src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File c1-coops Sdiff src/cpu/sparc/vm

src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Print this page




  83         NEEDS_CLEANUP;
  84         // this works around a problem where moves with the same src and dst
  85         // end up in the delay slot and then the assembler swallows the mov
  86         // since it has no effect and then it complains because the delay slot
  87         // is empty.  returning false stops the optimizer from putting this in
  88         // the delay slot
  89         return false;
  90       }
  91 
  92       // don't put moves involving oops into the delay slot since the VerifyOops code
  93       // will make it much larger than a single instruction.
  94       if (VerifyOops) {
  95         return false;
  96       }
  97 
  98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 100         return false;
 101       }
 102 





 103       if (dst->is_register()) {
 104         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 105           return !PatchALot;
 106         } else if (src->is_single_stack()) {
 107           return true;
 108         }
 109       }
 110 
 111       if (src->is_register()) {
 112         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 113           return !PatchALot;
 114         } else if (dst->is_single_stack()) {
 115           return true;
 116         }
 117       }
 118 
 119       if (dst->is_register() &&
 120           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 121            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 122         return true;


 236   Register str0 = left->as_register();
 237   Register str1 = right->as_register();
 238 
 239   Label Ldone;
 240 
 241   Register result = dst->as_register();
 242   {
 243     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
 244     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
 245     // Also, get string0.count-string1.count in o7 and get the condition code set
 246     // Note: some instructions have been hoisted for better instruction scheduling
 247 
 248     Register tmp0 = L0;
 249     Register tmp1 = L1;
 250     Register tmp2 = L2;
 251 
 252     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 253     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 254     int  count_offset = java_lang_String:: count_offset_in_bytes();
 255 
 256     __ ld_ptr(str0, value_offset, tmp0);
 257     __ ld(str0, offset_offset, tmp2);
 258     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 259     __ ld(str0, count_offset, str0);
 260     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 261 
 262     // str1 may be null
 263     add_debug_info_for_null_check_here(info);
 264 
 265     __ ld_ptr(str1, value_offset, tmp1);
 266     __ add(tmp0, tmp2, tmp0);
 267 
 268     __ ld(str1, offset_offset, tmp2);
 269     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 270     __ ld(str1, count_offset, str1);
 271     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 272     __ subcc(str0, str1, O7);
 273     __ add(tmp1, tmp2, tmp1);
 274   }
 275 
 276   {
 277     // Compute the minimum of the string lengths, scale it and store it in limit
 278     Register count0 = I0;
 279     Register count1 = I1;
 280     Register limit  = L3;
 281 
 282     Label Lskip;
 283     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 284     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 285     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter


 749 
 750 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 751   __ call(op->addr(), rtype);
 752   // The peephole pass fills the delay slot, add_call_info is done in
 753   // LIR_Assembler::emit_delay.
 754 }
 755 
 756 
 757 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 758   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 759   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 760   __ relocate(rspec);
 761   __ call(op->addr(), relocInfo::none);
 762   // The peephole pass fills the delay slot, add_call_info is done in
 763   // LIR_Assembler::emit_delay.
 764 }
 765 
 766 
 767 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 768   add_debug_info_for_null_check_here(op->info());
 769   __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
 770   if (__ is_simm13(op->vtable_offset())) {
 771     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 772   } else {
 773     // This will generate 2 instructions
 774     __ set(op->vtable_offset(), G5_method);
 775     // ld_ptr, set_hi, set
 776     __ ld_ptr(G3_scratch, G5_method, G5_method);
 777   }
 778   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 779   __ callr(G3_scratch, G0);
 780   // the peephole pass fills the delay slot
 781 }
 782 
 783 
 784 // load with 32-bit displacement
 785 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
 786   int load_offset = code_offset();
 787   if (Assembler::is_simm13(disp)) {
 788     if (info != NULL) add_debug_info_for_null_check_here(info);
 789     switch(ld_type) {
 790       case T_BOOLEAN: // fall through
 791       case T_BYTE  : __ ldsb(s, disp, d); break;
 792       case T_CHAR  : __ lduh(s, disp, d); break;
 793       case T_SHORT : __ ldsh(s, disp, d); break;
 794       case T_INT   : __ ld(s, disp, d); break;
 795       case T_ADDRESS:// fall through
 796       case T_ARRAY : // fall through
 797       case T_OBJECT: __ ld_ptr(s, disp, d); break;
 798       default      : ShouldNotReachHere();
 799     }
 800   } else {
 801     __ set(disp, O7);
 802     if (info != NULL) add_debug_info_for_null_check_here(info);
 803     load_offset = code_offset();
 804     switch(ld_type) {
 805       case T_BOOLEAN: // fall through
 806       case T_BYTE  : __ ldsb(s, O7, d); break;
 807       case T_CHAR  : __ lduh(s, O7, d); break;
 808       case T_SHORT : __ ldsh(s, O7, d); break;
 809       case T_INT   : __ ld(s, O7, d); break;
 810       case T_ADDRESS:// fall through
 811       case T_ARRAY : // fall through
 812       case T_OBJECT: __ ld_ptr(s, O7, d); break;
 813       default      : ShouldNotReachHere();
 814     }
 815   }
 816   if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
 817   return load_offset;
 818 }
 819 
 820 
 821 // store with 32-bit displacement
 822 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 823   if (Assembler::is_simm13(offset)) {
 824     if (info != NULL)  add_debug_info_for_null_check_here(info);
 825     switch (type) {
 826       case T_BOOLEAN: // fall through
 827       case T_BYTE  : __ stb(value, base, offset); break;
 828       case T_CHAR  : __ sth(value, base, offset); break;
 829       case T_SHORT : __ sth(value, base, offset); break;
 830       case T_INT   : __ stw(value, base, offset); break;
 831       case T_ADDRESS:// fall through
 832       case T_ARRAY : // fall through
 833       case T_OBJECT: __ st_ptr(value, base, offset); break;
 834       default      : ShouldNotReachHere();
 835     }
 836   } else {
 837     __ set(offset, O7);
 838     if (info != NULL) add_debug_info_for_null_check_here(info);
 839     switch (type) {
 840       case T_BOOLEAN: // fall through
 841       case T_BYTE  : __ stb(value, base, O7); break;
 842       case T_CHAR  : __ sth(value, base, O7); break;
 843       case T_SHORT : __ sth(value, base, O7); break;
 844       case T_INT   : __ stw(value, base, O7); break;
 845       case T_ADDRESS:// fall through
 846       case T_ARRAY : //fall through
 847       case T_OBJECT: __ st_ptr(value, base, O7); break;
 848       default      : ShouldNotReachHere();
 849     }
 850   }
 851   // Note: Do the store before verification as the code might be patched!
 852   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
 853 }
 854 
 855 
 856 // load float with 32-bit displacement
 857 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
 858   FloatRegisterImpl::Width w;
 859   switch(ld_type) {
 860     case T_FLOAT : w = FloatRegisterImpl::S; break;
 861     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 862     default      : ShouldNotReachHere();
 863   }
 864 
 865   if (Assembler::is_simm13(disp)) {
 866     if (info != NULL) add_debug_info_for_null_check_here(info);
 867     if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
 868       __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
 869       __ ldf(FloatRegisterImpl::S, s, disp               , d);
 870     } else {
 871       __ ldf(w, s, disp, d);
 872     }
 873   } else {
 874     __ set(disp, O7);
 875     if (info != NULL) add_debug_info_for_null_check_here(info);
 876     __ ldf(w, s, O7, d);
 877   }
 878 }
 879 
 880 
 881 // store float with 32-bit displacement
 882 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
 883   FloatRegisterImpl::Width w;
 884   switch(type) {
 885     case T_FLOAT : w = FloatRegisterImpl::S; break;
 886     case T_DOUBLE: w = FloatRegisterImpl::D; break;
 887     default      : ShouldNotReachHere();
 888   }
 889 
 890   if (Assembler::is_simm13(offset)) {
 891     if (info != NULL) add_debug_info_for_null_check_here(info);
 892     if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
 893       __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
 894       __ stf(FloatRegisterImpl::S, value             , base, offset);
 895     } else {
 896       __ stf(w, value, base, offset);
 897     }
 898   } else {
 899     __ set(offset, O7);
 900     if (info != NULL) add_debug_info_for_null_check_here(info);
 901     __ stf(w, value, O7, base);
 902   }
 903 }
 904 
 905 
 906 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
 907   int store_offset;
 908   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 909     assert(!unaligned, "can't handle this");
 910     // for offsets larger than a simm13 we setup the offset in O7
 911     __ set(offset, O7);
 912     store_offset = store(from_reg, base, O7, type);
 913   } else {
 914     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());


 915     store_offset = code_offset();
 916     switch (type) {
 917       case T_BOOLEAN: // fall through
 918       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 919       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 920       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 921       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 922       case T_LONG  :
 923 #ifdef _LP64
 924         if (unaligned || PatchALot) {
 925           __ srax(from_reg->as_register_lo(), 32, O7);
 926           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 927           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 928         } else {
 929           __ stx(from_reg->as_register_lo(), base, offset);
 930         }
 931 #else
 932         assert(Assembler::is_simm13(offset + 4), "must be");
 933         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 934         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 935 #endif
 936         break;
 937       case T_ADDRESS:// fall through


 938       case T_ARRAY : // fall through
 939       case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;











 940       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 941       case T_DOUBLE:
 942         {
 943           FloatRegister reg = from_reg->as_double_reg();
 944           // split unaligned stores
 945           if (unaligned || PatchALot) {
 946             assert(Assembler::is_simm13(offset + 4), "must be");
 947             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 948             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 949           } else {
 950             __ stf(FloatRegisterImpl::D, reg, base, offset);
 951           }
 952           break;
 953         }
 954       default      : ShouldNotReachHere();
 955     }
 956   }
 957   return store_offset;
 958 }
 959 
 960 
 961 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
 962   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());


 963   int store_offset = code_offset();
 964   switch (type) {
 965     case T_BOOLEAN: // fall through
 966     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 967     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 968     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 969     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 970     case T_LONG  :
 971 #ifdef _LP64
 972       __ stx(from_reg->as_register_lo(), base, disp);
 973 #else
 974       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 975       __ std(from_reg->as_register_hi(), base, disp);
 976 #endif
 977       break;
 978     case T_ADDRESS:// fall through


 979     case T_ARRAY : // fall through
 980     case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;










 981     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 982     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 983     default      : ShouldNotReachHere();
 984   }
 985   return store_offset;
 986 }
 987 
 988 
 989 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
 990   int load_offset;
 991   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 992     assert(base != O7, "destroying register");
 993     assert(!unaligned, "can't handle this");
 994     // for offsets larger than a simm13 we setup the offset in O7
 995     __ set(offset, O7);
 996     load_offset = load(base, O7, to_reg, type);
 997   } else {
 998     load_offset = code_offset();
 999     switch(type) {
1000       case T_BOOLEAN: // fall through
1001       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
1002       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
1003       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
1004       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
1005       case T_LONG  :
1006         if (!unaligned) {
1007 #ifdef _LP64
1008           __ ldx(base, offset, to_reg->as_register_lo());
1009 #else
1010           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1011                  "must be sequential");
1012           __ ldd(base, offset, to_reg->as_register_hi());
1013 #endif
1014         } else {
1015 #ifdef _LP64
1016           assert(base != to_reg->as_register_lo(), "can't handle this");
1017           assert(O7 != to_reg->as_register_lo(), "can't handle this");
1018           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
1019           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
1020           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
1021           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
1022 #else
1023           if (base == to_reg->as_register_lo()) {
1024             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1025             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1026           } else {
1027             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
1028             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
1029           }
1030 #endif
1031         }
1032         break;
1033       case T_ADDRESS:// fall through
1034       case T_ARRAY : // fall through
1035       case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;









1036       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
1037       case T_DOUBLE:
1038         {
1039           FloatRegister reg = to_reg->as_double_reg();
1040           // split unaligned loads
1041           if (unaligned || PatchALot) {
1042             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
1043             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
1044           } else {
1045             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
1046           }
1047           break;
1048         }
1049       default      : ShouldNotReachHere();
1050     }
1051     if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());


1052   }
1053   return load_offset;
1054 }
1055 
1056 
1057 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
1058   int load_offset = code_offset();
1059   switch(type) {
1060     case T_BOOLEAN: // fall through
1061     case T_BYTE  : __ ldsb(base, disp, to_reg->as_register()); break;
1062     case T_CHAR  : __ lduh(base, disp, to_reg->as_register()); break;
1063     case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
1064     case T_INT   : __ ld(base, disp, to_reg->as_register()); break;
1065     case T_ADDRESS:// fall through
1066     case T_ARRAY : // fall through
1067     case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;









1068     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1069     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1070     case T_LONG  :
1071 #ifdef _LP64
1072       __ ldx(base, disp, to_reg->as_register_lo());
1073 #else
1074       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1075              "must be sequential");
1076       __ ldd(base, disp, to_reg->as_register_hi());
1077 #endif
1078       break;
1079     default      : ShouldNotReachHere();
1080   }
1081   if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());


1082   return load_offset;
1083 }
1084 
1085 
1086 // load/store with an Address
1087 void LIR_Assembler::load(const Address& a, Register d,  BasicType ld_type, CodeEmitInfo *info, int offset) {
1088   load(a.base(), a.disp() + offset, d, ld_type, info);
1089 }
1090 
1091 
1092 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1093   store(value, dest.base(), dest.disp() + offset, type, info);
1094 }
1095 
1096 
1097 // loadf/storef with an Address
1098 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
1099   load(a.base(), a.disp() + offset, d, ld_type, info);
1100 }
1101 
1102 
1103 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
1104   store(value, dest.base(), dest.disp() + offset, type, info);
1105 }
1106 
1107 
1108 // load/store with an Address
1109 void LIR_Assembler::load(LIR_Address* a, Register d,  BasicType ld_type, CodeEmitInfo *info) {
1110   load(as_Address(a), d, ld_type, info);
1111 }
1112 
1113 
1114 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1115   store(value, as_Address(dest), type, info);
1116 }
1117 
1118 
1119 // loadf/storef with an Address
1120 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
1121   load(as_Address(a), d, ld_type, info);
1122 }
1123 
1124 
1125 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
1126   store(value, as_Address(dest), type, info);
1127 }
1128 
1129 
1130 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1131   LIR_Const* c = src->as_constant_ptr();
1132   switch (c->type()) {
1133     case T_INT:
1134     case T_FLOAT:
1135     case T_ADDRESS: {
1136       Register src_reg = O7;
1137       int value = c->as_jint_bits();
1138       if (value == 0) {
1139         src_reg = G0;
1140       } else {
1141         __ set(value, O7);
1142       }
1143       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1144       __ stw(src_reg, addr.base(), addr.disp());
1145       break;
1146     }












1147     case T_OBJECT: {
1148       Register src_reg = O7;
1149       jobject2reg(c->as_jobject(), src_reg);
1150       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1151       __ st_ptr(src_reg, addr.base(), addr.disp());
1152       break;
1153     }
1154     case T_LONG:
1155     case T_DOUBLE: {
1156       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1157 
1158       Register tmp = O7;
1159       int value_lo = c->as_jint_lo_bits();
1160       if (value_lo == 0) {
1161         tmp = G0;
1162       } else {
1163         __ set(value_lo, O7);
1164       }
1165       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1166       int value_hi = c->as_jint_hi_bits();
1167       if (value_hi == 0) {
1168         tmp = G0;
1169       } else {
1170         __ set(value_hi, O7);
1171       }
1172       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1173       break;
1174     }
1175     default:
1176       Unimplemented();
1177   }
1178 }
1179 
1180 
1181 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
1182   LIR_Const* c = src->as_constant_ptr();
1183   LIR_Address* addr     = dest->as_address_ptr();
1184   Register base = addr->base()->as_pointer_register();

1185 
1186   if (info != NULL) {
1187     add_debug_info_for_null_check_here(info);
1188   }
1189   switch (c->type()) {
1190     case T_INT:
1191     case T_FLOAT:
1192     case T_ADDRESS: {
1193       LIR_Opr tmp = FrameMap::O7_opr;
1194       int value = c->as_jint_bits();
1195       if (value == 0) {
1196         tmp = FrameMap::G0_opr;
1197       } else if (Assembler::is_simm13(value)) {
1198         __ set(value, O7);
1199       }
1200       if (addr->index()->is_valid()) {
1201         assert(addr->disp() == 0, "must be zero");
1202         store(tmp, base, addr->index()->as_pointer_register(), type);
1203       } else {
1204         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1205         store(tmp, base, addr->disp(), type);
1206       }
1207       break;
1208     }
1209     case T_LONG:
1210     case T_DOUBLE: {
1211       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1212       assert(Assembler::is_simm13(addr->disp()) &&
1213              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1214 
1215       Register tmp = O7;
1216       int value_lo = c->as_jint_lo_bits();
1217       if (value_lo == 0) {
1218         tmp = G0;
1219       } else {
1220         __ set(value_lo, O7);
1221       }
1222       store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
1223       int value_hi = c->as_jint_hi_bits();
1224       if (value_hi == 0) {
1225         tmp = G0;
1226       } else {
1227         __ set(value_hi, O7);
1228       }
1229       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
1230       break;
1231     }
1232     case T_OBJECT: {
1233       jobject obj = c->as_jobject();
1234       LIR_Opr tmp;
1235       if (obj == NULL) {
1236         tmp = FrameMap::G0_opr;
1237       } else {
1238         tmp = FrameMap::O7_opr;
1239         jobject2reg(c->as_jobject(), O7);
1240       }
1241       // handle either reg+reg or reg+disp address
1242       if (addr->index()->is_valid()) {
1243         assert(addr->disp() == 0, "must be zero");
1244         store(tmp, base, addr->index()->as_pointer_register(), type);
1245       } else {
1246         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1247         store(tmp, base, addr->disp(), type);
1248       }
1249 
1250       break;
1251     }
1252     default:
1253       Unimplemented();
1254   }




1255 }
1256 
1257 
1258 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1259   LIR_Const* c = src->as_constant_ptr();
1260   LIR_Opr to_reg = dest;
1261 
1262   switch (c->type()) {
1263     case T_INT:
1264     case T_ADDRESS:
1265       {
1266         jint con = c->as_jint();
1267         if (to_reg->is_single_cpu()) {
1268           assert(patch_code == lir_patch_none, "no patching handled here");
1269           __ set(con, to_reg->as_register());
1270         } else {
1271           ShouldNotReachHere();
1272           assert(to_reg->is_single_fpu(), "wrong register kind");
1273 
1274           __ set(con, O7);


1319       break;
1320 
1321     case T_FLOAT:
1322       {
1323         address const_addr = __ float_constant(c->as_jfloat());
1324         if (const_addr == NULL) {
1325           bailout("const section overflow");
1326           break;
1327         }
1328         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1329         AddressLiteral const_addrlit(const_addr, rspec);
1330         if (to_reg->is_single_fpu()) {
1331           __ patchable_sethi(const_addrlit, O7);
1332           __ relocate(rspec);
1333           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1334 
1335         } else {
1336           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1337 
1338           __ set(const_addrlit, O7);
1339           load(O7, 0, to_reg->as_register(), T_INT);
1340         }
1341       }
1342       break;
1343 
1344     case T_DOUBLE:
1345       {
1346         address const_addr = __ double_constant(c->as_jdouble());
1347         if (const_addr == NULL) {
1348           bailout("const section overflow");
1349           break;
1350         }
1351         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1352 
1353         if (to_reg->is_double_fpu()) {
1354           AddressLiteral const_addrlit(const_addr, rspec);
1355           __ patchable_sethi(const_addrlit, O7);
1356           __ relocate(rspec);
1357           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1358         } else {
1359           assert(to_reg->is_double_cpu(), "Must be a long register.");


1412 
1413     default:
1414       ShouldNotReachHere();
1415   }
1416 }
1417 
1418 
1419 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1420   Address base = as_Address(addr);
1421   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1422 }
1423 
1424 
1425 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1426   Address base = as_Address(addr);
1427   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1428 }
1429 
1430 
1431 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1432                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
1433 
1434   LIR_Address* addr = src_opr->as_address_ptr();
1435   LIR_Opr to_reg = dest;
1436 
1437   Register src = addr->base()->as_pointer_register();
1438   Register disp_reg = noreg;
1439   int disp_value = addr->disp();
1440   bool needs_patching = (patch_code != lir_patch_none);
1441 
1442   if (addr->base()->type() == T_OBJECT) {
1443     __ verify_oop(src);
1444   }
1445 
1446   PatchingStub* patch = NULL;
1447   if (needs_patching) {
1448     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1449     assert(!to_reg->is_double_cpu() ||
1450            patch_code == lir_patch_none ||
1451            patch_code == lir_patch_normal, "patching doesn't match register");
1452   }


1458       } else {
1459         __ set(disp_value, O7);
1460       }
1461       disp_reg = O7;
1462     }
1463   } else if (unaligned || PatchALot) {
1464     __ add(src, addr->index()->as_register(), O7);
1465     src = O7;
1466   } else {
1467     disp_reg = addr->index()->as_pointer_register();
1468     assert(disp_value == 0, "can't handle 3 operand addresses");
1469   }
1470 
1471   // remember the offset of the load.  The patching_epilog must be done
1472   // before the call to add_debug_info, otherwise the PcDescs don't get
1473   // entered in increasing order.
1474   int offset = code_offset();
1475 
1476   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1477   if (disp_reg == noreg) {
1478     offset = load(src, disp_value, to_reg, type, unaligned);
1479   } else {
1480     assert(!unaligned, "can't handle this");
1481     offset = load(src, disp_reg, to_reg, type);
1482   }
1483 
1484   if (patch != NULL) {
1485     patching_epilog(patch, patch_code, src, info);
1486   }
1487 
1488   if (info != NULL) add_debug_info_for_null_check(offset, info);
1489 }
1490 
1491 
1492 void LIR_Assembler::prefetchr(LIR_Opr src) {
1493   LIR_Address* addr = src->as_address_ptr();
1494   Address from_addr = as_Address(addr);
1495 
1496   if (VM_Version::has_v9()) {
1497     __ prefetch(from_addr, Assembler::severalReads);
1498   }
1499 }
1500 
1501 
1502 void LIR_Assembler::prefetchw(LIR_Opr src) {
1503   LIR_Address* addr = src->as_address_ptr();
1504   Address from_addr = as_Address(addr);
1505 
1506   if (VM_Version::has_v9()) {
1507     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1508   }
1509 }
1510 
1511 
1512 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1513   Address addr;
1514   if (src->is_single_word()) {
1515     addr = frame_map()->address_for_slot(src->single_stack_ix());
1516   } else if (src->is_double_word())  {
1517     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1518   }
1519 
1520   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1521   load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
1522 }
1523 
1524 
1525 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1526   Address addr;
1527   if (dest->is_single_word()) {
1528     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1529   } else if (dest->is_double_word())  {
1530     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1531   }
1532   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1533   store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
1534 }
1535 
1536 
1537 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1538   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1539     if (from_reg->is_double_fpu()) {
1540       // double to double moves
1541       assert(to_reg->is_double_fpu(), "should match");
1542       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1543     } else {
1544       // float to float moves
1545       assert(to_reg->is_single_fpu(), "should match");
1546       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1547     }
1548   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1549     if (from_reg->is_double_cpu()) {
1550 #ifdef _LP64
1551       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1552 #else
1553       assert(to_reg->is_double_cpu() &&


1561 #ifdef _LP64
1562     } else if (to_reg->is_double_cpu()) {
1563       // int to int moves
1564       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1565 #endif
1566     } else {
1567       // int to int moves
1568       __ mov(from_reg->as_register(), to_reg->as_register());
1569     }
1570   } else {
1571     ShouldNotReachHere();
1572   }
1573   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1574     __ verify_oop(to_reg->as_register());
1575   }
1576 }
1577 
1578 
1579 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1580                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1581                             bool unaligned) {
1582   LIR_Address* addr = dest->as_address_ptr();
1583 
1584   Register src = addr->base()->as_pointer_register();
1585   Register disp_reg = noreg;
1586   int disp_value = addr->disp();
1587   bool needs_patching = (patch_code != lir_patch_none);
1588 
1589   if (addr->base()->is_oop_register()) {
1590     __ verify_oop(src);
1591   }
1592 
1593   PatchingStub* patch = NULL;
1594   if (needs_patching) {
1595     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1596     assert(!from_reg->is_double_cpu() ||
1597            patch_code == lir_patch_none ||
1598            patch_code == lir_patch_normal, "patching doesn't match register");
1599   }
1600 
1601   if (addr->index()->is_illegal()) {


1605       } else {
1606         __ set(disp_value, O7);
1607       }
1608       disp_reg = O7;
1609     }
1610   } else if (unaligned || PatchALot) {
1611     __ add(src, addr->index()->as_register(), O7);
1612     src = O7;
1613   } else {
1614     disp_reg = addr->index()->as_pointer_register();
1615     assert(disp_value == 0, "can't handle 3 operand addresses");
1616   }
1617 
1618   // remember the offset of the store.  The patching_epilog must be done
1619   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1620   // entered in increasing order.
1621   int offset;
1622 
1623   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1624   if (disp_reg == noreg) {
1625     offset = store(from_reg, src, disp_value, type, unaligned);
1626   } else {
1627     assert(!unaligned, "can't handle this");
1628     offset = store(from_reg, src, disp_reg, type);
1629   }
1630 
1631   if (patch != NULL) {
1632     patching_epilog(patch, patch_code, src, info);
1633   }
1634 
1635   if (info != NULL) add_debug_info_for_null_check(offset, info);
1636 }
1637 
1638 
1639 void LIR_Assembler::return_op(LIR_Opr result) {
1640   // the poll may need a register so just pick one that isn't the return register
1641 #if defined(TIERED) && !defined(_LP64)
1642   if (result->type_field() == LIR_OprDesc::long_type) {
1643     // Must move the result to G1
1644     // Must leave proper result in O0,O1 and G1 (TIERED only)
1645     __ sllx(I0, 32, G1);          // Shift bits into high G1
1646     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1647     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1648 #ifdef ASSERT


2167   if (op->expected_type() == NULL ||
2168       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2169     __ mov(src,     O0);
2170     __ mov(src_pos, O1);
2171     __ mov(dst,     O2);
2172     __ mov(dst_pos, O3);
2173     __ mov(length,  O4);
2174     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2175 
2176     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2177     __ delayed()->nop();
2178     __ bind(*stub->continuation());
2179     return;
2180   }
2181 
2182   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2183 
2184   // make sure src and dst are non-null and load array length
2185   if (flags & LIR_OpArrayCopy::src_null_check) {
2186     __ tst(src);
2187     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2188     __ delayed()->nop();
2189   }
2190 
2191   if (flags & LIR_OpArrayCopy::dst_null_check) {
2192     __ tst(dst);
2193     __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2194     __ delayed()->nop();
2195   }
2196 
2197   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2198     // test src_pos register
2199     __ tst(src_pos);
2200     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2201     __ delayed()->nop();
2202   }
2203 
2204   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2205     // test dst_pos register
2206     __ tst(dst_pos);
2207     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2208     __ delayed()->nop();
2209   }
2210 
2211   if (flags & LIR_OpArrayCopy::length_positive_check) {
2212     // make sure length isn't negative
2213     __ tst(length);


2215     __ delayed()->nop();
2216   }
2217 
2218   if (flags & LIR_OpArrayCopy::src_range_check) {
2219     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2220     __ add(length, src_pos, tmp);
2221     __ cmp(tmp2, tmp);
2222     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2223     __ delayed()->nop();
2224   }
2225 
2226   if (flags & LIR_OpArrayCopy::dst_range_check) {
2227     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2228     __ add(length, dst_pos, tmp);
2229     __ cmp(tmp2, tmp);
2230     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2231     __ delayed()->nop();
2232   }
2233 
2234   if (flags & LIR_OpArrayCopy::type_check) {





2235     __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2236     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);

2237     __ cmp(tmp, tmp2);
2238     __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2239     __ delayed()->nop();
2240   }
2241 
2242 #ifdef ASSERT
2243   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2244     // Sanity check the known type with the incoming class.  For the
2245     // primitive case the types must match exactly with src.klass and
2246     // dst.klass each exactly matching the default type.  For the
2247     // object array case, if no type check is needed then either the
2248     // dst type is exactly the expected type and the src type is a
2249     // subtype which we can't check or src is the same array as dst
2250     // but not necessarily exactly of type default_type.
2251     Label known_ok, halt;
2252     jobject2reg(op->expected_type()->constant_encoding(), tmp);








2253     __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);

2254     if (basic_type != T_OBJECT) {
2255       __ cmp(tmp, tmp2);
2256       __ br(Assembler::notEqual, false, Assembler::pn, halt);




2257       __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);

2258       __ cmp(tmp, tmp2);
2259       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2260       __ delayed()->nop();
2261     } else {
2262       __ cmp(tmp, tmp2);
2263       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2264       __ delayed()->cmp(src, dst);
2265       __ br(Assembler::equal, false, Assembler::pn, known_ok);
2266       __ delayed()->nop();
2267     }
2268     __ bind(halt);
2269     __ stop("incorrect type information in arraycopy");
2270     __ bind(known_ok);
2271   }
2272 #endif
2273 
2274   int shift = shift_amount(basic_type);
2275 
2276   Register src_ptr = O0;
2277   Register dst_ptr = O1;
2278   Register len     = O2;
2279 
2280   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2281   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2282   if (shift == 0) {
2283     __ add(src_ptr, src_pos, src_ptr);
2284   } else {
2285     __ sll(src_pos, shift, tmp);


2454     __ ld_ptr(receiver_addr, tmp1);
2455     __ verify_oop(tmp1);
2456     __ cmp(recv, tmp1);
2457     __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2458     __ delayed()->nop();
2459     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2460                       mdo_offset_bias);
2461     __ ld_ptr(data_addr, tmp1);
2462     __ add(tmp1, DataLayout::counter_increment, tmp1);
2463     __ st_ptr(tmp1, data_addr);
2464     __ ba(false, *update_done);
2465     __ delayed()->nop();
2466     __ bind(next_test);
2467   }
2468 
2469   // Didn't find receiver; find next empty slot and fill it in
2470   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2471     Label next_test;
2472     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2473                       mdo_offset_bias);
2474     load(recv_addr, tmp1, T_OBJECT);
2475     __ br_notnull(tmp1, false, Assembler::pt, next_test);
2476     __ delayed()->nop();
2477     __ st_ptr(recv, recv_addr);
2478     __ set(DataLayout::counter_increment, tmp1);
2479     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2480               mdo_offset_bias);
2481     __ ba(false, *update_done);
2482     __ delayed()->nop();
2483     __ bind(next_test);
2484   }
2485 }
2486 
2487 
2488 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2489                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2490   md = method->method_data();
2491   if (md == NULL) {
2492     bailout("out of memory building methodDataOop");
2493     return;
2494   }


2546   } else {
2547     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2548     __ delayed()->nop();
2549   }
2550 
2551   Label profile_cast_failure, profile_cast_success;
2552   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2553   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2554 
2555   // patching may screw with our temporaries on sparc,
2556   // so let's do it before loading the class
2557   if (k->is_loaded()) {
2558     jobject2reg(k->constant_encoding(), k_RInfo);
2559   } else {
2560     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2561   }
2562   assert(obj != k_RInfo, "must be different");
2563 
2564   // get object class
2565   // not a safepoint as obj null check happens earlier
2566   load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
2567   if (op->fast_check()) {
2568     assert_different_registers(klass_RInfo, k_RInfo);
2569     __ cmp(k_RInfo, klass_RInfo);
2570     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2571     __ delayed()->nop();
2572   } else {
2573     bool need_slow_path = true;
2574     if (k->is_loaded()) {
2575       if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2576         need_slow_path = false;
2577       // perform the fast part of the checking logic
2578       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2579                                        (need_slow_path ? success_target : NULL),
2580                                        failure_target, NULL,
2581                                        RegisterOrConstant(k->super_check_offset()));
2582     } else {
2583       // perform the fast part of the checking logic
2584       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2585                                        failure_target, NULL);
2586     }


2588       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2589       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2590       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2591       __ delayed()->nop();
2592       __ cmp(G3, 0);
2593       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2594       __ delayed()->nop();
2595       // Fall through to success case
2596     }
2597   }
2598 
2599   if (op->should_profile()) {
2600     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2601     assert_different_registers(obj, mdo, recv, tmp1);
2602     __ bind(profile_cast_success);
2603     jobject2reg(md->constant_encoding(), mdo);
2604     if (mdo_offset_bias > 0) {
2605       __ set(mdo_offset_bias, tmp1);
2606       __ add(mdo, tmp1, mdo);
2607     }
2608     load(Address(obj, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2609     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2610     // Jump over the failure case
2611     __ ba(false, *success);
2612     __ delayed()->nop();
2613     // Cast failure case
2614     __ bind(profile_cast_failure);
2615     jobject2reg(md->constant_encoding(), mdo);
2616     if (mdo_offset_bias > 0) {
2617       __ set(mdo_offset_bias, tmp1);
2618       __ add(mdo, tmp1, mdo);
2619     }
2620     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2621     __ ld_ptr(data_addr, tmp1);
2622     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2623     __ st_ptr(tmp1, data_addr);
2624     __ ba(false, *failure);
2625     __ delayed()->nop();
2626   }
2627   __ ba(false, *success);
2628   __ delayed()->nop();


2657       __ br_notnull(value, false, Assembler::pn, not_null);
2658       __ delayed()->nop();
2659       Register mdo      = k_RInfo;
2660       Register data_val = Rtmp1;
2661       jobject2reg(md->constant_encoding(), mdo);
2662       if (mdo_offset_bias > 0) {
2663         __ set(mdo_offset_bias, data_val);
2664         __ add(mdo, data_val, mdo);
2665       }
2666       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2667       __ ldub(flags_addr, data_val);
2668       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2669       __ stb(data_val, flags_addr);
2670       __ ba(false, done);
2671       __ delayed()->nop();
2672       __ bind(not_null);
2673     } else {
2674       __ br_null(value, false, Assembler::pn, done);
2675       __ delayed()->nop();
2676     }
2677     load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
2678     load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);

2679 
2680     // get instance klass
2681     load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
2682     // perform the fast part of the checking logic
2683     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2684 
2685     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2686     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2687     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2688     __ delayed()->nop();
2689     __ cmp(G3, 0);
2690     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2691     __ delayed()->nop();
2692     // fall through to the success case
2693 
2694     if (op->should_profile()) {
2695       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2696       assert_different_registers(value, mdo, recv, tmp1);
2697       __ bind(profile_cast_success);
2698       jobject2reg(md->constant_encoding(), mdo);
2699       if (mdo_offset_bias > 0) {
2700         __ set(mdo_offset_bias, tmp1);
2701         __ add(mdo, tmp1, mdo);
2702       }
2703       load(Address(value, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2704       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2705       __ ba(false, done);
2706       __ delayed()->nop();
2707       // Cast failure case
2708       __ bind(profile_cast_failure);
2709       jobject2reg(md->constant_encoding(), mdo);
2710       if (mdo_offset_bias > 0) {
2711         __ set(mdo_offset_bias, tmp1);
2712         __ add(mdo, tmp1, mdo);
2713       }
2714       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2715       __ ld_ptr(data_addr, tmp1);
2716       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2717       __ st_ptr(tmp1, data_addr);
2718       __ ba(false, *stub->entry());
2719       __ delayed()->nop();
2720     }
2721     __ bind(done);
2722   } else if (code == lir_checkcast) {
2723     Register obj = op->object()->as_register();


2764     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2765     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2766     __ sllx(new_value_hi, 32, t2);
2767     __ srl(new_value_lo, 0, new_value_lo);
2768     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2769 #endif
2770     // perform the compare and swap operation
2771     __ casx(addr, t1, t2);
2772     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2773     // overwritten with the original value in "addr" and will be equal to t1.
2774     __ cmp(t1, t2);
2775 
2776   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2777     Register addr = op->addr()->as_pointer_register();
2778     Register cmp_value = op->cmp_value()->as_register();
2779     Register new_value = op->new_value()->as_register();
2780     Register t1 = op->tmp1()->as_register();
2781     Register t2 = op->tmp2()->as_register();
2782     __ mov(cmp_value, t1);
2783     __ mov(new_value, t2);
2784 #ifdef _LP64
2785     if (op->code() == lir_cas_obj) {





2786       __ casx(addr, t1, t2);
2787     } else
2788 #endif
2789       {
2790         __ cas(addr, t1, t2);
2791       }
2792     __ cmp(t1, t2);
2793   } else {
2794     Unimplemented();
2795   }
2796 }
2797 
2798 void LIR_Assembler::set_24bit_FPU() {
2799   Unimplemented();
2800 }
2801 
2802 
2803 void LIR_Assembler::reset_FPU() {
2804   Unimplemented();
2805 }
2806 
2807 
2808 void LIR_Assembler::breakpoint() {
2809   __ breakpoint_trap();


2949 
2950       // Note that this is less efficient than it should be because it
2951       // always does a write to the receiver part of the
2952       // VirtualCallData rather than just the first time
2953       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2954         ciKlass* receiver = vc_data->receiver(i);
2955         if (receiver == NULL) {
2956           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2957                             mdo_offset_bias);
2958           jobject2reg(known_klass->constant_encoding(), tmp1);
2959           __ st_ptr(tmp1, recv_addr);
2960           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2961                             mdo_offset_bias);
2962           __ ld_ptr(data_addr, tmp1);
2963           __ add(tmp1, DataLayout::counter_increment, tmp1);
2964           __ st_ptr(tmp1, data_addr);
2965           return;
2966         }
2967       }
2968     } else {
2969       load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
2970       Label update_done;
2971       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2972       // Receiver did not match any saved receiver and there is no empty row for it.
2973       // Increment total counter to indicate polymorphic case.
2974       __ ld_ptr(counter_addr, tmp1);
2975       __ add(tmp1, DataLayout::counter_increment, tmp1);
2976       __ st_ptr(tmp1, counter_addr);
2977 
2978       __ bind(update_done);
2979     }
2980   } else {
2981     // Static call
2982     __ ld_ptr(counter_addr, tmp1);
2983     __ add(tmp1, DataLayout::counter_increment, tmp1);
2984     __ st_ptr(tmp1, counter_addr);
2985   }
2986 }
2987 
2988 void LIR_Assembler::align_backward_branch_target() {
2989   __ align(OptoLoopAlignment);


3143       } else {
3144         if (idx == noreg) {
3145           __ ldd(base, disp, G4);
3146         } else {
3147           __ ldd(base, idx, G4);
3148         }
3149         // G4 is high half, G5 is low half
3150         __ mov (G4, dest->as_register_hi());
3151         __ mov (G5, dest->as_register_lo());
3152       }
3153     } else {
3154       Unimplemented();
3155     }
3156     if (info != NULL) {
3157       add_debug_info_for_null_check(null_check_offset, info);
3158     }
3159 
3160   } else {
3161     // use normal move for all other volatiles since they don't need
3162     // special handling to remain atomic.
3163     move_op(src, dest, type, lir_patch_none, info, false, false);
3164   }
3165 }
3166 
3167 void LIR_Assembler::membar() {
3168   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3169   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3170 }
3171 
3172 void LIR_Assembler::membar_acquire() {
3173   // no-op on TSO
3174 }
3175 
3176 void LIR_Assembler::membar_release() {
3177   // no-op on TSO
3178 }
3179 
3180 // Pack two sequential registers containing 32 bit values
3181 // into a single 64 bit register.
3182 // src and src->successor() are packed into dst
3183 // src and dst may be the same register.




  83         NEEDS_CLEANUP;
  84         // this works around a problem where moves with the same src and dst
  85         // end up in the delay slot and then the assembler swallows the mov
  86         // since it has no effect and then it complains because the delay slot
  87         // is empty.  returning false stops the optimizer from putting this in
  88         // the delay slot
  89         return false;
  90       }
  91 
  92       // don't put moves involving oops into the delay slot since the VerifyOops code
  93       // will make it much larger than a single instruction.
  94       if (VerifyOops) {
  95         return false;
  96       }
  97 
  98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 100         return false;
 101       }
 102 
 103       if (UseCompressedOops) {
 104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
 105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
 106       }
 107 
 108       if (dst->is_register()) {
 109         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 110           return !PatchALot;
 111         } else if (src->is_single_stack()) {
 112           return true;
 113         }
 114       }
 115 
 116       if (src->is_register()) {
 117         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 118           return !PatchALot;
 119         } else if (dst->is_single_stack()) {
 120           return true;
 121         }
 122       }
 123 
 124       if (dst->is_register() &&
 125           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 126            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 127         return true;


 241   Register str0 = left->as_register();
 242   Register str1 = right->as_register();
 243 
 244   Label Ldone;
 245 
 246   Register result = dst->as_register();
 247   {
 248     // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
 249     // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
 250     // Also, get string0.count-string1.count in o7 and get the condition code set
 251     // Note: some instructions have been hoisted for better instruction scheduling
 252 
 253     Register tmp0 = L0;
 254     Register tmp1 = L1;
 255     Register tmp2 = L2;
 256 
 257     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 258     int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 259     int  count_offset = java_lang_String:: count_offset_in_bytes();
 260 
 261     __ load_heap_oop(str0, value_offset, tmp0);
 262     __ ld(str0, offset_offset, tmp2);
 263     __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 264     __ ld(str0, count_offset, str0);
 265     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 266 
 267     // str1 may be null
 268     add_debug_info_for_null_check_here(info);
 269 
 270     __ load_heap_oop(str1, value_offset, tmp1);
 271     __ add(tmp0, tmp2, tmp0);
 272 
 273     __ ld(str1, offset_offset, tmp2);
 274     __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 275     __ ld(str1, count_offset, str1);
 276     __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 277     __ subcc(str0, str1, O7);
 278     __ add(tmp1, tmp2, tmp1);
 279   }
 280 
 281   {
 282     // Compute the minimum of the string lengths, scale it and store it in limit
 283     Register count0 = I0;
 284     Register count1 = I1;
 285     Register limit  = L3;
 286 
 287     Label Lskip;
 288     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 289     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 290     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter


 754 
 755 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 756   __ call(op->addr(), rtype);
 757   // The peephole pass fills the delay slot, add_call_info is done in
 758   // LIR_Assembler::emit_delay.
 759 }
 760 
 761 
 762 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 763   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 764   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 765   __ relocate(rspec);
 766   __ call(op->addr(), relocInfo::none);
 767   // The peephole pass fills the delay slot, add_call_info is done in
 768   // LIR_Assembler::emit_delay.
 769 }
 770 
 771 
 772 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 773   add_debug_info_for_null_check_here(op->info());
 774   __ load_klass(O0, G3_scratch);
 775   if (__ is_simm13(op->vtable_offset())) {
 776     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 777   } else {
 778     // This will generate 2 instructions
 779     __ set(op->vtable_offset(), G5_method);
 780     // ld_ptr, set_hi, set
 781     __ ld_ptr(G3_scratch, G5_method, G5_method);
 782   }
 783   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 784   __ callr(G3_scratch, G0);
 785   // the peephole pass fills the delay slot
 786 }
 787 
 788 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {



























































































































 789   int store_offset;
 790   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 791     assert(!unaligned, "can't handle this");
 792     // for offsets larger than a simm13 we setup the offset in O7
 793     __ set(offset, O7);
 794     store_offset = store(from_reg, base, O7, type, wide);
 795   } else {
 796     if (type == T_ARRAY || type == T_OBJECT) {
 797       __ verify_oop(from_reg->as_register());
 798     }
 799     store_offset = code_offset();
 800     switch (type) {
 801       case T_BOOLEAN: // fall through
 802       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 803       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 804       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 805       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 806       case T_LONG  :
 807 #ifdef _LP64
 808         if (unaligned || PatchALot) {
 809           __ srax(from_reg->as_register_lo(), 32, O7);
 810           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 811           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 812         } else {
 813           __ stx(from_reg->as_register_lo(), base, offset);
 814         }
 815 #else
 816         assert(Assembler::is_simm13(offset + 4), "must be");
 817         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 818         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 819 #endif
 820         break;
 821       case T_ADDRESS:
 822         __ st_ptr(from_reg->as_register(), base, offset);
 823         break;
 824       case T_ARRAY : // fall through
 825       case T_OBJECT:
 826         {
 827           if (UseCompressedOops && !wide) {
 828             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 829             store_offset = code_offset();
 830             __ stw(G3_scratch, base, offset);
 831           } else {
 832             __ st_ptr(from_reg->as_register(), base, offset);
 833           }
 834           break;
 835         }
 836 
 837       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 838       case T_DOUBLE:
 839         {
 840           FloatRegister reg = from_reg->as_double_reg();
 841           // split unaligned stores
 842           if (unaligned || PatchALot) {
 843             assert(Assembler::is_simm13(offset + 4), "must be");
 844             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 845             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 846           } else {
 847             __ stf(FloatRegisterImpl::D, reg, base, offset);
 848           }
 849           break;
 850         }
 851       default      : ShouldNotReachHere();
 852     }
 853   }
 854   return store_offset;
 855 }
 856 
 857 
 858 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 859   if (type == T_ARRAY || type == T_OBJECT) {
 860     __ verify_oop(from_reg->as_register());
 861   }
 862   int store_offset = code_offset();
 863   switch (type) {
 864     case T_BOOLEAN: // fall through
 865     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 866     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 867     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 868     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 869     case T_LONG  :
 870 #ifdef _LP64
 871       __ stx(from_reg->as_register_lo(), base, disp);
 872 #else
 873       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 874       __ std(from_reg->as_register_hi(), base, disp);
 875 #endif
 876       break;
 877     case T_ADDRESS:
 878       __ st_ptr(from_reg->as_register(), base, disp);
 879       break;
 880     case T_ARRAY : // fall through
 881     case T_OBJECT:
 882       {
 883         if (UseCompressedOops && !wide) {
 884           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 885           store_offset = code_offset();
 886           __ stw(G3_scratch, base, disp);
 887         } else {
 888           __ st_ptr(from_reg->as_register(), base, disp);
 889         }
 890         break;
 891       }
 892     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 893     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 894     default      : ShouldNotReachHere();
 895   }
 896   return store_offset;
 897 }
 898 
 899 
 900 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 901   int load_offset;
 902   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 903     assert(base != O7, "destroying register");
 904     assert(!unaligned, "can't handle this");
 905     // for offsets larger than a simm13 we setup the offset in O7
 906     __ set(offset, O7);
 907     load_offset = load(base, O7, to_reg, type, wide);
 908   } else {
 909     load_offset = code_offset();
 910     switch(type) {
 911       case T_BOOLEAN: // fall through
 912       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 913       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 914       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 915       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 916       case T_LONG  :
 917         if (!unaligned) {
 918 #ifdef _LP64
 919           __ ldx(base, offset, to_reg->as_register_lo());
 920 #else
 921           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 922                  "must be sequential");
 923           __ ldd(base, offset, to_reg->as_register_hi());
 924 #endif
 925         } else {
 926 #ifdef _LP64
 927           assert(base != to_reg->as_register_lo(), "can't handle this");
 928           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 929           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 930           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 931           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 932           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 933 #else
 934           if (base == to_reg->as_register_lo()) {
 935             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 936             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 937           } else {
 938             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 939             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 940           }
 941 #endif
 942         }
 943         break;
 944       case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
 945       case T_ARRAY : // fall through
 946       case T_OBJECT:
 947         {
 948           if (UseCompressedOops && !wide) {
 949             __ lduw(base, offset, to_reg->as_register());
 950             __ decode_heap_oop(to_reg->as_register());
 951           } else {
 952             __ ld_ptr(base, offset, to_reg->as_register());
 953           }
 954           break;
 955         }
 956       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 957       case T_DOUBLE:
 958         {
 959           FloatRegister reg = to_reg->as_double_reg();
 960           // split unaligned loads
 961           if (unaligned || PatchALot) {
 962             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 963             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 964           } else {
 965             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 966           }
 967           break;
 968         }
 969       default      : ShouldNotReachHere();
 970     }
 971     if (type == T_ARRAY || type == T_OBJECT) {
 972       __ verify_oop(to_reg->as_register());
 973     }
 974   }
 975   return load_offset;
 976 }
 977 
 978 
 979 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 980   int load_offset = code_offset();
 981   switch(type) {
 982     case T_BOOLEAN: // fall through
 983     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
 984     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
 985     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
 986     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
 987     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
 988     case T_ARRAY : // fall through
 989     case T_OBJECT:
 990       {
 991           if (UseCompressedOops && !wide) {
 992             __ lduw(base, disp, to_reg->as_register());
 993             __ decode_heap_oop(to_reg->as_register());
 994           } else {
 995             __ ld_ptr(base, disp, to_reg->as_register());
 996           }
 997           break;
 998       }
 999     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1000     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1001     case T_LONG  :
1002 #ifdef _LP64
1003       __ ldx(base, disp, to_reg->as_register_lo());
1004 #else
1005       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1006              "must be sequential");
1007       __ ldd(base, disp, to_reg->as_register_hi());
1008 #endif
1009       break;
1010     default      : ShouldNotReachHere();
1011   }
1012   if (type == T_ARRAY || type == T_OBJECT) {
1013     __ verify_oop(to_reg->as_register());
1014   }
1015   return load_offset;
1016 }
1017 













































1018 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1019   LIR_Const* c = src->as_constant_ptr();
1020   switch (c->type()) {
1021     case T_INT:
1022     case T_FLOAT: {

1023       Register src_reg = O7;
1024       int value = c->as_jint_bits();
1025       if (value == 0) {
1026         src_reg = G0;
1027       } else {
1028         __ set(value, O7);
1029       }
1030       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1031       __ stw(src_reg, addr.base(), addr.disp());
1032       break;
1033     }
1034     case T_ADDRESS: {
1035       Register src_reg = O7;
1036       int value = c->as_jint_bits();
1037       if (value == 0) {
1038         src_reg = G0;
1039       } else {
1040         __ set(value, O7);
1041       }
1042       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1043       __ st_ptr(src_reg, addr.base(), addr.disp());
1044       break;
1045     }
1046     case T_OBJECT: {
1047       Register src_reg = O7;
1048       jobject2reg(c->as_jobject(), src_reg);
1049       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1050       __ st_ptr(src_reg, addr.base(), addr.disp());
1051       break;
1052     }
1053     case T_LONG:
1054     case T_DOUBLE: {
1055       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1056 
1057       Register tmp = O7;
1058       int value_lo = c->as_jint_lo_bits();
1059       if (value_lo == 0) {
1060         tmp = G0;
1061       } else {
1062         __ set(value_lo, O7);
1063       }
1064       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1065       int value_hi = c->as_jint_hi_bits();
1066       if (value_hi == 0) {
1067         tmp = G0;
1068       } else {
1069         __ set(value_hi, O7);
1070       }
1071       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1072       break;
1073     }
1074     default:
1075       Unimplemented();
1076   }
1077 }
1078 
1079 
1080 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
1081   LIR_Const* c = src->as_constant_ptr();
1082   LIR_Address* addr     = dest->as_address_ptr();
1083   Register base = addr->base()->as_pointer_register();
1084   int offset = -1;
1085 



1086   switch (c->type()) {
1087     case T_INT:
1088     case T_FLOAT:
1089     case T_ADDRESS: {
1090       LIR_Opr tmp = FrameMap::O7_opr;
1091       int value = c->as_jint_bits();
1092       if (value == 0) {
1093         tmp = FrameMap::G0_opr;
1094       } else if (Assembler::is_simm13(value)) {
1095         __ set(value, O7);
1096       }
1097       if (addr->index()->is_valid()) {
1098         assert(addr->disp() == 0, "must be zero");
1099         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1100       } else {
1101         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1102         offset = store(tmp, base, addr->disp(), type, wide, false);
1103       }
1104       break;
1105     }
1106     case T_LONG:
1107     case T_DOUBLE: {
1108       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1109       assert(Assembler::is_simm13(addr->disp()) &&
1110              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1111 
1112       LIR_Opr tmp = FrameMap::O7_opr;
1113       int value_lo = c->as_jint_lo_bits();
1114       if (value_lo == 0) {
1115         tmp = FrameMap::G0_opr;
1116       } else {
1117         __ set(value_lo, O7);
1118       }
1119       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1120       int value_hi = c->as_jint_hi_bits();
1121       if (value_hi == 0) {
1122         tmp = FrameMap::G0_opr;
1123       } else {
1124         __ set(value_hi, O7);
1125       }
1126       offset = store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1127       break;
1128     }
1129     case T_OBJECT: {
1130       jobject obj = c->as_jobject();
1131       LIR_Opr tmp;
1132       if (obj == NULL) {
1133         tmp = FrameMap::G0_opr;
1134       } else {
1135         tmp = FrameMap::O7_opr;
1136         jobject2reg(c->as_jobject(), O7);
1137       }
1138       // handle either reg+reg or reg+disp address
1139       if (addr->index()->is_valid()) {
1140         assert(addr->disp() == 0, "must be zero");
1141         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1142       } else {
1143         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1144         offset = store(tmp, base, addr->disp(), type, wide, false);
1145       }
1146 
1147       break;
1148     }
1149     default:
1150       Unimplemented();
1151   }
1152   if (info != NULL) {
1153     assert(offset != -1, "offset should've been set");
1154     add_debug_info_for_null_check(offset, info);
1155   }
1156 }
1157 
1158 
1159 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1160   LIR_Const* c = src->as_constant_ptr();
1161   LIR_Opr to_reg = dest;
1162 
1163   switch (c->type()) {
1164     case T_INT:
1165     case T_ADDRESS:
1166       {
1167         jint con = c->as_jint();
1168         if (to_reg->is_single_cpu()) {
1169           assert(patch_code == lir_patch_none, "no patching handled here");
1170           __ set(con, to_reg->as_register());
1171         } else {
1172           ShouldNotReachHere();
1173           assert(to_reg->is_single_fpu(), "wrong register kind");
1174 
1175           __ set(con, O7);


1220       break;
1221 
1222     case T_FLOAT:
1223       {
1224         address const_addr = __ float_constant(c->as_jfloat());
1225         if (const_addr == NULL) {
1226           bailout("const section overflow");
1227           break;
1228         }
1229         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1230         AddressLiteral const_addrlit(const_addr, rspec);
1231         if (to_reg->is_single_fpu()) {
1232           __ patchable_sethi(const_addrlit, O7);
1233           __ relocate(rspec);
1234           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1235 
1236         } else {
1237           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1238 
1239           __ set(const_addrlit, O7);
1240           __ ld(O7, 0, to_reg->as_register());
1241         }
1242       }
1243       break;
1244 
1245     case T_DOUBLE:
1246       {
1247         address const_addr = __ double_constant(c->as_jdouble());
1248         if (const_addr == NULL) {
1249           bailout("const section overflow");
1250           break;
1251         }
1252         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1253 
1254         if (to_reg->is_double_fpu()) {
1255           AddressLiteral const_addrlit(const_addr, rspec);
1256           __ patchable_sethi(const_addrlit, O7);
1257           __ relocate(rspec);
1258           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1259         } else {
1260           assert(to_reg->is_double_cpu(), "Must be a long register.");


1313 
1314     default:
1315       ShouldNotReachHere();
1316   }
1317 }
1318 
1319 
1320 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1321   Address base = as_Address(addr);
1322   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1323 }
1324 
1325 
1326 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1327   Address base = as_Address(addr);
1328   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1329 }
1330 
1331 
1332 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1333                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1334 
1335   LIR_Address* addr = src_opr->as_address_ptr();
1336   LIR_Opr to_reg = dest;
1337 
1338   Register src = addr->base()->as_pointer_register();
1339   Register disp_reg = noreg;
1340   int disp_value = addr->disp();
1341   bool needs_patching = (patch_code != lir_patch_none);
1342 
1343   if (addr->base()->type() == T_OBJECT) {
1344     __ verify_oop(src);
1345   }
1346 
1347   PatchingStub* patch = NULL;
1348   if (needs_patching) {
1349     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1350     assert(!to_reg->is_double_cpu() ||
1351            patch_code == lir_patch_none ||
1352            patch_code == lir_patch_normal, "patching doesn't match register");
1353   }


1359       } else {
1360         __ set(disp_value, O7);
1361       }
1362       disp_reg = O7;
1363     }
1364   } else if (unaligned || PatchALot) {
1365     __ add(src, addr->index()->as_register(), O7);
1366     src = O7;
1367   } else {
1368     disp_reg = addr->index()->as_pointer_register();
1369     assert(disp_value == 0, "can't handle 3 operand addresses");
1370   }
1371 
1372   // remember the offset of the load.  The patching_epilog must be done
1373   // before the call to add_debug_info, otherwise the PcDescs don't get
1374   // entered in increasing order.
1375   int offset = code_offset();
1376 
1377   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1378   if (disp_reg == noreg) {
1379     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1380   } else {
1381     assert(!unaligned, "can't handle this");
1382     offset = load(src, disp_reg, to_reg, type, wide);
1383   }
1384 
1385   if (patch != NULL) {
1386     patching_epilog(patch, patch_code, src, info);
1387   }

1388   if (info != NULL) add_debug_info_for_null_check(offset, info);
1389 }
1390 
1391 
1392 void LIR_Assembler::prefetchr(LIR_Opr src) {
1393   LIR_Address* addr = src->as_address_ptr();
1394   Address from_addr = as_Address(addr);
1395 
1396   if (VM_Version::has_v9()) {
1397     __ prefetch(from_addr, Assembler::severalReads);
1398   }
1399 }
1400 
1401 
1402 void LIR_Assembler::prefetchw(LIR_Opr src) {
1403   LIR_Address* addr = src->as_address_ptr();
1404   Address from_addr = as_Address(addr);
1405 
1406   if (VM_Version::has_v9()) {
1407     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1408   }
1409 }
1410 
1411 
1412 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1413   Address addr;
1414   if (src->is_single_word()) {
1415     addr = frame_map()->address_for_slot(src->single_stack_ix());
1416   } else if (src->is_double_word())  {
1417     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1418   }
1419 
1420   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1421   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1422 }
1423 
1424 
1425 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1426   Address addr;
1427   if (dest->is_single_word()) {
1428     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1429   } else if (dest->is_double_word())  {
1430     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1431   }
1432   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1433   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1434 }
1435 
1436 
1437 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1438   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1439     if (from_reg->is_double_fpu()) {
1440       // double to double moves
1441       assert(to_reg->is_double_fpu(), "should match");
1442       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1443     } else {
1444       // float to float moves
1445       assert(to_reg->is_single_fpu(), "should match");
1446       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1447     }
1448   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1449     if (from_reg->is_double_cpu()) {
1450 #ifdef _LP64
1451       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1452 #else
1453       assert(to_reg->is_double_cpu() &&


1461 #ifdef _LP64
1462     } else if (to_reg->is_double_cpu()) {
1463       // int to int moves
1464       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1465 #endif
1466     } else {
1467       // int to int moves
1468       __ mov(from_reg->as_register(), to_reg->as_register());
1469     }
1470   } else {
1471     ShouldNotReachHere();
1472   }
1473   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1474     __ verify_oop(to_reg->as_register());
1475   }
1476 }
1477 
1478 
1479 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1480                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1481                             bool wide, bool unaligned) {
1482   LIR_Address* addr = dest->as_address_ptr();
1483 
1484   Register src = addr->base()->as_pointer_register();
1485   Register disp_reg = noreg;
1486   int disp_value = addr->disp();
1487   bool needs_patching = (patch_code != lir_patch_none);
1488 
1489   if (addr->base()->is_oop_register()) {
1490     __ verify_oop(src);
1491   }
1492 
1493   PatchingStub* patch = NULL;
1494   if (needs_patching) {
1495     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1496     assert(!from_reg->is_double_cpu() ||
1497            patch_code == lir_patch_none ||
1498            patch_code == lir_patch_normal, "patching doesn't match register");
1499   }
1500 
1501   if (addr->index()->is_illegal()) {


1505       } else {
1506         __ set(disp_value, O7);
1507       }
1508       disp_reg = O7;
1509     }
1510   } else if (unaligned || PatchALot) {
1511     __ add(src, addr->index()->as_register(), O7);
1512     src = O7;
1513   } else {
1514     disp_reg = addr->index()->as_pointer_register();
1515     assert(disp_value == 0, "can't handle 3 operand addresses");
1516   }
1517 
1518   // remember the offset of the store.  The patching_epilog must be done
1519   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1520   // entered in increasing order.
1521   int offset;
1522 
1523   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1524   if (disp_reg == noreg) {
1525     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1526   } else {
1527     assert(!unaligned, "can't handle this");
1528     offset = store(from_reg, src, disp_reg, type, wide);
1529   }
1530 
1531   if (patch != NULL) {
1532     patching_epilog(patch, patch_code, src, info);
1533   }
1534 
1535   if (info != NULL) add_debug_info_for_null_check(offset, info);
1536 }
1537 
1538 
1539 void LIR_Assembler::return_op(LIR_Opr result) {
1540   // the poll may need a register so just pick one that isn't the return register
1541 #if defined(TIERED) && !defined(_LP64)
1542   if (result->type_field() == LIR_OprDesc::long_type) {
1543     // Must move the result to G1
1544     // Must leave proper result in O0,O1 and G1 (TIERED only)
1545     __ sllx(I0, 32, G1);          // Shift bits into high G1
1546     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1547     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1548 #ifdef ASSERT


2067   if (op->expected_type() == NULL ||
2068       Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
2069     __ mov(src,     O0);
2070     __ mov(src_pos, O1);
2071     __ mov(dst,     O2);
2072     __ mov(dst_pos, O3);
2073     __ mov(length,  O4);
2074     __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2075 
2076     __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
2077     __ delayed()->nop();
2078     __ bind(*stub->continuation());
2079     return;
2080   }
2081 
2082   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2083 
2084   // make sure src and dst are non-null and load array length
2085   if (flags & LIR_OpArrayCopy::src_null_check) {
2086     __ tst(src);
2087     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2088     __ delayed()->nop();
2089   }
2090 
2091   if (flags & LIR_OpArrayCopy::dst_null_check) {
2092     __ tst(dst);
2093     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2094     __ delayed()->nop();
2095   }
2096 
2097   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2098     // test src_pos register
2099     __ tst(src_pos);
2100     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2101     __ delayed()->nop();
2102   }
2103 
2104   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2105     // test dst_pos register
2106     __ tst(dst_pos);
2107     __ br(Assembler::less, false, Assembler::pn, *stub->entry());
2108     __ delayed()->nop();
2109   }
2110 
2111   if (flags & LIR_OpArrayCopy::length_positive_check) {
2112     // make sure length isn't negative
2113     __ tst(length);


2115     __ delayed()->nop();
2116   }
2117 
2118   if (flags & LIR_OpArrayCopy::src_range_check) {
2119     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2120     __ add(length, src_pos, tmp);
2121     __ cmp(tmp2, tmp);
2122     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2123     __ delayed()->nop();
2124   }
2125 
2126   if (flags & LIR_OpArrayCopy::dst_range_check) {
2127     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2128     __ add(length, dst_pos, tmp);
2129     __ cmp(tmp2, tmp);
2130     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2131     __ delayed()->nop();
2132   }
2133 
2134   if (flags & LIR_OpArrayCopy::type_check) {
2135     if (UseCompressedOops) {
2136       // We don't need decode because we just need to compare
2137       __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
2138       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2139     } else {
2140       __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2141       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2142     }
2143     __ cmp(tmp, tmp2);
2144     __ br(Assembler::notEqual, Assembler::heap_oop_cc(), false, Assembler::pt, *stub->entry());
2145     __ delayed()->nop();
2146   }
2147 
2148 #ifdef ASSERT
2149   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2150     // Sanity check the known type with the incoming class.  For the
2151     // primitive case the types must match exactly with src.klass and
2152     // dst.klass each exactly matching the default type.  For the
2153     // object array case, if no type check is needed then either the
2154     // dst type is exactly the expected type and the src type is a
2155     // subtype which we can't check or src is the same array as dst
2156     // but not necessarily exactly of type default_type.
2157     Label known_ok, halt;
2158     jobject2reg(op->expected_type()->constant_encoding(), tmp);
2159     if (UseCompressedOops) {
2160       // tmp holds the default type. It currently comes uncompressed after the
2161       // load of a constant, so encode it.
2162       __ encode_heap_oop(tmp);
2163       // load the raw value of the dst klass, since we will be comparing
2164       // uncompressed values directly.
2165       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2166     } else {
2167       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2168     }
2169     if (basic_type != T_OBJECT) {
2170       __ cmp(tmp, tmp2);
2171       __ br(Assembler::notEqual, Assembler::heap_oop_cc(), false, Assembler::pn, halt);
2172       if (UseCompressedOops) {
2173         // load the raw value of the src klass.
2174         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2175       } else {
2176         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2177       }
2178       __ cmp(tmp, tmp2);
2179       __ br(Assembler::equal, Assembler::heap_oop_cc(), false, Assembler::pn, known_ok);
2180       __ delayed()->nop();
2181     } else {
2182       __ cmp(tmp, tmp2);
2183       __ br(Assembler::equal, Assembler::heap_oop_cc(), false, Assembler::pn, known_ok);
2184       __ delayed()->cmp(src, dst);
2185       __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2186       __ delayed()->nop();
2187     }
2188     __ bind(halt);
2189     __ stop("incorrect type information in arraycopy");
2190     __ bind(known_ok);
2191   }
2192 #endif
2193 
2194   int shift = shift_amount(basic_type);
2195 
2196   Register src_ptr = O0;
2197   Register dst_ptr = O1;
2198   Register len     = O2;
2199 
2200   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2201   LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
2202   if (shift == 0) {
2203     __ add(src_ptr, src_pos, src_ptr);
2204   } else {
2205     __ sll(src_pos, shift, tmp);


2374     __ ld_ptr(receiver_addr, tmp1);
2375     __ verify_oop(tmp1);
2376     __ cmp(recv, tmp1);
2377     __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
2378     __ delayed()->nop();
2379     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2380                       mdo_offset_bias);
2381     __ ld_ptr(data_addr, tmp1);
2382     __ add(tmp1, DataLayout::counter_increment, tmp1);
2383     __ st_ptr(tmp1, data_addr);
2384     __ ba(false, *update_done);
2385     __ delayed()->nop();
2386     __ bind(next_test);
2387   }
2388 
2389   // Didn't find receiver; find next empty slot and fill it in
2390   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2391     Label next_test;
2392     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2393                       mdo_offset_bias);
2394     __ ld_ptr(recv_addr, tmp1);
2395     __ br_notnull(tmp1, false, Assembler::pt, next_test);
2396     __ delayed()->nop();
2397     __ st_ptr(recv, recv_addr);
2398     __ set(DataLayout::counter_increment, tmp1);
2399     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2400               mdo_offset_bias);
2401     __ ba(false, *update_done);
2402     __ delayed()->nop();
2403     __ bind(next_test);
2404   }
2405 }
2406 
2407 
2408 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2409                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2410   md = method->method_data();
2411   if (md == NULL) {
2412     bailout("out of memory building methodDataOop");
2413     return;
2414   }


2466   } else {
2467     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2468     __ delayed()->nop();
2469   }
2470 
2471   Label profile_cast_failure, profile_cast_success;
2472   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2473   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2474 
2475   // patching may screw with our temporaries on sparc,
2476   // so let's do it before loading the class
2477   if (k->is_loaded()) {
2478     jobject2reg(k->constant_encoding(), k_RInfo);
2479   } else {
2480     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2481   }
2482   assert(obj != k_RInfo, "must be different");
2483 
2484   // get object class
2485   // not a safepoint as obj null check happens earlier
2486   __ load_klass(obj, klass_RInfo);
2487   if (op->fast_check()) {
2488     assert_different_registers(klass_RInfo, k_RInfo);
2489     __ cmp(k_RInfo, klass_RInfo);
2490     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2491     __ delayed()->nop();
2492   } else {
2493     bool need_slow_path = true;
2494     if (k->is_loaded()) {
2495       if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
2496         need_slow_path = false;
2497       // perform the fast part of the checking logic
2498       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2499                                        (need_slow_path ? success_target : NULL),
2500                                        failure_target, NULL,
2501                                        RegisterOrConstant(k->super_check_offset()));
2502     } else {
2503       // perform the fast part of the checking logic
2504       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2505                                        failure_target, NULL);
2506     }


2508       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2509       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2510       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2511       __ delayed()->nop();
2512       __ cmp(G3, 0);
2513       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2514       __ delayed()->nop();
2515       // Fall through to success case
2516     }
2517   }
2518 
2519   if (op->should_profile()) {
2520     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2521     assert_different_registers(obj, mdo, recv, tmp1);
2522     __ bind(profile_cast_success);
2523     jobject2reg(md->constant_encoding(), mdo);
2524     if (mdo_offset_bias > 0) {
2525       __ set(mdo_offset_bias, tmp1);
2526       __ add(mdo, tmp1, mdo);
2527     }
2528     __ load_klass(obj, recv);
2529     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2530     // Jump over the failure case
2531     __ ba(false, *success);
2532     __ delayed()->nop();
2533     // Cast failure case
2534     __ bind(profile_cast_failure);
2535     jobject2reg(md->constant_encoding(), mdo);
2536     if (mdo_offset_bias > 0) {
2537       __ set(mdo_offset_bias, tmp1);
2538       __ add(mdo, tmp1, mdo);
2539     }
2540     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2541     __ ld_ptr(data_addr, tmp1);
2542     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2543     __ st_ptr(tmp1, data_addr);
2544     __ ba(false, *failure);
2545     __ delayed()->nop();
2546   }
2547   __ ba(false, *success);
2548   __ delayed()->nop();


2577       __ br_notnull(value, false, Assembler::pn, not_null);
2578       __ delayed()->nop();
2579       Register mdo      = k_RInfo;
2580       Register data_val = Rtmp1;
2581       jobject2reg(md->constant_encoding(), mdo);
2582       if (mdo_offset_bias > 0) {
2583         __ set(mdo_offset_bias, data_val);
2584         __ add(mdo, data_val, mdo);
2585       }
2586       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2587       __ ldub(flags_addr, data_val);
2588       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2589       __ stb(data_val, flags_addr);
2590       __ ba(false, done);
2591       __ delayed()->nop();
2592       __ bind(not_null);
2593     } else {
2594       __ br_null(value, false, Assembler::pn, done);
2595       __ delayed()->nop();
2596     }
2597     add_debug_info_for_null_check_here(op->info_for_exception());
2598     __ load_klass(array, k_RInfo);
2599     __ load_klass(value, klass_RInfo);
2600 
2601     // get instance klass
2602     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc)), k_RInfo);
2603     // perform the fast part of the checking logic
2604     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2605 
2606     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2607     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2608     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2609     __ delayed()->nop();
2610     __ cmp(G3, 0);
2611     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2612     __ delayed()->nop();
2613     // fall through to the success case
2614 
2615     if (op->should_profile()) {
2616       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2617       assert_different_registers(value, mdo, recv, tmp1);
2618       __ bind(profile_cast_success);
2619       jobject2reg(md->constant_encoding(), mdo);
2620       if (mdo_offset_bias > 0) {
2621         __ set(mdo_offset_bias, tmp1);
2622         __ add(mdo, tmp1, mdo);
2623       }
2624       __ load_klass(value, recv);
2625       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2626       __ ba(false, done);
2627       __ delayed()->nop();
2628       // Cast failure case
2629       __ bind(profile_cast_failure);
2630       jobject2reg(md->constant_encoding(), mdo);
2631       if (mdo_offset_bias > 0) {
2632         __ set(mdo_offset_bias, tmp1);
2633         __ add(mdo, tmp1, mdo);
2634       }
2635       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2636       __ ld_ptr(data_addr, tmp1);
2637       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2638       __ st_ptr(tmp1, data_addr);
2639       __ ba(false, *stub->entry());
2640       __ delayed()->nop();
2641     }
2642     __ bind(done);
2643   } else if (code == lir_checkcast) {
2644     Register obj = op->object()->as_register();


2685     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2686     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2687     __ sllx(new_value_hi, 32, t2);
2688     __ srl(new_value_lo, 0, new_value_lo);
2689     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2690 #endif
2691     // perform the compare and swap operation
2692     __ casx(addr, t1, t2);
2693     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2694     // overwritten with the original value in "addr" and will be equal to t1.
2695     __ cmp(t1, t2);
2696 
2697   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2698     Register addr = op->addr()->as_pointer_register();
2699     Register cmp_value = op->cmp_value()->as_register();
2700     Register new_value = op->new_value()->as_register();
2701     Register t1 = op->tmp1()->as_register();
2702     Register t2 = op->tmp2()->as_register();
2703     __ mov(cmp_value, t1);
2704     __ mov(new_value, t2);

2705     if (op->code() == lir_cas_obj) {
2706       if (UseCompressedOops) {
2707         __ encode_heap_oop(t1);
2708         __ encode_heap_oop(t2);
2709         __ cas(addr, t1, t2);
2710       } else {
2711         __ casx(addr, t1, t2);
2712       }
2713     } else {

2714       __ cas(addr, t1, t2);
2715     }
2716     __ cmp(t1, t2);
2717   } else {
2718     Unimplemented();
2719   }
2720 }
2721 
2722 void LIR_Assembler::set_24bit_FPU() {
2723   Unimplemented();
2724 }
2725 
2726 
2727 void LIR_Assembler::reset_FPU() {
2728   Unimplemented();
2729 }
2730 
2731 
2732 void LIR_Assembler::breakpoint() {
2733   __ breakpoint_trap();


2873 
2874       // Note that this is less efficient than it should be because it
2875       // always does a write to the receiver part of the
2876       // VirtualCallData rather than just the first time
2877       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2878         ciKlass* receiver = vc_data->receiver(i);
2879         if (receiver == NULL) {
2880           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2881                             mdo_offset_bias);
2882           jobject2reg(known_klass->constant_encoding(), tmp1);
2883           __ st_ptr(tmp1, recv_addr);
2884           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2885                             mdo_offset_bias);
2886           __ ld_ptr(data_addr, tmp1);
2887           __ add(tmp1, DataLayout::counter_increment, tmp1);
2888           __ st_ptr(tmp1, data_addr);
2889           return;
2890         }
2891       }
2892     } else {
2893       __ load_klass(recv, recv);
2894       Label update_done;
2895       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2896       // Receiver did not match any saved receiver and there is no empty row for it.
2897       // Increment total counter to indicate polymorphic case.
2898       __ ld_ptr(counter_addr, tmp1);
2899       __ add(tmp1, DataLayout::counter_increment, tmp1);
2900       __ st_ptr(tmp1, counter_addr);
2901 
2902       __ bind(update_done);
2903     }
2904   } else {
2905     // Static call
2906     __ ld_ptr(counter_addr, tmp1);
2907     __ add(tmp1, DataLayout::counter_increment, tmp1);
2908     __ st_ptr(tmp1, counter_addr);
2909   }
2910 }
2911 
2912 void LIR_Assembler::align_backward_branch_target() {
2913   __ align(OptoLoopAlignment);


3067       } else {
3068         if (idx == noreg) {
3069           __ ldd(base, disp, G4);
3070         } else {
3071           __ ldd(base, idx, G4);
3072         }
3073         // G4 is high half, G5 is low half
3074         __ mov (G4, dest->as_register_hi());
3075         __ mov (G5, dest->as_register_lo());
3076       }
3077     } else {
3078       Unimplemented();
3079     }
3080     if (info != NULL) {
3081       add_debug_info_for_null_check(null_check_offset, info);
3082     }
3083 
3084   } else {
3085     // use normal move for all other volatiles since they don't need
3086     // special handling to remain atomic.
3087     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3088   }
3089 }
3090 
3091 void LIR_Assembler::membar() {
3092   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3093   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3094 }
3095 
3096 void LIR_Assembler::membar_acquire() {
3097   // no-op on TSO
3098 }
3099 
3100 void LIR_Assembler::membar_release() {
3101   // no-op on TSO
3102 }
3103 
3104 // Pack two sequential registers containing 32 bit values
3105 // into a single 64 bit register.
3106 // src and src->successor() are packed into dst
3107 // src and dst may be the same register.


src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File