1 /*
   2  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciCPCache.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #ifndef SERIALGC
  39 #include "gc_implementation/g1/heapRegion.hpp"
  40 #endif
  41 
  42 #ifdef ASSERT
  43 #define __ gen()->lir(__FILE__, __LINE__)->
  44 #else
  45 #define __ gen()->lir()->
  46 #endif
  47 
  48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  49 #ifdef ARM
  50 #define PATCHED_ADDR  (204)
  51 #else
  52 #define PATCHED_ADDR  (max_jint)
  53 #endif
  54 
  55 void PhiResolverState::reset(int max_vregs) {
  56   // Initialize array sizes
  57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  58   _virtual_operands.trunc_to(0);
  59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _other_operands.trunc_to(0);
  61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _vreg_table.trunc_to(0);
  63 }
  64 
  65 
  66 
  67 //--------------------------------------------------------------
  68 // PhiResolver
  69 
  70 // Resolves cycles:
  71 //
  72 //  r1 := r2  becomes  temp := r1
  73 //  r2 := r1           r1 := r2
  74 //                     r2 := temp
  75 // and orders moves:
  76 //
  77 //  r2 := r3  becomes  r1 := r2
  78 //  r1 := r2           r2 := r3
  79 
  80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  81  : _gen(gen)
  82  , _state(gen->resolver_state())
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset(max_vregs);
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == NULL, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != NULL) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands()[i];
 149     if (!node->visited()) {
 150       _loop = NULL;
 151       move(NULL, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands()[i];
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, NULL);
 172     assert(node == NULL || node->operand() == opr, "");
 173     if (node == NULL) {
 174       node = new ResolveNode(opr);
 175       vreg_table()[vreg_num] = node;
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208   if (opr->is_virtual()) {
 209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 210   }
 211 
 212   _result = opr;
 213 }
 214 
 215 void LIRItem::load_item() {
 216   if (result()->is_illegal()) {
 217     // update the items result
 218     _result = value()->operand();
 219   }
 220   if (!result()->is_register()) {
 221     LIR_Opr reg = _gen->new_register(value()->type());
 222     __ move(result(), reg);
 223     if (result()->is_constant()) {
 224       _result = reg;
 225     } else {
 226       set_result(reg);
 227     }
 228   }
 229 }
 230 
 231 
 232 void LIRItem::load_for_store(BasicType type) {
 233   if (_gen->can_store_as_constant(value(), type)) {
 234     _result = value()->operand();
 235     if (!_result->is_constant()) {
 236       _result = LIR_OprFact::value_type(value()->type());
 237     }
 238   } else if (type == T_BYTE || type == T_BOOLEAN) {
 239     load_byte_item();
 240   } else {
 241     load_item();
 242   }
 243 }
 244 
 245 void LIRItem::load_item_force(LIR_Opr reg) {
 246   LIR_Opr r = result();
 247   if (r != reg) {
 248 #if !defined(ARM) && !defined(E500V2)
 249     if (r->type() != reg->type()) {
 250       // moves between different types need an intervening spill slot
 251       r = _gen->force_to_spill(r, reg->type());
 252     }
 253 #endif
 254     __ move(r, reg);
 255     _result = reg;
 256   }
 257 }
 258 
 259 ciObject* LIRItem::get_jobject_constant() const {
 260   ObjectType* oc = type()->as_ObjectType();
 261   if (oc) {
 262     return oc->constant_value();
 263   }
 264   return NULL;
 265 }
 266 
 267 
 268 jint LIRItem::get_jint_constant() const {
 269   assert(is_constant() && value() != NULL, "");
 270   assert(type()->as_IntConstant() != NULL, "type check");
 271   return type()->as_IntConstant()->value();
 272 }
 273 
 274 
 275 jint LIRItem::get_address_constant() const {
 276   assert(is_constant() && value() != NULL, "");
 277   assert(type()->as_AddressConstant() != NULL, "type check");
 278   return type()->as_AddressConstant()->value();
 279 }
 280 
 281 
 282 jfloat LIRItem::get_jfloat_constant() const {
 283   assert(is_constant() && value() != NULL, "");
 284   assert(type()->as_FloatConstant() != NULL, "type check");
 285   return type()->as_FloatConstant()->value();
 286 }
 287 
 288 
 289 jdouble LIRItem::get_jdouble_constant() const {
 290   assert(is_constant() && value() != NULL, "");
 291   assert(type()->as_DoubleConstant() != NULL, "type check");
 292   return type()->as_DoubleConstant()->value();
 293 }
 294 
 295 
 296 jlong LIRItem::get_jlong_constant() const {
 297   assert(is_constant() && value() != NULL, "");
 298   assert(type()->as_LongConstant() != NULL, "type check");
 299   return type()->as_LongConstant()->value();
 300 }
 301 
 302 
 303 
 304 //--------------------------------------------------------------
 305 
 306 
 307 void LIRGenerator::init() {
 308   _bs = Universe::heap()->barrier_set();
 309 }
 310 
 311 
 312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 313 #ifndef PRODUCT
 314   if (PrintIRWithLIR) {
 315     block->print();
 316   }
 317 #endif
 318 
 319   // set up the list of LIR instructions
 320   assert(block->lir() == NULL, "LIR list already computed for this block");
 321   _lir = new LIR_List(compilation(), block);
 322   block->set_lir(_lir);
 323 
 324   __ branch_destination(block->label());
 325 
 326   if (LIRTraceExecution &&
 327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 328       !block->is_set(BlockBegin::exception_entry_flag)) {
 329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 330     trace_block_entry(block);
 331   }
 332 }
 333 
 334 
 335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 336 #ifndef PRODUCT
 337   if (PrintIRWithLIR) {
 338     tty->cr();
 339   }
 340 #endif
 341 
 342   // LIR_Opr for unpinned constants shouldn't be referenced by other
 343   // blocks so clear them out after processing the block.
 344   for (int i = 0; i < _unpinned_constants.length(); i++) {
 345     _unpinned_constants.at(i)->clear_operand();
 346   }
 347   _unpinned_constants.trunc_to(0);
 348 
 349   // clear our any registers for other local constants
 350   _constants.trunc_to(0);
 351   _reg_for_constants.trunc_to(0);
 352 }
 353 
 354 
 355 void LIRGenerator::block_do(BlockBegin* block) {
 356   CHECK_BAILOUT();
 357 
 358   block_do_prolog(block);
 359   set_block(block);
 360 
 361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 362     if (instr->is_pinned()) do_root(instr);
 363   }
 364 
 365   set_block(NULL);
 366   block_do_epilog(block);
 367 }
 368 
 369 
 370 //-------------------------LIRGenerator-----------------------------
 371 
 372 // This is where the tree-walk starts; instr must be root;
 373 void LIRGenerator::do_root(Value instr) {
 374   CHECK_BAILOUT();
 375 
 376   InstructionMark im(compilation(), instr);
 377 
 378   assert(instr->is_pinned(), "use only with roots");
 379   assert(instr->subst() == instr, "shouldn't have missed substitution");
 380 
 381   instr->visit(this);
 382 
 383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 385 }
 386 
 387 
 388 // This is called for each node in tree; the walk stops if a root is reached
 389 void LIRGenerator::walk(Value instr) {
 390   InstructionMark im(compilation(), instr);
 391   //stop walk when encounter a root
 392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 394   } else {
 395     assert(instr->subst() == instr, "shouldn't have missed substitution");
 396     instr->visit(this);
 397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 398   }
 399 }
 400 
 401 
 402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 403   assert(state != NULL, "state must be defined");
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter(), "only other case is MonitorEnter");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::jobject2reg_with_patching(LIR_Opr r, ciObject* obj, CodeEmitInfo* info) {
 465   if (!obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ oop2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ oop2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index, true);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool    did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           int c = right->as_jint();
 540           if (is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597   if (TwoOperandLIRForm && value != result_op) {
 598     assert(count != result_op, "malformed");
 599     __ move(value, result_op);
 600     value = result_op;
 601   }
 602 
 603   assert(count->is_constant() || count->is_register(), "must be");
 604   switch(code) {
 605   case Bytecodes::_ishl:
 606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 607   case Bytecodes::_ishr:
 608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 609   case Bytecodes::_iushr:
 610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 611   default: ShouldNotReachHere();
 612   }
 613 }
 614 
 615 
 616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 617   if (TwoOperandLIRForm && left_op != result_op) {
 618     assert(right_op != result_op, "malformed");
 619     __ move(left_op, result_op);
 620     left_op = result_op;
 621   }
 622 
 623   switch(code) {
 624     case Bytecodes::_iand:
 625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 626 
 627     case Bytecodes::_ior:
 628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 629 
 630     case Bytecodes::_ixor:
 631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 632 
 633     default: ShouldNotReachHere();
 634   }
 635 }
 636 
 637 
 638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 639   if (!GenerateSynchronizationCode) return;
 640   // for slow path, use debug info for state after successful locking
 641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 642   __ load_stack_address_monitor(monitor_no, lock);
 643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 645 }
 646 
 647 
 648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 649   if (!GenerateSynchronizationCode) return;
 650   // setup registers
 651   LIR_Opr hdr = lock;
 652   lock = new_hdr;
 653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 654   __ load_stack_address_monitor(monitor_no, lock);
 655   __ unlock_object(hdr, object, lock, scratch, slow_path);
 656 }
 657 
 658 
 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 660   jobject2reg_with_patching(klass_reg, klass, info);
 661   // If klass is not loaded we do not know if the klass has finalizers:
 662   if (UseFastNewInstance && klass->is_loaded()
 663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 664 
 665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 666 
 667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 668 
 669     assert(klass->is_loaded(), "must be loaded");
 670     // allocate space for instance
 671     assert(klass->size_helper() >= 0, "illegal instance size");
 672     const int instance_size = align_object_size(klass->size_helper());
 673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 675   } else {
 676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 678     __ branch_destination(slow_path->continuation());
 679   }
 680 }
 681 
 682 
 683 static bool is_constant_zero(Instruction* inst) {
 684   IntConstant* c = inst->type()->as_IntConstant();
 685   if (c) {
 686     return (c->value() == 0);
 687   }
 688   return false;
 689 }
 690 
 691 
 692 static bool positive_constant(Instruction* inst) {
 693   IntConstant* c = inst->type()->as_IntConstant();
 694   if (c) {
 695     return (c->value() >= 0);
 696   }
 697   return false;
 698 }
 699 
 700 
 701 static ciArrayKlass* as_array_klass(ciType* type) {
 702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 703     return (ciArrayKlass*)type;
 704   } else {
 705     return NULL;
 706   }
 707 }
 708 
 709 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 710   Instruction* src     = x->argument_at(0);
 711   Instruction* src_pos = x->argument_at(1);
 712   Instruction* dst     = x->argument_at(2);
 713   Instruction* dst_pos = x->argument_at(3);
 714   Instruction* length  = x->argument_at(4);
 715 
 716   // first try to identify the likely type of the arrays involved
 717   ciArrayKlass* expected_type = NULL;
 718   bool is_exact = false;
 719   {
 720     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 721     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 722     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 723     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 724     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 725       // the types exactly match so the type is fully known
 726       is_exact = true;
 727       expected_type = src_exact_type;
 728     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 729       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 730       ciArrayKlass* src_type = NULL;
 731       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 732         src_type = (ciArrayKlass*) src_exact_type;
 733       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 734         src_type = (ciArrayKlass*) src_declared_type;
 735       }
 736       if (src_type != NULL) {
 737         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 738           is_exact = true;
 739           expected_type = dst_type;
 740         }
 741       }
 742     }
 743     // at least pass along a good guess
 744     if (expected_type == NULL) expected_type = dst_exact_type;
 745     if (expected_type == NULL) expected_type = src_declared_type;
 746     if (expected_type == NULL) expected_type = dst_declared_type;
 747   }
 748 
 749   // if a probable array type has been identified, figure out if any
 750   // of the required checks for a fast case can be elided.
 751   int flags = LIR_OpArrayCopy::all_flags;
 752   if (expected_type != NULL) {
 753     // try to skip null checks
 754     if (src->as_NewArray() != NULL)
 755       flags &= ~LIR_OpArrayCopy::src_null_check;
 756     if (dst->as_NewArray() != NULL)
 757       flags &= ~LIR_OpArrayCopy::dst_null_check;
 758 
 759     // check from incoming constant values
 760     if (positive_constant(src_pos))
 761       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 762     if (positive_constant(dst_pos))
 763       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 764     if (positive_constant(length))
 765       flags &= ~LIR_OpArrayCopy::length_positive_check;
 766 
 767     // see if the range check can be elided, which might also imply
 768     // that src or dst is non-null.
 769     ArrayLength* al = length->as_ArrayLength();
 770     if (al != NULL) {
 771       if (al->array() == src) {
 772         // it's the length of the source array
 773         flags &= ~LIR_OpArrayCopy::length_positive_check;
 774         flags &= ~LIR_OpArrayCopy::src_null_check;
 775         if (is_constant_zero(src_pos))
 776           flags &= ~LIR_OpArrayCopy::src_range_check;
 777       }
 778       if (al->array() == dst) {
 779         // it's the length of the destination array
 780         flags &= ~LIR_OpArrayCopy::length_positive_check;
 781         flags &= ~LIR_OpArrayCopy::dst_null_check;
 782         if (is_constant_zero(dst_pos))
 783           flags &= ~LIR_OpArrayCopy::dst_range_check;
 784       }
 785     }
 786     if (is_exact) {
 787       flags &= ~LIR_OpArrayCopy::type_check;
 788     }
 789   }
 790 
 791   if (src == dst) {
 792     // moving within a single array so no type checks are needed
 793     if (flags & LIR_OpArrayCopy::type_check) {
 794       flags &= ~LIR_OpArrayCopy::type_check;
 795     }
 796   }
 797   *flagsp = flags;
 798   *expected_typep = (ciArrayKlass*)expected_type;
 799 }
 800 
 801 
 802 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 803   assert(opr->is_register(), "why spill if item is not register?");
 804 
 805   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 806     LIR_Opr result = new_register(T_FLOAT);
 807     set_vreg_flag(result, must_start_in_memory);
 808     assert(opr->is_register(), "only a register can be spilled");
 809     assert(opr->value_type()->is_float(), "rounding only for floats available");
 810     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 811     return result;
 812   }
 813   return opr;
 814 }
 815 
 816 
 817 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 818   assert(type2size[t] == type2size[value->type()], "size mismatch");
 819   if (!value->is_register()) {
 820     // force into a register
 821     LIR_Opr r = new_register(value->type());
 822     __ move(value, r);
 823     value = r;
 824   }
 825 
 826   // create a spill location
 827   LIR_Opr tmp = new_register(t);
 828   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 829 
 830   // move from register to spill
 831   __ move(value, tmp);
 832   return tmp;
 833 }
 834 
 835 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 836   if (if_instr->should_profile()) {
 837     ciMethod* method = if_instr->profiled_method();
 838     assert(method != NULL, "method should be set if branch is profiled");
 839     ciMethodData* md = method->method_data();
 840     if (md == NULL) {
 841       bailout("out of memory building methodDataOop");
 842       return;
 843     }
 844     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 845     assert(data != NULL, "must have profiling data");
 846     assert(data->is_BranchData(), "need BranchData for two-way branches");
 847     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 848     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 849     if (if_instr->is_swapped()) {
 850       int t = taken_count_offset;
 851       taken_count_offset = not_taken_count_offset;
 852       not_taken_count_offset = t;
 853     }
 854 
 855     LIR_Opr md_reg = new_register(T_OBJECT);
 856     __ oop2reg(md->constant_encoding(), md_reg);
 857 
 858     LIR_Opr data_offset_reg = new_pointer_register();
 859     __ cmove(lir_cond(cond),
 860              LIR_OprFact::intptrConst(taken_count_offset),
 861              LIR_OprFact::intptrConst(not_taken_count_offset),
 862              data_offset_reg);
 863 
 864     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 865     LIR_Opr data_reg = new_pointer_register();
 866     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 867     __ move(data_addr, data_reg);
 868     // Use leal instead of add to avoid destroying condition codes on x86
 869     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 870     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 871     __ move(data_reg, data_addr);
 872   }
 873 }
 874 
 875 // Phi technique:
 876 // This is about passing live values from one basic block to the other.
 877 // In code generated with Java it is rather rare that more than one
 878 // value is on the stack from one basic block to the other.
 879 // We optimize our technique for efficient passing of one value
 880 // (of type long, int, double..) but it can be extended.
 881 // When entering or leaving a basic block, all registers and all spill
 882 // slots are release and empty. We use the released registers
 883 // and spill slots to pass the live values from one block
 884 // to the other. The topmost value, i.e., the value on TOS of expression
 885 // stack is passed in registers. All other values are stored in spilling
 886 // area. Every Phi has an index which designates its spill slot
 887 // At exit of a basic block, we fill the register(s) and spill slots.
 888 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 889 // and locks necessary registers and spilling slots.
 890 
 891 
 892 // move current value to referenced phi function
 893 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 894   Phi* phi = sux_val->as_Phi();
 895   // cur_val can be null without phi being null in conjunction with inlining
 896   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 897     LIR_Opr operand = cur_val->operand();
 898     if (cur_val->operand()->is_illegal()) {
 899       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 900              "these can be produced lazily");
 901       operand = operand_for_instruction(cur_val);
 902     }
 903     resolver->move(operand, operand_for_instruction(phi));
 904   }
 905 }
 906 
 907 
 908 // Moves all stack values into their PHI position
 909 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 910   BlockBegin* bb = block();
 911   if (bb->number_of_sux() == 1) {
 912     BlockBegin* sux = bb->sux_at(0);
 913     assert(sux->number_of_preds() > 0, "invalid CFG");
 914 
 915     // a block with only one predecessor never has phi functions
 916     if (sux->number_of_preds() > 1) {
 917       int max_phis = cur_state->stack_size() + cur_state->locals_size();
 918       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
 919 
 920       ValueStack* sux_state = sux->state();
 921       Value sux_value;
 922       int index;
 923 
 924       assert(cur_state->scope() == sux_state->scope(), "not matching");
 925       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
 926       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
 927 
 928       for_each_stack_value(sux_state, index, sux_value) {
 929         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
 930       }
 931 
 932       for_each_local_value(sux_state, index, sux_value) {
 933         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
 934       }
 935 
 936       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
 937     }
 938   }
 939 }
 940 
 941 
 942 LIR_Opr LIRGenerator::new_register(BasicType type) {
 943   int vreg = _virtual_register_number;
 944   // add a little fudge factor for the bailout, since the bailout is
 945   // only checked periodically.  This gives a few extra registers to
 946   // hand out before we really run out, which helps us keep from
 947   // tripping over assertions.
 948   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
 949     bailout("out of virtual registers");
 950     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
 951       // wrap it around
 952       _virtual_register_number = LIR_OprDesc::vreg_base;
 953     }
 954   }
 955   _virtual_register_number += 1;
 956   return LIR_OprFact::virtual_register(vreg, type);
 957 }
 958 
 959 
 960 // Try to lock using register in hint
 961 LIR_Opr LIRGenerator::rlock(Value instr) {
 962   return new_register(instr->type());
 963 }
 964 
 965 
 966 // does an rlock and sets result
 967 LIR_Opr LIRGenerator::rlock_result(Value x) {
 968   LIR_Opr reg = rlock(x);
 969   set_result(x, reg);
 970   return reg;
 971 }
 972 
 973 
 974 // does an rlock and sets result
 975 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
 976   LIR_Opr reg;
 977   switch (type) {
 978   case T_BYTE:
 979   case T_BOOLEAN:
 980     reg = rlock_byte(type);
 981     break;
 982   default:
 983     reg = rlock(x);
 984     break;
 985   }
 986 
 987   set_result(x, reg);
 988   return reg;
 989 }
 990 
 991 
 992 //---------------------------------------------------------------------
 993 ciObject* LIRGenerator::get_jobject_constant(Value value) {
 994   ObjectType* oc = value->type()->as_ObjectType();
 995   if (oc) {
 996     return oc->constant_value();
 997   }
 998   return NULL;
 999 }
1000 
1001 
1002 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1003   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1004   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1005 
1006   // no moves are created for phi functions at the begin of exception
1007   // handlers, so assign operands manually here
1008   for_each_phi_fun(block(), phi,
1009                    operand_for_instruction(phi));
1010 
1011   LIR_Opr thread_reg = getThreadPointer();
1012   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1013                exceptionOopOpr());
1014   __ move_wide(LIR_OprFact::oopConst(NULL),
1015                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1016   __ move_wide(LIR_OprFact::oopConst(NULL),
1017                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1018 
1019   LIR_Opr result = new_register(T_OBJECT);
1020   __ move(exceptionOopOpr(), result);
1021   set_result(x, result);
1022 }
1023 
1024 
1025 //----------------------------------------------------------------------
1026 //----------------------------------------------------------------------
1027 //----------------------------------------------------------------------
1028 //----------------------------------------------------------------------
1029 //                        visitor functions
1030 //----------------------------------------------------------------------
1031 //----------------------------------------------------------------------
1032 //----------------------------------------------------------------------
1033 //----------------------------------------------------------------------
1034 
1035 void LIRGenerator::do_Phi(Phi* x) {
1036   // phi functions are never visited directly
1037   ShouldNotReachHere();
1038 }
1039 
1040 
1041 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1042 void LIRGenerator::do_Constant(Constant* x) {
1043   if (x->state_before() != NULL) {
1044     // Any constant with a ValueStack requires patching so emit the patch here
1045     LIR_Opr reg = rlock_result(x);
1046     CodeEmitInfo* info = state_for(x, x->state_before());
1047     __ oop2reg_patch(NULL, reg, info);
1048   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1049     if (!x->is_pinned()) {
1050       // unpinned constants are handled specially so that they can be
1051       // put into registers when they are used multiple times within a
1052       // block.  After the block completes their operand will be
1053       // cleared so that other blocks can't refer to that register.
1054       set_result(x, load_constant(x));
1055     } else {
1056       LIR_Opr res = x->operand();
1057       if (!res->is_valid()) {
1058         res = LIR_OprFact::value_type(x->type());
1059       }
1060       if (res->is_constant()) {
1061         LIR_Opr reg = rlock_result(x);
1062         __ move(res, reg);
1063       } else {
1064         set_result(x, res);
1065       }
1066     }
1067   } else {
1068     set_result(x, LIR_OprFact::value_type(x->type()));
1069   }
1070 }
1071 
1072 
1073 void LIRGenerator::do_Local(Local* x) {
1074   // operand_for_instruction has the side effect of setting the result
1075   // so there's no need to do it here.
1076   operand_for_instruction(x);
1077 }
1078 
1079 
1080 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1081   Unimplemented();
1082 }
1083 
1084 
1085 void LIRGenerator::do_Return(Return* x) {
1086   if (compilation()->env()->dtrace_method_probes()) {
1087     BasicTypeList signature;
1088     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1089     signature.append(T_OBJECT); // methodOop
1090     LIR_OprList* args = new LIR_OprList();
1091     args->append(getThreadPointer());
1092     LIR_Opr meth = new_register(T_OBJECT);
1093     __ oop2reg(method()->constant_encoding(), meth);
1094     args->append(meth);
1095     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1096   }
1097 
1098   if (x->type()->is_void()) {
1099     __ return_op(LIR_OprFact::illegalOpr);
1100   } else {
1101     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1102     LIRItem result(x->result(), this);
1103 
1104     result.load_item_force(reg);
1105     __ return_op(result.result());
1106   }
1107   set_no_result(x);
1108 }
1109 
1110 
1111 // Example: object.getClass ()
1112 void LIRGenerator::do_getClass(Intrinsic* x) {
1113   assert(x->number_of_arguments() == 1, "wrong type");
1114 
1115   LIRItem rcvr(x->argument_at(0), this);
1116   rcvr.load_item();
1117   LIR_Opr result = rlock_result(x);
1118 
1119   // need to perform the null check on the rcvr
1120   CodeEmitInfo* info = NULL;
1121   if (x->needs_null_check()) {
1122     info = state_for(x);
1123   }
1124   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_OBJECT), result, info);
1125   __ move_wide(new LIR_Address(result, Klass::java_mirror_offset_in_bytes() +
1126                                klassOopDesc::klass_part_offset_in_bytes(), T_OBJECT), result);
1127 }
1128 
1129 
1130 // Example: Thread.currentThread()
1131 void LIRGenerator::do_currentThread(Intrinsic* x) {
1132   assert(x->number_of_arguments() == 0, "wrong type");
1133   LIR_Opr reg = rlock_result(x);
1134   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1135 }
1136 
1137 
1138 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1139   assert(x->number_of_arguments() == 1, "wrong type");
1140   LIRItem receiver(x->argument_at(0), this);
1141 
1142   receiver.load_item();
1143   BasicTypeList signature;
1144   signature.append(T_OBJECT); // receiver
1145   LIR_OprList* args = new LIR_OprList();
1146   args->append(receiver.result());
1147   CodeEmitInfo* info = state_for(x, x->state());
1148   call_runtime(&signature, args,
1149                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1150                voidType, info);
1151 
1152   set_no_result(x);
1153 }
1154 
1155 
1156 //------------------------local access--------------------------------------
1157 
1158 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1159   if (x->operand()->is_illegal()) {
1160     Constant* c = x->as_Constant();
1161     if (c != NULL) {
1162       x->set_operand(LIR_OprFact::value_type(c->type()));
1163     } else {
1164       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1165       // allocate a virtual register for this local or phi
1166       x->set_operand(rlock(x));
1167       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1168     }
1169   }
1170   return x->operand();
1171 }
1172 
1173 
1174 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1175   if (opr->is_virtual()) {
1176     return instruction_for_vreg(opr->vreg_number());
1177   }
1178   return NULL;
1179 }
1180 
1181 
1182 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1183   if (reg_num < _instruction_for_operand.length()) {
1184     return _instruction_for_operand.at(reg_num);
1185   }
1186   return NULL;
1187 }
1188 
1189 
1190 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1191   if (_vreg_flags.size_in_bits() == 0) {
1192     BitMap2D temp(100, num_vreg_flags);
1193     temp.clear();
1194     _vreg_flags = temp;
1195   }
1196   _vreg_flags.at_put_grow(vreg_num, f, true);
1197 }
1198 
1199 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1200   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1201     return false;
1202   }
1203   return _vreg_flags.at(vreg_num, f);
1204 }
1205 
1206 
1207 // Block local constant handling.  This code is useful for keeping
1208 // unpinned constants and constants which aren't exposed in the IR in
1209 // registers.  Unpinned Constant instructions have their operands
1210 // cleared when the block is finished so that other blocks can't end
1211 // up referring to their registers.
1212 
1213 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1214   assert(!x->is_pinned(), "only for unpinned constants");
1215   _unpinned_constants.append(x);
1216   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1217 }
1218 
1219 
1220 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1221   BasicType t = c->type();
1222   for (int i = 0; i < _constants.length(); i++) {
1223     LIR_Const* other = _constants.at(i);
1224     if (t == other->type()) {
1225       switch (t) {
1226       case T_INT:
1227       case T_FLOAT:
1228         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1229         break;
1230       case T_LONG:
1231       case T_DOUBLE:
1232         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1233         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1234         break;
1235       case T_OBJECT:
1236         if (c->as_jobject() != other->as_jobject()) continue;
1237         break;
1238       }
1239       return _reg_for_constants.at(i);
1240     }
1241   }
1242 
1243   LIR_Opr result = new_register(t);
1244   __ move((LIR_Opr)c, result);
1245   _constants.append(c);
1246   _reg_for_constants.append(result);
1247   return result;
1248 }
1249 
1250 // Various barriers
1251 
1252 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1253   // Do the pre-write barrier, if any.
1254   switch (_bs->kind()) {
1255 #ifndef SERIALGC
1256     case BarrierSet::G1SATBCT:
1257     case BarrierSet::G1SATBCTLogging:
1258       G1SATBCardTableModRef_pre_barrier(addr_opr, patch, info);
1259       break;
1260 #endif // SERIALGC
1261     case BarrierSet::CardTableModRef:
1262     case BarrierSet::CardTableExtension:
1263       // No pre barriers
1264       break;
1265     case BarrierSet::ModRef:
1266     case BarrierSet::Other:
1267       // No pre barriers
1268       break;
1269     default      :
1270       ShouldNotReachHere();
1271 
1272   }
1273 }
1274 
1275 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1276   switch (_bs->kind()) {
1277 #ifndef SERIALGC
1278     case BarrierSet::G1SATBCT:
1279     case BarrierSet::G1SATBCTLogging:
1280       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1281       break;
1282 #endif // SERIALGC
1283     case BarrierSet::CardTableModRef:
1284     case BarrierSet::CardTableExtension:
1285       CardTableModRef_post_barrier(addr,  new_val);
1286       break;
1287     case BarrierSet::ModRef:
1288     case BarrierSet::Other:
1289       // No post barriers
1290       break;
1291     default      :
1292       ShouldNotReachHere();
1293     }
1294 }
1295 
1296 ////////////////////////////////////////////////////////////////////////
1297 #ifndef SERIALGC
1298 
1299 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, bool patch,  CodeEmitInfo* info) {
1300   if (G1DisablePreBarrier) return;
1301 
1302   // First we test whether marking is in progress.
1303   BasicType flag_type;
1304   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1305     flag_type = T_INT;
1306   } else {
1307     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1308               "Assumption");
1309     flag_type = T_BYTE;
1310   }
1311   LIR_Opr thrd = getThreadPointer();
1312   LIR_Address* mark_active_flag_addr =
1313     new LIR_Address(thrd,
1314                     in_bytes(JavaThread::satb_mark_queue_offset() +
1315                              PtrQueue::byte_offset_of_active()),
1316                     flag_type);
1317   // Read the marking-in-progress flag.
1318   LIR_Opr flag_val = new_register(T_INT);
1319   __ load(mark_active_flag_addr, flag_val);
1320 
1321   LIR_PatchCode pre_val_patch_code =
1322     patch ? lir_patch_normal : lir_patch_none;
1323 
1324   LIR_Opr pre_val = new_register(T_OBJECT);
1325 
1326   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1327   if (!addr_opr->is_address()) {
1328     assert(addr_opr->is_register(), "must be");
1329     addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1330   }
1331   CodeStub* slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code,
1332                                         info);
1333   __ branch(lir_cond_notEqual, T_INT, slow);
1334   __ branch_destination(slow->continuation());
1335 }
1336 
1337 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1338   if (G1DisablePostBarrier) return;
1339 
1340   // If the "new_val" is a constant NULL, no barrier is necessary.
1341   if (new_val->is_constant() &&
1342       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1343 
1344   if (!new_val->is_register()) {
1345     LIR_Opr new_val_reg = new_register(T_OBJECT);
1346     if (new_val->is_constant()) {
1347       __ move(new_val, new_val_reg);
1348     } else {
1349       __ leal(new_val, new_val_reg);
1350     }
1351     new_val = new_val_reg;
1352   }
1353   assert(new_val->is_register(), "must be a register at this point");
1354 
1355   if (addr->is_address()) {
1356     LIR_Address* address = addr->as_address_ptr();
1357     LIR_Opr ptr = new_register(T_OBJECT);
1358     if (!address->index()->is_valid() && address->disp() == 0) {
1359       __ move(address->base(), ptr);
1360     } else {
1361       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1362       __ leal(addr, ptr);
1363     }
1364     addr = ptr;
1365   }
1366   assert(addr->is_register(), "must be a register at this point");
1367 
1368   LIR_Opr xor_res = new_pointer_register();
1369   LIR_Opr xor_shift_res = new_pointer_register();
1370   if (TwoOperandLIRForm ) {
1371     __ move(addr, xor_res);
1372     __ logical_xor(xor_res, new_val, xor_res);
1373     __ move(xor_res, xor_shift_res);
1374     __ unsigned_shift_right(xor_shift_res,
1375                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1376                             xor_shift_res,
1377                             LIR_OprDesc::illegalOpr());
1378   } else {
1379     __ logical_xor(addr, new_val, xor_res);
1380     __ unsigned_shift_right(xor_res,
1381                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1382                             xor_shift_res,
1383                             LIR_OprDesc::illegalOpr());
1384   }
1385 
1386   if (!new_val->is_register()) {
1387     LIR_Opr new_val_reg = new_register(T_OBJECT);
1388     __ leal(new_val, new_val_reg);
1389     new_val = new_val_reg;
1390   }
1391   assert(new_val->is_register(), "must be a register at this point");
1392 
1393   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1394 
1395   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1396   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1397   __ branch_destination(slow->continuation());
1398 }
1399 
1400 #endif // SERIALGC
1401 ////////////////////////////////////////////////////////////////////////
1402 
1403 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1404 
1405   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1406   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1407   if (addr->is_address()) {
1408     LIR_Address* address = addr->as_address_ptr();
1409     LIR_Opr ptr = new_register(T_OBJECT);
1410     if (!address->index()->is_valid() && address->disp() == 0) {
1411       __ move(address->base(), ptr);
1412     } else {
1413       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1414       __ leal(addr, ptr);
1415     }
1416     addr = ptr;
1417   }
1418   assert(addr->is_register(), "must be a register at this point");
1419 
1420 #ifdef ARM
1421   // TODO: ARM - move to platform-dependent code
1422   LIR_Opr tmp = FrameMap::R14_opr;
1423   if (VM_Version::supports_movw()) {
1424     __ move((LIR_Opr)card_table_base, tmp);
1425   } else {
1426     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1427   }
1428 
1429   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1430   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1431   if(((int)ct->byte_map_base & 0xff) == 0) {
1432     __ move(tmp, card_addr);
1433   } else {
1434     LIR_Opr tmp_zero = new_register(T_INT);
1435     __ move(LIR_OprFact::intConst(0), tmp_zero);
1436     __ move(tmp_zero, card_addr);
1437   }
1438 #else // ARM
1439   LIR_Opr tmp = new_pointer_register();
1440   if (TwoOperandLIRForm) {
1441     __ move(addr, tmp);
1442     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1443   } else {
1444     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1445   }
1446   if (can_inline_as_constant(card_table_base)) {
1447     __ move(LIR_OprFact::intConst(0),
1448               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1449   } else {
1450     __ move(LIR_OprFact::intConst(0),
1451               new LIR_Address(tmp, load_constant(card_table_base),
1452                               T_BYTE));
1453   }
1454 #endif // ARM
1455 }
1456 
1457 
1458 //------------------------field access--------------------------------------
1459 
1460 // Comment copied form templateTable_i486.cpp
1461 // ----------------------------------------------------------------------------
1462 // Volatile variables demand their effects be made known to all CPU's in
1463 // order.  Store buffers on most chips allow reads & writes to reorder; the
1464 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1465 // memory barrier (i.e., it's not sufficient that the interpreter does not
1466 // reorder volatile references, the hardware also must not reorder them).
1467 //
1468 // According to the new Java Memory Model (JMM):
1469 // (1) All volatiles are serialized wrt to each other.
1470 // ALSO reads & writes act as aquire & release, so:
1471 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1472 // the read float up to before the read.  It's OK for non-volatile memory refs
1473 // that happen before the volatile read to float down below it.
1474 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1475 // that happen BEFORE the write float down to after the write.  It's OK for
1476 // non-volatile memory refs that happen after the volatile write to float up
1477 // before it.
1478 //
1479 // We only put in barriers around volatile refs (they are expensive), not
1480 // _between_ memory refs (that would require us to track the flavor of the
1481 // previous memory refs).  Requirements (2) and (3) require some barriers
1482 // before volatile stores and after volatile loads.  These nearly cover
1483 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1484 // case is placed after volatile-stores although it could just as well go
1485 // before volatile-loads.
1486 
1487 
1488 void LIRGenerator::do_StoreField(StoreField* x) {
1489   bool needs_patching = x->needs_patching();
1490   bool is_volatile = x->field()->is_volatile();
1491   BasicType field_type = x->field_type();
1492   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1493 
1494   CodeEmitInfo* info = NULL;
1495   if (needs_patching) {
1496     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1497     info = state_for(x, x->state_before());
1498   } else if (x->needs_null_check()) {
1499     NullCheck* nc = x->explicit_null_check();
1500     if (nc == NULL) {
1501       info = state_for(x);
1502     } else {
1503       info = state_for(nc);
1504     }
1505   }
1506 
1507 
1508   LIRItem object(x->obj(), this);
1509   LIRItem value(x->value(),  this);
1510 
1511   object.load_item();
1512 
1513   if (is_volatile || needs_patching) {
1514     // load item if field is volatile (fewer special cases for volatiles)
1515     // load item if field not initialized
1516     // load item if field not constant
1517     // because of code patching we cannot inline constants
1518     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1519       value.load_byte_item();
1520     } else  {
1521       value.load_item();
1522     }
1523   } else {
1524     value.load_for_store(field_type);
1525   }
1526 
1527   set_no_result(x);
1528 
1529 #ifndef PRODUCT
1530   if (PrintNotLoaded && needs_patching) {
1531     tty->print_cr("   ###class not loaded at store_%s bci %d",
1532                   x->is_static() ?  "static" : "field", x->printable_bci());
1533   }
1534 #endif
1535 
1536   if (x->needs_null_check() &&
1537       (needs_patching ||
1538        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1539     // emit an explicit null check because the offset is too large
1540     __ null_check(object.result(), new CodeEmitInfo(info));
1541   }
1542 
1543   LIR_Address* address;
1544   if (needs_patching) {
1545     // we need to patch the offset in the instruction so don't allow
1546     // generate_address to try to be smart about emitting the -1.
1547     // Otherwise the patching code won't know how to find the
1548     // instruction to patch.
1549     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1550   } else {
1551     address = generate_address(object.result(), x->offset(), field_type);
1552   }
1553 
1554   if (is_volatile && os::is_MP()) {
1555     __ membar_release();
1556   }
1557 
1558   if (is_oop) {
1559     // Do the pre-write barrier, if any.
1560     pre_barrier(LIR_OprFact::address(address),
1561                 needs_patching,
1562                 (info ? new CodeEmitInfo(info) : NULL));
1563   }
1564 
1565   if (is_volatile) {
1566     assert(!needs_patching && x->is_loaded(),
1567            "how do we know it's volatile if it's not loaded");
1568     volatile_field_store(value.result(), address, info);
1569   } else {
1570     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1571     __ store(value.result(), address, info, patch_code);
1572   }
1573 
1574   if (is_oop) {
1575     // Store to object so mark the card of the header
1576     post_barrier(object.result(), value.result());
1577   }
1578 
1579   if (is_volatile && os::is_MP()) {
1580     __ membar();
1581   }
1582 }
1583 
1584 
1585 void LIRGenerator::do_LoadField(LoadField* x) {
1586   bool needs_patching = x->needs_patching();
1587   bool is_volatile = x->field()->is_volatile();
1588   BasicType field_type = x->field_type();
1589 
1590   CodeEmitInfo* info = NULL;
1591   if (needs_patching) {
1592     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1593     info = state_for(x, x->state_before());
1594   } else if (x->needs_null_check()) {
1595     NullCheck* nc = x->explicit_null_check();
1596     if (nc == NULL) {
1597       info = state_for(x);
1598     } else {
1599       info = state_for(nc);
1600     }
1601   }
1602 
1603   LIRItem object(x->obj(), this);
1604 
1605   object.load_item();
1606 
1607 #ifndef PRODUCT
1608   if (PrintNotLoaded && needs_patching) {
1609     tty->print_cr("   ###class not loaded at load_%s bci %d",
1610                   x->is_static() ?  "static" : "field", x->printable_bci());
1611   }
1612 #endif
1613 
1614   if (x->needs_null_check() &&
1615       (needs_patching ||
1616        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1617     // emit an explicit null check because the offset is too large
1618     __ null_check(object.result(), new CodeEmitInfo(info));
1619   }
1620 
1621   LIR_Opr reg = rlock_result(x, field_type);
1622   LIR_Address* address;
1623   if (needs_patching) {
1624     // we need to patch the offset in the instruction so don't allow
1625     // generate_address to try to be smart about emitting the -1.
1626     // Otherwise the patching code won't know how to find the
1627     // instruction to patch.
1628     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1629   } else {
1630     address = generate_address(object.result(), x->offset(), field_type);
1631   }
1632 
1633   if (is_volatile) {
1634     assert(!needs_patching && x->is_loaded(),
1635            "how do we know it's volatile if it's not loaded");
1636     volatile_field_load(address, reg, info);
1637   } else {
1638     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1639     __ load(address, reg, info, patch_code);
1640   }
1641 
1642   if (is_volatile && os::is_MP()) {
1643     __ membar_acquire();
1644   }
1645 }
1646 
1647 
1648 //------------------------java.nio.Buffer.checkIndex------------------------
1649 
1650 // int java.nio.Buffer.checkIndex(int)
1651 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1652   // NOTE: by the time we are in checkIndex() we are guaranteed that
1653   // the buffer is non-null (because checkIndex is package-private and
1654   // only called from within other methods in the buffer).
1655   assert(x->number_of_arguments() == 2, "wrong type");
1656   LIRItem buf  (x->argument_at(0), this);
1657   LIRItem index(x->argument_at(1), this);
1658   buf.load_item();
1659   index.load_item();
1660 
1661   LIR_Opr result = rlock_result(x);
1662   if (GenerateRangeChecks) {
1663     CodeEmitInfo* info = state_for(x);
1664     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1665     if (index.result()->is_constant()) {
1666       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1667       __ branch(lir_cond_belowEqual, T_INT, stub);
1668     } else {
1669       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1670                   java_nio_Buffer::limit_offset(), T_INT, info);
1671       __ branch(lir_cond_aboveEqual, T_INT, stub);
1672     }
1673     __ move(index.result(), result);
1674   } else {
1675     // Just load the index into the result register
1676     __ move(index.result(), result);
1677   }
1678 }
1679 
1680 
1681 //------------------------array access--------------------------------------
1682 
1683 
1684 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1685   LIRItem array(x->array(), this);
1686   array.load_item();
1687   LIR_Opr reg = rlock_result(x);
1688 
1689   CodeEmitInfo* info = NULL;
1690   if (x->needs_null_check()) {
1691     NullCheck* nc = x->explicit_null_check();
1692     if (nc == NULL) {
1693       info = state_for(x);
1694     } else {
1695       info = state_for(nc);
1696     }
1697   }
1698   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1699 }
1700 
1701 
1702 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1703   bool use_length = x->length() != NULL;
1704   LIRItem array(x->array(), this);
1705   LIRItem index(x->index(), this);
1706   LIRItem length(this);
1707   bool needs_range_check = true;
1708 
1709   if (use_length) {
1710     needs_range_check = x->compute_needs_range_check();
1711     if (needs_range_check) {
1712       length.set_instruction(x->length());
1713       length.load_item();
1714     }
1715   }
1716 
1717   array.load_item();
1718   if (index.is_constant() && can_inline_as_constant(x->index())) {
1719     // let it be a constant
1720     index.dont_load_item();
1721   } else {
1722     index.load_item();
1723   }
1724 
1725   CodeEmitInfo* range_check_info = state_for(x);
1726   CodeEmitInfo* null_check_info = NULL;
1727   if (x->needs_null_check()) {
1728     NullCheck* nc = x->explicit_null_check();
1729     if (nc != NULL) {
1730       null_check_info = state_for(nc);
1731     } else {
1732       null_check_info = range_check_info;
1733     }
1734   }
1735 
1736   // emit array address setup early so it schedules better
1737   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1738 
1739   if (GenerateRangeChecks && needs_range_check) {
1740     if (use_length) {
1741       // TODO: use a (modified) version of array_range_check that does not require a
1742       //       constant length to be loaded to a register
1743       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1744       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1745     } else {
1746       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1747       // The range check performs the null check, so clear it out for the load
1748       null_check_info = NULL;
1749     }
1750   }
1751 
1752   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1753 }
1754 
1755 
1756 void LIRGenerator::do_NullCheck(NullCheck* x) {
1757   if (x->can_trap()) {
1758     LIRItem value(x->obj(), this);
1759     value.load_item();
1760     CodeEmitInfo* info = state_for(x);
1761     __ null_check(value.result(), info);
1762   }
1763 }
1764 
1765 
1766 void LIRGenerator::do_Throw(Throw* x) {
1767   LIRItem exception(x->exception(), this);
1768   exception.load_item();
1769   set_no_result(x);
1770   LIR_Opr exception_opr = exception.result();
1771   CodeEmitInfo* info = state_for(x, x->state());
1772 
1773 #ifndef PRODUCT
1774   if (PrintC1Statistics) {
1775     increment_counter(Runtime1::throw_count_address(), T_INT);
1776   }
1777 #endif
1778 
1779   // check if the instruction has an xhandler in any of the nested scopes
1780   bool unwind = false;
1781   if (info->exception_handlers()->length() == 0) {
1782     // this throw is not inside an xhandler
1783     unwind = true;
1784   } else {
1785     // get some idea of the throw type
1786     bool type_is_exact = true;
1787     ciType* throw_type = x->exception()->exact_type();
1788     if (throw_type == NULL) {
1789       type_is_exact = false;
1790       throw_type = x->exception()->declared_type();
1791     }
1792     if (throw_type != NULL && throw_type->is_instance_klass()) {
1793       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1794       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1795     }
1796   }
1797 
1798   // do null check before moving exception oop into fixed register
1799   // to avoid a fixed interval with an oop during the null check.
1800   // Use a copy of the CodeEmitInfo because debug information is
1801   // different for null_check and throw.
1802   if (GenerateCompilerNullChecks &&
1803       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1804     // if the exception object wasn't created using new then it might be null.
1805     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1806   }
1807 
1808   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1809     // we need to go through the exception lookup path to get JVMTI
1810     // notification done
1811     unwind = false;
1812   }
1813 
1814   // move exception oop into fixed register
1815   __ move(exception_opr, exceptionOopOpr());
1816 
1817   if (unwind) {
1818     __ unwind_exception(exceptionOopOpr());
1819   } else {
1820     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1821   }
1822 }
1823 
1824 
1825 void LIRGenerator::do_RoundFP(RoundFP* x) {
1826   LIRItem input(x->input(), this);
1827   input.load_item();
1828   LIR_Opr input_opr = input.result();
1829   assert(input_opr->is_register(), "why round if value is not in a register?");
1830   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1831   if (input_opr->is_single_fpu()) {
1832     set_result(x, round_item(input_opr)); // This code path not currently taken
1833   } else {
1834     LIR_Opr result = new_register(T_DOUBLE);
1835     set_vreg_flag(result, must_start_in_memory);
1836     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1837     set_result(x, result);
1838   }
1839 }
1840 
1841 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1842   LIRItem base(x->base(), this);
1843   LIRItem idx(this);
1844 
1845   base.load_item();
1846   if (x->has_index()) {
1847     idx.set_instruction(x->index());
1848     idx.load_nonconstant();
1849   }
1850 
1851   LIR_Opr reg = rlock_result(x, x->basic_type());
1852 
1853   int   log2_scale = 0;
1854   if (x->has_index()) {
1855     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1856     log2_scale = x->log2_scale();
1857   }
1858 
1859   assert(!x->has_index() || idx.value() == x->index(), "should match");
1860 
1861   LIR_Opr base_op = base.result();
1862 #ifndef _LP64
1863   if (x->base()->type()->tag() == longTag) {
1864     base_op = new_register(T_INT);
1865     __ convert(Bytecodes::_l2i, base.result(), base_op);
1866   } else {
1867     assert(x->base()->type()->tag() == intTag, "must be");
1868   }
1869 #endif
1870 
1871   BasicType dst_type = x->basic_type();
1872   LIR_Opr index_op = idx.result();
1873 
1874   LIR_Address* addr;
1875   if (index_op->is_constant()) {
1876     assert(log2_scale == 0, "must not have a scale");
1877     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
1878   } else {
1879 #ifdef X86
1880 #ifdef _LP64
1881     if (!index_op->is_illegal() && index_op->type() == T_INT) {
1882       LIR_Opr tmp = new_pointer_register();
1883       __ convert(Bytecodes::_i2l, index_op, tmp);
1884       index_op = tmp;
1885     }
1886 #endif
1887     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
1888 #elif defined(ARM)
1889     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
1890 #else
1891     if (index_op->is_illegal() || log2_scale == 0) {
1892 #ifdef _LP64
1893       if (!index_op->is_illegal() && index_op->type() == T_INT) {
1894         LIR_Opr tmp = new_pointer_register();
1895         __ convert(Bytecodes::_i2l, index_op, tmp);
1896         index_op = tmp;
1897       }
1898 #endif
1899       addr = new LIR_Address(base_op, index_op, dst_type);
1900     } else {
1901       LIR_Opr tmp = new_pointer_register();
1902       __ shift_left(index_op, log2_scale, tmp);
1903       addr = new LIR_Address(base_op, tmp, dst_type);
1904     }
1905 #endif
1906   }
1907 
1908   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
1909     __ unaligned_move(addr, reg);
1910   } else {
1911     if (dst_type == T_OBJECT && x->is_wide()) {
1912       __ move_wide(addr, reg);
1913     } else {
1914       __ move(addr, reg);
1915     }
1916   }
1917 }
1918 
1919 
1920 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
1921   int  log2_scale = 0;
1922   BasicType type = x->basic_type();
1923 
1924   if (x->has_index()) {
1925     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
1926     log2_scale = x->log2_scale();
1927   }
1928 
1929   LIRItem base(x->base(), this);
1930   LIRItem value(x->value(), this);
1931   LIRItem idx(this);
1932 
1933   base.load_item();
1934   if (x->has_index()) {
1935     idx.set_instruction(x->index());
1936     idx.load_item();
1937   }
1938 
1939   if (type == T_BYTE || type == T_BOOLEAN) {
1940     value.load_byte_item();
1941   } else {
1942     value.load_item();
1943   }
1944 
1945   set_no_result(x);
1946 
1947   LIR_Opr base_op = base.result();
1948 #ifndef _LP64
1949   if (x->base()->type()->tag() == longTag) {
1950     base_op = new_register(T_INT);
1951     __ convert(Bytecodes::_l2i, base.result(), base_op);
1952   } else {
1953     assert(x->base()->type()->tag() == intTag, "must be");
1954   }
1955 #endif
1956 
1957   LIR_Opr index_op = idx.result();
1958   if (log2_scale != 0) {
1959     // temporary fix (platform dependent code without shift on Intel would be better)
1960     index_op = new_pointer_register();
1961 #ifdef _LP64
1962     if(idx.result()->type() == T_INT) {
1963       __ convert(Bytecodes::_i2l, idx.result(), index_op);
1964     } else {
1965 #endif
1966       // TODO: ARM also allows embedded shift in the address
1967       __ move(idx.result(), index_op);
1968 #ifdef _LP64
1969     }
1970 #endif
1971     __ shift_left(index_op, log2_scale, index_op);
1972   }
1973 #ifdef _LP64
1974   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
1975     LIR_Opr tmp = new_pointer_register();
1976     __ convert(Bytecodes::_i2l, index_op, tmp);
1977     index_op = tmp;
1978   }
1979 #endif
1980 
1981   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
1982   __ move(value.result(), addr);
1983 }
1984 
1985 
1986 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
1987   BasicType type = x->basic_type();
1988   LIRItem src(x->object(), this);
1989   LIRItem off(x->offset(), this);
1990 
1991   off.load_item();
1992   src.load_item();
1993 
1994   LIR_Opr reg = reg = rlock_result(x, x->basic_type());
1995 
1996   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
1997   get_Object_unsafe(reg, src.result(), off.result(), type, x->is_volatile());
1998   if (x->is_volatile() && os::is_MP()) __ membar();
1999 }
2000 
2001 
2002 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2003   BasicType type = x->basic_type();
2004   LIRItem src(x->object(), this);
2005   LIRItem off(x->offset(), this);
2006   LIRItem data(x->value(), this);
2007 
2008   src.load_item();
2009   if (type == T_BOOLEAN || type == T_BYTE) {
2010     data.load_byte_item();
2011   } else {
2012     data.load_item();
2013   }
2014   off.load_item();
2015 
2016   set_no_result(x);
2017 
2018   if (x->is_volatile() && os::is_MP()) __ membar_release();
2019   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2020 }
2021 
2022 
2023 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2024   LIRItem src(x->object(), this);
2025   LIRItem off(x->offset(), this);
2026 
2027   src.load_item();
2028   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2029     // let it be a constant
2030     off.dont_load_item();
2031   } else {
2032     off.load_item();
2033   }
2034 
2035   set_no_result(x);
2036 
2037   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2038   __ prefetch(addr, is_store);
2039 }
2040 
2041 
2042 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2043   do_UnsafePrefetch(x, false);
2044 }
2045 
2046 
2047 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2048   do_UnsafePrefetch(x, true);
2049 }
2050 
2051 
2052 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2053   int lng = x->length();
2054 
2055   for (int i = 0; i < lng; i++) {
2056     SwitchRange* one_range = x->at(i);
2057     int low_key = one_range->low_key();
2058     int high_key = one_range->high_key();
2059     BlockBegin* dest = one_range->sux();
2060     if (low_key == high_key) {
2061       __ cmp(lir_cond_equal, value, low_key);
2062       __ branch(lir_cond_equal, T_INT, dest);
2063     } else if (high_key - low_key == 1) {
2064       __ cmp(lir_cond_equal, value, low_key);
2065       __ branch(lir_cond_equal, T_INT, dest);
2066       __ cmp(lir_cond_equal, value, high_key);
2067       __ branch(lir_cond_equal, T_INT, dest);
2068     } else {
2069       LabelObj* L = new LabelObj();
2070       __ cmp(lir_cond_less, value, low_key);
2071       __ branch(lir_cond_less, L->label());
2072       __ cmp(lir_cond_lessEqual, value, high_key);
2073       __ branch(lir_cond_lessEqual, T_INT, dest);
2074       __ branch_destination(L->label());
2075     }
2076   }
2077   __ jump(default_sux);
2078 }
2079 
2080 
2081 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2082   SwitchRangeList* res = new SwitchRangeList();
2083   int len = x->length();
2084   if (len > 0) {
2085     BlockBegin* sux = x->sux_at(0);
2086     int key = x->lo_key();
2087     BlockBegin* default_sux = x->default_sux();
2088     SwitchRange* range = new SwitchRange(key, sux);
2089     for (int i = 0; i < len; i++, key++) {
2090       BlockBegin* new_sux = x->sux_at(i);
2091       if (sux == new_sux) {
2092         // still in same range
2093         range->set_high_key(key);
2094       } else {
2095         // skip tests which explicitly dispatch to the default
2096         if (sux != default_sux) {
2097           res->append(range);
2098         }
2099         range = new SwitchRange(key, new_sux);
2100       }
2101       sux = new_sux;
2102     }
2103     if (res->length() == 0 || res->last() != range)  res->append(range);
2104   }
2105   return res;
2106 }
2107 
2108 
2109 // we expect the keys to be sorted by increasing value
2110 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2111   SwitchRangeList* res = new SwitchRangeList();
2112   int len = x->length();
2113   if (len > 0) {
2114     BlockBegin* default_sux = x->default_sux();
2115     int key = x->key_at(0);
2116     BlockBegin* sux = x->sux_at(0);
2117     SwitchRange* range = new SwitchRange(key, sux);
2118     for (int i = 1; i < len; i++) {
2119       int new_key = x->key_at(i);
2120       BlockBegin* new_sux = x->sux_at(i);
2121       if (key+1 == new_key && sux == new_sux) {
2122         // still in same range
2123         range->set_high_key(new_key);
2124       } else {
2125         // skip tests which explicitly dispatch to the default
2126         if (range->sux() != default_sux) {
2127           res->append(range);
2128         }
2129         range = new SwitchRange(new_key, new_sux);
2130       }
2131       key = new_key;
2132       sux = new_sux;
2133     }
2134     if (res->length() == 0 || res->last() != range)  res->append(range);
2135   }
2136   return res;
2137 }
2138 
2139 
2140 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2141   LIRItem tag(x->tag(), this);
2142   tag.load_item();
2143   set_no_result(x);
2144 
2145   if (x->is_safepoint()) {
2146     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2147   }
2148 
2149   // move values into phi locations
2150   move_to_phi(x->state());
2151 
2152   int lo_key = x->lo_key();
2153   int hi_key = x->hi_key();
2154   int len = x->length();
2155   LIR_Opr value = tag.result();
2156   if (UseTableRanges) {
2157     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2158   } else {
2159     for (int i = 0; i < len; i++) {
2160       __ cmp(lir_cond_equal, value, i + lo_key);
2161       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2162     }
2163     __ jump(x->default_sux());
2164   }
2165 }
2166 
2167 
2168 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2169   LIRItem tag(x->tag(), this);
2170   tag.load_item();
2171   set_no_result(x);
2172 
2173   if (x->is_safepoint()) {
2174     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2175   }
2176 
2177   // move values into phi locations
2178   move_to_phi(x->state());
2179 
2180   LIR_Opr value = tag.result();
2181   if (UseTableRanges) {
2182     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2183   } else {
2184     int len = x->length();
2185     for (int i = 0; i < len; i++) {
2186       __ cmp(lir_cond_equal, value, x->key_at(i));
2187       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2188     }
2189     __ jump(x->default_sux());
2190   }
2191 }
2192 
2193 
2194 void LIRGenerator::do_Goto(Goto* x) {
2195   set_no_result(x);
2196 
2197   if (block()->next()->as_OsrEntry()) {
2198     // need to free up storage used for OSR entry point
2199     LIR_Opr osrBuffer = block()->next()->operand();
2200     BasicTypeList signature;
2201     signature.append(T_INT);
2202     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2203     __ move(osrBuffer, cc->args()->at(0));
2204     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2205                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2206   }
2207 
2208   if (x->is_safepoint()) {
2209     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2210 
2211     // increment backedge counter if needed
2212     CodeEmitInfo* info = state_for(x, state);
2213     increment_backedge_counter(info, info->stack()->bci());
2214     CodeEmitInfo* safepoint_info = state_for(x, state);
2215     __ safepoint(safepoint_poll_register(), safepoint_info);
2216   }
2217 
2218   // Gotos can be folded Ifs, handle this case.
2219   if (x->should_profile()) {
2220     ciMethod* method = x->profiled_method();
2221     assert(method != NULL, "method should be set if branch is profiled");
2222     ciMethodData* md = method->method_data();
2223     if (md == NULL) {
2224       bailout("out of memory building methodDataOop");
2225       return;
2226     }
2227     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2228     assert(data != NULL, "must have profiling data");
2229     int offset;
2230     if (x->direction() == Goto::taken) {
2231       assert(data->is_BranchData(), "need BranchData for two-way branches");
2232       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2233     } else if (x->direction() == Goto::not_taken) {
2234       assert(data->is_BranchData(), "need BranchData for two-way branches");
2235       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2236     } else {
2237       assert(data->is_JumpData(), "need JumpData for branches");
2238       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2239     }
2240     LIR_Opr md_reg = new_register(T_OBJECT);
2241     __ oop2reg(md->constant_encoding(), md_reg);
2242 
2243     increment_counter(new LIR_Address(md_reg, offset,
2244                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2245   }
2246 
2247   // emit phi-instruction move after safepoint since this simplifies
2248   // describing the state as the safepoint.
2249   move_to_phi(x->state());
2250 
2251   __ jump(x->default_sux());
2252 }
2253 
2254 
2255 void LIRGenerator::do_Base(Base* x) {
2256   __ std_entry(LIR_OprFact::illegalOpr);
2257   // Emit moves from physical registers / stack slots to virtual registers
2258   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2259   IRScope* irScope = compilation()->hir()->top_scope();
2260   int java_index = 0;
2261   for (int i = 0; i < args->length(); i++) {
2262     LIR_Opr src = args->at(i);
2263     assert(!src->is_illegal(), "check");
2264     BasicType t = src->type();
2265 
2266     // Types which are smaller than int are passed as int, so
2267     // correct the type which passed.
2268     switch (t) {
2269     case T_BYTE:
2270     case T_BOOLEAN:
2271     case T_SHORT:
2272     case T_CHAR:
2273       t = T_INT;
2274       break;
2275     }
2276 
2277     LIR_Opr dest = new_register(t);
2278     __ move(src, dest);
2279 
2280     // Assign new location to Local instruction for this local
2281     Local* local = x->state()->local_at(java_index)->as_Local();
2282     assert(local != NULL, "Locals for incoming arguments must have been created");
2283 #ifndef __SOFTFP__
2284     // The java calling convention passes double as long and float as int.
2285     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2286 #endif // __SOFTFP__
2287     local->set_operand(dest);
2288     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2289     java_index += type2size[t];
2290   }
2291 
2292   if (compilation()->env()->dtrace_method_probes()) {
2293     BasicTypeList signature;
2294     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2295     signature.append(T_OBJECT); // methodOop
2296     LIR_OprList* args = new LIR_OprList();
2297     args->append(getThreadPointer());
2298     LIR_Opr meth = new_register(T_OBJECT);
2299     __ oop2reg(method()->constant_encoding(), meth);
2300     args->append(meth);
2301     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2302   }
2303 
2304   if (method()->is_synchronized()) {
2305     LIR_Opr obj;
2306     if (method()->is_static()) {
2307       obj = new_register(T_OBJECT);
2308       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2309     } else {
2310       Local* receiver = x->state()->local_at(0)->as_Local();
2311       assert(receiver != NULL, "must already exist");
2312       obj = receiver->operand();
2313     }
2314     assert(obj->is_valid(), "must be valid");
2315 
2316     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2317       LIR_Opr lock = new_register(T_INT);
2318       __ load_stack_address_monitor(0, lock);
2319 
2320       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2321       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2322 
2323       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2324       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2325     }
2326   }
2327 
2328   // increment invocation counters if needed
2329   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2330     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2331     increment_invocation_counter(info);
2332   }
2333 
2334   // all blocks with a successor must end with an unconditional jump
2335   // to the successor even if they are consecutive
2336   __ jump(x->default_sux());
2337 }
2338 
2339 
2340 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2341   // construct our frame and model the production of incoming pointer
2342   // to the OSR buffer.
2343   __ osr_entry(LIR_Assembler::osrBufferPointer());
2344   LIR_Opr result = rlock_result(x);
2345   __ move(LIR_Assembler::osrBufferPointer(), result);
2346 }
2347 
2348 
2349 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2350   int i = (x->has_receiver() || x->is_invokedynamic()) ? 1 : 0;
2351   for (; i < args->length(); i++) {
2352     LIRItem* param = args->at(i);
2353     LIR_Opr loc = arg_list->at(i);
2354     if (loc->is_register()) {
2355       param->load_item_force(loc);
2356     } else {
2357       LIR_Address* addr = loc->as_address_ptr();
2358       param->load_for_store(addr->type());
2359       if (addr->type() == T_OBJECT) {
2360         __ move_wide(param->result(), addr);
2361       } else
2362         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2363           __ unaligned_move(param->result(), addr);
2364         } else {
2365           __ move(param->result(), addr);
2366         }
2367     }
2368   }
2369 
2370   if (x->has_receiver()) {
2371     LIRItem* receiver = args->at(0);
2372     LIR_Opr loc = arg_list->at(0);
2373     if (loc->is_register()) {
2374       receiver->load_item_force(loc);
2375     } else {
2376       assert(loc->is_address(), "just checking");
2377       receiver->load_for_store(T_OBJECT);
2378       __ move_wide(receiver->result(), loc->as_address_ptr());
2379     }
2380   }
2381 }
2382 
2383 
2384 // Visits all arguments, returns appropriate items without loading them
2385 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2386   LIRItemList* argument_items = new LIRItemList();
2387   if (x->has_receiver()) {
2388     LIRItem* receiver = new LIRItem(x->receiver(), this);
2389     argument_items->append(receiver);
2390   }
2391   if (x->is_invokedynamic()) {
2392     // Insert a dummy for the synthetic MethodHandle argument.
2393     argument_items->append(NULL);
2394   }
2395   int idx = x->has_receiver() ? 1 : 0;
2396   for (int i = 0; i < x->number_of_arguments(); i++) {
2397     LIRItem* param = new LIRItem(x->argument_at(i), this);
2398     argument_items->append(param);
2399     idx += (param->type()->is_double_word() ? 2 : 1);
2400   }
2401   return argument_items;
2402 }
2403 
2404 
2405 // The invoke with receiver has following phases:
2406 //   a) traverse and load/lock receiver;
2407 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2408 //   c) push receiver on stack
2409 //   d) load each of the items and push on stack
2410 //   e) unlock receiver
2411 //   f) move receiver into receiver-register %o0
2412 //   g) lock result registers and emit call operation
2413 //
2414 // Before issuing a call, we must spill-save all values on stack
2415 // that are in caller-save register. "spill-save" moves thos registers
2416 // either in a free callee-save register or spills them if no free
2417 // callee save register is available.
2418 //
2419 // The problem is where to invoke spill-save.
2420 // - if invoked between e) and f), we may lock callee save
2421 //   register in "spill-save" that destroys the receiver register
2422 //   before f) is executed
2423 // - if we rearange the f) to be earlier, by loading %o0, it
2424 //   may destroy a value on the stack that is currently in %o0
2425 //   and is waiting to be spilled
2426 // - if we keep the receiver locked while doing spill-save,
2427 //   we cannot spill it as it is spill-locked
2428 //
2429 void LIRGenerator::do_Invoke(Invoke* x) {
2430   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2431 
2432   LIR_OprList* arg_list = cc->args();
2433   LIRItemList* args = invoke_visit_arguments(x);
2434   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2435 
2436   // setup result register
2437   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2438   if (x->type() != voidType) {
2439     result_register = result_register_for(x->type());
2440   }
2441 
2442   CodeEmitInfo* info = state_for(x, x->state());
2443 
2444   // invokedynamics can deoptimize.
2445   CodeEmitInfo* deopt_info = x->is_invokedynamic() ? state_for(x, x->state_before()) : NULL;
2446 
2447   invoke_load_arguments(x, args, arg_list);
2448 
2449   if (x->has_receiver()) {
2450     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2451     receiver = args->at(0)->result();
2452   }
2453 
2454   // emit invoke code
2455   bool optimized = x->target_is_loaded() && x->target_is_final();
2456   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2457 
2458   // JSR 292
2459   // Preserve the SP over MethodHandle call sites.
2460   ciMethod* target = x->target();
2461   if (target->is_method_handle_invoke()) {
2462     info->set_is_method_handle_invoke(true);
2463     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2464   }
2465 
2466   switch (x->code()) {
2467     case Bytecodes::_invokestatic:
2468       __ call_static(target, result_register,
2469                      SharedRuntime::get_resolve_static_call_stub(),
2470                      arg_list, info);
2471       break;
2472     case Bytecodes::_invokespecial:
2473     case Bytecodes::_invokevirtual:
2474     case Bytecodes::_invokeinterface:
2475       // for final target we still produce an inline cache, in order
2476       // to be able to call mixed mode
2477       if (x->code() == Bytecodes::_invokespecial || optimized) {
2478         __ call_opt_virtual(target, receiver, result_register,
2479                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2480                             arg_list, info);
2481       } else if (x->vtable_index() < 0) {
2482         __ call_icvirtual(target, receiver, result_register,
2483                           SharedRuntime::get_resolve_virtual_call_stub(),
2484                           arg_list, info);
2485       } else {
2486         int entry_offset = instanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2487         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2488         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2489       }
2490       break;
2491     case Bytecodes::_invokedynamic: {
2492       ciBytecodeStream bcs(x->scope()->method());
2493       bcs.force_bci(x->state()->bci());
2494       assert(bcs.cur_bc() == Bytecodes::_invokedynamic, "wrong stream");
2495       ciCPCache* cpcache = bcs.get_cpcache();
2496 
2497       // Get CallSite offset from constant pool cache pointer.
2498       int index = bcs.get_method_index();
2499       size_t call_site_offset = cpcache->get_f1_offset(index);
2500 
2501       // If this invokedynamic call site hasn't been executed yet in
2502       // the interpreter, the CallSite object in the constant pool
2503       // cache is still null and we need to deoptimize.
2504       if (cpcache->is_f1_null_at(index)) {
2505         // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
2506         // clone all handlers.  This is handled transparently in other
2507         // places by the CodeEmitInfo cloning logic but is handled
2508         // specially here because a stub isn't being used.
2509         x->set_exception_handlers(new XHandlers(x->exception_handlers()));
2510 
2511         DeoptimizeStub* deopt_stub = new DeoptimizeStub(deopt_info);
2512         __ jump(deopt_stub);
2513       }
2514 
2515       // Use the receiver register for the synthetic MethodHandle
2516       // argument.
2517       receiver = LIR_Assembler::receiverOpr();
2518       LIR_Opr tmp = new_register(objectType);
2519 
2520       // Load CallSite object from constant pool cache.
2521       __ oop2reg(cpcache->constant_encoding(), tmp);
2522       __ load(new LIR_Address(tmp, call_site_offset, T_OBJECT), tmp);
2523 
2524       // Load target MethodHandle from CallSite object.
2525       __ load(new LIR_Address(tmp, java_dyn_CallSite::target_offset_in_bytes(), T_OBJECT), receiver);
2526 
2527       __ call_dynamic(target, receiver, result_register,
2528                       SharedRuntime::get_resolve_opt_virtual_call_stub(),
2529                       arg_list, info);
2530       break;
2531     }
2532     default:
2533       ShouldNotReachHere();
2534       break;
2535   }
2536 
2537   // JSR 292
2538   // Restore the SP after MethodHandle call sites.
2539   if (target->is_method_handle_invoke()) {
2540     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2541   }
2542 
2543   if (x->type()->is_float() || x->type()->is_double()) {
2544     // Force rounding of results from non-strictfp when in strictfp
2545     // scope (or when we don't know the strictness of the callee, to
2546     // be safe.)
2547     if (method()->is_strict()) {
2548       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2549         result_register = round_item(result_register);
2550       }
2551     }
2552   }
2553 
2554   if (result_register->is_valid()) {
2555     LIR_Opr result = rlock_result(x);
2556     __ move(result_register, result);
2557   }
2558 }
2559 
2560 
2561 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2562   assert(x->number_of_arguments() == 1, "wrong type");
2563   LIRItem value       (x->argument_at(0), this);
2564   LIR_Opr reg = rlock_result(x);
2565   value.load_item();
2566   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2567   __ move(tmp, reg);
2568 }
2569 
2570 
2571 
2572 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2573 void LIRGenerator::do_IfOp(IfOp* x) {
2574 #ifdef ASSERT
2575   {
2576     ValueTag xtag = x->x()->type()->tag();
2577     ValueTag ttag = x->tval()->type()->tag();
2578     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2579     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2580     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2581   }
2582 #endif
2583 
2584   LIRItem left(x->x(), this);
2585   LIRItem right(x->y(), this);
2586   left.load_item();
2587   if (can_inline_as_constant(right.value())) {
2588     right.dont_load_item();
2589   } else {
2590     right.load_item();
2591   }
2592 
2593   LIRItem t_val(x->tval(), this);
2594   LIRItem f_val(x->fval(), this);
2595   t_val.dont_load_item();
2596   f_val.dont_load_item();
2597   LIR_Opr reg = rlock_result(x);
2598 
2599   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2600   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg);
2601 }
2602 
2603 
2604 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2605   switch (x->id()) {
2606   case vmIntrinsics::_intBitsToFloat      :
2607   case vmIntrinsics::_doubleToRawLongBits :
2608   case vmIntrinsics::_longBitsToDouble    :
2609   case vmIntrinsics::_floatToRawIntBits   : {
2610     do_FPIntrinsics(x);
2611     break;
2612   }
2613 
2614   case vmIntrinsics::_currentTimeMillis: {
2615     assert(x->number_of_arguments() == 0, "wrong type");
2616     LIR_Opr reg = result_register_for(x->type());
2617     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeMillis), getThreadTemp(),
2618                          reg, new LIR_OprList());
2619     LIR_Opr result = rlock_result(x);
2620     __ move(reg, result);
2621     break;
2622   }
2623 
2624   case vmIntrinsics::_nanoTime: {
2625     assert(x->number_of_arguments() == 0, "wrong type");
2626     LIR_Opr reg = result_register_for(x->type());
2627     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, os::javaTimeNanos), getThreadTemp(),
2628                          reg, new LIR_OprList());
2629     LIR_Opr result = rlock_result(x);
2630     __ move(reg, result);
2631     break;
2632   }
2633 
2634   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2635   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2636   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2637 
2638   case vmIntrinsics::_dlog:           // fall through
2639   case vmIntrinsics::_dlog10:         // fall through
2640   case vmIntrinsics::_dabs:           // fall through
2641   case vmIntrinsics::_dsqrt:          // fall through
2642   case vmIntrinsics::_dtan:           // fall through
2643   case vmIntrinsics::_dsin :          // fall through
2644   case vmIntrinsics::_dcos :          do_MathIntrinsic(x); break;
2645   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2646 
2647   // java.nio.Buffer.checkIndex
2648   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2649 
2650   case vmIntrinsics::_compareAndSwapObject:
2651     do_CompareAndSwap(x, objectType);
2652     break;
2653   case vmIntrinsics::_compareAndSwapInt:
2654     do_CompareAndSwap(x, intType);
2655     break;
2656   case vmIntrinsics::_compareAndSwapLong:
2657     do_CompareAndSwap(x, longType);
2658     break;
2659 
2660     // sun.misc.AtomicLongCSImpl.attemptUpdate
2661   case vmIntrinsics::_attemptUpdate:
2662     do_AttemptUpdate(x);
2663     break;
2664 
2665   default: ShouldNotReachHere(); break;
2666   }
2667 }
2668 
2669 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2670   // Need recv in a temporary register so it interferes with the other temporaries
2671   LIR_Opr recv = LIR_OprFact::illegalOpr;
2672   LIR_Opr mdo = new_register(T_OBJECT);
2673   // tmp is used to hold the counters on SPARC
2674   LIR_Opr tmp = new_pointer_register();
2675   if (x->recv() != NULL) {
2676     LIRItem value(x->recv(), this);
2677     value.load_item();
2678     recv = new_register(T_OBJECT);
2679     __ move(value.result(), recv);
2680   }
2681   __ profile_call(x->method(), x->bci_of_invoke(), mdo, recv, tmp, x->known_holder());
2682 }
2683 
2684 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
2685   // We can safely ignore accessors here, since c2 will inline them anyway,
2686   // accessors are also always mature.
2687   if (!x->inlinee()->is_accessor()) {
2688     CodeEmitInfo* info = state_for(x, x->state(), true);
2689     // Increment invocation counter, don't notify the runtime, because we don't inline loops,
2690     increment_event_counter_impl(info, x->inlinee(), 0, InvocationEntryBci, false, false);
2691   }
2692 }
2693 
2694 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
2695   int freq_log;
2696   int level = compilation()->env()->comp_level();
2697   if (level == CompLevel_limited_profile) {
2698     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
2699   } else if (level == CompLevel_full_profile) {
2700     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
2701   } else {
2702     ShouldNotReachHere();
2703   }
2704   // Increment the appropriate invocation/backedge counter and notify the runtime.
2705   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
2706 }
2707 
2708 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
2709                                                 ciMethod *method, int frequency,
2710                                                 int bci, bool backedge, bool notify) {
2711   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
2712   int level = _compilation->env()->comp_level();
2713   assert(level > CompLevel_simple, "Shouldn't be here");
2714 
2715   int offset = -1;
2716   LIR_Opr counter_holder = new_register(T_OBJECT);
2717   LIR_Opr meth;
2718   if (level == CompLevel_limited_profile) {
2719     offset = in_bytes(backedge ? methodOopDesc::backedge_counter_offset() :
2720                                  methodOopDesc::invocation_counter_offset());
2721     __ oop2reg(method->constant_encoding(), counter_holder);
2722     meth = counter_holder;
2723   } else if (level == CompLevel_full_profile) {
2724     offset = in_bytes(backedge ? methodDataOopDesc::backedge_counter_offset() :
2725                                  methodDataOopDesc::invocation_counter_offset());
2726     __ oop2reg(method->method_data()->constant_encoding(), counter_holder);
2727     meth = new_register(T_OBJECT);
2728     __ oop2reg(method->constant_encoding(), meth);
2729   } else {
2730     ShouldNotReachHere();
2731   }
2732   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
2733   LIR_Opr result = new_register(T_INT);
2734   __ load(counter, result);
2735   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
2736   __ store(result, counter);
2737   if (notify) {
2738     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
2739     __ logical_and(result, mask, result);
2740     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
2741     // The bci for info can point to cmp for if's we want the if bci
2742     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
2743     __ branch(lir_cond_equal, T_INT, overflow);
2744     __ branch_destination(overflow->continuation());
2745   }
2746 }
2747 
2748 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
2749   LIRItemList args(1);
2750   LIRItem value(arg1, this);
2751   args.append(&value);
2752   BasicTypeList signature;
2753   signature.append(as_BasicType(arg1->type()));
2754 
2755   return call_runtime(&signature, &args, entry, result_type, info);
2756 }
2757 
2758 
2759 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
2760   LIRItemList args(2);
2761   LIRItem value1(arg1, this);
2762   LIRItem value2(arg2, this);
2763   args.append(&value1);
2764   args.append(&value2);
2765   BasicTypeList signature;
2766   signature.append(as_BasicType(arg1->type()));
2767   signature.append(as_BasicType(arg2->type()));
2768 
2769   return call_runtime(&signature, &args, entry, result_type, info);
2770 }
2771 
2772 
2773 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
2774                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2775   // get a result register
2776   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2777   LIR_Opr result = LIR_OprFact::illegalOpr;
2778   if (result_type->tag() != voidTag) {
2779     result = new_register(result_type);
2780     phys_reg = result_register_for(result_type);
2781   }
2782 
2783   // move the arguments into the correct location
2784   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2785   assert(cc->length() == args->length(), "argument mismatch");
2786   for (int i = 0; i < args->length(); i++) {
2787     LIR_Opr arg = args->at(i);
2788     LIR_Opr loc = cc->at(i);
2789     if (loc->is_register()) {
2790       __ move(arg, loc);
2791     } else {
2792       LIR_Address* addr = loc->as_address_ptr();
2793 //           if (!can_store_as_constant(arg)) {
2794 //             LIR_Opr tmp = new_register(arg->type());
2795 //             __ move(arg, tmp);
2796 //             arg = tmp;
2797 //           }
2798       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2799         __ unaligned_move(arg, addr);
2800       } else {
2801         __ move(arg, addr);
2802       }
2803     }
2804   }
2805 
2806   if (info) {
2807     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2808   } else {
2809     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2810   }
2811   if (result->is_valid()) {
2812     __ move(phys_reg, result);
2813   }
2814   return result;
2815 }
2816 
2817 
2818 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
2819                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
2820   // get a result register
2821   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
2822   LIR_Opr result = LIR_OprFact::illegalOpr;
2823   if (result_type->tag() != voidTag) {
2824     result = new_register(result_type);
2825     phys_reg = result_register_for(result_type);
2826   }
2827 
2828   // move the arguments into the correct location
2829   CallingConvention* cc = frame_map()->c_calling_convention(signature);
2830 
2831   assert(cc->length() == args->length(), "argument mismatch");
2832   for (int i = 0; i < args->length(); i++) {
2833     LIRItem* arg = args->at(i);
2834     LIR_Opr loc = cc->at(i);
2835     if (loc->is_register()) {
2836       arg->load_item_force(loc);
2837     } else {
2838       LIR_Address* addr = loc->as_address_ptr();
2839       arg->load_for_store(addr->type());
2840       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2841         __ unaligned_move(arg->result(), addr);
2842       } else {
2843         __ move(arg->result(), addr);
2844       }
2845     }
2846   }
2847 
2848   if (info) {
2849     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
2850   } else {
2851     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
2852   }
2853   if (result->is_valid()) {
2854     __ move(phys_reg, result);
2855   }
2856   return result;
2857 }