/* * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_X86_VM_ASSEMBLER_X86_HPP #define CPU_X86_VM_ASSEMBLER_X86_HPP class BiasedLockingCounters; // Contains all the definitions needed for x86 assembly code generation. // Calling convention class Argument VALUE_OBJ_CLASS_SPEC { public: enum { #ifdef _LP64 #ifdef _WIN64 n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... ) #else n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... ) #endif // _WIN64 n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ... n_float_register_parameters_j = 8 // j_farg0, j_farg1, ... #else n_register_parameters = 0 // 0 registers used to pass arguments #endif // _LP64 }; }; #ifdef _LP64 // Symbolically name the register arguments used by the c calling convention. // Windows is different from linux/solaris. So much for standards... #ifdef _WIN64 REGISTER_DECLARATION(Register, c_rarg0, rcx); REGISTER_DECLARATION(Register, c_rarg1, rdx); REGISTER_DECLARATION(Register, c_rarg2, r8); REGISTER_DECLARATION(Register, c_rarg3, r9); REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); #else REGISTER_DECLARATION(Register, c_rarg0, rdi); REGISTER_DECLARATION(Register, c_rarg1, rsi); REGISTER_DECLARATION(Register, c_rarg2, rdx); REGISTER_DECLARATION(Register, c_rarg3, rcx); REGISTER_DECLARATION(Register, c_rarg4, r8); REGISTER_DECLARATION(Register, c_rarg5, r9); REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4); REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5); REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6); REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7); #endif // _WIN64 // Symbolically name the register arguments used by the Java calling convention. // We have control over the convention for java so we can do what we please. // What pleases us is to offset the java calling convention so that when // we call a suitable jni method the arguments are lined up and we don't // have to do little shuffling. A suitable jni method is non-static and a // small number of arguments (two fewer args on windows) // // |-------------------------------------------------------| // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 | // |-------------------------------------------------------| // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg) // | rdi rsi rdx rcx r8 r9 | solaris/linux // |-------------------------------------------------------| // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 | // |-------------------------------------------------------| REGISTER_DECLARATION(Register, j_rarg0, c_rarg1); REGISTER_DECLARATION(Register, j_rarg1, c_rarg2); REGISTER_DECLARATION(Register, j_rarg2, c_rarg3); // Windows runs out of register args here #ifdef _WIN64 REGISTER_DECLARATION(Register, j_rarg3, rdi); REGISTER_DECLARATION(Register, j_rarg4, rsi); #else REGISTER_DECLARATION(Register, j_rarg3, c_rarg4); REGISTER_DECLARATION(Register, j_rarg4, c_rarg5); #endif /* _WIN64 */ REGISTER_DECLARATION(Register, j_rarg5, c_rarg0); REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0); REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1); REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2); REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3); REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4); REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5); REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6); REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7); REGISTER_DECLARATION(Register, rscratch1, r10); // volatile REGISTER_DECLARATION(Register, rscratch2, r11); // volatile REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved #else // rscratch1 will apear in 32bit code that is dead but of course must compile // Using noreg ensures if the dead code is incorrectly live and executed it // will cause an assertion failure #define rscratch1 noreg #define rscratch2 noreg #endif // _LP64 // JSR 292 fixed register usages: REGISTER_DECLARATION(Register, rbp_mh_SP_save, rbp); // Address is an abstraction used to represent a memory location // using any of the amd64 addressing modes with one object. // // Note: A register location is represented via a Register, not // via an address for efficiency & simplicity reasons. class ArrayAddress; class Address VALUE_OBJ_CLASS_SPEC { public: enum ScaleFactor { no_scale = -1, times_1 = 0, times_2 = 1, times_4 = 2, times_8 = 3, times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4) }; static ScaleFactor times(int size) { assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size"); if (size == 8) return times_8; if (size == 4) return times_4; if (size == 2) return times_2; return times_1; } static int scale_size(ScaleFactor scale) { assert(scale != no_scale, ""); assert(((1 << (int)times_1) == 1 && (1 << (int)times_2) == 2 && (1 << (int)times_4) == 4 && (1 << (int)times_8) == 8), ""); return (1 << (int)scale); } private: Register _base; Register _index; ScaleFactor _scale; int _disp; RelocationHolder _rspec; // Easily misused constructors make them private // %%% can we make these go away? NOT_LP64(Address(address loc, RelocationHolder spec);) Address(int disp, address loc, relocInfo::relocType rtype); Address(int disp, address loc, RelocationHolder spec); public: int disp() { return _disp; } // creation Address() : _base(noreg), _index(noreg), _scale(no_scale), _disp(0) { } // No default displacement otherwise Register can be implicitly // converted to 0(Register) which is quite a different animal. Address(Register base, int disp) : _base(base), _index(noreg), _scale(no_scale), _disp(disp) { } Address(Register base, Register index, ScaleFactor scale, int disp = 0) : _base (base), _index(index), _scale(scale), _disp (disp) { assert(!index->is_valid() == (scale == Address::no_scale), "inconsistent address"); } Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0) : _base (base), _index(index.register_or_noreg()), _scale(scale), _disp (disp + (index.constant_or_zero() * scale_size(scale))) { if (!index.is_register()) scale = Address::no_scale; assert(!_index->is_valid() == (scale == Address::no_scale), "inconsistent address"); } Address plus_disp(int disp) const { Address a = (*this); a._disp += disp; return a; } // The following two overloads are used in connection with the // ByteSize type (see sizes.hpp). They simplify the use of // ByteSize'd arguments in assembly code. Note that their equivalent // for the optimized build are the member functions with int disp // argument since ByteSize is mapped to an int type in that case. // // Note: DO NOT introduce similar overloaded functions for WordSize // arguments as in the optimized mode, both ByteSize and WordSize // are mapped to the same type and thus the compiler cannot make a // distinction anymore (=> compiler errors). #ifdef ASSERT Address(Register base, ByteSize disp) : _base(base), _index(noreg), _scale(no_scale), _disp(in_bytes(disp)) { } Address(Register base, Register index, ScaleFactor scale, ByteSize disp) : _base(base), _index(index), _scale(scale), _disp(in_bytes(disp)) { assert(!index->is_valid() == (scale == Address::no_scale), "inconsistent address"); } Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp) : _base (base), _index(index.register_or_noreg()), _scale(scale), _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))) { if (!index.is_register()) scale = Address::no_scale; assert(!_index->is_valid() == (scale == Address::no_scale), "inconsistent address"); } #endif // ASSERT // accessors bool uses(Register reg) const { return _base == reg || _index == reg; } Register base() const { return _base; } Register index() const { return _index; } ScaleFactor scale() const { return _scale; } int disp() const { return _disp; } // Convert the raw encoding form into the form expected by the constructor for // Address. An index of 4 (rsp) corresponds to having no index, so convert // that to noreg for the Address constructor. static Address make_raw(int base, int index, int scale, int disp, bool disp_is_oop); static Address make_array(ArrayAddress); private: bool base_needs_rex() const { return _base != noreg && _base->encoding() >= 8; } bool index_needs_rex() const { return _index != noreg &&_index->encoding() >= 8; } relocInfo::relocType reloc() const { return _rspec.type(); } friend class Assembler; friend class MacroAssembler; friend class LIR_Assembler; // base/index/scale/disp }; // // AddressLiteral has been split out from Address because operands of this type // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out // the few instructions that need to deal with address literals are unique and the // MacroAssembler does not have to implement every instruction in the Assembler // in order to search for address literals that may need special handling depending // on the instruction and the platform. As small step on the way to merging i486/amd64 // directories. // class AddressLiteral VALUE_OBJ_CLASS_SPEC { friend class ArrayAddress; RelocationHolder _rspec; // Typically we use AddressLiterals we want to use their rval // However in some situations we want the lval (effect address) of the item. // We provide a special factory for making those lvals. bool _is_lval; // If the target is far we'll need to load the ea of this to // a register to reach it. Otherwise if near we can do rip // relative addressing. address _target; protected: // creation AddressLiteral() : _is_lval(false), _target(NULL) {} public: AddressLiteral(address target, relocInfo::relocType rtype); AddressLiteral(address target, RelocationHolder const& rspec) : _rspec(rspec), _is_lval(false), _target(target) {} AddressLiteral addr() { AddressLiteral ret = *this; ret._is_lval = true; return ret; } private: address target() { return _target; } bool is_lval() { return _is_lval; } relocInfo::relocType reloc() const { return _rspec.type(); } const RelocationHolder& rspec() const { return _rspec; } friend class Assembler; friend class MacroAssembler; friend class Address; friend class LIR_Assembler; }; // Convience classes class RuntimeAddress: public AddressLiteral { public: RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {} }; class OopAddress: public AddressLiteral { public: OopAddress(address target) : AddressLiteral(target, relocInfo::oop_type){} }; class ExternalAddress: public AddressLiteral { public: ExternalAddress(address target) : AddressLiteral(target, relocInfo::external_word_type){} }; class InternalAddress: public AddressLiteral { public: InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {} }; // x86 can do array addressing as a single operation since disp can be an absolute // address amd64 can't. We create a class that expresses the concept but does extra // magic on amd64 to get the final result class ArrayAddress VALUE_OBJ_CLASS_SPEC { private: AddressLiteral _base; Address _index; public: ArrayAddress() {}; ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {}; AddressLiteral base() { return _base; } Address index() { return _index; } }; const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY( 512 / wordSize); // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write // is what you get. The Assembler is generating code into a CodeBuffer. class Assembler : public AbstractAssembler { friend class AbstractAssembler; // for the non-virtual hack friend class LIR_Assembler; // as_Address() friend class StubGenerator; public: enum Condition { // The x86 condition codes used for conditional jumps/moves. zero = 0x4, notZero = 0x5, equal = 0x4, notEqual = 0x5, less = 0xc, lessEqual = 0xe, greater = 0xf, greaterEqual = 0xd, below = 0x2, belowEqual = 0x6, above = 0x7, aboveEqual = 0x3, overflow = 0x0, noOverflow = 0x1, carrySet = 0x2, carryClear = 0x3, negative = 0x8, positive = 0x9, parity = 0xa, noParity = 0xb }; enum Prefix { // segment overrides CS_segment = 0x2e, SS_segment = 0x36, DS_segment = 0x3e, ES_segment = 0x26, FS_segment = 0x64, GS_segment = 0x65, REX = 0x40, REX_B = 0x41, REX_X = 0x42, REX_XB = 0x43, REX_R = 0x44, REX_RB = 0x45, REX_RX = 0x46, REX_RXB = 0x47, REX_W = 0x48, REX_WB = 0x49, REX_WX = 0x4A, REX_WXB = 0x4B, REX_WR = 0x4C, REX_WRB = 0x4D, REX_WRX = 0x4E, REX_WRXB = 0x4F }; enum WhichOperand { // input to locate_operand, and format code for relocations imm_operand = 0, // embedded 32-bit|64-bit immediate operand disp32_operand = 1, // embedded 32-bit displacement or address call32_operand = 2, // embedded 32-bit self-relative displacement #ifndef _LP64 _WhichOperand_limit = 3 #else narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop _WhichOperand_limit = 4 #endif }; // NOTE: The general philopsophy of the declarations here is that 64bit versions // of instructions are freely declared without the need for wrapping them an ifdef. // (Some dangerous instructions are ifdef's out of inappropriate jvm's.) // In the .cpp file the implementations are wrapped so that they are dropped out // of the resulting jvm. This is done mostly to keep the footprint of KERNEL // to the size it was prior to merging up the 32bit and 64bit assemblers. // // This does mean you'll get a linker/runtime error if you use a 64bit only instruction // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down. private: // 64bit prefixes int prefix_and_encode(int reg_enc, bool byteinst = false); int prefixq_and_encode(int reg_enc); int prefix_and_encode(int dst_enc, int src_enc, bool byteinst = false); int prefixq_and_encode(int dst_enc, int src_enc); void prefix(Register reg); void prefix(Address adr); void prefixq(Address adr); void prefix(Address adr, Register reg, bool byteinst = false); void prefixq(Address adr, Register reg); void prefix(Address adr, XMMRegister reg); void prefetch_prefix(Address src); // Helper functions for groups of instructions void emit_arith_b(int op1, int op2, Register dst, int imm8); void emit_arith(int op1, int op2, Register dst, int32_t imm32); // only 32bit?? void emit_arith(int op1, int op2, Register dst, jobject obj); void emit_arith(int op1, int op2, Register dst, Register src); void emit_operand(Register reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec, int rip_relative_correction = 0); void emit_operand(Register reg, Address adr, int rip_relative_correction = 0); // operands that only take the original 32bit registers void emit_operand32(Register reg, Address adr); void emit_operand(XMMRegister reg, Register base, Register index, Address::ScaleFactor scale, int disp, RelocationHolder const& rspec); void emit_operand(XMMRegister reg, Address adr); void emit_operand(MMXRegister reg, Address adr); // workaround gcc (3.2.1-7) bug void emit_operand(Address adr, MMXRegister reg); // Immediate-to-memory forms void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32); void emit_farith(int b1, int b2, int i); protected: #ifdef ASSERT void check_relocation(RelocationHolder const& rspec, int format); #endif inline void emit_long64(jlong x); void emit_data(jint data, relocInfo::relocType rtype, int format); void emit_data(jint data, RelocationHolder const& rspec, int format); void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); bool reachable(AddressLiteral adr) NOT_LP64({ return true;}); // These are all easily abused and hence protected // 32BIT ONLY SECTION #ifndef _LP64 // Make these disappear in 64bit mode since they would never be correct void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY #else // 64BIT ONLY SECTION void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec); void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec); void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec); void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec); #endif // _LP64 // These are unique in that we are ensured by the caller that the 32bit // relative in these instructions will always be able to reach the potentially // 64bit address described by entry. Since they can take a 64bit address they // don't have the 32 suffix like the other instructions in this class. void call_literal(address entry, RelocationHolder const& rspec); void jmp_literal(address entry, RelocationHolder const& rspec); // Avoid using directly section // Instructions in this section are actually usable by anyone without danger // of failure but have performance issues that are addressed my enhanced // instructions which will do the proper thing base on the particular cpu. // We protect them because we don't trust you... // Don't use next inc() and dec() methods directly. INC & DEC instructions // could cause a partial flag stall since they don't set CF flag. // Use MacroAssembler::decrement() & MacroAssembler::increment() methods // which call inc() & dec() or add() & sub() in accordance with // the product flag UseIncDec value. void decl(Register dst); void decl(Address dst); void decq(Register dst); void decq(Address dst); void incl(Register dst); void incl(Address dst); void incq(Register dst); void incq(Address dst); // New cpus require use of movsd and movss to avoid partial register stall // when loading from memory. But for old Opteron use movlpd instead of movsd. // The selection is done in MacroAssembler::movdbl() and movflt(). // Move Scalar Single-Precision Floating-Point Values void movss(XMMRegister dst, Address src); void movss(XMMRegister dst, XMMRegister src); void movss(Address dst, XMMRegister src); // Move Scalar Double-Precision Floating-Point Values void movsd(XMMRegister dst, Address src); void movsd(XMMRegister dst, XMMRegister src); void movsd(Address dst, XMMRegister src); void movlpd(XMMRegister dst, Address src); // New cpus require use of movaps and movapd to avoid partial register stall // when moving between registers. void movaps(XMMRegister dst, XMMRegister src); void movapd(XMMRegister dst, XMMRegister src); // End avoid using directly // Instruction prefixes void prefix(Prefix p); public: // Creation Assembler(CodeBuffer* code) : AbstractAssembler(code) {} // Decoding static address locate_operand(address inst, WhichOperand which); static address locate_next_instruction(address inst); // Utilities #ifdef _LP64 static bool is_simm(int64_t x, int nbits) { return -( CONST64(1) << (nbits-1) ) <= x && x < ( CONST64(1) << (nbits-1) ); } static bool is_simm32(int64_t x) { return x == (int64_t)(int32_t)x; } #else static bool is_simm(int32_t x, int nbits) { return -( 1 << (nbits-1) ) <= x && x < ( 1 << (nbits-1) ); } static bool is_simm32(int32_t x) { return true; } #endif // LP64 // Generic instructions // Does 32bit or 64bit as needed for the platform. In some sense these // belong in macro assembler but there is no need for both varieties to exist void lea(Register dst, Address src); void mov(Register dst, Register src); void pusha(); void popa(); void pushf(); void popf(); void push(int32_t imm32); void push(Register src); void pop(Register dst); // These are dummies to prevent surprise implicit conversions to Register void push(void* v); void pop(void* v); // These do register sized moves/scans void rep_mov(); void rep_set(); void repne_scan(); #ifdef _LP64 void repne_scanl(); #endif // Vanilla instructions in lexical order void adcl(Register dst, int32_t imm32); void adcl(Register dst, Address src); void adcl(Register dst, Register src); void adcq(Register dst, int32_t imm32); void adcq(Register dst, Address src); void adcq(Register dst, Register src); void addl(Address dst, int32_t imm32); void addl(Address dst, Register src); void addl(Register dst, int32_t imm32); void addl(Register dst, Address src); void addl(Register dst, Register src); void addq(Address dst, int32_t imm32); void addq(Address dst, Register src); void addq(Register dst, int32_t imm32); void addq(Register dst, Address src); void addq(Register dst, Register src); void addr_nop_4(); void addr_nop_5(); void addr_nop_7(); void addr_nop_8(); // Add Scalar Double-Precision Floating-Point Values void addsd(XMMRegister dst, Address src); void addsd(XMMRegister dst, XMMRegister src); // Add Scalar Single-Precision Floating-Point Values void addss(XMMRegister dst, Address src); void addss(XMMRegister dst, XMMRegister src); void andl(Register dst, int32_t imm32); void andl(Register dst, Address src); void andl(Register dst, Register src); void andq(Register dst, int32_t imm32); void andq(Register dst, Address src); void andq(Register dst, Register src); // Bitwise Logical AND of Packed Double-Precision Floating-Point Values void andpd(XMMRegister dst, Address src); void andpd(XMMRegister dst, XMMRegister src); void bsfl(Register dst, Register src); void bsrl(Register dst, Register src); #ifdef _LP64 void bsfq(Register dst, Register src); void bsrq(Register dst, Register src); #endif void bswapl(Register reg); void bswapq(Register reg); void call(Label& L, relocInfo::relocType rtype); void call(Register reg); // push pc; pc <- reg void call(Address adr); // push pc; pc <- adr void cdql(); void cdqq(); void cld() { emit_byte(0xfc); } void clflush(Address adr); void cmovl(Condition cc, Register dst, Register src); void cmovl(Condition cc, Register dst, Address src); void cmovq(Condition cc, Register dst, Register src); void cmovq(Condition cc, Register dst, Address src); void cmpb(Address dst, int imm8); void cmpl(Address dst, int32_t imm32); void cmpl(Register dst, int32_t imm32); void cmpl(Register dst, Register src); void cmpl(Register dst, Address src); void cmpq(Address dst, int32_t imm32); void cmpq(Address dst, Register src); void cmpq(Register dst, int32_t imm32); void cmpq(Register dst, Register src); void cmpq(Register dst, Address src); // these are dummies used to catch attempting to convert NULL to Register void cmpl(Register dst, void* junk); // dummy void cmpq(Register dst, void* junk); // dummy void cmpw(Address dst, int imm16); void cmpxchg8 (Address adr); void cmpxchgl(Register reg, Address adr); void cmpxchgq(Register reg, Address adr); // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS void comisd(XMMRegister dst, Address src); // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS void comiss(XMMRegister dst, Address src); // Identify processor type and features void cpuid() { emit_byte(0x0F); emit_byte(0xA2); } // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value void cvtsd2ss(XMMRegister dst, XMMRegister src); // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value void cvtsi2sdl(XMMRegister dst, Register src); void cvtsi2sdq(XMMRegister dst, Register src); // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value void cvtsi2ssl(XMMRegister dst, Register src); void cvtsi2ssq(XMMRegister dst, Register src); // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value void cvtdq2pd(XMMRegister dst, XMMRegister src); // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value void cvtdq2ps(XMMRegister dst, XMMRegister src); // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value void cvtss2sd(XMMRegister dst, XMMRegister src); // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer void cvttsd2sil(Register dst, Address src); void cvttsd2sil(Register dst, XMMRegister src); void cvttsd2siq(Register dst, XMMRegister src); // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer void cvttss2sil(Register dst, XMMRegister src); void cvttss2siq(Register dst, XMMRegister src); // Divide Scalar Double-Precision Floating-Point Values void divsd(XMMRegister dst, Address src); void divsd(XMMRegister dst, XMMRegister src); // Divide Scalar Single-Precision Floating-Point Values void divss(XMMRegister dst, Address src); void divss(XMMRegister dst, XMMRegister src); void emms(); void fabs(); void fadd(int i); void fadd_d(Address src); void fadd_s(Address src); // "Alternate" versions of x87 instructions place result down in FPU // stack instead of on TOS void fadda(int i); // "alternate" fadd void faddp(int i = 1); void fchs(); void fcom(int i); void fcomp(int i = 1); void fcomp_d(Address src); void fcomp_s(Address src); void fcompp(); void fcos(); void fdecstp(); void fdiv(int i); void fdiv_d(Address src); void fdivr_s(Address src); void fdiva(int i); // "alternate" fdiv void fdivp(int i = 1); void fdivr(int i); void fdivr_d(Address src); void fdiv_s(Address src); void fdivra(int i); // "alternate" reversed fdiv void fdivrp(int i = 1); void ffree(int i = 0); void fild_d(Address adr); void fild_s(Address adr); void fincstp(); void finit(); void fist_s (Address adr); void fistp_d(Address adr); void fistp_s(Address adr); void fld1(); void fld_d(Address adr); void fld_s(Address adr); void fld_s(int index); void fld_x(Address adr); // extended-precision (80-bit) format void fldcw(Address src); void fldenv(Address src); void fldlg2(); void fldln2(); void fldz(); void flog(); void flog10(); void fmul(int i); void fmul_d(Address src); void fmul_s(Address src); void fmula(int i); // "alternate" fmul void fmulp(int i = 1); void fnsave(Address dst); void fnstcw(Address src); void fnstsw_ax(); void fprem(); void fprem1(); void frstor(Address src); void fsin(); void fsqrt(); void fst_d(Address adr); void fst_s(Address adr); void fstp_d(Address adr); void fstp_d(int index); void fstp_s(Address adr); void fstp_x(Address adr); // extended-precision (80-bit) format void fsub(int i); void fsub_d(Address src); void fsub_s(Address src); void fsuba(int i); // "alternate" fsub void fsubp(int i = 1); void fsubr(int i); void fsubr_d(Address src); void fsubr_s(Address src); void fsubra(int i); // "alternate" reversed fsub void fsubrp(int i = 1); void ftan(); void ftst(); void fucomi(int i = 1); void fucomip(int i = 1); void fwait(); void fxch(int i = 1); void fxrstor(Address src); void fxsave(Address dst); void fyl2x(); void hlt(); void idivl(Register src); void divl(Register src); // Unsigned division void idivq(Register src); void imull(Register dst, Register src); void imull(Register dst, Register src, int value); void imulq(Register dst, Register src); void imulq(Register dst, Register src, int value); // jcc is the generic conditional branch generator to run- // time routines, jcc is used for branches to labels. jcc // takes a branch opcode (cc) and a label (L) and generates // either a backward branch or a forward branch and links it // to the label fixup chain. Usage: // // Label L; // unbound label // jcc(cc, L); // forward branch to unbound label // bind(L); // bind label to the current pc // jcc(cc, L); // backward branch to bound label // bind(L); // illegal: a label may be bound only once // // Note: The same Label can be used for forward and backward branches // but it may be bound only once. void jcc(Condition cc, Label& L, relocInfo::relocType rtype = relocInfo::none); // Conditional jump to a 8-bit offset to L. // WARNING: be very careful using this for forward jumps. If the label is // not bound within an 8-bit offset of this instruction, a run-time error // will occur. void jccb(Condition cc, Label& L); void jmp(Address entry); // pc <- entry // Label operations & relative jumps (PPUM Appendix D) void jmp(Label& L, relocInfo::relocType rtype = relocInfo::none); // unconditional jump to L void jmp(Register entry); // pc <- entry // Unconditional 8-bit offset jump to L. // WARNING: be very careful using this for forward jumps. If the label is // not bound within an 8-bit offset of this instruction, a run-time error // will occur. void jmpb(Label& L); void ldmxcsr( Address src ); void leal(Register dst, Address src); void leaq(Register dst, Address src); void lfence() { emit_byte(0x0F); emit_byte(0xAE); emit_byte(0xE8); } void lock(); void lzcntl(Register dst, Register src); #ifdef _LP64 void lzcntq(Register dst, Register src); #endif enum Membar_mask_bits { StoreStore = 1 << 3, LoadStore = 1 << 2, StoreLoad = 1 << 1, LoadLoad = 1 << 0 }; // Serializes memory and blows flags void membar(Membar_mask_bits order_constraint) { if (os::is_MP()) { // We only have to handle StoreLoad if (order_constraint & StoreLoad) { // All usable chips support "locked" instructions which suffice // as barriers, and are much faster than the alternative of // using cpuid instruction. We use here a locked add [esp],0. // This is conveniently otherwise a no-op except for blowing // flags. // Any change to this code may need to revisit other places in // the code where this idiom is used, in particular the // orderAccess code. lock(); addl(Address(rsp, 0), 0);// Assert the lock# signal here } } } void mfence(); // Moves void mov64(Register dst, int64_t imm64); void movb(Address dst, Register src); void movb(Address dst, int imm8); void movb(Register dst, Address src); void movdl(XMMRegister dst, Register src); void movdl(Register dst, XMMRegister src); // Move Double Quadword void movdq(XMMRegister dst, Register src); void movdq(Register dst, XMMRegister src); // Move Aligned Double Quadword void movdqa(Address dst, XMMRegister src); void movdqa(XMMRegister dst, Address src); void movdqa(XMMRegister dst, XMMRegister src); // Move Unaligned Double Quadword void movdqu(Address dst, XMMRegister src); void movdqu(XMMRegister dst, Address src); void movdqu(XMMRegister dst, XMMRegister src); void movl(Register dst, int32_t imm32); void movl(Address dst, int32_t imm32); void movl(Register dst, Register src); void movl(Register dst, Address src); void movl(Address dst, Register src); // These dummies prevent using movl from converting a zero (like NULL) into Register // by giving the compiler two choices it can't resolve void movl(Address dst, void* junk); void movl(Register dst, void* junk); #ifdef _LP64 void movq(Register dst, Register src); void movq(Register dst, Address src); void movq(Address dst, Register src); #endif void movq(Address dst, MMXRegister src ); void movq(MMXRegister dst, Address src ); #ifdef _LP64 // These dummies prevent using movq from converting a zero (like NULL) into Register // by giving the compiler two choices it can't resolve void movq(Address dst, void* dummy); void movq(Register dst, void* dummy); #endif // Move Quadword void movq(Address dst, XMMRegister src); void movq(XMMRegister dst, Address src); void movsbl(Register dst, Address src); void movsbl(Register dst, Register src); #ifdef _LP64 void movsbq(Register dst, Address src); void movsbq(Register dst, Register src); // Move signed 32bit immediate to 64bit extending sign void movslq(Address dst, int32_t imm64); void movslq(Register dst, int32_t imm64); void movslq(Register dst, Address src); void movslq(Register dst, Register src); void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous #endif void movswl(Register dst, Address src); void movswl(Register dst, Register src); #ifdef _LP64 void movswq(Register dst, Address src); void movswq(Register dst, Register src); #endif void movw(Address dst, int imm16); void movw(Register dst, Address src); void movw(Address dst, Register src); void movzbl(Register dst, Address src); void movzbl(Register dst, Register src); #ifdef _LP64 void movzbq(Register dst, Address src); void movzbq(Register dst, Register src); #endif void movzwl(Register dst, Address src); void movzwl(Register dst, Register src); #ifdef _LP64 void movzwq(Register dst, Address src); void movzwq(Register dst, Register src); #endif void mull(Address src); void mull(Register src); // Multiply Scalar Double-Precision Floating-Point Values void mulsd(XMMRegister dst, Address src); void mulsd(XMMRegister dst, XMMRegister src); // Multiply Scalar Single-Precision Floating-Point Values void mulss(XMMRegister dst, Address src); void mulss(XMMRegister dst, XMMRegister src); void negl(Register dst); #ifdef _LP64 void negq(Register dst); #endif void nop(int i = 1); void notl(Register dst); #ifdef _LP64 void notq(Register dst); #endif void orl(Address dst, int32_t imm32); void orl(Register dst, int32_t imm32); void orl(Register dst, Address src); void orl(Register dst, Register src); void orq(Address dst, int32_t imm32); void orq(Register dst, int32_t imm32); void orq(Register dst, Address src); void orq(Register dst, Register src); // SSE4.2 string instructions void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8); void pcmpestri(XMMRegister xmm1, Address src, int imm8); #ifndef _LP64 // no 32bit push/pop on amd64 void popl(Address dst); #endif #ifdef _LP64 void popq(Address dst); #endif void popcntl(Register dst, Address src); void popcntl(Register dst, Register src); #ifdef _LP64 void popcntq(Register dst, Address src); void popcntq(Register dst, Register src); #endif // Prefetches (SSE, SSE2, 3DNOW only) void prefetchnta(Address src); void prefetchr(Address src); void prefetcht0(Address src); void prefetcht1(Address src); void prefetcht2(Address src); void prefetchw(Address src); // Shuffle Packed Doublewords void pshufd(XMMRegister dst, XMMRegister src, int mode); void pshufd(XMMRegister dst, Address src, int mode); // Shuffle Packed Low Words void pshuflw(XMMRegister dst, XMMRegister src, int mode); void pshuflw(XMMRegister dst, Address src, int mode); // Shift Right Logical Quadword Immediate void psrlq(XMMRegister dst, int shift); // Logical Compare Double Quadword void ptest(XMMRegister dst, XMMRegister src); void ptest(XMMRegister dst, Address src); // Interleave Low Bytes void punpcklbw(XMMRegister dst, XMMRegister src); #ifndef _LP64 // no 32bit push/pop on amd64 void pushl(Address src); #endif void pushq(Address src); // Xor Packed Byte Integer Values void pxor(XMMRegister dst, Address src); void pxor(XMMRegister dst, XMMRegister src); void rcll(Register dst, int imm8); void rclq(Register dst, int imm8); void ret(int imm16); void sahf(); void sarl(Register dst, int imm8); void sarl(Register dst); void sarq(Register dst, int imm8); void sarq(Register dst); void sbbl(Address dst, int32_t imm32); void sbbl(Register dst, int32_t imm32); void sbbl(Register dst, Address src); void sbbl(Register dst, Register src); void sbbq(Address dst, int32_t imm32); void sbbq(Register dst, int32_t imm32); void sbbq(Register dst, Address src); void sbbq(Register dst, Register src); void setb(Condition cc, Register dst); void shldl(Register dst, Register src); void shll(Register dst, int imm8); void shll(Register dst); void shlq(Register dst, int imm8); void shlq(Register dst); void shrdl(Register dst, Register src); void shrl(Register dst, int imm8); void shrl(Register dst); void shrq(Register dst, int imm8); void shrq(Register dst); void smovl(); // QQQ generic? // Compute Square Root of Scalar Double-Precision Floating-Point Value void sqrtsd(XMMRegister dst, Address src); void sqrtsd(XMMRegister dst, XMMRegister src); void std() { emit_byte(0xfd); } void stmxcsr( Address dst ); void subl(Address dst, int32_t imm32); void subl(Address dst, Register src); void subl(Register dst, int32_t imm32); void subl(Register dst, Address src); void subl(Register dst, Register src); void subq(Address dst, int32_t imm32); void subq(Address dst, Register src); void subq(Register dst, int32_t imm32); void subq(Register dst, Address src); void subq(Register dst, Register src); // Subtract Scalar Double-Precision Floating-Point Values void subsd(XMMRegister dst, Address src); void subsd(XMMRegister dst, XMMRegister src); // Subtract Scalar Single-Precision Floating-Point Values void subss(XMMRegister dst, Address src); void subss(XMMRegister dst, XMMRegister src); void testb(Register dst, int imm8); void testl(Register dst, int32_t imm32); void testl(Register dst, Register src); void testl(Register dst, Address src); void testq(Register dst, int32_t imm32); void testq(Register dst, Register src); // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS void ucomisd(XMMRegister dst, Address src); void ucomisd(XMMRegister dst, XMMRegister src); // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS void ucomiss(XMMRegister dst, Address src); void ucomiss(XMMRegister dst, XMMRegister src); void xaddl(Address dst, Register src); void xaddq(Address dst, Register src); void xchgl(Register reg, Address adr); void xchgl(Register dst, Register src); void xchgq(Register reg, Address adr); void xchgq(Register dst, Register src); void xorl(Register dst, int32_t imm32); void xorl(Register dst, Address src); void xorl(Register dst, Register src); void xorq(Register dst, Address src); void xorq(Register dst, Register src); // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values void xorpd(XMMRegister dst, Address src); void xorpd(XMMRegister dst, XMMRegister src); // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values void xorps(XMMRegister dst, Address src); void xorps(XMMRegister dst, XMMRegister src); void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0 }; // MacroAssembler extends Assembler by frequently used macros. // // Instructions for which a 'better' code sequence exists depending // on arguments should also go in here. class MacroAssembler: public Assembler { friend class LIR_Assembler; friend class Runtime1; // as_Address() protected: Address as_Address(AddressLiteral adr); Address as_Address(ArrayAddress adr); // Support for VM calls // // This is the base routine called by the different versions of call_VM_leaf. The interpreter // may customize this version by overriding it for its purposes (e.g., to save/restore // additional registers when doing a VM call). #ifdef CC_INTERP // c++ interpreter never wants to use interp_masm version of call_VM #define VIRTUAL #else #define VIRTUAL virtual #endif VIRTUAL void call_VM_leaf_base( address entry_point, // the entry point int number_of_arguments // the number of arguments to pop after the call ); // This is the base routine called by the different versions of call_VM. The interpreter // may customize this version by overriding it for its purposes (e.g., to save/restore // additional registers when doing a VM call). // // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base // returns the register which contains the thread upon return. If a thread register has been // specified, the return value will correspond to that register. If no last_java_sp is specified // (noreg) than rsp will be used instead. VIRTUAL void call_VM_base( // returns the register containing the thread upon return Register oop_result, // where an oop-result ends up if any; use noreg otherwise Register java_thread, // the thread if computed before ; use noreg otherwise Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise address entry_point, // the entry point int number_of_arguments, // the number of arguments (w/o thread) to pop after the call bool check_exceptions // whether to check for pending exceptions after return ); // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code. // The implementation is only non-empty for the InterpreterMacroAssembler, // as only the interpreter handles PopFrame and ForceEarlyReturn requests. virtual void check_and_handle_popframe(Register java_thread); virtual void check_and_handle_earlyret(Register java_thread); void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true); // helpers for FPU flag access // tmp is a temporary register, if none is available use noreg void save_rax (Register tmp); void restore_rax(Register tmp); public: MacroAssembler(CodeBuffer* code) : Assembler(code) {} // Support for NULL-checks // // Generates code that causes a NULL OS exception if the content of reg is NULL. // If the accessed location is M[reg + offset] and the offset is known, provide the // offset. No explicit code generation is needed if the offset is within a certain // range (0 <= offset <= page_size). void null_check(Register reg, int offset = -1); static bool needs_explicit_null_check(intptr_t offset); // Required platform-specific helpers for Label::patch_instructions. // They _shadow_ the declarations in AbstractAssembler, which are undefined. void pd_patch_instruction(address branch, address target); #ifndef PRODUCT static void pd_print_patched_instruction(address branch); #endif // The following 4 methods return the offset of the appropriate move instruction // Support for fast byte/short loading with zero extension (depending on particular CPU) int load_unsigned_byte(Register dst, Address src); int load_unsigned_short(Register dst, Address src); // Support for fast byte/short loading with sign extension (depending on particular CPU) int load_signed_byte(Register dst, Address src); int load_signed_short(Register dst, Address src); // Support for sign-extension (hi:lo = extend_sign(lo)) void extend_sign(Register hi, Register lo); // Loading values by size and signed-ness void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed); // Support for inc/dec with optimal instruction selection depending on value void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; } void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; } void decrementl(Address dst, int value = 1); void decrementl(Register reg, int value = 1); void decrementq(Register reg, int value = 1); void decrementq(Address dst, int value = 1); void incrementl(Address dst, int value = 1); void incrementl(Register reg, int value = 1); void incrementq(Register reg, int value = 1); void incrementq(Address dst, int value = 1); // Support optimal SSE move instructions. void movflt(XMMRegister dst, XMMRegister src) { if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; } else { movss (dst, src); return; } } void movflt(XMMRegister dst, Address src) { movss(dst, src); } void movflt(XMMRegister dst, AddressLiteral src); void movflt(Address dst, XMMRegister src) { movss(dst, src); } void movdbl(XMMRegister dst, XMMRegister src) { if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; } else { movsd (dst, src); return; } } void movdbl(XMMRegister dst, AddressLiteral src); void movdbl(XMMRegister dst, Address src) { if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; } else { movlpd(dst, src); return; } } void movdbl(Address dst, XMMRegister src) { movsd(dst, src); } void incrementl(AddressLiteral dst); void incrementl(ArrayAddress dst); // Alignment void align(int modulus); // Misc void fat_nop(); // 5 byte nop // Stack frame creation/removal void enter(); void leave(); // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information) // The pointer will be loaded into the thread register. void get_thread(Register thread); // Support for VM calls // // It is imperative that all calls into the VM are handled via the call_VM macros. // They make sure that the stack linkage is setup correctly. call_VM's correspond // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points. void call_VM(Register oop_result, address entry_point, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); // Overloadings with last_Java_sp void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true); void call_VM_leaf(address entry_point, int number_of_arguments = 0); void call_VM_leaf(address entry_point, Register arg_1); void call_VM_leaf(address entry_point, Register arg_1, Register arg_2); void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); // last Java Frame (fills frame anchor) void set_last_Java_frame(Register thread, Register last_java_sp, Register last_java_fp, address last_java_pc); // thread in the default location (r15_thread on 64bit) void set_last_Java_frame(Register last_java_sp, Register last_java_fp, address last_java_pc); void reset_last_Java_frame(Register thread, bool clear_fp, bool clear_pc); // thread in the default location (r15_thread on 64bit) void reset_last_Java_frame(bool clear_fp, bool clear_pc); // Stores void store_check(Register obj); // store check for obj - register is destroyed afterwards void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed) void g1_write_barrier_pre(Register obj, #ifndef _LP64 Register thread, #endif Register tmp, Register tmp2, bool tosca_live); void g1_write_barrier_post(Register store_addr, Register new_val, #ifndef _LP64 Register thread, #endif Register tmp, Register tmp2); // split store_check(Register obj) to enhance instruction interleaving void store_check_part_1(Register obj); void store_check_part_2(Register obj); // C 'boolean' to Java boolean: x == 0 ? 0 : 1 void c2bool(Register x); // C++ bool manipulation void movbool(Register dst, Address src); void movbool(Address dst, bool boolconst); void movbool(Address dst, Register src); void testbool(Register dst); // oop manipulations void load_klass(Register dst, Register src); void store_klass(Register dst, Register src); void load_heap_oop(Register dst, Address src); void store_heap_oop(Address dst, Register src); // Used for storing NULL. All other oop constants should be // stored using routines that take a jobject. void store_heap_oop_null(Address dst); void load_prototype_header(Register dst, Register src); #ifdef _LP64 void store_klass_gap(Register dst, Register src); // This dummy is to prevent a call to store_heap_oop from // converting a zero (like NULL) into a Register by giving // the compiler two choices it can't resolve void store_heap_oop(Address dst, void* dummy); void encode_heap_oop(Register r); void decode_heap_oop(Register r); void encode_heap_oop_not_null(Register r); void decode_heap_oop_not_null(Register r); void encode_heap_oop_not_null(Register dst, Register src); void decode_heap_oop_not_null(Register dst, Register src); void set_narrow_oop(Register dst, jobject obj); void set_narrow_oop(Address dst, jobject obj); void cmp_narrow_oop(Register dst, jobject obj); void cmp_narrow_oop(Address dst, jobject obj); // if heap base register is used - reinit it with the correct value void reinit_heapbase(); DEBUG_ONLY(void verify_heapbase(const char* msg);) #endif // _LP64 // Int division/remainder for Java // (as idivl, but checks for special case as described in JVM spec.) // returns idivl instruction offset for implicit exception handling int corrected_idivl(Register reg); // Long division/remainder for Java // (as idivq, but checks for special case as described in JVM spec.) // returns idivq instruction offset for implicit exception handling int corrected_idivq(Register reg); void int3(); // Long operation macros for a 32bit cpu // Long negation for Java void lneg(Register hi, Register lo); // Long multiplication for Java // (destroys contents of eax, ebx, ecx and edx) void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y // Long shifts for Java // (semantics as described in JVM spec.) void lshl(Register hi, Register lo); // hi:lo << (rcx & 0x3f) void lshr(Register hi, Register lo, bool sign_extension = false); // hi:lo >> (rcx & 0x3f) // Long compare for Java // (semantics as described in JVM spec.) void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y) // misc // Sign extension void sign_extend_short(Register reg); void sign_extend_byte(Register reg); // Division by power of 2, rounding towards 0 void division_with_shift(Register reg, int shift_value); // Compares the top-most stack entries on the FPU stack and sets the eflags as follows: // // CF (corresponds to C0) if x < y // PF (corresponds to C2) if unordered // ZF (corresponds to C3) if x = y // // The arguments are in reversed order on the stack (i.e., top of stack is first argument). // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code) void fcmp(Register tmp); // Variant of the above which allows y to be further down the stack // and which only pops x and y if specified. If pop_right is // specified then pop_left must also be specified. void fcmp(Register tmp, int index, bool pop_left, bool pop_right); // Floating-point comparison for Java // Compares the top-most stack entries on the FPU stack and stores the result in dst. // The arguments are in reversed order on the stack (i.e., top of stack is first argument). // (semantics as described in JVM spec.) void fcmp2int(Register dst, bool unordered_is_less); // Variant of the above which allows y to be further down the stack // and which only pops x and y if specified. If pop_right is // specified then pop_left must also be specified. void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right); // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards) // tmp is a temporary register, if none is available use noreg void fremr(Register tmp); // same as fcmp2int, but using SSE2 void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less); // Inlined sin/cos generator for Java; must not use CPU instruction // directly on Intel as it does not have high enough precision // outside of the range [-pi/4, pi/4]. Extra argument indicate the // number of FPU stack slots in use; all but the topmost will // require saving if a slow case is necessary. Assumes argument is // on FP TOS; result is on FP TOS. No cpu registers are changed by // this code. void trigfunc(char trig, int num_fpu_regs_in_use = 1); // branch to L if FPU flag C2 is set/not set // tmp is a temporary register, if none is available use noreg void jC2 (Register tmp, Label& L); void jnC2(Register tmp, Label& L); // Pop ST (ffree & fincstp combined) void fpop(); // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack void push_fTOS(); // pops double TOS element from CPU stack and pushes on FPU stack void pop_fTOS(); void empty_FPU_stack(); void push_IU_state(); void pop_IU_state(); void push_FPU_state(); void pop_FPU_state(); void push_CPU_state(); void pop_CPU_state(); // Round up to a power of two void round_to(Register reg, int modulus); // Callee saved registers handling void push_callee_saved_registers(); void pop_callee_saved_registers(); // allocation void eden_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Label& slow_case // continuation point if fast allocation fails ); void tlab_allocate( Register obj, // result: pointer to object after successful allocation Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise int con_size_in_bytes, // object size in bytes if known at compile time Register t1, // temp register Register t2, // temp register Label& slow_case // continuation point if fast allocation fails ); void tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // interface method calling void lookup_interface_method(Register recv_klass, Register intf_klass, RegisterOrConstant itable_index, Register method_result, Register scan_temp, Label& no_such_interface); // Test sub_klass against super_klass, with fast and slow paths. // The fast path produces a tri-state answer: yes / no / maybe-slow. // One of the three labels can be NULL, meaning take the fall-through. // If super_check_offset is -1, the value is loaded up from super_klass. // No registers are killed, except temp_reg. void check_klass_subtype_fast_path(Register sub_klass, Register super_klass, Register temp_reg, Label* L_success, Label* L_failure, Label* L_slow_path, RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); // The rest of the type check; must be wired to a corresponding fast path. // It does not repeat the fast path logic, so don't use it standalone. // The temp_reg and temp2_reg can be noreg, if no temps are available. // Updates the sub's secondary super cache as necessary. // If set_cond_codes, condition codes will be Z on success, NZ on failure. void check_klass_subtype_slow_path(Register sub_klass, Register super_klass, Register temp_reg, Register temp2_reg, Label* L_success, Label* L_failure, bool set_cond_codes = false); // Simplified, combined version, good for typical uses. // Falls through on failure. void check_klass_subtype(Register sub_klass, Register super_klass, Register temp_reg, Label& L_success); // method handles (JSR 292) void check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type); void load_method_handle_vmslots(Register vmslots_reg, Register mh_reg, Register temp_reg); void jump_to_method_handle_entry(Register mh_reg, Register temp_reg); Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0); //---- void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0 // Debugging // only if +VerifyOops void verify_oop(Register reg, const char* s = "broken oop"); void verify_oop_addr(Address addr, const char * s = "broken oop addr"); // only if +VerifyFPU void verify_FPU(int stack_depth, const char* s = "illegal FPU state"); // prints msg, dumps registers and stops execution void stop(const char* msg); // prints msg and continues void warn(const char* msg); static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg); static void debug64(char* msg, int64_t pc, int64_t regs[]); void os_breakpoint(); void untested() { stop("untested"); } void unimplemented(const char* what = "") { char* b = new char[1024]; jio_snprintf(b, 1024, "unimplemented: %s", what); stop(b); } void should_not_reach_here() { stop("should not reach here"); } void print_CPU_state(); // Stack overflow checking void bang_stack_with_offset(int offset) { // stack grows down, caller passes positive offset assert(offset > 0, "must bang with negative offset"); movl(Address(rsp, (-offset)), rax); } // Writes to stack successive pages until offset reached to check for // stack overflow + shadow pages. Also, clobbers tmp void bang_stack_size(Register size, Register tmp); virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset); // Support for serializing memory accesses between threads void serialize_memory(Register thread, Register tmp); void verify_tlab(); // Biased locking support // lock_reg and obj_reg must be loaded up with the appropriate values. // swap_reg must be rax, and is killed. // tmp_reg is optional. If it is supplied (i.e., != noreg) it will // be killed; if not supplied, push/pop will be used internally to // allocate a temporary (inefficient, avoid if possible). // Optional slow case is for implementations (interpreter and C1) which branch to // slow case directly. Leaves condition codes set for C2's Fast_Lock node. // Returns offset of first potentially-faulting instruction for null // check info (currently consumed only by C1). If // swap_reg_contains_mark is true then returns -1 as it is assumed // the calling code has already passed any potential faults. int biased_locking_enter(Register lock_reg, Register obj_reg, Register swap_reg, Register tmp_reg, bool swap_reg_contains_mark, Label& done, Label* slow_case = NULL, BiasedLockingCounters* counters = NULL); void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done); Condition negate_condition(Condition cond); // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit // operands. In general the names are modified to avoid hiding the instruction in Assembler // so that we don't need to implement all the varieties in the Assembler with trivial wrappers // here in MacroAssembler. The major exception to this rule is call // Arithmetics void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; } void addptr(Address dst, Register src); void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); } void addptr(Register dst, int32_t src); void addptr(Register dst, Register src); void andptr(Register dst, int32_t src); void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; } void cmp8(AddressLiteral src1, int imm); // renamed to drag out the casting of address to int32_t/intptr_t void cmp32(Register src1, int32_t imm); void cmp32(AddressLiteral src1, int32_t imm); // compare reg - mem, or reg - &mem void cmp32(Register src1, AddressLiteral src2); void cmp32(Register src1, Address src2); #ifndef _LP64 void cmpoop(Address dst, jobject obj); void cmpoop(Register dst, jobject obj); #endif // _LP64 // NOTE src2 must be the lval. This is NOT an mem-mem compare void cmpptr(Address src1, AddressLiteral src2); void cmpptr(Register src1, AddressLiteral src2); void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; } // cmp64 to avoild hiding cmpq void cmp64(Register src1, AddressLiteral src); void cmpxchgptr(Register reg, Address adr); void locked_cmpxchgptr(Register reg, AddressLiteral adr); void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); } void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); } void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); } void shlptr(Register dst, int32_t shift); void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); } void shrptr(Register dst, int32_t shift); void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); } void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); } void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); } void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); } void subptr(Register dst, int32_t src); void subptr(Register dst, Register src); void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); } void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; } void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; } // Helper functions for statistics gathering. // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes. void cond_inc32(Condition cond, AddressLiteral counter_addr); // Unconditional atomic increment. void atomic_incl(AddressLiteral counter_addr); void lea(Register dst, AddressLiteral adr); void lea(Address dst, AddressLiteral adr); void lea(Register dst, Address adr) { Assembler::lea(dst, adr); } void leal32(Register dst, Address src) { leal(dst, src); } void test32(Register src1, AddressLiteral src2); void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); } void testptr(Register src, int32_t imm32) { LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); } void testptr(Register src1, Register src2); void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); } // Calls void call(Label& L, relocInfo::relocType rtype); void call(Register entry); // NOTE: this call tranfers to the effective address of entry NOT // the address contained by entry. This is because this is more natural // for jumps/calls. void call(AddressLiteral entry); // Jumps // NOTE: these jumps tranfer to the effective address of dst NOT // the address contained by dst. This is because this is more natural // for jumps/calls. void jump(AddressLiteral dst); void jump_cc(Condition cc, AddressLiteral dst); // 32bit can do a case table jump in one instruction but we no longer allow the base // to be installed in the Address class. This jump will tranfers to the address // contained in the location described by entry (not the address of entry) void jump(ArrayAddress entry); // Floating void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); } void andpd(XMMRegister dst, AddressLiteral src); void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); } void comiss(XMMRegister dst, AddressLiteral src); void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); } void comisd(XMMRegister dst, AddressLiteral src); void fldcw(Address src) { Assembler::fldcw(src); } void fldcw(AddressLiteral src); void fld_s(int index) { Assembler::fld_s(index); } void fld_s(Address src) { Assembler::fld_s(src); } void fld_s(AddressLiteral src); void fld_d(Address src) { Assembler::fld_d(src); } void fld_d(AddressLiteral src); void fld_x(Address src) { Assembler::fld_x(src); } void fld_x(AddressLiteral src); void ldmxcsr(Address src) { Assembler::ldmxcsr(src); } void ldmxcsr(AddressLiteral src); private: // these are private because users should be doing movflt/movdbl void movss(Address dst, XMMRegister src) { Assembler::movss(dst, src); } void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); } void movss(XMMRegister dst, Address src) { Assembler::movss(dst, src); } void movss(XMMRegister dst, AddressLiteral src); void movlpd(XMMRegister dst, Address src) {Assembler::movlpd(dst, src); } void movlpd(XMMRegister dst, AddressLiteral src); public: void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); } void movsd(Address dst, XMMRegister src) { Assembler::movsd(dst, src); } void movsd(XMMRegister dst, Address src) { Assembler::movsd(dst, src); } void movsd(XMMRegister dst, AddressLiteral src); void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); } void ucomiss(XMMRegister dst, Address src) { Assembler::ucomiss(dst, src); } void ucomiss(XMMRegister dst, AddressLiteral src); void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); } void ucomisd(XMMRegister dst, Address src) { Assembler::ucomisd(dst, src); } void ucomisd(XMMRegister dst, AddressLiteral src); // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values void xorpd(XMMRegister dst, XMMRegister src) { Assembler::xorpd(dst, src); } void xorpd(XMMRegister dst, Address src) { Assembler::xorpd(dst, src); } void xorpd(XMMRegister dst, AddressLiteral src); // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values void xorps(XMMRegister dst, XMMRegister src) { Assembler::xorps(dst, src); } void xorps(XMMRegister dst, Address src) { Assembler::xorps(dst, src); } void xorps(XMMRegister dst, AddressLiteral src); // Data void cmov(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); } void cmovptr(Condition cc, Register dst, Address src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); } void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmovl(cc, dst, src)); } void movoop(Register dst, jobject obj); void movoop(Address dst, jobject obj); void movptr(ArrayAddress dst, Register src); // can this do an lea? void movptr(Register dst, ArrayAddress src); void movptr(Register dst, Address src); void movptr(Register dst, AddressLiteral src); void movptr(Register dst, intptr_t src); void movptr(Register dst, Register src); void movptr(Address dst, intptr_t src); void movptr(Address dst, Register src); #ifdef _LP64 // Generally the next two are only used for moving NULL // Although there are situations in initializing the mark word where // they could be used. They are dangerous. // They only exist on LP64 so that int32_t and intptr_t are not the same // and we have ambiguous declarations. void movptr(Address dst, int32_t imm32); void movptr(Register dst, int32_t imm32); #endif // _LP64 // to avoid hiding movl void mov32(AddressLiteral dst, Register src); void mov32(Register dst, AddressLiteral src); // to avoid hiding movb void movbyte(ArrayAddress dst, int src); // Can push value or effective address void pushptr(AddressLiteral src); void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); } void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); } void pushoop(jobject obj); // sign extend as need a l to ptr sized element void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); } void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); } // IndexOf strings. void string_indexof(Register str1, Register str2, Register cnt1, Register cnt2, Register result, XMMRegister vec, Register tmp); // Compare strings. void string_compare(Register str1, Register str2, Register cnt1, Register cnt2, Register result, XMMRegister vec1, XMMRegister vec2); // Compare char[] arrays. void char_arrays_equals(bool is_array_equ, Register ary1, Register ary2, Register limit, Register result, Register chr, XMMRegister vec1, XMMRegister vec2); // Fill primitive arrays void generate_fill(BasicType t, bool aligned, Register to, Register value, Register count, Register rtmp, XMMRegister xtmp); #undef VIRTUAL }; /** * class SkipIfEqual: * * Instantiating this class will result in assembly code being output that will * jump around any code emitted between the creation of the instance and it's * automatic destruction at the end of a scope block, depending on the value of * the flag passed to the constructor, which will be checked at run-time. */ class SkipIfEqual { private: MacroAssembler* _masm; Label _label; public: SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value); ~SkipIfEqual(); }; #ifdef ASSERT inline bool AbstractAssembler::pd_check_instruction_mark() { return true; } #endif #endif // CPU_X86_VM_ASSEMBLER_X86_HPP