1 /*
   2  * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_C1_C1_LIR_HPP
  26 #define SHARE_VM_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_ValueType.hpp"
  29 
  30 class BlockBegin;
  31 class BlockList;
  32 class LIR_Assembler;
  33 class CodeEmitInfo;
  34 class CodeStub;
  35 class CodeStubList;
  36 class ArrayCopyStub;
  37 class LIR_Op;
  38 class ciType;
  39 class ValueType;
  40 class LIR_OpVisitState;
  41 class FpuStackSim;
  42 
  43 //---------------------------------------------------------------------
  44 //                 LIR Operands
  45 //  LIR_OprDesc
  46 //    LIR_OprPtr
  47 //      LIR_Const
  48 //      LIR_Address
  49 //---------------------------------------------------------------------
  50 class LIR_OprDesc;
  51 class LIR_OprPtr;
  52 class LIR_Const;
  53 class LIR_Address;
  54 class LIR_OprVisitor;
  55 
  56 
  57 typedef LIR_OprDesc* LIR_Opr;
  58 typedef int          RegNr;
  59 
  60 define_array(LIR_OprArray, LIR_Opr)
  61 define_stack(LIR_OprList, LIR_OprArray)
  62 
  63 define_array(LIR_OprRefArray, LIR_Opr*)
  64 define_stack(LIR_OprRefList, LIR_OprRefArray)
  65 
  66 define_array(CodeEmitInfoArray, CodeEmitInfo*)
  67 define_stack(CodeEmitInfoList, CodeEmitInfoArray)
  68 
  69 define_array(LIR_OpArray, LIR_Op*)
  70 define_stack(LIR_OpList, LIR_OpArray)
  71 
  72 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  73 class LIR_OprPtr: public CompilationResourceObj {
  74  public:
  75   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  76   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  77 
  78   virtual LIR_Const*  as_constant()              { return NULL; }
  79   virtual LIR_Address* as_address()              { return NULL; }
  80   virtual BasicType type() const                 = 0;
  81   virtual void print_value_on(outputStream* out) const = 0;
  82 };
  83 
  84 
  85 
  86 // LIR constants
  87 class LIR_Const: public LIR_OprPtr {
  88  private:
  89   JavaValue _value;
  90 
  91   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  92   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  93   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  94 
  95  public:
  96   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  97   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  98   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  99   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
 100   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
 101   LIR_Const(void* p) {
 102 #ifdef _LP64
 103     assert(sizeof(jlong) >= sizeof(p), "too small");;
 104     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 105 #else
 106     assert(sizeof(jint) >= sizeof(p), "too small");;
 107     _value.set_type(T_INT);     _value.set_jint((jint)p);
 108 #endif
 109   }
 110 
 111   virtual BasicType type()       const { return _value.get_type(); }
 112   virtual LIR_Const* as_constant()     { return this; }
 113 
 114   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 115   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 116   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 117   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 118   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 119   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 120   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 121 
 122 #ifdef _LP64
 123   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 124 #else
 125   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 126 #endif
 127 
 128 
 129   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 130   jint      as_jint_lo_bits() const    {
 131     if (type() == T_DOUBLE) {
 132       return low(jlong_cast(_value.get_jdouble()));
 133     } else {
 134       return as_jint_lo();
 135     }
 136   }
 137   jint      as_jint_hi_bits() const    {
 138     if (type() == T_DOUBLE) {
 139       return high(jlong_cast(_value.get_jdouble()));
 140     } else {
 141       return as_jint_hi();
 142     }
 143   }
 144   jlong      as_jlong_bits() const    {
 145     if (type() == T_DOUBLE) {
 146       return jlong_cast(_value.get_jdouble());
 147     } else {
 148       return as_jlong();
 149     }
 150   }
 151 
 152   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 153 
 154 
 155   bool is_zero_float() {
 156     jfloat f = as_jfloat();
 157     jfloat ok = 0.0f;
 158     return jint_cast(f) == jint_cast(ok);
 159   }
 160 
 161   bool is_one_float() {
 162     jfloat f = as_jfloat();
 163     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 164   }
 165 
 166   bool is_zero_double() {
 167     jdouble d = as_jdouble();
 168     jdouble ok = 0.0;
 169     return jlong_cast(d) == jlong_cast(ok);
 170   }
 171 
 172   bool is_one_double() {
 173     jdouble d = as_jdouble();
 174     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 175   }
 176 };
 177 
 178 
 179 //---------------------LIR Operand descriptor------------------------------------
 180 //
 181 // The class LIR_OprDesc represents a LIR instruction operand;
 182 // it can be a register (ALU/FPU), stack location or a constant;
 183 // Constants and addresses are represented as resource area allocated
 184 // structures (see above).
 185 // Registers and stack locations are inlined into the this pointer
 186 // (see value function).
 187 
 188 class LIR_OprDesc: public CompilationResourceObj {
 189  public:
 190   // value structure:
 191   //     data       opr-type opr-kind
 192   // +--------------+-------+-------+
 193   // [max...........|7 6 5 4|3 2 1 0]
 194   //                             ^
 195   //                    is_pointer bit
 196   //
 197   // lowest bit cleared, means it is a structure pointer
 198   // we need  4 bits to represent types
 199 
 200  private:
 201   friend class LIR_OprFact;
 202 
 203   // Conversion
 204   intptr_t value() const                         { return (intptr_t) this; }
 205 
 206   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 207     return (value() & mask) == masked_value;
 208   }
 209 
 210   enum OprKind {
 211       pointer_value      = 0
 212     , stack_value        = 1
 213     , cpu_register       = 3
 214     , fpu_register       = 5
 215     , illegal_value      = 7
 216   };
 217 
 218   enum OprBits {
 219       pointer_bits   = 1
 220     , kind_bits      = 3
 221     , type_bits      = 4
 222     , size_bits      = 2
 223     , destroys_bits  = 1
 224     , virtual_bits   = 1
 225     , is_xmm_bits    = 1
 226     , last_use_bits  = 1
 227     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 228     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 229                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 230     , data_bits      = BitsPerInt - non_data_bits
 231     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 232   };
 233 
 234   enum OprShift {
 235       kind_shift     = 0
 236     , type_shift     = kind_shift     + kind_bits
 237     , size_shift     = type_shift     + type_bits
 238     , destroys_shift = size_shift     + size_bits
 239     , last_use_shift = destroys_shift + destroys_bits
 240     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 241     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 242     , is_xmm_shift   = virtual_shift + virtual_bits
 243     , data_shift     = is_xmm_shift + is_xmm_bits
 244     , reg1_shift = data_shift
 245     , reg2_shift = data_shift + reg_bits
 246 
 247   };
 248 
 249   enum OprSize {
 250       single_size = 0 << size_shift
 251     , double_size = 1 << size_shift
 252   };
 253 
 254   enum OprMask {
 255       kind_mask      = right_n_bits(kind_bits)
 256     , type_mask      = right_n_bits(type_bits) << type_shift
 257     , size_mask      = right_n_bits(size_bits) << size_shift
 258     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 259     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 260     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 261     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 262     , pointer_mask   = right_n_bits(pointer_bits)
 263     , lower_reg_mask = right_n_bits(reg_bits)
 264     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 265   };
 266 
 267   uintptr_t data() const                         { return value() >> data_shift; }
 268   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 269   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 270   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 271   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 272 
 273   static char type_char(BasicType t);
 274 
 275  public:
 276   enum {
 277     vreg_base = ConcreteRegisterImpl::number_of_registers,
 278     vreg_max = (1 << data_bits) - 1
 279   };
 280 
 281   static inline LIR_Opr illegalOpr();
 282 
 283   enum OprType {
 284       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 285     , int_type      = 1 << type_shift
 286     , long_type     = 2 << type_shift
 287     , object_type   = 3 << type_shift
 288     , address_type  = 4 << type_shift
 289     , float_type    = 5 << type_shift
 290     , double_type   = 6 << type_shift
 291   };
 292   friend OprType as_OprType(BasicType t);
 293   friend BasicType as_BasicType(OprType t);
 294 
 295   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 296   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 297 
 298   static OprSize size_for(BasicType t) {
 299     switch (t) {
 300       case T_LONG:
 301       case T_DOUBLE:
 302         return double_size;
 303         break;
 304 
 305       case T_FLOAT:
 306       case T_BOOLEAN:
 307       case T_CHAR:
 308       case T_BYTE:
 309       case T_SHORT:
 310       case T_INT:
 311       case T_ADDRESS:
 312       case T_OBJECT:
 313       case T_ARRAY:
 314         return single_size;
 315         break;
 316 
 317       default:
 318         ShouldNotReachHere();
 319         return single_size;
 320       }
 321   }
 322 
 323 
 324   void validate_type() const PRODUCT_RETURN;
 325 
 326   BasicType type() const {
 327     if (is_pointer()) {
 328       return pointer()->type();
 329     }
 330     return as_BasicType(type_field());
 331   }
 332 
 333 
 334   ValueType* value_type() const                  { return as_ValueType(type()); }
 335 
 336   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 337 
 338   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 339   // checks whether types are same
 340   bool is_same_type(LIR_Opr opr) const     {
 341     assert(type_field() != unknown_type &&
 342            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 343     return type_field() == opr->type_field();
 344   }
 345   bool is_same_register(LIR_Opr opr) {
 346     return (is_register() && opr->is_register() &&
 347             kind_field() == opr->kind_field() &&
 348             (value() & no_type_mask) == (opr->value() & no_type_mask));
 349   }
 350 
 351   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 352   bool is_illegal() const      { return kind_field() == illegal_value; }
 353   bool is_valid() const        { return kind_field() != illegal_value; }
 354 
 355   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 356   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 357 
 358   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 359   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 360 
 361   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 362   bool is_oop() const;
 363 
 364   // semantic for fpu- and xmm-registers:
 365   // * is_float and is_double return true for xmm_registers
 366   //   (so is_single_fpu and is_single_xmm are true)
 367   // * So you must always check for is_???_xmm prior to is_???_fpu to
 368   //   distinguish between fpu- and xmm-registers
 369 
 370   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 371   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 372   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 373 
 374   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 375   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 376   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 377   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 378   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 379 
 380   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 381   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 382   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 383   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 384   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 385 
 386   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 387   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 388   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 389 
 390   // fast accessor functions for special bits that do not work for pointers
 391   // (in this functions, the check for is_pointer() is omitted)
 392   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 393   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 394   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 395   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 396   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 397 
 398   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 399   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 400   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 401   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 402 
 403 
 404   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 405   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 406   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 407   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 408   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 409   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 410   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 411   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 412   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 413   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 414   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 415   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 416 
 417   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 418   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 419   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 420 
 421   Register as_register()    const;
 422   Register as_register_lo() const;
 423   Register as_register_hi() const;
 424 
 425   Register as_pointer_register() {
 426 #ifdef _LP64
 427     if (is_double_cpu()) {
 428       assert(as_register_lo() == as_register_hi(), "should be a single register");
 429       return as_register_lo();
 430     }
 431 #endif
 432     return as_register();
 433   }
 434 
 435 #ifdef X86
 436   XMMRegister as_xmm_float_reg() const;
 437   XMMRegister as_xmm_double_reg() const;
 438   // for compatibility with RInfo
 439   int fpu () const                                  { return lo_reg_half(); }
 440 #endif // X86
 441 #if defined(SPARC) || defined(ARM) || defined(PPC)
 442   FloatRegister as_float_reg   () const;
 443   FloatRegister as_double_reg  () const;
 444 #endif
 445 
 446   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 447   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 448   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 449   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 450   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 451 
 452   void print() const PRODUCT_RETURN;
 453   void print(outputStream* out) const PRODUCT_RETURN;
 454 };
 455 
 456 
 457 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 458   switch (type) {
 459   case T_INT:      return LIR_OprDesc::int_type;
 460   case T_LONG:     return LIR_OprDesc::long_type;
 461   case T_FLOAT:    return LIR_OprDesc::float_type;
 462   case T_DOUBLE:   return LIR_OprDesc::double_type;
 463   case T_OBJECT:
 464   case T_ARRAY:    return LIR_OprDesc::object_type;
 465   case T_ADDRESS:  return LIR_OprDesc::address_type;
 466   case T_ILLEGAL:  // fall through
 467   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 468   }
 469 }
 470 
 471 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 472   switch (t) {
 473   case LIR_OprDesc::int_type:     return T_INT;
 474   case LIR_OprDesc::long_type:    return T_LONG;
 475   case LIR_OprDesc::float_type:   return T_FLOAT;
 476   case LIR_OprDesc::double_type:  return T_DOUBLE;
 477   case LIR_OprDesc::object_type:  return T_OBJECT;
 478   case LIR_OprDesc::address_type: return T_ADDRESS;
 479   case LIR_OprDesc::unknown_type: // fall through
 480   default: ShouldNotReachHere();  return T_ILLEGAL;
 481   }
 482 }
 483 
 484 
 485 // LIR_Address
 486 class LIR_Address: public LIR_OprPtr {
 487  friend class LIR_OpVisitState;
 488 
 489  public:
 490   // NOTE: currently these must be the log2 of the scale factor (and
 491   // must also be equivalent to the ScaleFactor enum in
 492   // assembler_i486.hpp)
 493   enum Scale {
 494     times_1  =  0,
 495     times_2  =  1,
 496     times_4  =  2,
 497     times_8  =  3
 498   };
 499 
 500  private:
 501   LIR_Opr   _base;
 502   LIR_Opr   _index;
 503   Scale     _scale;
 504   intx      _disp;
 505   BasicType _type;
 506 
 507  public:
 508   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 509        _base(base)
 510      , _index(index)
 511      , _scale(times_1)
 512      , _type(type)
 513      , _disp(0) { verify(); }
 514 
 515   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 516        _base(base)
 517      , _index(LIR_OprDesc::illegalOpr())
 518      , _scale(times_1)
 519      , _type(type)
 520      , _disp(disp) { verify(); }
 521 
 522   LIR_Address(LIR_Opr base, BasicType type):
 523        _base(base)
 524      , _index(LIR_OprDesc::illegalOpr())
 525      , _scale(times_1)
 526      , _type(type)
 527      , _disp(0) { verify(); }
 528 
 529 #if defined(X86) || defined(ARM)
 530   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 531        _base(base)
 532      , _index(index)
 533      , _scale(scale)
 534      , _type(type)
 535      , _disp(disp) { verify(); }
 536 #endif // X86 || ARM
 537 
 538   LIR_Opr base()  const                          { return _base;  }
 539   LIR_Opr index() const                          { return _index; }
 540   Scale   scale() const                          { return _scale; }
 541   intx    disp()  const                          { return _disp;  }
 542 
 543   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 544 
 545   virtual LIR_Address* as_address()              { return this;   }
 546   virtual BasicType type() const                 { return _type; }
 547   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 548 
 549   void verify() const PRODUCT_RETURN;
 550 
 551   static Scale scale(BasicType type);
 552 };
 553 
 554 
 555 // operand factory
 556 class LIR_OprFact: public AllStatic {
 557  public:
 558 
 559   static LIR_Opr illegalOpr;
 560 
 561   static LIR_Opr single_cpu(int reg) {
 562     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 563                                LIR_OprDesc::int_type             |
 564                                LIR_OprDesc::cpu_register         |
 565                                LIR_OprDesc::single_size);
 566   }
 567   static LIR_Opr single_cpu_oop(int reg) {
 568     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 569                                LIR_OprDesc::object_type          |
 570                                LIR_OprDesc::cpu_register         |
 571                                LIR_OprDesc::single_size);
 572   }
 573   static LIR_Opr single_cpu_address(int reg) {
 574     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 575                                LIR_OprDesc::address_type         |
 576                                LIR_OprDesc::cpu_register         |
 577                                LIR_OprDesc::single_size);
 578   }
 579   static LIR_Opr double_cpu(int reg1, int reg2) {
 580     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 581     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 582                                (reg2 << LIR_OprDesc::reg2_shift) |
 583                                LIR_OprDesc::long_type            |
 584                                LIR_OprDesc::cpu_register         |
 585                                LIR_OprDesc::double_size);
 586   }
 587 
 588   static LIR_Opr single_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 589                                                                              LIR_OprDesc::float_type           |
 590                                                                              LIR_OprDesc::fpu_register         |
 591                                                                              LIR_OprDesc::single_size); }
 592 #if defined(ARM)
 593   static LIR_Opr double_fpu(int reg1, int reg2)    { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::fpu_register | LIR_OprDesc::double_size); }
 594   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift) |                                     LIR_OprDesc::float_type  | LIR_OprDesc::cpu_register | LIR_OprDesc::single_size); }
 595   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg1 << LIR_OprDesc::reg1_shift) | (reg2 << LIR_OprDesc::reg2_shift) | LIR_OprDesc::double_type | LIR_OprDesc::cpu_register | LIR_OprDesc::double_size); }
 596 #endif
 597 #ifdef SPARC
 598   static LIR_Opr double_fpu(int reg1, int reg2) { return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 599                                                                              (reg2 << LIR_OprDesc::reg2_shift) |
 600                                                                              LIR_OprDesc::double_type          |
 601                                                                              LIR_OprDesc::fpu_register         |
 602                                                                              LIR_OprDesc::double_size); }
 603 #endif
 604 #ifdef X86
 605   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 606                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 607                                                                              LIR_OprDesc::double_type          |
 608                                                                              LIR_OprDesc::fpu_register         |
 609                                                                              LIR_OprDesc::double_size); }
 610 
 611   static LIR_Opr single_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 612                                                                              LIR_OprDesc::float_type           |
 613                                                                              LIR_OprDesc::fpu_register         |
 614                                                                              LIR_OprDesc::single_size          |
 615                                                                              LIR_OprDesc::is_xmm_mask); }
 616   static LIR_Opr double_xmm(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 617                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 618                                                                              LIR_OprDesc::double_type          |
 619                                                                              LIR_OprDesc::fpu_register         |
 620                                                                              LIR_OprDesc::double_size          |
 621                                                                              LIR_OprDesc::is_xmm_mask); }
 622 #endif // X86
 623 #ifdef PPC
 624   static LIR_Opr double_fpu(int reg)            { return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 625                                                                              (reg  << LIR_OprDesc::reg2_shift) |
 626                                                                              LIR_OprDesc::double_type          |
 627                                                                              LIR_OprDesc::fpu_register         |
 628                                                                              LIR_OprDesc::double_size); }
 629   static LIR_Opr single_softfp(int reg)            { return (LIR_Opr)((reg  << LIR_OprDesc::reg1_shift)        |
 630                                                                              LIR_OprDesc::float_type           |
 631                                                                              LIR_OprDesc::cpu_register         |
 632                                                                              LIR_OprDesc::single_size); }
 633   static LIR_Opr double_softfp(int reg1, int reg2) { return (LIR_Opr)((reg2 << LIR_OprDesc::reg1_shift)        |
 634                                                                              (reg1 << LIR_OprDesc::reg2_shift) |
 635                                                                              LIR_OprDesc::double_type          |
 636                                                                              LIR_OprDesc::cpu_register         |
 637                                                                              LIR_OprDesc::double_size); }
 638 #endif // PPC
 639 
 640   static LIR_Opr virtual_register(int index, BasicType type) {
 641     LIR_Opr res;
 642     switch (type) {
 643       case T_OBJECT: // fall through
 644       case T_ARRAY:
 645         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 646                                             LIR_OprDesc::object_type  |
 647                                             LIR_OprDesc::cpu_register |
 648                                             LIR_OprDesc::single_size  |
 649                                             LIR_OprDesc::virtual_mask);
 650         break;
 651 
 652       case T_INT:
 653         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 654                                   LIR_OprDesc::int_type              |
 655                                   LIR_OprDesc::cpu_register          |
 656                                   LIR_OprDesc::single_size           |
 657                                   LIR_OprDesc::virtual_mask);
 658         break;
 659 
 660       case T_ADDRESS:
 661         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 662                                   LIR_OprDesc::address_type          |
 663                                   LIR_OprDesc::cpu_register          |
 664                                   LIR_OprDesc::single_size           |
 665                                   LIR_OprDesc::virtual_mask);
 666         break;
 667 
 668       case T_LONG:
 669         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 670                                   LIR_OprDesc::long_type             |
 671                                   LIR_OprDesc::cpu_register          |
 672                                   LIR_OprDesc::double_size           |
 673                                   LIR_OprDesc::virtual_mask);
 674         break;
 675 
 676 #ifdef __SOFTFP__
 677       case T_FLOAT:
 678         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 679                                   LIR_OprDesc::float_type  |
 680                                   LIR_OprDesc::cpu_register |
 681                                   LIR_OprDesc::single_size |
 682                                   LIR_OprDesc::virtual_mask);
 683         break;
 684       case T_DOUBLE:
 685         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 686                                   LIR_OprDesc::double_type |
 687                                   LIR_OprDesc::cpu_register |
 688                                   LIR_OprDesc::double_size |
 689                                   LIR_OprDesc::virtual_mask);
 690         break;
 691 #else // __SOFTFP__
 692       case T_FLOAT:
 693         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 694                                   LIR_OprDesc::float_type           |
 695                                   LIR_OprDesc::fpu_register         |
 696                                   LIR_OprDesc::single_size          |
 697                                   LIR_OprDesc::virtual_mask);
 698         break;
 699 
 700       case
 701         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 702                                             LIR_OprDesc::double_type           |
 703                                             LIR_OprDesc::fpu_register          |
 704                                             LIR_OprDesc::double_size           |
 705                                             LIR_OprDesc::virtual_mask);
 706         break;
 707 #endif // __SOFTFP__
 708       default:       ShouldNotReachHere(); res = illegalOpr;
 709     }
 710 
 711 #ifdef ASSERT
 712     res->validate_type();
 713     assert(res->vreg_number() == index, "conversion check");
 714     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 715     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 716 
 717     // old-style calculation; check if old and new method are equal
 718     LIR_OprDesc::OprType t = as_OprType(type);
 719 #ifdef __SOFTFP__
 720     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 721                                t |
 722                                LIR_OprDesc::cpu_register |
 723                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 724 #else // __SOFTFP__
 725     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 726                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 727                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 728     assert(res == old_res, "old and new method not equal");
 729 #endif // __SOFTFP__
 730 #endif // ASSERT
 731 
 732     return res;
 733   }
 734 
 735   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 736   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 737   // index 2.
 738   static LIR_Opr stack(int index, BasicType type) {
 739     LIR_Opr res;
 740     switch (type) {
 741       case T_OBJECT: // fall through
 742       case T_ARRAY:
 743         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 744                                   LIR_OprDesc::object_type           |
 745                                   LIR_OprDesc::stack_value           |
 746                                   LIR_OprDesc::single_size);
 747         break;
 748 
 749       case T_INT:
 750         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 751                                   LIR_OprDesc::int_type              |
 752                                   LIR_OprDesc::stack_value           |
 753                                   LIR_OprDesc::single_size);
 754         break;
 755 
 756       case T_ADDRESS:
 757         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 758                                   LIR_OprDesc::address_type          |
 759                                   LIR_OprDesc::stack_value           |
 760                                   LIR_OprDesc::single_size);
 761         break;
 762 
 763       case T_LONG:
 764         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 765                                   LIR_OprDesc::long_type             |
 766                                   LIR_OprDesc::stack_value           |
 767                                   LIR_OprDesc::double_size);
 768         break;
 769 
 770       case T_FLOAT:
 771         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 772                                   LIR_OprDesc::float_type            |
 773                                   LIR_OprDesc::stack_value           |
 774                                   LIR_OprDesc::single_size);
 775         break;
 776       case T_DOUBLE:
 777         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 778                                   LIR_OprDesc::double_type           |
 779                                   LIR_OprDesc::stack_value           |
 780                                   LIR_OprDesc::double_size);
 781         break;
 782 
 783       default:       ShouldNotReachHere(); res = illegalOpr;
 784     }
 785 
 786 #ifdef ASSERT
 787     assert(index >= 0, "index must be positive");
 788     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 789 
 790     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 791                                           LIR_OprDesc::stack_value           |
 792                                           as_OprType(type)                   |
 793                                           LIR_OprDesc::size_for(type));
 794     assert(res == old_res, "old and new method not equal");
 795 #endif
 796 
 797     return res;
 798   }
 799 
 800   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 801   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 802   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 803   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 804   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 805   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 806   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 807   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 808   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 809   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 810 
 811   static LIR_Opr value_type(ValueType* type);
 812   static LIR_Opr dummy_value_type(ValueType* type);
 813 };
 814 
 815 
 816 //-------------------------------------------------------------------------------
 817 //                   LIR Instructions
 818 //-------------------------------------------------------------------------------
 819 //
 820 // Note:
 821 //  - every instruction has a result operand
 822 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 823 //  - every instruction has a LIR_OpCode operand
 824 //  - LIR_OpN, means an instruction that has N input operands
 825 //
 826 // class hierarchy:
 827 //
 828 class  LIR_Op;
 829 class    LIR_Op0;
 830 class      LIR_OpLabel;
 831 class    LIR_Op1;
 832 class      LIR_OpBranch;
 833 class      LIR_OpConvert;
 834 class      LIR_OpAllocObj;
 835 class      LIR_OpRoundFP;
 836 class    LIR_Op2;
 837 class    LIR_OpDelay;
 838 class    LIR_Op3;
 839 class      LIR_OpAllocArray;
 840 class    LIR_OpCall;
 841 class      LIR_OpJavaCall;
 842 class      LIR_OpRTCall;
 843 class    LIR_OpArrayCopy;
 844 class    LIR_OpLock;
 845 class    LIR_OpTypeCheck;
 846 class    LIR_OpCompareAndSwap;
 847 class    LIR_OpProfileCall;
 848 
 849 
 850 // LIR operation codes
 851 enum LIR_Code {
 852     lir_none
 853   , begin_op0
 854       , lir_word_align
 855       , lir_label
 856       , lir_nop
 857       , lir_backwardbranch_target
 858       , lir_std_entry
 859       , lir_osr_entry
 860       , lir_build_frame
 861       , lir_fpop_raw
 862       , lir_24bit_FPU
 863       , lir_reset_FPU
 864       , lir_breakpoint
 865       , lir_rtcall
 866       , lir_membar
 867       , lir_membar_acquire
 868       , lir_membar_release
 869       , lir_get_thread
 870   , end_op0
 871   , begin_op1
 872       , lir_fxch
 873       , lir_fld
 874       , lir_ffree
 875       , lir_push
 876       , lir_pop
 877       , lir_null_check
 878       , lir_return
 879       , lir_leal
 880       , lir_neg
 881       , lir_branch
 882       , lir_cond_float_branch
 883       , lir_move
 884       , lir_prefetchr
 885       , lir_prefetchw
 886       , lir_convert
 887       , lir_alloc_object
 888       , lir_monaddr
 889       , lir_roundfp
 890       , lir_safepoint
 891       , lir_pack64
 892       , lir_unpack64
 893       , lir_unwind
 894   , end_op1
 895   , begin_op2
 896       , lir_cmp
 897       , lir_cmp_l2i
 898       , lir_ucmp_fd2i
 899       , lir_cmp_fd2i
 900       , lir_cmove
 901       , lir_add
 902       , lir_sub
 903       , lir_mul
 904       , lir_mul_strictfp
 905       , lir_div
 906       , lir_div_strictfp
 907       , lir_rem
 908       , lir_sqrt
 909       , lir_abs
 910       , lir_sin
 911       , lir_cos
 912       , lir_tan
 913       , lir_log
 914       , lir_log10
 915       , lir_logic_and
 916       , lir_logic_or
 917       , lir_logic_xor
 918       , lir_shl
 919       , lir_shr
 920       , lir_ushr
 921       , lir_alloc_array
 922       , lir_throw
 923       , lir_compare_to
 924   , end_op2
 925   , begin_op3
 926       , lir_idiv
 927       , lir_irem
 928   , end_op3
 929   , begin_opJavaCall
 930       , lir_static_call
 931       , lir_optvirtual_call
 932       , lir_icvirtual_call
 933       , lir_virtual_call
 934       , lir_dynamic_call
 935   , end_opJavaCall
 936   , begin_opArrayCopy
 937       , lir_arraycopy
 938   , end_opArrayCopy
 939   , begin_opLock
 940     , lir_lock
 941     , lir_unlock
 942   , end_opLock
 943   , begin_delay_slot
 944     , lir_delay_slot
 945   , end_delay_slot
 946   , begin_opTypeCheck
 947     , lir_instanceof
 948     , lir_checkcast
 949     , lir_store_check
 950   , end_opTypeCheck
 951   , begin_opCompareAndSwap
 952     , lir_cas_long
 953     , lir_cas_obj
 954     , lir_cas_int
 955   , end_opCompareAndSwap
 956   , begin_opMDOProfile
 957     , lir_profile_call
 958   , end_opMDOProfile
 959 };
 960 
 961 
 962 enum LIR_Condition {
 963     lir_cond_equal
 964   , lir_cond_notEqual
 965   , lir_cond_less
 966   , lir_cond_lessEqual
 967   , lir_cond_greaterEqual
 968   , lir_cond_greater
 969   , lir_cond_belowEqual
 970   , lir_cond_aboveEqual
 971   , lir_cond_always
 972   , lir_cond_unknown = -1
 973 };
 974 
 975 
 976 enum LIR_PatchCode {
 977   lir_patch_none,
 978   lir_patch_low,
 979   lir_patch_high,
 980   lir_patch_normal
 981 };
 982 
 983 
 984 enum LIR_MoveKind {
 985   lir_move_normal,
 986   lir_move_volatile,
 987   lir_move_unaligned,
 988   lir_move_max_flag
 989 };
 990 
 991 
 992 // --------------------------------------------------
 993 // LIR_Op
 994 // --------------------------------------------------
 995 class LIR_Op: public CompilationResourceObj {
 996  friend class LIR_OpVisitState;
 997 
 998 #ifdef ASSERT
 999  private:
1000   const char *  _file;
1001   int           _line;
1002 #endif
1003 
1004  protected:
1005   LIR_Opr       _result;
1006   unsigned short _code;
1007   unsigned short _flags;
1008   CodeEmitInfo* _info;
1009   int           _id;     // value id for register allocation
1010   int           _fpu_pop_count;
1011   Instruction*  _source; // for debugging
1012 
1013   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1014 
1015  protected:
1016   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1017 
1018  public:
1019   LIR_Op()
1020     : _result(LIR_OprFact::illegalOpr)
1021     , _code(lir_none)
1022     , _flags(0)
1023     , _info(NULL)
1024 #ifdef ASSERT
1025     , _file(NULL)
1026     , _line(0)
1027 #endif
1028     , _fpu_pop_count(0)
1029     , _source(NULL)
1030     , _id(-1)                             {}
1031 
1032   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1033     : _result(result)
1034     , _code(code)
1035     , _flags(0)
1036     , _info(info)
1037 #ifdef ASSERT
1038     , _file(NULL)
1039     , _line(0)
1040 #endif
1041     , _fpu_pop_count(0)
1042     , _source(NULL)
1043     , _id(-1)                             {}
1044 
1045   CodeEmitInfo* info() const                  { return _info;   }
1046   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1047   LIR_Opr result_opr() const                  { return _result; }
1048   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1049 
1050 #ifdef ASSERT
1051   void set_file_and_line(const char * file, int line) {
1052     _file = file;
1053     _line = line;
1054   }
1055 #endif
1056 
1057   virtual const char * name() const PRODUCT_RETURN0;
1058 
1059   int id()             const                  { return _id;     }
1060   void set_id(int id)                         { _id = id; }
1061 
1062   // FPU stack simulation helpers -- only used on Intel
1063   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1064   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1065   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1066 
1067   Instruction* source() const                 { return _source; }
1068   void set_source(Instruction* ins)           { _source = ins; }
1069 
1070   virtual void emit_code(LIR_Assembler* masm) = 0;
1071   virtual void print_instr(outputStream* out) const   = 0;
1072   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1073 
1074   virtual LIR_OpCall* as_OpCall() { return NULL; }
1075   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1076   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1077   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1078   virtual LIR_OpLock* as_OpLock() { return NULL; }
1079   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1080   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1081   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1082   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1083   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1084   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1085   virtual LIR_Op0* as_Op0() { return NULL; }
1086   virtual LIR_Op1* as_Op1() { return NULL; }
1087   virtual LIR_Op2* as_Op2() { return NULL; }
1088   virtual LIR_Op3* as_Op3() { return NULL; }
1089   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1090   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1091   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1092   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1093 
1094   virtual void verify() const {}
1095 };
1096 
1097 // for calls
1098 class LIR_OpCall: public LIR_Op {
1099  friend class LIR_OpVisitState;
1100 
1101  protected:
1102   address      _addr;
1103   LIR_OprList* _arguments;
1104  protected:
1105   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1106              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1107     : LIR_Op(code, result, info)
1108     , _arguments(arguments)
1109     , _addr(addr) {}
1110 
1111  public:
1112   address addr() const                           { return _addr; }
1113   const LIR_OprList* arguments() const           { return _arguments; }
1114   virtual LIR_OpCall* as_OpCall()                { return this; }
1115 };
1116 
1117 
1118 // --------------------------------------------------
1119 // LIR_OpJavaCall
1120 // --------------------------------------------------
1121 class LIR_OpJavaCall: public LIR_OpCall {
1122  friend class LIR_OpVisitState;
1123 
1124  private:
1125   ciMethod* _method;
1126   LIR_Opr   _receiver;
1127   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1128 
1129  public:
1130   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1131                  LIR_Opr receiver, LIR_Opr result,
1132                  address addr, LIR_OprList* arguments,
1133                  CodeEmitInfo* info)
1134   : LIR_OpCall(code, addr, result, arguments, info)
1135   , _receiver(receiver)
1136   , _method(method)
1137   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1138   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1139 
1140   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1141                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1142                  LIR_OprList* arguments, CodeEmitInfo* info)
1143   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1144   , _receiver(receiver)
1145   , _method(method)
1146   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1147   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1148 
1149   LIR_Opr receiver() const                       { return _receiver; }
1150   ciMethod* method() const                       { return _method;   }
1151 
1152   // JSR 292 support.
1153   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1154   bool is_method_handle_invoke() const {
1155     return
1156       is_invokedynamic()  // An invokedynamic is always a MethodHandle call site.
1157       ||
1158       (method()->holder()->name() == ciSymbol::java_dyn_MethodHandle() &&
1159        methodOopDesc::is_method_handle_invoke_name(method()->name()->sid()));
1160   }
1161 
1162   intptr_t vtable_offset() const {
1163     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1164     return (intptr_t) addr();
1165   }
1166 
1167   virtual void emit_code(LIR_Assembler* masm);
1168   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1169   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1170 };
1171 
1172 // --------------------------------------------------
1173 // LIR_OpLabel
1174 // --------------------------------------------------
1175 // Location where a branch can continue
1176 class LIR_OpLabel: public LIR_Op {
1177  friend class LIR_OpVisitState;
1178 
1179  private:
1180   Label* _label;
1181  public:
1182   LIR_OpLabel(Label* lbl)
1183    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1184    , _label(lbl)                                 {}
1185   Label* label() const                           { return _label; }
1186 
1187   virtual void emit_code(LIR_Assembler* masm);
1188   virtual LIR_OpLabel* as_OpLabel() { return this; }
1189   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1190 };
1191 
1192 // LIR_OpArrayCopy
1193 class LIR_OpArrayCopy: public LIR_Op {
1194  friend class LIR_OpVisitState;
1195 
1196  private:
1197   ArrayCopyStub*  _stub;
1198   LIR_Opr   _src;
1199   LIR_Opr   _src_pos;
1200   LIR_Opr   _dst;
1201   LIR_Opr   _dst_pos;
1202   LIR_Opr   _length;
1203   LIR_Opr   _tmp;
1204   ciArrayKlass* _expected_type;
1205   int       _flags;
1206 
1207 public:
1208   enum Flags {
1209     src_null_check         = 1 << 0,
1210     dst_null_check         = 1 << 1,
1211     src_pos_positive_check = 1 << 2,
1212     dst_pos_positive_check = 1 << 3,
1213     length_positive_check  = 1 << 4,
1214     src_range_check        = 1 << 5,
1215     dst_range_check        = 1 << 6,
1216     type_check             = 1 << 7,
1217     all_flags              = (1 << 8) - 1
1218   };
1219 
1220   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1221                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1222 
1223   LIR_Opr src() const                            { return _src; }
1224   LIR_Opr src_pos() const                        { return _src_pos; }
1225   LIR_Opr dst() const                            { return _dst; }
1226   LIR_Opr dst_pos() const                        { return _dst_pos; }
1227   LIR_Opr length() const                         { return _length; }
1228   LIR_Opr tmp() const                            { return _tmp; }
1229   int flags() const                              { return _flags; }
1230   ciArrayKlass* expected_type() const            { return _expected_type; }
1231   ArrayCopyStub* stub() const                    { return _stub; }
1232 
1233   virtual void emit_code(LIR_Assembler* masm);
1234   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1235   void print_instr(outputStream* out) const PRODUCT_RETURN;
1236 };
1237 
1238 
1239 // --------------------------------------------------
1240 // LIR_Op0
1241 // --------------------------------------------------
1242 class LIR_Op0: public LIR_Op {
1243  friend class LIR_OpVisitState;
1244 
1245  public:
1246   LIR_Op0(LIR_Code code)
1247    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1248   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1249    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1250 
1251   virtual void emit_code(LIR_Assembler* masm);
1252   virtual LIR_Op0* as_Op0() { return this; }
1253   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1254 };
1255 
1256 
1257 // --------------------------------------------------
1258 // LIR_Op1
1259 // --------------------------------------------------
1260 
1261 class LIR_Op1: public LIR_Op {
1262  friend class LIR_OpVisitState;
1263 
1264  protected:
1265   LIR_Opr         _opr;   // input operand
1266   BasicType       _type;  // Operand types
1267   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1268 
1269   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1270 
1271   void set_kind(LIR_MoveKind kind) {
1272     assert(code() == lir_move, "must be");
1273     _flags = kind;
1274   }
1275 
1276  public:
1277   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1278     : LIR_Op(code, result, info)
1279     , _opr(opr)
1280     , _patch(patch)
1281     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1282 
1283   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1284     : LIR_Op(code, result, info)
1285     , _opr(opr)
1286     , _patch(patch)
1287     , _type(type)                      {
1288     assert(code == lir_move, "must be");
1289     set_kind(kind);
1290   }
1291 
1292   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1293     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1294     , _opr(opr)
1295     , _patch(lir_patch_none)
1296     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1297 
1298   LIR_Opr in_opr()           const               { return _opr;   }
1299   LIR_PatchCode patch_code() const               { return _patch; }
1300   BasicType type()           const               { return _type;  }
1301 
1302   LIR_MoveKind move_kind() const {
1303     assert(code() == lir_move, "must be");
1304     return (LIR_MoveKind)_flags;
1305   }
1306 
1307   virtual void emit_code(LIR_Assembler* masm);
1308   virtual LIR_Op1* as_Op1() { return this; }
1309   virtual const char * name() const PRODUCT_RETURN0;
1310 
1311   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1312 
1313   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1314   virtual void verify() const;
1315 };
1316 
1317 
1318 // for runtime calls
1319 class LIR_OpRTCall: public LIR_OpCall {
1320  friend class LIR_OpVisitState;
1321 
1322  private:
1323   LIR_Opr _tmp;
1324  public:
1325   LIR_OpRTCall(address addr, LIR_Opr tmp,
1326                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1327     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1328     , _tmp(tmp) {}
1329 
1330   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1331   virtual void emit_code(LIR_Assembler* masm);
1332   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1333 
1334   LIR_Opr tmp() const                            { return _tmp; }
1335 
1336   virtual void verify() const;
1337 };
1338 
1339 
1340 class LIR_OpBranch: public LIR_Op {
1341  friend class LIR_OpVisitState;
1342 
1343  private:
1344   LIR_Condition _cond;
1345   BasicType     _type;
1346   Label*        _label;
1347   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1348   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1349   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1350 
1351  public:
1352   LIR_OpBranch(LIR_Condition cond, Label* lbl)
1353     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1354     , _cond(cond)
1355     , _label(lbl)
1356     , _block(NULL)
1357     , _ublock(NULL)
1358     , _stub(NULL) { }
1359 
1360   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1361   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1362 
1363   // for unordered comparisons
1364   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1365 
1366   LIR_Condition cond()        const              { return _cond;        }
1367   BasicType     type()        const              { return _type;        }
1368   Label*        label()       const              { return _label;       }
1369   BlockBegin*   block()       const              { return _block;       }
1370   BlockBegin*   ublock()      const              { return _ublock;      }
1371   CodeStub*     stub()        const              { return _stub;       }
1372 
1373   void          change_block(BlockBegin* b);
1374   void          change_ublock(BlockBegin* b);
1375   void          negate_cond();
1376 
1377   virtual void emit_code(LIR_Assembler* masm);
1378   virtual LIR_OpBranch* as_OpBranch() { return this; }
1379   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1380 };
1381 
1382 
1383 class ConversionStub;
1384 
1385 class LIR_OpConvert: public LIR_Op1 {
1386  friend class LIR_OpVisitState;
1387 
1388  private:
1389    Bytecodes::Code _bytecode;
1390    ConversionStub* _stub;
1391 #ifdef PPC
1392   LIR_Opr _tmp1;
1393   LIR_Opr _tmp2;
1394 #endif
1395 
1396  public:
1397    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1398      : LIR_Op1(lir_convert, opr, result)
1399      , _stub(stub)
1400 #ifdef PPC
1401      , _tmp1(LIR_OprDesc::illegalOpr())
1402      , _tmp2(LIR_OprDesc::illegalOpr())
1403 #endif
1404      , _bytecode(code)                           {}
1405 
1406 #ifdef PPC
1407    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub
1408                  ,LIR_Opr tmp1, LIR_Opr tmp2)
1409      : LIR_Op1(lir_convert, opr, result)
1410      , _stub(stub)
1411      , _tmp1(tmp1)
1412      , _tmp2(tmp2)
1413      , _bytecode(code)                           {}
1414 #endif
1415 
1416   Bytecodes::Code bytecode() const               { return _bytecode; }
1417   ConversionStub* stub() const                   { return _stub; }
1418 #ifdef PPC
1419   LIR_Opr tmp1() const                           { return _tmp1; }
1420   LIR_Opr tmp2() const                           { return _tmp2; }
1421 #endif
1422 
1423   virtual void emit_code(LIR_Assembler* masm);
1424   virtual LIR_OpConvert* as_OpConvert() { return this; }
1425   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1426 
1427   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1428 };
1429 
1430 
1431 // LIR_OpAllocObj
1432 class LIR_OpAllocObj : public LIR_Op1 {
1433  friend class LIR_OpVisitState;
1434 
1435  private:
1436   LIR_Opr _tmp1;
1437   LIR_Opr _tmp2;
1438   LIR_Opr _tmp3;
1439   LIR_Opr _tmp4;
1440   int     _hdr_size;
1441   int     _obj_size;
1442   CodeStub* _stub;
1443   bool    _init_check;
1444 
1445  public:
1446   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1447                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1448                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1449     : LIR_Op1(lir_alloc_object, klass, result)
1450     , _tmp1(t1)
1451     , _tmp2(t2)
1452     , _tmp3(t3)
1453     , _tmp4(t4)
1454     , _hdr_size(hdr_size)
1455     , _obj_size(obj_size)
1456     , _init_check(init_check)
1457     , _stub(stub)                                { }
1458 
1459   LIR_Opr klass()        const                   { return in_opr();     }
1460   LIR_Opr obj()          const                   { return result_opr(); }
1461   LIR_Opr tmp1()         const                   { return _tmp1;        }
1462   LIR_Opr tmp2()         const                   { return _tmp2;        }
1463   LIR_Opr tmp3()         const                   { return _tmp3;        }
1464   LIR_Opr tmp4()         const                   { return _tmp4;        }
1465   int     header_size()  const                   { return _hdr_size;    }
1466   int     object_size()  const                   { return _obj_size;    }
1467   bool    init_check()   const                   { return _init_check;  }
1468   CodeStub* stub()       const                   { return _stub;        }
1469 
1470   virtual void emit_code(LIR_Assembler* masm);
1471   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1472   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1473 };
1474 
1475 
1476 // LIR_OpRoundFP
1477 class LIR_OpRoundFP : public LIR_Op1 {
1478  friend class LIR_OpVisitState;
1479 
1480  private:
1481   LIR_Opr _tmp;
1482 
1483  public:
1484   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1485     : LIR_Op1(lir_roundfp, reg, result)
1486     , _tmp(stack_loc_temp) {}
1487 
1488   LIR_Opr tmp() const                            { return _tmp; }
1489   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1490   void print_instr(outputStream* out) const PRODUCT_RETURN;
1491 };
1492 
1493 // LIR_OpTypeCheck
1494 class LIR_OpTypeCheck: public LIR_Op {
1495  friend class LIR_OpVisitState;
1496 
1497  private:
1498   LIR_Opr       _object;
1499   LIR_Opr       _array;
1500   ciKlass*      _klass;
1501   LIR_Opr       _tmp1;
1502   LIR_Opr       _tmp2;
1503   LIR_Opr       _tmp3;
1504   bool          _fast_check;
1505   CodeEmitInfo* _info_for_patch;
1506   CodeEmitInfo* _info_for_exception;
1507   CodeStub*     _stub;
1508   ciMethod*     _profiled_method;
1509   int           _profiled_bci;
1510   bool          _should_profile;
1511 
1512 public:
1513   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1514                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1515                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1516   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1517                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1518 
1519   LIR_Opr object() const                         { return _object;         }
1520   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1521   LIR_Opr tmp1() const                           { return _tmp1;           }
1522   LIR_Opr tmp2() const                           { return _tmp2;           }
1523   LIR_Opr tmp3() const                           { return _tmp3;           }
1524   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1525   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1526   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1527   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1528   CodeStub* stub() const                         { return _stub;           }
1529 
1530   // methodDataOop profiling
1531   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1532   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1533   void set_should_profile(bool b)                { _should_profile = b;       }
1534   ciMethod* profiled_method() const              { return _profiled_method;   }
1535   int       profiled_bci() const                 { return _profiled_bci;      }
1536   bool      should_profile() const               { return _should_profile;    }
1537 
1538   virtual void emit_code(LIR_Assembler* masm);
1539   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1540   void print_instr(outputStream* out) const PRODUCT_RETURN;
1541 };
1542 
1543 // LIR_Op2
1544 class LIR_Op2: public LIR_Op {
1545  friend class LIR_OpVisitState;
1546 
1547   int  _fpu_stack_size; // for sin/cos implementation on Intel
1548 
1549  protected:
1550   LIR_Opr   _opr1;
1551   LIR_Opr   _opr2;
1552   BasicType _type;
1553   LIR_Opr   _tmp;
1554   LIR_Condition _condition;
1555 
1556   void verify() const;
1557 
1558  public:
1559   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1560     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1561     , _opr1(opr1)
1562     , _opr2(opr2)
1563     , _type(T_ILLEGAL)
1564     , _condition(condition)
1565     , _fpu_stack_size(0)
1566     , _tmp(LIR_OprFact::illegalOpr) {
1567     assert(code == lir_cmp, "code check");
1568   }
1569 
1570   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result)
1571     : LIR_Op(code, result, NULL)
1572     , _opr1(opr1)
1573     , _opr2(opr2)
1574     , _type(T_ILLEGAL)
1575     , _condition(condition)
1576     , _fpu_stack_size(0)
1577     , _tmp(LIR_OprFact::illegalOpr) {
1578     assert(code == lir_cmove, "code check");
1579   }
1580 
1581   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1582           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1583     : LIR_Op(code, result, info)
1584     , _opr1(opr1)
1585     , _opr2(opr2)
1586     , _type(type)
1587     , _condition(lir_cond_unknown)
1588     , _fpu_stack_size(0)
1589     , _tmp(LIR_OprFact::illegalOpr) {
1590     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1591   }
1592 
1593   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp)
1594     : LIR_Op(code, result, NULL)
1595     , _opr1(opr1)
1596     , _opr2(opr2)
1597     , _type(T_ILLEGAL)
1598     , _condition(lir_cond_unknown)
1599     , _fpu_stack_size(0)
1600     , _tmp(tmp) {
1601     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1602   }
1603 
1604   LIR_Opr in_opr1() const                        { return _opr1; }
1605   LIR_Opr in_opr2() const                        { return _opr2; }
1606   BasicType type()  const                        { return _type; }
1607   LIR_Opr tmp_opr() const                        { return _tmp; }
1608   LIR_Condition condition() const  {
1609     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); return _condition;
1610   }
1611   void set_condition(LIR_Condition condition) {
1612     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1613   }
1614 
1615   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1616   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1617 
1618   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1619   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1620 
1621   virtual void emit_code(LIR_Assembler* masm);
1622   virtual LIR_Op2* as_Op2() { return this; }
1623   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1624 };
1625 
1626 class LIR_OpAllocArray : public LIR_Op {
1627  friend class LIR_OpVisitState;
1628 
1629  private:
1630   LIR_Opr   _klass;
1631   LIR_Opr   _len;
1632   LIR_Opr   _tmp1;
1633   LIR_Opr   _tmp2;
1634   LIR_Opr   _tmp3;
1635   LIR_Opr   _tmp4;
1636   BasicType _type;
1637   CodeStub* _stub;
1638 
1639  public:
1640   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1641     : LIR_Op(lir_alloc_array, result, NULL)
1642     , _klass(klass)
1643     , _len(len)
1644     , _tmp1(t1)
1645     , _tmp2(t2)
1646     , _tmp3(t3)
1647     , _tmp4(t4)
1648     , _type(type)
1649     , _stub(stub) {}
1650 
1651   LIR_Opr   klass()   const                      { return _klass;       }
1652   LIR_Opr   len()     const                      { return _len;         }
1653   LIR_Opr   obj()     const                      { return result_opr(); }
1654   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1655   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1656   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1657   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1658   BasicType type()    const                      { return _type;        }
1659   CodeStub* stub()    const                      { return _stub;        }
1660 
1661   virtual void emit_code(LIR_Assembler* masm);
1662   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1663   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1664 };
1665 
1666 
1667 class LIR_Op3: public LIR_Op {
1668  friend class LIR_OpVisitState;
1669 
1670  private:
1671   LIR_Opr _opr1;
1672   LIR_Opr _opr2;
1673   LIR_Opr _opr3;
1674  public:
1675   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1676     : LIR_Op(code, result, info)
1677     , _opr1(opr1)
1678     , _opr2(opr2)
1679     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1680   LIR_Opr in_opr1() const                        { return _opr1; }
1681   LIR_Opr in_opr2() const                        { return _opr2; }
1682   LIR_Opr in_opr3() const                        { return _opr3; }
1683 
1684   virtual void emit_code(LIR_Assembler* masm);
1685   virtual LIR_Op3* as_Op3() { return this; }
1686   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1687 };
1688 
1689 
1690 //--------------------------------
1691 class LabelObj: public CompilationResourceObj {
1692  private:
1693   Label _label;
1694  public:
1695   LabelObj()                                     {}
1696   Label* label()                                 { return &_label; }
1697 };
1698 
1699 
1700 class LIR_OpLock: public LIR_Op {
1701  friend class LIR_OpVisitState;
1702 
1703  private:
1704   LIR_Opr _hdr;
1705   LIR_Opr _obj;
1706   LIR_Opr _lock;
1707   LIR_Opr _scratch;
1708   CodeStub* _stub;
1709  public:
1710   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1711     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1712     , _hdr(hdr)
1713     , _obj(obj)
1714     , _lock(lock)
1715     , _scratch(scratch)
1716     , _stub(stub)                      {}
1717 
1718   LIR_Opr hdr_opr() const                        { return _hdr; }
1719   LIR_Opr obj_opr() const                        { return _obj; }
1720   LIR_Opr lock_opr() const                       { return _lock; }
1721   LIR_Opr scratch_opr() const                    { return _scratch; }
1722   CodeStub* stub() const                         { return _stub; }
1723 
1724   virtual void emit_code(LIR_Assembler* masm);
1725   virtual LIR_OpLock* as_OpLock() { return this; }
1726   void print_instr(outputStream* out) const PRODUCT_RETURN;
1727 };
1728 
1729 
1730 class LIR_OpDelay: public LIR_Op {
1731  friend class LIR_OpVisitState;
1732 
1733  private:
1734   LIR_Op* _op;
1735 
1736  public:
1737   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1738     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1739     _op(op) {
1740     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1741   }
1742   virtual void emit_code(LIR_Assembler* masm);
1743   virtual LIR_OpDelay* as_OpDelay() { return this; }
1744   void print_instr(outputStream* out) const PRODUCT_RETURN;
1745   LIR_Op* delay_op() const { return _op; }
1746   CodeEmitInfo* call_info() const { return info(); }
1747 };
1748 
1749 
1750 // LIR_OpCompareAndSwap
1751 class LIR_OpCompareAndSwap : public LIR_Op {
1752  friend class LIR_OpVisitState;
1753 
1754  private:
1755   LIR_Opr _addr;
1756   LIR_Opr _cmp_value;
1757   LIR_Opr _new_value;
1758   LIR_Opr _tmp1;
1759   LIR_Opr _tmp2;
1760 
1761  public:
1762   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1763                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1764     : LIR_Op(code, result, NULL)  // no result, no info
1765     , _addr(addr)
1766     , _cmp_value(cmp_value)
1767     , _new_value(new_value)
1768     , _tmp1(t1)
1769     , _tmp2(t2)                                  { }
1770 
1771   LIR_Opr addr()        const                    { return _addr;  }
1772   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1773   LIR_Opr new_value()   const                    { return _new_value; }
1774   LIR_Opr tmp1()        const                    { return _tmp1;      }
1775   LIR_Opr tmp2()        const                    { return _tmp2;      }
1776 
1777   virtual void emit_code(LIR_Assembler* masm);
1778   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1779   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1780 };
1781 
1782 // LIR_OpProfileCall
1783 class LIR_OpProfileCall : public LIR_Op {
1784  friend class LIR_OpVisitState;
1785 
1786  private:
1787   ciMethod* _profiled_method;
1788   int _profiled_bci;
1789   LIR_Opr _mdo;
1790   LIR_Opr _recv;
1791   LIR_Opr _tmp1;
1792   ciKlass* _known_holder;
1793 
1794  public:
1795   // Destroys recv
1796   LIR_OpProfileCall(LIR_Code code, ciMethod* profiled_method, int profiled_bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1797     : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1798     , _profiled_method(profiled_method)
1799     , _profiled_bci(profiled_bci)
1800     , _mdo(mdo)
1801     , _recv(recv)
1802     , _tmp1(t1)
1803     , _known_holder(known_holder)                { }
1804 
1805   ciMethod* profiled_method() const              { return _profiled_method;  }
1806   int       profiled_bci()    const              { return _profiled_bci;     }
1807   LIR_Opr   mdo()             const              { return _mdo;              }
1808   LIR_Opr   recv()            const              { return _recv;             }
1809   LIR_Opr   tmp1()            const              { return _tmp1;             }
1810   ciKlass*  known_holder()    const              { return _known_holder;     }
1811 
1812   virtual void emit_code(LIR_Assembler* masm);
1813   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1814   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1815 };
1816 
1817 class LIR_InsertionBuffer;
1818 
1819 //--------------------------------LIR_List---------------------------------------------------
1820 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1821 // The LIR instructions are appended by the LIR_List class itself;
1822 //
1823 // Notes:
1824 // - all offsets are(should be) in bytes
1825 // - local positions are specified with an offset, with offset 0 being local 0
1826 
1827 class LIR_List: public CompilationResourceObj {
1828  private:
1829   LIR_OpList  _operations;
1830 
1831   Compilation*  _compilation;
1832 #ifndef PRODUCT
1833   BlockBegin*   _block;
1834 #endif
1835 #ifdef ASSERT
1836   const char *  _file;
1837   int           _line;
1838 #endif
1839 
1840   void append(LIR_Op* op) {
1841     if (op->source() == NULL)
1842       op->set_source(_compilation->current_instruction());
1843 #ifndef PRODUCT
1844     if (PrintIRWithLIR) {
1845       _compilation->maybe_print_current_instruction();
1846       op->print(); tty->cr();
1847     }
1848 #endif // PRODUCT
1849 
1850     _operations.append(op);
1851 
1852 #ifdef ASSERT
1853     op->verify();
1854     op->set_file_and_line(_file, _line);
1855     _file = NULL;
1856     _line = 0;
1857 #endif
1858   }
1859 
1860  public:
1861   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
1862 
1863 #ifdef ASSERT
1864   void set_file_and_line(const char * file, int line);
1865 #endif
1866 
1867   //---------- accessors ---------------
1868   LIR_OpList* instructions_list()                { return &_operations; }
1869   int         length() const                     { return _operations.length(); }
1870   LIR_Op*     at(int i) const                    { return _operations.at(i); }
1871 
1872   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
1873 
1874   // insert LIR_Ops in buffer to right places in LIR_List
1875   void append(LIR_InsertionBuffer* buffer);
1876 
1877   //---------- mutators ---------------
1878   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
1879   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
1880   void remove_at(int i)                          { _operations.remove_at(i); }
1881 
1882   //---------- printing -------------
1883   void print_instructions() PRODUCT_RETURN;
1884 
1885 
1886   //---------- instructions -------------
1887   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1888                         address dest, LIR_OprList* arguments,
1889                         CodeEmitInfo* info) {
1890     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
1891   }
1892   void call_static(ciMethod* method, LIR_Opr result,
1893                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1894     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
1895   }
1896   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1897                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1898     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
1899   }
1900   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1901                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
1902     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
1903   }
1904   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
1905                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
1906     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
1907   }
1908 
1909   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
1910   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
1911   void membar()                                  { append(new LIR_Op0(lir_membar)); }
1912   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
1913   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
1914 
1915   void nop()                                     { append(new LIR_Op0(lir_nop)); }
1916   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
1917 
1918   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
1919   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
1920 
1921   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
1922 
1923   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
1924   void leal(LIR_Opr from, LIR_Opr result_reg)    { append(new LIR_Op1(lir_leal, from, result_reg)); }
1925 
1926   // result is a stack location for old backend and vreg for UseLinearScan
1927   // stack_loc_temp is an illegal register for old backend
1928   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
1929   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1930   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1931   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
1932   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
1933   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
1934   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
1935 
1936   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
1937 
1938   void oop2reg  (jobject o, LIR_Opr reg)         { append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
1939   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
1940 
1941   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
1942 
1943   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
1944 
1945 #ifdef PPC
1946   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_OpConvert(code, left, dst, NULL, tmp1, tmp2)); }
1947 #endif
1948   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
1949 
1950   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
1951   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
1952   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
1953 
1954   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
1955   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
1956 
1957   void null_check(LIR_Opr opr, CodeEmitInfo* info)         { append(new LIR_Op1(lir_null_check, opr, info)); }
1958   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1959     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
1960   }
1961   void unwind_exception(LIR_Opr exceptionOop) {
1962     append(new LIR_Op1(lir_unwind, exceptionOop));
1963   }
1964 
1965   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1966     append(new LIR_Op2(lir_compare_to,  left, right, dst));
1967   }
1968 
1969   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
1970   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
1971 
1972   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
1973     append(new LIR_Op2(lir_cmp, condition, left, right, info));
1974   }
1975   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
1976     cmp(condition, left, LIR_OprFact::intConst(right), info);
1977   }
1978 
1979   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
1980   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
1981 
1982   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst) {
1983     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst));
1984   }
1985 
1986   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1987                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
1988   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1989                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
1990   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1991                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
1992 
1993   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
1994   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
1995   void log (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_log,  from, LIR_OprFact::illegalOpr, to, tmp)); }
1996   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
1997   void sin (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_sin , from, tmp1, to, tmp2)); }
1998   void cos (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_cos , from, tmp1, to, tmp2)); }
1999   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2000 
2001   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2002   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2003   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2004   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2005   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2006   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2007   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2008 
2009   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2010   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2011 
2012   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2013 
2014   void prefetch(LIR_Address* addr, bool is_store);
2015 
2016   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2017   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2018   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2019   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2020   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2021 
2022   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2023   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2024   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2025   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2026 
2027   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2028   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2029 
2030   // jump is an unconditional branch
2031   void jump(BlockBegin* block) {
2032     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2033   }
2034   void jump(CodeStub* stub) {
2035     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2036   }
2037   void branch(LIR_Condition cond, Label* lbl)        { append(new LIR_OpBranch(cond, lbl)); }
2038   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2039     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2040     append(new LIR_OpBranch(cond, type, block));
2041   }
2042   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2043     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2044     append(new LIR_OpBranch(cond, type, stub));
2045   }
2046   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2047     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2048     append(new LIR_OpBranch(cond, type, block, unordered));
2049   }
2050 
2051   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2052   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2053   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2054 
2055   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2056   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2057   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2058 
2059   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2060   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2061 
2062   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2063     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2064   }
2065 
2066   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2067                     LIR_OprList* arguments, CodeEmitInfo* info) {
2068     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2069   }
2070 
2071   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2072   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2073   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2074 
2075   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2076   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2077   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2078 
2079   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2080 
2081   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2082 
2083   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2084   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
2085 
2086   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2087                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2088                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2089                   ciMethod* profiled_method, int profiled_bci);
2090   // methodDataOop profiling
2091   void profile_call(ciMethod* method, int bci, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2092     append(new LIR_OpProfileCall(lir_profile_call, method, bci, mdo, recv, t1, cha_klass));
2093   }
2094 };
2095 
2096 void print_LIR(BlockList* blocks);
2097 
2098 class LIR_InsertionBuffer : public CompilationResourceObj {
2099  private:
2100   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2101 
2102   // list of insertion points. index and count are stored alternately:
2103   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2104   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2105   intStack    _index_and_count;
2106 
2107   // the LIR_Ops to be inserted
2108   LIR_OpList  _ops;
2109 
2110   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2111   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2112   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2113 
2114 #ifdef ASSERT
2115   void verify();
2116 #endif
2117  public:
2118   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2119 
2120   // must be called before using the insertion buffer
2121   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2122   bool initialized() const  { return _lir != NULL; }
2123   // called automatically when the buffer is appended to the LIR_List
2124   void finish()             { _lir = NULL; }
2125 
2126   // accessors
2127   LIR_List*  lir_list() const             { return _lir; }
2128   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2129   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2130   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2131 
2132   int number_of_ops() const               { return _ops.length(); }
2133   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2134 
2135   // append an instruction to the buffer
2136   void append(int index, LIR_Op* op);
2137 
2138   // instruction
2139   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2140 };
2141 
2142 
2143 //
2144 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2145 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2146 // information about the input, output and temporaries used by the
2147 // op to be recorded.  It also records whether the op has call semantics
2148 // and also records all the CodeEmitInfos used by this op.
2149 //
2150 
2151 
2152 class LIR_OpVisitState: public StackObj {
2153  public:
2154   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2155 
2156   enum {
2157     maxNumberOfOperands = 16,
2158     maxNumberOfInfos = 4
2159   };
2160 
2161  private:
2162   LIR_Op*          _op;
2163 
2164   // optimization: the operands and infos are not stored in a variable-length
2165   //               list, but in a fixed-size array to save time of size checks and resizing
2166   int              _oprs_len[numModes];
2167   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2168   int _info_len;
2169   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2170 
2171   bool             _has_call;
2172   bool             _has_slow_case;
2173 
2174 
2175   // only include register operands
2176   // addresses are decomposed to the base and index registers
2177   // constants and stack operands are ignored
2178   void append(LIR_Opr& opr, OprMode mode) {
2179     assert(opr->is_valid(), "should not call this otherwise");
2180     assert(mode >= 0 && mode < numModes, "bad mode");
2181 
2182     if (opr->is_register()) {
2183        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2184       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2185 
2186     } else if (opr->is_pointer()) {
2187       LIR_Address* address = opr->as_address_ptr();
2188       if (address != NULL) {
2189         // special handling for addresses: add base and index register of the address
2190         // both are always input operands!
2191         if (address->_base->is_valid()) {
2192           assert(address->_base->is_register(), "must be");
2193           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
2194           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_base;
2195         }
2196         if (address->_index->is_valid()) {
2197           assert(address->_index->is_register(), "must be");
2198           assert(_oprs_len[inputMode] < maxNumberOfOperands, "array overflow");
2199           _oprs_new[inputMode][_oprs_len[inputMode]++] = &address->_index;
2200         }
2201 
2202       } else {
2203         assert(opr->is_constant(), "constant operands are not processed");
2204       }
2205     } else {
2206       assert(opr->is_stack(), "stack operands are not processed");
2207     }
2208   }
2209 
2210   void append(CodeEmitInfo* info) {
2211     assert(info != NULL, "should not call this otherwise");
2212     assert(_info_len < maxNumberOfInfos, "array overflow");
2213     _info_new[_info_len++] = info;
2214   }
2215 
2216  public:
2217   LIR_OpVisitState()         { reset(); }
2218 
2219   LIR_Op* op() const         { return _op; }
2220   void set_op(LIR_Op* op)    { reset(); _op = op; }
2221 
2222   bool has_call() const      { return _has_call; }
2223   bool has_slow_case() const { return _has_slow_case; }
2224 
2225   void reset() {
2226     _op = NULL;
2227     _has_call = false;
2228     _has_slow_case = false;
2229 
2230     _oprs_len[inputMode] = 0;
2231     _oprs_len[tempMode] = 0;
2232     _oprs_len[outputMode] = 0;
2233     _info_len = 0;
2234   }
2235 
2236 
2237   int opr_count(OprMode mode) const {
2238     assert(mode >= 0 && mode < numModes, "bad mode");
2239     return _oprs_len[mode];
2240   }
2241 
2242   LIR_Opr opr_at(OprMode mode, int index) const {
2243     assert(mode >= 0 && mode < numModes, "bad mode");
2244     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2245     return *_oprs_new[mode][index];
2246   }
2247 
2248   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2249     assert(mode >= 0 && mode < numModes, "bad mode");
2250     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2251     *_oprs_new[mode][index] = opr;
2252   }
2253 
2254   int info_count() const {
2255     return _info_len;
2256   }
2257 
2258   CodeEmitInfo* info_at(int index) const {
2259     assert(index < _info_len, "index out of bounds");
2260     return _info_new[index];
2261   }
2262 
2263   XHandlers* all_xhandler();
2264 
2265   // collects all register operands of the instruction
2266   void visit(LIR_Op* op);
2267 
2268 #if ASSERT
2269   // check that an operation has no operands
2270   bool no_operands(LIR_Op* op);
2271 #endif
2272 
2273   // LIR_Op visitor functions use these to fill in the state
2274   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2275   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2276   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2277   void do_info(CodeEmitInfo* info)        { append(info); }
2278 
2279   void do_stub(CodeStub* stub);
2280   void do_call()                          { _has_call = true; }
2281   void do_slow_case()                     { _has_slow_case = true; }
2282   void do_slow_case(CodeEmitInfo* info) {
2283     _has_slow_case = true;
2284     append(info);
2285   }
2286 };
2287 
2288 
2289 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2290 
2291 #endif // SHARE_VM_C1_C1_LIR_HPP