1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_vframeArray.cpp.incl"
  27 
  28 
  29 int vframeArrayElement:: bci(void) const { return (_bci == SynchronizationEntryBCI ? 0 : _bci); }
  30 
  31 void vframeArrayElement::free_monitors(JavaThread* jt) {
  32   if (_monitors != NULL) {
  33      MonitorChunk* chunk = _monitors;
  34      _monitors = NULL;
  35      jt->remove_monitor_chunk(chunk);
  36      delete chunk;
  37   }
  38 }
  39 
  40 void vframeArrayElement::fill_in(compiledVFrame* vf) {
  41 
  42 // Copy the information from the compiled vframe to the
  43 // interpreter frame we will be creating to replace vf
  44 
  45   _method = vf->method();
  46   _bci    = vf->raw_bci();
  47   _reexecute = vf->should_reexecute();
  48 
  49   int index;
  50 
  51   // Get the monitors off-stack
  52 
  53   GrowableArray<MonitorInfo*>* list = vf->monitors();
  54   if (list->is_empty()) {
  55     _monitors = NULL;
  56   } else {
  57 
  58     // Allocate monitor chunk
  59     _monitors = new MonitorChunk(list->length());
  60     vf->thread()->add_monitor_chunk(_monitors);
  61 
  62     // Migrate the BasicLocks from the stack to the monitor chunk
  63     for (index = 0; index < list->length(); index++) {
  64       MonitorInfo* monitor = list->at(index);
  65       assert(!monitor->owner_is_scalar_replaced(), "object should be reallocated already");
  66       assert(monitor->owner() == NULL || (!monitor->owner()->is_unlocked() && !monitor->owner()->has_bias_pattern()), "object must be null or locked, and unbiased");
  67       BasicObjectLock* dest = _monitors->at(index);
  68       dest->set_obj(monitor->owner());
  69       monitor->lock()->move_to(monitor->owner(), dest->lock());
  70     }
  71   }
  72 
  73   // Convert the vframe locals and expressions to off stack
  74   // values. Because we will not gc all oops can be converted to
  75   // intptr_t (i.e. a stack slot) and we are fine. This is
  76   // good since we are inside a HandleMark and the oops in our
  77   // collection would go away between packing them here and
  78   // unpacking them in unpack_on_stack.
  79 
  80   // First the locals go off-stack
  81 
  82   // FIXME this seems silly it creates a StackValueCollection
  83   // in order to get the size to then copy them and
  84   // convert the types to intptr_t size slots. Seems like it
  85   // could do it in place... Still uses less memory than the
  86   // old way though
  87 
  88   StackValueCollection *locs = vf->locals();
  89   _locals = new StackValueCollection(locs->size());
  90   for(index = 0; index < locs->size(); index++) {
  91     StackValue* value = locs->at(index);
  92     switch(value->type()) {
  93       case T_OBJECT:
  94         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
  95         // preserve object type
  96         _locals->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
  97         break;
  98       case T_CONFLICT:
  99         // A dead local.  Will be initialized to null/zero.
 100         _locals->add( new StackValue());
 101         break;
 102       case T_INT:
 103         _locals->add( new StackValue(value->get_int()));
 104         break;
 105       default:
 106         ShouldNotReachHere();
 107     }
 108   }
 109 
 110   // Now the expressions off-stack
 111   // Same silliness as above
 112 
 113   StackValueCollection *exprs = vf->expressions();
 114   _expressions = new StackValueCollection(exprs->size());
 115   for(index = 0; index < exprs->size(); index++) {
 116     StackValue* value = exprs->at(index);
 117     switch(value->type()) {
 118       case T_OBJECT:
 119         assert(!value->obj_is_scalar_replaced(), "object should be reallocated already");
 120         // preserve object type
 121         _expressions->add( new StackValue((intptr_t) (value->get_obj()()), T_OBJECT ));
 122         break;
 123       case T_CONFLICT:
 124         // A dead stack element.  Will be initialized to null/zero.
 125         // This can occur when the compiler emits a state in which stack
 126         // elements are known to be dead (because of an imminent exception).
 127         _expressions->add( new StackValue());
 128         break;
 129       case T_INT:
 130         _expressions->add( new StackValue(value->get_int()));
 131         break;
 132       default:
 133         ShouldNotReachHere();
 134     }
 135   }
 136 }
 137 
 138 int unpack_counter = 0;
 139 
 140 void vframeArrayElement::unpack_on_stack(int callee_parameters,
 141                                          int callee_locals,
 142                                          frame* caller,
 143                                          bool is_top_frame,
 144                                          int exec_mode) {
 145   JavaThread* thread = (JavaThread*) Thread::current();
 146 
 147   // Look at bci and decide on bcp and continuation pc
 148   address bcp;
 149   // C++ interpreter doesn't need a pc since it will figure out what to do when it
 150   // begins execution
 151   address pc;
 152   bool use_next_mdp = false; // true if we should use the mdp associated with the next bci
 153                              // rather than the one associated with bcp
 154   if (raw_bci() == SynchronizationEntryBCI) {
 155     // We are deoptimizing while hanging in prologue code for synchronized method
 156     bcp = method()->bcp_from(0); // first byte code
 157     pc  = Interpreter::deopt_entry(vtos, 0); // step = 0 since we don't skip current bytecode
 158   } else if (should_reexecute()) { //reexecute this bytecode
 159     assert(is_top_frame, "reexecute allowed only for the top frame");
 160     bcp = method()->bcp_from(bci());
 161     pc  = Interpreter::deopt_reexecute_entry(method(), bcp);
 162   } else {
 163     bcp = method()->bcp_from(bci());
 164     pc  = Interpreter::deopt_continue_after_entry(method(), bcp, callee_parameters, is_top_frame);
 165     use_next_mdp = true;
 166   }
 167   assert(Bytecodes::is_defined(*bcp), "must be a valid bytecode");
 168 
 169   // Monitorenter and pending exceptions:
 170   //
 171   // For Compiler2, there should be no pending exception when deoptimizing at monitorenter
 172   // because there is no safepoint at the null pointer check (it is either handled explicitly
 173   // or prior to the monitorenter) and asynchronous exceptions are not made "pending" by the
 174   // runtime interface for the slow case (see JRT_ENTRY_FOR_MONITORENTER).  If an asynchronous
 175   // exception was processed, the bytecode pointer would have to be extended one bytecode beyond
 176   // the monitorenter to place it in the proper exception range.
 177   //
 178   // For Compiler1, deoptimization can occur while throwing a NullPointerException at monitorenter,
 179   // in which case bcp should point to the monitorenter since it is within the exception's range.
 180 
 181   assert(*bcp != Bytecodes::_monitorenter || is_top_frame, "a _monitorenter must be a top frame");
 182   // TIERED Must know the compiler of the deoptee QQQ
 183   COMPILER2_PRESENT(guarantee(*bcp != Bytecodes::_monitorenter || exec_mode != Deoptimization::Unpack_exception,
 184                               "shouldn't get exception during monitorenter");)
 185 
 186   int popframe_preserved_args_size_in_bytes = 0;
 187   int popframe_preserved_args_size_in_words = 0;
 188   if (is_top_frame) {
 189     JvmtiThreadState *state = thread->jvmti_thread_state();
 190     if (JvmtiExport::can_pop_frame() &&
 191         (thread->has_pending_popframe() || thread->popframe_forcing_deopt_reexecution())) {
 192       if (thread->has_pending_popframe()) {
 193         // Pop top frame after deoptimization
 194 #ifndef CC_INTERP
 195         pc = Interpreter::remove_activation_preserving_args_entry();
 196 #else
 197         // Do an uncommon trap type entry. c++ interpreter will know
 198         // to pop frame and preserve the args
 199         pc = Interpreter::deopt_entry(vtos, 0);
 200         use_next_mdp = false;
 201 #endif
 202       } else {
 203         // Reexecute invoke in top frame
 204         pc = Interpreter::deopt_entry(vtos, 0);
 205         use_next_mdp = false;
 206         popframe_preserved_args_size_in_bytes = in_bytes(thread->popframe_preserved_args_size());
 207         // Note: the PopFrame-related extension of the expression stack size is done in
 208         // Deoptimization::fetch_unroll_info_helper
 209         popframe_preserved_args_size_in_words = in_words(thread->popframe_preserved_args_size_in_words());
 210       }
 211     } else if (JvmtiExport::can_force_early_return() && state != NULL && state->is_earlyret_pending()) {
 212       // Force early return from top frame after deoptimization
 213 #ifndef CC_INTERP
 214       pc = Interpreter::remove_activation_early_entry(state->earlyret_tos());
 215 #else
 216      // TBD: Need to implement ForceEarlyReturn for CC_INTERP (ia64)
 217 #endif
 218     } else {
 219       // Possibly override the previous pc computation of the top (youngest) frame
 220       switch (exec_mode) {
 221       case Deoptimization::Unpack_deopt:
 222         // use what we've got
 223         break;
 224       case Deoptimization::Unpack_exception:
 225         // exception is pending
 226         pc = SharedRuntime::raw_exception_handler_for_return_address(thread, pc);
 227         // [phh] We're going to end up in some handler or other, so it doesn't
 228         // matter what mdp we point to.  See exception_handler_for_exception()
 229         // in interpreterRuntime.cpp.
 230         break;
 231       case Deoptimization::Unpack_uncommon_trap:
 232       case Deoptimization::Unpack_reexecute:
 233         // redo last byte code
 234         pc  = Interpreter::deopt_entry(vtos, 0);
 235         use_next_mdp = false;
 236         break;
 237       default:
 238         ShouldNotReachHere();
 239       }
 240     }
 241   }
 242 
 243   // Setup the interpreter frame
 244 
 245   assert(method() != NULL, "method must exist");
 246   int temps = expressions()->size();
 247 
 248   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 249 
 250   Interpreter::layout_activation(method(),
 251                                  temps + callee_parameters,
 252                                  popframe_preserved_args_size_in_words,
 253                                  locks,
 254                                  callee_parameters,
 255                                  callee_locals,
 256                                  caller,
 257                                  iframe(),
 258                                  is_top_frame);
 259 
 260   // Update the pc in the frame object and overwrite the temporary pc
 261   // we placed in the skeletal frame now that we finally know the
 262   // exact interpreter address we should use.
 263 
 264   _frame.patch_pc(thread, pc);
 265 
 266   assert (!method()->is_synchronized() || locks > 0, "synchronized methods must have monitors");
 267 
 268   BasicObjectLock* top = iframe()->interpreter_frame_monitor_begin();
 269   for (int index = 0; index < locks; index++) {
 270     top = iframe()->previous_monitor_in_interpreter_frame(top);
 271     BasicObjectLock* src = _monitors->at(index);
 272     top->set_obj(src->obj());
 273     src->lock()->move_to(src->obj(), top->lock());
 274   }
 275   if (ProfileInterpreter) {
 276     iframe()->interpreter_frame_set_mdx(0); // clear out the mdp.
 277   }
 278   iframe()->interpreter_frame_set_bcx((intptr_t)bcp); // cannot use bcp because frame is not initialized yet
 279   if (ProfileInterpreter) {
 280     methodDataOop mdo = method()->method_data();
 281     if (mdo != NULL) {
 282       int bci = iframe()->interpreter_frame_bci();
 283       if (use_next_mdp) ++bci;
 284       address mdp = mdo->bci_to_dp(bci);
 285       iframe()->interpreter_frame_set_mdp(mdp);
 286     }
 287   }
 288 
 289   // Unpack expression stack
 290   // If this is an intermediate frame (i.e. not top frame) then this
 291   // only unpacks the part of the expression stack not used by callee
 292   // as parameters. The callee parameters are unpacked as part of the
 293   // callee locals.
 294   int i;
 295   for(i = 0; i < expressions()->size(); i++) {
 296     StackValue *value = expressions()->at(i);
 297     intptr_t*   addr  = iframe()->interpreter_frame_expression_stack_at(i);
 298     switch(value->type()) {
 299       case T_INT:
 300         *addr = value->get_int();
 301         break;
 302       case T_OBJECT:
 303         *addr = value->get_int(T_OBJECT);
 304         break;
 305       case T_CONFLICT:
 306         // A dead stack slot.  Initialize to null in case it is an oop.
 307         *addr = NULL_WORD;
 308         break;
 309       default:
 310         ShouldNotReachHere();
 311     }
 312   }
 313 
 314 
 315   // Unpack the locals
 316   for(i = 0; i < locals()->size(); i++) {
 317     StackValue *value = locals()->at(i);
 318     intptr_t* addr  = iframe()->interpreter_frame_local_at(i);
 319     switch(value->type()) {
 320       case T_INT:
 321         *addr = value->get_int();
 322         break;
 323       case T_OBJECT:
 324         *addr = value->get_int(T_OBJECT);
 325         break;
 326       case T_CONFLICT:
 327         // A dead location. If it is an oop then we need a NULL to prevent GC from following it
 328         *addr = NULL_WORD;
 329         break;
 330       default:
 331         ShouldNotReachHere();
 332     }
 333   }
 334 
 335   if (is_top_frame && JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 336     // An interpreted frame was popped but it returns to a deoptimized
 337     // frame. The incoming arguments to the interpreted activation
 338     // were preserved in thread-local storage by the
 339     // remove_activation_preserving_args_entry in the interpreter; now
 340     // we put them back into the just-unpacked interpreter frame.
 341     // Note that this assumes that the locals arena grows toward lower
 342     // addresses.
 343     if (popframe_preserved_args_size_in_words != 0) {
 344       void* saved_args = thread->popframe_preserved_args();
 345       assert(saved_args != NULL, "must have been saved by interpreter");
 346 #ifdef ASSERT
 347       assert(popframe_preserved_args_size_in_words <=
 348              iframe()->interpreter_frame_expression_stack_size()*Interpreter::stackElementWords,
 349              "expression stack size should have been extended");
 350 #endif // ASSERT
 351       int top_element = iframe()->interpreter_frame_expression_stack_size()-1;
 352       intptr_t* base;
 353       if (frame::interpreter_frame_expression_stack_direction() < 0) {
 354         base = iframe()->interpreter_frame_expression_stack_at(top_element);
 355       } else {
 356         base = iframe()->interpreter_frame_expression_stack();
 357       }
 358       Copy::conjoint_jbytes(saved_args,
 359                             base,
 360                             popframe_preserved_args_size_in_bytes);
 361       thread->popframe_free_preserved_args();
 362     }
 363   }
 364 
 365 #ifndef PRODUCT
 366   if (TraceDeoptimization && Verbose) {
 367     ttyLocker ttyl;
 368     tty->print_cr("[%d Interpreted Frame]", ++unpack_counter);
 369     iframe()->print_on(tty);
 370     RegisterMap map(thread);
 371     vframe* f = vframe::new_vframe(iframe(), &map, thread);
 372     f->print();
 373 
 374     tty->print_cr("locals size     %d", locals()->size());
 375     tty->print_cr("expression size %d", expressions()->size());
 376 
 377     method()->print_value();
 378     tty->cr();
 379     // method()->print_codes();
 380   } else if (TraceDeoptimization) {
 381     tty->print("     ");
 382     method()->print_value();
 383     Bytecodes::Code code = Bytecodes::java_code_at(bcp);
 384     int bci = method()->bci_from(bcp);
 385     tty->print(" - %s", Bytecodes::name(code));
 386     tty->print(" @ bci %d ", bci);
 387     tty->print_cr("sp = " PTR_FORMAT, iframe()->sp());
 388   }
 389 #endif // PRODUCT
 390 
 391   // The expression stack and locals are in the resource area don't leave
 392   // a dangling pointer in the vframeArray we leave around for debug
 393   // purposes
 394 
 395   _locals = _expressions = NULL;
 396 
 397 }
 398 
 399 int vframeArrayElement::on_stack_size(int callee_parameters,
 400                                       int callee_locals,
 401                                       bool is_top_frame,
 402                                       int popframe_extra_stack_expression_els) const {
 403   assert(method()->max_locals() == locals()->size(), "just checking");
 404   int locks = monitors() == NULL ? 0 : monitors()->number_of_monitors();
 405   int temps = expressions()->size();
 406   return Interpreter::size_activation(method(),
 407                                       temps + callee_parameters,
 408                                       popframe_extra_stack_expression_els,
 409                                       locks,
 410                                       callee_parameters,
 411                                       callee_locals,
 412                                       is_top_frame);
 413 }
 414 
 415 
 416 
 417 vframeArray* vframeArray::allocate(JavaThread* thread, int frame_size, GrowableArray<compiledVFrame*>* chunk,
 418                                    RegisterMap *reg_map, frame sender, frame caller, frame self) {
 419 
 420   // Allocate the vframeArray
 421   vframeArray * result = (vframeArray*) AllocateHeap(sizeof(vframeArray) + // fixed part
 422                                                      sizeof(vframeArrayElement) * (chunk->length() - 1), // variable part
 423                                                      "vframeArray::allocate");
 424   result->_frames = chunk->length();
 425   result->_owner_thread = thread;
 426   result->_sender = sender;
 427   result->_caller = caller;
 428   result->_original = self;
 429   result->set_unroll_block(NULL); // initialize it
 430   result->fill_in(thread, frame_size, chunk, reg_map);
 431   return result;
 432 }
 433 
 434 void vframeArray::fill_in(JavaThread* thread,
 435                           int frame_size,
 436                           GrowableArray<compiledVFrame*>* chunk,
 437                           const RegisterMap *reg_map) {
 438   // Set owner first, it is used when adding monitor chunks
 439 
 440   _frame_size = frame_size;
 441   for(int i = 0; i < chunk->length(); i++) {
 442     element(i)->fill_in(chunk->at(i));
 443   }
 444 
 445   // Copy registers for callee-saved registers
 446   if (reg_map != NULL) {
 447     for(int i = 0; i < RegisterMap::reg_count; i++) {
 448 #ifdef AMD64
 449       // The register map has one entry for every int (32-bit value), so
 450       // 64-bit physical registers have two entries in the map, one for
 451       // each half.  Ignore the high halves of 64-bit registers, just like
 452       // frame::oopmapreg_to_location does.
 453       //
 454       // [phh] FIXME: this is a temporary hack!  This code *should* work
 455       // correctly w/o this hack, possibly by changing RegisterMap::pd_location
 456       // in frame_amd64.cpp and the values of the phantom high half registers
 457       // in amd64.ad.
 458       //      if (VMReg::Name(i) < SharedInfo::stack0 && is_even(i)) {
 459         intptr_t* src = (intptr_t*) reg_map->location(VMRegImpl::as_VMReg(i));
 460         _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 461         //      } else {
 462         //      jint* src = (jint*) reg_map->location(VMReg::Name(i));
 463         //      _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 464         //      }
 465 #else
 466       jint* src = (jint*) reg_map->location(VMRegImpl::as_VMReg(i));
 467       _callee_registers[i] = src != NULL ? *src : NULL_WORD;
 468 #endif
 469       if (src == NULL) {
 470         set_location_valid(i, false);
 471       } else {
 472         set_location_valid(i, true);
 473         jint* dst = (jint*) register_location(i);
 474         *dst = *src;
 475       }
 476     }
 477   }
 478 }
 479 
 480 void vframeArray::unpack_to_stack(frame &unpack_frame, int exec_mode) {
 481   // stack picture
 482   //   unpack_frame
 483   //   [new interpreter frames ] (frames are skeletal but walkable)
 484   //   caller_frame
 485   //
 486   //  This routine fills in the missing data for the skeletal interpreter frames
 487   //  in the above picture.
 488 
 489   // Find the skeletal interpreter frames to unpack into
 490   RegisterMap map(JavaThread::current(), false);
 491   // Get the youngest frame we will unpack (last to be unpacked)
 492   frame me = unpack_frame.sender(&map);
 493   int index;
 494   for (index = 0; index < frames(); index++ ) {
 495     *element(index)->iframe() = me;
 496     // Get the caller frame (possibly skeletal)
 497     me = me.sender(&map);
 498   }
 499 
 500   frame caller_frame = me;
 501 
 502   // Do the unpacking of interpreter frames; the frame at index 0 represents the top activation, so it has no callee
 503 
 504   // Unpack the frames from the oldest (frames() -1) to the youngest (0)
 505 
 506   for (index = frames() - 1; index >= 0 ; index--) {
 507     int callee_parameters = index == 0 ? 0 : element(index-1)->method()->size_of_parameters();
 508     int callee_locals     = index == 0 ? 0 : element(index-1)->method()->max_locals();
 509     element(index)->unpack_on_stack(callee_parameters,
 510                                     callee_locals,
 511                                     &caller_frame,
 512                                     index == 0,
 513                                     exec_mode);
 514     if (index == frames() - 1) {
 515       Deoptimization::unwind_callee_save_values(element(index)->iframe(), this);
 516     }
 517     caller_frame = *element(index)->iframe();
 518   }
 519 
 520 
 521   deallocate_monitor_chunks();
 522 }
 523 
 524 void vframeArray::deallocate_monitor_chunks() {
 525   JavaThread* jt = JavaThread::current();
 526   for (int index = 0; index < frames(); index++ ) {
 527      element(index)->free_monitors(jt);
 528   }
 529 }
 530 
 531 #ifndef PRODUCT
 532 
 533 bool vframeArray::structural_compare(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk) {
 534   if (owner_thread() != thread) return false;
 535   int index = 0;
 536 #if 0 // FIXME can't do this comparison
 537 
 538   // Compare only within vframe array.
 539   for (deoptimizedVFrame* vf = deoptimizedVFrame::cast(vframe_at(first_index())); vf; vf = vf->deoptimized_sender_or_null()) {
 540     if (index >= chunk->length() || !vf->structural_compare(chunk->at(index))) return false;
 541     index++;
 542   }
 543   if (index != chunk->length()) return false;
 544 #endif
 545 
 546   return true;
 547 }
 548 
 549 #endif
 550 
 551 address vframeArray::register_location(int i) const {
 552   assert(0 <= i && i < RegisterMap::reg_count, "index out of bounds");
 553   return (address) & _callee_registers[i];
 554 }
 555 
 556 
 557 #ifndef PRODUCT
 558 
 559 // Printing
 560 
 561 // Note: we cannot have print_on as const, as we allocate inside the method
 562 void vframeArray::print_on_2(outputStream* st)  {
 563   st->print_cr(" - sp: " INTPTR_FORMAT, sp());
 564   st->print(" - thread: ");
 565   Thread::current()->print();
 566   st->print_cr(" - frame size: %d", frame_size());
 567   for (int index = 0; index < frames() ; index++ ) {
 568     element(index)->print(st);
 569   }
 570 }
 571 
 572 void vframeArrayElement::print(outputStream* st) {
 573   st->print_cr(" - interpreter_frame -> sp: " INTPTR_FORMAT, iframe()->sp());
 574 }
 575 
 576 void vframeArray::print_value_on(outputStream* st) const {
 577   st->print_cr("vframeArray [%d] ", frames());
 578 }
 579 
 580 
 581 #endif