1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_deoptimization.cpp.incl"
  27 
  28 bool DeoptimizationMarker::_is_active = false;
  29 
  30 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  31                                          int  caller_adjustment,
  32                                          int  number_of_frames,
  33                                          intptr_t* frame_sizes,
  34                                          address* frame_pcs,
  35                                          BasicType return_type) {
  36   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  37   _caller_adjustment         = caller_adjustment;
  38   _number_of_frames          = number_of_frames;
  39   _frame_sizes               = frame_sizes;
  40   _frame_pcs                 = frame_pcs;
  41   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
  42   _return_type               = return_type;
  43   // PD (x86 only)
  44   _counter_temp              = 0;
  45   _initial_fp                = 0;
  46   _unpack_kind               = 0;
  47   _sender_sp_temp            = 0;
  48 
  49   _total_frame_sizes         = size_of_frames();
  50 }
  51 
  52 
  53 Deoptimization::UnrollBlock::~UnrollBlock() {
  54   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  55   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  56   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  57 }
  58 
  59 
  60 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
  61   assert(register_number < RegisterMap::reg_count, "checking register number");
  62   return &_register_block[register_number * 2];
  63 }
  64 
  65 
  66 
  67 int Deoptimization::UnrollBlock::size_of_frames() const {
  68   // Acount first for the adjustment of the initial frame
  69   int result = _caller_adjustment;
  70   for (int index = 0; index < number_of_frames(); index++) {
  71     result += frame_sizes()[index];
  72   }
  73   return result;
  74 }
  75 
  76 
  77 void Deoptimization::UnrollBlock::print() {
  78   ttyLocker ttyl;
  79   tty->print_cr("UnrollBlock");
  80   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
  81   tty->print(   "  frame_sizes: ");
  82   for (int index = 0; index < number_of_frames(); index++) {
  83     tty->print("%d ", frame_sizes()[index]);
  84   }
  85   tty->cr();
  86 }
  87 
  88 
  89 // In order to make fetch_unroll_info work properly with escape
  90 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
  91 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
  92 // of previously eliminated objects occurs in realloc_objects, which is
  93 // called from the method fetch_unroll_info_helper below.
  94 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
  95   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
  96   // but makes the entry a little slower. There is however a little dance we have to
  97   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
  98 
  99   // fetch_unroll_info() is called at the beginning of the deoptimization
 100   // handler. Note this fact before we start generating temporary frames
 101   // that can confuse an asynchronous stack walker. This counter is
 102   // decremented at the end of unpack_frames().
 103   thread->inc_in_deopt_handler();
 104 
 105   return fetch_unroll_info_helper(thread);
 106 JRT_END
 107 
 108 
 109 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 110 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 111 
 112   // Note: there is a safepoint safety issue here. No matter whether we enter
 113   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 114   // the vframeArray is created.
 115   //
 116 
 117   // Allocate our special deoptimization ResourceMark
 118   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 119   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 120   thread->set_deopt_mark(dmark);
 121 
 122   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 123   RegisterMap map(thread, true);
 124   RegisterMap dummy_map(thread, false);
 125   // Now get the deoptee with a valid map
 126   frame deoptee = stub_frame.sender(&map);
 127   // Set the deoptee nmethod
 128   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 129   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 130 
 131   // Create a growable array of VFrames where each VFrame represents an inlined
 132   // Java frame.  This storage is allocated with the usual system arena.
 133   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 134   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 135   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 136   while (!vf->is_top()) {
 137     assert(vf->is_compiled_frame(), "Wrong frame type");
 138     chunk->push(compiledVFrame::cast(vf));
 139     vf = vf->sender();
 140   }
 141   assert(vf->is_compiled_frame(), "Wrong frame type");
 142   chunk->push(compiledVFrame::cast(vf));
 143 
 144 #ifdef COMPILER2
 145   // Reallocate the non-escaping objects and restore their fields. Then
 146   // relock objects if synchronization on them was eliminated.
 147   if (DoEscapeAnalysis) {
 148     if (EliminateAllocations) {
 149       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 150       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 151 
 152       // The flag return_oop() indicates call sites which return oop
 153       // in compiled code. Such sites include java method calls,
 154       // runtime calls (for example, used to allocate new objects/arrays
 155       // on slow code path) and any other calls generated in compiled code.
 156       // It is not guaranteed that we can get such information here only
 157       // by analyzing bytecode in deoptimized frames. This is why this flag
 158       // is set during method compilation (see Compile::Process_OopMap_Node()).
 159       bool save_oop_result = chunk->at(0)->scope()->return_oop();
 160       Handle return_value;
 161       if (save_oop_result) {
 162         // Reallocation may trigger GC. If deoptimization happened on return from
 163         // call which returns oop we need to save it since it is not in oopmap.
 164         oop result = deoptee.saved_oop_result(&map);
 165         assert(result == NULL || result->is_oop(), "must be oop");
 166         return_value = Handle(thread, result);
 167         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 168         if (TraceDeoptimization) {
 169           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
 170         }
 171       }
 172       bool reallocated = false;
 173       if (objects != NULL) {
 174         JRT_BLOCK
 175           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 176         JRT_END
 177       }
 178       if (reallocated) {
 179         reassign_fields(&deoptee, &map, objects);
 180 #ifndef PRODUCT
 181         if (TraceDeoptimization) {
 182           ttyLocker ttyl;
 183           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 184           print_objects(objects);
 185         }
 186 #endif
 187       }
 188       if (save_oop_result) {
 189         // Restore result.
 190         deoptee.set_saved_oop_result(&map, return_value());
 191       }
 192     }
 193     if (EliminateLocks) {
 194 #ifndef PRODUCT
 195       bool first = true;
 196 #endif
 197       for (int i = 0; i < chunk->length(); i++) {
 198         compiledVFrame* cvf = chunk->at(i);
 199         assert (cvf->scope() != NULL,"expect only compiled java frames");
 200         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 201         if (monitors->is_nonempty()) {
 202           relock_objects(monitors, thread);
 203 #ifndef PRODUCT
 204           if (TraceDeoptimization) {
 205             ttyLocker ttyl;
 206             for (int j = 0; j < monitors->length(); j++) {
 207               MonitorInfo* mi = monitors->at(j);
 208               if (mi->eliminated()) {
 209                 if (first) {
 210                   first = false;
 211                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 212                 }
 213                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
 214               }
 215             }
 216           }
 217 #endif
 218         }
 219       }
 220     }
 221   }
 222 #endif // COMPILER2
 223   // Ensure that no safepoint is taken after pointers have been stored
 224   // in fields of rematerialized objects.  If a safepoint occurs from here on
 225   // out the java state residing in the vframeArray will be missed.
 226   No_Safepoint_Verifier no_safepoint;
 227 
 228   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 229 
 230   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 231   thread->set_vframe_array_head(array);
 232 
 233   // Now that the vframeArray has been created if we have any deferred local writes
 234   // added by jvmti then we can free up that structure as the data is now in the
 235   // vframeArray
 236 
 237   if (thread->deferred_locals() != NULL) {
 238     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 239     int i = 0;
 240     do {
 241       // Because of inlining we could have multiple vframes for a single frame
 242       // and several of the vframes could have deferred writes. Find them all.
 243       if (list->at(i)->id() == array->original().id()) {
 244         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 245         list->remove_at(i);
 246         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 247         delete dlv;
 248       } else {
 249         i++;
 250       }
 251     } while ( i < list->length() );
 252     if (list->length() == 0) {
 253       thread->set_deferred_locals(NULL);
 254       // free the list and elements back to C heap.
 255       delete list;
 256     }
 257 
 258   }
 259 
 260 #ifndef SHARK
 261   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 262   CodeBlob* cb = stub_frame.cb();
 263   // Verify we have the right vframeArray
 264   assert(cb->frame_size() >= 0, "Unexpected frame size");
 265   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 266 
 267   // If the deopt call site is a MethodHandle invoke call site we have
 268   // to adjust the unpack_sp.
 269   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 270   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 271     unpack_sp = deoptee.unextended_sp();
 272 
 273 #ifdef ASSERT
 274   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 275   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
 276 #endif
 277 #else
 278   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 279 #endif // !SHARK
 280 
 281   // This is a guarantee instead of an assert because if vframe doesn't match
 282   // we will unpack the wrong deoptimized frame and wind up in strange places
 283   // where it will be very difficult to figure out what went wrong. Better
 284   // to die an early death here than some very obscure death later when the
 285   // trail is cold.
 286   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 287   // in that it will fail to detect a problem when there is one. This needs
 288   // more work in tiger timeframe.
 289   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 290 
 291   int number_of_frames = array->frames();
 292 
 293   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 294   // virtual activation, which is the reverse of the elements in the vframes array.
 295   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
 296   // +1 because we always have an interpreter return address for the final slot.
 297   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
 298   int callee_parameters = 0;
 299   int callee_locals = 0;
 300   int popframe_extra_args = 0;
 301   // Create an interpreter return address for the stub to use as its return
 302   // address so the skeletal frames are perfectly walkable
 303   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 304 
 305   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 306   // activation be put back on the expression stack of the caller for reexecution
 307   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 308     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 309   }
 310 
 311   //
 312   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 313   // frame_sizes/frame_pcs[1] next oldest frame (int)
 314   // frame_sizes/frame_pcs[n] youngest frame (int)
 315   //
 316   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 317   // owns the space for the return address to it's caller).  Confusing ain't it.
 318   //
 319   // The vframe array can address vframes with indices running from
 320   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 321   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 322   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 323   // so things look a little strange in this loop.
 324   //
 325   for (int index = 0; index < array->frames(); index++ ) {
 326     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 327     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 328     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 329     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 330                                                                                                     callee_locals,
 331                                                                                                     index == 0,
 332                                                                                                     popframe_extra_args);
 333     // This pc doesn't have to be perfect just good enough to identify the frame
 334     // as interpreted so the skeleton frame will be walkable
 335     // The correct pc will be set when the skeleton frame is completely filled out
 336     // The final pc we store in the loop is wrong and will be overwritten below
 337     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 338 
 339     callee_parameters = array->element(index)->method()->size_of_parameters();
 340     callee_locals = array->element(index)->method()->max_locals();
 341     popframe_extra_args = 0;
 342   }
 343 
 344   // Compute whether the root vframe returns a float or double value.
 345   BasicType return_type;
 346   {
 347     HandleMark hm;
 348     methodHandle method(thread, array->element(0)->method());
 349     Bytecode_invoke* invoke = Bytecode_invoke_at_check(method, array->element(0)->bci());
 350     return_type = (invoke != NULL) ? invoke->result_type(thread) : T_ILLEGAL;
 351   }
 352 
 353   // Compute information for handling adapters and adjusting the frame size of the caller.
 354   int caller_adjustment = 0;
 355 
 356   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 357   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 358   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 359   //
 360   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 361   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 362 
 363   // Compute the amount the oldest interpreter frame will have to adjust
 364   // its caller's stack by. If the caller is a compiled frame then
 365   // we pretend that the callee has no parameters so that the
 366   // extension counts for the full amount of locals and not just
 367   // locals-parms. This is because without a c2i adapter the parm
 368   // area as created by the compiled frame will not be usable by
 369   // the interpreter. (Depending on the calling convention there
 370   // may not even be enough space).
 371 
 372   // QQQ I'd rather see this pushed down into last_frame_adjust
 373   // and have it take the sender (aka caller).
 374 
 375   if (deopt_sender.is_compiled_frame()) {
 376     caller_adjustment = last_frame_adjust(0, callee_locals);
 377   } else if (callee_locals > callee_parameters) {
 378     // The caller frame may need extending to accommodate
 379     // non-parameter locals of the first unpacked interpreted frame.
 380     // Compute that adjustment.
 381     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 382   }
 383 
 384 
 385   // If the sender is deoptimized the we must retrieve the address of the handler
 386   // since the frame will "magically" show the original pc before the deopt
 387   // and we'd undo the deopt.
 388 
 389   frame_pcs[0] = deopt_sender.raw_pc();
 390 
 391 #ifndef SHARK
 392   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 393 #endif // SHARK
 394 
 395   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 396                                       caller_adjustment * BytesPerWord,
 397                                       number_of_frames,
 398                                       frame_sizes,
 399                                       frame_pcs,
 400                                       return_type);
 401 #if defined(IA32) || defined(AMD64)
 402   // We need a way to pass fp to the unpacking code so the skeletal frames
 403   // come out correct. This is only needed for x86 because of c2 using ebp
 404   // as an allocatable register. So this update is useless (and harmless)
 405   // on the other platforms. It would be nice to do this in a different
 406   // way but even the old style deoptimization had a problem with deriving
 407   // this value. NEEDS_CLEANUP
 408   // Note: now that c1 is using c2's deopt blob we must do this on all
 409   // x86 based platforms
 410   intptr_t** fp_addr = (intptr_t**) (((address)info) + info->initial_fp_offset_in_bytes());
 411   *fp_addr = array->sender().fp(); // was adapter_caller
 412 #endif /* IA32 || AMD64 */
 413 
 414   if (array->frames() > 1) {
 415     if (VerifyStack && TraceDeoptimization) {
 416       tty->print_cr("Deoptimizing method containing inlining");
 417     }
 418   }
 419 
 420   array->set_unroll_block(info);
 421   return info;
 422 }
 423 
 424 // Called to cleanup deoptimization data structures in normal case
 425 // after unpacking to stack and when stack overflow error occurs
 426 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 427                                         vframeArray *array) {
 428 
 429   // Get array if coming from exception
 430   if (array == NULL) {
 431     array = thread->vframe_array_head();
 432   }
 433   thread->set_vframe_array_head(NULL);
 434 
 435   // Free the previous UnrollBlock
 436   vframeArray* old_array = thread->vframe_array_last();
 437   thread->set_vframe_array_last(array);
 438 
 439   if (old_array != NULL) {
 440     UnrollBlock* old_info = old_array->unroll_block();
 441     old_array->set_unroll_block(NULL);
 442     delete old_info;
 443     delete old_array;
 444   }
 445 
 446   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 447   // inside the vframeArray (StackValueCollections)
 448 
 449   delete thread->deopt_mark();
 450   thread->set_deopt_mark(NULL);
 451   thread->set_deopt_nmethod(NULL);
 452 
 453 
 454   if (JvmtiExport::can_pop_frame()) {
 455 #ifndef CC_INTERP
 456     // Regardless of whether we entered this routine with the pending
 457     // popframe condition bit set, we should always clear it now
 458     thread->clear_popframe_condition();
 459 #else
 460     // C++ interpeter will clear has_pending_popframe when it enters
 461     // with method_resume. For deopt_resume2 we clear it now.
 462     if (thread->popframe_forcing_deopt_reexecution())
 463         thread->clear_popframe_condition();
 464 #endif /* CC_INTERP */
 465   }
 466 
 467   // unpack_frames() is called at the end of the deoptimization handler
 468   // and (in C2) at the end of the uncommon trap handler. Note this fact
 469   // so that an asynchronous stack walker can work again. This counter is
 470   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 471   // the beginning of uncommon_trap().
 472   thread->dec_in_deopt_handler();
 473 }
 474 
 475 
 476 // Return BasicType of value being returned
 477 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 478 
 479   // We are already active int he special DeoptResourceMark any ResourceObj's we
 480   // allocate will be freed at the end of the routine.
 481 
 482   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 483   // but makes the entry a little slower. There is however a little dance we have to
 484   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 485   ResetNoHandleMark rnhm; // No-op in release/product versions
 486   HandleMark hm;
 487 
 488   frame stub_frame = thread->last_frame();
 489 
 490   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 491   // must point to the vframeArray for the unpack frame.
 492   vframeArray* array = thread->vframe_array_head();
 493 
 494 #ifndef PRODUCT
 495   if (TraceDeoptimization) {
 496     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 497   }
 498 #endif
 499 
 500   UnrollBlock* info = array->unroll_block();
 501 
 502   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 503   array->unpack_to_stack(stub_frame, exec_mode);
 504 
 505   BasicType bt = info->return_type();
 506 
 507   // If we have an exception pending, claim that the return type is an oop
 508   // so the deopt_blob does not overwrite the exception_oop.
 509 
 510   if (exec_mode == Unpack_exception)
 511     bt = T_OBJECT;
 512 
 513   // Cleanup thread deopt data
 514   cleanup_deopt_info(thread, array);
 515 
 516 #ifndef PRODUCT
 517   if (VerifyStack) {
 518     ResourceMark res_mark;
 519 
 520     // Verify that the just-unpacked frames match the interpreter's
 521     // notions of expression stack and locals
 522     vframeArray* cur_array = thread->vframe_array_last();
 523     RegisterMap rm(thread, false);
 524     rm.set_include_argument_oops(false);
 525     bool is_top_frame = true;
 526     int callee_size_of_parameters = 0;
 527     int callee_max_locals = 0;
 528     for (int i = 0; i < cur_array->frames(); i++) {
 529       vframeArrayElement* el = cur_array->element(i);
 530       frame* iframe = el->iframe();
 531       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 532 
 533       // Get the oop map for this bci
 534       InterpreterOopMap mask;
 535       int cur_invoke_parameter_size = 0;
 536       bool try_next_mask = false;
 537       int next_mask_expression_stack_size = -1;
 538       int top_frame_expression_stack_adjustment = 0;
 539       methodHandle mh(thread, iframe->interpreter_frame_method());
 540       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 541       BytecodeStream str(mh);
 542       str.set_start(iframe->interpreter_frame_bci());
 543       int max_bci = mh->code_size();
 544       // Get to the next bytecode if possible
 545       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 546       // Check to see if we can grab the number of outgoing arguments
 547       // at an uncommon trap for an invoke (where the compiler
 548       // generates debug info before the invoke has executed)
 549       Bytecodes::Code cur_code = str.next();
 550       if (cur_code == Bytecodes::_invokevirtual ||
 551           cur_code == Bytecodes::_invokespecial ||
 552           cur_code == Bytecodes::_invokestatic  ||
 553           cur_code == Bytecodes::_invokeinterface) {
 554         Bytecode_invoke* invoke = Bytecode_invoke_at(mh, iframe->interpreter_frame_bci());
 555         symbolHandle signature(thread, invoke->signature());
 556         ArgumentSizeComputer asc(signature);
 557         cur_invoke_parameter_size = asc.size();
 558         if (cur_code != Bytecodes::_invokestatic) {
 559           // Add in receiver
 560           ++cur_invoke_parameter_size;
 561         }
 562       }
 563       if (str.bci() < max_bci) {
 564         Bytecodes::Code bc = str.next();
 565         if (bc >= 0) {
 566           // The interpreter oop map generator reports results before
 567           // the current bytecode has executed except in the case of
 568           // calls. It seems to be hard to tell whether the compiler
 569           // has emitted debug information matching the "state before"
 570           // a given bytecode or the state after, so we try both
 571           switch (cur_code) {
 572             case Bytecodes::_invokevirtual:
 573             case Bytecodes::_invokespecial:
 574             case Bytecodes::_invokestatic:
 575             case Bytecodes::_invokeinterface:
 576             case Bytecodes::_athrow:
 577               break;
 578             default: {
 579               InterpreterOopMap next_mask;
 580               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 581               next_mask_expression_stack_size = next_mask.expression_stack_size();
 582               // Need to subtract off the size of the result type of
 583               // the bytecode because this is not described in the
 584               // debug info but returned to the interpreter in the TOS
 585               // caching register
 586               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 587               if (bytecode_result_type != T_ILLEGAL) {
 588                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 589               }
 590               assert(top_frame_expression_stack_adjustment >= 0, "");
 591               try_next_mask = true;
 592               break;
 593             }
 594           }
 595         }
 596       }
 597 
 598       // Verify stack depth and oops in frame
 599       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 600       if (!(
 601             /* SPARC */
 602             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 603             /* x86 */
 604             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 605             (try_next_mask &&
 606              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 607                                                                     top_frame_expression_stack_adjustment))) ||
 608             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 609             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 610              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 611             )) {
 612         ttyLocker ttyl;
 613 
 614         // Print out some information that will help us debug the problem
 615         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 616         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 617         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 618                       iframe->interpreter_frame_expression_stack_size());
 619         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 620         tty->print_cr("  try_next_mask = %d", try_next_mask);
 621         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 622         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 623         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 624         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 625         tty->print_cr("  exec_mode = %d", exec_mode);
 626         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 627         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 628         tty->print_cr("  Interpreted frames:");
 629         for (int k = 0; k < cur_array->frames(); k++) {
 630           vframeArrayElement* el = cur_array->element(k);
 631           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 632         }
 633         cur_array->print_on_2(tty);
 634         guarantee(false, "wrong number of expression stack elements during deopt");
 635       }
 636       VerifyOopClosure verify;
 637       iframe->oops_interpreted_do(&verify, &rm, false);
 638       callee_size_of_parameters = mh->size_of_parameters();
 639       callee_max_locals = mh->max_locals();
 640       is_top_frame = false;
 641     }
 642   }
 643 #endif /* !PRODUCT */
 644 
 645 
 646   return bt;
 647 JRT_END
 648 
 649 
 650 int Deoptimization::deoptimize_dependents() {
 651   Threads::deoptimized_wrt_marked_nmethods();
 652   return 0;
 653 }
 654 
 655 
 656 #ifdef COMPILER2
 657 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 658   Handle pending_exception(thread->pending_exception());
 659   const char* exception_file = thread->exception_file();
 660   int exception_line = thread->exception_line();
 661   thread->clear_pending_exception();
 662 
 663   for (int i = 0; i < objects->length(); i++) {
 664     assert(objects->at(i)->is_object(), "invalid debug information");
 665     ObjectValue* sv = (ObjectValue*) objects->at(i);
 666 
 667     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 668     oop obj = NULL;
 669 
 670     if (k->oop_is_instance()) {
 671       instanceKlass* ik = instanceKlass::cast(k());
 672       obj = ik->allocate_instance(CHECK_(false));
 673     } else if (k->oop_is_typeArray()) {
 674       typeArrayKlass* ak = typeArrayKlass::cast(k());
 675       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 676       int len = sv->field_size() / type2size[ak->element_type()];
 677       obj = ak->allocate(len, CHECK_(false));
 678     } else if (k->oop_is_objArray()) {
 679       objArrayKlass* ak = objArrayKlass::cast(k());
 680       obj = ak->allocate(sv->field_size(), CHECK_(false));
 681     }
 682 
 683     assert(obj != NULL, "allocation failed");
 684     assert(sv->value().is_null(), "redundant reallocation");
 685     sv->set_value(obj);
 686   }
 687 
 688   if (pending_exception.not_null()) {
 689     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 690   }
 691 
 692   return true;
 693 }
 694 
 695 // This assumes that the fields are stored in ObjectValue in the same order
 696 // they are yielded by do_nonstatic_fields.
 697 class FieldReassigner: public FieldClosure {
 698   frame* _fr;
 699   RegisterMap* _reg_map;
 700   ObjectValue* _sv;
 701   instanceKlass* _ik;
 702   oop _obj;
 703 
 704   int _i;
 705 public:
 706   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 707     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 708 
 709   int i() const { return _i; }
 710 
 711 
 712   void do_field(fieldDescriptor* fd) {
 713     intptr_t val;
 714     StackValue* value =
 715       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 716     int offset = fd->offset();
 717     switch (fd->field_type()) {
 718     case T_OBJECT: case T_ARRAY:
 719       assert(value->type() == T_OBJECT, "Agreement.");
 720       _obj->obj_field_put(offset, value->get_obj()());
 721       break;
 722 
 723     case T_LONG: case T_DOUBLE: {
 724       assert(value->type() == T_INT, "Agreement.");
 725       StackValue* low =
 726         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 727 #ifdef _LP64
 728       jlong res = (jlong)low->get_int();
 729 #else
 730 #ifdef SPARC
 731       // For SPARC we have to swap high and low words.
 732       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 733 #else
 734       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 735 #endif //SPARC
 736 #endif
 737       _obj->long_field_put(offset, res);
 738       break;
 739     }
 740     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 741     case T_INT: case T_FLOAT: // 4 bytes.
 742       assert(value->type() == T_INT, "Agreement.");
 743       val = value->get_int();
 744       _obj->int_field_put(offset, (jint)*((jint*)&val));
 745       break;
 746 
 747     case T_SHORT: case T_CHAR: // 2 bytes
 748       assert(value->type() == T_INT, "Agreement.");
 749       val = value->get_int();
 750       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 751       break;
 752 
 753     case T_BOOLEAN: case T_BYTE: // 1 byte
 754       assert(value->type() == T_INT, "Agreement.");
 755       val = value->get_int();
 756       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 757       break;
 758 
 759     default:
 760       ShouldNotReachHere();
 761     }
 762     _i++;
 763   }
 764 };
 765 
 766 // restore elements of an eliminated type array
 767 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 768   int index = 0;
 769   intptr_t val;
 770 
 771   for (int i = 0; i < sv->field_size(); i++) {
 772     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 773     switch(type) {
 774     case T_LONG: case T_DOUBLE: {
 775       assert(value->type() == T_INT, "Agreement.");
 776       StackValue* low =
 777         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 778 #ifdef _LP64
 779       jlong res = (jlong)low->get_int();
 780 #else
 781 #ifdef SPARC
 782       // For SPARC we have to swap high and low words.
 783       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 784 #else
 785       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 786 #endif //SPARC
 787 #endif
 788       obj->long_at_put(index, res);
 789       break;
 790     }
 791 
 792     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 793     case T_INT: case T_FLOAT: // 4 bytes.
 794       assert(value->type() == T_INT, "Agreement.");
 795       val = value->get_int();
 796       obj->int_at_put(index, (jint)*((jint*)&val));
 797       break;
 798 
 799     case T_SHORT: case T_CHAR: // 2 bytes
 800       assert(value->type() == T_INT, "Agreement.");
 801       val = value->get_int();
 802       obj->short_at_put(index, (jshort)*((jint*)&val));
 803       break;
 804 
 805     case T_BOOLEAN: case T_BYTE: // 1 byte
 806       assert(value->type() == T_INT, "Agreement.");
 807       val = value->get_int();
 808       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 809       break;
 810 
 811       default:
 812         ShouldNotReachHere();
 813     }
 814     index++;
 815   }
 816 }
 817 
 818 
 819 // restore fields of an eliminated object array
 820 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 821   for (int i = 0; i < sv->field_size(); i++) {
 822     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 823     assert(value->type() == T_OBJECT, "object element expected");
 824     obj->obj_at_put(i, value->get_obj()());
 825   }
 826 }
 827 
 828 
 829 // restore fields of all eliminated objects and arrays
 830 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 831   for (int i = 0; i < objects->length(); i++) {
 832     ObjectValue* sv = (ObjectValue*) objects->at(i);
 833     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 834     Handle obj = sv->value();
 835     assert(obj.not_null(), "reallocation was missed");
 836 
 837     if (k->oop_is_instance()) {
 838       instanceKlass* ik = instanceKlass::cast(k());
 839       FieldReassigner reassign(fr, reg_map, sv, obj());
 840       ik->do_nonstatic_fields(&reassign);
 841     } else if (k->oop_is_typeArray()) {
 842       typeArrayKlass* ak = typeArrayKlass::cast(k());
 843       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 844     } else if (k->oop_is_objArray()) {
 845       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 846     }
 847   }
 848 }
 849 
 850 
 851 // relock objects for which synchronization was eliminated
 852 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 853   for (int i = 0; i < monitors->length(); i++) {
 854     MonitorInfo* mon_info = monitors->at(i);
 855     if (mon_info->eliminated()) {
 856       assert(mon_info->owner() != NULL, "reallocation was missed");
 857       Handle obj = Handle(mon_info->owner());
 858       markOop mark = obj->mark();
 859       if (UseBiasedLocking && mark->has_bias_pattern()) {
 860         // New allocated objects may have the mark set to anonymously biased.
 861         // Also the deoptimized method may called methods with synchronization
 862         // where the thread-local object is bias locked to the current thread.
 863         assert(mark->is_biased_anonymously() ||
 864                mark->biased_locker() == thread, "should be locked to current thread");
 865         // Reset mark word to unbiased prototype.
 866         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 867         obj->set_mark(unbiased_prototype);
 868       }
 869       BasicLock* lock = mon_info->lock();
 870       ObjectSynchronizer::slow_enter(obj, lock, thread);
 871     }
 872     assert(mon_info->owner()->is_locked(), "object must be locked now");
 873   }
 874 }
 875 
 876 
 877 #ifndef PRODUCT
 878 // print information about reallocated objects
 879 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 880   fieldDescriptor fd;
 881 
 882   for (int i = 0; i < objects->length(); i++) {
 883     ObjectValue* sv = (ObjectValue*) objects->at(i);
 884     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 885     Handle obj = sv->value();
 886 
 887     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
 888     k->as_klassOop()->print_value();
 889     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 890     tty->cr();
 891 
 892     if (Verbose) {
 893       k->oop_print_on(obj(), tty);
 894     }
 895   }
 896 }
 897 #endif
 898 #endif // COMPILER2
 899 
 900 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 901 
 902 #ifndef PRODUCT
 903   if (TraceDeoptimization) {
 904     ttyLocker ttyl;
 905     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 906     fr.print_on(tty);
 907     tty->print_cr("     Virtual frames (innermost first):");
 908     for (int index = 0; index < chunk->length(); index++) {
 909       compiledVFrame* vf = chunk->at(index);
 910       tty->print("       %2d - ", index);
 911       vf->print_value();
 912       int bci = chunk->at(index)->raw_bci();
 913       const char* code_name;
 914       if (bci == SynchronizationEntryBCI) {
 915         code_name = "sync entry";
 916       } else {
 917         Bytecodes::Code code = Bytecodes::code_at(vf->method(), bci);
 918         code_name = Bytecodes::name(code);
 919       }
 920       tty->print(" - %s", code_name);
 921       tty->print_cr(" @ bci %d ", bci);
 922       if (Verbose) {
 923         vf->print();
 924         tty->cr();
 925       }
 926     }
 927   }
 928 #endif
 929 
 930   // Register map for next frame (used for stack crawl).  We capture
 931   // the state of the deopt'ing frame's caller.  Thus if we need to
 932   // stuff a C2I adapter we can properly fill in the callee-save
 933   // register locations.
 934   frame caller = fr.sender(reg_map);
 935   int frame_size = caller.sp() - fr.sp();
 936 
 937   frame sender = caller;
 938 
 939   // Since the Java thread being deoptimized will eventually adjust it's own stack,
 940   // the vframeArray containing the unpacking information is allocated in the C heap.
 941   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
 942   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
 943 
 944   // Compare the vframeArray to the collected vframes
 945   assert(array->structural_compare(thread, chunk), "just checking");
 946   Events::log("# vframes = %d", (intptr_t)chunk->length());
 947 
 948 #ifndef PRODUCT
 949   if (TraceDeoptimization) {
 950     ttyLocker ttyl;
 951     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
 952   }
 953 #endif // PRODUCT
 954 
 955   return array;
 956 }
 957 
 958 
 959 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
 960   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 961   for (int i = 0; i < monitors->length(); i++) {
 962     MonitorInfo* mon_info = monitors->at(i);
 963     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
 964       objects_to_revoke->append(Handle(mon_info->owner()));
 965     }
 966   }
 967 }
 968 
 969 
 970 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
 971   if (!UseBiasedLocking) {
 972     return;
 973   }
 974 
 975   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
 976 
 977   // Unfortunately we don't have a RegisterMap available in most of
 978   // the places we want to call this routine so we need to walk the
 979   // stack again to update the register map.
 980   if (map == NULL || !map->update_map()) {
 981     StackFrameStream sfs(thread, true);
 982     bool found = false;
 983     while (!found && !sfs.is_done()) {
 984       frame* cur = sfs.current();
 985       sfs.next();
 986       found = cur->id() == fr.id();
 987     }
 988     assert(found, "frame to be deoptimized not found on target thread's stack");
 989     map = sfs.register_map();
 990   }
 991 
 992   vframe* vf = vframe::new_vframe(&fr, map, thread);
 993   compiledVFrame* cvf = compiledVFrame::cast(vf);
 994   // Revoke monitors' biases in all scopes
 995   while (!cvf->is_top()) {
 996     collect_monitors(cvf, objects_to_revoke);
 997     cvf = compiledVFrame::cast(cvf->sender());
 998   }
 999   collect_monitors(cvf, objects_to_revoke);
1000 
1001   if (SafepointSynchronize::is_at_safepoint()) {
1002     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1003   } else {
1004     BiasedLocking::revoke(objects_to_revoke);
1005   }
1006 }
1007 
1008 
1009 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1010   if (!UseBiasedLocking) {
1011     return;
1012   }
1013 
1014   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1015   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1016   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1017     if (jt->has_last_Java_frame()) {
1018       StackFrameStream sfs(jt, true);
1019       while (!sfs.is_done()) {
1020         frame* cur = sfs.current();
1021         if (cb->contains(cur->pc())) {
1022           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1023           compiledVFrame* cvf = compiledVFrame::cast(vf);
1024           // Revoke monitors' biases in all scopes
1025           while (!cvf->is_top()) {
1026             collect_monitors(cvf, objects_to_revoke);
1027             cvf = compiledVFrame::cast(cvf->sender());
1028           }
1029           collect_monitors(cvf, objects_to_revoke);
1030         }
1031         sfs.next();
1032       }
1033     }
1034   }
1035   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1036 }
1037 
1038 
1039 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1040   assert(fr.can_be_deoptimized(), "checking frame type");
1041 
1042   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1043 
1044   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
1045 
1046   // Patch the nmethod so that when execution returns to it we will
1047   // deopt the execution state and return to the interpreter.
1048   fr.deoptimize(thread);
1049 }
1050 
1051 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1052   // Deoptimize only if the frame comes from compile code.
1053   // Do not deoptimize the frame which is already patched
1054   // during the execution of the loops below.
1055   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1056     return;
1057   }
1058   ResourceMark rm;
1059   DeoptimizationMarker dm;
1060   if (UseBiasedLocking) {
1061     revoke_biases_of_monitors(thread, fr, map);
1062   }
1063   deoptimize_single_frame(thread, fr);
1064 
1065 }
1066 
1067 
1068 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1069   // Compute frame and register map based on thread and sp.
1070   RegisterMap reg_map(thread, UseBiasedLocking);
1071   frame fr = thread->last_frame();
1072   while (fr.id() != id) {
1073     fr = fr.sender(&reg_map);
1074   }
1075   deoptimize(thread, fr, &reg_map);
1076 }
1077 
1078 
1079 // JVMTI PopFrame support
1080 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1081 {
1082   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1083 }
1084 JRT_END
1085 
1086 
1087 #if defined(COMPILER2) || defined(SHARK)
1088 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1089   // in case of an unresolved klass entry, load the class.
1090   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1091     klassOop tk = constant_pool->klass_at(index, CHECK);
1092     return;
1093   }
1094 
1095   if (!constant_pool->tag_at(index).is_symbol()) return;
1096 
1097   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
1098   symbolHandle symbol (THREAD, constant_pool->symbol_at(index));
1099 
1100   // class name?
1101   if (symbol->byte_at(0) != '(') {
1102     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1103     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1104     return;
1105   }
1106 
1107   // then it must be a signature!
1108   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1109     if (ss.is_object()) {
1110       symbolOop s = ss.as_symbol(CHECK);
1111       symbolHandle class_name (THREAD, s);
1112       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1113       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1114     }
1115   }
1116 }
1117 
1118 
1119 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1120   EXCEPTION_MARK;
1121   load_class_by_index(constant_pool, index, THREAD);
1122   if (HAS_PENDING_EXCEPTION) {
1123     // Exception happened during classloading. We ignore the exception here, since it
1124     // is going to be rethrown since the current activation is going to be deoptimzied and
1125     // the interpreter will re-execute the bytecode.
1126     CLEAR_PENDING_EXCEPTION;
1127   }
1128 }
1129 
1130 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1131   HandleMark hm;
1132 
1133   // uncommon_trap() is called at the beginning of the uncommon trap
1134   // handler. Note this fact before we start generating temporary frames
1135   // that can confuse an asynchronous stack walker. This counter is
1136   // decremented at the end of unpack_frames().
1137   thread->inc_in_deopt_handler();
1138 
1139   // We need to update the map if we have biased locking.
1140   RegisterMap reg_map(thread, UseBiasedLocking);
1141   frame stub_frame = thread->last_frame();
1142   frame fr = stub_frame.sender(&reg_map);
1143   // Make sure the calling nmethod is not getting deoptimized and removed
1144   // before we are done with it.
1145   nmethodLocker nl(fr.pc());
1146 
1147   {
1148     ResourceMark rm;
1149 
1150     // Revoke biases of any monitors in the frame to ensure we can migrate them
1151     revoke_biases_of_monitors(thread, fr, &reg_map);
1152 
1153     DeoptReason reason = trap_request_reason(trap_request);
1154     DeoptAction action = trap_request_action(trap_request);
1155     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1156 
1157     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
1158     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1159     compiledVFrame* cvf = compiledVFrame::cast(vf);
1160 
1161     nmethod* nm = cvf->code();
1162 
1163     ScopeDesc*      trap_scope  = cvf->scope();
1164     methodHandle    trap_method = trap_scope->method();
1165     int             trap_bci    = trap_scope->bci();
1166     Bytecodes::Code trap_bc     = Bytecode_at(trap_method->bcp_from(trap_bci))->java_code();
1167 
1168     // Record this event in the histogram.
1169     gather_statistics(reason, action, trap_bc);
1170 
1171     // Ensure that we can record deopt. history:
1172     bool create_if_missing = ProfileTraps;
1173 
1174     methodDataHandle trap_mdo
1175       (THREAD, get_method_data(thread, trap_method, create_if_missing));
1176 
1177     // Print a bunch of diagnostics, if requested.
1178     if (TraceDeoptimization || LogCompilation) {
1179       ResourceMark rm;
1180       ttyLocker ttyl;
1181       char buf[100];
1182       if (xtty != NULL) {
1183         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1184                          os::current_thread_id(),
1185                          format_trap_request(buf, sizeof(buf), trap_request));
1186         nm->log_identity(xtty);
1187       }
1188       symbolHandle class_name;
1189       bool unresolved = false;
1190       if (unloaded_class_index >= 0) {
1191         constantPoolHandle constants (THREAD, trap_method->constants());
1192         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1193           class_name = symbolHandle(THREAD,
1194             constants->klass_name_at(unloaded_class_index));
1195           unresolved = true;
1196           if (xtty != NULL)
1197             xtty->print(" unresolved='1'");
1198         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1199           class_name = symbolHandle(THREAD,
1200             constants->symbol_at(unloaded_class_index));
1201         }
1202         if (xtty != NULL)
1203           xtty->name(class_name);
1204       }
1205       if (xtty != NULL && trap_mdo.not_null()) {
1206         // Dump the relevant MDO state.
1207         // This is the deopt count for the current reason, any previous
1208         // reasons or recompiles seen at this point.
1209         int dcnt = trap_mdo->trap_count(reason);
1210         if (dcnt != 0)
1211           xtty->print(" count='%d'", dcnt);
1212         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1213         int dos = (pdata == NULL)? 0: pdata->trap_state();
1214         if (dos != 0) {
1215           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1216           if (trap_state_is_recompiled(dos)) {
1217             int recnt2 = trap_mdo->overflow_recompile_count();
1218             if (recnt2 != 0)
1219               xtty->print(" recompiles2='%d'", recnt2);
1220           }
1221         }
1222       }
1223       if (xtty != NULL) {
1224         xtty->stamp();
1225         xtty->end_head();
1226       }
1227       if (TraceDeoptimization) {  // make noise on the tty
1228         tty->print("Uncommon trap occurred in");
1229         nm->method()->print_short_name(tty);
1230         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
1231                    fr.pc(),
1232                    (int) os::current_thread_id(),
1233                    trap_reason_name(reason),
1234                    trap_action_name(action),
1235                    unloaded_class_index);
1236         if (class_name.not_null()) {
1237           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1238           class_name->print_symbol_on(tty);
1239         }
1240         tty->cr();
1241       }
1242       if (xtty != NULL) {
1243         // Log the precise location of the trap.
1244         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1245           xtty->begin_elem("jvms bci='%d'", sd->bci());
1246           xtty->method(sd->method());
1247           xtty->end_elem();
1248           if (sd->is_top())  break;
1249         }
1250         xtty->tail("uncommon_trap");
1251       }
1252     }
1253     // (End diagnostic printout.)
1254 
1255     // Load class if necessary
1256     if (unloaded_class_index >= 0) {
1257       constantPoolHandle constants(THREAD, trap_method->constants());
1258       load_class_by_index(constants, unloaded_class_index);
1259     }
1260 
1261     // Flush the nmethod if necessary and desirable.
1262     //
1263     // We need to avoid situations where we are re-flushing the nmethod
1264     // because of a hot deoptimization site.  Repeated flushes at the same
1265     // point need to be detected by the compiler and avoided.  If the compiler
1266     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1267     // module must take measures to avoid an infinite cycle of recompilation
1268     // and deoptimization.  There are several such measures:
1269     //
1270     //   1. If a recompilation is ordered a second time at some site X
1271     //   and for the same reason R, the action is adjusted to 'reinterpret',
1272     //   to give the interpreter time to exercise the method more thoroughly.
1273     //   If this happens, the method's overflow_recompile_count is incremented.
1274     //
1275     //   2. If the compiler fails to reduce the deoptimization rate, then
1276     //   the method's overflow_recompile_count will begin to exceed the set
1277     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1278     //   is adjusted to 'make_not_compilable', and the method is abandoned
1279     //   to the interpreter.  This is a performance hit for hot methods,
1280     //   but is better than a disastrous infinite cycle of recompilations.
1281     //   (Actually, only the method containing the site X is abandoned.)
1282     //
1283     //   3. In parallel with the previous measures, if the total number of
1284     //   recompilations of a method exceeds the much larger set limit
1285     //   PerMethodRecompilationCutoff, the method is abandoned.
1286     //   This should only happen if the method is very large and has
1287     //   many "lukewarm" deoptimizations.  The code which enforces this
1288     //   limit is elsewhere (class nmethod, class methodOopDesc).
1289     //
1290     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1291     // to recompile at each bytecode independently of the per-BCI cutoff.
1292     //
1293     // The decision to update code is up to the compiler, and is encoded
1294     // in the Action_xxx code.  If the compiler requests Action_none
1295     // no trap state is changed, no compiled code is changed, and the
1296     // computation suffers along in the interpreter.
1297     //
1298     // The other action codes specify various tactics for decompilation
1299     // and recompilation.  Action_maybe_recompile is the loosest, and
1300     // allows the compiled code to stay around until enough traps are seen,
1301     // and until the compiler gets around to recompiling the trapping method.
1302     //
1303     // The other actions cause immediate removal of the present code.
1304 
1305     bool update_trap_state = true;
1306     bool make_not_entrant = false;
1307     bool make_not_compilable = false;
1308     bool reprofile = false;
1309     switch (action) {
1310     case Action_none:
1311       // Keep the old code.
1312       update_trap_state = false;
1313       break;
1314     case Action_maybe_recompile:
1315       // Do not need to invalidate the present code, but we can
1316       // initiate another
1317       // Start compiler without (necessarily) invalidating the nmethod.
1318       // The system will tolerate the old code, but new code should be
1319       // generated when possible.
1320       break;
1321     case Action_reinterpret:
1322       // Go back into the interpreter for a while, and then consider
1323       // recompiling form scratch.
1324       make_not_entrant = true;
1325       // Reset invocation counter for outer most method.
1326       // This will allow the interpreter to exercise the bytecodes
1327       // for a while before recompiling.
1328       // By contrast, Action_make_not_entrant is immediate.
1329       //
1330       // Note that the compiler will track null_check, null_assert,
1331       // range_check, and class_check events and log them as if they
1332       // had been traps taken from compiled code.  This will update
1333       // the MDO trap history so that the next compilation will
1334       // properly detect hot trap sites.
1335       reprofile = true;
1336       break;
1337     case Action_make_not_entrant:
1338       // Request immediate recompilation, and get rid of the old code.
1339       // Make them not entrant, so next time they are called they get
1340       // recompiled.  Unloaded classes are loaded now so recompile before next
1341       // time they are called.  Same for uninitialized.  The interpreter will
1342       // link the missing class, if any.
1343       make_not_entrant = true;
1344       break;
1345     case Action_make_not_compilable:
1346       // Give up on compiling this method at all.
1347       make_not_entrant = true;
1348       make_not_compilable = true;
1349       break;
1350     default:
1351       ShouldNotReachHere();
1352     }
1353 
1354     // Setting +ProfileTraps fixes the following, on all platforms:
1355     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1356     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1357     // recompile relies on a methodDataOop to record heroic opt failures.
1358 
1359     // Whether the interpreter is producing MDO data or not, we also need
1360     // to use the MDO to detect hot deoptimization points and control
1361     // aggressive optimization.
1362     bool inc_recompile_count = false;
1363     ProfileData* pdata = NULL;
1364     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
1365       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
1366       uint this_trap_count = 0;
1367       bool maybe_prior_trap = false;
1368       bool maybe_prior_recompile = false;
1369       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1370                                    //outputs:
1371                                    this_trap_count,
1372                                    maybe_prior_trap,
1373                                    maybe_prior_recompile);
1374       // Because the interpreter also counts null, div0, range, and class
1375       // checks, these traps from compiled code are double-counted.
1376       // This is harmless; it just means that the PerXTrapLimit values
1377       // are in effect a little smaller than they look.
1378 
1379       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1380       if (per_bc_reason != Reason_none) {
1381         // Now take action based on the partially known per-BCI history.
1382         if (maybe_prior_trap
1383             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1384           // If there are too many traps at this BCI, force a recompile.
1385           // This will allow the compiler to see the limit overflow, and
1386           // take corrective action, if possible.  The compiler generally
1387           // does not use the exact PerBytecodeTrapLimit value, but instead
1388           // changes its tactics if it sees any traps at all.  This provides
1389           // a little hysteresis, delaying a recompile until a trap happens
1390           // several times.
1391           //
1392           // Actually, since there is only one bit of counter per BCI,
1393           // the possible per-BCI counts are {0,1,(per-method count)}.
1394           // This produces accurate results if in fact there is only
1395           // one hot trap site, but begins to get fuzzy if there are
1396           // many sites.  For example, if there are ten sites each
1397           // trapping two or more times, they each get the blame for
1398           // all of their traps.
1399           make_not_entrant = true;
1400         }
1401 
1402         // Detect repeated recompilation at the same BCI, and enforce a limit.
1403         if (make_not_entrant && maybe_prior_recompile) {
1404           // More than one recompile at this point.
1405           inc_recompile_count = maybe_prior_trap;
1406         }
1407       } else {
1408         // For reasons which are not recorded per-bytecode, we simply
1409         // force recompiles unconditionally.
1410         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1411         make_not_entrant = true;
1412       }
1413 
1414       // Go back to the compiler if there are too many traps in this method.
1415       if (this_trap_count >= (uint)PerMethodTrapLimit) {
1416         // If there are too many traps in this method, force a recompile.
1417         // This will allow the compiler to see the limit overflow, and
1418         // take corrective action, if possible.
1419         // (This condition is an unlikely backstop only, because the
1420         // PerBytecodeTrapLimit is more likely to take effect first,
1421         // if it is applicable.)
1422         make_not_entrant = true;
1423       }
1424 
1425       // Here's more hysteresis:  If there has been a recompile at
1426       // this trap point already, run the method in the interpreter
1427       // for a while to exercise it more thoroughly.
1428       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1429         reprofile = true;
1430       }
1431 
1432     }
1433 
1434     // Take requested actions on the method:
1435 
1436     // Recompile
1437     if (make_not_entrant) {
1438       if (!nm->make_not_entrant()) {
1439         return; // the call did not change nmethod's state
1440       }
1441 
1442       if (pdata != NULL) {
1443         // Record the recompilation event, if any.
1444         int tstate0 = pdata->trap_state();
1445         int tstate1 = trap_state_set_recompiled(tstate0, true);
1446         if (tstate1 != tstate0)
1447           pdata->set_trap_state(tstate1);
1448       }
1449     }
1450 
1451     if (inc_recompile_count) {
1452       trap_mdo->inc_overflow_recompile_count();
1453       if ((uint)trap_mdo->overflow_recompile_count() >
1454           (uint)PerBytecodeRecompilationCutoff) {
1455         // Give up on the method containing the bad BCI.
1456         if (trap_method() == nm->method()) {
1457           make_not_compilable = true;
1458         } else {
1459           trap_method->set_not_compilable(CompLevel_full_optimization);
1460           // But give grace to the enclosing nm->method().
1461         }
1462       }
1463     }
1464 
1465     // Reprofile
1466     if (reprofile) {
1467       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1468     }
1469 
1470     // Give up compiling
1471     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1472       assert(make_not_entrant, "consistent");
1473       nm->method()->set_not_compilable(CompLevel_full_optimization);
1474     }
1475 
1476   } // Free marked resources
1477 
1478 }
1479 JRT_END
1480 
1481 methodDataOop
1482 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1483                                 bool create_if_missing) {
1484   Thread* THREAD = thread;
1485   methodDataOop mdo = m()->method_data();
1486   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1487     // Build an MDO.  Ignore errors like OutOfMemory;
1488     // that simply means we won't have an MDO to update.
1489     methodOopDesc::build_interpreter_method_data(m, THREAD);
1490     if (HAS_PENDING_EXCEPTION) {
1491       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1492       CLEAR_PENDING_EXCEPTION;
1493     }
1494     mdo = m()->method_data();
1495   }
1496   return mdo;
1497 }
1498 
1499 ProfileData*
1500 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
1501                                          int trap_bci,
1502                                          Deoptimization::DeoptReason reason,
1503                                          //outputs:
1504                                          uint& ret_this_trap_count,
1505                                          bool& ret_maybe_prior_trap,
1506                                          bool& ret_maybe_prior_recompile) {
1507   uint prior_trap_count = trap_mdo->trap_count(reason);
1508   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1509 
1510   // If the runtime cannot find a place to store trap history,
1511   // it is estimated based on the general condition of the method.
1512   // If the method has ever been recompiled, or has ever incurred
1513   // a trap with the present reason , then this BCI is assumed
1514   // (pessimistically) to be the culprit.
1515   bool maybe_prior_trap      = (prior_trap_count != 0);
1516   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1517   ProfileData* pdata = NULL;
1518 
1519 
1520   // For reasons which are recorded per bytecode, we check per-BCI data.
1521   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1522   if (per_bc_reason != Reason_none) {
1523     // Find the profile data for this BCI.  If there isn't one,
1524     // try to allocate one from the MDO's set of spares.
1525     // This will let us detect a repeated trap at this point.
1526     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1527 
1528     if (pdata != NULL) {
1529       // Query the trap state of this profile datum.
1530       int tstate0 = pdata->trap_state();
1531       if (!trap_state_has_reason(tstate0, per_bc_reason))
1532         maybe_prior_trap = false;
1533       if (!trap_state_is_recompiled(tstate0))
1534         maybe_prior_recompile = false;
1535 
1536       // Update the trap state of this profile datum.
1537       int tstate1 = tstate0;
1538       // Record the reason.
1539       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1540       // Store the updated state on the MDO, for next time.
1541       if (tstate1 != tstate0)
1542         pdata->set_trap_state(tstate1);
1543     } else {
1544       if (LogCompilation && xtty != NULL) {
1545         ttyLocker ttyl;
1546         // Missing MDP?  Leave a small complaint in the log.
1547         xtty->elem("missing_mdp bci='%d'", trap_bci);
1548       }
1549     }
1550   }
1551 
1552   // Return results:
1553   ret_this_trap_count = this_trap_count;
1554   ret_maybe_prior_trap = maybe_prior_trap;
1555   ret_maybe_prior_recompile = maybe_prior_recompile;
1556   return pdata;
1557 }
1558 
1559 void
1560 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1561   ResourceMark rm;
1562   // Ignored outputs:
1563   uint ignore_this_trap_count;
1564   bool ignore_maybe_prior_trap;
1565   bool ignore_maybe_prior_recompile;
1566   query_update_method_data(trap_mdo, trap_bci,
1567                            (DeoptReason)reason,
1568                            ignore_this_trap_count,
1569                            ignore_maybe_prior_trap,
1570                            ignore_maybe_prior_recompile);
1571 }
1572 
1573 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1574 
1575   // Still in Java no safepoints
1576   {
1577     // This enters VM and may safepoint
1578     uncommon_trap_inner(thread, trap_request);
1579   }
1580   return fetch_unroll_info_helper(thread);
1581 }
1582 
1583 // Local derived constants.
1584 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1585 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1586 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1587 
1588 //---------------------------trap_state_reason---------------------------------
1589 Deoptimization::DeoptReason
1590 Deoptimization::trap_state_reason(int trap_state) {
1591   // This assert provides the link between the width of DataLayout::trap_bits
1592   // and the encoding of "recorded" reasons.  It ensures there are enough
1593   // bits to store all needed reasons in the per-BCI MDO profile.
1594   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1595   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1596   trap_state -= recompile_bit;
1597   if (trap_state == DS_REASON_MASK) {
1598     return Reason_many;
1599   } else {
1600     assert((int)Reason_none == 0, "state=0 => Reason_none");
1601     return (DeoptReason)trap_state;
1602   }
1603 }
1604 //-------------------------trap_state_has_reason-------------------------------
1605 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1606   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1607   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1608   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1609   trap_state -= recompile_bit;
1610   if (trap_state == DS_REASON_MASK) {
1611     return -1;  // true, unspecifically (bottom of state lattice)
1612   } else if (trap_state == reason) {
1613     return 1;   // true, definitely
1614   } else if (trap_state == 0) {
1615     return 0;   // false, definitely (top of state lattice)
1616   } else {
1617     return 0;   // false, definitely
1618   }
1619 }
1620 //-------------------------trap_state_add_reason-------------------------------
1621 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1622   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1623   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1624   trap_state -= recompile_bit;
1625   if (trap_state == DS_REASON_MASK) {
1626     return trap_state + recompile_bit;     // already at state lattice bottom
1627   } else if (trap_state == reason) {
1628     return trap_state + recompile_bit;     // the condition is already true
1629   } else if (trap_state == 0) {
1630     return reason + recompile_bit;          // no condition has yet been true
1631   } else {
1632     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1633   }
1634 }
1635 //-----------------------trap_state_is_recompiled------------------------------
1636 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1637   return (trap_state & DS_RECOMPILE_BIT) != 0;
1638 }
1639 //-----------------------trap_state_set_recompiled-----------------------------
1640 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1641   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1642   else    return trap_state & ~DS_RECOMPILE_BIT;
1643 }
1644 //---------------------------format_trap_state---------------------------------
1645 // This is used for debugging and diagnostics, including hotspot.log output.
1646 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1647                                               int trap_state) {
1648   DeoptReason reason      = trap_state_reason(trap_state);
1649   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1650   // Re-encode the state from its decoded components.
1651   int decoded_state = 0;
1652   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1653     decoded_state = trap_state_add_reason(decoded_state, reason);
1654   if (recomp_flag)
1655     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1656   // If the state re-encodes properly, format it symbolically.
1657   // Because this routine is used for debugging and diagnostics,
1658   // be robust even if the state is a strange value.
1659   size_t len;
1660   if (decoded_state != trap_state) {
1661     // Random buggy state that doesn't decode??
1662     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1663   } else {
1664     len = jio_snprintf(buf, buflen, "%s%s",
1665                        trap_reason_name(reason),
1666                        recomp_flag ? " recompiled" : "");
1667   }
1668   if (len >= buflen)
1669     buf[buflen-1] = '\0';
1670   return buf;
1671 }
1672 
1673 
1674 //--------------------------------statics--------------------------------------
1675 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1676   = Deoptimization::Action_reinterpret;
1677 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1678   // Note:  Keep this in sync. with enum DeoptReason.
1679   "none",
1680   "null_check",
1681   "null_assert",
1682   "range_check",
1683   "class_check",
1684   "array_check",
1685   "intrinsic",
1686   "bimorphic",
1687   "unloaded",
1688   "uninitialized",
1689   "unreached",
1690   "unhandled",
1691   "constraint",
1692   "div0_check",
1693   "age",
1694   "predicate"
1695 };
1696 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1697   // Note:  Keep this in sync. with enum DeoptAction.
1698   "none",
1699   "maybe_recompile",
1700   "reinterpret",
1701   "make_not_entrant",
1702   "make_not_compilable"
1703 };
1704 
1705 const char* Deoptimization::trap_reason_name(int reason) {
1706   if (reason == Reason_many)  return "many";
1707   if ((uint)reason < Reason_LIMIT)
1708     return _trap_reason_name[reason];
1709   static char buf[20];
1710   sprintf(buf, "reason%d", reason);
1711   return buf;
1712 }
1713 const char* Deoptimization::trap_action_name(int action) {
1714   if ((uint)action < Action_LIMIT)
1715     return _trap_action_name[action];
1716   static char buf[20];
1717   sprintf(buf, "action%d", action);
1718   return buf;
1719 }
1720 
1721 // This is used for debugging and diagnostics, including hotspot.log output.
1722 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1723                                                 int trap_request) {
1724   jint unloaded_class_index = trap_request_index(trap_request);
1725   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1726   const char* action = trap_action_name(trap_request_action(trap_request));
1727   size_t len;
1728   if (unloaded_class_index < 0) {
1729     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1730                        reason, action);
1731   } else {
1732     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1733                        reason, action, unloaded_class_index);
1734   }
1735   if (len >= buflen)
1736     buf[buflen-1] = '\0';
1737   return buf;
1738 }
1739 
1740 juint Deoptimization::_deoptimization_hist
1741         [Deoptimization::Reason_LIMIT]
1742     [1 + Deoptimization::Action_LIMIT]
1743         [Deoptimization::BC_CASE_LIMIT]
1744   = {0};
1745 
1746 enum {
1747   LSB_BITS = 8,
1748   LSB_MASK = right_n_bits(LSB_BITS)
1749 };
1750 
1751 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1752                                        Bytecodes::Code bc) {
1753   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1754   assert(action >= 0 && action < Action_LIMIT, "oob");
1755   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1756   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1757   juint* cases = _deoptimization_hist[reason][1+action];
1758   juint* bc_counter_addr = NULL;
1759   juint  bc_counter      = 0;
1760   // Look for an unused counter, or an exact match to this BC.
1761   if (bc != Bytecodes::_illegal) {
1762     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1763       juint* counter_addr = &cases[bc_case];
1764       juint  counter = *counter_addr;
1765       if ((counter == 0 && bc_counter_addr == NULL)
1766           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1767         // this counter is either free or is already devoted to this BC
1768         bc_counter_addr = counter_addr;
1769         bc_counter = counter | bc;
1770       }
1771     }
1772   }
1773   if (bc_counter_addr == NULL) {
1774     // Overflow, or no given bytecode.
1775     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1776     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1777   }
1778   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1779 }
1780 
1781 jint Deoptimization::total_deoptimization_count() {
1782   return _deoptimization_hist[Reason_none][0][0];
1783 }
1784 
1785 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1786   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1787   return _deoptimization_hist[reason][0][0];
1788 }
1789 
1790 void Deoptimization::print_statistics() {
1791   juint total = total_deoptimization_count();
1792   juint account = total;
1793   if (total != 0) {
1794     ttyLocker ttyl;
1795     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1796     tty->print_cr("Deoptimization traps recorded:");
1797     #define PRINT_STAT_LINE(name, r) \
1798       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1799     PRINT_STAT_LINE("total", total);
1800     // For each non-zero entry in the histogram, print the reason,
1801     // the action, and (if specifically known) the type of bytecode.
1802     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1803       for (int action = 0; action < Action_LIMIT; action++) {
1804         juint* cases = _deoptimization_hist[reason][1+action];
1805         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1806           juint counter = cases[bc_case];
1807           if (counter != 0) {
1808             char name[1*K];
1809             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1810             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1811               bc = Bytecodes::_illegal;
1812             sprintf(name, "%s/%s/%s",
1813                     trap_reason_name(reason),
1814                     trap_action_name(action),
1815                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1816             juint r = counter >> LSB_BITS;
1817             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1818             account -= r;
1819           }
1820         }
1821       }
1822     }
1823     if (account != 0) {
1824       PRINT_STAT_LINE("unaccounted", account);
1825     }
1826     #undef PRINT_STAT_LINE
1827     if (xtty != NULL)  xtty->tail("statistics");
1828   }
1829 }
1830 #else // COMPILER2 || SHARK
1831 
1832 
1833 // Stubs for C1 only system.
1834 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1835   return false;
1836 }
1837 
1838 const char* Deoptimization::trap_reason_name(int reason) {
1839   return "unknown";
1840 }
1841 
1842 void Deoptimization::print_statistics() {
1843   // no output
1844 }
1845 
1846 void
1847 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1848   // no udpate
1849 }
1850 
1851 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1852   return 0;
1853 }
1854 
1855 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1856                                        Bytecodes::Code bc) {
1857   // no update
1858 }
1859 
1860 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1861                                               int trap_state) {
1862   jio_snprintf(buf, buflen, "#%d", trap_state);
1863   return buf;
1864 }
1865 
1866 #endif // COMPILER2 || SHARK