1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_thread.cpp.incl"
  27 
  28 #ifdef DTRACE_ENABLED
  29 
  30 // Only bother with this argument setup if dtrace is available
  31 
  32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
  33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
  34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
  35   intptr_t, intptr_t, bool);
  36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
  37   intptr_t, intptr_t, bool);
  38 
  39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
  40   {                                                                        \
  41     ResourceMark rm(this);                                                 \
  42     int len = 0;                                                           \
  43     const char* name = (javathread)->get_thread_name();                    \
  44     len = strlen(name);                                                    \
  45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
  46       name, len,                                                           \
  47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
  48       (javathread)->osthread()->thread_id(),                               \
  49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
  50   }
  51 
  52 #else //  ndef DTRACE_ENABLED
  53 
  54 #define DTRACE_THREAD_PROBE(probe, javathread)
  55 
  56 #endif // ndef DTRACE_ENABLED
  57 
  58 // Class hierarchy
  59 // - Thread
  60 //   - VMThread
  61 //   - WatcherThread
  62 //   - ConcurrentMarkSweepThread
  63 //   - JavaThread
  64 //     - CompilerThread
  65 
  66 // ======= Thread ========
  67 
  68 // Support for forcing alignment of thread objects for biased locking
  69 void* Thread::operator new(size_t size) {
  70   if (UseBiasedLocking) {
  71     const int alignment = markOopDesc::biased_lock_alignment;
  72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
  73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
  74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
  75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
  76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
  77            "JavaThread alignment code overflowed allocated storage");
  78     if (TraceBiasedLocking) {
  79       if (aligned_addr != real_malloc_addr)
  80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
  81                       real_malloc_addr, aligned_addr);
  82     }
  83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
  84     return aligned_addr;
  85   } else {
  86     return CHeapObj::operator new(size);
  87   }
  88 }
  89 
  90 void Thread::operator delete(void* p) {
  91   if (UseBiasedLocking) {
  92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
  93     CHeapObj::operator delete(real_malloc_addr);
  94   } else {
  95     CHeapObj::operator delete(p);
  96   }
  97 }
  98 
  99 
 100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 101 // JavaThread
 102 
 103 
 104 Thread::Thread() {
 105   // stack
 106   _stack_base   = NULL;
 107   _stack_size   = 0;
 108   _self_raw_id  = 0;
 109   _lgrp_id      = -1;
 110   _osthread     = NULL;
 111 
 112   // allocated data structures
 113   set_resource_area(new ResourceArea());
 114   set_handle_area(new HandleArea(NULL));
 115   set_active_handles(NULL);
 116   set_free_handle_block(NULL);
 117   set_last_handle_mark(NULL);
 118   set_osthread(NULL);
 119 
 120   // This initial value ==> never claimed.
 121   _oops_do_parity = 0;
 122 
 123   // the handle mark links itself to last_handle_mark
 124   new HandleMark(this);
 125 
 126   // plain initialization
 127   debug_only(_owned_locks = NULL;)
 128   debug_only(_allow_allocation_count = 0;)
 129   NOT_PRODUCT(_allow_safepoint_count = 0;)
 130   NOT_PRODUCT(_skip_gcalot = false;)
 131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 132   _jvmti_env_iteration_count = 0;
 133   _vm_operation_started_count = 0;
 134   _vm_operation_completed_count = 0;
 135   _current_pending_monitor = NULL;
 136   _current_pending_monitor_is_from_java = true;
 137   _current_waiting_monitor = NULL;
 138   _num_nested_signal = 0;
 139   omFreeList = NULL ;
 140   omFreeCount = 0 ;
 141   omFreeProvision = 32 ;
 142   omInUseList = NULL ;
 143   omInUseCount = 0 ;
 144 
 145   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 146   _suspend_flags = 0;
 147 
 148   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 149   _hashStateX = os::random() ;
 150   _hashStateY = 842502087 ;
 151   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 152   _hashStateW = 273326509 ;
 153 
 154   _OnTrap   = 0 ;
 155   _schedctl = NULL ;
 156   _Stalled  = 0 ;
 157   _TypeTag  = 0x2BAD ;
 158 
 159   // Many of the following fields are effectively final - immutable
 160   // Note that nascent threads can't use the Native Monitor-Mutex
 161   // construct until the _MutexEvent is initialized ...
 162   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 163   // we might instead use a stack of ParkEvents that we could provision on-demand.
 164   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 165   // and ::Release()
 166   _ParkEvent   = ParkEvent::Allocate (this) ;
 167   _SleepEvent  = ParkEvent::Allocate (this) ;
 168   _MutexEvent  = ParkEvent::Allocate (this) ;
 169   _MuxEvent    = ParkEvent::Allocate (this) ;
 170 
 171 #ifdef CHECK_UNHANDLED_OOPS
 172   if (CheckUnhandledOops) {
 173     _unhandled_oops = new UnhandledOops(this);
 174   }
 175 #endif // CHECK_UNHANDLED_OOPS
 176 #ifdef ASSERT
 177   if (UseBiasedLocking) {
 178     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 179     assert(this == _real_malloc_address ||
 180            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 181            "bug in forced alignment of thread objects");
 182   }
 183 #endif /* ASSERT */
 184 }
 185 
 186 void Thread::initialize_thread_local_storage() {
 187   // Note: Make sure this method only calls
 188   // non-blocking operations. Otherwise, it might not work
 189   // with the thread-startup/safepoint interaction.
 190 
 191   // During Java thread startup, safepoint code should allow this
 192   // method to complete because it may need to allocate memory to
 193   // store information for the new thread.
 194 
 195   // initialize structure dependent on thread local storage
 196   ThreadLocalStorage::set_thread(this);
 197 
 198   // set up any platform-specific state.
 199   os::initialize_thread();
 200 
 201 }
 202 
 203 void Thread::record_stack_base_and_size() {
 204   set_stack_base(os::current_stack_base());
 205   set_stack_size(os::current_stack_size());
 206 }
 207 
 208 
 209 Thread::~Thread() {
 210   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 211   ObjectSynchronizer::omFlush (this) ;
 212 
 213   // deallocate data structures
 214   delete resource_area();
 215   // since the handle marks are using the handle area, we have to deallocated the root
 216   // handle mark before deallocating the thread's handle area,
 217   assert(last_handle_mark() != NULL, "check we have an element");
 218   delete last_handle_mark();
 219   assert(last_handle_mark() == NULL, "check we have reached the end");
 220 
 221   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 222   // We NULL out the fields for good hygiene.
 223   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 224   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 225   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 226   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 227 
 228   delete handle_area();
 229 
 230   // osthread() can be NULL, if creation of thread failed.
 231   if (osthread() != NULL) os::free_thread(osthread());
 232 
 233   delete _SR_lock;
 234 
 235   // clear thread local storage if the Thread is deleting itself
 236   if (this == Thread::current()) {
 237     ThreadLocalStorage::set_thread(NULL);
 238   } else {
 239     // In the case where we're not the current thread, invalidate all the
 240     // caches in case some code tries to get the current thread or the
 241     // thread that was destroyed, and gets stale information.
 242     ThreadLocalStorage::invalidate_all();
 243   }
 244   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 245 }
 246 
 247 // NOTE: dummy function for assertion purpose.
 248 void Thread::run() {
 249   ShouldNotReachHere();
 250 }
 251 
 252 #ifdef ASSERT
 253 // Private method to check for dangling thread pointer
 254 void check_for_dangling_thread_pointer(Thread *thread) {
 255  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 256          "possibility of dangling Thread pointer");
 257 }
 258 #endif
 259 
 260 
 261 #ifndef PRODUCT
 262 // Tracing method for basic thread operations
 263 void Thread::trace(const char* msg, const Thread* const thread) {
 264   if (!TraceThreadEvents) return;
 265   ResourceMark rm;
 266   ThreadCritical tc;
 267   const char *name = "non-Java thread";
 268   int prio = -1;
 269   if (thread->is_Java_thread()
 270       && !thread->is_Compiler_thread()) {
 271     // The Threads_lock must be held to get information about
 272     // this thread but may not be in some situations when
 273     // tracing  thread events.
 274     bool release_Threads_lock = false;
 275     if (!Threads_lock->owned_by_self()) {
 276       Threads_lock->lock();
 277       release_Threads_lock = true;
 278     }
 279     JavaThread* jt = (JavaThread *)thread;
 280     name = (char *)jt->get_thread_name();
 281     oop thread_oop = jt->threadObj();
 282     if (thread_oop != NULL) {
 283       prio = java_lang_Thread::priority(thread_oop);
 284     }
 285     if (release_Threads_lock) {
 286       Threads_lock->unlock();
 287     }
 288   }
 289   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 290 }
 291 #endif
 292 
 293 
 294 ThreadPriority Thread::get_priority(const Thread* const thread) {
 295   trace("get priority", thread);
 296   ThreadPriority priority;
 297   // Can return an error!
 298   (void)os::get_priority(thread, priority);
 299   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 300   return priority;
 301 }
 302 
 303 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 304   trace("set priority", thread);
 305   debug_only(check_for_dangling_thread_pointer(thread);)
 306   // Can return an error!
 307   (void)os::set_priority(thread, priority);
 308 }
 309 
 310 
 311 void Thread::start(Thread* thread) {
 312   trace("start", thread);
 313   // Start is different from resume in that its safety is guaranteed by context or
 314   // being called from a Java method synchronized on the Thread object.
 315   if (!DisableStartThread) {
 316     if (thread->is_Java_thread()) {
 317       // Initialize the thread state to RUNNABLE before starting this thread.
 318       // Can not set it after the thread started because we do not know the
 319       // exact thread state at that time. It could be in MONITOR_WAIT or
 320       // in SLEEPING or some other state.
 321       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 322                                           java_lang_Thread::RUNNABLE);
 323     }
 324     os::start_thread(thread);
 325   }
 326 }
 327 
 328 // Enqueue a VM_Operation to do the job for us - sometime later
 329 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 330   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 331   VMThread::execute(vm_stop);
 332 }
 333 
 334 
 335 //
 336 // Check if an external suspend request has completed (or has been
 337 // cancelled). Returns true if the thread is externally suspended and
 338 // false otherwise.
 339 //
 340 // The bits parameter returns information about the code path through
 341 // the routine. Useful for debugging:
 342 //
 343 // set in is_ext_suspend_completed():
 344 // 0x00000001 - routine was entered
 345 // 0x00000010 - routine return false at end
 346 // 0x00000100 - thread exited (return false)
 347 // 0x00000200 - suspend request cancelled (return false)
 348 // 0x00000400 - thread suspended (return true)
 349 // 0x00001000 - thread is in a suspend equivalent state (return true)
 350 // 0x00002000 - thread is native and walkable (return true)
 351 // 0x00004000 - thread is native_trans and walkable (needed retry)
 352 //
 353 // set in wait_for_ext_suspend_completion():
 354 // 0x00010000 - routine was entered
 355 // 0x00020000 - suspend request cancelled before loop (return false)
 356 // 0x00040000 - thread suspended before loop (return true)
 357 // 0x00080000 - suspend request cancelled in loop (return false)
 358 // 0x00100000 - thread suspended in loop (return true)
 359 // 0x00200000 - suspend not completed during retry loop (return false)
 360 //
 361 
 362 // Helper class for tracing suspend wait debug bits.
 363 //
 364 // 0x00000100 indicates that the target thread exited before it could
 365 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 366 // 0x00080000 each indicate a cancelled suspend request so they don't
 367 // count as wait failures either.
 368 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 369 
 370 class TraceSuspendDebugBits : public StackObj {
 371  private:
 372   JavaThread * jt;
 373   bool         is_wait;
 374   bool         called_by_wait;  // meaningful when !is_wait
 375   uint32_t *   bits;
 376 
 377  public:
 378   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 379                         uint32_t *_bits) {
 380     jt             = _jt;
 381     is_wait        = _is_wait;
 382     called_by_wait = _called_by_wait;
 383     bits           = _bits;
 384   }
 385 
 386   ~TraceSuspendDebugBits() {
 387     if (!is_wait) {
 388 #if 1
 389       // By default, don't trace bits for is_ext_suspend_completed() calls.
 390       // That trace is very chatty.
 391       return;
 392 #else
 393       if (!called_by_wait) {
 394         // If tracing for is_ext_suspend_completed() is enabled, then only
 395         // trace calls to it from wait_for_ext_suspend_completion()
 396         return;
 397       }
 398 #endif
 399     }
 400 
 401     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 402       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 403         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 404         ResourceMark rm;
 405 
 406         tty->print_cr(
 407             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 408             jt->get_thread_name(), *bits);
 409 
 410         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 411       }
 412     }
 413   }
 414 };
 415 #undef DEBUG_FALSE_BITS
 416 
 417 
 418 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 419   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 420 
 421   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 422   bool do_trans_retry;           // flag to force the retry
 423 
 424   *bits |= 0x00000001;
 425 
 426   do {
 427     do_trans_retry = false;
 428 
 429     if (is_exiting()) {
 430       // Thread is in the process of exiting. This is always checked
 431       // first to reduce the risk of dereferencing a freed JavaThread.
 432       *bits |= 0x00000100;
 433       return false;
 434     }
 435 
 436     if (!is_external_suspend()) {
 437       // Suspend request is cancelled. This is always checked before
 438       // is_ext_suspended() to reduce the risk of a rogue resume
 439       // confusing the thread that made the suspend request.
 440       *bits |= 0x00000200;
 441       return false;
 442     }
 443 
 444     if (is_ext_suspended()) {
 445       // thread is suspended
 446       *bits |= 0x00000400;
 447       return true;
 448     }
 449 
 450     // Now that we no longer do hard suspends of threads running
 451     // native code, the target thread can be changing thread state
 452     // while we are in this routine:
 453     //
 454     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 455     //
 456     // We save a copy of the thread state as observed at this moment
 457     // and make our decision about suspend completeness based on the
 458     // copy. This closes the race where the thread state is seen as
 459     // _thread_in_native_trans in the if-thread_blocked check, but is
 460     // seen as _thread_blocked in if-thread_in_native_trans check.
 461     JavaThreadState save_state = thread_state();
 462 
 463     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 464       // If the thread's state is _thread_blocked and this blocking
 465       // condition is known to be equivalent to a suspend, then we can
 466       // consider the thread to be externally suspended. This means that
 467       // the code that sets _thread_blocked has been modified to do
 468       // self-suspension if the blocking condition releases. We also
 469       // used to check for CONDVAR_WAIT here, but that is now covered by
 470       // the _thread_blocked with self-suspension check.
 471       //
 472       // Return true since we wouldn't be here unless there was still an
 473       // external suspend request.
 474       *bits |= 0x00001000;
 475       return true;
 476     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 477       // Threads running native code will self-suspend on native==>VM/Java
 478       // transitions. If its stack is walkable (should always be the case
 479       // unless this function is called before the actual java_suspend()
 480       // call), then the wait is done.
 481       *bits |= 0x00002000;
 482       return true;
 483     } else if (!called_by_wait && !did_trans_retry &&
 484                save_state == _thread_in_native_trans &&
 485                frame_anchor()->walkable()) {
 486       // The thread is transitioning from thread_in_native to another
 487       // thread state. check_safepoint_and_suspend_for_native_trans()
 488       // will force the thread to self-suspend. If it hasn't gotten
 489       // there yet we may have caught the thread in-between the native
 490       // code check above and the self-suspend. Lucky us. If we were
 491       // called by wait_for_ext_suspend_completion(), then it
 492       // will be doing the retries so we don't have to.
 493       //
 494       // Since we use the saved thread state in the if-statement above,
 495       // there is a chance that the thread has already transitioned to
 496       // _thread_blocked by the time we get here. In that case, we will
 497       // make a single unnecessary pass through the logic below. This
 498       // doesn't hurt anything since we still do the trans retry.
 499 
 500       *bits |= 0x00004000;
 501 
 502       // Once the thread leaves thread_in_native_trans for another
 503       // thread state, we break out of this retry loop. We shouldn't
 504       // need this flag to prevent us from getting back here, but
 505       // sometimes paranoia is good.
 506       did_trans_retry = true;
 507 
 508       // We wait for the thread to transition to a more usable state.
 509       for (int i = 1; i <= SuspendRetryCount; i++) {
 510         // We used to do an "os::yield_all(i)" call here with the intention
 511         // that yielding would increase on each retry. However, the parameter
 512         // is ignored on Linux which means the yield didn't scale up. Waiting
 513         // on the SR_lock below provides a much more predictable scale up for
 514         // the delay. It also provides a simple/direct point to check for any
 515         // safepoint requests from the VMThread
 516 
 517         // temporarily drops SR_lock while doing wait with safepoint check
 518         // (if we're a JavaThread - the WatcherThread can also call this)
 519         // and increase delay with each retry
 520         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 521 
 522         // check the actual thread state instead of what we saved above
 523         if (thread_state() != _thread_in_native_trans) {
 524           // the thread has transitioned to another thread state so
 525           // try all the checks (except this one) one more time.
 526           do_trans_retry = true;
 527           break;
 528         }
 529       } // end retry loop
 530 
 531 
 532     }
 533   } while (do_trans_retry);
 534 
 535   *bits |= 0x00000010;
 536   return false;
 537 }
 538 
 539 //
 540 // Wait for an external suspend request to complete (or be cancelled).
 541 // Returns true if the thread is externally suspended and false otherwise.
 542 //
 543 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 544        uint32_t *bits) {
 545   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 546                              false /* !called_by_wait */, bits);
 547 
 548   // local flag copies to minimize SR_lock hold time
 549   bool is_suspended;
 550   bool pending;
 551   uint32_t reset_bits;
 552 
 553   // set a marker so is_ext_suspend_completed() knows we are the caller
 554   *bits |= 0x00010000;
 555 
 556   // We use reset_bits to reinitialize the bits value at the top of
 557   // each retry loop. This allows the caller to make use of any
 558   // unused bits for their own marking purposes.
 559   reset_bits = *bits;
 560 
 561   {
 562     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 563     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 564                                             delay, bits);
 565     pending = is_external_suspend();
 566   }
 567   // must release SR_lock to allow suspension to complete
 568 
 569   if (!pending) {
 570     // A cancelled suspend request is the only false return from
 571     // is_ext_suspend_completed() that keeps us from entering the
 572     // retry loop.
 573     *bits |= 0x00020000;
 574     return false;
 575   }
 576 
 577   if (is_suspended) {
 578     *bits |= 0x00040000;
 579     return true;
 580   }
 581 
 582   for (int i = 1; i <= retries; i++) {
 583     *bits = reset_bits;  // reinit to only track last retry
 584 
 585     // We used to do an "os::yield_all(i)" call here with the intention
 586     // that yielding would increase on each retry. However, the parameter
 587     // is ignored on Linux which means the yield didn't scale up. Waiting
 588     // on the SR_lock below provides a much more predictable scale up for
 589     // the delay. It also provides a simple/direct point to check for any
 590     // safepoint requests from the VMThread
 591 
 592     {
 593       MutexLocker ml(SR_lock());
 594       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 595       // can also call this)  and increase delay with each retry
 596       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 597 
 598       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 599                                               delay, bits);
 600 
 601       // It is possible for the external suspend request to be cancelled
 602       // (by a resume) before the actual suspend operation is completed.
 603       // Refresh our local copy to see if we still need to wait.
 604       pending = is_external_suspend();
 605     }
 606 
 607     if (!pending) {
 608       // A cancelled suspend request is the only false return from
 609       // is_ext_suspend_completed() that keeps us from staying in the
 610       // retry loop.
 611       *bits |= 0x00080000;
 612       return false;
 613     }
 614 
 615     if (is_suspended) {
 616       *bits |= 0x00100000;
 617       return true;
 618     }
 619   } // end retry loop
 620 
 621   // thread did not suspend after all our retries
 622   *bits |= 0x00200000;
 623   return false;
 624 }
 625 
 626 #ifndef PRODUCT
 627 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 628 
 629   // This should not need to be atomic as the only way for simultaneous
 630   // updates is via interrupts. Even then this should be rare or non-existant
 631   // and we don't care that much anyway.
 632 
 633   int index = _jmp_ring_index;
 634   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 635   _jmp_ring[index]._target = (intptr_t) target;
 636   _jmp_ring[index]._instruction = (intptr_t) instr;
 637   _jmp_ring[index]._file = file;
 638   _jmp_ring[index]._line = line;
 639 }
 640 #endif /* PRODUCT */
 641 
 642 // Called by flat profiler
 643 // Callers have already called wait_for_ext_suspend_completion
 644 // The assertion for that is currently too complex to put here:
 645 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 646   bool gotframe = false;
 647   // self suspension saves needed state.
 648   if (has_last_Java_frame() && _anchor.walkable()) {
 649      *_fr = pd_last_frame();
 650      gotframe = true;
 651   }
 652   return gotframe;
 653 }
 654 
 655 void Thread::interrupt(Thread* thread) {
 656   trace("interrupt", thread);
 657   debug_only(check_for_dangling_thread_pointer(thread);)
 658   os::interrupt(thread);
 659 }
 660 
 661 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 662   trace("is_interrupted", thread);
 663   debug_only(check_for_dangling_thread_pointer(thread);)
 664   // Note:  If clear_interrupted==false, this simply fetches and
 665   // returns the value of the field osthread()->interrupted().
 666   return os::is_interrupted(thread, clear_interrupted);
 667 }
 668 
 669 
 670 // GC Support
 671 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 672   jint thread_parity = _oops_do_parity;
 673   if (thread_parity != strong_roots_parity) {
 674     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 675     if (res == thread_parity) return true;
 676     else {
 677       guarantee(res == strong_roots_parity, "Or else what?");
 678       assert(SharedHeap::heap()->n_par_threads() > 0,
 679              "Should only fail when parallel.");
 680       return false;
 681     }
 682   }
 683   assert(SharedHeap::heap()->n_par_threads() > 0,
 684          "Should only fail when parallel.");
 685   return false;
 686 }
 687 
 688 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 689   active_handles()->oops_do(f);
 690   // Do oop for ThreadShadow
 691   f->do_oop((oop*)&_pending_exception);
 692   handle_area()->oops_do(f);
 693 }
 694 
 695 void Thread::nmethods_do(CodeBlobClosure* cf) {
 696   // no nmethods in a generic thread...
 697 }
 698 
 699 void Thread::print_on(outputStream* st) const {
 700   // get_priority assumes osthread initialized
 701   if (osthread() != NULL) {
 702     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 703     osthread()->print_on(st);
 704   }
 705   debug_only(if (WizardMode) print_owned_locks_on(st);)
 706 }
 707 
 708 // Thread::print_on_error() is called by fatal error handler. Don't use
 709 // any lock or allocate memory.
 710 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 711   if      (is_VM_thread())                  st->print("VMThread");
 712   else if (is_Compiler_thread())            st->print("CompilerThread");
 713   else if (is_Java_thread())                st->print("JavaThread");
 714   else if (is_GC_task_thread())             st->print("GCTaskThread");
 715   else if (is_Watcher_thread())             st->print("WatcherThread");
 716   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 717   else st->print("Thread");
 718 
 719   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 720             _stack_base - _stack_size, _stack_base);
 721 
 722   if (osthread()) {
 723     st->print(" [id=%d]", osthread()->thread_id());
 724   }
 725 }
 726 
 727 #ifdef ASSERT
 728 void Thread::print_owned_locks_on(outputStream* st) const {
 729   Monitor *cur = _owned_locks;
 730   if (cur == NULL) {
 731     st->print(" (no locks) ");
 732   } else {
 733     st->print_cr(" Locks owned:");
 734     while(cur) {
 735       cur->print_on(st);
 736       cur = cur->next();
 737     }
 738   }
 739 }
 740 
 741 static int ref_use_count  = 0;
 742 
 743 bool Thread::owns_locks_but_compiled_lock() const {
 744   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 745     if (cur != Compile_lock) return true;
 746   }
 747   return false;
 748 }
 749 
 750 
 751 #endif
 752 
 753 #ifndef PRODUCT
 754 
 755 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 756 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 757 // no threads which allow_vm_block's are held
 758 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 759     // Check if current thread is allowed to block at a safepoint
 760     if (!(_allow_safepoint_count == 0))
 761       fatal("Possible safepoint reached by thread that does not allow it");
 762     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 763       fatal("LEAF method calling lock?");
 764     }
 765 
 766 #ifdef ASSERT
 767     if (potential_vm_operation && is_Java_thread()
 768         && !Universe::is_bootstrapping()) {
 769       // Make sure we do not hold any locks that the VM thread also uses.
 770       // This could potentially lead to deadlocks
 771       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 772         // Threads_lock is special, since the safepoint synchronization will not start before this is
 773         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 774         // since it is used to transfer control between JavaThreads and the VMThread
 775         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 776         if ( (cur->allow_vm_block() &&
 777               cur != Threads_lock &&
 778               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 779               cur != VMOperationRequest_lock &&
 780               cur != VMOperationQueue_lock) ||
 781               cur->rank() == Mutex::special) {
 782           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 783         }
 784       }
 785     }
 786 
 787     if (GCALotAtAllSafepoints) {
 788       // We could enter a safepoint here and thus have a gc
 789       InterfaceSupport::check_gc_alot();
 790     }
 791 #endif
 792 }
 793 #endif
 794 
 795 bool Thread::is_in_stack(address adr) const {
 796   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 797   address end = os::current_stack_pointer();
 798   if (stack_base() >= adr && adr >= end) return true;
 799 
 800   return false;
 801 }
 802 
 803 
 804 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 805 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 806 // used for compilation in the future. If that change is made, the need for these methods
 807 // should be revisited, and they should be removed if possible.
 808 
 809 bool Thread::is_lock_owned(address adr) const {
 810   return on_local_stack(adr);
 811 }
 812 
 813 bool Thread::set_as_starting_thread() {
 814  // NOTE: this must be called inside the main thread.
 815   return os::create_main_thread((JavaThread*)this);
 816 }
 817 
 818 static void initialize_class(symbolHandle class_name, TRAPS) {
 819   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 820   instanceKlass::cast(klass)->initialize(CHECK);
 821 }
 822 
 823 
 824 // Creates the initial ThreadGroup
 825 static Handle create_initial_thread_group(TRAPS) {
 826   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
 827   instanceKlassHandle klass (THREAD, k);
 828 
 829   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 830   {
 831     JavaValue result(T_VOID);
 832     JavaCalls::call_special(&result,
 833                             system_instance,
 834                             klass,
 835                             vmSymbolHandles::object_initializer_name(),
 836                             vmSymbolHandles::void_method_signature(),
 837                             CHECK_NH);
 838   }
 839   Universe::set_system_thread_group(system_instance());
 840 
 841   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 842   {
 843     JavaValue result(T_VOID);
 844     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 845     JavaCalls::call_special(&result,
 846                             main_instance,
 847                             klass,
 848                             vmSymbolHandles::object_initializer_name(),
 849                             vmSymbolHandles::threadgroup_string_void_signature(),
 850                             system_instance,
 851                             string,
 852                             CHECK_NH);
 853   }
 854   return main_instance;
 855 }
 856 
 857 // Creates the initial Thread
 858 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 859   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
 860   instanceKlassHandle klass (THREAD, k);
 861   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 862 
 863   java_lang_Thread::set_thread(thread_oop(), thread);
 864   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 865   thread->set_threadObj(thread_oop());
 866 
 867   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 868 
 869   JavaValue result(T_VOID);
 870   JavaCalls::call_special(&result, thread_oop,
 871                                    klass,
 872                                    vmSymbolHandles::object_initializer_name(),
 873                                    vmSymbolHandles::threadgroup_string_void_signature(),
 874                                    thread_group,
 875                                    string,
 876                                    CHECK_NULL);
 877   return thread_oop();
 878 }
 879 
 880 static void call_initializeSystemClass(TRAPS) {
 881   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 882   instanceKlassHandle klass (THREAD, k);
 883 
 884   JavaValue result(T_VOID);
 885   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
 886                                          vmSymbolHandles::void_method_signature(), CHECK);
 887 }
 888 
 889 #ifdef KERNEL
 890 static void set_jkernel_boot_classloader_hook(TRAPS) {
 891   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
 892   instanceKlassHandle klass (THREAD, k);
 893 
 894   if (k == NULL) {
 895     // sun.jkernel.DownloadManager may not present in the JDK; just return
 896     return;
 897   }
 898 
 899   JavaValue result(T_VOID);
 900   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
 901                                          vmSymbolHandles::void_method_signature(), CHECK);
 902 }
 903 #endif // KERNEL
 904 
 905 static void reset_vm_info_property(TRAPS) {
 906   // the vm info string
 907   ResourceMark rm(THREAD);
 908   const char *vm_info = VM_Version::vm_info_string();
 909 
 910   // java.lang.System class
 911   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 912   instanceKlassHandle klass (THREAD, k);
 913 
 914   // setProperty arguments
 915   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 916   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 917 
 918   // return value
 919   JavaValue r(T_OBJECT);
 920 
 921   // public static String setProperty(String key, String value);
 922   JavaCalls::call_static(&r,
 923                          klass,
 924                          vmSymbolHandles::setProperty_name(),
 925                          vmSymbolHandles::string_string_string_signature(),
 926                          key_str,
 927                          value_str,
 928                          CHECK);
 929 }
 930 
 931 
 932 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
 933   assert(thread_group.not_null(), "thread group should be specified");
 934   assert(threadObj() == NULL, "should only create Java thread object once");
 935 
 936   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
 937   instanceKlassHandle klass (THREAD, k);
 938   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 939 
 940   java_lang_Thread::set_thread(thread_oop(), this);
 941   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 942   set_threadObj(thread_oop());
 943 
 944   JavaValue result(T_VOID);
 945   if (thread_name != NULL) {
 946     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
 947     // Thread gets assigned specified name and null target
 948     JavaCalls::call_special(&result,
 949                             thread_oop,
 950                             klass,
 951                             vmSymbolHandles::object_initializer_name(),
 952                             vmSymbolHandles::threadgroup_string_void_signature(),
 953                             thread_group, // Argument 1
 954                             name,         // Argument 2
 955                             THREAD);
 956   } else {
 957     // Thread gets assigned name "Thread-nnn" and null target
 958     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
 959     JavaCalls::call_special(&result,
 960                             thread_oop,
 961                             klass,
 962                             vmSymbolHandles::object_initializer_name(),
 963                             vmSymbolHandles::threadgroup_runnable_void_signature(),
 964                             thread_group, // Argument 1
 965                             Handle(),     // Argument 2
 966                             THREAD);
 967   }
 968 
 969 
 970   if (daemon) {
 971       java_lang_Thread::set_daemon(thread_oop());
 972   }
 973 
 974   if (HAS_PENDING_EXCEPTION) {
 975     return;
 976   }
 977 
 978   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
 979   Handle threadObj(this, this->threadObj());
 980 
 981   JavaCalls::call_special(&result,
 982                          thread_group,
 983                          group,
 984                          vmSymbolHandles::add_method_name(),
 985                          vmSymbolHandles::thread_void_signature(),
 986                          threadObj,          // Arg 1
 987                          THREAD);
 988 
 989 
 990 }
 991 
 992 // NamedThread --  non-JavaThread subclasses with multiple
 993 // uniquely named instances should derive from this.
 994 NamedThread::NamedThread() : Thread() {
 995   _name = NULL;
 996   _processed_thread = NULL;
 997 }
 998 
 999 NamedThread::~NamedThread() {
1000   if (_name != NULL) {
1001     FREE_C_HEAP_ARRAY(char, _name);
1002     _name = NULL;
1003   }
1004 }
1005 
1006 void NamedThread::set_name(const char* format, ...) {
1007   guarantee(_name == NULL, "Only get to set name once.");
1008   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1009   guarantee(_name != NULL, "alloc failure");
1010   va_list ap;
1011   va_start(ap, format);
1012   jio_vsnprintf(_name, max_name_len, format, ap);
1013   va_end(ap);
1014 }
1015 
1016 // ======= WatcherThread ========
1017 
1018 // The watcher thread exists to simulate timer interrupts.  It should
1019 // be replaced by an abstraction over whatever native support for
1020 // timer interrupts exists on the platform.
1021 
1022 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1023 volatile bool  WatcherThread::_should_terminate = false;
1024 
1025 WatcherThread::WatcherThread() : Thread() {
1026   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1027   if (os::create_thread(this, os::watcher_thread)) {
1028     _watcher_thread = this;
1029 
1030     // Set the watcher thread to the highest OS priority which should not be
1031     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1032     // is created. The only normal thread using this priority is the reference
1033     // handler thread, which runs for very short intervals only.
1034     // If the VMThread's priority is not lower than the WatcherThread profiling
1035     // will be inaccurate.
1036     os::set_priority(this, MaxPriority);
1037     if (!DisableStartThread) {
1038       os::start_thread(this);
1039     }
1040   }
1041 }
1042 
1043 void WatcherThread::run() {
1044   assert(this == watcher_thread(), "just checking");
1045 
1046   this->record_stack_base_and_size();
1047   this->initialize_thread_local_storage();
1048   this->set_active_handles(JNIHandleBlock::allocate_block());
1049   while(!_should_terminate) {
1050     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1051     assert(watcher_thread() == this,  "thread consistency check");
1052 
1053     // Calculate how long it'll be until the next PeriodicTask work
1054     // should be done, and sleep that amount of time.
1055     size_t time_to_wait = PeriodicTask::time_to_wait();
1056 
1057     // we expect this to timeout - we only ever get unparked when
1058     // we should terminate
1059     {
1060       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1061 
1062       jlong prev_time = os::javaTimeNanos();
1063       for (;;) {
1064         int res= _SleepEvent->park(time_to_wait);
1065         if (res == OS_TIMEOUT || _should_terminate)
1066           break;
1067         // spurious wakeup of some kind
1068         jlong now = os::javaTimeNanos();
1069         time_to_wait -= (now - prev_time) / 1000000;
1070         if (time_to_wait <= 0)
1071           break;
1072         prev_time = now;
1073       }
1074     }
1075 
1076     if (is_error_reported()) {
1077       // A fatal error has happened, the error handler(VMError::report_and_die)
1078       // should abort JVM after creating an error log file. However in some
1079       // rare cases, the error handler itself might deadlock. Here we try to
1080       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1081       //
1082       // This code is in WatcherThread because WatcherThread wakes up
1083       // periodically so the fatal error handler doesn't need to do anything;
1084       // also because the WatcherThread is less likely to crash than other
1085       // threads.
1086 
1087       for (;;) {
1088         if (!ShowMessageBoxOnError
1089          && (OnError == NULL || OnError[0] == '\0')
1090          && Arguments::abort_hook() == NULL) {
1091              os::sleep(this, 2 * 60 * 1000, false);
1092              fdStream err(defaultStream::output_fd());
1093              err.print_raw_cr("# [ timer expired, abort... ]");
1094              // skip atexit/vm_exit/vm_abort hooks
1095              os::die();
1096         }
1097 
1098         // Wake up 5 seconds later, the fatal handler may reset OnError or
1099         // ShowMessageBoxOnError when it is ready to abort.
1100         os::sleep(this, 5 * 1000, false);
1101       }
1102     }
1103 
1104     PeriodicTask::real_time_tick(time_to_wait);
1105 
1106     // If we have no more tasks left due to dynamic disenrollment,
1107     // shut down the thread since we don't currently support dynamic enrollment
1108     if (PeriodicTask::num_tasks() == 0) {
1109       _should_terminate = true;
1110     }
1111   }
1112 
1113   // Signal that it is terminated
1114   {
1115     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1116     _watcher_thread = NULL;
1117     Terminator_lock->notify();
1118   }
1119 
1120   // Thread destructor usually does this..
1121   ThreadLocalStorage::set_thread(NULL);
1122 }
1123 
1124 void WatcherThread::start() {
1125   if (watcher_thread() == NULL) {
1126     _should_terminate = false;
1127     // Create the single instance of WatcherThread
1128     new WatcherThread();
1129   }
1130 }
1131 
1132 void WatcherThread::stop() {
1133   // it is ok to take late safepoints here, if needed
1134   MutexLocker mu(Terminator_lock);
1135   _should_terminate = true;
1136   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1137 
1138   Thread* watcher = watcher_thread();
1139   if (watcher != NULL)
1140     watcher->_SleepEvent->unpark();
1141 
1142   while(watcher_thread() != NULL) {
1143     // This wait should make safepoint checks, wait without a timeout,
1144     // and wait as a suspend-equivalent condition.
1145     //
1146     // Note: If the FlatProfiler is running, then this thread is waiting
1147     // for the WatcherThread to terminate and the WatcherThread, via the
1148     // FlatProfiler task, is waiting for the external suspend request on
1149     // this thread to complete. wait_for_ext_suspend_completion() will
1150     // eventually timeout, but that takes time. Making this wait a
1151     // suspend-equivalent condition solves that timeout problem.
1152     //
1153     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1154                           Mutex::_as_suspend_equivalent_flag);
1155   }
1156 }
1157 
1158 void WatcherThread::print_on(outputStream* st) const {
1159   st->print("\"%s\" ", name());
1160   Thread::print_on(st);
1161   st->cr();
1162 }
1163 
1164 // ======= JavaThread ========
1165 
1166 // A JavaThread is a normal Java thread
1167 
1168 void JavaThread::initialize() {
1169   // Initialize fields
1170 
1171   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1172   set_claimed_par_id(-1);
1173 
1174   set_saved_exception_pc(NULL);
1175   set_threadObj(NULL);
1176   _anchor.clear();
1177   set_entry_point(NULL);
1178   set_jni_functions(jni_functions());
1179   set_callee_target(NULL);
1180   set_vm_result(NULL);
1181   set_vm_result_2(NULL);
1182   set_vframe_array_head(NULL);
1183   set_vframe_array_last(NULL);
1184   set_deferred_locals(NULL);
1185   set_deopt_mark(NULL);
1186   set_deopt_nmethod(NULL);
1187   clear_must_deopt_id();
1188   set_monitor_chunks(NULL);
1189   set_next(NULL);
1190   set_thread_state(_thread_new);
1191   _terminated = _not_terminated;
1192   _privileged_stack_top = NULL;
1193   _array_for_gc = NULL;
1194   _suspend_equivalent = false;
1195   _in_deopt_handler = 0;
1196   _doing_unsafe_access = false;
1197   _stack_guard_state = stack_guard_unused;
1198   _exception_oop = NULL;
1199   _exception_pc  = 0;
1200   _exception_handler_pc = 0;
1201   _exception_stack_size = 0;
1202   _jvmti_thread_state= NULL;
1203   _should_post_on_exceptions_flag = JNI_FALSE;
1204   _jvmti_get_loaded_classes_closure = NULL;
1205   _interp_only_mode    = 0;
1206   _special_runtime_exit_condition = _no_async_condition;
1207   _pending_async_exception = NULL;
1208   _is_compiling = false;
1209   _thread_stat = NULL;
1210   _thread_stat = new ThreadStatistics();
1211   _blocked_on_compilation = false;
1212   _jni_active_critical = 0;
1213   _do_not_unlock_if_synchronized = false;
1214   _cached_monitor_info = NULL;
1215   _parker = Parker::Allocate(this) ;
1216 
1217 #ifndef PRODUCT
1218   _jmp_ring_index = 0;
1219   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1220     record_jump(NULL, NULL, NULL, 0);
1221   }
1222 #endif /* PRODUCT */
1223 
1224   set_thread_profiler(NULL);
1225   if (FlatProfiler::is_active()) {
1226     // This is where we would decide to either give each thread it's own profiler
1227     // or use one global one from FlatProfiler,
1228     // or up to some count of the number of profiled threads, etc.
1229     ThreadProfiler* pp = new ThreadProfiler();
1230     pp->engage();
1231     set_thread_profiler(pp);
1232   }
1233 
1234   // Setup safepoint state info for this thread
1235   ThreadSafepointState::create(this);
1236 
1237   debug_only(_java_call_counter = 0);
1238 
1239   // JVMTI PopFrame support
1240   _popframe_condition = popframe_inactive;
1241   _popframe_preserved_args = NULL;
1242   _popframe_preserved_args_size = 0;
1243 
1244   pd_initialize();
1245 }
1246 
1247 #ifndef SERIALGC
1248 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1249 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1250 #endif // !SERIALGC
1251 
1252 JavaThread::JavaThread(bool is_attaching) :
1253   Thread()
1254 #ifndef SERIALGC
1255   , _satb_mark_queue(&_satb_mark_queue_set),
1256   _dirty_card_queue(&_dirty_card_queue_set)
1257 #endif // !SERIALGC
1258 {
1259   initialize();
1260   _is_attaching = is_attaching;
1261   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1262 }
1263 
1264 bool JavaThread::reguard_stack(address cur_sp) {
1265   if (_stack_guard_state != stack_guard_yellow_disabled) {
1266     return true; // Stack already guarded or guard pages not needed.
1267   }
1268 
1269   if (register_stack_overflow()) {
1270     // For those architectures which have separate register and
1271     // memory stacks, we must check the register stack to see if
1272     // it has overflowed.
1273     return false;
1274   }
1275 
1276   // Java code never executes within the yellow zone: the latter is only
1277   // there to provoke an exception during stack banging.  If java code
1278   // is executing there, either StackShadowPages should be larger, or
1279   // some exception code in c1, c2 or the interpreter isn't unwinding
1280   // when it should.
1281   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1282 
1283   enable_stack_yellow_zone();
1284   return true;
1285 }
1286 
1287 bool JavaThread::reguard_stack(void) {
1288   return reguard_stack(os::current_stack_pointer());
1289 }
1290 
1291 
1292 void JavaThread::block_if_vm_exited() {
1293   if (_terminated == _vm_exited) {
1294     // _vm_exited is set at safepoint, and Threads_lock is never released
1295     // we will block here forever
1296     Threads_lock->lock_without_safepoint_check();
1297     ShouldNotReachHere();
1298   }
1299 }
1300 
1301 
1302 // Remove this ifdef when C1 is ported to the compiler interface.
1303 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1304 
1305 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1306   Thread()
1307 #ifndef SERIALGC
1308   , _satb_mark_queue(&_satb_mark_queue_set),
1309   _dirty_card_queue(&_dirty_card_queue_set)
1310 #endif // !SERIALGC
1311 {
1312   if (TraceThreadEvents) {
1313     tty->print_cr("creating thread %p", this);
1314   }
1315   initialize();
1316   _is_attaching = false;
1317   set_entry_point(entry_point);
1318   // Create the native thread itself.
1319   // %note runtime_23
1320   os::ThreadType thr_type = os::java_thread;
1321   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1322                                                      os::java_thread;
1323   os::create_thread(this, thr_type, stack_sz);
1324 
1325   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1326   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1327   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1328   // the exception consists of creating the exception object & initializing it, initialization
1329   // will leave the VM via a JavaCall and then all locks must be unlocked).
1330   //
1331   // The thread is still suspended when we reach here. Thread must be explicit started
1332   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1333   // by calling Threads:add. The reason why this is not done here, is because the thread
1334   // object must be fully initialized (take a look at JVM_Start)
1335 }
1336 
1337 JavaThread::~JavaThread() {
1338   if (TraceThreadEvents) {
1339       tty->print_cr("terminate thread %p", this);
1340   }
1341 
1342   // JSR166 -- return the parker to the free list
1343   Parker::Release(_parker);
1344   _parker = NULL ;
1345 
1346   // Free any remaining  previous UnrollBlock
1347   vframeArray* old_array = vframe_array_last();
1348 
1349   if (old_array != NULL) {
1350     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1351     old_array->set_unroll_block(NULL);
1352     delete old_info;
1353     delete old_array;
1354   }
1355 
1356   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1357   if (deferred != NULL) {
1358     // This can only happen if thread is destroyed before deoptimization occurs.
1359     assert(deferred->length() != 0, "empty array!");
1360     do {
1361       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1362       deferred->remove_at(0);
1363       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1364       delete dlv;
1365     } while (deferred->length() != 0);
1366     delete deferred;
1367   }
1368 
1369   // All Java related clean up happens in exit
1370   ThreadSafepointState::destroy(this);
1371   if (_thread_profiler != NULL) delete _thread_profiler;
1372   if (_thread_stat != NULL) delete _thread_stat;
1373 }
1374 
1375 
1376 // The first routine called by a new Java thread
1377 void JavaThread::run() {
1378   // initialize thread-local alloc buffer related fields
1379   this->initialize_tlab();
1380 
1381   // used to test validitity of stack trace backs
1382   this->record_base_of_stack_pointer();
1383 
1384   // Record real stack base and size.
1385   this->record_stack_base_and_size();
1386 
1387   // Initialize thread local storage; set before calling MutexLocker
1388   this->initialize_thread_local_storage();
1389 
1390   this->create_stack_guard_pages();
1391 
1392   this->cache_global_variables();
1393 
1394   // Thread is now sufficient initialized to be handled by the safepoint code as being
1395   // in the VM. Change thread state from _thread_new to _thread_in_vm
1396   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1397 
1398   assert(JavaThread::current() == this, "sanity check");
1399   assert(!Thread::current()->owns_locks(), "sanity check");
1400 
1401   DTRACE_THREAD_PROBE(start, this);
1402 
1403   // This operation might block. We call that after all safepoint checks for a new thread has
1404   // been completed.
1405   this->set_active_handles(JNIHandleBlock::allocate_block());
1406 
1407   if (JvmtiExport::should_post_thread_life()) {
1408     JvmtiExport::post_thread_start(this);
1409   }
1410 
1411   // We call another function to do the rest so we are sure that the stack addresses used
1412   // from there will be lower than the stack base just computed
1413   thread_main_inner();
1414 
1415   // Note, thread is no longer valid at this point!
1416 }
1417 
1418 
1419 void JavaThread::thread_main_inner() {
1420   assert(JavaThread::current() == this, "sanity check");
1421   assert(this->threadObj() != NULL, "just checking");
1422 
1423   // Execute thread entry point. If this thread is being asked to restart,
1424   // or has been stopped before starting, do not reexecute entry point.
1425   // Note: Due to JVM_StopThread we can have pending exceptions already!
1426   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1427     // enter the thread's entry point only if we have no pending exceptions
1428     HandleMark hm(this);
1429     this->entry_point()(this, this);
1430   }
1431 
1432   DTRACE_THREAD_PROBE(stop, this);
1433 
1434   this->exit(false);
1435   delete this;
1436 }
1437 
1438 
1439 static void ensure_join(JavaThread* thread) {
1440   // We do not need to grap the Threads_lock, since we are operating on ourself.
1441   Handle threadObj(thread, thread->threadObj());
1442   assert(threadObj.not_null(), "java thread object must exist");
1443   ObjectLocker lock(threadObj, thread);
1444   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1445   thread->clear_pending_exception();
1446   // It is of profound importance that we set the stillborn bit and reset the thread object,
1447   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1448   // false. So in case another thread is doing a join on this thread , it will detect that the thread
1449   // is dead when it gets notified.
1450   java_lang_Thread::set_stillborn(threadObj());
1451   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1452   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1453   java_lang_Thread::set_thread(threadObj(), NULL);
1454   lock.notify_all(thread);
1455   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1456   thread->clear_pending_exception();
1457 }
1458 
1459 
1460 // For any new cleanup additions, please check to see if they need to be applied to
1461 // cleanup_failed_attach_current_thread as well.
1462 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1463   assert(this == JavaThread::current(),  "thread consistency check");
1464   if (!InitializeJavaLangSystem) return;
1465 
1466   HandleMark hm(this);
1467   Handle uncaught_exception(this, this->pending_exception());
1468   this->clear_pending_exception();
1469   Handle threadObj(this, this->threadObj());
1470   assert(threadObj.not_null(), "Java thread object should be created");
1471 
1472   if (get_thread_profiler() != NULL) {
1473     get_thread_profiler()->disengage();
1474     ResourceMark rm;
1475     get_thread_profiler()->print(get_thread_name());
1476   }
1477 
1478 
1479   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1480   {
1481     EXCEPTION_MARK;
1482 
1483     CLEAR_PENDING_EXCEPTION;
1484   }
1485   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1486   // has to be fixed by a runtime query method
1487   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1488     // JSR-166: change call from from ThreadGroup.uncaughtException to
1489     // java.lang.Thread.dispatchUncaughtException
1490     if (uncaught_exception.not_null()) {
1491       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1492       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1493         (address)uncaught_exception(), (address)threadObj(), (address)group());
1494       {
1495         EXCEPTION_MARK;
1496         // Check if the method Thread.dispatchUncaughtException() exists. If so
1497         // call it.  Otherwise we have an older library without the JSR-166 changes,
1498         // so call ThreadGroup.uncaughtException()
1499         KlassHandle recvrKlass(THREAD, threadObj->klass());
1500         CallInfo callinfo;
1501         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1502         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1503                                            vmSymbolHandles::dispatchUncaughtException_name(),
1504                                            vmSymbolHandles::throwable_void_signature(),
1505                                            KlassHandle(), false, false, THREAD);
1506         CLEAR_PENDING_EXCEPTION;
1507         methodHandle method = callinfo.selected_method();
1508         if (method.not_null()) {
1509           JavaValue result(T_VOID);
1510           JavaCalls::call_virtual(&result,
1511                                   threadObj, thread_klass,
1512                                   vmSymbolHandles::dispatchUncaughtException_name(),
1513                                   vmSymbolHandles::throwable_void_signature(),
1514                                   uncaught_exception,
1515                                   THREAD);
1516         } else {
1517           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1518           JavaValue result(T_VOID);
1519           JavaCalls::call_virtual(&result,
1520                                   group, thread_group,
1521                                   vmSymbolHandles::uncaughtException_name(),
1522                                   vmSymbolHandles::thread_throwable_void_signature(),
1523                                   threadObj,           // Arg 1
1524                                   uncaught_exception,  // Arg 2
1525                                   THREAD);
1526         }
1527         CLEAR_PENDING_EXCEPTION;
1528       }
1529     }
1530 
1531     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1532     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1533     // is deprecated anyhow.
1534     { int count = 3;
1535       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1536         EXCEPTION_MARK;
1537         JavaValue result(T_VOID);
1538         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1539         JavaCalls::call_virtual(&result,
1540                               threadObj, thread_klass,
1541                               vmSymbolHandles::exit_method_name(),
1542                               vmSymbolHandles::void_method_signature(),
1543                               THREAD);
1544         CLEAR_PENDING_EXCEPTION;
1545       }
1546     }
1547 
1548     // notify JVMTI
1549     if (JvmtiExport::should_post_thread_life()) {
1550       JvmtiExport::post_thread_end(this);
1551     }
1552 
1553     // We have notified the agents that we are exiting, before we go on,
1554     // we must check for a pending external suspend request and honor it
1555     // in order to not surprise the thread that made the suspend request.
1556     while (true) {
1557       {
1558         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1559         if (!is_external_suspend()) {
1560           set_terminated(_thread_exiting);
1561           ThreadService::current_thread_exiting(this);
1562           break;
1563         }
1564         // Implied else:
1565         // Things get a little tricky here. We have a pending external
1566         // suspend request, but we are holding the SR_lock so we
1567         // can't just self-suspend. So we temporarily drop the lock
1568         // and then self-suspend.
1569       }
1570 
1571       ThreadBlockInVM tbivm(this);
1572       java_suspend_self();
1573 
1574       // We're done with this suspend request, but we have to loop around
1575       // and check again. Eventually we will get SR_lock without a pending
1576       // external suspend request and will be able to mark ourselves as
1577       // exiting.
1578     }
1579     // no more external suspends are allowed at this point
1580   } else {
1581     // before_exit() has already posted JVMTI THREAD_END events
1582   }
1583 
1584   // Notify waiters on thread object. This has to be done after exit() is called
1585   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1586   // group should have the destroyed bit set before waiters are notified).
1587   ensure_join(this);
1588   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1589 
1590   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1591   // held by this thread must be released.  A detach operation must only
1592   // get here if there are no Java frames on the stack.  Therefore, any
1593   // owned monitors at this point MUST be JNI-acquired monitors which are
1594   // pre-inflated and in the monitor cache.
1595   //
1596   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1597   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1598     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1599     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1600     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1601   }
1602 
1603   // These things needs to be done while we are still a Java Thread. Make sure that thread
1604   // is in a consistent state, in case GC happens
1605   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1606 
1607   if (active_handles() != NULL) {
1608     JNIHandleBlock* block = active_handles();
1609     set_active_handles(NULL);
1610     JNIHandleBlock::release_block(block);
1611   }
1612 
1613   if (free_handle_block() != NULL) {
1614     JNIHandleBlock* block = free_handle_block();
1615     set_free_handle_block(NULL);
1616     JNIHandleBlock::release_block(block);
1617   }
1618 
1619   // These have to be removed while this is still a valid thread.
1620   remove_stack_guard_pages();
1621 
1622   if (UseTLAB) {
1623     tlab().make_parsable(true);  // retire TLAB
1624   }
1625 
1626   if (jvmti_thread_state() != NULL) {
1627     JvmtiExport::cleanup_thread(this);
1628   }
1629 
1630 #ifndef SERIALGC
1631   // We must flush G1-related buffers before removing a thread from
1632   // the list of active threads.
1633   if (UseG1GC) {
1634     flush_barrier_queues();
1635   }
1636 #endif
1637 
1638   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1639   Threads::remove(this);
1640 }
1641 
1642 #ifndef SERIALGC
1643 // Flush G1-related queues.
1644 void JavaThread::flush_barrier_queues() {
1645   satb_mark_queue().flush();
1646   dirty_card_queue().flush();
1647 }
1648 #endif
1649 
1650 void JavaThread::cleanup_failed_attach_current_thread() {
1651   if (get_thread_profiler() != NULL) {
1652     get_thread_profiler()->disengage();
1653     ResourceMark rm;
1654     get_thread_profiler()->print(get_thread_name());
1655   }
1656 
1657   if (active_handles() != NULL) {
1658     JNIHandleBlock* block = active_handles();
1659     set_active_handles(NULL);
1660     JNIHandleBlock::release_block(block);
1661   }
1662 
1663   if (free_handle_block() != NULL) {
1664     JNIHandleBlock* block = free_handle_block();
1665     set_free_handle_block(NULL);
1666     JNIHandleBlock::release_block(block);
1667   }
1668 
1669   // These have to be removed while this is still a valid thread.
1670   remove_stack_guard_pages();
1671 
1672   if (UseTLAB) {
1673     tlab().make_parsable(true);  // retire TLAB, if any
1674   }
1675 
1676 #ifndef SERIALGC
1677   if (UseG1GC) {
1678     flush_barrier_queues();
1679   }
1680 #endif
1681 
1682   Threads::remove(this);
1683   delete this;
1684 }
1685 
1686 
1687 
1688 
1689 JavaThread* JavaThread::active() {
1690   Thread* thread = ThreadLocalStorage::thread();
1691   assert(thread != NULL, "just checking");
1692   if (thread->is_Java_thread()) {
1693     return (JavaThread*) thread;
1694   } else {
1695     assert(thread->is_VM_thread(), "this must be a vm thread");
1696     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1697     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1698     assert(ret->is_Java_thread(), "must be a Java thread");
1699     return ret;
1700   }
1701 }
1702 
1703 bool JavaThread::is_lock_owned(address adr) const {
1704   if (Thread::is_lock_owned(adr)) return true;
1705 
1706   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1707     if (chunk->contains(adr)) return true;
1708   }
1709 
1710   return false;
1711 }
1712 
1713 
1714 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1715   chunk->set_next(monitor_chunks());
1716   set_monitor_chunks(chunk);
1717 }
1718 
1719 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1720   guarantee(monitor_chunks() != NULL, "must be non empty");
1721   if (monitor_chunks() == chunk) {
1722     set_monitor_chunks(chunk->next());
1723   } else {
1724     MonitorChunk* prev = monitor_chunks();
1725     while (prev->next() != chunk) prev = prev->next();
1726     prev->set_next(chunk->next());
1727   }
1728 }
1729 
1730 // JVM support.
1731 
1732 // Note: this function shouldn't block if it's called in
1733 // _thread_in_native_trans state (such as from
1734 // check_special_condition_for_native_trans()).
1735 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1736 
1737   if (has_last_Java_frame() && has_async_condition()) {
1738     // If we are at a polling page safepoint (not a poll return)
1739     // then we must defer async exception because live registers
1740     // will be clobbered by the exception path. Poll return is
1741     // ok because the call we a returning from already collides
1742     // with exception handling registers and so there is no issue.
1743     // (The exception handling path kills call result registers but
1744     //  this is ok since the exception kills the result anyway).
1745 
1746     if (is_at_poll_safepoint()) {
1747       // if the code we are returning to has deoptimized we must defer
1748       // the exception otherwise live registers get clobbered on the
1749       // exception path before deoptimization is able to retrieve them.
1750       //
1751       RegisterMap map(this, false);
1752       frame caller_fr = last_frame().sender(&map);
1753       assert(caller_fr.is_compiled_frame(), "what?");
1754       if (caller_fr.is_deoptimized_frame()) {
1755         if (TraceExceptions) {
1756           ResourceMark rm;
1757           tty->print_cr("deferred async exception at compiled safepoint");
1758         }
1759         return;
1760       }
1761     }
1762   }
1763 
1764   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1765   if (condition == _no_async_condition) {
1766     // Conditions have changed since has_special_runtime_exit_condition()
1767     // was called:
1768     // - if we were here only because of an external suspend request,
1769     //   then that was taken care of above (or cancelled) so we are done
1770     // - if we were here because of another async request, then it has
1771     //   been cleared between the has_special_runtime_exit_condition()
1772     //   and now so again we are done
1773     return;
1774   }
1775 
1776   // Check for pending async. exception
1777   if (_pending_async_exception != NULL) {
1778     // Only overwrite an already pending exception, if it is not a threadDeath.
1779     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1780 
1781       // We cannot call Exceptions::_throw(...) here because we cannot block
1782       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1783 
1784       if (TraceExceptions) {
1785         ResourceMark rm;
1786         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1787         if (has_last_Java_frame() ) {
1788           frame f = last_frame();
1789           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1790         }
1791         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1792       }
1793       _pending_async_exception = NULL;
1794       clear_has_async_exception();
1795     }
1796   }
1797 
1798   if (check_unsafe_error &&
1799       condition == _async_unsafe_access_error && !has_pending_exception()) {
1800     condition = _no_async_condition;  // done
1801     switch (thread_state()) {
1802     case _thread_in_vm:
1803       {
1804         JavaThread* THREAD = this;
1805         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1806       }
1807     case _thread_in_native:
1808       {
1809         ThreadInVMfromNative tiv(this);
1810         JavaThread* THREAD = this;
1811         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1812       }
1813     case _thread_in_Java:
1814       {
1815         ThreadInVMfromJava tiv(this);
1816         JavaThread* THREAD = this;
1817         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1818       }
1819     default:
1820       ShouldNotReachHere();
1821     }
1822   }
1823 
1824   assert(condition == _no_async_condition || has_pending_exception() ||
1825          (!check_unsafe_error && condition == _async_unsafe_access_error),
1826          "must have handled the async condition, if no exception");
1827 }
1828 
1829 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1830   //
1831   // Check for pending external suspend. Internal suspend requests do
1832   // not use handle_special_runtime_exit_condition().
1833   // If JNIEnv proxies are allowed, don't self-suspend if the target
1834   // thread is not the current thread. In older versions of jdbx, jdbx
1835   // threads could call into the VM with another thread's JNIEnv so we
1836   // can be here operating on behalf of a suspended thread (4432884).
1837   bool do_self_suspend = is_external_suspend_with_lock();
1838   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1839     //
1840     // Because thread is external suspended the safepoint code will count
1841     // thread as at a safepoint. This can be odd because we can be here
1842     // as _thread_in_Java which would normally transition to _thread_blocked
1843     // at a safepoint. We would like to mark the thread as _thread_blocked
1844     // before calling java_suspend_self like all other callers of it but
1845     // we must then observe proper safepoint protocol. (We can't leave
1846     // _thread_blocked with a safepoint in progress). However we can be
1847     // here as _thread_in_native_trans so we can't use a normal transition
1848     // constructor/destructor pair because they assert on that type of
1849     // transition. We could do something like:
1850     //
1851     // JavaThreadState state = thread_state();
1852     // set_thread_state(_thread_in_vm);
1853     // {
1854     //   ThreadBlockInVM tbivm(this);
1855     //   java_suspend_self()
1856     // }
1857     // set_thread_state(_thread_in_vm_trans);
1858     // if (safepoint) block;
1859     // set_thread_state(state);
1860     //
1861     // but that is pretty messy. Instead we just go with the way the
1862     // code has worked before and note that this is the only path to
1863     // java_suspend_self that doesn't put the thread in _thread_blocked
1864     // mode.
1865 
1866     frame_anchor()->make_walkable(this);
1867     java_suspend_self();
1868 
1869     // We might be here for reasons in addition to the self-suspend request
1870     // so check for other async requests.
1871   }
1872 
1873   if (check_asyncs) {
1874     check_and_handle_async_exceptions();
1875   }
1876 }
1877 
1878 void JavaThread::send_thread_stop(oop java_throwable)  {
1879   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1880   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1881   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1882 
1883   // Do not throw asynchronous exceptions against the compiler thread
1884   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1885   if (is_Compiler_thread()) return;
1886 
1887   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1888   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1889     java_lang_Thread::set_stillborn(threadObj());
1890   }
1891 
1892   {
1893     // Actually throw the Throwable against the target Thread - however
1894     // only if there is no thread death exception installed already.
1895     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1896       // If the topmost frame is a runtime stub, then we are calling into
1897       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1898       // must deoptimize the caller before continuing, as the compiled  exception handler table
1899       // may not be valid
1900       if (has_last_Java_frame()) {
1901         frame f = last_frame();
1902         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1903           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1904           RegisterMap reg_map(this, UseBiasedLocking);
1905           frame compiled_frame = f.sender(&reg_map);
1906           if (compiled_frame.can_be_deoptimized()) {
1907             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1908           }
1909         }
1910       }
1911 
1912       // Set async. pending exception in thread.
1913       set_pending_async_exception(java_throwable);
1914 
1915       if (TraceExceptions) {
1916        ResourceMark rm;
1917        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1918       }
1919       // for AbortVMOnException flag
1920       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1921     }
1922   }
1923 
1924 
1925   // Interrupt thread so it will wake up from a potential wait()
1926   Thread::interrupt(this);
1927 }
1928 
1929 // External suspension mechanism.
1930 //
1931 // Tell the VM to suspend a thread when ever it knows that it does not hold on
1932 // to any VM_locks and it is at a transition
1933 // Self-suspension will happen on the transition out of the vm.
1934 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
1935 //
1936 // Guarantees on return:
1937 //   + Target thread will not execute any new bytecode (that's why we need to
1938 //     force a safepoint)
1939 //   + Target thread will not enter any new monitors
1940 //
1941 void JavaThread::java_suspend() {
1942   { MutexLocker mu(Threads_lock);
1943     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1944        return;
1945     }
1946   }
1947 
1948   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1949     if (!is_external_suspend()) {
1950       // a racing resume has cancelled us; bail out now
1951       return;
1952     }
1953 
1954     // suspend is done
1955     uint32_t debug_bits = 0;
1956     // Warning: is_ext_suspend_completed() may temporarily drop the
1957     // SR_lock to allow the thread to reach a stable thread state if
1958     // it is currently in a transient thread state.
1959     if (is_ext_suspend_completed(false /* !called_by_wait */,
1960                                  SuspendRetryDelay, &debug_bits) ) {
1961       return;
1962     }
1963   }
1964 
1965   VM_ForceSafepoint vm_suspend;
1966   VMThread::execute(&vm_suspend);
1967 }
1968 
1969 // Part II of external suspension.
1970 // A JavaThread self suspends when it detects a pending external suspend
1971 // request. This is usually on transitions. It is also done in places
1972 // where continuing to the next transition would surprise the caller,
1973 // e.g., monitor entry.
1974 //
1975 // Returns the number of times that the thread self-suspended.
1976 //
1977 // Note: DO NOT call java_suspend_self() when you just want to block current
1978 //       thread. java_suspend_self() is the second stage of cooperative
1979 //       suspension for external suspend requests and should only be used
1980 //       to complete an external suspend request.
1981 //
1982 int JavaThread::java_suspend_self() {
1983   int ret = 0;
1984 
1985   // we are in the process of exiting so don't suspend
1986   if (is_exiting()) {
1987      clear_external_suspend();
1988      return ret;
1989   }
1990 
1991   assert(_anchor.walkable() ||
1992     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1993     "must have walkable stack");
1994 
1995   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1996 
1997   assert(!this->is_ext_suspended(),
1998     "a thread trying to self-suspend should not already be suspended");
1999 
2000   if (this->is_suspend_equivalent()) {
2001     // If we are self-suspending as a result of the lifting of a
2002     // suspend equivalent condition, then the suspend_equivalent
2003     // flag is not cleared until we set the ext_suspended flag so
2004     // that wait_for_ext_suspend_completion() returns consistent
2005     // results.
2006     this->clear_suspend_equivalent();
2007   }
2008 
2009   // A racing resume may have cancelled us before we grabbed SR_lock
2010   // above. Or another external suspend request could be waiting for us
2011   // by the time we return from SR_lock()->wait(). The thread
2012   // that requested the suspension may already be trying to walk our
2013   // stack and if we return now, we can change the stack out from under
2014   // it. This would be a "bad thing (TM)" and cause the stack walker
2015   // to crash. We stay self-suspended until there are no more pending
2016   // external suspend requests.
2017   while (is_external_suspend()) {
2018     ret++;
2019     this->set_ext_suspended();
2020 
2021     // _ext_suspended flag is cleared by java_resume()
2022     while (is_ext_suspended()) {
2023       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2024     }
2025   }
2026 
2027   return ret;
2028 }
2029 
2030 #ifdef ASSERT
2031 // verify the JavaThread has not yet been published in the Threads::list, and
2032 // hence doesn't need protection from concurrent access at this stage
2033 void JavaThread::verify_not_published() {
2034   if (!Threads_lock->owned_by_self()) {
2035    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2036    assert( !Threads::includes(this),
2037            "java thread shouldn't have been published yet!");
2038   }
2039   else {
2040    assert( !Threads::includes(this),
2041            "java thread shouldn't have been published yet!");
2042   }
2043 }
2044 #endif
2045 
2046 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2047 // progress or when _suspend_flags is non-zero.
2048 // Current thread needs to self-suspend if there is a suspend request and/or
2049 // block if a safepoint is in progress.
2050 // Async exception ISN'T checked.
2051 // Note only the ThreadInVMfromNative transition can call this function
2052 // directly and when thread state is _thread_in_native_trans
2053 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2054   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2055 
2056   JavaThread *curJT = JavaThread::current();
2057   bool do_self_suspend = thread->is_external_suspend();
2058 
2059   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2060 
2061   // If JNIEnv proxies are allowed, don't self-suspend if the target
2062   // thread is not the current thread. In older versions of jdbx, jdbx
2063   // threads could call into the VM with another thread's JNIEnv so we
2064   // can be here operating on behalf of a suspended thread (4432884).
2065   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2066     JavaThreadState state = thread->thread_state();
2067 
2068     // We mark this thread_blocked state as a suspend-equivalent so
2069     // that a caller to is_ext_suspend_completed() won't be confused.
2070     // The suspend-equivalent state is cleared by java_suspend_self().
2071     thread->set_suspend_equivalent();
2072 
2073     // If the safepoint code sees the _thread_in_native_trans state, it will
2074     // wait until the thread changes to other thread state. There is no
2075     // guarantee on how soon we can obtain the SR_lock and complete the
2076     // self-suspend request. It would be a bad idea to let safepoint wait for
2077     // too long. Temporarily change the state to _thread_blocked to
2078     // let the VM thread know that this thread is ready for GC. The problem
2079     // of changing thread state is that safepoint could happen just after
2080     // java_suspend_self() returns after being resumed, and VM thread will
2081     // see the _thread_blocked state. We must check for safepoint
2082     // after restoring the state and make sure we won't leave while a safepoint
2083     // is in progress.
2084     thread->set_thread_state(_thread_blocked);
2085     thread->java_suspend_self();
2086     thread->set_thread_state(state);
2087     // Make sure new state is seen by VM thread
2088     if (os::is_MP()) {
2089       if (UseMembar) {
2090         // Force a fence between the write above and read below
2091         OrderAccess::fence();
2092       } else {
2093         // Must use this rather than serialization page in particular on Windows
2094         InterfaceSupport::serialize_memory(thread);
2095       }
2096     }
2097   }
2098 
2099   if (SafepointSynchronize::do_call_back()) {
2100     // If we are safepointing, then block the caller which may not be
2101     // the same as the target thread (see above).
2102     SafepointSynchronize::block(curJT);
2103   }
2104 
2105   if (thread->is_deopt_suspend()) {
2106     thread->clear_deopt_suspend();
2107     RegisterMap map(thread, false);
2108     frame f = thread->last_frame();
2109     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2110       f = f.sender(&map);
2111     }
2112     if (f.id() == thread->must_deopt_id()) {
2113       thread->clear_must_deopt_id();
2114       f.deoptimize(thread);
2115     } else {
2116       fatal("missed deoptimization!");
2117     }
2118   }
2119 }
2120 
2121 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2122 // progress or when _suspend_flags is non-zero.
2123 // Current thread needs to self-suspend if there is a suspend request and/or
2124 // block if a safepoint is in progress.
2125 // Also check for pending async exception (not including unsafe access error).
2126 // Note only the native==>VM/Java barriers can call this function and when
2127 // thread state is _thread_in_native_trans.
2128 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2129   check_safepoint_and_suspend_for_native_trans(thread);
2130 
2131   if (thread->has_async_exception()) {
2132     // We are in _thread_in_native_trans state, don't handle unsafe
2133     // access error since that may block.
2134     thread->check_and_handle_async_exceptions(false);
2135   }
2136 }
2137 
2138 // We need to guarantee the Threads_lock here, since resumes are not
2139 // allowed during safepoint synchronization
2140 // Can only resume from an external suspension
2141 void JavaThread::java_resume() {
2142   assert_locked_or_safepoint(Threads_lock);
2143 
2144   // Sanity check: thread is gone, has started exiting or the thread
2145   // was not externally suspended.
2146   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2147     return;
2148   }
2149 
2150   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2151 
2152   clear_external_suspend();
2153 
2154   if (is_ext_suspended()) {
2155     clear_ext_suspended();
2156     SR_lock()->notify_all();
2157   }
2158 }
2159 
2160 void JavaThread::create_stack_guard_pages() {
2161   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2162   address low_addr = stack_base() - stack_size();
2163   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2164 
2165   int allocate = os::allocate_stack_guard_pages();
2166   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2167 
2168   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2169     warning("Attempt to allocate stack guard pages failed.");
2170     return;
2171   }
2172 
2173   if (os::guard_memory((char *) low_addr, len)) {
2174     _stack_guard_state = stack_guard_enabled;
2175   } else {
2176     warning("Attempt to protect stack guard pages failed.");
2177     if (os::uncommit_memory((char *) low_addr, len)) {
2178       warning("Attempt to deallocate stack guard pages failed.");
2179     }
2180   }
2181 }
2182 
2183 void JavaThread::remove_stack_guard_pages() {
2184   if (_stack_guard_state == stack_guard_unused) return;
2185   address low_addr = stack_base() - stack_size();
2186   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2187 
2188   if (os::allocate_stack_guard_pages()) {
2189     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2190       _stack_guard_state = stack_guard_unused;
2191     } else {
2192       warning("Attempt to deallocate stack guard pages failed.");
2193     }
2194   } else {
2195     if (_stack_guard_state == stack_guard_unused) return;
2196     if (os::unguard_memory((char *) low_addr, len)) {
2197       _stack_guard_state = stack_guard_unused;
2198     } else {
2199         warning("Attempt to unprotect stack guard pages failed.");
2200     }
2201   }
2202 }
2203 
2204 void JavaThread::enable_stack_yellow_zone() {
2205   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2206   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2207 
2208   // The base notation is from the stacks point of view, growing downward.
2209   // We need to adjust it to work correctly with guard_memory()
2210   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2211 
2212   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2213   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2214 
2215   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2216     _stack_guard_state = stack_guard_enabled;
2217   } else {
2218     warning("Attempt to guard stack yellow zone failed.");
2219   }
2220   enable_register_stack_guard();
2221 }
2222 
2223 void JavaThread::disable_stack_yellow_zone() {
2224   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2225   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2226 
2227   // Simply return if called for a thread that does not use guard pages.
2228   if (_stack_guard_state == stack_guard_unused) return;
2229 
2230   // The base notation is from the stacks point of view, growing downward.
2231   // We need to adjust it to work correctly with guard_memory()
2232   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2233 
2234   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2235     _stack_guard_state = stack_guard_yellow_disabled;
2236   } else {
2237     warning("Attempt to unguard stack yellow zone failed.");
2238   }
2239   disable_register_stack_guard();
2240 }
2241 
2242 void JavaThread::enable_stack_red_zone() {
2243   // The base notation is from the stacks point of view, growing downward.
2244   // We need to adjust it to work correctly with guard_memory()
2245   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2246   address base = stack_red_zone_base() - stack_red_zone_size();
2247 
2248   guarantee(base < stack_base(),"Error calculating stack red zone");
2249   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2250 
2251   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2252     warning("Attempt to guard stack red zone failed.");
2253   }
2254 }
2255 
2256 void JavaThread::disable_stack_red_zone() {
2257   // The base notation is from the stacks point of view, growing downward.
2258   // We need to adjust it to work correctly with guard_memory()
2259   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2260   address base = stack_red_zone_base() - stack_red_zone_size();
2261   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2262     warning("Attempt to unguard stack red zone failed.");
2263   }
2264 }
2265 
2266 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2267   // ignore is there is no stack
2268   if (!has_last_Java_frame()) return;
2269   // traverse the stack frames. Starts from top frame.
2270   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2271     frame* fr = fst.current();
2272     f(fr, fst.register_map());
2273   }
2274 }
2275 
2276 
2277 #ifndef PRODUCT
2278 // Deoptimization
2279 // Function for testing deoptimization
2280 void JavaThread::deoptimize() {
2281   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2282   StackFrameStream fst(this, UseBiasedLocking);
2283   bool deopt = false;           // Dump stack only if a deopt actually happens.
2284   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2285   // Iterate over all frames in the thread and deoptimize
2286   for(; !fst.is_done(); fst.next()) {
2287     if(fst.current()->can_be_deoptimized()) {
2288 
2289       if (only_at) {
2290         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2291         // consists of comma or carriage return separated numbers so
2292         // search for the current bci in that string.
2293         address pc = fst.current()->pc();
2294         nmethod* nm =  (nmethod*) fst.current()->cb();
2295         ScopeDesc* sd = nm->scope_desc_at( pc);
2296         char buffer[8];
2297         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2298         size_t len = strlen(buffer);
2299         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2300         while (found != NULL) {
2301           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2302               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2303             // Check that the bci found is bracketed by terminators.
2304             break;
2305           }
2306           found = strstr(found + 1, buffer);
2307         }
2308         if (!found) {
2309           continue;
2310         }
2311       }
2312 
2313       if (DebugDeoptimization && !deopt) {
2314         deopt = true; // One-time only print before deopt
2315         tty->print_cr("[BEFORE Deoptimization]");
2316         trace_frames();
2317         trace_stack();
2318       }
2319       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2320     }
2321   }
2322 
2323   if (DebugDeoptimization && deopt) {
2324     tty->print_cr("[AFTER Deoptimization]");
2325     trace_frames();
2326   }
2327 }
2328 
2329 
2330 // Make zombies
2331 void JavaThread::make_zombies() {
2332   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2333     if (fst.current()->can_be_deoptimized()) {
2334       // it is a Java nmethod
2335       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2336       nm->make_not_entrant();
2337     }
2338   }
2339 }
2340 #endif // PRODUCT
2341 
2342 
2343 void JavaThread::deoptimized_wrt_marked_nmethods() {
2344   if (!has_last_Java_frame()) return;
2345   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2346   StackFrameStream fst(this, UseBiasedLocking);
2347   for(; !fst.is_done(); fst.next()) {
2348     if (fst.current()->should_be_deoptimized()) {
2349       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2350     }
2351   }
2352 }
2353 
2354 
2355 // GC support
2356 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2357 
2358 void JavaThread::gc_epilogue() {
2359   frames_do(frame_gc_epilogue);
2360 }
2361 
2362 
2363 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2364 
2365 void JavaThread::gc_prologue() {
2366   frames_do(frame_gc_prologue);
2367 }
2368 
2369 // If the caller is a NamedThread, then remember, in the current scope,
2370 // the given JavaThread in its _processed_thread field.
2371 class RememberProcessedThread: public StackObj {
2372   NamedThread* _cur_thr;
2373 public:
2374   RememberProcessedThread(JavaThread* jthr) {
2375     Thread* thread = Thread::current();
2376     if (thread->is_Named_thread()) {
2377       _cur_thr = (NamedThread *)thread;
2378       _cur_thr->set_processed_thread(jthr);
2379     } else {
2380       _cur_thr = NULL;
2381     }
2382   }
2383 
2384   ~RememberProcessedThread() {
2385     if (_cur_thr) {
2386       _cur_thr->set_processed_thread(NULL);
2387     }
2388   }
2389 };
2390 
2391 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2392   // Verify that the deferred card marks have been flushed.
2393   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2394 
2395   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2396   // since there may be more than one thread using each ThreadProfiler.
2397 
2398   // Traverse the GCHandles
2399   Thread::oops_do(f, cf);
2400 
2401   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2402           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2403 
2404   if (has_last_Java_frame()) {
2405     // Record JavaThread to GC thread
2406     RememberProcessedThread rpt(this);
2407 
2408     // Traverse the privileged stack
2409     if (_privileged_stack_top != NULL) {
2410       _privileged_stack_top->oops_do(f);
2411     }
2412 
2413     // traverse the registered growable array
2414     if (_array_for_gc != NULL) {
2415       for (int index = 0; index < _array_for_gc->length(); index++) {
2416         f->do_oop(_array_for_gc->adr_at(index));
2417       }
2418     }
2419 
2420     // Traverse the monitor chunks
2421     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2422       chunk->oops_do(f);
2423     }
2424 
2425     // Traverse the execution stack
2426     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2427       fst.current()->oops_do(f, cf, fst.register_map());
2428     }
2429   }
2430 
2431   // callee_target is never live across a gc point so NULL it here should
2432   // it still contain a methdOop.
2433 
2434   set_callee_target(NULL);
2435 
2436   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2437   // If we have deferred set_locals there might be oops waiting to be
2438   // written
2439   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2440   if (list != NULL) {
2441     for (int i = 0; i < list->length(); i++) {
2442       list->at(i)->oops_do(f);
2443     }
2444   }
2445 
2446   // Traverse instance variables at the end since the GC may be moving things
2447   // around using this function
2448   f->do_oop((oop*) &_threadObj);
2449   f->do_oop((oop*) &_vm_result);
2450   f->do_oop((oop*) &_vm_result_2);
2451   f->do_oop((oop*) &_exception_oop);
2452   f->do_oop((oop*) &_pending_async_exception);
2453 
2454   if (jvmti_thread_state() != NULL) {
2455     jvmti_thread_state()->oops_do(f);
2456   }
2457 }
2458 
2459 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2460   Thread::nmethods_do(cf);  // (super method is a no-op)
2461 
2462   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2463           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2464 
2465   if (has_last_Java_frame()) {
2466     // Traverse the execution stack
2467     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2468       fst.current()->nmethods_do(cf);
2469     }
2470   }
2471 }
2472 
2473 // Printing
2474 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2475   switch (_thread_state) {
2476   case _thread_uninitialized:     return "_thread_uninitialized";
2477   case _thread_new:               return "_thread_new";
2478   case _thread_new_trans:         return "_thread_new_trans";
2479   case _thread_in_native:         return "_thread_in_native";
2480   case _thread_in_native_trans:   return "_thread_in_native_trans";
2481   case _thread_in_vm:             return "_thread_in_vm";
2482   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2483   case _thread_in_Java:           return "_thread_in_Java";
2484   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2485   case _thread_blocked:           return "_thread_blocked";
2486   case _thread_blocked_trans:     return "_thread_blocked_trans";
2487   default:                        return "unknown thread state";
2488   }
2489 }
2490 
2491 #ifndef PRODUCT
2492 void JavaThread::print_thread_state_on(outputStream *st) const {
2493   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2494 };
2495 void JavaThread::print_thread_state() const {
2496   print_thread_state_on(tty);
2497 };
2498 #endif // PRODUCT
2499 
2500 // Called by Threads::print() for VM_PrintThreads operation
2501 void JavaThread::print_on(outputStream *st) const {
2502   st->print("\"%s\" ", get_thread_name());
2503   oop thread_oop = threadObj();
2504   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2505   Thread::print_on(st);
2506   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2507   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2508   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2509     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2510   }
2511 #ifndef PRODUCT
2512   print_thread_state_on(st);
2513   _safepoint_state->print_on(st);
2514 #endif // PRODUCT
2515 }
2516 
2517 // Called by fatal error handler. The difference between this and
2518 // JavaThread::print() is that we can't grab lock or allocate memory.
2519 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2520   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2521   oop thread_obj = threadObj();
2522   if (thread_obj != NULL) {
2523      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2524   }
2525   st->print(" [");
2526   st->print("%s", _get_thread_state_name(_thread_state));
2527   if (osthread()) {
2528     st->print(", id=%d", osthread()->thread_id());
2529   }
2530   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2531             _stack_base - _stack_size, _stack_base);
2532   st->print("]");
2533   return;
2534 }
2535 
2536 // Verification
2537 
2538 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2539 
2540 void JavaThread::verify() {
2541   // Verify oops in the thread.
2542   oops_do(&VerifyOopClosure::verify_oop, NULL);
2543 
2544   // Verify the stack frames.
2545   frames_do(frame_verify);
2546 }
2547 
2548 // CR 6300358 (sub-CR 2137150)
2549 // Most callers of this method assume that it can't return NULL but a
2550 // thread may not have a name whilst it is in the process of attaching to
2551 // the VM - see CR 6412693, and there are places where a JavaThread can be
2552 // seen prior to having it's threadObj set (eg JNI attaching threads and
2553 // if vm exit occurs during initialization). These cases can all be accounted
2554 // for such that this method never returns NULL.
2555 const char* JavaThread::get_thread_name() const {
2556 #ifdef ASSERT
2557   // early safepoints can hit while current thread does not yet have TLS
2558   if (!SafepointSynchronize::is_at_safepoint()) {
2559     Thread *cur = Thread::current();
2560     if (!(cur->is_Java_thread() && cur == this)) {
2561       // Current JavaThreads are allowed to get their own name without
2562       // the Threads_lock.
2563       assert_locked_or_safepoint(Threads_lock);
2564     }
2565   }
2566 #endif // ASSERT
2567     return get_thread_name_string();
2568 }
2569 
2570 // Returns a non-NULL representation of this thread's name, or a suitable
2571 // descriptive string if there is no set name
2572 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2573   const char* name_str;
2574   oop thread_obj = threadObj();
2575   if (thread_obj != NULL) {
2576     typeArrayOop name = java_lang_Thread::name(thread_obj);
2577     if (name != NULL) {
2578       if (buf == NULL) {
2579         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2580       }
2581       else {
2582         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2583       }
2584     }
2585     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2586       name_str = "<no-name - thread is attaching>";
2587     }
2588     else {
2589       name_str = Thread::name();
2590     }
2591   }
2592   else {
2593     name_str = Thread::name();
2594   }
2595   assert(name_str != NULL, "unexpected NULL thread name");
2596   return name_str;
2597 }
2598 
2599 
2600 const char* JavaThread::get_threadgroup_name() const {
2601   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2602   oop thread_obj = threadObj();
2603   if (thread_obj != NULL) {
2604     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2605     if (thread_group != NULL) {
2606       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2607       // ThreadGroup.name can be null
2608       if (name != NULL) {
2609         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2610         return str;
2611       }
2612     }
2613   }
2614   return NULL;
2615 }
2616 
2617 const char* JavaThread::get_parent_name() const {
2618   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2619   oop thread_obj = threadObj();
2620   if (thread_obj != NULL) {
2621     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2622     if (thread_group != NULL) {
2623       oop parent = java_lang_ThreadGroup::parent(thread_group);
2624       if (parent != NULL) {
2625         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2626         // ThreadGroup.name can be null
2627         if (name != NULL) {
2628           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2629           return str;
2630         }
2631       }
2632     }
2633   }
2634   return NULL;
2635 }
2636 
2637 ThreadPriority JavaThread::java_priority() const {
2638   oop thr_oop = threadObj();
2639   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2640   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2641   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2642   return priority;
2643 }
2644 
2645 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2646 
2647   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2648   // Link Java Thread object <-> C++ Thread
2649 
2650   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2651   // and put it into a new Handle.  The Handle "thread_oop" can then
2652   // be used to pass the C++ thread object to other methods.
2653 
2654   // Set the Java level thread object (jthread) field of the
2655   // new thread (a JavaThread *) to C++ thread object using the
2656   // "thread_oop" handle.
2657 
2658   // Set the thread field (a JavaThread *) of the
2659   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2660 
2661   Handle thread_oop(Thread::current(),
2662                     JNIHandles::resolve_non_null(jni_thread));
2663   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2664     "must be initialized");
2665   set_threadObj(thread_oop());
2666   java_lang_Thread::set_thread(thread_oop(), this);
2667 
2668   if (prio == NoPriority) {
2669     prio = java_lang_Thread::priority(thread_oop());
2670     assert(prio != NoPriority, "A valid priority should be present");
2671   }
2672 
2673   // Push the Java priority down to the native thread; needs Threads_lock
2674   Thread::set_priority(this, prio);
2675 
2676   // Add the new thread to the Threads list and set it in motion.
2677   // We must have threads lock in order to call Threads::add.
2678   // It is crucial that we do not block before the thread is
2679   // added to the Threads list for if a GC happens, then the java_thread oop
2680   // will not be visited by GC.
2681   Threads::add(this);
2682 }
2683 
2684 oop JavaThread::current_park_blocker() {
2685   // Support for JSR-166 locks
2686   oop thread_oop = threadObj();
2687   if (thread_oop != NULL &&
2688       JDK_Version::current().supports_thread_park_blocker()) {
2689     return java_lang_Thread::park_blocker(thread_oop);
2690   }
2691   return NULL;
2692 }
2693 
2694 
2695 void JavaThread::print_stack_on(outputStream* st) {
2696   if (!has_last_Java_frame()) return;
2697   ResourceMark rm;
2698   HandleMark   hm;
2699 
2700   RegisterMap reg_map(this);
2701   vframe* start_vf = last_java_vframe(&reg_map);
2702   int count = 0;
2703   for (vframe* f = start_vf; f; f = f->sender() ) {
2704     if (f->is_java_frame()) {
2705       javaVFrame* jvf = javaVFrame::cast(f);
2706       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2707 
2708       // Print out lock information
2709       if (JavaMonitorsInStackTrace) {
2710         jvf->print_lock_info_on(st, count);
2711       }
2712     } else {
2713       // Ignore non-Java frames
2714     }
2715 
2716     // Bail-out case for too deep stacks
2717     count++;
2718     if (MaxJavaStackTraceDepth == count) return;
2719   }
2720 }
2721 
2722 
2723 // JVMTI PopFrame support
2724 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2725   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2726   if (in_bytes(size_in_bytes) != 0) {
2727     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2728     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2729     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2730   }
2731 }
2732 
2733 void* JavaThread::popframe_preserved_args() {
2734   return _popframe_preserved_args;
2735 }
2736 
2737 ByteSize JavaThread::popframe_preserved_args_size() {
2738   return in_ByteSize(_popframe_preserved_args_size);
2739 }
2740 
2741 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2742   int sz = in_bytes(popframe_preserved_args_size());
2743   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2744   return in_WordSize(sz / wordSize);
2745 }
2746 
2747 void JavaThread::popframe_free_preserved_args() {
2748   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2749   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2750   _popframe_preserved_args = NULL;
2751   _popframe_preserved_args_size = 0;
2752 }
2753 
2754 #ifndef PRODUCT
2755 
2756 void JavaThread::trace_frames() {
2757   tty->print_cr("[Describe stack]");
2758   int frame_no = 1;
2759   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2760     tty->print("  %d. ", frame_no++);
2761     fst.current()->print_value_on(tty,this);
2762     tty->cr();
2763   }
2764 }
2765 
2766 
2767 void JavaThread::trace_stack_from(vframe* start_vf) {
2768   ResourceMark rm;
2769   int vframe_no = 1;
2770   for (vframe* f = start_vf; f; f = f->sender() ) {
2771     if (f->is_java_frame()) {
2772       javaVFrame::cast(f)->print_activation(vframe_no++);
2773     } else {
2774       f->print();
2775     }
2776     if (vframe_no > StackPrintLimit) {
2777       tty->print_cr("...<more frames>...");
2778       return;
2779     }
2780   }
2781 }
2782 
2783 
2784 void JavaThread::trace_stack() {
2785   if (!has_last_Java_frame()) return;
2786   ResourceMark rm;
2787   HandleMark   hm;
2788   RegisterMap reg_map(this);
2789   trace_stack_from(last_java_vframe(&reg_map));
2790 }
2791 
2792 
2793 #endif // PRODUCT
2794 
2795 
2796 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2797   assert(reg_map != NULL, "a map must be given");
2798   frame f = last_frame();
2799   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2800     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2801   }
2802   return NULL;
2803 }
2804 
2805 
2806 klassOop JavaThread::security_get_caller_class(int depth) {
2807   vframeStream vfst(this);
2808   vfst.security_get_caller_frame(depth);
2809   if (!vfst.at_end()) {
2810     return vfst.method()->method_holder();
2811   }
2812   return NULL;
2813 }
2814 
2815 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2816   assert(thread->is_Compiler_thread(), "must be compiler thread");
2817   CompileBroker::compiler_thread_loop();
2818 }
2819 
2820 // Create a CompilerThread
2821 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2822 : JavaThread(&compiler_thread_entry) {
2823   _env   = NULL;
2824   _log   = NULL;
2825   _task  = NULL;
2826   _queue = queue;
2827   _counters = counters;
2828   _buffer_blob = NULL;
2829 
2830 #ifndef PRODUCT
2831   _ideal_graph_printer = NULL;
2832 #endif
2833 }
2834 
2835 
2836 // ======= Threads ========
2837 
2838 // The Threads class links together all active threads, and provides
2839 // operations over all threads.  It is protected by its own Mutex
2840 // lock, which is also used in other contexts to protect thread
2841 // operations from having the thread being operated on from exiting
2842 // and going away unexpectedly (e.g., safepoint synchronization)
2843 
2844 JavaThread* Threads::_thread_list = NULL;
2845 int         Threads::_number_of_threads = 0;
2846 int         Threads::_number_of_non_daemon_threads = 0;
2847 int         Threads::_return_code = 0;
2848 size_t      JavaThread::_stack_size_at_create = 0;
2849 
2850 // All JavaThreads
2851 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2852 
2853 void os_stream();
2854 
2855 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2856 void Threads::threads_do(ThreadClosure* tc) {
2857   assert_locked_or_safepoint(Threads_lock);
2858   // ALL_JAVA_THREADS iterates through all JavaThreads
2859   ALL_JAVA_THREADS(p) {
2860     tc->do_thread(p);
2861   }
2862   // Someday we could have a table or list of all non-JavaThreads.
2863   // For now, just manually iterate through them.
2864   tc->do_thread(VMThread::vm_thread());
2865   Universe::heap()->gc_threads_do(tc);
2866   WatcherThread *wt = WatcherThread::watcher_thread();
2867   // Strictly speaking, the following NULL check isn't sufficient to make sure
2868   // the data for WatcherThread is still valid upon being examined. However,
2869   // considering that WatchThread terminates when the VM is on the way to
2870   // exit at safepoint, the chance of the above is extremely small. The right
2871   // way to prevent termination of WatcherThread would be to acquire
2872   // Terminator_lock, but we can't do that without violating the lock rank
2873   // checking in some cases.
2874   if (wt != NULL)
2875     tc->do_thread(wt);
2876 
2877   // If CompilerThreads ever become non-JavaThreads, add them here
2878 }
2879 
2880 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2881 
2882   extern void JDK_Version_init();
2883 
2884   // Check version
2885   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2886 
2887   // Initialize the output stream module
2888   ostream_init();
2889 
2890   // Process java launcher properties.
2891   Arguments::process_sun_java_launcher_properties(args);
2892 
2893   // Initialize the os module before using TLS
2894   os::init();
2895 
2896   // Initialize system properties.
2897   Arguments::init_system_properties();
2898 
2899   // So that JDK version can be used as a discrimintor when parsing arguments
2900   JDK_Version_init();
2901 
2902   // Parse arguments
2903   jint parse_result = Arguments::parse(args);
2904   if (parse_result != JNI_OK) return parse_result;
2905 
2906   if (PauseAtStartup) {
2907     os::pause();
2908   }
2909 
2910   HS_DTRACE_PROBE(hotspot, vm__init__begin);
2911 
2912   // Record VM creation timing statistics
2913   TraceVmCreationTime create_vm_timer;
2914   create_vm_timer.start();
2915 
2916   // Timing (must come after argument parsing)
2917   TraceTime timer("Create VM", TraceStartupTime);
2918 
2919   // Initialize the os module after parsing the args
2920   jint os_init_2_result = os::init_2();
2921   if (os_init_2_result != JNI_OK) return os_init_2_result;
2922 
2923   // Initialize output stream logging
2924   ostream_init_log();
2925 
2926   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2927   // Must be before create_vm_init_agents()
2928   if (Arguments::init_libraries_at_startup()) {
2929     convert_vm_init_libraries_to_agents();
2930   }
2931 
2932   // Launch -agentlib/-agentpath and converted -Xrun agents
2933   if (Arguments::init_agents_at_startup()) {
2934     create_vm_init_agents();
2935   }
2936 
2937   // Initialize Threads state
2938   _thread_list = NULL;
2939   _number_of_threads = 0;
2940   _number_of_non_daemon_threads = 0;
2941 
2942   // Initialize TLS
2943   ThreadLocalStorage::init();
2944 
2945   // Initialize global data structures and create system classes in heap
2946   vm_init_globals();
2947 
2948   // Attach the main thread to this os thread
2949   JavaThread* main_thread = new JavaThread();
2950   main_thread->set_thread_state(_thread_in_vm);
2951   // must do this before set_active_handles and initialize_thread_local_storage
2952   // Note: on solaris initialize_thread_local_storage() will (indirectly)
2953   // change the stack size recorded here to one based on the java thread
2954   // stacksize. This adjusted size is what is used to figure the placement
2955   // of the guard pages.
2956   main_thread->record_stack_base_and_size();
2957   main_thread->initialize_thread_local_storage();
2958 
2959   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2960 
2961   if (!main_thread->set_as_starting_thread()) {
2962     vm_shutdown_during_initialization(
2963       "Failed necessary internal allocation. Out of swap space");
2964     delete main_thread;
2965     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2966     return JNI_ENOMEM;
2967   }
2968 
2969   // Enable guard page *after* os::create_main_thread(), otherwise it would
2970   // crash Linux VM, see notes in os_linux.cpp.
2971   main_thread->create_stack_guard_pages();
2972 
2973   // Initialize Java-Leve synchronization subsystem
2974   ObjectSynchronizer::Initialize() ;
2975 
2976   // Initialize global modules
2977   jint status = init_globals();
2978   if (status != JNI_OK) {
2979     delete main_thread;
2980     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2981     return status;
2982   }
2983 
2984   // Should be done after the heap is fully created
2985   main_thread->cache_global_variables();
2986 
2987   HandleMark hm;
2988 
2989   { MutexLocker mu(Threads_lock);
2990     Threads::add(main_thread);
2991   }
2992 
2993   // Any JVMTI raw monitors entered in onload will transition into
2994   // real raw monitor. VM is setup enough here for raw monitor enter.
2995   JvmtiExport::transition_pending_onload_raw_monitors();
2996 
2997   if (VerifyBeforeGC &&
2998       Universe::heap()->total_collections() >= VerifyGCStartAt) {
2999     Universe::heap()->prepare_for_verify();
3000     Universe::verify();   // make sure we're starting with a clean slate
3001   }
3002 
3003   // Create the VMThread
3004   { TraceTime timer("Start VMThread", TraceStartupTime);
3005     VMThread::create();
3006     Thread* vmthread = VMThread::vm_thread();
3007 
3008     if (!os::create_thread(vmthread, os::vm_thread))
3009       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3010 
3011     // Wait for the VM thread to become ready, and VMThread::run to initialize
3012     // Monitors can have spurious returns, must always check another state flag
3013     {
3014       MutexLocker ml(Notify_lock);
3015       os::start_thread(vmthread);
3016       while (vmthread->active_handles() == NULL) {
3017         Notify_lock->wait();
3018       }
3019     }
3020   }
3021 
3022   assert (Universe::is_fully_initialized(), "not initialized");
3023   EXCEPTION_MARK;
3024 
3025   // At this point, the Universe is initialized, but we have not executed
3026   // any byte code.  Now is a good time (the only time) to dump out the
3027   // internal state of the JVM for sharing.
3028 
3029   if (DumpSharedSpaces) {
3030     Universe::heap()->preload_and_dump(CHECK_0);
3031     ShouldNotReachHere();
3032   }
3033 
3034   // Always call even when there are not JVMTI environments yet, since environments
3035   // may be attached late and JVMTI must track phases of VM execution
3036   JvmtiExport::enter_start_phase();
3037 
3038   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3039   JvmtiExport::post_vm_start();
3040 
3041   {
3042     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3043 
3044     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3045       create_vm_init_libraries();
3046     }
3047 
3048     if (InitializeJavaLangString) {
3049       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3050     } else {
3051       warning("java.lang.String not initialized");
3052     }
3053 
3054     if (AggressiveOpts) {
3055       {
3056         // Forcibly initialize java/util/HashMap and mutate the private
3057         // static final "frontCacheEnabled" field before we start creating instances
3058 #ifdef ASSERT
3059         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3060         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3061 #endif
3062         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3063         KlassHandle k = KlassHandle(THREAD, k_o);
3064         guarantee(k.not_null(), "Must find java/util/HashMap");
3065         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3066         ik->initialize(CHECK_0);
3067         fieldDescriptor fd;
3068         // Possible we might not find this field; if so, don't break
3069         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3070           k()->bool_field_put(fd.offset(), true);
3071         }
3072       }
3073 
3074       if (UseStringCache) {
3075         // Forcibly initialize java/lang/StringValue and mutate the private
3076         // static final "stringCacheEnabled" field before we start creating instances
3077         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3078         // Possible that StringValue isn't present: if so, silently don't break
3079         if (k_o != NULL) {
3080           KlassHandle k = KlassHandle(THREAD, k_o);
3081           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3082           ik->initialize(CHECK_0);
3083           fieldDescriptor fd;
3084           // Possible we might not find this field: if so, silently don't break
3085           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3086             k()->bool_field_put(fd.offset(), true);
3087           }
3088         }
3089       }
3090     }
3091 
3092     // Initialize java_lang.System (needed before creating the thread)
3093     if (InitializeJavaLangSystem) {
3094       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3095       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3096       Handle thread_group = create_initial_thread_group(CHECK_0);
3097       Universe::set_main_thread_group(thread_group());
3098       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3099       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3100       main_thread->set_threadObj(thread_object);
3101       // Set thread status to running since main thread has
3102       // been started and running.
3103       java_lang_Thread::set_thread_status(thread_object,
3104                                           java_lang_Thread::RUNNABLE);
3105 
3106       // The VM preresolve methods to these classes. Make sure that get initialized
3107       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3108       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3109       // The VM creates & returns objects of this class. Make sure it's initialized.
3110       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3111       call_initializeSystemClass(CHECK_0);
3112     } else {
3113       warning("java.lang.System not initialized");
3114     }
3115 
3116     // an instance of OutOfMemory exception has been allocated earlier
3117     if (InitializeJavaLangExceptionsErrors) {
3118       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3119       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3120       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3121       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3122       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3123       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3124       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3125     } else {
3126       warning("java.lang.OutOfMemoryError has not been initialized");
3127       warning("java.lang.NullPointerException has not been initialized");
3128       warning("java.lang.ClassCastException has not been initialized");
3129       warning("java.lang.ArrayStoreException has not been initialized");
3130       warning("java.lang.ArithmeticException has not been initialized");
3131       warning("java.lang.StackOverflowError has not been initialized");
3132     }
3133 
3134     if (EnableInvokeDynamic) {
3135       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
3136       // the compiler.
3137       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
3138     }
3139   }
3140 
3141   // See        : bugid 4211085.
3142   // Background : the static initializer of java.lang.Compiler tries to read
3143   //              property"java.compiler" and read & write property "java.vm.info".
3144   //              When a security manager is installed through the command line
3145   //              option "-Djava.security.manager", the above properties are not
3146   //              readable and the static initializer for java.lang.Compiler fails
3147   //              resulting in a NoClassDefFoundError.  This can happen in any
3148   //              user code which calls methods in java.lang.Compiler.
3149   // Hack :       the hack is to pre-load and initialize this class, so that only
3150   //              system domains are on the stack when the properties are read.
3151   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3152   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3153   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3154   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3155   //              Once that is done, we should remove this hack.
3156   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3157 
3158   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3159   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3160   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3161   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3162   // This should also be taken out as soon as 4211383 gets fixed.
3163   reset_vm_info_property(CHECK_0);
3164 
3165   quicken_jni_functions();
3166 
3167   // Set flag that basic initialization has completed. Used by exceptions and various
3168   // debug stuff, that does not work until all basic classes have been initialized.
3169   set_init_completed();
3170 
3171   HS_DTRACE_PROBE(hotspot, vm__init__end);
3172 
3173   // record VM initialization completion time
3174   Management::record_vm_init_completed();
3175 
3176   // Compute system loader. Note that this has to occur after set_init_completed, since
3177   // valid exceptions may be thrown in the process.
3178   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3179   // set_init_completed has just been called, causing exceptions not to be shortcut
3180   // anymore. We call vm_exit_during_initialization directly instead.
3181   SystemDictionary::compute_java_system_loader(THREAD);
3182   if (HAS_PENDING_EXCEPTION) {
3183     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3184   }
3185 
3186 #ifdef KERNEL
3187   if (JDK_Version::is_gte_jdk17x_version()) {
3188     set_jkernel_boot_classloader_hook(THREAD);
3189   }
3190 #endif // KERNEL
3191 
3192 #ifndef SERIALGC
3193   // Support for ConcurrentMarkSweep. This should be cleaned up
3194   // and better encapsulated. The ugly nested if test would go away
3195   // once things are properly refactored. XXX YSR
3196   if (UseConcMarkSweepGC || UseG1GC) {
3197     if (UseConcMarkSweepGC) {
3198       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3199     } else {
3200       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3201     }
3202     if (HAS_PENDING_EXCEPTION) {
3203       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3204     }
3205   }
3206 #endif // SERIALGC
3207 
3208   // Always call even when there are not JVMTI environments yet, since environments
3209   // may be attached late and JVMTI must track phases of VM execution
3210   JvmtiExport::enter_live_phase();
3211 
3212   // Signal Dispatcher needs to be started before VMInit event is posted
3213   os::signal_init();
3214 
3215   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3216   if (!DisableAttachMechanism) {
3217     if (StartAttachListener || AttachListener::init_at_startup()) {
3218       AttachListener::init();
3219     }
3220   }
3221 
3222   // Launch -Xrun agents
3223   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3224   // back-end can launch with -Xdebug -Xrunjdwp.
3225   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3226     create_vm_init_libraries();
3227   }
3228 
3229   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3230   JvmtiExport::post_vm_initialized();
3231 
3232   Chunk::start_chunk_pool_cleaner_task();
3233 
3234   // initialize compiler(s)
3235   CompileBroker::compilation_init();
3236 
3237   Management::initialize(THREAD);
3238   if (HAS_PENDING_EXCEPTION) {
3239     // management agent fails to start possibly due to
3240     // configuration problem and is responsible for printing
3241     // stack trace if appropriate. Simply exit VM.
3242     vm_exit(1);
3243   }
3244 
3245   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3246   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3247   if (MemProfiling)                   MemProfiler::engage();
3248   StatSampler::engage();
3249   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3250 
3251   BiasedLocking::init();
3252 
3253 
3254   // Start up the WatcherThread if there are any periodic tasks
3255   // NOTE:  All PeriodicTasks should be registered by now. If they
3256   //   aren't, late joiners might appear to start slowly (we might
3257   //   take a while to process their first tick).
3258   if (PeriodicTask::num_tasks() > 0) {
3259     WatcherThread::start();
3260   }
3261 
3262   // Give os specific code one last chance to start
3263   os::init_3();
3264 
3265   create_vm_timer.end();
3266   return JNI_OK;
3267 }
3268 
3269 // type for the Agent_OnLoad and JVM_OnLoad entry points
3270 extern "C" {
3271   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3272 }
3273 // Find a command line agent library and return its entry point for
3274 //         -agentlib:  -agentpath:   -Xrun
3275 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3276 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3277   OnLoadEntry_t on_load_entry = NULL;
3278   void *library = agent->os_lib();  // check if we have looked it up before
3279 
3280   if (library == NULL) {
3281     char buffer[JVM_MAXPATHLEN];
3282     char ebuf[1024];
3283     const char *name = agent->name();
3284     const char *msg = "Could not find agent library ";
3285 
3286     if (agent->is_absolute_path()) {
3287       library = hpi::dll_load(name, ebuf, sizeof ebuf);
3288       if (library == NULL) {
3289         const char *sub_msg = " in absolute path, with error: ";
3290         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3291         char *buf = NEW_C_HEAP_ARRAY(char, len);
3292         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3293         // If we can't find the agent, exit.
3294         vm_exit_during_initialization(buf, NULL);
3295         FREE_C_HEAP_ARRAY(char, buf);
3296       }
3297     } else {
3298       // Try to load the agent from the standard dll directory
3299       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3300       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3301 #ifdef KERNEL
3302       // Download instrument dll
3303       if (library == NULL && strcmp(name, "instrument") == 0) {
3304         char *props = Arguments::get_kernel_properties();
3305         char *home  = Arguments::get_java_home();
3306         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3307                       " sun.jkernel.DownloadManager -download client_jvm";
3308         size_t length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3309         char *cmd = NEW_C_HEAP_ARRAY(char, length);
3310         jio_snprintf(cmd, length, fmt, home, props);
3311         int status = os::fork_and_exec(cmd);
3312         FreeHeap(props);
3313         if (status == -1) {
3314           warning(cmd);
3315           vm_exit_during_initialization("fork_and_exec failed: %s",
3316                                          strerror(errno));
3317         }
3318         FREE_C_HEAP_ARRAY(char, cmd);
3319         // when this comes back the instrument.dll should be where it belongs.
3320         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3321       }
3322 #endif // KERNEL
3323       if (library == NULL) { // Try the local directory
3324         char ns[1] = {0};
3325         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3326         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3327         if (library == NULL) {
3328           const char *sub_msg = " on the library path, with error: ";
3329           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3330           char *buf = NEW_C_HEAP_ARRAY(char, len);
3331           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3332           // If we can't find the agent, exit.
3333           vm_exit_during_initialization(buf, NULL);
3334           FREE_C_HEAP_ARRAY(char, buf);
3335         }
3336       }
3337     }
3338     agent->set_os_lib(library);
3339   }
3340 
3341   // Find the OnLoad function.
3342   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3343     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3344     if (on_load_entry != NULL) break;
3345   }
3346   return on_load_entry;
3347 }
3348 
3349 // Find the JVM_OnLoad entry point
3350 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3351   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3352   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3353 }
3354 
3355 // Find the Agent_OnLoad entry point
3356 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3357   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3358   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3359 }
3360 
3361 // For backwards compatibility with -Xrun
3362 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3363 // treated like -agentpath:
3364 // Must be called before agent libraries are created
3365 void Threads::convert_vm_init_libraries_to_agents() {
3366   AgentLibrary* agent;
3367   AgentLibrary* next;
3368 
3369   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3370     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3371     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3372 
3373     // If there is an JVM_OnLoad function it will get called later,
3374     // otherwise see if there is an Agent_OnLoad
3375     if (on_load_entry == NULL) {
3376       on_load_entry = lookup_agent_on_load(agent);
3377       if (on_load_entry != NULL) {
3378         // switch it to the agent list -- so that Agent_OnLoad will be called,
3379         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3380         Arguments::convert_library_to_agent(agent);
3381       } else {
3382         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3383       }
3384     }
3385   }
3386 }
3387 
3388 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3389 // Invokes Agent_OnLoad
3390 // Called very early -- before JavaThreads exist
3391 void Threads::create_vm_init_agents() {
3392   extern struct JavaVM_ main_vm;
3393   AgentLibrary* agent;
3394 
3395   JvmtiExport::enter_onload_phase();
3396   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3397     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3398 
3399     if (on_load_entry != NULL) {
3400       // Invoke the Agent_OnLoad function
3401       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3402       if (err != JNI_OK) {
3403         vm_exit_during_initialization("agent library failed to init", agent->name());
3404       }
3405     } else {
3406       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3407     }
3408   }
3409   JvmtiExport::enter_primordial_phase();
3410 }
3411 
3412 extern "C" {
3413   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3414 }
3415 
3416 void Threads::shutdown_vm_agents() {
3417   // Send any Agent_OnUnload notifications
3418   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3419   extern struct JavaVM_ main_vm;
3420   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3421 
3422     // Find the Agent_OnUnload function.
3423     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3424       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3425                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3426 
3427       // Invoke the Agent_OnUnload function
3428       if (unload_entry != NULL) {
3429         JavaThread* thread = JavaThread::current();
3430         ThreadToNativeFromVM ttn(thread);
3431         HandleMark hm(thread);
3432         (*unload_entry)(&main_vm);
3433         break;
3434       }
3435     }
3436   }
3437 }
3438 
3439 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3440 // Invokes JVM_OnLoad
3441 void Threads::create_vm_init_libraries() {
3442   extern struct JavaVM_ main_vm;
3443   AgentLibrary* agent;
3444 
3445   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3446     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3447 
3448     if (on_load_entry != NULL) {
3449       // Invoke the JVM_OnLoad function
3450       JavaThread* thread = JavaThread::current();
3451       ThreadToNativeFromVM ttn(thread);
3452       HandleMark hm(thread);
3453       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3454       if (err != JNI_OK) {
3455         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3456       }
3457     } else {
3458       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3459     }
3460   }
3461 }
3462 
3463 // Last thread running calls java.lang.Shutdown.shutdown()
3464 void JavaThread::invoke_shutdown_hooks() {
3465   HandleMark hm(this);
3466 
3467   // We could get here with a pending exception, if so clear it now.
3468   if (this->has_pending_exception()) {
3469     this->clear_pending_exception();
3470   }
3471 
3472   EXCEPTION_MARK;
3473   klassOop k =
3474     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3475                                       THREAD);
3476   if (k != NULL) {
3477     // SystemDictionary::resolve_or_null will return null if there was
3478     // an exception.  If we cannot load the Shutdown class, just don't
3479     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3480     // and finalizers (if runFinalizersOnExit is set) won't be run.
3481     // Note that if a shutdown hook was registered or runFinalizersOnExit
3482     // was called, the Shutdown class would have already been loaded
3483     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3484     instanceKlassHandle shutdown_klass (THREAD, k);
3485     JavaValue result(T_VOID);
3486     JavaCalls::call_static(&result,
3487                            shutdown_klass,
3488                            vmSymbolHandles::shutdown_method_name(),
3489                            vmSymbolHandles::void_method_signature(),
3490                            THREAD);
3491   }
3492   CLEAR_PENDING_EXCEPTION;
3493 }
3494 
3495 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3496 // the program falls off the end of main(). Another VM exit path is through
3497 // vm_exit() when the program calls System.exit() to return a value or when
3498 // there is a serious error in VM. The two shutdown paths are not exactly
3499 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3500 // and VM_Exit op at VM level.
3501 //
3502 // Shutdown sequence:
3503 //   + Wait until we are the last non-daemon thread to execute
3504 //     <-- every thing is still working at this moment -->
3505 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3506 //        shutdown hooks, run finalizers if finalization-on-exit
3507 //   + Call before_exit(), prepare for VM exit
3508 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3509 //        currently the only user of this mechanism is File.deleteOnExit())
3510 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3511 //        post thread end and vm death events to JVMTI,
3512 //        stop signal thread
3513 //   + Call JavaThread::exit(), it will:
3514 //      > release JNI handle blocks, remove stack guard pages
3515 //      > remove this thread from Threads list
3516 //     <-- no more Java code from this thread after this point -->
3517 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3518 //     the compiler threads at safepoint
3519 //     <-- do not use anything that could get blocked by Safepoint -->
3520 //   + Disable tracing at JNI/JVM barriers
3521 //   + Set _vm_exited flag for threads that are still running native code
3522 //   + Delete this thread
3523 //   + Call exit_globals()
3524 //      > deletes tty
3525 //      > deletes PerfMemory resources
3526 //   + Return to caller
3527 
3528 bool Threads::destroy_vm() {
3529   JavaThread* thread = JavaThread::current();
3530 
3531   // Wait until we are the last non-daemon thread to execute
3532   { MutexLocker nu(Threads_lock);
3533     while (Threads::number_of_non_daemon_threads() > 1 )
3534       // This wait should make safepoint checks, wait without a timeout,
3535       // and wait as a suspend-equivalent condition.
3536       //
3537       // Note: If the FlatProfiler is running and this thread is waiting
3538       // for another non-daemon thread to finish, then the FlatProfiler
3539       // is waiting for the external suspend request on this thread to
3540       // complete. wait_for_ext_suspend_completion() will eventually
3541       // timeout, but that takes time. Making this wait a suspend-
3542       // equivalent condition solves that timeout problem.
3543       //
3544       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3545                          Mutex::_as_suspend_equivalent_flag);
3546   }
3547 
3548   // Hang forever on exit if we are reporting an error.
3549   if (ShowMessageBoxOnError && is_error_reported()) {
3550     os::infinite_sleep();
3551   }
3552 
3553   if (JDK_Version::is_jdk12x_version()) {
3554     // We are the last thread running, so check if finalizers should be run.
3555     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3556     HandleMark rm(thread);
3557     Universe::run_finalizers_on_exit();
3558   } else {
3559     // run Java level shutdown hooks
3560     thread->invoke_shutdown_hooks();
3561   }
3562 
3563   before_exit(thread);
3564 
3565   thread->exit(true);
3566 
3567   // Stop VM thread.
3568   {
3569     // 4945125 The vm thread comes to a safepoint during exit.
3570     // GC vm_operations can get caught at the safepoint, and the
3571     // heap is unparseable if they are caught. Grab the Heap_lock
3572     // to prevent this. The GC vm_operations will not be able to
3573     // queue until after the vm thread is dead.
3574     MutexLocker ml(Heap_lock);
3575 
3576     VMThread::wait_for_vm_thread_exit();
3577     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3578     VMThread::destroy();
3579   }
3580 
3581   // clean up ideal graph printers
3582 #if defined(COMPILER2) && !defined(PRODUCT)
3583   IdealGraphPrinter::clean_up();
3584 #endif
3585 
3586   // Now, all Java threads are gone except daemon threads. Daemon threads
3587   // running Java code or in VM are stopped by the Safepoint. However,
3588   // daemon threads executing native code are still running.  But they
3589   // will be stopped at native=>Java/VM barriers. Note that we can't
3590   // simply kill or suspend them, as it is inherently deadlock-prone.
3591 
3592 #ifndef PRODUCT
3593   // disable function tracing at JNI/JVM barriers
3594   TraceHPI = false;
3595   TraceJNICalls = false;
3596   TraceJVMCalls = false;
3597   TraceRuntimeCalls = false;
3598 #endif
3599 
3600   VM_Exit::set_vm_exited();
3601 
3602   notify_vm_shutdown();
3603 
3604   delete thread;
3605 
3606   // exit_globals() will delete tty
3607   exit_globals();
3608 
3609   return true;
3610 }
3611 
3612 
3613 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3614   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3615   return is_supported_jni_version(version);
3616 }
3617 
3618 
3619 jboolean Threads::is_supported_jni_version(jint version) {
3620   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3621   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3622   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3623   return JNI_FALSE;
3624 }
3625 
3626 
3627 void Threads::add(JavaThread* p, bool force_daemon) {
3628   // The threads lock must be owned at this point
3629   assert_locked_or_safepoint(Threads_lock);
3630   p->set_next(_thread_list);
3631   _thread_list = p;
3632   _number_of_threads++;
3633   oop threadObj = p->threadObj();
3634   bool daemon = true;
3635   // Bootstrapping problem: threadObj can be null for initial
3636   // JavaThread (or for threads attached via JNI)
3637   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3638     _number_of_non_daemon_threads++;
3639     daemon = false;
3640   }
3641 
3642   ThreadService::add_thread(p, daemon);
3643 
3644   // Possible GC point.
3645   Events::log("Thread added: " INTPTR_FORMAT, p);
3646 }
3647 
3648 void Threads::remove(JavaThread* p) {
3649   // Extra scope needed for Thread_lock, so we can check
3650   // that we do not remove thread without safepoint code notice
3651   { MutexLocker ml(Threads_lock);
3652 
3653     assert(includes(p), "p must be present");
3654 
3655     JavaThread* current = _thread_list;
3656     JavaThread* prev    = NULL;
3657 
3658     while (current != p) {
3659       prev    = current;
3660       current = current->next();
3661     }
3662 
3663     if (prev) {
3664       prev->set_next(current->next());
3665     } else {
3666       _thread_list = p->next();
3667     }
3668     _number_of_threads--;
3669     oop threadObj = p->threadObj();
3670     bool daemon = true;
3671     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3672       _number_of_non_daemon_threads--;
3673       daemon = false;
3674 
3675       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3676       // on destroy_vm will wake up.
3677       if (number_of_non_daemon_threads() == 1)
3678         Threads_lock->notify_all();
3679     }
3680     ThreadService::remove_thread(p, daemon);
3681 
3682     // Make sure that safepoint code disregard this thread. This is needed since
3683     // the thread might mess around with locks after this point. This can cause it
3684     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3685     // of this thread since it is removed from the queue.
3686     p->set_terminated_value();
3687   } // unlock Threads_lock
3688 
3689   // Since Events::log uses a lock, we grab it outside the Threads_lock
3690   Events::log("Thread exited: " INTPTR_FORMAT, p);
3691 }
3692 
3693 // Threads_lock must be held when this is called (or must be called during a safepoint)
3694 bool Threads::includes(JavaThread* p) {
3695   assert(Threads_lock->is_locked(), "sanity check");
3696   ALL_JAVA_THREADS(q) {
3697     if (q == p ) {
3698       return true;
3699     }
3700   }
3701   return false;
3702 }
3703 
3704 // Operations on the Threads list for GC.  These are not explicitly locked,
3705 // but the garbage collector must provide a safe context for them to run.
3706 // In particular, these things should never be called when the Threads_lock
3707 // is held by some other thread. (Note: the Safepoint abstraction also
3708 // uses the Threads_lock to gurantee this property. It also makes sure that
3709 // all threads gets blocked when exiting or starting).
3710 
3711 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3712   ALL_JAVA_THREADS(p) {
3713     p->oops_do(f, cf);
3714   }
3715   VMThread::vm_thread()->oops_do(f, cf);
3716 }
3717 
3718 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3719   // Introduce a mechanism allowing parallel threads to claim threads as
3720   // root groups.  Overhead should be small enough to use all the time,
3721   // even in sequential code.
3722   SharedHeap* sh = SharedHeap::heap();
3723   bool is_par = (sh->n_par_threads() > 0);
3724   int cp = SharedHeap::heap()->strong_roots_parity();
3725   ALL_JAVA_THREADS(p) {
3726     if (p->claim_oops_do(is_par, cp)) {
3727       p->oops_do(f, cf);
3728     }
3729   }
3730   VMThread* vmt = VMThread::vm_thread();
3731   if (vmt->claim_oops_do(is_par, cp))
3732     vmt->oops_do(f, cf);
3733 }
3734 
3735 #ifndef SERIALGC
3736 // Used by ParallelScavenge
3737 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3738   ALL_JAVA_THREADS(p) {
3739     q->enqueue(new ThreadRootsTask(p));
3740   }
3741   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3742 }
3743 
3744 // Used by Parallel Old
3745 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3746   ALL_JAVA_THREADS(p) {
3747     q->enqueue(new ThreadRootsMarkingTask(p));
3748   }
3749   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3750 }
3751 #endif // SERIALGC
3752 
3753 void Threads::nmethods_do(CodeBlobClosure* cf) {
3754   ALL_JAVA_THREADS(p) {
3755     p->nmethods_do(cf);
3756   }
3757   VMThread::vm_thread()->nmethods_do(cf);
3758 }
3759 
3760 void Threads::gc_epilogue() {
3761   ALL_JAVA_THREADS(p) {
3762     p->gc_epilogue();
3763   }
3764 }
3765 
3766 void Threads::gc_prologue() {
3767   ALL_JAVA_THREADS(p) {
3768     p->gc_prologue();
3769   }
3770 }
3771 
3772 void Threads::deoptimized_wrt_marked_nmethods() {
3773   ALL_JAVA_THREADS(p) {
3774     p->deoptimized_wrt_marked_nmethods();
3775   }
3776 }
3777 
3778 
3779 // Get count Java threads that are waiting to enter the specified monitor.
3780 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3781   address monitor, bool doLock) {
3782   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3783     "must grab Threads_lock or be at safepoint");
3784   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3785 
3786   int i = 0;
3787   {
3788     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3789     ALL_JAVA_THREADS(p) {
3790       if (p->is_Compiler_thread()) continue;
3791 
3792       address pending = (address)p->current_pending_monitor();
3793       if (pending == monitor) {             // found a match
3794         if (i < count) result->append(p);   // save the first count matches
3795         i++;
3796       }
3797     }
3798   }
3799   return result;
3800 }
3801 
3802 
3803 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3804   assert(doLock ||
3805          Threads_lock->owned_by_self() ||
3806          SafepointSynchronize::is_at_safepoint(),
3807          "must grab Threads_lock or be at safepoint");
3808 
3809   // NULL owner means not locked so we can skip the search
3810   if (owner == NULL) return NULL;
3811 
3812   {
3813     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3814     ALL_JAVA_THREADS(p) {
3815       // first, see if owner is the address of a Java thread
3816       if (owner == (address)p) return p;
3817     }
3818   }
3819   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3820   if (UseHeavyMonitors) return NULL;
3821 
3822   //
3823   // If we didn't find a matching Java thread and we didn't force use of
3824   // heavyweight monitors, then the owner is the stack address of the
3825   // Lock Word in the owning Java thread's stack.
3826   //
3827   JavaThread* the_owner = NULL;
3828   {
3829     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3830     ALL_JAVA_THREADS(q) {
3831       if (q->is_lock_owned(owner)) {
3832         the_owner = q;
3833         break;
3834       }
3835     }
3836   }
3837   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3838   return the_owner;
3839 }
3840 
3841 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3842 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3843   char buf[32];
3844   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3845 
3846   st->print_cr("Full thread dump %s (%s %s):",
3847                 Abstract_VM_Version::vm_name(),
3848                 Abstract_VM_Version::vm_release(),
3849                 Abstract_VM_Version::vm_info_string()
3850                );
3851   st->cr();
3852 
3853 #ifndef SERIALGC
3854   // Dump concurrent locks
3855   ConcurrentLocksDump concurrent_locks;
3856   if (print_concurrent_locks) {
3857     concurrent_locks.dump_at_safepoint();
3858   }
3859 #endif // SERIALGC
3860 
3861   ALL_JAVA_THREADS(p) {
3862     ResourceMark rm;
3863     p->print_on(st);
3864     if (print_stacks) {
3865       if (internal_format) {
3866         p->trace_stack();
3867       } else {
3868         p->print_stack_on(st);
3869       }
3870     }
3871     st->cr();
3872 #ifndef SERIALGC
3873     if (print_concurrent_locks) {
3874       concurrent_locks.print_locks_on(p, st);
3875     }
3876 #endif // SERIALGC
3877   }
3878 
3879   VMThread::vm_thread()->print_on(st);
3880   st->cr();
3881   Universe::heap()->print_gc_threads_on(st);
3882   WatcherThread* wt = WatcherThread::watcher_thread();
3883   if (wt != NULL) wt->print_on(st);
3884   st->cr();
3885   CompileBroker::print_compiler_threads_on(st);
3886   st->flush();
3887 }
3888 
3889 // Threads::print_on_error() is called by fatal error handler. It's possible
3890 // that VM is not at safepoint and/or current thread is inside signal handler.
3891 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3892 // memory (even in resource area), it might deadlock the error handler.
3893 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3894   bool found_current = false;
3895   st->print_cr("Java Threads: ( => current thread )");
3896   ALL_JAVA_THREADS(thread) {
3897     bool is_current = (current == thread);
3898     found_current = found_current || is_current;
3899 
3900     st->print("%s", is_current ? "=>" : "  ");
3901 
3902     st->print(PTR_FORMAT, thread);
3903     st->print(" ");
3904     thread->print_on_error(st, buf, buflen);
3905     st->cr();
3906   }
3907   st->cr();
3908 
3909   st->print_cr("Other Threads:");
3910   if (VMThread::vm_thread()) {
3911     bool is_current = (current == VMThread::vm_thread());
3912     found_current = found_current || is_current;
3913     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3914 
3915     st->print(PTR_FORMAT, VMThread::vm_thread());
3916     st->print(" ");
3917     VMThread::vm_thread()->print_on_error(st, buf, buflen);
3918     st->cr();
3919   }
3920   WatcherThread* wt = WatcherThread::watcher_thread();
3921   if (wt != NULL) {
3922     bool is_current = (current == wt);
3923     found_current = found_current || is_current;
3924     st->print("%s", is_current ? "=>" : "  ");
3925 
3926     st->print(PTR_FORMAT, wt);
3927     st->print(" ");
3928     wt->print_on_error(st, buf, buflen);
3929     st->cr();
3930   }
3931   if (!found_current) {
3932     st->cr();
3933     st->print("=>" PTR_FORMAT " (exited) ", current);
3934     current->print_on_error(st, buf, buflen);
3935     st->cr();
3936   }
3937 }
3938 
3939 
3940 // Lifecycle management for TSM ParkEvents.
3941 // ParkEvents are type-stable (TSM).
3942 // In our particular implementation they happen to be immortal.
3943 //
3944 // We manage concurrency on the FreeList with a CAS-based
3945 // detach-modify-reattach idiom that avoids the ABA problems
3946 // that would otherwise be present in a simple CAS-based
3947 // push-pop implementation.   (push-one and pop-all)
3948 //
3949 // Caveat: Allocate() and Release() may be called from threads
3950 // other than the thread associated with the Event!
3951 // If we need to call Allocate() when running as the thread in
3952 // question then look for the PD calls to initialize native TLS.
3953 // Native TLS (Win32/Linux/Solaris) can only be initialized or
3954 // accessed by the associated thread.
3955 // See also pd_initialize().
3956 //
3957 // Note that we could defer associating a ParkEvent with a thread
3958 // until the 1st time the thread calls park().  unpark() calls to
3959 // an unprovisioned thread would be ignored.  The first park() call
3960 // for a thread would allocate and associate a ParkEvent and return
3961 // immediately.
3962 
3963 volatile int ParkEvent::ListLock = 0 ;
3964 ParkEvent * volatile ParkEvent::FreeList = NULL ;
3965 
3966 ParkEvent * ParkEvent::Allocate (Thread * t) {
3967   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3968   ParkEvent * ev ;
3969 
3970   // Start by trying to recycle an existing but unassociated
3971   // ParkEvent from the global free list.
3972   for (;;) {
3973     ev = FreeList ;
3974     if (ev == NULL) break ;
3975     // 1: Detach - sequester or privatize the list
3976     // Tantamount to ev = Swap (&FreeList, NULL)
3977     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3978        continue ;
3979     }
3980 
3981     // We've detached the list.  The list in-hand is now
3982     // local to this thread.   This thread can operate on the
3983     // list without risk of interference from other threads.
3984     // 2: Extract -- pop the 1st element from the list.
3985     ParkEvent * List = ev->FreeNext ;
3986     if (List == NULL) break ;
3987     for (;;) {
3988         // 3: Try to reattach the residual list
3989         guarantee (List != NULL, "invariant") ;
3990         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3991         if (Arv == NULL) break ;
3992 
3993         // New nodes arrived.  Try to detach the recent arrivals.
3994         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3995             continue ;
3996         }
3997         guarantee (Arv != NULL, "invariant") ;
3998         // 4: Merge Arv into List
3999         ParkEvent * Tail = List ;
4000         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4001         Tail->FreeNext = Arv ;
4002     }
4003     break ;
4004   }
4005 
4006   if (ev != NULL) {
4007     guarantee (ev->AssociatedWith == NULL, "invariant") ;
4008   } else {
4009     // Do this the hard way -- materialize a new ParkEvent.
4010     // In rare cases an allocating thread might detach a long list --
4011     // installing null into FreeList -- and then stall or be obstructed.
4012     // A 2nd thread calling Allocate() would see FreeList == null.
4013     // The list held privately by the 1st thread is unavailable to the 2nd thread.
4014     // In that case the 2nd thread would have to materialize a new ParkEvent,
4015     // even though free ParkEvents existed in the system.  In this case we end up
4016     // with more ParkEvents in circulation than we need, but the race is
4017     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
4018     // is equal to the maximum # of threads that existed at any one time.
4019     // Because of the race mentioned above, segments of the freelist
4020     // can be transiently inaccessible.  At worst we may end up with the
4021     // # of ParkEvents in circulation slightly above the ideal.
4022     // Note that if we didn't have the TSM/immortal constraint, then
4023     // when reattaching, above, we could trim the list.
4024     ev = new ParkEvent () ;
4025     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
4026   }
4027   ev->reset() ;                     // courtesy to caller
4028   ev->AssociatedWith = t ;          // Associate ev with t
4029   ev->FreeNext       = NULL ;
4030   return ev ;
4031 }
4032 
4033 void ParkEvent::Release (ParkEvent * ev) {
4034   if (ev == NULL) return ;
4035   guarantee (ev->FreeNext == NULL      , "invariant") ;
4036   ev->AssociatedWith = NULL ;
4037   for (;;) {
4038     // Push ev onto FreeList
4039     // The mechanism is "half" lock-free.
4040     ParkEvent * List = FreeList ;
4041     ev->FreeNext = List ;
4042     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
4043   }
4044 }
4045 
4046 // Override operator new and delete so we can ensure that the
4047 // least significant byte of ParkEvent addresses is 0.
4048 // Beware that excessive address alignment is undesirable
4049 // as it can result in D$ index usage imbalance as
4050 // well as bank access imbalance on Niagara-like platforms,
4051 // although Niagara's hash function should help.
4052 
4053 void * ParkEvent::operator new (size_t sz) {
4054   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
4055 }
4056 
4057 void ParkEvent::operator delete (void * a) {
4058   // ParkEvents are type-stable and immortal ...
4059   ShouldNotReachHere();
4060 }
4061 
4062 
4063 // 6399321 As a temporary measure we copied & modified the ParkEvent::
4064 // allocate() and release() code for use by Parkers.  The Parker:: forms
4065 // will eventually be removed as we consolide and shift over to ParkEvents
4066 // for both builtin synchronization and JSR166 operations.
4067 
4068 volatile int Parker::ListLock = 0 ;
4069 Parker * volatile Parker::FreeList = NULL ;
4070 
4071 Parker * Parker::Allocate (JavaThread * t) {
4072   guarantee (t != NULL, "invariant") ;
4073   Parker * p ;
4074 
4075   // Start by trying to recycle an existing but unassociated
4076   // Parker from the global free list.
4077   for (;;) {
4078     p = FreeList ;
4079     if (p  == NULL) break ;
4080     // 1: Detach
4081     // Tantamount to p = Swap (&FreeList, NULL)
4082     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
4083        continue ;
4084     }
4085 
4086     // We've detached the list.  The list in-hand is now
4087     // local to this thread.   This thread can operate on the
4088     // list without risk of interference from other threads.
4089     // 2: Extract -- pop the 1st element from the list.
4090     Parker * List = p->FreeNext ;
4091     if (List == NULL) break ;
4092     for (;;) {
4093         // 3: Try to reattach the residual list
4094         guarantee (List != NULL, "invariant") ;
4095         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
4096         if (Arv == NULL) break ;
4097 
4098         // New nodes arrived.  Try to detach the recent arrivals.
4099         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
4100             continue ;
4101         }
4102         guarantee (Arv != NULL, "invariant") ;
4103         // 4: Merge Arv into List
4104         Parker * Tail = List ;
4105         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4106         Tail->FreeNext = Arv ;
4107     }
4108     break ;
4109   }
4110 
4111   if (p != NULL) {
4112     guarantee (p->AssociatedWith == NULL, "invariant") ;
4113   } else {
4114     // Do this the hard way -- materialize a new Parker..
4115     // In rare cases an allocating thread might detach
4116     // a long list -- installing null into FreeList --and
4117     // then stall.  Another thread calling Allocate() would see
4118     // FreeList == null and then invoke the ctor.  In this case we
4119     // end up with more Parkers in circulation than we need, but
4120     // the race is rare and the outcome is benign.
4121     // Ideally, the # of extant Parkers is equal to the
4122     // maximum # of threads that existed at any one time.
4123     // Because of the race mentioned above, segments of the
4124     // freelist can be transiently inaccessible.  At worst
4125     // we may end up with the # of Parkers in circulation
4126     // slightly above the ideal.
4127     p = new Parker() ;
4128   }
4129   p->AssociatedWith = t ;          // Associate p with t
4130   p->FreeNext       = NULL ;
4131   return p ;
4132 }
4133 
4134 
4135 void Parker::Release (Parker * p) {
4136   if (p == NULL) return ;
4137   guarantee (p->AssociatedWith != NULL, "invariant") ;
4138   guarantee (p->FreeNext == NULL      , "invariant") ;
4139   p->AssociatedWith = NULL ;
4140   for (;;) {
4141     // Push p onto FreeList
4142     Parker * List = FreeList ;
4143     p->FreeNext = List ;
4144     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4145   }
4146 }
4147 
4148 void Threads::verify() {
4149   ALL_JAVA_THREADS(p) {
4150     p->verify();
4151   }
4152   VMThread* thread = VMThread::vm_thread();
4153   if (thread != NULL) thread->verify();
4154 }