1 /*
   2  * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc_interface/collectedHeap.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/barrierSet.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "oops/objArrayKlass.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/interfaceSupport.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/threadCritical.hpp"
  56 #include "runtime/vframe.hpp"
  57 #include "runtime/vframeArray.hpp"
  58 #include "utilities/copy.hpp"
  59 #include "utilities/events.hpp"
  60 
  61 
  62 // Implementation of StubAssembler
  63 
  64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  65   _name = name;
  66   _must_gc_arguments = false;
  67   _frame_size = no_frame_size;
  68   _num_rt_args = 0;
  69   _stub_id = stub_id;
  70 }
  71 
  72 
  73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  74   _name = name;
  75   _must_gc_arguments = must_gc_arguments;
  76 }
  77 
  78 
  79 void StubAssembler::set_frame_size(int size) {
  80   if (_frame_size == no_frame_size) {
  81     _frame_size = size;
  82   }
  83   assert(_frame_size == size, "can't change the frame size");
  84 }
  85 
  86 
  87 void StubAssembler::set_num_rt_args(int args) {
  88   if (_num_rt_args == 0) {
  89     _num_rt_args = args;
  90   }
  91   assert(_num_rt_args == args, "can't change the number of args");
  92 }
  93 
  94 // Implementation of Runtime1
  95 
  96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
  97 const char *Runtime1::_blob_names[] = {
  98   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
  99 };
 100 
 101 #ifndef PRODUCT
 102 // statistics
 103 int Runtime1::_generic_arraycopy_cnt = 0;
 104 int Runtime1::_primitive_arraycopy_cnt = 0;
 105 int Runtime1::_oop_arraycopy_cnt = 0;
 106 int Runtime1::_arraycopy_slowcase_cnt = 0;
 107 int Runtime1::_new_type_array_slowcase_cnt = 0;
 108 int Runtime1::_new_object_array_slowcase_cnt = 0;
 109 int Runtime1::_new_instance_slowcase_cnt = 0;
 110 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 111 int Runtime1::_monitorenter_slowcase_cnt = 0;
 112 int Runtime1::_monitorexit_slowcase_cnt = 0;
 113 int Runtime1::_patch_code_slowcase_cnt = 0;
 114 int Runtime1::_throw_range_check_exception_count = 0;
 115 int Runtime1::_throw_index_exception_count = 0;
 116 int Runtime1::_throw_div0_exception_count = 0;
 117 int Runtime1::_throw_null_pointer_exception_count = 0;
 118 int Runtime1::_throw_class_cast_exception_count = 0;
 119 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 120 int Runtime1::_throw_array_store_exception_count = 0;
 121 int Runtime1::_throw_count = 0;
 122 #endif
 123 
 124 // Simple helper to see if the caller of a runtime stub which
 125 // entered the VM has been deoptimized
 126 
 127 static bool caller_is_deopted() {
 128   JavaThread* thread = JavaThread::current();
 129   RegisterMap reg_map(thread, false);
 130   frame runtime_frame = thread->last_frame();
 131   frame caller_frame = runtime_frame.sender(&reg_map);
 132   assert(caller_frame.is_compiled_frame(), "must be compiled");
 133   return caller_frame.is_deoptimized_frame();
 134 }
 135 
 136 // Stress deoptimization
 137 static void deopt_caller() {
 138   if ( !caller_is_deopted()) {
 139     JavaThread* thread = JavaThread::current();
 140     RegisterMap reg_map(thread, false);
 141     frame runtime_frame = thread->last_frame();
 142     frame caller_frame = runtime_frame.sender(&reg_map);
 143     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 144     assert(caller_is_deopted(), "Must be deoptimized");
 145   }
 146 }
 147 
 148 
 149 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 150   assert(0 <= id && id < number_of_ids, "illegal stub id");
 151   ResourceMark rm;
 152   // create code buffer for code storage
 153   CodeBuffer code(buffer_blob);
 154 
 155   Compilation::setup_code_buffer(&code, 0);
 156 
 157   // create assembler for code generation
 158   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 159   // generate code for runtime stub
 160   OopMapSet* oop_maps;
 161   oop_maps = generate_code_for(id, sasm);
 162   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 163          "if stub has an oop map it must have a valid frame size");
 164 
 165 #ifdef ASSERT
 166   // Make sure that stubs that need oopmaps have them
 167   switch (id) {
 168     // These stubs don't need to have an oopmap
 169     case dtrace_object_alloc_id:
 170     case g1_pre_barrier_slow_id:
 171     case g1_post_barrier_slow_id:
 172     case slow_subtype_check_id:
 173     case fpu2long_stub_id:
 174     case unwind_exception_id:
 175     case counter_overflow_id:
 176 #if defined(SPARC) || defined(PPC)
 177     case handle_exception_nofpu_id:  // Unused on sparc
 178 #endif
 179       break;
 180 
 181     // All other stubs should have oopmaps
 182     default:
 183       assert(oop_maps != NULL, "must have an oopmap");
 184   }
 185 #endif
 186 
 187   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 188   sasm->align(BytesPerWord);
 189   // make sure all code is in code buffer
 190   sasm->flush();
 191   // create blob - distinguish a few special cases
 192   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 193                                                  &code,
 194                                                  CodeOffsets::frame_never_safe,
 195                                                  sasm->frame_size(),
 196                                                  oop_maps,
 197                                                  sasm->must_gc_arguments());
 198   // install blob
 199   assert(blob != NULL, "blob must exist");
 200   _blobs[id] = blob;
 201 }
 202 
 203 
 204 void Runtime1::initialize(BufferBlob* blob) {
 205   // platform-dependent initialization
 206   initialize_pd();
 207   // generate stubs
 208   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 209   // printing
 210 #ifndef PRODUCT
 211   if (PrintSimpleStubs) {
 212     ResourceMark rm;
 213     for (int id = 0; id < number_of_ids; id++) {
 214       _blobs[id]->print();
 215       if (_blobs[id]->oop_maps() != NULL) {
 216         _blobs[id]->oop_maps()->print();
 217       }
 218     }
 219   }
 220 #endif
 221 }
 222 
 223 
 224 CodeBlob* Runtime1::blob_for(StubID id) {
 225   assert(0 <= id && id < number_of_ids, "illegal stub id");
 226   return _blobs[id];
 227 }
 228 
 229 
 230 const char* Runtime1::name_for(StubID id) {
 231   assert(0 <= id && id < number_of_ids, "illegal stub id");
 232   return _blob_names[id];
 233 }
 234 
 235 const char* Runtime1::name_for_address(address entry) {
 236   for (int id = 0; id < number_of_ids; id++) {
 237     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 238   }
 239 
 240 #define FUNCTION_CASE(a, f) \
 241   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 242 
 243   FUNCTION_CASE(entry, os::javaTimeMillis);
 244   FUNCTION_CASE(entry, os::javaTimeNanos);
 245   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 246   FUNCTION_CASE(entry, SharedRuntime::d2f);
 247   FUNCTION_CASE(entry, SharedRuntime::d2i);
 248   FUNCTION_CASE(entry, SharedRuntime::d2l);
 249   FUNCTION_CASE(entry, SharedRuntime::dcos);
 250   FUNCTION_CASE(entry, SharedRuntime::dexp);
 251   FUNCTION_CASE(entry, SharedRuntime::dlog);
 252   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 253   FUNCTION_CASE(entry, SharedRuntime::dpow);
 254   FUNCTION_CASE(entry, SharedRuntime::drem);
 255   FUNCTION_CASE(entry, SharedRuntime::dsin);
 256   FUNCTION_CASE(entry, SharedRuntime::dtan);
 257   FUNCTION_CASE(entry, SharedRuntime::f2i);
 258   FUNCTION_CASE(entry, SharedRuntime::f2l);
 259   FUNCTION_CASE(entry, SharedRuntime::frem);
 260   FUNCTION_CASE(entry, SharedRuntime::l2d);
 261   FUNCTION_CASE(entry, SharedRuntime::l2f);
 262   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 263   FUNCTION_CASE(entry, SharedRuntime::lmul);
 264   FUNCTION_CASE(entry, SharedRuntime::lrem);
 265   FUNCTION_CASE(entry, SharedRuntime::lrem);
 266   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 267   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 268   FUNCTION_CASE(entry, trace_block_entry);
 269 
 270 #undef FUNCTION_CASE
 271 
 272   // Soft float adds more runtime names.
 273   return pd_name_for_address(entry);
 274 }
 275 
 276 
 277 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, klassOopDesc* klass))
 278   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 279 
 280   assert(oop(klass)->is_klass(), "not a class");
 281   instanceKlassHandle h(thread, klass);
 282   h->check_valid_for_instantiation(true, CHECK);
 283   // make sure klass is initialized
 284   h->initialize(CHECK);
 285   // allocate instance and return via TLS
 286   oop obj = h->allocate_instance(CHECK);
 287   thread->set_vm_result(obj);
 288 JRT_END
 289 
 290 
 291 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, klassOopDesc* klass, jint length))
 292   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 293   // Note: no handle for klass needed since they are not used
 294   //       anymore after new_typeArray() and no GC can happen before.
 295   //       (This may have to change if this code changes!)
 296   assert(oop(klass)->is_klass(), "not a class");
 297   BasicType elt_type = typeArrayKlass::cast(klass)->element_type();
 298   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 299   thread->set_vm_result(obj);
 300   // This is pretty rare but this runtime patch is stressful to deoptimization
 301   // if we deoptimize here so force a deopt to stress the path.
 302   if (DeoptimizeALot) {
 303     deopt_caller();
 304   }
 305 
 306 JRT_END
 307 
 308 
 309 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, klassOopDesc* array_klass, jint length))
 310   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 311 
 312   // Note: no handle for klass needed since they are not used
 313   //       anymore after new_objArray() and no GC can happen before.
 314   //       (This may have to change if this code changes!)
 315   assert(oop(array_klass)->is_klass(), "not a class");
 316   klassOop elem_klass = objArrayKlass::cast(array_klass)->element_klass();
 317   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 318   thread->set_vm_result(obj);
 319   // This is pretty rare but this runtime patch is stressful to deoptimization
 320   // if we deoptimize here so force a deopt to stress the path.
 321   if (DeoptimizeALot) {
 322     deopt_caller();
 323   }
 324 JRT_END
 325 
 326 
 327 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, klassOopDesc* klass, int rank, jint* dims))
 328   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 329 
 330   assert(oop(klass)->is_klass(), "not a class");
 331   assert(rank >= 1, "rank must be nonzero");
 332   oop obj = arrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 333   thread->set_vm_result(obj);
 334 JRT_END
 335 
 336 
 337 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 338   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 339 JRT_END
 340 
 341 
 342 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread))
 343   THROW(vmSymbolHandles::java_lang_ArrayStoreException());
 344 JRT_END
 345 
 346 
 347 JRT_ENTRY(void, Runtime1::post_jvmti_exception_throw(JavaThread* thread))
 348   if (JvmtiExport::can_post_on_exceptions()) {
 349     vframeStream vfst(thread, true);
 350     address bcp = vfst.method()->bcp_from(vfst.bci());
 351     JvmtiExport::post_exception_throw(thread, vfst.method(), bcp, thread->exception_oop());
 352   }
 353 JRT_END
 354 
 355 // This is a helper to allow us to safepoint but allow the outer entry
 356 // to be safepoint free if we need to do an osr
 357 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, methodOopDesc* m) {
 358   nmethod* osr_nm = NULL;
 359   methodHandle method(THREAD, m);
 360 
 361   RegisterMap map(THREAD, false);
 362   frame fr =  THREAD->last_frame().sender(&map);
 363   nmethod* nm = (nmethod*) fr.cb();
 364   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 365   methodHandle enclosing_method(THREAD, nm->method());
 366 
 367   CompLevel level = (CompLevel)nm->comp_level();
 368   int bci = InvocationEntryBci;
 369   if (branch_bci != InvocationEntryBci) {
 370     // Compute desination bci
 371     address pc = method()->code_base() + branch_bci;
 372     Bytecodes::Code branch = Bytecodes::code_at(pc, method());
 373     int offset = 0;
 374     switch (branch) {
 375       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 376       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 377       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 378       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 379       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 380       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 381       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 382         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 383         break;
 384       case Bytecodes::_goto_w:
 385         offset = Bytes::get_Java_u4(pc + 1);
 386         break;
 387       default: ;
 388     }
 389     bci = branch_bci + offset;
 390   }
 391 
 392   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, THREAD);
 393   return osr_nm;
 394 }
 395 
 396 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, methodOopDesc* method))
 397   nmethod* osr_nm;
 398   JRT_BLOCK
 399     osr_nm = counter_overflow_helper(thread, bci, method);
 400     if (osr_nm != NULL) {
 401       RegisterMap map(thread, false);
 402       frame fr =  thread->last_frame().sender(&map);
 403       Deoptimization::deoptimize_frame(thread, fr.id());
 404     }
 405   JRT_BLOCK_END
 406   return NULL;
 407 JRT_END
 408 
 409 extern void vm_exit(int code);
 410 
 411 // Enter this method from compiled code handler below. This is where we transition
 412 // to VM mode. This is done as a helper routine so that the method called directly
 413 // from compiled code does not have to transition to VM. This allows the entry
 414 // method to see if the nmethod that we have just looked up a handler for has
 415 // been deoptimized while we were in the vm. This simplifies the assembly code
 416 // cpu directories.
 417 //
 418 // We are entering here from exception stub (via the entry method below)
 419 // If there is a compiled exception handler in this method, we will continue there;
 420 // otherwise we will unwind the stack and continue at the caller of top frame method
 421 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 422 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 423 // check to see if the handler we are going to return is now in a nmethod that has
 424 // been deoptimized. If that is the case we return the deopt blob
 425 // unpack_with_exception entry instead. This makes life for the exception blob easier
 426 // because making that same check and diverting is painful from assembly language.
 427 //
 428 
 429 
 430 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 431 
 432   Handle exception(thread, ex);
 433   nm = CodeCache::find_nmethod(pc);
 434   assert(nm != NULL, "this is not an nmethod");
 435   // Adjust the pc as needed/
 436   if (nm->is_deopt_pc(pc)) {
 437     RegisterMap map(thread, false);
 438     frame exception_frame = thread->last_frame().sender(&map);
 439     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 440     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 441     pc = exception_frame.pc();
 442   }
 443 #ifdef ASSERT
 444   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 445   assert(exception->is_oop(), "just checking");
 446   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 447   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 448     if (ExitVMOnVerifyError) vm_exit(-1);
 449     ShouldNotReachHere();
 450   }
 451 #endif
 452 
 453   // Check the stack guard pages and reenable them if necessary and there is
 454   // enough space on the stack to do so.  Use fast exceptions only if the guard
 455   // pages are enabled.
 456   bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 457   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 458 
 459   if (JvmtiExport::can_post_on_exceptions()) {
 460     // To ensure correct notification of exception catches and throws
 461     // we have to deoptimize here.  If we attempted to notify the
 462     // catches and throws during this exception lookup it's possible
 463     // we could deoptimize on the way out of the VM and end back in
 464     // the interpreter at the throw site.  This would result in double
 465     // notifications since the interpreter would also notify about
 466     // these same catches and throws as it unwound the frame.
 467 
 468     RegisterMap reg_map(thread);
 469     frame stub_frame = thread->last_frame();
 470     frame caller_frame = stub_frame.sender(&reg_map);
 471 
 472     // We don't really want to deoptimize the nmethod itself since we
 473     // can actually continue in the exception handler ourselves but I
 474     // don't see an easy way to have the desired effect.
 475     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 476     assert(caller_is_deopted(), "Must be deoptimized");
 477 
 478     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 479   }
 480 
 481   // ExceptionCache is used only for exceptions at call and not for implicit exceptions
 482   if (guard_pages_enabled) {
 483     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 484     if (fast_continuation != NULL) {
 485       if (fast_continuation == ExceptionCache::unwind_handler()) fast_continuation = NULL;
 486       return fast_continuation;
 487     }
 488   }
 489 
 490   // If the stack guard pages are enabled, check whether there is a handler in
 491   // the current method.  Otherwise (guard pages disabled), force an unwind and
 492   // skip the exception cache update (i.e., just leave continuation==NULL).
 493   address continuation = NULL;
 494   if (guard_pages_enabled) {
 495 
 496     // New exception handling mechanism can support inlined methods
 497     // with exception handlers since the mappings are from PC to PC
 498 
 499     // debugging support
 500     // tracing
 501     if (TraceExceptions) {
 502       ttyLocker ttyl;
 503       ResourceMark rm;
 504       tty->print_cr("Exception <%s> (0x%x) thrown in compiled method <%s> at PC " PTR_FORMAT " for thread 0x%x",
 505                     exception->print_value_string(), (address)exception(), nm->method()->print_value_string(), pc, thread);
 506     }
 507     // for AbortVMOnException flag
 508     NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 509 
 510     // Clear out the exception oop and pc since looking up an
 511     // exception handler can cause class loading, which might throw an
 512     // exception and those fields are expected to be clear during
 513     // normal bytecode execution.
 514     thread->set_exception_oop(NULL);
 515     thread->set_exception_pc(NULL);
 516 
 517     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
 518     // If an exception was thrown during exception dispatch, the exception oop may have changed
 519     thread->set_exception_oop(exception());
 520     thread->set_exception_pc(pc);
 521 
 522     // the exception cache is used only by non-implicit exceptions
 523     if (continuation == NULL) {
 524       nm->add_handler_for_exception_and_pc(exception, pc, ExceptionCache::unwind_handler());
 525     } else {
 526       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 527     }
 528   }
 529 
 530   thread->set_vm_result(exception());
 531 
 532   if (TraceExceptions) {
 533     ttyLocker ttyl;
 534     ResourceMark rm;
 535     tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
 536                   thread, continuation, pc);
 537   }
 538 
 539   return continuation;
 540 JRT_END
 541 
 542 // Enter this method from compiled code only if there is a Java exception handler
 543 // in the method handling the exception
 544 // We are entering here from exception stub. We don't do a normal VM transition here.
 545 // We do it in a helper. This is so we can check to see if the nmethod we have just
 546 // searched for an exception handler has been deoptimized in the meantime.
 547 address  Runtime1::exception_handler_for_pc(JavaThread* thread) {
 548   oop exception = thread->exception_oop();
 549   address pc = thread->exception_pc();
 550   // Still in Java mode
 551   debug_only(ResetNoHandleMark rnhm);
 552   nmethod* nm = NULL;
 553   address continuation = NULL;
 554   {
 555     // Enter VM mode by calling the helper
 556 
 557     ResetNoHandleMark rnhm;
 558     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 559   }
 560   // Back in JAVA, use no oops DON'T safepoint
 561 
 562   // Now check to see if the nmethod we were called from is now deoptimized.
 563   // If so we must return to the deopt blob and deoptimize the nmethod
 564 
 565   if (nm != NULL && caller_is_deopted()) {
 566     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 567   }
 568 
 569   return continuation;
 570 }
 571 
 572 
 573 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 574   NOT_PRODUCT(_throw_range_check_exception_count++;)
 575   Events::log("throw_range_check");
 576   char message[jintAsStringSize];
 577   sprintf(message, "%d", index);
 578   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 579 JRT_END
 580 
 581 
 582 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 583   NOT_PRODUCT(_throw_index_exception_count++;)
 584   Events::log("throw_index");
 585   char message[16];
 586   sprintf(message, "%d", index);
 587   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 588 JRT_END
 589 
 590 
 591 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 592   NOT_PRODUCT(_throw_div0_exception_count++;)
 593   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 594 JRT_END
 595 
 596 
 597 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 598   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 599   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 600 JRT_END
 601 
 602 
 603 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 604   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 605   ResourceMark rm(thread);
 606   char* message = SharedRuntime::generate_class_cast_message(
 607     thread, Klass::cast(object->klass())->external_name());
 608   SharedRuntime::throw_and_post_jvmti_exception(
 609     thread, vmSymbols::java_lang_ClassCastException(), message);
 610 JRT_END
 611 
 612 
 613 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 614   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 615   ResourceMark rm(thread);
 616   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 617 JRT_END
 618 
 619 
 620 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 621   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 622   if (PrintBiasedLockingStatistics) {
 623     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 624   }
 625   Handle h_obj(thread, obj);
 626   assert(h_obj()->is_oop(), "must be NULL or an object");
 627   if (UseBiasedLocking) {
 628     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 629     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 630   } else {
 631     if (UseFastLocking) {
 632       // When using fast locking, the compiled code has already tried the fast case
 633       assert(obj == lock->obj(), "must match");
 634       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 635     } else {
 636       lock->set_obj(obj);
 637       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 638     }
 639   }
 640 JRT_END
 641 
 642 
 643 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 644   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 645   assert(thread == JavaThread::current(), "threads must correspond");
 646   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 647   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 648   EXCEPTION_MARK;
 649 
 650   oop obj = lock->obj();
 651   assert(obj->is_oop(), "must be NULL or an object");
 652   if (UseFastLocking) {
 653     // When using fast locking, the compiled code has already tried the fast case
 654     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 655   } else {
 656     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 657   }
 658 JRT_END
 659 
 660 
 661 static klassOop resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 662   Bytecode_field* field_access = Bytecode_field_at(caller, bci);
 663   // This can be static or non-static field access
 664   Bytecodes::Code code       = field_access->code();
 665 
 666   // We must load class, initialize class and resolvethe field
 667   FieldAccessInfo result; // initialize class if needed
 668   constantPoolHandle constants(THREAD, caller->constants());
 669   LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK_NULL);
 670   return result.klass()();
 671 }
 672 
 673 
 674 //
 675 // This routine patches sites where a class wasn't loaded or
 676 // initialized at the time the code was generated.  It handles
 677 // references to classes, fields and forcing of initialization.  Most
 678 // of the cases are straightforward and involving simply forcing
 679 // resolution of a class, rewriting the instruction stream with the
 680 // needed constant and replacing the call in this function with the
 681 // patched code.  The case for static field is more complicated since
 682 // the thread which is in the process of initializing a class can
 683 // access it's static fields but other threads can't so the code
 684 // either has to deoptimize when this case is detected or execute a
 685 // check that the current thread is the initializing thread.  The
 686 // current
 687 //
 688 // Patches basically look like this:
 689 //
 690 //
 691 // patch_site: jmp patch stub     ;; will be patched
 692 // continue:   ...
 693 //             ...
 694 //             ...
 695 //             ...
 696 //
 697 // They have a stub which looks like this:
 698 //
 699 //             ;; patch body
 700 //             movl <const>, reg           (for class constants)
 701 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 702 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 703 //             <being_init offset> <bytes to copy> <bytes to skip>
 704 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 705 //             jmp patch_site
 706 //
 707 //
 708 // A normal patch is done by rewriting the patch body, usually a move,
 709 // and then copying it into place over top of the jmp instruction
 710 // being careful to flush caches and doing it in an MP-safe way.  The
 711 // constants following the patch body are used to find various pieces
 712 // of the patch relative to the call site for Runtime1::patch_code.
 713 // The case for getstatic and putstatic is more complicated because
 714 // getstatic and putstatic have special semantics when executing while
 715 // the class is being initialized.  getstatic/putstatic on a class
 716 // which is being_initialized may be executed by the initializing
 717 // thread but other threads have to block when they execute it.  This
 718 // is accomplished in compiled code by executing a test of the current
 719 // thread against the initializing thread of the class.  It's emitted
 720 // as boilerplate in their stub which allows the patched code to be
 721 // executed before it's copied back into the main body of the nmethod.
 722 //
 723 // being_init: get_thread(<tmp reg>
 724 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 725 //             jne patch_stub
 726 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 727 //             movl reg, [reg1 + <const>]  (for field offsets)
 728 //             jmp continue
 729 //             <being_init offset> <bytes to copy> <bytes to skip>
 730 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 731 //             jmp patch_site
 732 //
 733 // If the class is being initialized the patch body is rewritten and
 734 // the patch site is rewritten to jump to being_init, instead of
 735 // patch_stub.  Whenever this code is executed it checks the current
 736 // thread against the intializing thread so other threads will enter
 737 // the runtime and end up blocked waiting the class to finish
 738 // initializing inside the calls to resolve_field below.  The
 739 // initializing class will continue on it's way.  Once the class is
 740 // fully_initialized, the intializing_thread of the class becomes
 741 // NULL, so the next thread to execute this code will fail the test,
 742 // call into patch_code and complete the patching process by copying
 743 // the patch body back into the main part of the nmethod and resume
 744 // executing.
 745 //
 746 //
 747 
 748 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 749   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 750 
 751   ResourceMark rm(thread);
 752   RegisterMap reg_map(thread, false);
 753   frame runtime_frame = thread->last_frame();
 754   frame caller_frame = runtime_frame.sender(&reg_map);
 755 
 756   // last java frame on stack
 757   vframeStream vfst(thread, true);
 758   assert(!vfst.at_end(), "Java frame must exist");
 759 
 760   methodHandle caller_method(THREAD, vfst.method());
 761   // Note that caller_method->code() may not be same as caller_code because of OSR's
 762   // Note also that in the presence of inlining it is not guaranteed
 763   // that caller_method() == caller_code->method()
 764 
 765 
 766   int bci = vfst.bci();
 767 
 768   Events::log("patch_code @ " INTPTR_FORMAT , caller_frame.pc());
 769 
 770   Bytecodes::Code code = Bytecode_at(caller_method->bcp_from(bci))->java_code();
 771 
 772 #ifndef PRODUCT
 773   // this is used by assertions in the access_field_patching_id
 774   BasicType patch_field_type = T_ILLEGAL;
 775 #endif // PRODUCT
 776   bool deoptimize_for_volatile = false;
 777   int patch_field_offset = -1;
 778   KlassHandle init_klass(THREAD, klassOop(NULL)); // klass needed by access_field_patching code
 779   Handle load_klass(THREAD, NULL);                // oop needed by load_klass_patching code
 780   if (stub_id == Runtime1::access_field_patching_id) {
 781 
 782     Bytecode_field* field_access = Bytecode_field_at(caller_method, bci);
 783     FieldAccessInfo result; // initialize class if needed
 784     Bytecodes::Code code = field_access->code();
 785     constantPoolHandle constants(THREAD, caller_method->constants());
 786     LinkResolver::resolve_field(result, constants, field_access->index(), Bytecodes::java_code(code), false, CHECK);
 787     patch_field_offset = result.field_offset();
 788 
 789     // If we're patching a field which is volatile then at compile it
 790     // must not have been know to be volatile, so the generated code
 791     // isn't correct for a volatile reference.  The nmethod has to be
 792     // deoptimized so that the code can be regenerated correctly.
 793     // This check is only needed for access_field_patching since this
 794     // is the path for patching field offsets.  load_klass is only
 795     // used for patching references to oops which don't need special
 796     // handling in the volatile case.
 797     deoptimize_for_volatile = result.access_flags().is_volatile();
 798 
 799 #ifndef PRODUCT
 800     patch_field_type = result.field_type();
 801 #endif
 802   } else if (stub_id == Runtime1::load_klass_patching_id) {
 803     oop k;
 804     switch (code) {
 805       case Bytecodes::_putstatic:
 806       case Bytecodes::_getstatic:
 807         { klassOop klass = resolve_field_return_klass(caller_method, bci, CHECK);
 808           // Save a reference to the class that has to be checked for initialization
 809           init_klass = KlassHandle(THREAD, klass);
 810           k = klass;
 811         }
 812         break;
 813       case Bytecodes::_new:
 814         { Bytecode_new* bnew = Bytecode_new_at(caller_method->bcp_from(bci));
 815           k = caller_method->constants()->klass_at(bnew->index(), CHECK);
 816         }
 817         break;
 818       case Bytecodes::_multianewarray:
 819         { Bytecode_multianewarray* mna = Bytecode_multianewarray_at(caller_method->bcp_from(bci));
 820           k = caller_method->constants()->klass_at(mna->index(), CHECK);
 821         }
 822         break;
 823       case Bytecodes::_instanceof:
 824         { Bytecode_instanceof* io = Bytecode_instanceof_at(caller_method->bcp_from(bci));
 825           k = caller_method->constants()->klass_at(io->index(), CHECK);
 826         }
 827         break;
 828       case Bytecodes::_checkcast:
 829         { Bytecode_checkcast* cc = Bytecode_checkcast_at(caller_method->bcp_from(bci));
 830           k = caller_method->constants()->klass_at(cc->index(), CHECK);
 831         }
 832         break;
 833       case Bytecodes::_anewarray:
 834         { Bytecode_anewarray* anew = Bytecode_anewarray_at(caller_method->bcp_from(bci));
 835           klassOop ek = caller_method->constants()->klass_at(anew->index(), CHECK);
 836           k = Klass::cast(ek)->array_klass(CHECK);
 837         }
 838         break;
 839       case Bytecodes::_ldc:
 840       case Bytecodes::_ldc_w:
 841         {
 842           Bytecode_loadconstant* cc = Bytecode_loadconstant_at(caller_method, bci);
 843           k = cc->resolve_constant(CHECK);
 844           assert(k != NULL && !k->is_klass(), "must be class mirror or other Java constant");
 845         }
 846         break;
 847       default: Unimplemented();
 848     }
 849     // convert to handle
 850     load_klass = Handle(THREAD, k);
 851   } else {
 852     ShouldNotReachHere();
 853   }
 854 
 855   if (deoptimize_for_volatile) {
 856     // At compile time we assumed the field wasn't volatile but after
 857     // loading it turns out it was volatile so we have to throw the
 858     // compiled code out and let it be regenerated.
 859     if (TracePatching) {
 860       tty->print_cr("Deoptimizing for patching volatile field reference");
 861     }
 862     // It's possible the nmethod was invalidated in the last
 863     // safepoint, but if it's still alive then make it not_entrant.
 864     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 865     if (nm != NULL) {
 866       nm->make_not_entrant();
 867     }
 868 
 869     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 870 
 871     // Return to the now deoptimized frame.
 872   }
 873 
 874   // If we are patching in a non-perm oop, make sure the nmethod
 875   // is on the right list.
 876   if (ScavengeRootsInCode && load_klass.not_null() && load_klass->is_scavengable()) {
 877     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
 878     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 879     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
 880     if (!nm->on_scavenge_root_list())
 881       CodeCache::add_scavenge_root_nmethod(nm);
 882   }
 883 
 884   // Now copy code back
 885 
 886   {
 887     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
 888     //
 889     // Deoptimization may have happened while we waited for the lock.
 890     // In that case we don't bother to do any patching we just return
 891     // and let the deopt happen
 892     if (!caller_is_deopted()) {
 893       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
 894       address instr_pc = jump->jump_destination();
 895       NativeInstruction* ni = nativeInstruction_at(instr_pc);
 896       if (ni->is_jump() ) {
 897         // the jump has not been patched yet
 898         // The jump destination is slow case and therefore not part of the stubs
 899         // (stubs are only for StaticCalls)
 900 
 901         // format of buffer
 902         //    ....
 903         //    instr byte 0     <-- copy_buff
 904         //    instr byte 1
 905         //    ..
 906         //    instr byte n-1
 907         //      n
 908         //    ....             <-- call destination
 909 
 910         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
 911         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
 912         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
 913         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
 914         address copy_buff = stub_location - *byte_skip - *byte_count;
 915         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
 916         if (TracePatching) {
 917           tty->print_cr(" Patching %s at bci %d at address 0x%x  (%s)", Bytecodes::name(code), bci,
 918                         instr_pc, (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
 919           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
 920           assert(caller_code != NULL, "nmethod not found");
 921 
 922           // NOTE we use pc() not original_pc() because we already know they are
 923           // identical otherwise we'd have never entered this block of code
 924 
 925           OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
 926           assert(map != NULL, "null check");
 927           map->print();
 928           tty->cr();
 929 
 930           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
 931         }
 932         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
 933         bool do_patch = true;
 934         if (stub_id == Runtime1::access_field_patching_id) {
 935           // The offset may not be correct if the class was not loaded at code generation time.
 936           // Set it now.
 937           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
 938           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
 939           assert(patch_field_offset >= 0, "illegal offset");
 940           n_move->add_offset_in_bytes(patch_field_offset);
 941         } else if (stub_id == Runtime1::load_klass_patching_id) {
 942           // If a getstatic or putstatic is referencing a klass which
 943           // isn't fully initialized, the patch body isn't copied into
 944           // place until initialization is complete.  In this case the
 945           // patch site is setup so that any threads besides the
 946           // initializing thread are forced to come into the VM and
 947           // block.
 948           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
 949                      instanceKlass::cast(init_klass())->is_initialized();
 950           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
 951           if (jump->jump_destination() == being_initialized_entry) {
 952             assert(do_patch == true, "initialization must be complete at this point");
 953           } else {
 954             // patch the instruction <move reg, klass>
 955             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
 956 
 957             assert(n_copy->data() == 0 ||
 958                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
 959                    "illegal init value");
 960             assert(load_klass() != NULL, "klass not set");
 961             n_copy->set_data((intx) (load_klass()));
 962 
 963             if (TracePatching) {
 964               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
 965             }
 966 
 967 #if defined(SPARC) || defined(PPC)
 968             // Update the oop location in the nmethod with the proper
 969             // oop.  When the code was generated, a NULL was stuffed
 970             // in the oop table and that table needs to be update to
 971             // have the right value.  On intel the value is kept
 972             // directly in the instruction instead of in the oop
 973             // table, so set_data above effectively updated the value.
 974             nmethod* nm = CodeCache::find_nmethod(instr_pc);
 975             assert(nm != NULL, "invalid nmethod_pc");
 976             RelocIterator oops(nm, copy_buff, copy_buff + 1);
 977             bool found = false;
 978             while (oops.next() && !found) {
 979               if (oops.type() == relocInfo::oop_type) {
 980                 oop_Relocation* r = oops.oop_reloc();
 981                 oop* oop_adr = r->oop_addr();
 982                 *oop_adr = load_klass();
 983                 r->fix_oop_relocation();
 984                 found = true;
 985               }
 986             }
 987             assert(found, "the oop must exist!");
 988 #endif
 989 
 990           }
 991         } else {
 992           ShouldNotReachHere();
 993         }
 994         if (do_patch) {
 995           // replace instructions
 996           // first replace the tail, then the call
 997 #ifdef ARM
 998           if(stub_id == Runtime1::load_klass_patching_id && !VM_Version::supports_movw()) {
 999             copy_buff -= *byte_count;
1000             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1001             n_copy2->set_data((intx) (load_klass()), instr_pc);
1002           }
1003 #endif
1004 
1005           for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1006             address ptr = copy_buff + i;
1007             int a_byte = (*ptr) & 0xFF;
1008             address dst = instr_pc + i;
1009             *(unsigned char*)dst = (unsigned char) a_byte;
1010           }
1011           ICache::invalidate_range(instr_pc, *byte_count);
1012           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1013 
1014           if (stub_id == Runtime1::load_klass_patching_id) {
1015             // update relocInfo to oop
1016             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1017             assert(nm != NULL, "invalid nmethod_pc");
1018 
1019             // The old patch site is now a move instruction so update
1020             // the reloc info so that it will get updated during
1021             // future GCs.
1022             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1023             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1024                                                      relocInfo::none, relocInfo::oop_type);
1025 #ifdef SPARC
1026             // Sparc takes two relocations for an oop so update the second one.
1027             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1028             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1029             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1030                                                      relocInfo::none, relocInfo::oop_type);
1031 #endif
1032 #ifdef PPC
1033           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1034             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1035             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2, relocInfo::none, relocInfo::oop_type);
1036           }
1037 #endif
1038           }
1039 
1040         } else {
1041           ICache::invalidate_range(copy_buff, *byte_count);
1042           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1043         }
1044       }
1045     }
1046   }
1047 JRT_END
1048 
1049 //
1050 // Entry point for compiled code. We want to patch a nmethod.
1051 // We don't do a normal VM transition here because we want to
1052 // know after the patching is complete and any safepoint(s) are taken
1053 // if the calling nmethod was deoptimized. We do this by calling a
1054 // helper method which does the normal VM transition and when it
1055 // completes we can check for deoptimization. This simplifies the
1056 // assembly code in the cpu directories.
1057 //
1058 int Runtime1::move_klass_patching(JavaThread* thread) {
1059 //
1060 // NOTE: we are still in Java
1061 //
1062   Thread* THREAD = thread;
1063   debug_only(NoHandleMark nhm;)
1064   {
1065     // Enter VM mode
1066 
1067     ResetNoHandleMark rnhm;
1068     patch_code(thread, load_klass_patching_id);
1069   }
1070   // Back in JAVA, use no oops DON'T safepoint
1071 
1072   // Return true if calling code is deoptimized
1073 
1074   return caller_is_deopted();
1075 }
1076 
1077 //
1078 // Entry point for compiled code. We want to patch a nmethod.
1079 // We don't do a normal VM transition here because we want to
1080 // know after the patching is complete and any safepoint(s) are taken
1081 // if the calling nmethod was deoptimized. We do this by calling a
1082 // helper method which does the normal VM transition and when it
1083 // completes we can check for deoptimization. This simplifies the
1084 // assembly code in the cpu directories.
1085 //
1086 
1087 int Runtime1::access_field_patching(JavaThread* thread) {
1088 //
1089 // NOTE: we are still in Java
1090 //
1091   Thread* THREAD = thread;
1092   debug_only(NoHandleMark nhm;)
1093   {
1094     // Enter VM mode
1095 
1096     ResetNoHandleMark rnhm;
1097     patch_code(thread, access_field_patching_id);
1098   }
1099   // Back in JAVA, use no oops DON'T safepoint
1100 
1101   // Return true if calling code is deoptimized
1102 
1103   return caller_is_deopted();
1104 JRT_END
1105 
1106 
1107 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1108   // for now we just print out the block id
1109   tty->print("%d ", block_id);
1110 JRT_END
1111 
1112 
1113 // Array copy return codes.
1114 enum {
1115   ac_failed = -1, // arraycopy failed
1116   ac_ok = 0       // arraycopy succeeded
1117 };
1118 
1119 
1120 // Below length is the # elements copied.
1121 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1122                                           oopDesc* dst, T* dst_addr,
1123                                           int length) {
1124 
1125   // For performance reasons, we assume we are using a card marking write
1126   // barrier. The assert will fail if this is not the case.
1127   // Note that we use the non-virtual inlineable variant of write_ref_array.
1128   BarrierSet* bs = Universe::heap()->barrier_set();
1129   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1130   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1131   if (src == dst) {
1132     // same object, no check
1133     bs->write_ref_array_pre(dst_addr, length);
1134     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1135     bs->write_ref_array((HeapWord*)dst_addr, length);
1136     return ac_ok;
1137   } else {
1138     klassOop bound = objArrayKlass::cast(dst->klass())->element_klass();
1139     klassOop stype = objArrayKlass::cast(src->klass())->element_klass();
1140     if (stype == bound || Klass::cast(stype)->is_subtype_of(bound)) {
1141       // Elements are guaranteed to be subtypes, so no check necessary
1142       bs->write_ref_array_pre(dst_addr, length);
1143       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1144       bs->write_ref_array((HeapWord*)dst_addr, length);
1145       return ac_ok;
1146     }
1147   }
1148   return ac_failed;
1149 }
1150 
1151 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1152 // and we did not copy anything
1153 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1154 #ifndef PRODUCT
1155   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1156 #endif
1157 
1158   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1159   if (!dst->is_array() || !src->is_array()) return ac_failed;
1160   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1161   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1162 
1163   if (length == 0) return ac_ok;
1164   if (src->is_typeArray()) {
1165     const klassOop klass_oop = src->klass();
1166     if (klass_oop != dst->klass()) return ac_failed;
1167     typeArrayKlass* klass = typeArrayKlass::cast(klass_oop);
1168     const int l2es = klass->log2_element_size();
1169     const int ihs = klass->array_header_in_bytes() / wordSize;
1170     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1171     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1172     // Potential problem: memmove is not guaranteed to be word atomic
1173     // Revisit in Merlin
1174     memmove(dst_addr, src_addr, length << l2es);
1175     return ac_ok;
1176   } else if (src->is_objArray() && dst->is_objArray()) {
1177     if (UseCompressedOops) {
1178       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1179       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1180       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1181     } else {
1182       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1183       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1184       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1185     }
1186   }
1187   return ac_failed;
1188 JRT_END
1189 
1190 
1191 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1192 #ifndef PRODUCT
1193   _primitive_arraycopy_cnt++;
1194 #endif
1195 
1196   if (length == 0) return;
1197   // Not guaranteed to be word atomic, but that doesn't matter
1198   // for anything but an oop array, which is covered by oop_arraycopy.
1199   Copy::conjoint_jbytes(src, dst, length);
1200 JRT_END
1201 
1202 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1203 #ifndef PRODUCT
1204   _oop_arraycopy_cnt++;
1205 #endif
1206 
1207   if (num == 0) return;
1208   BarrierSet* bs = Universe::heap()->barrier_set();
1209   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1210   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1211   if (UseCompressedOops) {
1212     bs->write_ref_array_pre((narrowOop*)dst, num);
1213     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1214   } else {
1215     bs->write_ref_array_pre((oop*)dst, num);
1216     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1217   }
1218   bs->write_ref_array(dst, num);
1219 JRT_END
1220 
1221 
1222 #ifndef PRODUCT
1223 void Runtime1::print_statistics() {
1224   tty->print_cr("C1 Runtime statistics:");
1225   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1226   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1227   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1228   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1229   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1230   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1231   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1232   tty->print_cr(" _oop_arraycopy_cnt:              %d", _oop_arraycopy_cnt);
1233   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1234 
1235   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1236   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1237   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1238   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1239   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1240   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1241   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1242 
1243   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1244   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1245   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1246   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1247   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1248   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1249   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1250   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1251 
1252   SharedRuntime::print_ic_miss_histogram();
1253   tty->cr();
1254 }
1255 #endif // PRODUCT