is needed
3361   // for strictfp because the enum-constant is fixed at compile time,
3362   // the check for UseSSE2 is needed here
3363   if (strict_fp_requires_explicit_rounding && UseSSE < 2 && method()->is_strict() != callee->is_strict()) {
3364     INLINE_BAILOUT("caller and callee have different strict fp requirements");
3365   }
3366 
3367   if (compilation()->env()->num_inlined_bytecodes() > DesiredMethodLimit) {
3368     INLINE_BAILOUT("total inlining greater than DesiredMethodLimit");
3369   }
3370 
3371 #ifndef PRODUCT
3372       // printing
3373   if (PrintInlining) {
3374     print_inline_result(callee, true);
3375   }
3376 #endif
3377 
3378   // NOTE: Bailouts from this point on, which occur at the
3379   // GraphBuilder level, do not cause bailout just of the inlining but
3380   // in fact of the entire compilation.
3381 
3382   BlockBegin* orig_block = block();
3383 
3384   const int args_base = state()->stack_size() - callee->arg_size();
3385   assert(args_base >= 0, "stack underflow during inlining");
3386 
3387   // Insert null check if necessary
3388   Value recv = NULL;
3389   if (code() != Bytecodes::_invokestatic) {
3390     // note: null check must happen even if first instruction of callee does
3391     //       an implicit null check since the callee is in a different scope
3392     //       and we must make sure exception handling does the right thing
3393     assert(!callee->is_static(), "callee must not be static");
3394     assert(callee->arg_size() > 0, "must have at least a receiver");
3395     recv = state()->stack_at(args_base);
3396     null_check(recv);
3397   }
3398 
3399   if (is_profiling()) {
3400     // Note that we'd collect profile data in this method if we wanted it.
3401     // this may be redundant here...
3402     compilation()->set_would_profile(true);
3403 
3404     if (profile_calls()) {
3405       profile_call(recv, holder_known ? callee->holder() : NULL);
3406     }
3407     if (profile_inlined_calls()) {
3408       profile_invocation(callee, copy_state_before());
3409     }
3410   }
3411 
3412   // Introduce a new callee continuation point - if the callee has
3413   // more than one return instruction or the return does not allow
3414   // fall-through of control flow, all return instructions of the
3415   // callee will need to be replaced by Goto's pointing to this
3416   // continuation point.
3417   BlockBegin* cont = block_at(next_bci());
3418   bool continuation_existed = true;
3419   if (cont == NULL) {
3420     cont = new BlockBegin(next_bci());
3421     // low number so that continuation gets parsed as early as possible
3422     cont->set_depth_first_number(0);
3423 #ifndef PRODUCT
3424     if (PrintInitialBlockList) {
3425       tty->print_cr("CFG: created block %d (bci %d) as continuation for inline at bci %d",
3426                     cont->block_id(), cont->bci(), bci());
3427     }
3428 #endif
3429     continuation_existed = false;
3430   }
3431   // Record number of predecessors of continuation block before
3432   // inlining, to detect if inlined method has edges to its
3433   // continuation after inlining.
3434   int continuation_preds = cont->number_of_preds();
3435 
3436   // Push callee scope
3437   push_scope(callee, cont);
3438 
3439   // the BlockListBuilder for the callee could have bailed out
3440   CHECK_BAILOUT_(false);
3441 
3442   // Temporarily set up bytecode stream so we can append instructions
3443   // (only using the bci of this stream)
3444   scope_data()->set_stream(scope_data()->parent()->stream());
3445 
3446   // Pass parameters into callee state: add assignments
3447   // note: this will also ensure that all arguments are computed before being passed
3448   ValueStack* callee_state = state();
3449   ValueStack* caller_state = state()->caller_state();
3450   { int i = args_base;
3451     while (i < caller_state->stack_size()) {
3452       const int par_no = i - args_base;
3453       Value  arg = caller_state->stack_at_inc(i);
3454       // NOTE: take base() of arg->type() to avoid problems storing
3455       // constants
3456       store_local(callee_state, arg, arg->type()->base(), par_no);
3457     }
3458   }
3459 
3460   // Remove args from stack.
3461   // Note that we preserve locals state in case we can use it later
3462   // (see use of pop_scope() below)
3463   caller_state->truncate_stack(args_base);
3464   assert(callee_state->stack_size() == 0, "callee stack must be empty");
3465 
3466   Value lock;
3467   BlockBegin* sync_handler;
3468 
3469   // Inline the locking of the receiver if the callee is synchronized
3470   if (callee->is_synchronized()) {
3471     lock = callee->is_static() ? append(new Constant(new InstanceConstant(callee->holder()->java_mirror())))
3472                                : state()->local_at(0);
3473     sync_handler = new BlockBegin(SynchronizationEntryBCI);
3474     inline_sync_entry(lock, sync_handler);
3475   }
3476 
3477 
3478   BlockBegin* callee_start_block = block_at(0);
3479   if (callee_start_block != NULL) {
3480     assert(callee_start_block->is_set(BlockBegin::parser_loop_header_flag), "must be loop header");
3481     Goto* goto_callee = new Goto(callee_start_block, false);
3482     // The state for this goto is in the scope of the callee, so use
3483     // the entry bci for the callee instead of the call site bci.
3484     append_with_bci(goto_callee, 0);
3485     _block->set_end(goto_callee);
3486     callee_start_block->merge(callee_state);
3487 
3488     _last = _block = callee_start_block;
3489 
3490     scope_data()->add_to_work_list(callee_start_block);
3491   }
3492 
3493   // Clear out bytecode stream
3494   scope_data()->set_stream(NULL);
3495 
3496   // Ready to resume parsing in callee (either in the same block we
3497   // were in before or in the callee's start block)
3498   iterate_all_blocks(callee_start_block == NULL);
3499 
3500   // If we bailed out during parsing, return immediately (this is bad news)
3501   if (bailed_out()) return false;
3502 
3503   // iterate_all_blocks theoretically traverses in random order; in
3504   // practice, we have only traversed the continuation if we are
3505   // inlining into a subroutine
3506   assert(continuation_existed ||
3507          !continuation()->is_set(BlockBegin::was_visited_flag),
3508          "continuation should not have been parsed yet if we created it");
3509 
3510   // If we bailed out during parsing, return immediately (this is bad news)
3511   CHECK_BAILOUT_(false);
3512 
3513   // At this point we are almost ready to return and resume parsing of
3514   // the caller back in the GraphBuilder. The only thing we want to do
3515   // first is an optimization: during parsing of the callee we
3516   // generated at least one Goto to the continuation block. If we
3517   // generated exactly one, and if the inlined method spanned exactly
3518   // one block (and we didn't have to Goto its entry), then we snip
3519   // off the Goto to the continuation, allowing control to fall
3520   // through back into the caller block and effectively performing
3521   // block merging. This allows load elimination and CSE to take place
3522   // across multiple callee scopes if they are relatively simple, and
3523   // is currently essential to making inlining profitable.
3524   if (   num_returns() == 1
3525       && block() == orig_block
3526       && block() == inline_cleanup_block()) {
3527     _last = inline_cleanup_return_prev();
3528     _state = inline_cleanup_state();
3529   } else if (continuation_preds == cont->number_of_preds()) {
3530     // Inlining caused that the instructions after the invoke in the
3531     // caller are not reachable any more. So skip filling this block
3532     // with instructions!
3533     assert (cont == continuation(), "");
3534     assert(_last && _last->as_BlockEnd(), "");
3535     _skip_block = true;
3536   } else {
3537     // Resume parsing in continuation block unless it was already parsed.
3538     // Note that if we don't change _last here, iteration in
3539     // iterate_bytecodes_for_block will stop when we return.
3540     if (!continuation()->is_set(BlockBegin::was_visited_flag)) {
3541       // add continuation to work list instead of parsing it immediately
3542       assert(_last && _last->as_BlockEnd(), "");
3543       scope_data()->parent()->add_to_work_list(continuation());
3544       _skip_block = true;
3545     }
3546   }
3547 
3548   // Fill the exception handler for synchronized methods with instructions
3549   if (callee->is_synchronized() && sync_handler->state() != NULL) {
3550     fill_sync_handler(lock, sync_handler);
3551   } else {
3552     pop_scope();
3553   }
3554 
3555   compilation()->notice_inlined_method(callee);
3556 
3557   return true;
3558 }
3559 
3560 
3561 void GraphBuilder::inline_bailout(const char* msg) {
3562   assert(msg != NULL, "inline bailout msg must exist");
3563   _inline_bailout_msg = msg;
3564 }
3565 
3566 
3567 void GraphBuilder::clear_inline_bailout() {
3568   _inline_bailout_msg = NULL;
3569 }
3570 
3571 
3572 void GraphBuilder::push_root_scope(IRScope* scope, BlockList* bci2block, BlockBegin* start) {
3573   ScopeData* data = new ScopeData(NULL);
3574   data->set_scope(scope);
3575   data->set_bci2block(bci2block);
3576   _scope_data = data;
3577   _block = start;
3578 }
3579 
3580 
3581 void GraphBuilder::push_scope(ciMethod* callee, BlockBegin* continuation) {
3582   IRScope* callee_scope = new IRScope(compilation(), scope(), bci(), callee, -1, false);
3583   scope()->add_callee(callee_scope);
3584 
3585   BlockListBuilder blb(compilation(), callee_scope, -1);
3586   CHECK_BAILOUT();
3587 
3588   if (!blb.bci2block()->at(0)->is_set(BlockBegin::parser_loop_header_flag)) {
3589     // this scope can be inlined directly into the caller so remove
3590     // the block at bci 0.
3591     blb.bci2block()->at_put(0, NULL);
3592   }
3593 
3594   set_state(new ValueStack(callee_scope, state()->copy(ValueStack::CallerState, bci())));
3595 
3596   ScopeData* data = new ScopeData(scope_data());
3597   data->set_scope(callee_scope);
3598   data->set_bci2block(blb.bci2block());
3599   data->set_continuation(continuation);
3600   _scope_data = data;
3601 }
3602 
3603 
3604 void GraphBuilder::push_scope_for_jsr(BlockBegin* jsr_continuation, int jsr_dest_bci) {
3605   ScopeData* data = new ScopeData(scope_data());
3606   data->set_parsing_jsr();
3607   data->set_jsr_entry_bci(jsr_dest_bci);
3608   data->set_jsr_return_address_local(-1);
3609   // Must clone bci2block list as we will be mutating it in order to
3610   // properly clone all blocks in jsr region as well as exception
3611   // handlers containing rets
3612   BlockList* new_bci2block = new BlockList(bci2block()->length());
3613   new_bci2block->push_all(bci2block());
3614   data->set_bci2block(new_bci2block);
3615   data->set_scope(scope());
3616   data->setup_jsr_xhandlers();
3617   data->set_continuation(continuation());
3618   data->set_jsr_continuation(jsr_continuation);
3619   _scope_data = data;
3620 }
3621 
3622 
3623 void GraphBuilder::pop_scope() {
3624   int number_of_locks = scope()->number_of_locks();
3625   _scope_data = scope_data()->parent();
3626   // accumulate minimum number of monitor slots to be reserved
3627   scope()->set_min_number_of_locks(number_of_locks);
3628 }
3629 
3630 
3631 void GraphBuilder::pop_scope_for_jsr() {
3632   _scope_data = scope_data()->parent();
3633 }
3634 
3635 bool GraphBuilder::append_unsafe_get_obj(ciMethod* callee, BasicType t, bool is_volatile) {
3636   if (InlineUnsafeOps) {
3637     Values* args = state()->pop_arguments(callee->arg_size());
3638     null_check(args->at(0));
3639     Instruction* offset = args->at(2);
3640 #ifndef _LP64
3641     offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
3642 #endif
3643     Instruction* op = append(new UnsafeGetObject(t, args->at(1), offset, is_volatile));
3644     push(op->type(), op);
3645     compilation()->set_has_unsafe_access(true);
3646   }
3647   return InlineUnsafeOps;
3648 }
3649 
3650 
3651 bool GraphBuilder::append_unsafe_put_obj(ciMethod* callee, BasicType t, bool is_volatile) {
3652   if (InlineUnsafeOps) {
3653     Values* args = state()->pop_arguments(callee->arg_size());
3654     null_check(args->at(0));
3655     Instruction* offset = args->at(2);
3656 #ifndef _LP64
3657     offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
3658 #endif
3659     Instruction* op = append(new UnsafePutObject(t, args->at(1), offset, args->at(3), is_volatile));
3660     compilation()->set_has_unsafe_access(true);
3661     kill_all();
3662   }
3663   return InlineUnsafeOps;
3664 }
3665 
3666 
3667 bool GraphBuilder::append_unsafe_get_raw(ciMethod* callee, BasicType t) {
3668   if (InlineUnsafeOps) {
3669     Values* args = state()->pop_arguments(callee->arg_size());
3670     null_check(args->at(0));
3671     Instruction* op = append(new UnsafeGetRaw(t, args->at(1), false));
3672     push(op->type(), op);
3673     compilation()->set_has_unsafe_access(true);
3674   }
3675   return InlineUnsafeOps;
3676 }
3677 
3678 
3679 bool GraphBuilder::append_unsafe_put_raw(ciMethod* callee, BasicType t) {
3680   if (InlineUnsafeOps) {
3681     Values* args = state()->pop_arguments(callee->arg_size());
3682     null_check(args->at(0));
3683     Instruction* op = append(new UnsafePutRaw(t, args->at(1), args->at(2)));
3684     compilation()->set_has_unsafe_access(true);
3685   }
3686   return InlineUnsafeOps;
3687 }
3688 
3689 
3690 bool GraphBuilder::append_unsafe_prefetch(ciMethod* callee, bool is_static, bool is_store) {
3691   if (InlineUnsafeOps) {
3692     Values* args = state()->pop_arguments(callee->arg_size());
3693     int obj_arg_index = 1; // Assume non-static case
3694     if (is_static) {
3695       obj_arg_index = 0;
3696     } else {
3697       null_check(args->at(0));
3698     }
3699     Instruction* offset = args->at(obj_arg_index + 1);
3700 #ifndef _LP64
3701     offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
3702 #endif
3703     Instruction* op = is_store ? append(new UnsafePrefetchWrite(args->at(obj_arg_index), offset))
3704                                : append(new UnsafePrefetchRead (args->at(obj_arg_index), offset));
3705     compilation()->set_has_unsafe_access(true);
3706   }
3707   return InlineUnsafeOps;
3708 }
3709 
3710 
3711 void GraphBuilder::append_unsafe_CAS(ciMethod* callee) {
3712   ValueStack* state_before = copy_state_for_exception();
3713   ValueType* result_type = as_ValueType(callee->return_type());
3714   assert(result_type->is_int(), "int result");
3715   Values* args = state()->pop_arguments(callee->arg_size());
3716 
3717   // Pop off some args to speically handle, then push back
3718   Value newval = args->pop();
3719   Value cmpval = args->pop();
3720   Value offset = args->pop();
3721   Value src = args->pop();
3722   Value unsafe_obj = args->pop();
3723 
3724   // Separately handle the unsafe arg. It is not needed for code
3725   // generation, but must be null checked
3726   null_check(unsafe_obj);
3727 
3728 #ifndef _LP64
3729   offset = append(new Convert(Bytecodes::_l2i, offset, as_ValueType(T_INT)));
3730 #endif
3731 
3732   args->push(src);
3733   args->push(offset);
3734   args->push(cmpval);
3735   args->push(newval);
3736 
3737   // An unsafe CAS can alias with other field accesses, but we don't
3738   // know which ones so mark the state as no preserved.  This will
3739   // cause CSE to invalidate memory across it.
3740   bool preserves_state = false;
3741   Intrinsic* result = new Intrinsic(result_type, callee->intrinsic_id(), args, false, state_before, preserves_state);
3742   append_split(result);
3743   push(result_type, result);
3744   compilation()->set_has_unsafe_access(true);
3745 }
3746 
3747 
3748 #ifndef PRODUCT
3749 void GraphBuilder::print_inline_result(ciMethod* callee, bool res) {
3750   const char sync_char      = callee->is_synchronized()        ? 's' : ' ';
3751   const char exception_char = callee->has_exception_handlers() ? '!' : ' ';
3752   const char monitors_char  = callee->has_monitor_bytecodes()  ? 'm' : ' ';
3753   tty->print("     %c%c%c ", sync_char, exception_char, monitors_char);
3754   for (int i = 0; i < scope()->level(); i++) tty->print("  ");
3755   if (res) {
3756     tty->print("  ");
3757   } else {
3758     tty->print("- ");
3759   }
3760   tty->print("@ %d  ", bci());
3761   callee->print_short_name();
3762   tty->print(" (%d bytes)", callee->code_size());
3763   if (_inline_bailout_msg) {
3764     tty->print("  %s", _inline_bailout_msg);
3765   }
3766   tty->cr();
3767 
3768   if (res && CIPrintMethodCodes) {
3769     callee->print_codes();
3770   }
3771 }
3772 
3773 
3774 void GraphBuilder::print_stats() {
3775   vmap()->print();
3776 }
3777 #endif // PRODUCT
3778 
3779 void GraphBuilder::profile_call(Value recv, ciKlass* known_holder) {
3780   append(new ProfileCall(method(), bci(), recv, known_holder));
3781 }
3782 
3783 void GraphBuilder::profile_invocation(ciMethod* callee, ValueStack* state) {
3784   append(new ProfileInvoke(callee, state));
3785 }