1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "assembler_sparc.inline.hpp"
  27 #include "gc_interface/collectedHeap.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "memory/cardTableModRefBS.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "prims/methodHandles.hpp"
  32 #include "runtime/biasedLocking.hpp"
  33 #include "runtime/interfaceSupport.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #ifndef SERIALGC
  39 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  40 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  41 #include "gc_implementation/g1/heapRegion.hpp"
  42 #endif
  43 
  44 // Convert the raw encoding form into the form expected by the
  45 // constructor for Address.
  46 Address Address::make_raw(int base, int index, int scale, int disp, bool disp_is_oop) {
  47   assert(scale == 0, "not supported");
  48   RelocationHolder rspec;
  49   if (disp_is_oop) {
  50     rspec = Relocation::spec_simple(relocInfo::oop_type);
  51   }
  52 
  53   Register rindex = as_Register(index);
  54   if (rindex != G0) {
  55     Address madr(as_Register(base), rindex);
  56     madr._rspec = rspec;
  57     return madr;
  58   } else {
  59     Address madr(as_Register(base), disp);
  60     madr._rspec = rspec;
  61     return madr;
  62   }
  63 }
  64 
  65 Address Argument::address_in_frame() const {
  66   // Warning: In LP64 mode disp will occupy more than 10 bits, but
  67   //          op codes such as ld or ldx, only access disp() to get
  68   //          their simm13 argument.
  69   int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
  70   if (is_in())
  71     return Address(FP, disp); // In argument.
  72   else
  73     return Address(SP, disp); // Out argument.
  74 }
  75 
  76 static const char* argumentNames[][2] = {
  77   {"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
  78   {"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
  79   {"A(n>9)","P(n>9)"}
  80 };
  81 
  82 const char* Argument::name() const {
  83   int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
  84   int num = number();
  85   if (num >= nofArgs)  num = nofArgs - 1;
  86   return argumentNames[num][is_in() ? 1 : 0];
  87 }
  88 
  89 void Assembler::print_instruction(int inst) {
  90   const char* s;
  91   switch (inv_op(inst)) {
  92   default:         s = "????"; break;
  93   case call_op:    s = "call"; break;
  94   case branch_op:
  95     switch (inv_op2(inst)) {
  96       case bpr_op2:    s = "bpr";  break;
  97       case fb_op2:     s = "fb";   break;
  98       case fbp_op2:    s = "fbp";  break;
  99       case br_op2:     s = "br";   break;
 100       case bp_op2:     s = "bp";   break;
 101       case cb_op2:     s = "cb";   break;
 102       default:         s = "????"; break;
 103     }
 104   }
 105   ::tty->print("%s", s);
 106 }
 107 
 108 
 109 // Patch instruction inst at offset inst_pos to refer to dest_pos
 110 // and return the resulting instruction.
 111 // We should have pcs, not offsets, but since all is relative, it will work out
 112 // OK.
 113 int Assembler::patched_branch(int dest_pos, int inst, int inst_pos) {
 114 
 115   int m; // mask for displacement field
 116   int v; // new value for displacement field
 117   const int word_aligned_ones = -4;
 118   switch (inv_op(inst)) {
 119   default: ShouldNotReachHere();
 120   case call_op:    m = wdisp(word_aligned_ones, 0, 30);  v = wdisp(dest_pos, inst_pos, 30); break;
 121   case branch_op:
 122     switch (inv_op2(inst)) {
 123       case bpr_op2:    m = wdisp16(word_aligned_ones, 0);      v = wdisp16(dest_pos, inst_pos);     break;
 124       case fbp_op2:    m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 125       case bp_op2:     m = wdisp(  word_aligned_ones, 0, 19);  v = wdisp(  dest_pos, inst_pos, 19); break;
 126       case fb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 127       case br_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 128       case cb_op2:     m = wdisp(  word_aligned_ones, 0, 22);  v = wdisp(  dest_pos, inst_pos, 22); break;
 129       default: ShouldNotReachHere();
 130     }
 131   }
 132   return  inst & ~m  |  v;
 133 }
 134 
 135 // Return the offset of the branch destionation of instruction inst
 136 // at offset pos.
 137 // Should have pcs, but since all is relative, it works out.
 138 int Assembler::branch_destination(int inst, int pos) {
 139   int r;
 140   switch (inv_op(inst)) {
 141   default: ShouldNotReachHere();
 142   case call_op:        r = inv_wdisp(inst, pos, 30);  break;
 143   case branch_op:
 144     switch (inv_op2(inst)) {
 145       case bpr_op2:    r = inv_wdisp16(inst, pos);    break;
 146       case fbp_op2:    r = inv_wdisp(  inst, pos, 19);  break;
 147       case bp_op2:     r = inv_wdisp(  inst, pos, 19);  break;
 148       case fb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 149       case br_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 150       case cb_op2:     r = inv_wdisp(  inst, pos, 22);  break;
 151       default: ShouldNotReachHere();
 152     }
 153   }
 154   return r;
 155 }
 156 
 157 int AbstractAssembler::code_fill_byte() {
 158   return 0x00;                  // illegal instruction 0x00000000
 159 }
 160 
 161 Assembler::Condition Assembler::reg_cond_to_cc_cond(Assembler::RCondition in) {
 162   switch (in) {
 163   case rc_z:   return equal;
 164   case rc_lez: return lessEqual;
 165   case rc_lz:  return less;
 166   case rc_nz:  return notEqual;
 167   case rc_gz:  return greater;
 168   case rc_gez: return greaterEqual;
 169   default:
 170     ShouldNotReachHere();
 171   }
 172   return equal;
 173 }
 174 
 175 // Generate a bunch 'o stuff (including v9's
 176 #ifndef PRODUCT
 177 void Assembler::test_v9() {
 178   add(    G0, G1, G2 );
 179   add(    G3,  0, G4 );
 180 
 181   addcc(  G5, G6, G7 );
 182   addcc(  I0,  1, I1 );
 183   addc(   I2, I3, I4 );
 184   addc(   I5, -1, I6 );
 185   addccc( I7, L0, L1 );
 186   addccc( L2, (1 << 12) - 2, L3 );
 187 
 188   Label lbl1, lbl2, lbl3;
 189 
 190   bind(lbl1);
 191 
 192   bpr( rc_z,    true, pn, L4, pc(),  relocInfo::oop_type );
 193   delayed()->nop();
 194   bpr( rc_lez, false, pt, L5, lbl1);
 195   delayed()->nop();
 196 
 197   fb( f_never,     true, pc() + 4,  relocInfo::none);
 198   delayed()->nop();
 199   fb( f_notEqual, false, lbl2 );
 200   delayed()->nop();
 201 
 202   fbp( f_notZero,        true, fcc0, pn, pc() - 4,  relocInfo::none);
 203   delayed()->nop();
 204   fbp( f_lessOrGreater, false, fcc1, pt, lbl3 );
 205   delayed()->nop();
 206 
 207   br( equal,  true, pc() + 1024, relocInfo::none);
 208   delayed()->nop();
 209   br( lessEqual, false, lbl1 );
 210   delayed()->nop();
 211   br( never, false, lbl1 );
 212   delayed()->nop();
 213 
 214   bp( less,               true, icc, pn, pc(), relocInfo::none);
 215   delayed()->nop();
 216   bp( lessEqualUnsigned, false, xcc, pt, lbl2 );
 217   delayed()->nop();
 218 
 219   call( pc(), relocInfo::none);
 220   delayed()->nop();
 221   call( lbl3 );
 222   delayed()->nop();
 223 
 224 
 225   casa(  L6, L7, O0 );
 226   casxa( O1, O2, O3, 0 );
 227 
 228   udiv(   O4, O5, O7 );
 229   udiv(   G0, (1 << 12) - 1, G1 );
 230   sdiv(   G1, G2, G3 );
 231   sdiv(   G4, -((1 << 12) - 1), G5 );
 232   udivcc( G6, G7, I0 );
 233   udivcc( I1, -((1 << 12) - 2), I2 );
 234   sdivcc( I3, I4, I5 );
 235   sdivcc( I6, -((1 << 12) - 0), I7 );
 236 
 237   done();
 238   retry();
 239 
 240   fadd( FloatRegisterImpl::S, F0,  F1, F2 );
 241   fsub( FloatRegisterImpl::D, F34, F0, F62 );
 242 
 243   fcmp(  FloatRegisterImpl::Q, fcc0, F0, F60);
 244   fcmpe( FloatRegisterImpl::S, fcc1, F31, F30);
 245 
 246   ftox( FloatRegisterImpl::D, F2, F4 );
 247   ftoi( FloatRegisterImpl::Q, F4, F8 );
 248 
 249   ftof( FloatRegisterImpl::S, FloatRegisterImpl::Q, F3, F12 );
 250 
 251   fxtof( FloatRegisterImpl::S, F4, F5 );
 252   fitof( FloatRegisterImpl::D, F6, F8 );
 253 
 254   fmov( FloatRegisterImpl::Q, F16, F20 );
 255   fneg( FloatRegisterImpl::S, F6, F7 );
 256   fabs( FloatRegisterImpl::D, F10, F12 );
 257 
 258   fmul( FloatRegisterImpl::Q,  F24, F28, F32 );
 259   fmul( FloatRegisterImpl::S,  FloatRegisterImpl::D,  F8, F9, F14 );
 260   fdiv( FloatRegisterImpl::S,  F10, F11, F12 );
 261 
 262   fsqrt( FloatRegisterImpl::S, F13, F14 );
 263 
 264   flush( L0, L1 );
 265   flush( L2, -1 );
 266 
 267   flushw();
 268 
 269   illtrap( (1 << 22) - 2);
 270 
 271   impdep1( 17, (1 << 19) - 1 );
 272   impdep2( 3,  0 );
 273 
 274   jmpl( L3, L4, L5 );
 275   delayed()->nop();
 276   jmpl( L6, -1, L7, Relocation::spec_simple(relocInfo::none));
 277   delayed()->nop();
 278 
 279 
 280   ldf(    FloatRegisterImpl::S, O0, O1, F15 );
 281   ldf(    FloatRegisterImpl::D, O2, -1, F14 );
 282 
 283 
 284   ldfsr(  O3, O4 );
 285   ldfsr(  O5, -1 );
 286   ldxfsr( O6, O7 );
 287   ldxfsr( I0, -1 );
 288 
 289   ldfa(  FloatRegisterImpl::D, I1, I2, 1, F16 );
 290   ldfa(  FloatRegisterImpl::Q, I3, -1,    F36 );
 291 
 292   ldsb(  I4, I5, I6 );
 293   ldsb(  I7, -1, G0 );
 294   ldsh(  G1, G3, G4 );
 295   ldsh(  G5, -1, G6 );
 296   ldsw(  G7, L0, L1 );
 297   ldsw(  L2, -1, L3 );
 298   ldub(  L4, L5, L6 );
 299   ldub(  L7, -1, O0 );
 300   lduh(  O1, O2, O3 );
 301   lduh(  O4, -1, O5 );
 302   lduw(  O6, O7, G0 );
 303   lduw(  G1, -1, G2 );
 304   ldx(   G3, G4, G5 );
 305   ldx(   G6, -1, G7 );
 306   ldd(   I0, I1, I2 );
 307   ldd(   I3, -1, I4 );
 308 
 309   ldsba(  I5, I6, 2, I7 );
 310   ldsba(  L0, -1, L1 );
 311   ldsha(  L2, L3, 3, L4 );
 312   ldsha(  L5, -1, L6 );
 313   ldswa(  L7, O0, (1 << 8) - 1, O1 );
 314   ldswa(  O2, -1, O3 );
 315   lduba(  O4, O5, 0, O6 );
 316   lduba(  O7, -1, I0 );
 317   lduha(  I1, I2, 1, I3 );
 318   lduha(  I4, -1, I5 );
 319   lduwa(  I6, I7, 2, L0 );
 320   lduwa(  L1, -1, L2 );
 321   ldxa(   L3, L4, 3, L5 );
 322   ldxa(   L6, -1, L7 );
 323   ldda(   G0, G1, 4, G2 );
 324   ldda(   G3, -1, G4 );
 325 
 326   ldstub(  G5, G6, G7 );
 327   ldstub(  O0, -1, O1 );
 328 
 329   ldstuba( O2, O3, 5, O4 );
 330   ldstuba( O5, -1, O6 );
 331 
 332   and3(    I0, L0, O0 );
 333   and3(    G7, -1, O7 );
 334   andcc(   L2, I2, G2 );
 335   andcc(   L4, -1, G4 );
 336   andn(    I5, I6, I7 );
 337   andn(    I6, -1, I7 );
 338   andncc(  I5, I6, I7 );
 339   andncc(  I7, -1, I6 );
 340   or3(     I5, I6, I7 );
 341   or3(     I7, -1, I6 );
 342   orcc(    I5, I6, I7 );
 343   orcc(    I7, -1, I6 );
 344   orn(     I5, I6, I7 );
 345   orn(     I7, -1, I6 );
 346   orncc(   I5, I6, I7 );
 347   orncc(   I7, -1, I6 );
 348   xor3(    I5, I6, I7 );
 349   xor3(    I7, -1, I6 );
 350   xorcc(   I5, I6, I7 );
 351   xorcc(   I7, -1, I6 );
 352   xnor(    I5, I6, I7 );
 353   xnor(    I7, -1, I6 );
 354   xnorcc(  I5, I6, I7 );
 355   xnorcc(  I7, -1, I6 );
 356 
 357   membar( Membar_mask_bits(StoreStore | LoadStore | StoreLoad | LoadLoad | Sync | MemIssue | Lookaside ) );
 358   membar( StoreStore );
 359   membar( LoadStore );
 360   membar( StoreLoad );
 361   membar( LoadLoad );
 362   membar( Sync );
 363   membar( MemIssue );
 364   membar( Lookaside );
 365 
 366   fmov( FloatRegisterImpl::S, f_ordered,  true, fcc2, F16, F17 );
 367   fmov( FloatRegisterImpl::D, rc_lz, L5, F18, F20 );
 368 
 369   movcc( overflowClear,  false, icc, I6, L4 );
 370   movcc( f_unorderedOrEqual, true, fcc2, (1 << 10) - 1, O0 );
 371 
 372   movr( rc_nz, I5, I6, I7 );
 373   movr( rc_gz, L1, -1,  L2 );
 374 
 375   mulx(  I5, I6, I7 );
 376   mulx(  I7, -1, I6 );
 377   sdivx( I5, I6, I7 );
 378   sdivx( I7, -1, I6 );
 379   udivx( I5, I6, I7 );
 380   udivx( I7, -1, I6 );
 381 
 382   umul(   I5, I6, I7 );
 383   umul(   I7, -1, I6 );
 384   smul(   I5, I6, I7 );
 385   smul(   I7, -1, I6 );
 386   umulcc( I5, I6, I7 );
 387   umulcc( I7, -1, I6 );
 388   smulcc( I5, I6, I7 );
 389   smulcc( I7, -1, I6 );
 390 
 391   mulscc(   I5, I6, I7 );
 392   mulscc(   I7, -1, I6 );
 393 
 394   nop();
 395 
 396 
 397   popc( G0,  G1);
 398   popc( -1, G2);
 399 
 400   prefetch(   L1, L2,    severalReads );
 401   prefetch(   L3, -1,    oneRead );
 402   prefetcha(  O3, O2, 6, severalWritesAndPossiblyReads );
 403   prefetcha(  G2, -1,    oneWrite );
 404 
 405   rett( I7, I7);
 406   delayed()->nop();
 407   rett( G0, -1, relocInfo::none);
 408   delayed()->nop();
 409 
 410   save(    I5, I6, I7 );
 411   save(    I7, -1, I6 );
 412   restore( I5, I6, I7 );
 413   restore( I7, -1, I6 );
 414 
 415   saved();
 416   restored();
 417 
 418   sethi( 0xaaaaaaaa, I3, Relocation::spec_simple(relocInfo::none));
 419 
 420   sll(  I5, I6, I7 );
 421   sll(  I7, 31, I6 );
 422   srl(  I5, I6, I7 );
 423   srl(  I7,  0, I6 );
 424   sra(  I5, I6, I7 );
 425   sra(  I7, 30, I6 );
 426   sllx( I5, I6, I7 );
 427   sllx( I7, 63, I6 );
 428   srlx( I5, I6, I7 );
 429   srlx( I7,  0, I6 );
 430   srax( I5, I6, I7 );
 431   srax( I7, 62, I6 );
 432 
 433   sir( -1 );
 434 
 435   stbar();
 436 
 437   stf(    FloatRegisterImpl::Q, F40, G0, I7 );
 438   stf(    FloatRegisterImpl::S, F18, I3, -1 );
 439 
 440   stfsr(  L1, L2 );
 441   stfsr(  I7, -1 );
 442   stxfsr( I6, I5 );
 443   stxfsr( L4, -1 );
 444 
 445   stfa(  FloatRegisterImpl::D, F22, I6, I7, 7 );
 446   stfa(  FloatRegisterImpl::Q, F44, G0, -1 );
 447 
 448   stb(  L5, O2, I7 );
 449   stb(  I7, I6, -1 );
 450   sth(  L5, O2, I7 );
 451   sth(  I7, I6, -1 );
 452   stw(  L5, O2, I7 );
 453   stw(  I7, I6, -1 );
 454   stx(  L5, O2, I7 );
 455   stx(  I7, I6, -1 );
 456   std(  L5, O2, I7 );
 457   std(  I7, I6, -1 );
 458 
 459   stba(  L5, O2, I7, 8 );
 460   stba(  I7, I6, -1    );
 461   stha(  L5, O2, I7, 9 );
 462   stha(  I7, I6, -1    );
 463   stwa(  L5, O2, I7, 0 );
 464   stwa(  I7, I6, -1    );
 465   stxa(  L5, O2, I7, 11 );
 466   stxa(  I7, I6, -1     );
 467   stda(  L5, O2, I7, 12 );
 468   stda(  I7, I6, -1     );
 469 
 470   sub(    I5, I6, I7 );
 471   sub(    I7, -1, I6 );
 472   subcc(  I5, I6, I7 );
 473   subcc(  I7, -1, I6 );
 474   subc(   I5, I6, I7 );
 475   subc(   I7, -1, I6 );
 476   subccc( I5, I6, I7 );
 477   subccc( I7, -1, I6 );
 478 
 479   swap( I5, I6, I7 );
 480   swap( I7, -1, I6 );
 481 
 482   swapa(   G0, G1, 13, G2 );
 483   swapa(   I7, -1,     I6 );
 484 
 485   taddcc(    I5, I6, I7 );
 486   taddcc(    I7, -1, I6 );
 487   taddcctv(  I5, I6, I7 );
 488   taddcctv(  I7, -1, I6 );
 489 
 490   tsubcc(    I5, I6, I7 );
 491   tsubcc(    I7, -1, I6 );
 492   tsubcctv(  I5, I6, I7 );
 493   tsubcctv(  I7, -1, I6 );
 494 
 495   trap( overflowClear, xcc, G0, G1 );
 496   trap( lessEqual,     icc, I7, 17 );
 497 
 498   bind(lbl2);
 499   bind(lbl3);
 500 
 501   code()->decode();
 502 }
 503 
 504 // Generate a bunch 'o stuff unique to V8
 505 void Assembler::test_v8_onlys() {
 506   Label lbl1;
 507 
 508   cb( cp_0or1or2, false, pc() - 4, relocInfo::none);
 509   delayed()->nop();
 510   cb( cp_never,    true, lbl1);
 511   delayed()->nop();
 512 
 513   cpop1(1, 2, 3, 4);
 514   cpop2(5, 6, 7, 8);
 515 
 516   ldc( I0, I1, 31);
 517   ldc( I2, -1,  0);
 518 
 519   lddc( I4, I4, 30);
 520   lddc( I6,  0, 1 );
 521 
 522   ldcsr( L0, L1, 0);
 523   ldcsr( L1, (1 << 12) - 1, 17 );
 524 
 525   stc( 31, L4, L5);
 526   stc( 30, L6, -(1 << 12) );
 527 
 528   stdc( 0, L7, G0);
 529   stdc( 1, G1, 0 );
 530 
 531   stcsr( 16, G2, G3);
 532   stcsr( 17, G4, 1 );
 533 
 534   stdcq( 4, G5, G6);
 535   stdcq( 5, G7, -1 );
 536 
 537   bind(lbl1);
 538 
 539   code()->decode();
 540 }
 541 #endif
 542 
 543 // Implementation of MacroAssembler
 544 
 545 void MacroAssembler::null_check(Register reg, int offset) {
 546   if (needs_explicit_null_check((intptr_t)offset)) {
 547     // provoke OS NULL exception if reg = NULL by
 548     // accessing M[reg] w/o changing any registers
 549     ld_ptr(reg, 0, G0);
 550   }
 551   else {
 552     // nothing to do, (later) access of M[reg + offset]
 553     // will provoke OS NULL exception if reg = NULL
 554   }
 555 }
 556 
 557 // Ring buffer jumps
 558 
 559 #ifndef PRODUCT
 560 void MacroAssembler::ret(  bool trace )   { if (trace) {
 561                                                     mov(I7, O7); // traceable register
 562                                                     JMP(O7, 2 * BytesPerInstWord);
 563                                                   } else {
 564                                                     jmpl( I7, 2 * BytesPerInstWord, G0 );
 565                                                   }
 566                                                 }
 567 
 568 void MacroAssembler::retl( bool trace )  { if (trace) JMP(O7, 2 * BytesPerInstWord);
 569                                                  else jmpl( O7, 2 * BytesPerInstWord, G0 ); }
 570 #endif /* PRODUCT */
 571 
 572 
 573 void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
 574   assert_not_delayed();
 575   // This can only be traceable if r1 & r2 are visible after a window save
 576   if (TraceJumps) {
 577 #ifndef PRODUCT
 578     save_frame(0);
 579     verify_thread();
 580     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 581     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 582     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 583     add(O2, O1, O1);
 584 
 585     add(r1->after_save(), r2->after_save(), O2);
 586     set((intptr_t)file, O3);
 587     set(line, O4);
 588     Label L;
 589     // get nearby pc, store jmp target
 590     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 591     delayed()->st(O2, O1, 0);
 592     bind(L);
 593 
 594     // store nearby pc
 595     st(O7, O1, sizeof(intptr_t));
 596     // store file
 597     st(O3, O1, 2*sizeof(intptr_t));
 598     // store line
 599     st(O4, O1, 3*sizeof(intptr_t));
 600     add(O0, 1, O0);
 601     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 602     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 603     restore();
 604 #endif /* PRODUCT */
 605   }
 606   jmpl(r1, r2, G0);
 607 }
 608 void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
 609   assert_not_delayed();
 610   // This can only be traceable if r1 is visible after a window save
 611   if (TraceJumps) {
 612 #ifndef PRODUCT
 613     save_frame(0);
 614     verify_thread();
 615     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 616     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 617     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 618     add(O2, O1, O1);
 619 
 620     add(r1->after_save(), offset, O2);
 621     set((intptr_t)file, O3);
 622     set(line, O4);
 623     Label L;
 624     // get nearby pc, store jmp target
 625     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 626     delayed()->st(O2, O1, 0);
 627     bind(L);
 628 
 629     // store nearby pc
 630     st(O7, O1, sizeof(intptr_t));
 631     // store file
 632     st(O3, O1, 2*sizeof(intptr_t));
 633     // store line
 634     st(O4, O1, 3*sizeof(intptr_t));
 635     add(O0, 1, O0);
 636     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 637     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 638     restore();
 639 #endif /* PRODUCT */
 640   }
 641   jmp(r1, offset);
 642 }
 643 
 644 // This code sequence is relocatable to any address, even on LP64.
 645 void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
 646   assert_not_delayed();
 647   // Force fixed length sethi because NativeJump and NativeFarCall don't handle
 648   // variable length instruction streams.
 649   patchable_sethi(addrlit, temp);
 650   Address a(temp, addrlit.low10() + offset);  // Add the offset to the displacement.
 651   if (TraceJumps) {
 652 #ifndef PRODUCT
 653     // Must do the add here so relocation can find the remainder of the
 654     // value to be relocated.
 655     add(a.base(), a.disp(), a.base(), addrlit.rspec(offset));
 656     save_frame(0);
 657     verify_thread();
 658     ld(G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()), O0);
 659     add(G2_thread, in_bytes(JavaThread::jmp_ring_offset()), O1);
 660     sll(O0, exact_log2(4*sizeof(intptr_t)), O2);
 661     add(O2, O1, O1);
 662 
 663     set((intptr_t)file, O3);
 664     set(line, O4);
 665     Label L;
 666 
 667     // get nearby pc, store jmp target
 668     call(L, relocInfo::none);  // No relocation for call to pc+0x8
 669     delayed()->st(a.base()->after_save(), O1, 0);
 670     bind(L);
 671 
 672     // store nearby pc
 673     st(O7, O1, sizeof(intptr_t));
 674     // store file
 675     st(O3, O1, 2*sizeof(intptr_t));
 676     // store line
 677     st(O4, O1, 3*sizeof(intptr_t));
 678     add(O0, 1, O0);
 679     and3(O0, JavaThread::jump_ring_buffer_size  - 1, O0);
 680     st(O0, G2_thread, in_bytes(JavaThread::jmp_ring_index_offset()));
 681     restore();
 682     jmpl(a.base(), G0, d);
 683 #else
 684     jmpl(a.base(), a.disp(), d);
 685 #endif /* PRODUCT */
 686   } else {
 687     jmpl(a.base(), a.disp(), d);
 688   }
 689 }
 690 
 691 void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
 692   jumpl(addrlit, temp, G0, offset, file, line);
 693 }
 694 
 695 
 696 // Convert to C varargs format
 697 void MacroAssembler::set_varargs( Argument inArg, Register d ) {
 698   // spill register-resident args to their memory slots
 699   // (SPARC calling convention requires callers to have already preallocated these)
 700   // Note that the inArg might in fact be an outgoing argument,
 701   // if a leaf routine or stub does some tricky argument shuffling.
 702   // This routine must work even though one of the saved arguments
 703   // is in the d register (e.g., set_varargs(Argument(0, false), O0)).
 704   for (Argument savePtr = inArg;
 705        savePtr.is_register();
 706        savePtr = savePtr.successor()) {
 707     st_ptr(savePtr.as_register(), savePtr.address_in_frame());
 708   }
 709   // return the address of the first memory slot
 710   Address a = inArg.address_in_frame();
 711   add(a.base(), a.disp(), d);
 712 }
 713 
 714 // Conditional breakpoint (for assertion checks in assembly code)
 715 void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
 716   trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
 717 }
 718 
 719 // We want to use ST_BREAKPOINT here, but the debugger is confused by it.
 720 void MacroAssembler::breakpoint_trap() {
 721   trap(ST_RESERVED_FOR_USER_0);
 722 }
 723 
 724 // flush windows (except current) using flushw instruction if avail.
 725 void MacroAssembler::flush_windows() {
 726   if (VM_Version::v9_instructions_work())  flushw();
 727   else                                     flush_windows_trap();
 728 }
 729 
 730 // Write serialization page so VM thread can do a pseudo remote membar
 731 // We use the current thread pointer to calculate a thread specific
 732 // offset to write to within the page. This minimizes bus traffic
 733 // due to cache line collision.
 734 void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
 735   srl(thread, os::get_serialize_page_shift_count(), tmp2);
 736   if (Assembler::is_simm13(os::vm_page_size())) {
 737     and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
 738   }
 739   else {
 740     set((os::vm_page_size() - sizeof(int)), tmp1);
 741     and3(tmp2, tmp1, tmp2);
 742   }
 743   set(os::get_memory_serialize_page(), tmp1);
 744   st(G0, tmp1, tmp2);
 745 }
 746 
 747 
 748 
 749 void MacroAssembler::enter() {
 750   Unimplemented();
 751 }
 752 
 753 void MacroAssembler::leave() {
 754   Unimplemented();
 755 }
 756 
 757 void MacroAssembler::mult(Register s1, Register s2, Register d) {
 758   if(VM_Version::v9_instructions_work()) {
 759     mulx (s1, s2, d);
 760   } else {
 761     smul (s1, s2, d);
 762   }
 763 }
 764 
 765 void MacroAssembler::mult(Register s1, int simm13a, Register d) {
 766   if(VM_Version::v9_instructions_work()) {
 767     mulx (s1, simm13a, d);
 768   } else {
 769     smul (s1, simm13a, d);
 770   }
 771 }
 772 
 773 
 774 #ifdef ASSERT
 775 void MacroAssembler::read_ccr_v8_assert(Register ccr_save) {
 776   const Register s1 = G3_scratch;
 777   const Register s2 = G4_scratch;
 778   Label get_psr_test;
 779   // Get the condition codes the V8 way.
 780   read_ccr_trap(s1);
 781   mov(ccr_save, s2);
 782   // This is a test of V8 which has icc but not xcc
 783   // so mask off the xcc bits
 784   and3(s2, 0xf, s2);
 785   // Compare condition codes from the V8 and V9 ways.
 786   subcc(s2, s1, G0);
 787   br(Assembler::notEqual, true, Assembler::pt, get_psr_test);
 788   delayed()->breakpoint_trap();
 789   bind(get_psr_test);
 790 }
 791 
 792 void MacroAssembler::write_ccr_v8_assert(Register ccr_save) {
 793   const Register s1 = G3_scratch;
 794   const Register s2 = G4_scratch;
 795   Label set_psr_test;
 796   // Write out the saved condition codes the V8 way
 797   write_ccr_trap(ccr_save, s1, s2);
 798   // Read back the condition codes using the V9 instruction
 799   rdccr(s1);
 800   mov(ccr_save, s2);
 801   // This is a test of V8 which has icc but not xcc
 802   // so mask off the xcc bits
 803   and3(s2, 0xf, s2);
 804   and3(s1, 0xf, s1);
 805   // Compare the V8 way with the V9 way.
 806   subcc(s2, s1, G0);
 807   br(Assembler::notEqual, true, Assembler::pt, set_psr_test);
 808   delayed()->breakpoint_trap();
 809   bind(set_psr_test);
 810 }
 811 #else
 812 #define read_ccr_v8_assert(x)
 813 #define write_ccr_v8_assert(x)
 814 #endif // ASSERT
 815 
 816 void MacroAssembler::read_ccr(Register ccr_save) {
 817   if (VM_Version::v9_instructions_work()) {
 818     rdccr(ccr_save);
 819     // Test code sequence used on V8.  Do not move above rdccr.
 820     read_ccr_v8_assert(ccr_save);
 821   } else {
 822     read_ccr_trap(ccr_save);
 823   }
 824 }
 825 
 826 void MacroAssembler::write_ccr(Register ccr_save) {
 827   if (VM_Version::v9_instructions_work()) {
 828     // Test code sequence used on V8.  Do not move below wrccr.
 829     write_ccr_v8_assert(ccr_save);
 830     wrccr(ccr_save);
 831   } else {
 832     const Register temp_reg1 = G3_scratch;
 833     const Register temp_reg2 = G4_scratch;
 834     write_ccr_trap(ccr_save, temp_reg1, temp_reg2);
 835   }
 836 }
 837 
 838 
 839 // Calls to C land
 840 
 841 #ifdef ASSERT
 842 // a hook for debugging
 843 static Thread* reinitialize_thread() {
 844   return ThreadLocalStorage::thread();
 845 }
 846 #else
 847 #define reinitialize_thread ThreadLocalStorage::thread
 848 #endif
 849 
 850 #ifdef ASSERT
 851 address last_get_thread = NULL;
 852 #endif
 853 
 854 // call this when G2_thread is not known to be valid
 855 void MacroAssembler::get_thread() {
 856   save_frame(0);                // to avoid clobbering O0
 857   mov(G1, L0);                  // avoid clobbering G1
 858   mov(G5_method, L1);           // avoid clobbering G5
 859   mov(G3, L2);                  // avoid clobbering G3 also
 860   mov(G4, L5);                  // avoid clobbering G4
 861 #ifdef ASSERT
 862   AddressLiteral last_get_thread_addrlit(&last_get_thread);
 863   set(last_get_thread_addrlit, L3);
 864   inc(L4, get_pc(L4) + 2 * BytesPerInstWord); // skip getpc() code + inc + st_ptr to point L4 at call
 865   st_ptr(L4, L3, 0);
 866 #endif
 867   call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
 868   delayed()->nop();
 869   mov(L0, G1);
 870   mov(L1, G5_method);
 871   mov(L2, G3);
 872   mov(L5, G4);
 873   restore(O0, 0, G2_thread);
 874 }
 875 
 876 static Thread* verify_thread_subroutine(Thread* gthread_value) {
 877   Thread* correct_value = ThreadLocalStorage::thread();
 878   guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
 879   return correct_value;
 880 }
 881 
 882 void MacroAssembler::verify_thread() {
 883   if (VerifyThread) {
 884     // NOTE: this chops off the heads of the 64-bit O registers.
 885 #ifdef CC_INTERP
 886     save_frame(0);
 887 #else
 888     // make sure G2_thread contains the right value
 889     save_frame_and_mov(0, Lmethod, Lmethod);   // to avoid clobbering O0 (and propagate Lmethod for -Xprof)
 890     mov(G1, L1);                // avoid clobbering G1
 891     // G2 saved below
 892     mov(G3, L3);                // avoid clobbering G3
 893     mov(G4, L4);                // avoid clobbering G4
 894     mov(G5_method, L5);         // avoid clobbering G5_method
 895 #endif /* CC_INTERP */
 896 #if defined(COMPILER2) && !defined(_LP64)
 897     // Save & restore possible 64-bit Long arguments in G-regs
 898     srlx(G1,32,L0);
 899     srlx(G4,32,L6);
 900 #endif
 901     call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
 902     delayed()->mov(G2_thread, O0);
 903 
 904     mov(L1, G1);                // Restore G1
 905     // G2 restored below
 906     mov(L3, G3);                // restore G3
 907     mov(L4, G4);                // restore G4
 908     mov(L5, G5_method);         // restore G5_method
 909 #if defined(COMPILER2) && !defined(_LP64)
 910     // Save & restore possible 64-bit Long arguments in G-regs
 911     sllx(L0,32,G2);             // Move old high G1 bits high in G2
 912     sllx(G1, 0,G1);             // Clear current high G1 bits
 913     or3 (G1,G2,G1);             // Recover 64-bit G1
 914     sllx(L6,32,G2);             // Move old high G4 bits high in G2
 915     sllx(G4, 0,G4);             // Clear current high G4 bits
 916     or3 (G4,G2,G4);             // Recover 64-bit G4
 917 #endif
 918     restore(O0, 0, G2_thread);
 919   }
 920 }
 921 
 922 
 923 void MacroAssembler::save_thread(const Register thread_cache) {
 924   verify_thread();
 925   if (thread_cache->is_valid()) {
 926     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 927     mov(G2_thread, thread_cache);
 928   }
 929   if (VerifyThread) {
 930     // smash G2_thread, as if the VM were about to anyway
 931     set(0x67676767, G2_thread);
 932   }
 933 }
 934 
 935 
 936 void MacroAssembler::restore_thread(const Register thread_cache) {
 937   if (thread_cache->is_valid()) {
 938     assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
 939     mov(thread_cache, G2_thread);
 940     verify_thread();
 941   } else {
 942     // do it the slow way
 943     get_thread();
 944   }
 945 }
 946 
 947 
 948 // %%% maybe get rid of [re]set_last_Java_frame
 949 void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
 950   assert_not_delayed();
 951   Address flags(G2_thread, JavaThread::frame_anchor_offset() +
 952                            JavaFrameAnchor::flags_offset());
 953   Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
 954 
 955   // Always set last_Java_pc and flags first because once last_Java_sp is visible
 956   // has_last_Java_frame is true and users will look at the rest of the fields.
 957   // (Note: flags should always be zero before we get here so doesn't need to be set.)
 958 
 959 #ifdef ASSERT
 960   // Verify that flags was zeroed on return to Java
 961   Label PcOk;
 962   save_frame(0);                // to avoid clobbering O0
 963   ld_ptr(pc_addr, L0);
 964   tst(L0);
 965 #ifdef _LP64
 966   brx(Assembler::zero, false, Assembler::pt, PcOk);
 967 #else
 968   br(Assembler::zero, false, Assembler::pt, PcOk);
 969 #endif // _LP64
 970   delayed() -> nop();
 971   stop("last_Java_pc not zeroed before leaving Java");
 972   bind(PcOk);
 973 
 974   // Verify that flags was zeroed on return to Java
 975   Label FlagsOk;
 976   ld(flags, L0);
 977   tst(L0);
 978   br(Assembler::zero, false, Assembler::pt, FlagsOk);
 979   delayed() -> restore();
 980   stop("flags not zeroed before leaving Java");
 981   bind(FlagsOk);
 982 #endif /* ASSERT */
 983   //
 984   // When returning from calling out from Java mode the frame anchor's last_Java_pc
 985   // will always be set to NULL. It is set here so that if we are doing a call to
 986   // native (not VM) that we capture the known pc and don't have to rely on the
 987   // native call having a standard frame linkage where we can find the pc.
 988 
 989   if (last_Java_pc->is_valid()) {
 990     st_ptr(last_Java_pc, pc_addr);
 991   }
 992 
 993 #ifdef _LP64
 994 #ifdef ASSERT
 995   // Make sure that we have an odd stack
 996   Label StackOk;
 997   andcc(last_java_sp, 0x01, G0);
 998   br(Assembler::notZero, false, Assembler::pt, StackOk);
 999   delayed() -> nop();
1000   stop("Stack Not Biased in set_last_Java_frame");
1001   bind(StackOk);
1002 #endif // ASSERT
1003   assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
1004   add( last_java_sp, STACK_BIAS, G4_scratch );
1005   st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
1006 #else
1007   st_ptr(last_java_sp, G2_thread, JavaThread::last_Java_sp_offset());
1008 #endif // _LP64
1009 }
1010 
1011 void MacroAssembler::reset_last_Java_frame(void) {
1012   assert_not_delayed();
1013 
1014   Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
1015   Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
1016   Address flags  (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
1017 
1018 #ifdef ASSERT
1019   // check that it WAS previously set
1020 #ifdef CC_INTERP
1021     save_frame(0);
1022 #else
1023     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod to helper frame for -Xprof
1024 #endif /* CC_INTERP */
1025     ld_ptr(sp_addr, L0);
1026     tst(L0);
1027     breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1028     restore();
1029 #endif // ASSERT
1030 
1031   st_ptr(G0, sp_addr);
1032   // Always return last_Java_pc to zero
1033   st_ptr(G0, pc_addr);
1034   // Always null flags after return to Java
1035   st(G0, flags);
1036 }
1037 
1038 
1039 void MacroAssembler::call_VM_base(
1040   Register        oop_result,
1041   Register        thread_cache,
1042   Register        last_java_sp,
1043   address         entry_point,
1044   int             number_of_arguments,
1045   bool            check_exceptions)
1046 {
1047   assert_not_delayed();
1048 
1049   // determine last_java_sp register
1050   if (!last_java_sp->is_valid()) {
1051     last_java_sp = SP;
1052   }
1053   // debugging support
1054   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
1055 
1056   // 64-bit last_java_sp is biased!
1057   set_last_Java_frame(last_java_sp, noreg);
1058   if (VerifyThread)  mov(G2_thread, O0); // about to be smashed; pass early
1059   save_thread(thread_cache);
1060   // do the call
1061   call(entry_point, relocInfo::runtime_call_type);
1062   if (!VerifyThread)
1063     delayed()->mov(G2_thread, O0);  // pass thread as first argument
1064   else
1065     delayed()->nop();             // (thread already passed)
1066   restore_thread(thread_cache);
1067   reset_last_Java_frame();
1068 
1069   // check for pending exceptions. use Gtemp as scratch register.
1070   if (check_exceptions) {
1071     check_and_forward_exception(Gtemp);
1072   }
1073 
1074   // get oop result if there is one and reset the value in the thread
1075   if (oop_result->is_valid()) {
1076     get_vm_result(oop_result);
1077   }
1078 }
1079 
1080 void MacroAssembler::check_and_forward_exception(Register scratch_reg)
1081 {
1082   Label L;
1083 
1084   check_and_handle_popframe(scratch_reg);
1085   check_and_handle_earlyret(scratch_reg);
1086 
1087   Address exception_addr(G2_thread, Thread::pending_exception_offset());
1088   ld_ptr(exception_addr, scratch_reg);
1089   br_null(scratch_reg,false,pt,L);
1090   delayed()->nop();
1091   // we use O7 linkage so that forward_exception_entry has the issuing PC
1092   call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1093   delayed()->nop();
1094   bind(L);
1095 }
1096 
1097 
1098 void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
1099 }
1100 
1101 
1102 void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
1103 }
1104 
1105 
1106 void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
1107   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
1108 }
1109 
1110 
1111 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1112   // O0 is reserved for the thread
1113   mov(arg_1, O1);
1114   call_VM(oop_result, entry_point, 1, check_exceptions);
1115 }
1116 
1117 
1118 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1119   // O0 is reserved for the thread
1120   mov(arg_1, O1);
1121   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1122   call_VM(oop_result, entry_point, 2, check_exceptions);
1123 }
1124 
1125 
1126 void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1127   // O0 is reserved for the thread
1128   mov(arg_1, O1);
1129   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1130   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1131   call_VM(oop_result, entry_point, 3, check_exceptions);
1132 }
1133 
1134 
1135 
1136 // Note: The following call_VM overloadings are useful when a "save"
1137 // has already been performed by a stub, and the last Java frame is
1138 // the previous one.  In that case, last_java_sp must be passed as FP
1139 // instead of SP.
1140 
1141 
1142 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
1143   call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1144 }
1145 
1146 
1147 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
1148   // O0 is reserved for the thread
1149   mov(arg_1, O1);
1150   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1151 }
1152 
1153 
1154 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1155   // O0 is reserved for the thread
1156   mov(arg_1, O1);
1157   mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
1158   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1159 }
1160 
1161 
1162 void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1163   // O0 is reserved for the thread
1164   mov(arg_1, O1);
1165   mov(arg_2, O2); assert(arg_2 != O1,                "smashed argument");
1166   mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
1167   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1168 }
1169 
1170 
1171 
1172 void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
1173   assert_not_delayed();
1174   save_thread(thread_cache);
1175   // do the call
1176   call(entry_point, relocInfo::runtime_call_type);
1177   delayed()->nop();
1178   restore_thread(thread_cache);
1179 }
1180 
1181 
1182 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
1183   call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
1184 }
1185 
1186 
1187 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
1188   mov(arg_1, O0);
1189   call_VM_leaf(thread_cache, entry_point, 1);
1190 }
1191 
1192 
1193 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
1194   mov(arg_1, O0);
1195   mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
1196   call_VM_leaf(thread_cache, entry_point, 2);
1197 }
1198 
1199 
1200 void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
1201   mov(arg_1, O0);
1202   mov(arg_2, O1); assert(arg_2 != O0,                "smashed argument");
1203   mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
1204   call_VM_leaf(thread_cache, entry_point, 3);
1205 }
1206 
1207 
1208 void MacroAssembler::get_vm_result(Register oop_result) {
1209   verify_thread();
1210   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1211   ld_ptr(    vm_result_addr, oop_result);
1212   st_ptr(G0, vm_result_addr);
1213   verify_oop(oop_result);
1214 }
1215 
1216 
1217 void MacroAssembler::get_vm_result_2(Register oop_result) {
1218   verify_thread();
1219   Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
1220   ld_ptr(vm_result_addr_2, oop_result);
1221   st_ptr(G0, vm_result_addr_2);
1222   verify_oop(oop_result);
1223 }
1224 
1225 
1226 // We require that C code which does not return a value in vm_result will
1227 // leave it undisturbed.
1228 void MacroAssembler::set_vm_result(Register oop_result) {
1229   verify_thread();
1230   Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
1231   verify_oop(oop_result);
1232 
1233 # ifdef ASSERT
1234     // Check that we are not overwriting any other oop.
1235 #ifdef CC_INTERP
1236     save_frame(0);
1237 #else
1238     save_frame_and_mov(0, Lmethod, Lmethod);     // Propagate Lmethod for -Xprof
1239 #endif /* CC_INTERP */
1240     ld_ptr(vm_result_addr, L0);
1241     tst(L0);
1242     restore();
1243     breakpoint_trap(notZero, Assembler::ptr_cc);
1244     // }
1245 # endif
1246 
1247   st_ptr(oop_result, vm_result_addr);
1248 }
1249 
1250 
1251 void MacroAssembler::card_table_write(jbyte* byte_map_base,
1252                                       Register tmp, Register obj) {
1253 #ifdef _LP64
1254   srlx(obj, CardTableModRefBS::card_shift, obj);
1255 #else
1256   srl(obj, CardTableModRefBS::card_shift, obj);
1257 #endif
1258   assert(tmp != obj, "need separate temp reg");
1259   set((address) byte_map_base, tmp);
1260   stb(G0, tmp, obj);
1261 }
1262 
1263 
1264 void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1265   address save_pc;
1266   int shiftcnt;
1267 #ifdef _LP64
1268 # ifdef CHECK_DELAY
1269   assert_not_delayed((char*) "cannot put two instructions in delay slot");
1270 # endif
1271   v9_dep();
1272   save_pc = pc();
1273 
1274   int msb32 = (int) (addrlit.value() >> 32);
1275   int lsb32 = (int) (addrlit.value());
1276 
1277   if (msb32 == 0 && lsb32 >= 0) {
1278     Assembler::sethi(lsb32, d, addrlit.rspec());
1279   }
1280   else if (msb32 == -1) {
1281     Assembler::sethi(~lsb32, d, addrlit.rspec());
1282     xor3(d, ~low10(~0), d);
1283   }
1284   else {
1285     Assembler::sethi(msb32, d, addrlit.rspec());  // msb 22-bits
1286     if (msb32 & 0x3ff)                            // Any bits?
1287       or3(d, msb32 & 0x3ff, d);                   // msb 32-bits are now in lsb 32
1288     if (lsb32 & 0xFFFFFC00) {                     // done?
1289       if ((lsb32 >> 20) & 0xfff) {                // Any bits set?
1290         sllx(d, 12, d);                           // Make room for next 12 bits
1291         or3(d, (lsb32 >> 20) & 0xfff, d);         // Or in next 12
1292         shiftcnt = 0;                             // We already shifted
1293       }
1294       else
1295         shiftcnt = 12;
1296       if ((lsb32 >> 10) & 0x3ff) {
1297         sllx(d, shiftcnt + 10, d);                // Make room for last 10 bits
1298         or3(d, (lsb32 >> 10) & 0x3ff, d);         // Or in next 10
1299         shiftcnt = 0;
1300       }
1301       else
1302         shiftcnt = 10;
1303       sllx(d, shiftcnt + 10, d);                  // Shift leaving disp field 0'd
1304     }
1305     else
1306       sllx(d, 32, d);
1307   }
1308   // Pad out the instruction sequence so it can be patched later.
1309   if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
1310                            addrlit.rtype() != relocInfo::runtime_call_type)) {
1311     while (pc() < (save_pc + (7 * BytesPerInstWord)))
1312       nop();
1313   }
1314 #else
1315   Assembler::sethi(addrlit.value(), d, addrlit.rspec());
1316 #endif
1317 }
1318 
1319 
1320 void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
1321   internal_sethi(addrlit, d, false);
1322 }
1323 
1324 
1325 void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
1326   internal_sethi(addrlit, d, true);
1327 }
1328 
1329 
1330 int MacroAssembler::size_of_sethi(address a, bool worst_case) {
1331 #ifdef _LP64
1332   if (worst_case) return 7;
1333   intptr_t iaddr = (intptr_t)a;
1334   int hi32 = (int)(iaddr >> 32);
1335   int lo32 = (int)(iaddr);
1336   int inst_count;
1337   if (hi32 == 0 && lo32 >= 0)
1338     inst_count = 1;
1339   else if (hi32 == -1)
1340     inst_count = 2;
1341   else {
1342     inst_count = 2;
1343     if ( hi32 & 0x3ff )
1344       inst_count++;
1345     if ( lo32 & 0xFFFFFC00 ) {
1346       if( (lo32 >> 20) & 0xfff ) inst_count += 2;
1347       if( (lo32 >> 10) & 0x3ff ) inst_count += 2;
1348     }
1349   }
1350   return BytesPerInstWord * inst_count;
1351 #else
1352   return BytesPerInstWord;
1353 #endif
1354 }
1355 
1356 int MacroAssembler::worst_case_size_of_set() {
1357   return size_of_sethi(NULL, true) + 1;
1358 }
1359 
1360 
1361 void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
1362   intptr_t value = addrlit.value();
1363 
1364   if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
1365     // can optimize
1366     if (-4096 <= value && value <= 4095) {
1367       or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
1368       return;
1369     }
1370     if (inv_hi22(hi22(value)) == value) {
1371       sethi(addrlit, d);
1372       return;
1373     }
1374   }
1375   assert_not_delayed((char*) "cannot put two instructions in delay slot");
1376   internal_sethi(addrlit, d, ForceRelocatable);
1377   if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
1378     add(d, addrlit.low10(), d, addrlit.rspec());
1379   }
1380 }
1381 
1382 void MacroAssembler::set(const AddressLiteral& al, Register d) {
1383   internal_set(al, d, false);
1384 }
1385 
1386 void MacroAssembler::set(intptr_t value, Register d) {
1387   AddressLiteral al(value);
1388   internal_set(al, d, false);
1389 }
1390 
1391 void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
1392   AddressLiteral al(addr, rspec);
1393   internal_set(al, d, false);
1394 }
1395 
1396 void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
1397   internal_set(al, d, true);
1398 }
1399 
1400 void MacroAssembler::patchable_set(intptr_t value, Register d) {
1401   AddressLiteral al(value);
1402   internal_set(al, d, true);
1403 }
1404 
1405 
1406 void MacroAssembler::set64(jlong value, Register d, Register tmp) {
1407   assert_not_delayed();
1408   v9_dep();
1409 
1410   int hi = (int)(value >> 32);
1411   int lo = (int)(value & ~0);
1412   // (Matcher::isSimpleConstant64 knows about the following optimizations.)
1413   if (Assembler::is_simm13(lo) && value == lo) {
1414     or3(G0, lo, d);
1415   } else if (hi == 0) {
1416     Assembler::sethi(lo, d);   // hardware version zero-extends to upper 32
1417     if (low10(lo) != 0)
1418       or3(d, low10(lo), d);
1419   }
1420   else if (hi == -1) {
1421     Assembler::sethi(~lo, d);  // hardware version zero-extends to upper 32
1422     xor3(d, low10(lo) ^ ~low10(~0), d);
1423   }
1424   else if (lo == 0) {
1425     if (Assembler::is_simm13(hi)) {
1426       or3(G0, hi, d);
1427     } else {
1428       Assembler::sethi(hi, d);   // hardware version zero-extends to upper 32
1429       if (low10(hi) != 0)
1430         or3(d, low10(hi), d);
1431     }
1432     sllx(d, 32, d);
1433   }
1434   else {
1435     Assembler::sethi(hi, tmp);
1436     Assembler::sethi(lo,   d); // macro assembler version sign-extends
1437     if (low10(hi) != 0)
1438       or3 (tmp, low10(hi), tmp);
1439     if (low10(lo) != 0)
1440       or3 (  d, low10(lo),   d);
1441     sllx(tmp, 32, tmp);
1442     or3 (d, tmp, d);
1443   }
1444 }
1445 
1446 // compute size in bytes of sparc frame, given
1447 // number of extraWords
1448 int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
1449 
1450   int nWords = frame::memory_parameter_word_sp_offset;
1451 
1452   nWords += extraWords;
1453 
1454   if (nWords & 1) ++nWords; // round up to double-word
1455 
1456   return nWords * BytesPerWord;
1457 }
1458 
1459 
1460 // save_frame: given number of "extra" words in frame,
1461 // issue approp. save instruction (p 200, v8 manual)
1462 
1463 void MacroAssembler::save_frame(int extraWords = 0) {
1464   int delta = -total_frame_size_in_bytes(extraWords);
1465   if (is_simm13(delta)) {
1466     save(SP, delta, SP);
1467   } else {
1468     set(delta, G3_scratch);
1469     save(SP, G3_scratch, SP);
1470   }
1471 }
1472 
1473 
1474 void MacroAssembler::save_frame_c1(int size_in_bytes) {
1475   if (is_simm13(-size_in_bytes)) {
1476     save(SP, -size_in_bytes, SP);
1477   } else {
1478     set(-size_in_bytes, G3_scratch);
1479     save(SP, G3_scratch, SP);
1480   }
1481 }
1482 
1483 
1484 void MacroAssembler::save_frame_and_mov(int extraWords,
1485                                         Register s1, Register d1,
1486                                         Register s2, Register d2) {
1487   assert_not_delayed();
1488 
1489   // The trick here is to use precisely the same memory word
1490   // that trap handlers also use to save the register.
1491   // This word cannot be used for any other purpose, but
1492   // it works fine to save the register's value, whether or not
1493   // an interrupt flushes register windows at any given moment!
1494   Address s1_addr;
1495   if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
1496     s1_addr = s1->address_in_saved_window();
1497     st_ptr(s1, s1_addr);
1498   }
1499 
1500   Address s2_addr;
1501   if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
1502     s2_addr = s2->address_in_saved_window();
1503     st_ptr(s2, s2_addr);
1504   }
1505 
1506   save_frame(extraWords);
1507 
1508   if (s1_addr.base() == SP) {
1509     ld_ptr(s1_addr.after_save(), d1);
1510   } else if (s1->is_valid()) {
1511     mov(s1->after_save(), d1);
1512   }
1513 
1514   if (s2_addr.base() == SP) {
1515     ld_ptr(s2_addr.after_save(), d2);
1516   } else if (s2->is_valid()) {
1517     mov(s2->after_save(), d2);
1518   }
1519 }
1520 
1521 
1522 AddressLiteral MacroAssembler::allocate_oop_address(jobject obj) {
1523   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1524   int oop_index = oop_recorder()->allocate_index(obj);
1525   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1526 }
1527 
1528 
1529 AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
1530   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1531   int oop_index = oop_recorder()->find_index(obj);
1532   return AddressLiteral(obj, oop_Relocation::spec(oop_index));
1533 }
1534 
1535 void  MacroAssembler::set_narrow_oop(jobject obj, Register d) {
1536   assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
1537   int oop_index = oop_recorder()->find_index(obj);
1538   RelocationHolder rspec = oop_Relocation::spec(oop_index);
1539 
1540   assert_not_delayed();
1541   // Relocation with special format (see relocInfo_sparc.hpp).
1542   relocate(rspec, 1);
1543   // Assembler::sethi(0x3fffff, d);
1544   emit_long( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
1545   // Don't add relocation for 'add'. Do patching during 'sethi' processing.
1546   add(d, 0x3ff, d);
1547 
1548 }
1549 
1550 
1551 void MacroAssembler::align(int modulus) {
1552   while (offset() % modulus != 0) nop();
1553 }
1554 
1555 
1556 void MacroAssembler::safepoint() {
1557   relocate(breakpoint_Relocation::spec(breakpoint_Relocation::safepoint));
1558 }
1559 
1560 
1561 void RegistersForDebugging::print(outputStream* s) {
1562   int j;
1563   for ( j = 0;  j < 8;  ++j )
1564     if ( j != 6 ) s->print_cr("i%d = 0x%.16lx", j, i[j]);
1565     else          s->print_cr( "fp = 0x%.16lx",    i[j]);
1566   s->cr();
1567 
1568   for ( j = 0;  j < 8;  ++j )
1569     s->print_cr("l%d = 0x%.16lx", j, l[j]);
1570   s->cr();
1571 
1572   for ( j = 0;  j < 8;  ++j )
1573     if ( j != 6 ) s->print_cr("o%d = 0x%.16lx", j, o[j]);
1574     else          s->print_cr( "sp = 0x%.16lx",    o[j]);
1575   s->cr();
1576 
1577   for ( j = 0;  j < 8;  ++j )
1578     s->print_cr("g%d = 0x%.16lx", j, g[j]);
1579   s->cr();
1580 
1581   // print out floats with compression
1582   for (j = 0; j < 32; ) {
1583     jfloat val = f[j];
1584     int last = j;
1585     for ( ;  last+1 < 32;  ++last ) {
1586       char b1[1024], b2[1024];
1587       sprintf(b1, "%f", val);
1588       sprintf(b2, "%f", f[last+1]);
1589       if (strcmp(b1, b2))
1590         break;
1591     }
1592     s->print("f%d", j);
1593     if ( j != last )  s->print(" - f%d", last);
1594     s->print(" = %f", val);
1595     s->fill_to(25);
1596     s->print_cr(" (0x%x)", val);
1597     j = last + 1;
1598   }
1599   s->cr();
1600 
1601   // and doubles (evens only)
1602   for (j = 0; j < 32; ) {
1603     jdouble val = d[j];
1604     int last = j;
1605     for ( ;  last+1 < 32;  ++last ) {
1606       char b1[1024], b2[1024];
1607       sprintf(b1, "%f", val);
1608       sprintf(b2, "%f", d[last+1]);
1609       if (strcmp(b1, b2))
1610         break;
1611     }
1612     s->print("d%d", 2 * j);
1613     if ( j != last )  s->print(" - d%d", last);
1614     s->print(" = %f", val);
1615     s->fill_to(30);
1616     s->print("(0x%x)", *(int*)&val);
1617     s->fill_to(42);
1618     s->print_cr("(0x%x)", *(1 + (int*)&val));
1619     j = last + 1;
1620   }
1621   s->cr();
1622 }
1623 
1624 void RegistersForDebugging::save_registers(MacroAssembler* a) {
1625   a->sub(FP, round_to(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
1626   a->flush_windows();
1627   int i;
1628   for (i = 0; i < 8; ++i) {
1629     a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, i_offset(i));
1630     a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1);  a->st_ptr( L1, O0, l_offset(i));
1631     a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
1632     a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
1633   }
1634   for (i = 0;  i < 32; ++i) {
1635     a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
1636   }
1637   for (i = 0; i < (VM_Version::v9_instructions_work() ? 64 : 32); i += 2) {
1638     a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
1639   }
1640 }
1641 
1642 void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
1643   for (int i = 1; i < 8;  ++i) {
1644     a->ld_ptr(r, g_offset(i), as_gRegister(i));
1645   }
1646   for (int j = 0; j < 32; ++j) {
1647     a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
1648   }
1649   for (int k = 0; k < (VM_Version::v9_instructions_work() ? 64 : 32); k += 2) {
1650     a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
1651   }
1652 }
1653 
1654 
1655 // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
1656 void MacroAssembler::push_fTOS() {
1657   // %%%%%% need to implement this
1658 }
1659 
1660 // pops double TOS element from CPU stack and pushes on FPU stack
1661 void MacroAssembler::pop_fTOS() {
1662   // %%%%%% need to implement this
1663 }
1664 
1665 void MacroAssembler::empty_FPU_stack() {
1666   // %%%%%% need to implement this
1667 }
1668 
1669 void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
1670   // plausibility check for oops
1671   if (!VerifyOops) return;
1672 
1673   if (reg == G0)  return;       // always NULL, which is always an oop
1674 
1675   char buffer[64];
1676 #ifdef COMPILER1
1677   if (CommentedAssembly) {
1678     snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
1679     block_comment(buffer);
1680   }
1681 #endif
1682 
1683   int len = strlen(file) + strlen(msg) + 1 + 4;
1684   sprintf(buffer, "%d", line);
1685   len += strlen(buffer);
1686   sprintf(buffer, " at offset %d ", offset());
1687   len += strlen(buffer);
1688   char * real_msg = new char[len];
1689   sprintf(real_msg, "%s%s(%s:%d)", msg, buffer, file, line);
1690 
1691   // Call indirectly to solve generation ordering problem
1692   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1693 
1694   // Make some space on stack above the current register window.
1695   // Enough to hold 8 64-bit registers.
1696   add(SP,-8*8,SP);
1697 
1698   // Save some 64-bit registers; a normal 'save' chops the heads off
1699   // of 64-bit longs in the 32-bit build.
1700   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1701   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1702   mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
1703   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1704 
1705   set((intptr_t)real_msg, O1);
1706   // Load address to call to into O7
1707   load_ptr_contents(a, O7);
1708   // Register call to verify_oop_subroutine
1709   callr(O7, G0);
1710   delayed()->nop();
1711   // recover frame size
1712   add(SP, 8*8,SP);
1713 }
1714 
1715 void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
1716   // plausibility check for oops
1717   if (!VerifyOops) return;
1718 
1719   char buffer[64];
1720   sprintf(buffer, "%d", line);
1721   int len = strlen(file) + strlen(msg) + 1 + 4 + strlen(buffer);
1722   sprintf(buffer, " at SP+%d ", addr.disp());
1723   len += strlen(buffer);
1724   char * real_msg = new char[len];
1725   sprintf(real_msg, "%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
1726 
1727   // Call indirectly to solve generation ordering problem
1728   AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
1729 
1730   // Make some space on stack above the current register window.
1731   // Enough to hold 8 64-bit registers.
1732   add(SP,-8*8,SP);
1733 
1734   // Save some 64-bit registers; a normal 'save' chops the heads off
1735   // of 64-bit longs in the 32-bit build.
1736   stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
1737   stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
1738   ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
1739   stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
1740 
1741   set((intptr_t)real_msg, O1);
1742   // Load address to call to into O7
1743   load_ptr_contents(a, O7);
1744   // Register call to verify_oop_subroutine
1745   callr(O7, G0);
1746   delayed()->nop();
1747   // recover frame size
1748   add(SP, 8*8,SP);
1749 }
1750 
1751 // side-door communication with signalHandler in os_solaris.cpp
1752 address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
1753 
1754 // This macro is expanded just once; it creates shared code.  Contract:
1755 // receives an oop in O0.  Must restore O0 & O7 from TLS.  Must not smash ANY
1756 // registers, including flags.  May not use a register 'save', as this blows
1757 // the high bits of the O-regs if they contain Long values.  Acts as a 'leaf'
1758 // call.
1759 void MacroAssembler::verify_oop_subroutine() {
1760   assert( VM_Version::v9_instructions_work(), "VerifyOops not supported for V8" );
1761 
1762   // Leaf call; no frame.
1763   Label succeed, fail, null_or_fail;
1764 
1765   // O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
1766   // O0 is now the oop to be checked.  O7 is the return address.
1767   Register O0_obj = O0;
1768 
1769   // Save some more registers for temps.
1770   stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
1771   stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
1772   stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
1773   stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
1774 
1775   // Save flags
1776   Register O5_save_flags = O5;
1777   rdccr( O5_save_flags );
1778 
1779   { // count number of verifies
1780     Register O2_adr   = O2;
1781     Register O3_accum = O3;
1782     inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
1783   }
1784 
1785   Register O2_mask = O2;
1786   Register O3_bits = O3;
1787   Register O4_temp = O4;
1788 
1789   // mark lower end of faulting range
1790   assert(_verify_oop_implicit_branch[0] == NULL, "set once");
1791   _verify_oop_implicit_branch[0] = pc();
1792 
1793   // We can't check the mark oop because it could be in the process of
1794   // locking or unlocking while this is running.
1795   set(Universe::verify_oop_mask (), O2_mask);
1796   set(Universe::verify_oop_bits (), O3_bits);
1797 
1798   // assert((obj & oop_mask) == oop_bits);
1799   and3(O0_obj, O2_mask, O4_temp);
1800   cmp(O4_temp, O3_bits);
1801   brx(notEqual, false, pn, null_or_fail);
1802   delayed()->nop();
1803 
1804   if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
1805     // the null_or_fail case is useless; must test for null separately
1806     br_null(O0_obj, false, pn, succeed);
1807     delayed()->nop();
1808   }
1809 
1810   // Check the klassOop of this object for being in the right area of memory.
1811   // Cannot do the load in the delay above slot in case O0 is null
1812   load_klass(O0_obj, O0_obj);
1813   // assert((klass & klass_mask) == klass_bits);
1814   if( Universe::verify_klass_mask() != Universe::verify_oop_mask() )
1815     set(Universe::verify_klass_mask(), O2_mask);
1816   if( Universe::verify_klass_bits() != Universe::verify_oop_bits() )
1817     set(Universe::verify_klass_bits(), O3_bits);
1818   and3(O0_obj, O2_mask, O4_temp);
1819   cmp(O4_temp, O3_bits);
1820   brx(notEqual, false, pn, fail);
1821   delayed()->nop();
1822   // Check the klass's klass
1823   load_klass(O0_obj, O0_obj);
1824   and3(O0_obj, O2_mask, O4_temp);
1825   cmp(O4_temp, O3_bits);
1826   brx(notEqual, false, pn, fail);
1827   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1828 
1829   // mark upper end of faulting range
1830   _verify_oop_implicit_branch[1] = pc();
1831 
1832   //-----------------------
1833   // all tests pass
1834   bind(succeed);
1835 
1836   // Restore prior 64-bit registers
1837   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
1838   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
1839   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
1840   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
1841   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
1842   ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
1843 
1844   retl();                       // Leaf return; restore prior O7 in delay slot
1845   delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
1846 
1847   //-----------------------
1848   bind(null_or_fail);           // nulls are less common but OK
1849   br_null(O0_obj, false, pt, succeed);
1850   delayed()->wrccr( O5_save_flags ); // Restore CCR's
1851 
1852   //-----------------------
1853   // report failure:
1854   bind(fail);
1855   _verify_oop_implicit_branch[2] = pc();
1856 
1857   wrccr( O5_save_flags ); // Restore CCR's
1858 
1859   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1860 
1861   // stop_subroutine expects message pointer in I1.
1862   mov(I1, O1);
1863 
1864   // Restore prior 64-bit registers
1865   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
1866   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
1867   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
1868   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
1869   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
1870   ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
1871 
1872   // factor long stop-sequence into subroutine to save space
1873   assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1874 
1875   // call indirectly to solve generation ordering problem
1876   AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
1877   load_ptr_contents(al, O5);
1878   jmpl(O5, 0, O7);
1879   delayed()->nop();
1880 }
1881 
1882 
1883 void MacroAssembler::stop(const char* msg) {
1884   // save frame first to get O7 for return address
1885   // add one word to size in case struct is odd number of words long
1886   // It must be doubleword-aligned for storing doubles into it.
1887 
1888     save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1889 
1890     // stop_subroutine expects message pointer in I1.
1891     set((intptr_t)msg, O1);
1892 
1893     // factor long stop-sequence into subroutine to save space
1894     assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
1895 
1896     // call indirectly to solve generation ordering problem
1897     AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
1898     load_ptr_contents(a, O5);
1899     jmpl(O5, 0, O7);
1900     delayed()->nop();
1901 
1902     breakpoint_trap();   // make stop actually stop rather than writing
1903                          // unnoticeable results in the output files.
1904 
1905     // restore(); done in callee to save space!
1906 }
1907 
1908 
1909 void MacroAssembler::warn(const char* msg) {
1910   save_frame(::round_to(sizeof(RegistersForDebugging) / BytesPerWord, 2));
1911   RegistersForDebugging::save_registers(this);
1912   mov(O0, L0);
1913   set((intptr_t)msg, O0);
1914   call( CAST_FROM_FN_PTR(address, warning) );
1915   delayed()->nop();
1916 //  ret();
1917 //  delayed()->restore();
1918   RegistersForDebugging::restore_registers(this, L0);
1919   restore();
1920 }
1921 
1922 
1923 void MacroAssembler::untested(const char* what) {
1924   // We must be able to turn interactive prompting off
1925   // in order to run automated test scripts on the VM
1926   // Use the flag ShowMessageBoxOnError
1927 
1928   char* b = new char[1024];
1929   sprintf(b, "untested: %s", what);
1930 
1931   if ( ShowMessageBoxOnError )   stop(b);
1932   else                           warn(b);
1933 }
1934 
1935 
1936 void MacroAssembler::stop_subroutine() {
1937   RegistersForDebugging::save_registers(this);
1938 
1939   // for the sake of the debugger, stick a PC on the current frame
1940   // (this assumes that the caller has performed an extra "save")
1941   mov(I7, L7);
1942   add(O7, -7 * BytesPerInt, I7);
1943 
1944   save_frame(); // one more save to free up another O7 register
1945   mov(I0, O1); // addr of reg save area
1946 
1947   // We expect pointer to message in I1. Caller must set it up in O1
1948   mov(I1, O0); // get msg
1949   call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
1950   delayed()->nop();
1951 
1952   restore();
1953 
1954   RegistersForDebugging::restore_registers(this, O0);
1955 
1956   save_frame(0);
1957   call(CAST_FROM_FN_PTR(address,breakpoint));
1958   delayed()->nop();
1959   restore();
1960 
1961   mov(L7, I7);
1962   retl();
1963   delayed()->restore(); // see stop above
1964 }
1965 
1966 
1967 void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
1968   if ( ShowMessageBoxOnError ) {
1969       JavaThreadState saved_state = JavaThread::current()->thread_state();
1970       JavaThread::current()->set_thread_state(_thread_in_vm);
1971       {
1972         // In order to get locks work, we need to fake a in_VM state
1973         ttyLocker ttyl;
1974         ::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
1975         if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
1976           ::tty->print_cr("Interpreter::bytecode_counter = %d", BytecodeCounter::counter_value());
1977         }
1978         if (os::message_box(msg, "Execution stopped, print registers?"))
1979           regs->print(::tty);
1980       }
1981       ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
1982   }
1983   else
1984      ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
1985   assert(false, "error");
1986 }
1987 
1988 
1989 #ifndef PRODUCT
1990 void MacroAssembler::test() {
1991   ResourceMark rm;
1992 
1993   CodeBuffer cb("test", 10000, 10000);
1994   MacroAssembler* a = new MacroAssembler(&cb);
1995   VM_Version::allow_all();
1996   a->test_v9();
1997   a->test_v8_onlys();
1998   VM_Version::revert();
1999 
2000   StubRoutines::Sparc::test_stop_entry()();
2001 }
2002 #endif
2003 
2004 
2005 void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
2006   subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
2007   Label no_extras;
2008   br( negative, true, pt, no_extras ); // if neg, clear reg
2009   delayed()->set(0, Rresult);          // annuled, so only if taken
2010   bind( no_extras );
2011 }
2012 
2013 
2014 void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
2015 #ifdef _LP64
2016   add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
2017 #else
2018   add(Rextra_words, frame::memory_parameter_word_sp_offset + 1, Rresult);
2019 #endif
2020   bclr(1, Rresult);
2021   sll(Rresult, LogBytesPerWord, Rresult);  // Rresult has total frame bytes
2022 }
2023 
2024 
2025 void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
2026   calc_frame_size(Rextra_words, Rresult);
2027   neg(Rresult);
2028   save(SP, Rresult, SP);
2029 }
2030 
2031 
2032 // ---------------------------------------------------------
2033 Assembler::RCondition cond2rcond(Assembler::Condition c) {
2034   switch (c) {
2035     /*case zero: */
2036     case Assembler::equal:        return Assembler::rc_z;
2037     case Assembler::lessEqual:    return Assembler::rc_lez;
2038     case Assembler::less:         return Assembler::rc_lz;
2039     /*case notZero:*/
2040     case Assembler::notEqual:     return Assembler::rc_nz;
2041     case Assembler::greater:      return Assembler::rc_gz;
2042     case Assembler::greaterEqual: return Assembler::rc_gez;
2043   }
2044   ShouldNotReachHere();
2045   return Assembler::rc_z;
2046 }
2047 
2048 // compares register with zero and branches.  NOT FOR USE WITH 64-bit POINTERS
2049 void MacroAssembler::br_zero( Condition c, bool a, Predict p, Register s1, Label& L) {
2050   tst(s1);
2051   br (c, a, p, L);
2052 }
2053 
2054 
2055 // Compares a pointer register with zero and branches on null.
2056 // Does a test & branch on 32-bit systems and a register-branch on 64-bit.
2057 void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
2058   assert_not_delayed();
2059 #ifdef _LP64
2060   bpr( rc_z, a, p, s1, L );
2061 #else
2062   tst(s1);
2063   br ( zero, a, p, L );
2064 #endif
2065 }
2066 
2067 void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
2068   assert_not_delayed();
2069 #ifdef _LP64
2070   bpr( rc_nz, a, p, s1, L );
2071 #else
2072   tst(s1);
2073   br ( notZero, a, p, L );
2074 #endif
2075 }
2076 
2077 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2078                                      Register s1, address d,
2079                                      relocInfo::relocType rt ) {
2080   if (VM_Version::v9_instructions_work()) {
2081     bpr(rc, a, p, s1, d, rt);
2082   } else {
2083     tst(s1);
2084     br(reg_cond_to_cc_cond(rc), a, p, d, rt);
2085   }
2086 }
2087 
2088 void MacroAssembler::br_on_reg_cond( RCondition rc, bool a, Predict p,
2089                                      Register s1, Label& L ) {
2090   if (VM_Version::v9_instructions_work()) {
2091     bpr(rc, a, p, s1, L);
2092   } else {
2093     tst(s1);
2094     br(reg_cond_to_cc_cond(rc), a, p, L);
2095   }
2096 }
2097 
2098 
2099 // instruction sequences factored across compiler & interpreter
2100 
2101 
2102 void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
2103                            Register Rb_hi, Register Rb_low,
2104                            Register Rresult) {
2105 
2106   Label check_low_parts, done;
2107 
2108   cmp(Ra_hi, Rb_hi );  // compare hi parts
2109   br(equal, true, pt, check_low_parts);
2110   delayed()->cmp(Ra_low, Rb_low); // test low parts
2111 
2112   // And, with an unsigned comparison, it does not matter if the numbers
2113   // are negative or not.
2114   // E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
2115   // The second one is bigger (unsignedly).
2116 
2117   // Other notes:  The first move in each triplet can be unconditional
2118   // (and therefore probably prefetchable).
2119   // And the equals case for the high part does not need testing,
2120   // since that triplet is reached only after finding the high halves differ.
2121 
2122   if (VM_Version::v9_instructions_work()) {
2123 
2124                                     mov  (                     -1, Rresult);
2125     ba( false, done );  delayed()-> movcc(greater, false, icc,  1, Rresult);
2126   }
2127   else {
2128     br(less,    true, pt, done); delayed()-> set(-1, Rresult);
2129     br(greater, true, pt, done); delayed()-> set( 1, Rresult);
2130   }
2131 
2132   bind( check_low_parts );
2133 
2134   if (VM_Version::v9_instructions_work()) {
2135     mov(                               -1, Rresult);
2136     movcc(equal,           false, icc,  0, Rresult);
2137     movcc(greaterUnsigned, false, icc,  1, Rresult);
2138   }
2139   else {
2140                                                     set(-1, Rresult);
2141     br(equal,           true, pt, done); delayed()->set( 0, Rresult);
2142     br(greaterUnsigned, true, pt, done); delayed()->set( 1, Rresult);
2143   }
2144   bind( done );
2145 }
2146 
2147 void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
2148   subcc(  G0, Rlow, Rlow );
2149   subc(   G0, Rhi,  Rhi  );
2150 }
2151 
2152 void MacroAssembler::lshl( Register Rin_high,  Register Rin_low,
2153                            Register Rcount,
2154                            Register Rout_high, Register Rout_low,
2155                            Register Rtemp ) {
2156 
2157 
2158   Register Ralt_count = Rtemp;
2159   Register Rxfer_bits = Rtemp;
2160 
2161   assert( Ralt_count != Rin_high
2162       &&  Ralt_count != Rin_low
2163       &&  Ralt_count != Rcount
2164       &&  Rxfer_bits != Rin_low
2165       &&  Rxfer_bits != Rin_high
2166       &&  Rxfer_bits != Rcount
2167       &&  Rxfer_bits != Rout_low
2168       &&  Rout_low   != Rin_high,
2169         "register alias checks");
2170 
2171   Label big_shift, done;
2172 
2173   // This code can be optimized to use the 64 bit shifts in V9.
2174   // Here we use the 32 bit shifts.
2175 
2176   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2177   subcc(Rcount,         31,             Ralt_count);
2178   br(greater, true, pn, big_shift);
2179   delayed()->
2180   dec(Ralt_count);
2181 
2182   // shift < 32 bits, Ralt_count = Rcount-31
2183 
2184   // We get the transfer bits by shifting right by 32-count the low
2185   // register. This is done by shifting right by 31-count and then by one
2186   // more to take care of the special (rare) case where count is zero
2187   // (shifting by 32 would not work).
2188 
2189   neg(  Ralt_count                                 );
2190 
2191   // The order of the next two instructions is critical in the case where
2192   // Rin and Rout are the same and should not be reversed.
2193 
2194   srl(  Rin_low,        Ralt_count,     Rxfer_bits ); // shift right by 31-count
2195   if (Rcount != Rout_low) {
2196     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2197   }
2198   sll(  Rin_high,       Rcount,         Rout_high  );
2199   if (Rcount == Rout_low) {
2200     sll(        Rin_low,        Rcount,         Rout_low   ); // low half
2201   }
2202   srl(  Rxfer_bits,     1,              Rxfer_bits ); // shift right by one more
2203   ba (false, done);
2204   delayed()->
2205   or3(  Rout_high,      Rxfer_bits,     Rout_high);   // new hi value: or in shifted old hi part and xfer from low
2206 
2207   // shift >= 32 bits, Ralt_count = Rcount-32
2208   bind(big_shift);
2209   sll(  Rin_low,        Ralt_count,     Rout_high  );
2210   clr(  Rout_low                                   );
2211 
2212   bind(done);
2213 }
2214 
2215 
2216 void MacroAssembler::lshr( Register Rin_high,  Register Rin_low,
2217                            Register Rcount,
2218                            Register Rout_high, Register Rout_low,
2219                            Register Rtemp ) {
2220 
2221   Register Ralt_count = Rtemp;
2222   Register Rxfer_bits = Rtemp;
2223 
2224   assert( Ralt_count != Rin_high
2225       &&  Ralt_count != Rin_low
2226       &&  Ralt_count != Rcount
2227       &&  Rxfer_bits != Rin_low
2228       &&  Rxfer_bits != Rin_high
2229       &&  Rxfer_bits != Rcount
2230       &&  Rxfer_bits != Rout_high
2231       &&  Rout_high  != Rin_low,
2232         "register alias checks");
2233 
2234   Label big_shift, done;
2235 
2236   // This code can be optimized to use the 64 bit shifts in V9.
2237   // Here we use the 32 bit shifts.
2238 
2239   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2240   subcc(Rcount,         31,             Ralt_count);
2241   br(greater, true, pn, big_shift);
2242   delayed()->dec(Ralt_count);
2243 
2244   // shift < 32 bits, Ralt_count = Rcount-31
2245 
2246   // We get the transfer bits by shifting left by 32-count the high
2247   // register. This is done by shifting left by 31-count and then by one
2248   // more to take care of the special (rare) case where count is zero
2249   // (shifting by 32 would not work).
2250 
2251   neg(  Ralt_count                                  );
2252   if (Rcount != Rout_low) {
2253     srl(        Rin_low,        Rcount,         Rout_low    );
2254   }
2255 
2256   // The order of the next two instructions is critical in the case where
2257   // Rin and Rout are the same and should not be reversed.
2258 
2259   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2260   sra(  Rin_high,       Rcount,         Rout_high   ); // high half
2261   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2262   if (Rcount == Rout_low) {
2263     srl(        Rin_low,        Rcount,         Rout_low    );
2264   }
2265   ba (false, done);
2266   delayed()->
2267   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2268 
2269   // shift >= 32 bits, Ralt_count = Rcount-32
2270   bind(big_shift);
2271 
2272   sra(  Rin_high,       Ralt_count,     Rout_low    );
2273   sra(  Rin_high,       31,             Rout_high   ); // sign into hi
2274 
2275   bind( done );
2276 }
2277 
2278 
2279 
2280 void MacroAssembler::lushr( Register Rin_high,  Register Rin_low,
2281                             Register Rcount,
2282                             Register Rout_high, Register Rout_low,
2283                             Register Rtemp ) {
2284 
2285   Register Ralt_count = Rtemp;
2286   Register Rxfer_bits = Rtemp;
2287 
2288   assert( Ralt_count != Rin_high
2289       &&  Ralt_count != Rin_low
2290       &&  Ralt_count != Rcount
2291       &&  Rxfer_bits != Rin_low
2292       &&  Rxfer_bits != Rin_high
2293       &&  Rxfer_bits != Rcount
2294       &&  Rxfer_bits != Rout_high
2295       &&  Rout_high  != Rin_low,
2296         "register alias checks");
2297 
2298   Label big_shift, done;
2299 
2300   // This code can be optimized to use the 64 bit shifts in V9.
2301   // Here we use the 32 bit shifts.
2302 
2303   and3( Rcount,         0x3f,           Rcount);     // take least significant 6 bits
2304   subcc(Rcount,         31,             Ralt_count);
2305   br(greater, true, pn, big_shift);
2306   delayed()->dec(Ralt_count);
2307 
2308   // shift < 32 bits, Ralt_count = Rcount-31
2309 
2310   // We get the transfer bits by shifting left by 32-count the high
2311   // register. This is done by shifting left by 31-count and then by one
2312   // more to take care of the special (rare) case where count is zero
2313   // (shifting by 32 would not work).
2314 
2315   neg(  Ralt_count                                  );
2316   if (Rcount != Rout_low) {
2317     srl(        Rin_low,        Rcount,         Rout_low    );
2318   }
2319 
2320   // The order of the next two instructions is critical in the case where
2321   // Rin and Rout are the same and should not be reversed.
2322 
2323   sll(  Rin_high,       Ralt_count,     Rxfer_bits  ); // shift left by 31-count
2324   srl(  Rin_high,       Rcount,         Rout_high   ); // high half
2325   sll(  Rxfer_bits,     1,              Rxfer_bits  ); // shift left by one more
2326   if (Rcount == Rout_low) {
2327     srl(        Rin_low,        Rcount,         Rout_low    );
2328   }
2329   ba (false, done);
2330   delayed()->
2331   or3(  Rout_low,       Rxfer_bits,     Rout_low    ); // new low value: or shifted old low part and xfer from high
2332 
2333   // shift >= 32 bits, Ralt_count = Rcount-32
2334   bind(big_shift);
2335 
2336   srl(  Rin_high,       Ralt_count,     Rout_low    );
2337   clr(  Rout_high                                   );
2338 
2339   bind( done );
2340 }
2341 
2342 #ifdef _LP64
2343 void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
2344   cmp(Ra, Rb);
2345   mov(                       -1, Rresult);
2346   movcc(equal,   false, xcc,  0, Rresult);
2347   movcc(greater, false, xcc,  1, Rresult);
2348 }
2349 #endif
2350 
2351 
2352 void MacroAssembler::load_sized_value(Address src, Register dst,
2353                                       size_t size_in_bytes, bool is_signed) {
2354   switch (size_in_bytes) {
2355   case  8: ldx(src, dst); break;
2356   case  4: ld( src, dst); break;
2357   case  2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
2358   case  1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
2359   default: ShouldNotReachHere();
2360   }
2361 }
2362 
2363 
2364 void MacroAssembler::float_cmp( bool is_float, int unordered_result,
2365                                 FloatRegister Fa, FloatRegister Fb,
2366                                 Register Rresult) {
2367 
2368   fcmp(is_float ? FloatRegisterImpl::S : FloatRegisterImpl::D, fcc0, Fa, Fb);
2369 
2370   Condition lt = unordered_result == -1 ? f_unorderedOrLess    : f_less;
2371   Condition eq =                          f_equal;
2372   Condition gt = unordered_result ==  1 ? f_unorderedOrGreater : f_greater;
2373 
2374   if (VM_Version::v9_instructions_work()) {
2375 
2376     mov(                   -1, Rresult );
2377     movcc( eq, true, fcc0,  0, Rresult );
2378     movcc( gt, true, fcc0,  1, Rresult );
2379 
2380   } else {
2381     Label done;
2382 
2383                                          set( -1, Rresult );
2384     //fb(lt, true, pn, done); delayed()->set( -1, Rresult );
2385     fb( eq, true, pn, done);  delayed()->set(  0, Rresult );
2386     fb( gt, true, pn, done);  delayed()->set(  1, Rresult );
2387 
2388     bind (done);
2389   }
2390 }
2391 
2392 
2393 void MacroAssembler::fneg( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2394 {
2395   if (VM_Version::v9_instructions_work()) {
2396     Assembler::fneg(w, s, d);
2397   } else {
2398     if (w == FloatRegisterImpl::S) {
2399       Assembler::fneg(w, s, d);
2400     } else if (w == FloatRegisterImpl::D) {
2401       // number() does a sanity check on the alignment.
2402       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2403         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2404 
2405       Assembler::fneg(FloatRegisterImpl::S, s, d);
2406       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2407     } else {
2408       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2409 
2410       // number() does a sanity check on the alignment.
2411       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2412         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2413 
2414       Assembler::fneg(FloatRegisterImpl::S, s, d);
2415       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2416       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2417       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2418     }
2419   }
2420 }
2421 
2422 void MacroAssembler::fmov( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2423 {
2424   if (VM_Version::v9_instructions_work()) {
2425     Assembler::fmov(w, s, d);
2426   } else {
2427     if (w == FloatRegisterImpl::S) {
2428       Assembler::fmov(w, s, d);
2429     } else if (w == FloatRegisterImpl::D) {
2430       // number() does a sanity check on the alignment.
2431       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2432         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2433 
2434       Assembler::fmov(FloatRegisterImpl::S, s, d);
2435       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2436     } else {
2437       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2438 
2439       // number() does a sanity check on the alignment.
2440       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2441         ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2442 
2443       Assembler::fmov(FloatRegisterImpl::S, s, d);
2444       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2445       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2446       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2447     }
2448   }
2449 }
2450 
2451 void MacroAssembler::fabs( FloatRegisterImpl::Width w, FloatRegister s, FloatRegister d)
2452 {
2453   if (VM_Version::v9_instructions_work()) {
2454     Assembler::fabs(w, s, d);
2455   } else {
2456     if (w == FloatRegisterImpl::S) {
2457       Assembler::fabs(w, s, d);
2458     } else if (w == FloatRegisterImpl::D) {
2459       // number() does a sanity check on the alignment.
2460       assert(((s->encoding(FloatRegisterImpl::D) & 1) == 0) &&
2461         ((d->encoding(FloatRegisterImpl::D) & 1) == 0), "float register alignment check");
2462 
2463       Assembler::fabs(FloatRegisterImpl::S, s, d);
2464       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2465     } else {
2466       assert(w == FloatRegisterImpl::Q, "Invalid float register width");
2467 
2468       // number() does a sanity check on the alignment.
2469       assert(((s->encoding(FloatRegisterImpl::D) & 3) == 0) &&
2470        ((d->encoding(FloatRegisterImpl::D) & 3) == 0), "float register alignment check");
2471 
2472       Assembler::fabs(FloatRegisterImpl::S, s, d);
2473       Assembler::fmov(FloatRegisterImpl::S, s->successor(), d->successor());
2474       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor(), d->successor()->successor());
2475       Assembler::fmov(FloatRegisterImpl::S, s->successor()->successor()->successor(), d->successor()->successor()->successor());
2476     }
2477   }
2478 }
2479 
2480 void MacroAssembler::save_all_globals_into_locals() {
2481   mov(G1,L1);
2482   mov(G2,L2);
2483   mov(G3,L3);
2484   mov(G4,L4);
2485   mov(G5,L5);
2486   mov(G6,L6);
2487   mov(G7,L7);
2488 }
2489 
2490 void MacroAssembler::restore_globals_from_locals() {
2491   mov(L1,G1);
2492   mov(L2,G2);
2493   mov(L3,G3);
2494   mov(L4,G4);
2495   mov(L5,G5);
2496   mov(L6,G6);
2497   mov(L7,G7);
2498 }
2499 
2500 // Use for 64 bit operation.
2501 void MacroAssembler::casx_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2502 {
2503   // store ptr_reg as the new top value
2504 #ifdef _LP64
2505   casx(top_ptr_reg, top_reg, ptr_reg);
2506 #else
2507   cas_under_lock(top_ptr_reg, top_reg, ptr_reg, lock_addr, use_call_vm);
2508 #endif // _LP64
2509 }
2510 
2511 // [RGV] This routine does not handle 64 bit operations.
2512 //       use casx_under_lock() or casx directly!!!
2513 void MacroAssembler::cas_under_lock(Register top_ptr_reg, Register top_reg, Register ptr_reg, address lock_addr, bool use_call_vm)
2514 {
2515   // store ptr_reg as the new top value
2516   if (VM_Version::v9_instructions_work()) {
2517     cas(top_ptr_reg, top_reg, ptr_reg);
2518   } else {
2519 
2520     // If the register is not an out nor global, it is not visible
2521     // after the save.  Allocate a register for it, save its
2522     // value in the register save area (the save may not flush
2523     // registers to the save area).
2524 
2525     Register top_ptr_reg_after_save;
2526     Register top_reg_after_save;
2527     Register ptr_reg_after_save;
2528 
2529     if (top_ptr_reg->is_out() || top_ptr_reg->is_global()) {
2530       top_ptr_reg_after_save = top_ptr_reg->after_save();
2531     } else {
2532       Address reg_save_addr = top_ptr_reg->address_in_saved_window();
2533       top_ptr_reg_after_save = L0;
2534       st(top_ptr_reg, reg_save_addr);
2535     }
2536 
2537     if (top_reg->is_out() || top_reg->is_global()) {
2538       top_reg_after_save = top_reg->after_save();
2539     } else {
2540       Address reg_save_addr = top_reg->address_in_saved_window();
2541       top_reg_after_save = L1;
2542       st(top_reg, reg_save_addr);
2543     }
2544 
2545     if (ptr_reg->is_out() || ptr_reg->is_global()) {
2546       ptr_reg_after_save = ptr_reg->after_save();
2547     } else {
2548       Address reg_save_addr = ptr_reg->address_in_saved_window();
2549       ptr_reg_after_save = L2;
2550       st(ptr_reg, reg_save_addr);
2551     }
2552 
2553     const Register& lock_reg = L3;
2554     const Register& lock_ptr_reg = L4;
2555     const Register& value_reg = L5;
2556     const Register& yield_reg = L6;
2557     const Register& yieldall_reg = L7;
2558 
2559     save_frame();
2560 
2561     if (top_ptr_reg_after_save == L0) {
2562       ld(top_ptr_reg->address_in_saved_window().after_save(), top_ptr_reg_after_save);
2563     }
2564 
2565     if (top_reg_after_save == L1) {
2566       ld(top_reg->address_in_saved_window().after_save(), top_reg_after_save);
2567     }
2568 
2569     if (ptr_reg_after_save == L2) {
2570       ld(ptr_reg->address_in_saved_window().after_save(), ptr_reg_after_save);
2571     }
2572 
2573     Label(retry_get_lock);
2574     Label(not_same);
2575     Label(dont_yield);
2576 
2577     assert(lock_addr, "lock_address should be non null for v8");
2578     set((intptr_t)lock_addr, lock_ptr_reg);
2579     // Initialize yield counter
2580     mov(G0,yield_reg);
2581     mov(G0, yieldall_reg);
2582     set(StubRoutines::Sparc::locked, lock_reg);
2583 
2584     bind(retry_get_lock);
2585     cmp(yield_reg, V8AtomicOperationUnderLockSpinCount);
2586     br(Assembler::less, false, Assembler::pt, dont_yield);
2587     delayed()->nop();
2588 
2589     if(use_call_vm) {
2590       Untested("Need to verify global reg consistancy");
2591       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::yield_all), yieldall_reg);
2592     } else {
2593       // Save the regs and make space for a C call
2594       save(SP, -96, SP);
2595       save_all_globals_into_locals();
2596       call(CAST_FROM_FN_PTR(address,os::yield_all));
2597       delayed()->mov(yieldall_reg, O0);
2598       restore_globals_from_locals();
2599       restore();
2600     }
2601 
2602     // reset the counter
2603     mov(G0,yield_reg);
2604     add(yieldall_reg, 1, yieldall_reg);
2605 
2606     bind(dont_yield);
2607     // try to get lock
2608     swap(lock_ptr_reg, 0, lock_reg);
2609 
2610     // did we get the lock?
2611     cmp(lock_reg, StubRoutines::Sparc::unlocked);
2612     br(Assembler::notEqual, true, Assembler::pn, retry_get_lock);
2613     delayed()->add(yield_reg,1,yield_reg);
2614 
2615     // yes, got lock.  do we have the same top?
2616     ld(top_ptr_reg_after_save, 0, value_reg);
2617     cmp(value_reg, top_reg_after_save);
2618     br(Assembler::notEqual, false, Assembler::pn, not_same);
2619     delayed()->nop();
2620 
2621     // yes, same top.
2622     st(ptr_reg_after_save, top_ptr_reg_after_save, 0);
2623     membar(Assembler::StoreStore);
2624 
2625     bind(not_same);
2626     mov(value_reg, ptr_reg_after_save);
2627     st(lock_reg, lock_ptr_reg, 0); // unlock
2628 
2629     restore();
2630   }
2631 }
2632 
2633 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
2634                                                       Register tmp,
2635                                                       int offset) {
2636   intptr_t value = *delayed_value_addr;
2637   if (value != 0)
2638     return RegisterOrConstant(value + offset);
2639 
2640   // load indirectly to solve generation ordering problem
2641   AddressLiteral a(delayed_value_addr);
2642   load_ptr_contents(a, tmp);
2643 
2644 #ifdef ASSERT
2645   tst(tmp);
2646   breakpoint_trap(zero, xcc);
2647 #endif
2648 
2649   if (offset != 0)
2650     add(tmp, offset, tmp);
2651 
2652   return RegisterOrConstant(tmp);
2653 }
2654 
2655 
2656 RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2657   assert(d.register_or_noreg() != G0, "lost side effect");
2658   if ((s2.is_constant() && s2.as_constant() == 0) ||
2659       (s2.is_register() && s2.as_register() == G0)) {
2660     // Do nothing, just move value.
2661     if (s1.is_register()) {
2662       if (d.is_constant())  d = temp;
2663       mov(s1.as_register(), d.as_register());
2664       return d;
2665     } else {
2666       return s1;
2667     }
2668   }
2669 
2670   if (s1.is_register()) {
2671     assert_different_registers(s1.as_register(), temp);
2672     if (d.is_constant())  d = temp;
2673     andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2674     return d;
2675   } else {
2676     if (s2.is_register()) {
2677       assert_different_registers(s2.as_register(), temp);
2678       if (d.is_constant())  d = temp;
2679       set(s1.as_constant(), temp);
2680       andn(temp, s2.as_register(), d.as_register());
2681       return d;
2682     } else {
2683       intptr_t res = s1.as_constant() & ~s2.as_constant();
2684       return res;
2685     }
2686   }
2687 }
2688 
2689 RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2690   assert(d.register_or_noreg() != G0, "lost side effect");
2691   if ((s2.is_constant() && s2.as_constant() == 0) ||
2692       (s2.is_register() && s2.as_register() == G0)) {
2693     // Do nothing, just move value.
2694     if (s1.is_register()) {
2695       if (d.is_constant())  d = temp;
2696       mov(s1.as_register(), d.as_register());
2697       return d;
2698     } else {
2699       return s1;
2700     }
2701   }
2702 
2703   if (s1.is_register()) {
2704     assert_different_registers(s1.as_register(), temp);
2705     if (d.is_constant())  d = temp;
2706     add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2707     return d;
2708   } else {
2709     if (s2.is_register()) {
2710       assert_different_registers(s2.as_register(), temp);
2711       if (d.is_constant())  d = temp;
2712       add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
2713       return d;
2714     } else {
2715       intptr_t res = s1.as_constant() + s2.as_constant();
2716       return res;
2717     }
2718   }
2719 }
2720 
2721 RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
2722   assert(d.register_or_noreg() != G0, "lost side effect");
2723   if (!is_simm13(s2.constant_or_zero()))
2724     s2 = (s2.as_constant() & 0xFF);
2725   if ((s2.is_constant() && s2.as_constant() == 0) ||
2726       (s2.is_register() && s2.as_register() == G0)) {
2727     // Do nothing, just move value.
2728     if (s1.is_register()) {
2729       if (d.is_constant())  d = temp;
2730       mov(s1.as_register(), d.as_register());
2731       return d;
2732     } else {
2733       return s1;
2734     }
2735   }
2736 
2737   if (s1.is_register()) {
2738     assert_different_registers(s1.as_register(), temp);
2739     if (d.is_constant())  d = temp;
2740     sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
2741     return d;
2742   } else {
2743     if (s2.is_register()) {
2744       assert_different_registers(s2.as_register(), temp);
2745       if (d.is_constant())  d = temp;
2746       set(s1.as_constant(), temp);
2747       sll_ptr(temp, s2.as_register(), d.as_register());
2748       return d;
2749     } else {
2750       intptr_t res = s1.as_constant() << s2.as_constant();
2751       return res;
2752     }
2753   }
2754 }
2755 
2756 
2757 // Look up the method for a megamorphic invokeinterface call.
2758 // The target method is determined by <intf_klass, itable_index>.
2759 // The receiver klass is in recv_klass.
2760 // On success, the result will be in method_result, and execution falls through.
2761 // On failure, execution transfers to the given label.
2762 void MacroAssembler::lookup_interface_method(Register recv_klass,
2763                                              Register intf_klass,
2764                                              RegisterOrConstant itable_index,
2765                                              Register method_result,
2766                                              Register scan_temp,
2767                                              Register sethi_temp,
2768                                              Label& L_no_such_interface) {
2769   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
2770   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
2771          "caller must use same register for non-constant itable index as for method");
2772 
2773   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
2774   int vtable_base = instanceKlass::vtable_start_offset() * wordSize;
2775   int scan_step   = itableOffsetEntry::size() * wordSize;
2776   int vte_size    = vtableEntry::size() * wordSize;
2777 
2778   lduw(recv_klass, instanceKlass::vtable_length_offset() * wordSize, scan_temp);
2779   // %%% We should store the aligned, prescaled offset in the klassoop.
2780   // Then the next several instructions would fold away.
2781 
2782   int round_to_unit = ((HeapWordsPerLong > 1) ? BytesPerLong : 0);
2783   int itb_offset = vtable_base;
2784   if (round_to_unit != 0) {
2785     // hoist first instruction of round_to(scan_temp, BytesPerLong):
2786     itb_offset += round_to_unit - wordSize;
2787   }
2788   int itb_scale = exact_log2(vtableEntry::size() * wordSize);
2789   sll(scan_temp, itb_scale,  scan_temp);
2790   add(scan_temp, itb_offset, scan_temp);
2791   if (round_to_unit != 0) {
2792     // Round up to align_object_offset boundary
2793     // see code for instanceKlass::start_of_itable!
2794     // Was: round_to(scan_temp, BytesPerLong);
2795     // Hoisted: add(scan_temp, BytesPerLong-1, scan_temp);
2796     and3(scan_temp, -round_to_unit, scan_temp);
2797   }
2798   add(recv_klass, scan_temp, scan_temp);
2799 
2800   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
2801   RegisterOrConstant itable_offset = itable_index;
2802   itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
2803   itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
2804   add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
2805 
2806   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
2807   //   if (scan->interface() == intf) {
2808   //     result = (klass + scan->offset() + itable_index);
2809   //   }
2810   // }
2811   Label search, found_method;
2812 
2813   for (int peel = 1; peel >= 0; peel--) {
2814     // %%%% Could load both offset and interface in one ldx, if they were
2815     // in the opposite order.  This would save a load.
2816     ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
2817 
2818     // Check that this entry is non-null.  A null entry means that
2819     // the receiver class doesn't implement the interface, and wasn't the
2820     // same as when the caller was compiled.
2821     bpr(Assembler::rc_z, false, Assembler::pn, method_result, L_no_such_interface);
2822     delayed()->cmp(method_result, intf_klass);
2823 
2824     if (peel) {
2825       brx(Assembler::equal,    false, Assembler::pt, found_method);
2826     } else {
2827       brx(Assembler::notEqual, false, Assembler::pn, search);
2828       // (invert the test to fall through to found_method...)
2829     }
2830     delayed()->add(scan_temp, scan_step, scan_temp);
2831 
2832     if (!peel)  break;
2833 
2834     bind(search);
2835   }
2836 
2837   bind(found_method);
2838 
2839   // Got a hit.
2840   int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
2841   // scan_temp[-scan_step] points to the vtable offset we need
2842   ito_offset -= scan_step;
2843   lduw(scan_temp, ito_offset, scan_temp);
2844   ld_ptr(recv_klass, scan_temp, method_result);
2845 }
2846 
2847 
2848 void MacroAssembler::check_klass_subtype(Register sub_klass,
2849                                          Register super_klass,
2850                                          Register temp_reg,
2851                                          Register temp2_reg,
2852                                          Label& L_success) {
2853   Label L_failure, L_pop_to_failure;
2854   check_klass_subtype_fast_path(sub_klass, super_klass,
2855                                 temp_reg, temp2_reg,
2856                                 &L_success, &L_failure, NULL);
2857   Register sub_2 = sub_klass;
2858   Register sup_2 = super_klass;
2859   if (!sub_2->is_global())  sub_2 = L0;
2860   if (!sup_2->is_global())  sup_2 = L1;
2861 
2862   save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
2863   check_klass_subtype_slow_path(sub_2, sup_2,
2864                                 L2, L3, L4, L5,
2865                                 NULL, &L_pop_to_failure);
2866 
2867   // on success:
2868   restore();
2869   ba(false, L_success);
2870   delayed()->nop();
2871 
2872   // on failure:
2873   bind(L_pop_to_failure);
2874   restore();
2875   bind(L_failure);
2876 }
2877 
2878 
2879 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
2880                                                    Register super_klass,
2881                                                    Register temp_reg,
2882                                                    Register temp2_reg,
2883                                                    Label* L_success,
2884                                                    Label* L_failure,
2885                                                    Label* L_slow_path,
2886                                         RegisterOrConstant super_check_offset,
2887                                         Register instanceof_hack) {
2888   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
2889                    Klass::secondary_super_cache_offset_in_bytes());
2890   int sco_offset = (klassOopDesc::header_size() * HeapWordSize +
2891                     Klass::super_check_offset_offset_in_bytes());
2892 
2893   bool must_load_sco  = (super_check_offset.constant_or_zero() == -1);
2894   bool need_slow_path = (must_load_sco ||
2895                          super_check_offset.constant_or_zero() == sco_offset);
2896 
2897   assert_different_registers(sub_klass, super_klass, temp_reg);
2898   if (super_check_offset.is_register()) {
2899     assert_different_registers(sub_klass, super_klass, temp_reg,
2900                                super_check_offset.as_register());
2901   } else if (must_load_sco) {
2902     assert(temp2_reg != noreg, "supply either a temp or a register offset");
2903   }
2904 
2905   Label L_fallthrough;
2906   int label_nulls = 0;
2907   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
2908   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
2909   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
2910   assert(label_nulls <= 1 || instanceof_hack != noreg ||
2911          (L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
2912          "at most one NULL in the batch, usually");
2913 
2914   // Support for the instanceof hack, which uses delay slots to
2915   // set a destination register to zero or one.
2916   bool do_bool_sets = (instanceof_hack != noreg);
2917 #define BOOL_SET(bool_value)                            \
2918   if (do_bool_sets && bool_value >= 0)                  \
2919     set(bool_value, instanceof_hack)
2920 #define DELAYED_BOOL_SET(bool_value)                    \
2921   if (do_bool_sets && bool_value >= 0)                  \
2922     delayed()->set(bool_value, instanceof_hack);        \
2923   else delayed()->nop()
2924   // Hacked ba(), which may only be used just before L_fallthrough.
2925 #define FINAL_JUMP(label, bool_value)                   \
2926   if (&(label) == &L_fallthrough) {                     \
2927     BOOL_SET(bool_value);                               \
2928   } else {                                              \
2929     ba((do_bool_sets && bool_value >= 0), label);       \
2930     DELAYED_BOOL_SET(bool_value);                       \
2931   }
2932 
2933   // If the pointers are equal, we are done (e.g., String[] elements).
2934   // This self-check enables sharing of secondary supertype arrays among
2935   // non-primary types such as array-of-interface.  Otherwise, each such
2936   // type would need its own customized SSA.
2937   // We move this check to the front of the fast path because many
2938   // type checks are in fact trivially successful in this manner,
2939   // so we get a nicely predicted branch right at the start of the check.
2940   cmp(super_klass, sub_klass);
2941   brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
2942   DELAYED_BOOL_SET(1);
2943 
2944   // Check the supertype display:
2945   if (must_load_sco) {
2946     // The super check offset is always positive...
2947     lduw(super_klass, sco_offset, temp2_reg);
2948     super_check_offset = RegisterOrConstant(temp2_reg);
2949     // super_check_offset is register.
2950     assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
2951   }
2952   ld_ptr(sub_klass, super_check_offset, temp_reg);
2953   cmp(super_klass, temp_reg);
2954 
2955   // This check has worked decisively for primary supers.
2956   // Secondary supers are sought in the super_cache ('super_cache_addr').
2957   // (Secondary supers are interfaces and very deeply nested subtypes.)
2958   // This works in the same check above because of a tricky aliasing
2959   // between the super_cache and the primary super display elements.
2960   // (The 'super_check_addr' can address either, as the case requires.)
2961   // Note that the cache is updated below if it does not help us find
2962   // what we need immediately.
2963   // So if it was a primary super, we can just fail immediately.
2964   // Otherwise, it's the slow path for us (no success at this point).
2965 
2966   if (super_check_offset.is_register()) {
2967     brx(Assembler::equal, do_bool_sets, Assembler::pn, *L_success);
2968     delayed(); if (do_bool_sets)  BOOL_SET(1);
2969     // if !do_bool_sets, sneak the next cmp into the delay slot:
2970     cmp(super_check_offset.as_register(), sc_offset);
2971 
2972     if (L_failure == &L_fallthrough) {
2973       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_slow_path);
2974       delayed()->nop();
2975       BOOL_SET(0);  // fallthrough on failure
2976     } else {
2977       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
2978       DELAYED_BOOL_SET(0);
2979       FINAL_JUMP(*L_slow_path, -1);  // -1 => vanilla delay slot
2980     }
2981   } else if (super_check_offset.as_constant() == sc_offset) {
2982     // Need a slow path; fast failure is impossible.
2983     if (L_slow_path == &L_fallthrough) {
2984       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
2985       DELAYED_BOOL_SET(1);
2986     } else {
2987       brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
2988       delayed()->nop();
2989       FINAL_JUMP(*L_success, 1);
2990     }
2991   } else {
2992     // No slow path; it's a fast decision.
2993     if (L_failure == &L_fallthrough) {
2994       brx(Assembler::equal, do_bool_sets, Assembler::pt, *L_success);
2995       DELAYED_BOOL_SET(1);
2996       BOOL_SET(0);
2997     } else {
2998       brx(Assembler::notEqual, do_bool_sets, Assembler::pn, *L_failure);
2999       DELAYED_BOOL_SET(0);
3000       FINAL_JUMP(*L_success, 1);
3001     }
3002   }
3003 
3004   bind(L_fallthrough);
3005 
3006 #undef final_jump
3007 #undef bool_set
3008 #undef DELAYED_BOOL_SET
3009 #undef final_jump
3010 }
3011 
3012 
3013 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
3014                                                    Register super_klass,
3015                                                    Register count_temp,
3016                                                    Register scan_temp,
3017                                                    Register scratch_reg,
3018                                                    Register coop_reg,
3019                                                    Label* L_success,
3020                                                    Label* L_failure) {
3021   assert_different_registers(sub_klass, super_klass,
3022                              count_temp, scan_temp, scratch_reg, coop_reg);
3023 
3024   Label L_fallthrough, L_loop;
3025   int label_nulls = 0;
3026   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
3027   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
3028   assert(label_nulls <= 1, "at most one NULL in the batch");
3029 
3030   // a couple of useful fields in sub_klass:
3031   int ss_offset = (klassOopDesc::header_size() * HeapWordSize +
3032                    Klass::secondary_supers_offset_in_bytes());
3033   int sc_offset = (klassOopDesc::header_size() * HeapWordSize +
3034                    Klass::secondary_super_cache_offset_in_bytes());
3035 
3036   // Do a linear scan of the secondary super-klass chain.
3037   // This code is rarely used, so simplicity is a virtue here.
3038 
3039 #ifndef PRODUCT
3040   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
3041   inc_counter((address) pst_counter, count_temp, scan_temp);
3042 #endif
3043 
3044   // We will consult the secondary-super array.
3045   ld_ptr(sub_klass, ss_offset, scan_temp);
3046 
3047   // Compress superclass if necessary.
3048   Register search_key = super_klass;
3049   bool decode_super_klass = false;
3050   if (UseCompressedOops) {
3051     if (coop_reg != noreg) {
3052       encode_heap_oop_not_null(super_klass, coop_reg);
3053       search_key = coop_reg;
3054     } else {
3055       encode_heap_oop_not_null(super_klass);
3056       decode_super_klass = true; // scarce temps!
3057     }
3058     // The superclass is never null; it would be a basic system error if a null
3059     // pointer were to sneak in here.  Note that we have already loaded the
3060     // Klass::super_check_offset from the super_klass in the fast path,
3061     // so if there is a null in that register, we are already in the afterlife.
3062   }
3063 
3064   // Load the array length.  (Positive movl does right thing on LP64.)
3065   lduw(scan_temp, arrayOopDesc::length_offset_in_bytes(), count_temp);
3066 
3067   // Check for empty secondary super list
3068   tst(count_temp);
3069 
3070   // Top of search loop
3071   bind(L_loop);
3072   br(Assembler::equal, false, Assembler::pn, *L_failure);
3073   delayed()->add(scan_temp, heapOopSize, scan_temp);
3074   assert(heapOopSize != 0, "heapOopSize should be initialized");
3075 
3076   // Skip the array header in all array accesses.
3077   int elem_offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
3078   elem_offset -= heapOopSize;   // the scan pointer was pre-incremented also
3079 
3080   // Load next super to check
3081   if (UseCompressedOops) {
3082     // Don't use load_heap_oop; we don't want to decode the element.
3083     lduw(   scan_temp, elem_offset, scratch_reg );
3084   } else {
3085     ld_ptr( scan_temp, elem_offset, scratch_reg );
3086   }
3087 
3088   // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
3089   cmp(scratch_reg, search_key);
3090 
3091   // A miss means we are NOT a subtype and need to keep looping
3092   brx(Assembler::notEqual, false, Assembler::pn, L_loop);
3093   delayed()->deccc(count_temp); // decrement trip counter in delay slot
3094 
3095   // Falling out the bottom means we found a hit; we ARE a subtype
3096   if (decode_super_klass) decode_heap_oop(super_klass);
3097 
3098   // Success.  Cache the super we found and proceed in triumph.
3099   st_ptr(super_klass, sub_klass, sc_offset);
3100 
3101   if (L_success != &L_fallthrough) {
3102     ba(false, *L_success);
3103     delayed()->nop();
3104   }
3105 
3106   bind(L_fallthrough);
3107 }
3108 
3109 
3110 void MacroAssembler::check_method_handle_type(Register mtype_reg, Register mh_reg,
3111                                               Register temp_reg,
3112                                               Label& wrong_method_type) {
3113   assert_different_registers(mtype_reg, mh_reg, temp_reg);
3114   // compare method type against that of the receiver
3115   RegisterOrConstant mhtype_offset = delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg);
3116   load_heap_oop(mh_reg, mhtype_offset, temp_reg);
3117   cmp(temp_reg, mtype_reg);
3118   br(Assembler::notEqual, false, Assembler::pn, wrong_method_type);
3119   delayed()->nop();
3120 }
3121 
3122 
3123 // A method handle has a "vmslots" field which gives the size of its
3124 // argument list in JVM stack slots.  This field is either located directly
3125 // in every method handle, or else is indirectly accessed through the
3126 // method handle's MethodType.  This macro hides the distinction.
3127 void MacroAssembler::load_method_handle_vmslots(Register vmslots_reg, Register mh_reg,
3128                                                 Register temp_reg) {
3129   assert_different_registers(vmslots_reg, mh_reg, temp_reg);
3130   // load mh.type.form.vmslots
3131   if (java_dyn_MethodHandle::vmslots_offset_in_bytes() != 0) {
3132     // hoist vmslots into every mh to avoid dependent load chain
3133     ld(           Address(mh_reg,    delayed_value(java_dyn_MethodHandle::vmslots_offset_in_bytes, temp_reg)),   vmslots_reg);
3134   } else {
3135     Register temp2_reg = vmslots_reg;
3136     load_heap_oop(Address(mh_reg,    delayed_value(java_dyn_MethodHandle::type_offset_in_bytes, temp_reg)),      temp2_reg);
3137     load_heap_oop(Address(temp2_reg, delayed_value(java_dyn_MethodType::form_offset_in_bytes, temp_reg)),        temp2_reg);
3138     ld(           Address(temp2_reg, delayed_value(java_dyn_MethodTypeForm::vmslots_offset_in_bytes, temp_reg)), vmslots_reg);
3139   }
3140 }
3141 
3142 
3143 void MacroAssembler::jump_to_method_handle_entry(Register mh_reg, Register temp_reg, bool emit_delayed_nop) {
3144   assert(mh_reg == G3_method_handle, "caller must put MH object in G3");
3145   assert_different_registers(mh_reg, temp_reg);
3146 
3147   // pick out the interpreted side of the handler
3148   // NOTE: vmentry is not an oop!
3149   ld_ptr(mh_reg, delayed_value(java_dyn_MethodHandle::vmentry_offset_in_bytes, temp_reg), temp_reg);
3150 
3151   // off we go...
3152   ld_ptr(temp_reg, MethodHandleEntry::from_interpreted_entry_offset_in_bytes(), temp_reg);
3153   jmp(temp_reg, 0);
3154 
3155   // for the various stubs which take control at this point,
3156   // see MethodHandles::generate_method_handle_stub
3157 
3158   // Some callers can fill the delay slot.
3159   if (emit_delayed_nop) {
3160     delayed()->nop();
3161   }
3162 }
3163 
3164 
3165 RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
3166                                                    int extra_slot_offset) {
3167   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
3168   int stackElementSize = Interpreter::stackElementSize;
3169   int offset = extra_slot_offset * stackElementSize;
3170   if (arg_slot.is_constant()) {
3171     offset += arg_slot.as_constant() * stackElementSize;
3172     return offset;
3173   } else {
3174     Register temp = arg_slot.as_register();
3175     sll_ptr(temp, exact_log2(stackElementSize), temp);
3176     if (offset != 0)
3177       add(temp, offset, temp);
3178     return temp;
3179   }
3180 }
3181 
3182 
3183 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
3184                                          int extra_slot_offset) {
3185   return Address(Gargs, argument_offset(arg_slot, extra_slot_offset));
3186 }
3187 
3188 
3189 void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
3190                                           Register temp_reg,
3191                                           Label& done, Label* slow_case,
3192                                           BiasedLockingCounters* counters) {
3193   assert(UseBiasedLocking, "why call this otherwise?");
3194 
3195   if (PrintBiasedLockingStatistics) {
3196     assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
3197     if (counters == NULL)
3198       counters = BiasedLocking::counters();
3199   }
3200 
3201   Label cas_label;
3202 
3203   // Biased locking
3204   // See whether the lock is currently biased toward our thread and
3205   // whether the epoch is still valid
3206   // Note that the runtime guarantees sufficient alignment of JavaThread
3207   // pointers to allow age to be placed into low bits
3208   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
3209   and3(mark_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3210   cmp(temp_reg, markOopDesc::biased_lock_pattern);
3211   brx(Assembler::notEqual, false, Assembler::pn, cas_label);
3212   delayed()->nop();
3213 
3214   load_klass(obj_reg, temp_reg);
3215   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3216   or3(G2_thread, temp_reg, temp_reg);
3217   xor3(mark_reg, temp_reg, temp_reg);
3218   andcc(temp_reg, ~((int) markOopDesc::age_mask_in_place), temp_reg);
3219   if (counters != NULL) {
3220     cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
3221     // Reload mark_reg as we may need it later
3222     ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
3223   }
3224   brx(Assembler::equal, true, Assembler::pt, done);
3225   delayed()->nop();
3226 
3227   Label try_revoke_bias;
3228   Label try_rebias;
3229   Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
3230   assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3231 
3232   // At this point we know that the header has the bias pattern and
3233   // that we are not the bias owner in the current epoch. We need to
3234   // figure out more details about the state of the header in order to
3235   // know what operations can be legally performed on the object's
3236   // header.
3237 
3238   // If the low three bits in the xor result aren't clear, that means
3239   // the prototype header is no longer biased and we have to revoke
3240   // the bias on this object.
3241   btst(markOopDesc::biased_lock_mask_in_place, temp_reg);
3242   brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
3243 
3244   // Biasing is still enabled for this data type. See whether the
3245   // epoch of the current bias is still valid, meaning that the epoch
3246   // bits of the mark word are equal to the epoch bits of the
3247   // prototype header. (Note that the prototype header's epoch bits
3248   // only change at a safepoint.) If not, attempt to rebias the object
3249   // toward the current thread. Note that we must be absolutely sure
3250   // that the current epoch is invalid in order to do this because
3251   // otherwise the manipulations it performs on the mark word are
3252   // illegal.
3253   delayed()->btst(markOopDesc::epoch_mask_in_place, temp_reg);
3254   brx(Assembler::notZero, false, Assembler::pn, try_rebias);
3255 
3256   // The epoch of the current bias is still valid but we know nothing
3257   // about the owner; it might be set or it might be clear. Try to
3258   // acquire the bias of the object using an atomic operation. If this
3259   // fails we will go in to the runtime to revoke the object's bias.
3260   // Note that we first construct the presumed unbiased header so we
3261   // don't accidentally blow away another thread's valid bias.
3262   delayed()->and3(mark_reg,
3263                   markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place,
3264                   mark_reg);
3265   or3(G2_thread, mark_reg, temp_reg);
3266   casn(mark_addr.base(), mark_reg, temp_reg);
3267   // If the biasing toward our thread failed, this means that
3268   // another thread succeeded in biasing it toward itself and we
3269   // need to revoke that bias. The revocation will occur in the
3270   // interpreter runtime in the slow case.
3271   cmp(mark_reg, temp_reg);
3272   if (counters != NULL) {
3273     cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
3274   }
3275   if (slow_case != NULL) {
3276     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3277     delayed()->nop();
3278   }
3279   br(Assembler::always, false, Assembler::pt, done);
3280   delayed()->nop();
3281 
3282   bind(try_rebias);
3283   // At this point we know the epoch has expired, meaning that the
3284   // current "bias owner", if any, is actually invalid. Under these
3285   // circumstances _only_, we are allowed to use the current header's
3286   // value as the comparison value when doing the cas to acquire the
3287   // bias in the current epoch. In other words, we allow transfer of
3288   // the bias from one thread to another directly in this situation.
3289   //
3290   // FIXME: due to a lack of registers we currently blow away the age
3291   // bits in this situation. Should attempt to preserve them.
3292   load_klass(obj_reg, temp_reg);
3293   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3294   or3(G2_thread, temp_reg, temp_reg);
3295   casn(mark_addr.base(), mark_reg, temp_reg);
3296   // If the biasing toward our thread failed, this means that
3297   // another thread succeeded in biasing it toward itself and we
3298   // need to revoke that bias. The revocation will occur in the
3299   // interpreter runtime in the slow case.
3300   cmp(mark_reg, temp_reg);
3301   if (counters != NULL) {
3302     cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
3303   }
3304   if (slow_case != NULL) {
3305     brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
3306     delayed()->nop();
3307   }
3308   br(Assembler::always, false, Assembler::pt, done);
3309   delayed()->nop();
3310 
3311   bind(try_revoke_bias);
3312   // The prototype mark in the klass doesn't have the bias bit set any
3313   // more, indicating that objects of this data type are not supposed
3314   // to be biased any more. We are going to try to reset the mark of
3315   // this object to the prototype value and fall through to the
3316   // CAS-based locking scheme. Note that if our CAS fails, it means
3317   // that another thread raced us for the privilege of revoking the
3318   // bias of this particular object, so it's okay to continue in the
3319   // normal locking code.
3320   //
3321   // FIXME: due to a lack of registers we currently blow away the age
3322   // bits in this situation. Should attempt to preserve them.
3323   load_klass(obj_reg, temp_reg);
3324   ld_ptr(Address(temp_reg, Klass::prototype_header_offset_in_bytes() + klassOopDesc::klass_part_offset_in_bytes()), temp_reg);
3325   casn(mark_addr.base(), mark_reg, temp_reg);
3326   // Fall through to the normal CAS-based lock, because no matter what
3327   // the result of the above CAS, some thread must have succeeded in
3328   // removing the bias bit from the object's header.
3329   if (counters != NULL) {
3330     cmp(mark_reg, temp_reg);
3331     cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
3332   }
3333 
3334   bind(cas_label);
3335 }
3336 
3337 void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
3338                                           bool allow_delay_slot_filling) {
3339   // Check for biased locking unlock case, which is a no-op
3340   // Note: we do not have to check the thread ID for two reasons.
3341   // First, the interpreter checks for IllegalMonitorStateException at
3342   // a higher level. Second, if the bias was revoked while we held the
3343   // lock, the object could not be rebiased toward another thread, so
3344   // the bias bit would be clear.
3345   ld_ptr(mark_addr, temp_reg);
3346   and3(temp_reg, markOopDesc::biased_lock_mask_in_place, temp_reg);
3347   cmp(temp_reg, markOopDesc::biased_lock_pattern);
3348   brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
3349   delayed();
3350   if (!allow_delay_slot_filling) {
3351     nop();
3352   }
3353 }
3354 
3355 
3356 // CASN -- 32-64 bit switch hitter similar to the synthetic CASN provided by
3357 // Solaris/SPARC's "as".  Another apt name would be cas_ptr()
3358 
3359 void MacroAssembler::casn (Register addr_reg, Register cmp_reg, Register set_reg ) {
3360   casx_under_lock (addr_reg, cmp_reg, set_reg, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr()) ;
3361 }
3362 
3363 
3364 
3365 // compiler_lock_object() and compiler_unlock_object() are direct transliterations
3366 // of i486.ad fast_lock() and fast_unlock().  See those methods for detailed comments.
3367 // The code could be tightened up considerably.
3368 //
3369 // box->dhw disposition - post-conditions at DONE_LABEL.
3370 // -   Successful inflated lock:  box->dhw != 0.
3371 //     Any non-zero value suffices.
3372 //     Consider G2_thread, rsp, boxReg, or unused_mark()
3373 // -   Successful Stack-lock: box->dhw == mark.
3374 //     box->dhw must contain the displaced mark word value
3375 // -   Failure -- icc.ZFlag == 0 and box->dhw is undefined.
3376 //     The slow-path fast_enter() and slow_enter() operators
3377 //     are responsible for setting box->dhw = NonZero (typically ::unused_mark).
3378 // -   Biased: box->dhw is undefined
3379 //
3380 // SPARC refworkload performance - specifically jetstream and scimark - are
3381 // extremely sensitive to the size of the code emitted by compiler_lock_object
3382 // and compiler_unlock_object.  Critically, the key factor is code size, not path
3383 // length.  (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
3384 // effect).
3385 
3386 
3387 void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
3388                                           Register Rbox, Register Rscratch,
3389                                           BiasedLockingCounters* counters,
3390                                           bool try_bias) {
3391    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3392 
3393    verify_oop(Roop);
3394    Label done ;
3395 
3396    if (counters != NULL) {
3397      inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
3398    }
3399 
3400    if (EmitSync & 1) {
3401      mov    (3, Rscratch) ;
3402      st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3403      cmp    (SP, G0) ;
3404      return ;
3405    }
3406 
3407    if (EmitSync & 2) {
3408 
3409      // Fetch object's markword
3410      ld_ptr(mark_addr, Rmark);
3411 
3412      if (try_bias) {
3413         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3414      }
3415 
3416      // Save Rbox in Rscratch to be used for the cas operation
3417      mov(Rbox, Rscratch);
3418 
3419      // set Rmark to markOop | markOopDesc::unlocked_value
3420      or3(Rmark, markOopDesc::unlocked_value, Rmark);
3421 
3422      // Initialize the box.  (Must happen before we update the object mark!)
3423      st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3424 
3425      // compare object markOop with Rmark and if equal exchange Rscratch with object markOop
3426      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3427      casx_under_lock(mark_addr.base(), Rmark, Rscratch,
3428         (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3429 
3430      // if compare/exchange succeeded we found an unlocked object and we now have locked it
3431      // hence we are done
3432      cmp(Rmark, Rscratch);
3433 #ifdef _LP64
3434      sub(Rscratch, STACK_BIAS, Rscratch);
3435 #endif
3436      brx(Assembler::equal, false, Assembler::pt, done);
3437      delayed()->sub(Rscratch, SP, Rscratch);  //pull next instruction into delay slot
3438 
3439      // we did not find an unlocked object so see if this is a recursive case
3440      // sub(Rscratch, SP, Rscratch);
3441      assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3442      andcc(Rscratch, 0xfffff003, Rscratch);
3443      st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3444      bind (done) ;
3445      return ;
3446    }
3447 
3448    Label Egress ;
3449 
3450    if (EmitSync & 256) {
3451       Label IsInflated ;
3452 
3453       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
3454       // Triage: biased, stack-locked, neutral, inflated
3455       if (try_bias) {
3456         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3457         // Invariant: if control reaches this point in the emitted stream
3458         // then Rmark has not been modified.
3459       }
3460 
3461       // Store mark into displaced mark field in the on-stack basic-lock "box"
3462       // Critically, this must happen before the CAS
3463       // Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
3464       st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3465       andcc  (Rmark, 2, G0) ;
3466       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
3467       delayed() ->
3468 
3469       // Try stack-lock acquisition.
3470       // Beware: the 1st instruction is in a delay slot
3471       mov    (Rbox,  Rscratch);
3472       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
3473       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
3474       casn   (mark_addr.base(), Rmark, Rscratch) ;
3475       cmp    (Rmark, Rscratch);
3476       brx    (Assembler::equal, false, Assembler::pt, done);
3477       delayed()->sub(Rscratch, SP, Rscratch);
3478 
3479       // Stack-lock attempt failed - check for recursive stack-lock.
3480       // See the comments below about how we might remove this case.
3481 #ifdef _LP64
3482       sub    (Rscratch, STACK_BIAS, Rscratch);
3483 #endif
3484       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3485       andcc  (Rscratch, 0xfffff003, Rscratch);
3486       br     (Assembler::always, false, Assembler::pt, done) ;
3487       delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3488 
3489       bind   (IsInflated) ;
3490       if (EmitSync & 64) {
3491          // If m->owner != null goto IsLocked
3492          // Pessimistic form: Test-and-CAS vs CAS
3493          // The optimistic form avoids RTS->RTO cache line upgrades.
3494          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3495          andcc  (Rscratch, Rscratch, G0) ;
3496          brx    (Assembler::notZero, false, Assembler::pn, done) ;
3497          delayed()->nop() ;
3498          // m->owner == null : it's unlocked.
3499       }
3500 
3501       // Try to CAS m->owner from null to Self
3502       // Invariant: if we acquire the lock then _recursions should be 0.
3503       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3504       mov    (G2_thread, Rscratch) ;
3505       casn   (Rmark, G0, Rscratch) ;
3506       cmp    (Rscratch, G0) ;
3507       // Intentional fall-through into done
3508    } else {
3509       // Aggressively avoid the Store-before-CAS penalty
3510       // Defer the store into box->dhw until after the CAS
3511       Label IsInflated, Recursive ;
3512 
3513 // Anticipate CAS -- Avoid RTS->RTO upgrade
3514 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
3515 
3516       ld_ptr (mark_addr, Rmark);           // fetch obj->mark
3517       // Triage: biased, stack-locked, neutral, inflated
3518 
3519       if (try_bias) {
3520         biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
3521         // Invariant: if control reaches this point in the emitted stream
3522         // then Rmark has not been modified.
3523       }
3524       andcc  (Rmark, 2, G0) ;
3525       brx    (Assembler::notZero, false, Assembler::pn, IsInflated) ;
3526       delayed()->                         // Beware - dangling delay-slot
3527 
3528       // Try stack-lock acquisition.
3529       // Transiently install BUSY (0) encoding in the mark word.
3530       // if the CAS of 0 into the mark was successful then we execute:
3531       //   ST box->dhw  = mark   -- save fetched mark in on-stack basiclock box
3532       //   ST obj->mark = box    -- overwrite transient 0 value
3533       // This presumes TSO, of course.
3534 
3535       mov    (0, Rscratch) ;
3536       or3    (Rmark, markOopDesc::unlocked_value, Rmark);
3537       assert (mark_addr.disp() == 0, "cas must take a zero displacement");
3538       casn   (mark_addr.base(), Rmark, Rscratch) ;
3539 // prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads) ;
3540       cmp    (Rscratch, Rmark) ;
3541       brx    (Assembler::notZero, false, Assembler::pn, Recursive) ;
3542       delayed() ->
3543         st_ptr (Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
3544       if (counters != NULL) {
3545         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3546       }
3547       br     (Assembler::always, false, Assembler::pt, done);
3548       delayed() ->
3549         st_ptr (Rbox, mark_addr) ;
3550 
3551       bind   (Recursive) ;
3552       // Stack-lock attempt failed - check for recursive stack-lock.
3553       // Tests show that we can remove the recursive case with no impact
3554       // on refworkload 0.83.  If we need to reduce the size of the code
3555       // emitted by compiler_lock_object() the recursive case is perfect
3556       // candidate.
3557       //
3558       // A more extreme idea is to always inflate on stack-lock recursion.
3559       // This lets us eliminate the recursive checks in compiler_lock_object
3560       // and compiler_unlock_object and the (box->dhw == 0) encoding.
3561       // A brief experiment - requiring changes to synchronizer.cpp, interpreter,
3562       // and showed a performance *increase*.  In the same experiment I eliminated
3563       // the fast-path stack-lock code from the interpreter and always passed
3564       // control to the "slow" operators in synchronizer.cpp.
3565 
3566       // RScratch contains the fetched obj->mark value from the failed CASN.
3567 #ifdef _LP64
3568       sub    (Rscratch, STACK_BIAS, Rscratch);
3569 #endif
3570       sub(Rscratch, SP, Rscratch);
3571       assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
3572       andcc  (Rscratch, 0xfffff003, Rscratch);
3573       if (counters != NULL) {
3574         // Accounting needs the Rscratch register
3575         st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3576         cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
3577         br     (Assembler::always, false, Assembler::pt, done) ;
3578         delayed()->nop() ;
3579       } else {
3580         br     (Assembler::always, false, Assembler::pt, done) ;
3581         delayed()-> st_ptr (Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
3582       }
3583 
3584       bind   (IsInflated) ;
3585       if (EmitSync & 64) {
3586          // If m->owner != null goto IsLocked
3587          // Test-and-CAS vs CAS
3588          // Pessimistic form avoids futile (doomed) CAS attempts
3589          // The optimistic form avoids RTS->RTO cache line upgrades.
3590          ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3591          andcc  (Rscratch, Rscratch, G0) ;
3592          brx    (Assembler::notZero, false, Assembler::pn, done) ;
3593          delayed()->nop() ;
3594          // m->owner == null : it's unlocked.
3595       }
3596 
3597       // Try to CAS m->owner from null to Self
3598       // Invariant: if we acquire the lock then _recursions should be 0.
3599       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3600       mov    (G2_thread, Rscratch) ;
3601       casn   (Rmark, G0, Rscratch) ;
3602       cmp    (Rscratch, G0) ;
3603       // ST box->displaced_header = NonZero.
3604       // Any non-zero value suffices:
3605       //    unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
3606       st_ptr (Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
3607       // Intentional fall-through into done
3608    }
3609 
3610    bind   (done) ;
3611 }
3612 
3613 void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
3614                                             Register Rbox, Register Rscratch,
3615                                             bool try_bias) {
3616    Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
3617 
3618    Label done ;
3619 
3620    if (EmitSync & 4) {
3621      cmp  (SP, G0) ;
3622      return ;
3623    }
3624 
3625    if (EmitSync & 8) {
3626      if (try_bias) {
3627         biased_locking_exit(mark_addr, Rscratch, done);
3628      }
3629 
3630      // Test first if it is a fast recursive unlock
3631      ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
3632      cmp(Rmark, G0);
3633      brx(Assembler::equal, false, Assembler::pt, done);
3634      delayed()->nop();
3635 
3636      // Check if it is still a light weight lock, this is is true if we see
3637      // the stack address of the basicLock in the markOop of the object
3638      assert(mark_addr.disp() == 0, "cas must take a zero displacement");
3639      casx_under_lock(mark_addr.base(), Rbox, Rmark,
3640        (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3641      br (Assembler::always, false, Assembler::pt, done);
3642      delayed()->cmp(Rbox, Rmark);
3643      bind (done) ;
3644      return ;
3645    }
3646 
3647    // Beware ... If the aggregate size of the code emitted by CLO and CUO is
3648    // is too large performance rolls abruptly off a cliff.
3649    // This could be related to inlining policies, code cache management, or
3650    // I$ effects.
3651    Label LStacked ;
3652 
3653    if (try_bias) {
3654       // TODO: eliminate redundant LDs of obj->mark
3655       biased_locking_exit(mark_addr, Rscratch, done);
3656    }
3657 
3658    ld_ptr (Roop, oopDesc::mark_offset_in_bytes(), Rmark) ;
3659    ld_ptr (Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
3660    andcc  (Rscratch, Rscratch, G0);
3661    brx    (Assembler::zero, false, Assembler::pn, done);
3662    delayed()-> nop() ;      // consider: relocate fetch of mark, above, into this DS
3663    andcc  (Rmark, 2, G0) ;
3664    brx    (Assembler::zero, false, Assembler::pt, LStacked) ;
3665    delayed()-> nop() ;
3666 
3667    // It's inflated
3668    // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3669    // the ST of 0 into _owner which releases the lock.  This prevents loads
3670    // and stores within the critical section from reordering (floating)
3671    // past the store that releases the lock.  But TSO is a strong memory model
3672    // and that particular flavor of barrier is a noop, so we can safely elide it.
3673    // Note that we use 1-0 locking by default for the inflated case.  We
3674    // close the resultant (and rare) race by having contented threads in
3675    // monitorenter periodically poll _owner.
3676    ld_ptr (Rmark, ObjectMonitor::owner_offset_in_bytes() - 2, Rscratch);
3677    ld_ptr (Rmark, ObjectMonitor::recursions_offset_in_bytes() - 2, Rbox);
3678    xor3   (Rscratch, G2_thread, Rscratch) ;
3679    orcc   (Rbox, Rscratch, Rbox) ;
3680    brx    (Assembler::notZero, false, Assembler::pn, done) ;
3681    delayed()->
3682    ld_ptr (Rmark, ObjectMonitor::EntryList_offset_in_bytes() - 2, Rscratch);
3683    ld_ptr (Rmark, ObjectMonitor::cxq_offset_in_bytes() - 2, Rbox);
3684    orcc   (Rbox, Rscratch, G0) ;
3685    if (EmitSync & 65536) {
3686       Label LSucc ;
3687       brx    (Assembler::notZero, false, Assembler::pn, LSucc) ;
3688       delayed()->nop() ;
3689       br     (Assembler::always, false, Assembler::pt, done) ;
3690       delayed()->
3691       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3692 
3693       bind   (LSucc) ;
3694       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3695       if (os::is_MP()) { membar (StoreLoad) ; }
3696       ld_ptr (Rmark, ObjectMonitor::succ_offset_in_bytes() - 2, Rscratch);
3697       andcc  (Rscratch, Rscratch, G0) ;
3698       brx    (Assembler::notZero, false, Assembler::pt, done) ;
3699       delayed()-> andcc (G0, G0, G0) ;
3700       add    (Rmark, ObjectMonitor::owner_offset_in_bytes()-2, Rmark) ;
3701       mov    (G2_thread, Rscratch) ;
3702       casn   (Rmark, G0, Rscratch) ;
3703       cmp    (Rscratch, G0) ;
3704       // invert icc.zf and goto done
3705       brx    (Assembler::notZero, false, Assembler::pt, done) ;
3706       delayed() -> cmp (G0, G0) ;
3707       br     (Assembler::always, false, Assembler::pt, done);
3708       delayed() -> cmp (G0, 1) ;
3709    } else {
3710       brx    (Assembler::notZero, false, Assembler::pn, done) ;
3711       delayed()->nop() ;
3712       br     (Assembler::always, false, Assembler::pt, done) ;
3713       delayed()->
3714       st_ptr (G0, Rmark, ObjectMonitor::owner_offset_in_bytes() - 2);
3715    }
3716 
3717    bind   (LStacked) ;
3718    // Consider: we could replace the expensive CAS in the exit
3719    // path with a simple ST of the displaced mark value fetched from
3720    // the on-stack basiclock box.  That admits a race where a thread T2
3721    // in the slow lock path -- inflating with monitor M -- could race a
3722    // thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
3723    // More precisely T1 in the stack-lock unlock path could "stomp" the
3724    // inflated mark value M installed by T2, resulting in an orphan
3725    // object monitor M and T2 becoming stranded.  We can remedy that situation
3726    // by having T2 periodically poll the object's mark word using timed wait
3727    // operations.  If T2 discovers that a stomp has occurred it vacates
3728    // the monitor M and wakes any other threads stranded on the now-orphan M.
3729    // In addition the monitor scavenger, which performs deflation,
3730    // would also need to check for orpan monitors and stranded threads.
3731    //
3732    // Finally, inflation is also used when T2 needs to assign a hashCode
3733    // to O and O is stack-locked by T1.  The "stomp" race could cause
3734    // an assigned hashCode value to be lost.  We can avoid that condition
3735    // and provide the necessary hashCode stability invariants by ensuring
3736    // that hashCode generation is idempotent between copying GCs.
3737    // For example we could compute the hashCode of an object O as
3738    // O's heap address XOR some high quality RNG value that is refreshed
3739    // at GC-time.  The monitor scavenger would install the hashCode
3740    // found in any orphan monitors.  Again, the mechanism admits a
3741    // lost-update "stomp" WAW race but detects and recovers as needed.
3742    //
3743    // A prototype implementation showed excellent results, although
3744    // the scavenger and timeout code was rather involved.
3745 
3746    casn   (mark_addr.base(), Rbox, Rscratch) ;
3747    cmp    (Rbox, Rscratch);
3748    // Intentional fall through into done ...
3749 
3750    bind   (done) ;
3751 }
3752 
3753 
3754 
3755 void MacroAssembler::print_CPU_state() {
3756   // %%%%% need to implement this
3757 }
3758 
3759 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
3760   // %%%%% need to implement this
3761 }
3762 
3763 void MacroAssembler::push_IU_state() {
3764   // %%%%% need to implement this
3765 }
3766 
3767 
3768 void MacroAssembler::pop_IU_state() {
3769   // %%%%% need to implement this
3770 }
3771 
3772 
3773 void MacroAssembler::push_FPU_state() {
3774   // %%%%% need to implement this
3775 }
3776 
3777 
3778 void MacroAssembler::pop_FPU_state() {
3779   // %%%%% need to implement this
3780 }
3781 
3782 
3783 void MacroAssembler::push_CPU_state() {
3784   // %%%%% need to implement this
3785 }
3786 
3787 
3788 void MacroAssembler::pop_CPU_state() {
3789   // %%%%% need to implement this
3790 }
3791 
3792 
3793 
3794 void MacroAssembler::verify_tlab() {
3795 #ifdef ASSERT
3796   if (UseTLAB && VerifyOops) {
3797     Label next, next2, ok;
3798     Register t1 = L0;
3799     Register t2 = L1;
3800     Register t3 = L2;
3801 
3802     save_frame(0);
3803     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3804     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
3805     or3(t1, t2, t3);
3806     cmp(t1, t2);
3807     br(Assembler::greaterEqual, false, Assembler::pn, next);
3808     delayed()->nop();
3809     stop("assert(top >= start)");
3810     should_not_reach_here();
3811 
3812     bind(next);
3813     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
3814     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
3815     or3(t3, t2, t3);
3816     cmp(t1, t2);
3817     br(Assembler::lessEqual, false, Assembler::pn, next2);
3818     delayed()->nop();
3819     stop("assert(top <= end)");
3820     should_not_reach_here();
3821 
3822     bind(next2);
3823     and3(t3, MinObjAlignmentInBytesMask, t3);
3824     cmp(t3, 0);
3825     br(Assembler::lessEqual, false, Assembler::pn, ok);
3826     delayed()->nop();
3827     stop("assert(aligned)");
3828     should_not_reach_here();
3829 
3830     bind(ok);
3831     restore();
3832   }
3833 #endif
3834 }
3835 
3836 
3837 void MacroAssembler::eden_allocate(
3838   Register obj,                        // result: pointer to object after successful allocation
3839   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3840   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3841   Register t1,                         // temp register
3842   Register t2,                         // temp register
3843   Label&   slow_case                   // continuation point if fast allocation fails
3844 ){
3845   // make sure arguments make sense
3846   assert_different_registers(obj, var_size_in_bytes, t1, t2);
3847   assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
3848   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3849 
3850   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3851     // No allocation in the shared eden.
3852     br(Assembler::always, false, Assembler::pt, slow_case);
3853     delayed()->nop();
3854   } else {
3855     // get eden boundaries
3856     // note: we need both top & top_addr!
3857     const Register top_addr = t1;
3858     const Register end      = t2;
3859 
3860     CollectedHeap* ch = Universe::heap();
3861     set((intx)ch->top_addr(), top_addr);
3862     intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
3863     ld_ptr(top_addr, delta, end);
3864     ld_ptr(top_addr, 0, obj);
3865 
3866     // try to allocate
3867     Label retry;
3868     bind(retry);
3869 #ifdef ASSERT
3870     // make sure eden top is properly aligned
3871     {
3872       Label L;
3873       btst(MinObjAlignmentInBytesMask, obj);
3874       br(Assembler::zero, false, Assembler::pt, L);
3875       delayed()->nop();
3876       stop("eden top is not properly aligned");
3877       bind(L);
3878     }
3879 #endif // ASSERT
3880     const Register free = end;
3881     sub(end, obj, free);                                   // compute amount of free space
3882     if (var_size_in_bytes->is_valid()) {
3883       // size is unknown at compile time
3884       cmp(free, var_size_in_bytes);
3885       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3886       delayed()->add(obj, var_size_in_bytes, end);
3887     } else {
3888       // size is known at compile time
3889       cmp(free, con_size_in_bytes);
3890       br(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
3891       delayed()->add(obj, con_size_in_bytes, end);
3892     }
3893     // Compare obj with the value at top_addr; if still equal, swap the value of
3894     // end with the value at top_addr. If not equal, read the value at top_addr
3895     // into end.
3896     casx_under_lock(top_addr, obj, end, (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
3897     // if someone beat us on the allocation, try again, otherwise continue
3898     cmp(obj, end);
3899     brx(Assembler::notEqual, false, Assembler::pn, retry);
3900     delayed()->mov(end, obj);                              // nop if successfull since obj == end
3901 
3902 #ifdef ASSERT
3903     // make sure eden top is properly aligned
3904     {
3905       Label L;
3906       const Register top_addr = t1;
3907 
3908       set((intx)ch->top_addr(), top_addr);
3909       ld_ptr(top_addr, 0, top_addr);
3910       btst(MinObjAlignmentInBytesMask, top_addr);
3911       br(Assembler::zero, false, Assembler::pt, L);
3912       delayed()->nop();
3913       stop("eden top is not properly aligned");
3914       bind(L);
3915     }
3916 #endif // ASSERT
3917   }
3918 }
3919 
3920 
3921 void MacroAssembler::tlab_allocate(
3922   Register obj,                        // result: pointer to object after successful allocation
3923   Register var_size_in_bytes,          // object size in bytes if unknown at compile time; invalid otherwise
3924   int      con_size_in_bytes,          // object size in bytes if   known at compile time
3925   Register t1,                         // temp register
3926   Label&   slow_case                   // continuation point if fast allocation fails
3927 ){
3928   // make sure arguments make sense
3929   assert_different_registers(obj, var_size_in_bytes, t1);
3930   assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
3931   assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
3932 
3933   const Register free  = t1;
3934 
3935   verify_tlab();
3936 
3937   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
3938 
3939   // calculate amount of free space
3940   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
3941   sub(free, obj, free);
3942 
3943   Label done;
3944   if (var_size_in_bytes == noreg) {
3945     cmp(free, con_size_in_bytes);
3946   } else {
3947     cmp(free, var_size_in_bytes);
3948   }
3949   br(Assembler::less, false, Assembler::pn, slow_case);
3950   // calculate the new top pointer
3951   if (var_size_in_bytes == noreg) {
3952     delayed()->add(obj, con_size_in_bytes, free);
3953   } else {
3954     delayed()->add(obj, var_size_in_bytes, free);
3955   }
3956 
3957   bind(done);
3958 
3959 #ifdef ASSERT
3960   // make sure new free pointer is properly aligned
3961   {
3962     Label L;
3963     btst(MinObjAlignmentInBytesMask, free);
3964     br(Assembler::zero, false, Assembler::pt, L);
3965     delayed()->nop();
3966     stop("updated TLAB free is not properly aligned");
3967     bind(L);
3968   }
3969 #endif // ASSERT
3970 
3971   // update the tlab top pointer
3972   st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
3973   verify_tlab();
3974 }
3975 
3976 
3977 void MacroAssembler::tlab_refill(Label& retry, Label& try_eden, Label& slow_case) {
3978   Register top = O0;
3979   Register t1 = G1;
3980   Register t2 = G3;
3981   Register t3 = O1;
3982   assert_different_registers(top, t1, t2, t3, G4, G5 /* preserve G4 and G5 */);
3983   Label do_refill, discard_tlab;
3984 
3985   if (CMSIncrementalMode || !Universe::heap()->supports_inline_contig_alloc()) {
3986     // No allocation in the shared eden.
3987     br(Assembler::always, false, Assembler::pt, slow_case);
3988     delayed()->nop();
3989   }
3990 
3991   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), top);
3992   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t1);
3993   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), t2);
3994 
3995   // calculate amount of free space
3996   sub(t1, top, t1);
3997   srl_ptr(t1, LogHeapWordSize, t1);
3998 
3999   // Retain tlab and allocate object in shared space if
4000   // the amount free in the tlab is too large to discard.
4001   cmp(t1, t2);
4002   brx(Assembler::lessEqual, false, Assembler::pt, discard_tlab);
4003 
4004   // increment waste limit to prevent getting stuck on this slow path
4005   delayed()->add(t2, ThreadLocalAllocBuffer::refill_waste_limit_increment(), t2);
4006   st_ptr(t2, G2_thread, in_bytes(JavaThread::tlab_refill_waste_limit_offset()));
4007   if (TLABStats) {
4008     // increment number of slow_allocations
4009     ld(G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()), t2);
4010     add(t2, 1, t2);
4011     stw(t2, G2_thread, in_bytes(JavaThread::tlab_slow_allocations_offset()));
4012   }
4013   br(Assembler::always, false, Assembler::pt, try_eden);
4014   delayed()->nop();
4015 
4016   bind(discard_tlab);
4017   if (TLABStats) {
4018     // increment number of refills
4019     ld(G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()), t2);
4020     add(t2, 1, t2);
4021     stw(t2, G2_thread, in_bytes(JavaThread::tlab_number_of_refills_offset()));
4022     // accumulate wastage
4023     ld(G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()), t2);
4024     add(t2, t1, t2);
4025     stw(t2, G2_thread, in_bytes(JavaThread::tlab_fast_refill_waste_offset()));
4026   }
4027 
4028   // if tlab is currently allocated (top or end != null) then
4029   // fill [top, end + alignment_reserve) with array object
4030   br_null(top, false, Assembler::pn, do_refill);
4031   delayed()->nop();
4032 
4033   set((intptr_t)markOopDesc::prototype()->copy_set_hash(0x2), t2);
4034   st_ptr(t2, top, oopDesc::mark_offset_in_bytes()); // set up the mark word
4035   // set klass to intArrayKlass
4036   sub(t1, typeArrayOopDesc::header_size(T_INT), t1);
4037   add(t1, ThreadLocalAllocBuffer::alignment_reserve(), t1);
4038   sll_ptr(t1, log2_intptr(HeapWordSize/sizeof(jint)), t1);
4039   st(t1, top, arrayOopDesc::length_offset_in_bytes());
4040   set((intptr_t)Universe::intArrayKlassObj_addr(), t2);
4041   ld_ptr(t2, 0, t2);
4042   // store klass last.  concurrent gcs assumes klass length is valid if
4043   // klass field is not null.
4044   store_klass(t2, top);
4045   verify_oop(top);
4046 
4047   // refill the tlab with an eden allocation
4048   bind(do_refill);
4049   ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t1);
4050   sll_ptr(t1, LogHeapWordSize, t1);
4051   // add object_size ??
4052   eden_allocate(top, t1, 0, t2, t3, slow_case);
4053 
4054   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_start_offset()));
4055   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
4056 #ifdef ASSERT
4057   // check that tlab_size (t1) is still valid
4058   {
4059     Label ok;
4060     ld_ptr(G2_thread, in_bytes(JavaThread::tlab_size_offset()), t2);
4061     sll_ptr(t2, LogHeapWordSize, t2);
4062     cmp(t1, t2);
4063     br(Assembler::equal, false, Assembler::pt, ok);
4064     delayed()->nop();
4065     stop("assert(t1 == tlab_size)");
4066     should_not_reach_here();
4067 
4068     bind(ok);
4069   }
4070 #endif // ASSERT
4071   add(top, t1, top); // t1 is tlab_size
4072   sub(top, ThreadLocalAllocBuffer::alignment_reserve_in_bytes(), top);
4073   st_ptr(top, G2_thread, in_bytes(JavaThread::tlab_end_offset()));
4074   verify_tlab();
4075   br(Assembler::always, false, Assembler::pt, retry);
4076   delayed()->nop();
4077 }
4078 
4079 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
4080   switch (cond) {
4081     // Note some conditions are synonyms for others
4082     case Assembler::never:                return Assembler::always;
4083     case Assembler::zero:                 return Assembler::notZero;
4084     case Assembler::lessEqual:            return Assembler::greater;
4085     case Assembler::less:                 return Assembler::greaterEqual;
4086     case Assembler::lessEqualUnsigned:    return Assembler::greaterUnsigned;
4087     case Assembler::lessUnsigned:         return Assembler::greaterEqualUnsigned;
4088     case Assembler::negative:             return Assembler::positive;
4089     case Assembler::overflowSet:          return Assembler::overflowClear;
4090     case Assembler::always:               return Assembler::never;
4091     case Assembler::notZero:              return Assembler::zero;
4092     case Assembler::greater:              return Assembler::lessEqual;
4093     case Assembler::greaterEqual:         return Assembler::less;
4094     case Assembler::greaterUnsigned:      return Assembler::lessEqualUnsigned;
4095     case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
4096     case Assembler::positive:             return Assembler::negative;
4097     case Assembler::overflowClear:        return Assembler::overflowSet;
4098   }
4099 
4100   ShouldNotReachHere(); return Assembler::overflowClear;
4101 }
4102 
4103 void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
4104                               Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
4105   Condition negated_cond = negate_condition(cond);
4106   Label L;
4107   brx(negated_cond, false, Assembler::pt, L);
4108   delayed()->nop();
4109   inc_counter(counter_ptr, Rtmp1, Rtmp2);
4110   bind(L);
4111 }
4112 
4113 void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
4114   AddressLiteral addrlit(counter_addr);
4115   sethi(addrlit, Rtmp1);                 // Move hi22 bits into temporary register.
4116   Address addr(Rtmp1, addrlit.low10());  // Build an address with low10 bits.
4117   ld(addr, Rtmp2);
4118   inc(Rtmp2);
4119   st(Rtmp2, addr);
4120 }
4121 
4122 void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
4123   inc_counter((address) counter_addr, Rtmp1, Rtmp2);
4124 }
4125 
4126 SkipIfEqual::SkipIfEqual(
4127     MacroAssembler* masm, Register temp, const bool* flag_addr,
4128     Assembler::Condition condition) {
4129   _masm = masm;
4130   AddressLiteral flag(flag_addr);
4131   _masm->sethi(flag, temp);
4132   _masm->ldub(temp, flag.low10(), temp);
4133   _masm->tst(temp);
4134   _masm->br(condition, false, Assembler::pt, _label);
4135   _masm->delayed()->nop();
4136 }
4137 
4138 SkipIfEqual::~SkipIfEqual() {
4139   _masm->bind(_label);
4140 }
4141 
4142 
4143 // Writes to stack successive pages until offset reached to check for
4144 // stack overflow + shadow pages.  This clobbers tsp and scratch.
4145 void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
4146                                      Register Rscratch) {
4147   // Use stack pointer in temp stack pointer
4148   mov(SP, Rtsp);
4149 
4150   // Bang stack for total size given plus stack shadow page size.
4151   // Bang one page at a time because a large size can overflow yellow and
4152   // red zones (the bang will fail but stack overflow handling can't tell that
4153   // it was a stack overflow bang vs a regular segv).
4154   int offset = os::vm_page_size();
4155   Register Roffset = Rscratch;
4156 
4157   Label loop;
4158   bind(loop);
4159   set((-offset)+STACK_BIAS, Rscratch);
4160   st(G0, Rtsp, Rscratch);
4161   set(offset, Roffset);
4162   sub(Rsize, Roffset, Rsize);
4163   cmp(Rsize, G0);
4164   br(Assembler::greater, false, Assembler::pn, loop);
4165   delayed()->sub(Rtsp, Roffset, Rtsp);
4166 
4167   // Bang down shadow pages too.
4168   // The -1 because we already subtracted 1 page.
4169   for (int i = 0; i< StackShadowPages-1; i++) {
4170     set((-i*offset)+STACK_BIAS, Rscratch);
4171     st(G0, Rtsp, Rscratch);
4172   }
4173 }
4174 
4175 ///////////////////////////////////////////////////////////////////////////////////
4176 #ifndef SERIALGC
4177 
4178 static uint num_stores = 0;
4179 static uint num_null_pre_stores = 0;
4180 
4181 static void count_null_pre_vals(void* pre_val) {
4182   num_stores++;
4183   if (pre_val == NULL) num_null_pre_stores++;
4184   if ((num_stores % 1000000) == 0) {
4185     tty->print_cr(UINT32_FORMAT " stores, " UINT32_FORMAT " (%5.2f%%) with null pre-vals.",
4186                   num_stores, num_null_pre_stores,
4187                   100.0*(float)num_null_pre_stores/(float)num_stores);
4188   }
4189 }
4190 
4191 static address satb_log_enqueue_with_frame = 0;
4192 static u_char* satb_log_enqueue_with_frame_end = 0;
4193 
4194 static address satb_log_enqueue_frameless = 0;
4195 static u_char* satb_log_enqueue_frameless_end = 0;
4196 
4197 static int EnqueueCodeSize = 128 DEBUG_ONLY( + 256); // Instructions?
4198 
4199 // The calls to this don't work.  We'd need to do a fair amount of work to
4200 // make it work.
4201 static void check_index(int ind) {
4202   assert(0 <= ind && ind <= 64*K && ((ind % oopSize) == 0),
4203          "Invariants.");
4204 }
4205 
4206 static void generate_satb_log_enqueue(bool with_frame) {
4207   BufferBlob* bb = BufferBlob::create("enqueue_with_frame", EnqueueCodeSize);
4208   CodeBuffer buf(bb);
4209   MacroAssembler masm(&buf);
4210   address start = masm.pc();
4211   Register pre_val;
4212 
4213   Label refill, restart;
4214   if (with_frame) {
4215     masm.save_frame(0);
4216     pre_val = I0;  // Was O0 before the save.
4217   } else {
4218     pre_val = O0;
4219   }
4220   int satb_q_index_byte_offset =
4221     in_bytes(JavaThread::satb_mark_queue_offset() +
4222              PtrQueue::byte_offset_of_index());
4223   int satb_q_buf_byte_offset =
4224     in_bytes(JavaThread::satb_mark_queue_offset() +
4225              PtrQueue::byte_offset_of_buf());
4226   assert(in_bytes(PtrQueue::byte_width_of_index()) == sizeof(intptr_t) &&
4227          in_bytes(PtrQueue::byte_width_of_buf()) == sizeof(intptr_t),
4228          "check sizes in assembly below");
4229 
4230   masm.bind(restart);
4231   masm.ld_ptr(G2_thread, satb_q_index_byte_offset, L0);
4232 
4233   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn, L0, refill);
4234   // If the branch is taken, no harm in executing this in the delay slot.
4235   masm.delayed()->ld_ptr(G2_thread, satb_q_buf_byte_offset, L1);
4236   masm.sub(L0, oopSize, L0);
4237 
4238   masm.st_ptr(pre_val, L1, L0);  // [_buf + index] := I0
4239   if (!with_frame) {
4240     // Use return-from-leaf
4241     masm.retl();
4242     masm.delayed()->st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4243   } else {
4244     // Not delayed.
4245     masm.st_ptr(L0, G2_thread, satb_q_index_byte_offset);
4246   }
4247   if (with_frame) {
4248     masm.ret();
4249     masm.delayed()->restore();
4250   }
4251   masm.bind(refill);
4252 
4253   address handle_zero =
4254     CAST_FROM_FN_PTR(address,
4255                      &SATBMarkQueueSet::handle_zero_index_for_thread);
4256   // This should be rare enough that we can afford to save all the
4257   // scratch registers that the calling context might be using.
4258   masm.mov(G1_scratch, L0);
4259   masm.mov(G3_scratch, L1);
4260   masm.mov(G4, L2);
4261   // We need the value of O0 above (for the write into the buffer), so we
4262   // save and restore it.
4263   masm.mov(O0, L3);
4264   // Since the call will overwrite O7, we save and restore that, as well.
4265   masm.mov(O7, L4);
4266   masm.call_VM_leaf(L5, handle_zero, G2_thread);
4267   masm.mov(L0, G1_scratch);
4268   masm.mov(L1, G3_scratch);
4269   masm.mov(L2, G4);
4270   masm.mov(L3, O0);
4271   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4272   masm.delayed()->mov(L4, O7);
4273 
4274   if (with_frame) {
4275     satb_log_enqueue_with_frame = start;
4276     satb_log_enqueue_with_frame_end = masm.pc();
4277   } else {
4278     satb_log_enqueue_frameless = start;
4279     satb_log_enqueue_frameless_end = masm.pc();
4280   }
4281 }
4282 
4283 static inline void generate_satb_log_enqueue_if_necessary(bool with_frame) {
4284   if (with_frame) {
4285     if (satb_log_enqueue_with_frame == 0) {
4286       generate_satb_log_enqueue(with_frame);
4287       assert(satb_log_enqueue_with_frame != 0, "postcondition.");
4288       if (G1SATBPrintStubs) {
4289         tty->print_cr("Generated with-frame satb enqueue:");
4290         Disassembler::decode((u_char*)satb_log_enqueue_with_frame,
4291                              satb_log_enqueue_with_frame_end,
4292                              tty);
4293       }
4294     }
4295   } else {
4296     if (satb_log_enqueue_frameless == 0) {
4297       generate_satb_log_enqueue(with_frame);
4298       assert(satb_log_enqueue_frameless != 0, "postcondition.");
4299       if (G1SATBPrintStubs) {
4300         tty->print_cr("Generated frameless satb enqueue:");
4301         Disassembler::decode((u_char*)satb_log_enqueue_frameless,
4302                              satb_log_enqueue_frameless_end,
4303                              tty);
4304       }
4305     }
4306   }
4307 }
4308 
4309 void MacroAssembler::g1_write_barrier_pre(Register obj, Register index, int offset, Register tmp, bool preserve_o_regs) {
4310   assert(offset == 0 || index == noreg, "choose one");
4311 
4312   if (G1DisablePreBarrier) return;
4313   // satb_log_barrier(tmp, obj, offset, preserve_o_regs);
4314   Label filtered;
4315   // satb_log_barrier_work0(tmp, filtered);
4316   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4317     ld(G2,
4318        in_bytes(JavaThread::satb_mark_queue_offset() +
4319                 PtrQueue::byte_offset_of_active()),
4320        tmp);
4321   } else {
4322     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
4323               "Assumption");
4324     ldsb(G2,
4325          in_bytes(JavaThread::satb_mark_queue_offset() +
4326                   PtrQueue::byte_offset_of_active()),
4327          tmp);
4328   }
4329 
4330   // Check on whether to annul.
4331   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
4332   delayed() -> nop();
4333 
4334   // satb_log_barrier_work1(tmp, offset);
4335   if (index == noreg) {
4336     if (Assembler::is_simm13(offset)) {
4337       load_heap_oop(obj, offset, tmp);
4338     } else {
4339       set(offset, tmp);
4340       load_heap_oop(obj, tmp, tmp);
4341     }
4342   } else {
4343     load_heap_oop(obj, index, tmp);
4344   }
4345 
4346   // satb_log_barrier_work2(obj, tmp, offset);
4347 
4348   // satb_log_barrier_work3(tmp, filtered, preserve_o_regs);
4349 
4350   const Register pre_val = tmp;
4351 
4352   if (G1SATBBarrierPrintNullPreVals) {
4353     save_frame(0);
4354     mov(pre_val, O0);
4355     // Save G-regs that target may use.
4356     mov(G1, L1);
4357     mov(G2, L2);
4358     mov(G3, L3);
4359     mov(G4, L4);
4360     mov(G5, L5);
4361     call(CAST_FROM_FN_PTR(address, &count_null_pre_vals));
4362     delayed()->nop();
4363     // Restore G-regs that target may have used.
4364     mov(L1, G1);
4365     mov(L2, G2);
4366     mov(L3, G3);
4367     mov(L4, G4);
4368     mov(L5, G5);
4369     restore(G0, G0, G0);
4370   }
4371 
4372   // Check on whether to annul.
4373   br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, pre_val, filtered);
4374   delayed() -> nop();
4375 
4376   // OK, it's not filtered, so we'll need to call enqueue.  In the normal
4377   // case, pre_val will be a scratch G-reg, but there's some cases in which
4378   // it's an O-reg.  In the first case, do a normal call.  In the latter,
4379   // do a save here and call the frameless version.
4380 
4381   guarantee(pre_val->is_global() || pre_val->is_out(),
4382             "Or we need to think harder.");
4383   if (pre_val->is_global() && !preserve_o_regs) {
4384     generate_satb_log_enqueue_if_necessary(true); // with frame.
4385     call(satb_log_enqueue_with_frame);
4386     delayed()->mov(pre_val, O0);
4387   } else {
4388     generate_satb_log_enqueue_if_necessary(false); // with frameless.
4389     save_frame(0);
4390     call(satb_log_enqueue_frameless);
4391     delayed()->mov(pre_val->after_save(), O0);
4392     restore();
4393   }
4394 
4395   bind(filtered);
4396 }
4397 
4398 static jint num_ct_writes = 0;
4399 static jint num_ct_writes_filtered_in_hr = 0;
4400 static jint num_ct_writes_filtered_null = 0;
4401 static G1CollectedHeap* g1 = NULL;
4402 
4403 static Thread* count_ct_writes(void* filter_val, void* new_val) {
4404   Atomic::inc(&num_ct_writes);
4405   if (filter_val == NULL) {
4406     Atomic::inc(&num_ct_writes_filtered_in_hr);
4407   } else if (new_val == NULL) {
4408     Atomic::inc(&num_ct_writes_filtered_null);
4409   } else {
4410     if (g1 == NULL) {
4411       g1 = G1CollectedHeap::heap();
4412     }
4413   }
4414   if ((num_ct_writes % 1000000) == 0) {
4415     jint num_ct_writes_filtered =
4416       num_ct_writes_filtered_in_hr +
4417       num_ct_writes_filtered_null;
4418 
4419     tty->print_cr("%d potential CT writes: %5.2f%% filtered\n"
4420                   "   (%5.2f%% intra-HR, %5.2f%% null).",
4421                   num_ct_writes,
4422                   100.0*(float)num_ct_writes_filtered/(float)num_ct_writes,
4423                   100.0*(float)num_ct_writes_filtered_in_hr/
4424                   (float)num_ct_writes,
4425                   100.0*(float)num_ct_writes_filtered_null/
4426                   (float)num_ct_writes);
4427   }
4428   return Thread::current();
4429 }
4430 
4431 static address dirty_card_log_enqueue = 0;
4432 static u_char* dirty_card_log_enqueue_end = 0;
4433 
4434 // This gets to assume that o0 contains the object address.
4435 static void generate_dirty_card_log_enqueue(jbyte* byte_map_base) {
4436   BufferBlob* bb = BufferBlob::create("dirty_card_enqueue", EnqueueCodeSize*2);
4437   CodeBuffer buf(bb);
4438   MacroAssembler masm(&buf);
4439   address start = masm.pc();
4440 
4441   Label not_already_dirty, restart, refill;
4442 
4443 #ifdef _LP64
4444   masm.srlx(O0, CardTableModRefBS::card_shift, O0);
4445 #else
4446   masm.srl(O0, CardTableModRefBS::card_shift, O0);
4447 #endif
4448   AddressLiteral addrlit(byte_map_base);
4449   masm.set(addrlit, O1); // O1 := <card table base>
4450   masm.ldub(O0, O1, O2); // O2 := [O0 + O1]
4451 
4452   masm.br_on_reg_cond(Assembler::rc_nz, /*annul*/false, Assembler::pt,
4453                       O2, not_already_dirty);
4454   // Get O1 + O2 into a reg by itself -- useful in the take-the-branch
4455   // case, harmless if not.
4456   masm.delayed()->add(O0, O1, O3);
4457 
4458   // We didn't take the branch, so we're already dirty: return.
4459   // Use return-from-leaf
4460   masm.retl();
4461   masm.delayed()->nop();
4462 
4463   // Not dirty.
4464   masm.bind(not_already_dirty);
4465   // First, dirty it.
4466   masm.stb(G0, O3, G0);  // [cardPtr] := 0  (i.e., dirty).
4467   int dirty_card_q_index_byte_offset =
4468     in_bytes(JavaThread::dirty_card_queue_offset() +
4469              PtrQueue::byte_offset_of_index());
4470   int dirty_card_q_buf_byte_offset =
4471     in_bytes(JavaThread::dirty_card_queue_offset() +
4472              PtrQueue::byte_offset_of_buf());
4473   masm.bind(restart);
4474   masm.ld_ptr(G2_thread, dirty_card_q_index_byte_offset, L0);
4475 
4476   masm.br_on_reg_cond(Assembler::rc_z, /*annul*/false, Assembler::pn,
4477                       L0, refill);
4478   // If the branch is taken, no harm in executing this in the delay slot.
4479   masm.delayed()->ld_ptr(G2_thread, dirty_card_q_buf_byte_offset, L1);
4480   masm.sub(L0, oopSize, L0);
4481 
4482   masm.st_ptr(O3, L1, L0);  // [_buf + index] := I0
4483   // Use return-from-leaf
4484   masm.retl();
4485   masm.delayed()->st_ptr(L0, G2_thread, dirty_card_q_index_byte_offset);
4486 
4487   masm.bind(refill);
4488   address handle_zero =
4489     CAST_FROM_FN_PTR(address,
4490                      &DirtyCardQueueSet::handle_zero_index_for_thread);
4491   // This should be rare enough that we can afford to save all the
4492   // scratch registers that the calling context might be using.
4493   masm.mov(G1_scratch, L3);
4494   masm.mov(G3_scratch, L5);
4495   // We need the value of O3 above (for the write into the buffer), so we
4496   // save and restore it.
4497   masm.mov(O3, L6);
4498   // Since the call will overwrite O7, we save and restore that, as well.
4499   masm.mov(O7, L4);
4500 
4501   masm.call_VM_leaf(L7_thread_cache, handle_zero, G2_thread);
4502   masm.mov(L3, G1_scratch);
4503   masm.mov(L5, G3_scratch);
4504   masm.mov(L6, O3);
4505   masm.br(Assembler::always, /*annul*/false, Assembler::pt, restart);
4506   masm.delayed()->mov(L4, O7);
4507 
4508   dirty_card_log_enqueue = start;
4509   dirty_card_log_enqueue_end = masm.pc();
4510   // XXX Should have a guarantee here about not going off the end!
4511   // Does it already do so?  Do an experiment...
4512 }
4513 
4514 static inline void
4515 generate_dirty_card_log_enqueue_if_necessary(jbyte* byte_map_base) {
4516   if (dirty_card_log_enqueue == 0) {
4517     generate_dirty_card_log_enqueue(byte_map_base);
4518     assert(dirty_card_log_enqueue != 0, "postcondition.");
4519     if (G1SATBPrintStubs) {
4520       tty->print_cr("Generated dirty_card enqueue:");
4521       Disassembler::decode((u_char*)dirty_card_log_enqueue,
4522                            dirty_card_log_enqueue_end,
4523                            tty);
4524     }
4525   }
4526 }
4527 
4528 
4529 void MacroAssembler::g1_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4530 
4531   Label filtered;
4532   MacroAssembler* post_filter_masm = this;
4533 
4534   if (new_val == G0) return;
4535   if (G1DisablePostBarrier) return;
4536 
4537   G1SATBCardTableModRefBS* bs = (G1SATBCardTableModRefBS*) Universe::heap()->barrier_set();
4538   assert(bs->kind() == BarrierSet::G1SATBCT ||
4539          bs->kind() == BarrierSet::G1SATBCTLogging, "wrong barrier");
4540   if (G1RSBarrierRegionFilter) {
4541     xor3(store_addr, new_val, tmp);
4542 #ifdef _LP64
4543     srlx(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4544 #else
4545     srl(tmp, HeapRegion::LogOfHRGrainBytes, tmp);
4546 #endif
4547     if (G1PrintCTFilterStats) {
4548       guarantee(tmp->is_global(), "Or stats won't work...");
4549       // This is a sleazy hack: I'm temporarily hijacking G2, which I
4550       // promise to restore.
4551       mov(new_val, G2);
4552       save_frame(0);
4553       mov(tmp, O0);
4554       mov(G2, O1);
4555       // Save G-regs that target may use.
4556       mov(G1, L1);
4557       mov(G2, L2);
4558       mov(G3, L3);
4559       mov(G4, L4);
4560       mov(G5, L5);
4561       call(CAST_FROM_FN_PTR(address, &count_ct_writes));
4562       delayed()->nop();
4563       mov(O0, G2);
4564       // Restore G-regs that target may have used.
4565       mov(L1, G1);
4566       mov(L3, G3);
4567       mov(L4, G4);
4568       mov(L5, G5);
4569       restore(G0, G0, G0);
4570     }
4571     // XXX Should I predict this taken or not?  Does it mattern?
4572     br_on_reg_cond(rc_z, /*annul*/false, Assembler::pt, tmp, filtered);
4573     delayed()->nop();
4574   }
4575 
4576   // If the "store_addr" register is an "in" or "local" register, move it to
4577   // a scratch reg so we can pass it as an argument.
4578   bool use_scr = !(store_addr->is_global() || store_addr->is_out());
4579   // Pick a scratch register different from "tmp".
4580   Register scr = (tmp == G1_scratch ? G3_scratch : G1_scratch);
4581   // Make sure we use up the delay slot!
4582   if (use_scr) {
4583     post_filter_masm->mov(store_addr, scr);
4584   } else {
4585     post_filter_masm->nop();
4586   }
4587   generate_dirty_card_log_enqueue_if_necessary(bs->byte_map_base);
4588   save_frame(0);
4589   call(dirty_card_log_enqueue);
4590   if (use_scr) {
4591     delayed()->mov(scr, O0);
4592   } else {
4593     delayed()->mov(store_addr->after_save(), O0);
4594   }
4595   restore();
4596 
4597   bind(filtered);
4598 
4599 }
4600 
4601 #endif  // SERIALGC
4602 ///////////////////////////////////////////////////////////////////////////////////
4603 
4604 void MacroAssembler::card_write_barrier_post(Register store_addr, Register new_val, Register tmp) {
4605   // If we're writing constant NULL, we can skip the write barrier.
4606   if (new_val == G0) return;
4607   CardTableModRefBS* bs = (CardTableModRefBS*) Universe::heap()->barrier_set();
4608   assert(bs->kind() == BarrierSet::CardTableModRef ||
4609          bs->kind() == BarrierSet::CardTableExtension, "wrong barrier");
4610   card_table_write(bs->byte_map_base, tmp, store_addr);
4611 }
4612 
4613 void MacroAssembler::load_klass(Register src_oop, Register klass) {
4614   // The number of bytes in this code is used by
4615   // MachCallDynamicJavaNode::ret_addr_offset()
4616   // if this changes, change that.
4617   if (UseCompressedOops) {
4618     lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4619     decode_heap_oop_not_null(klass);
4620   } else {
4621     ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
4622   }
4623 }
4624 
4625 void MacroAssembler::store_klass(Register klass, Register dst_oop) {
4626   if (UseCompressedOops) {
4627     assert(dst_oop != klass, "not enough registers");
4628     encode_heap_oop_not_null(klass);
4629     st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4630   } else {
4631     st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
4632   }
4633 }
4634 
4635 void MacroAssembler::store_klass_gap(Register s, Register d) {
4636   if (UseCompressedOops) {
4637     assert(s != d, "not enough registers");
4638     st(s, d, oopDesc::klass_gap_offset_in_bytes());
4639   }
4640 }
4641 
4642 void MacroAssembler::load_heap_oop(const Address& s, Register d) {
4643   if (UseCompressedOops) {
4644     lduw(s, d);
4645     decode_heap_oop(d);
4646   } else {
4647     ld_ptr(s, d);
4648   }
4649 }
4650 
4651 void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d) {
4652    if (UseCompressedOops) {
4653     lduw(s1, s2, d);
4654     decode_heap_oop(d, d);
4655   } else {
4656     ld_ptr(s1, s2, d);
4657   }
4658 }
4659 
4660 void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d) {
4661    if (UseCompressedOops) {
4662     lduw(s1, simm13a, d);
4663     decode_heap_oop(d, d);
4664   } else {
4665     ld_ptr(s1, simm13a, d);
4666   }
4667 }
4668 
4669 void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d) {
4670   if (s2.is_constant())  load_heap_oop(s1, s2.as_constant(), d);
4671   else                   load_heap_oop(s1, s2.as_register(), d);
4672 }
4673 
4674 void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2) {
4675   if (UseCompressedOops) {
4676     assert(s1 != d && s2 != d, "not enough registers");
4677     encode_heap_oop(d);
4678     st(d, s1, s2);
4679   } else {
4680     st_ptr(d, s1, s2);
4681   }
4682 }
4683 
4684 void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a) {
4685   if (UseCompressedOops) {
4686     assert(s1 != d, "not enough registers");
4687     encode_heap_oop(d);
4688     st(d, s1, simm13a);
4689   } else {
4690     st_ptr(d, s1, simm13a);
4691   }
4692 }
4693 
4694 void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset) {
4695   if (UseCompressedOops) {
4696     assert(a.base() != d, "not enough registers");
4697     encode_heap_oop(d);
4698     st(d, a, offset);
4699   } else {
4700     st_ptr(d, a, offset);
4701   }
4702 }
4703 
4704 
4705 void MacroAssembler::encode_heap_oop(Register src, Register dst) {
4706   assert (UseCompressedOops, "must be compressed");
4707   assert (Universe::heap() != NULL, "java heap should be initialized");
4708   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4709   verify_oop(src);
4710   if (Universe::narrow_oop_base() == NULL) {
4711     srlx(src, LogMinObjAlignmentInBytes, dst);
4712     return;
4713   }
4714   Label done;
4715   if (src == dst) {
4716     // optimize for frequent case src == dst
4717     bpr(rc_nz, true, Assembler::pt, src, done);
4718     delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
4719     bind(done);
4720     srlx(src, LogMinObjAlignmentInBytes, dst);
4721   } else {
4722     bpr(rc_z, false, Assembler::pn, src, done);
4723     delayed() -> mov(G0, dst);
4724     // could be moved before branch, and annulate delay,
4725     // but may add some unneeded work decoding null
4726     sub(src, G6_heapbase, dst);
4727     srlx(dst, LogMinObjAlignmentInBytes, dst);
4728     bind(done);
4729   }
4730 }
4731 
4732 
4733 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4734   assert (UseCompressedOops, "must be compressed");
4735   assert (Universe::heap() != NULL, "java heap should be initialized");
4736   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4737   verify_oop(r);
4738   if (Universe::narrow_oop_base() != NULL)
4739     sub(r, G6_heapbase, r);
4740   srlx(r, LogMinObjAlignmentInBytes, r);
4741 }
4742 
4743 void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
4744   assert (UseCompressedOops, "must be compressed");
4745   assert (Universe::heap() != NULL, "java heap should be initialized");
4746   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4747   verify_oop(src);
4748   if (Universe::narrow_oop_base() == NULL) {
4749     srlx(src, LogMinObjAlignmentInBytes, dst);
4750   } else {
4751     sub(src, G6_heapbase, dst);
4752     srlx(dst, LogMinObjAlignmentInBytes, dst);
4753   }
4754 }
4755 
4756 // Same algorithm as oops.inline.hpp decode_heap_oop.
4757 void  MacroAssembler::decode_heap_oop(Register src, Register dst) {
4758   assert (UseCompressedOops, "must be compressed");
4759   assert (Universe::heap() != NULL, "java heap should be initialized");
4760   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4761   sllx(src, LogMinObjAlignmentInBytes, dst);
4762   if (Universe::narrow_oop_base() != NULL) {
4763     Label done;
4764     bpr(rc_nz, true, Assembler::pt, dst, done);
4765     delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
4766     bind(done);
4767   }
4768   verify_oop(dst);
4769 }
4770 
4771 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4772   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4773   // pd_code_size_limit.
4774   // Also do not verify_oop as this is called by verify_oop.
4775   assert (UseCompressedOops, "must be compressed");
4776   assert (Universe::heap() != NULL, "java heap should be initialized");
4777   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4778   sllx(r, LogMinObjAlignmentInBytes, r);
4779   if (Universe::narrow_oop_base() != NULL)
4780     add(r, G6_heapbase, r);
4781 }
4782 
4783 void  MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
4784   // Do not add assert code to this unless you change vtableStubs_sparc.cpp
4785   // pd_code_size_limit.
4786   // Also do not verify_oop as this is called by verify_oop.
4787   assert (UseCompressedOops, "must be compressed");
4788   assert (Universe::heap() != NULL, "java heap should be initialized");
4789   assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
4790   sllx(src, LogMinObjAlignmentInBytes, dst);
4791   if (Universe::narrow_oop_base() != NULL)
4792     add(dst, G6_heapbase, dst);
4793 }
4794 
4795 void MacroAssembler::reinit_heapbase() {
4796   if (UseCompressedOops) {
4797     // call indirectly to solve generation ordering problem
4798     AddressLiteral base(Universe::narrow_oop_base_addr());
4799     load_ptr_contents(base, G6_heapbase);
4800   }
4801 }
4802 
4803 // Compare char[] arrays aligned to 4 bytes.
4804 void MacroAssembler::char_arrays_equals(Register ary1, Register ary2,
4805                                         Register limit, Register result,
4806                                         Register chr1, Register chr2, Label& Ldone) {
4807   Label Lvector, Lloop;
4808   assert(chr1 == result, "should be the same");
4809 
4810   // Note: limit contains number of bytes (2*char_elements) != 0.
4811   andcc(limit, 0x2, chr1); // trailing character ?
4812   br(Assembler::zero, false, Assembler::pt, Lvector);
4813   delayed()->nop();
4814 
4815   // compare the trailing char
4816   sub(limit, sizeof(jchar), limit);
4817   lduh(ary1, limit, chr1);
4818   lduh(ary2, limit, chr2);
4819   cmp(chr1, chr2);
4820   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4821   delayed()->mov(G0, result);     // not equal
4822 
4823   // only one char ?
4824   br_on_reg_cond(rc_z, true, Assembler::pn, limit, Ldone);
4825   delayed()->add(G0, 1, result); // zero-length arrays are equal
4826 
4827   // word by word compare, dont't need alignment check
4828   bind(Lvector);
4829   // Shift ary1 and ary2 to the end of the arrays, negate limit
4830   add(ary1, limit, ary1);
4831   add(ary2, limit, ary2);
4832   neg(limit, limit);
4833 
4834   lduw(ary1, limit, chr1);
4835   bind(Lloop);
4836   lduw(ary2, limit, chr2);
4837   cmp(chr1, chr2);
4838   br(Assembler::notEqual, true, Assembler::pt, Ldone);
4839   delayed()->mov(G0, result);     // not equal
4840   inccc(limit, 2*sizeof(jchar));
4841   // annul LDUW if branch is not taken to prevent access past end of array
4842   br(Assembler::notZero, true, Assembler::pt, Lloop);
4843   delayed()->lduw(ary1, limit, chr1); // hoisted
4844 
4845   // Caller should set it:
4846   // add(G0, 1, result); // equals
4847 }
4848