1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/debugInfoRec.hpp"
  28 #include "code/nmethod.hpp"
  29 #include "code/pcDesc.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "interpreter/bytecode.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/oopMapCache.hpp"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/methodOop.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiThreadState.hpp"
  40 #include "runtime/biasedLocking.hpp"
  41 #include "runtime/compilationPolicy.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/signature.hpp"
  46 #include "runtime/stubRoutines.hpp"
  47 #include "runtime/thread.hpp"
  48 #include "runtime/vframe.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "runtime/vframe_hp.hpp"
  51 #include "utilities/events.hpp"
  52 #include "utilities/xmlstream.hpp"
  53 #ifdef TARGET_ARCH_x86
  54 # include "vmreg_x86.inline.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_sparc
  57 # include "vmreg_sparc.inline.hpp"
  58 #endif
  59 #ifdef TARGET_ARCH_zero
  60 # include "vmreg_zero.inline.hpp"
  61 #endif
  62 #ifdef TARGET_ARCH_arm
  63 # include "vmreg_arm.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_ppc
  66 # include "vmreg_ppc.inline.hpp"
  67 #endif
  68 #ifdef COMPILER2
  69 #ifdef TARGET_ARCH_MODEL_x86_32
  70 # include "adfiles/ad_x86_32.hpp"
  71 #endif
  72 #ifdef TARGET_ARCH_MODEL_x86_64
  73 # include "adfiles/ad_x86_64.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_MODEL_sparc
  76 # include "adfiles/ad_sparc.hpp"
  77 #endif
  78 #ifdef TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_MODEL_arm
  82 # include "adfiles/ad_arm.hpp"
  83 #endif
  84 #ifdef TARGET_ARCH_MODEL_ppc
  85 # include "adfiles/ad_ppc.hpp"
  86 #endif
  87 #endif
  88 
  89 bool DeoptimizationMarker::_is_active = false;
  90 
  91 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  92                                          int  caller_adjustment,
  93                                          int  caller_actual_parameters,
  94                                          int  number_of_frames,
  95                                          intptr_t* frame_sizes,
  96                                          address* frame_pcs,
  97                                          BasicType return_type) {
  98   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  99   _caller_adjustment         = caller_adjustment;
 100   _caller_actual_parameters  = caller_actual_parameters;
 101   _number_of_frames          = number_of_frames;
 102   _frame_sizes               = frame_sizes;
 103   _frame_pcs                 = frame_pcs;
 104   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2);
 105   _return_type               = return_type;
 106   _initial_fp                = 0;
 107   // PD (x86 only)
 108   _counter_temp              = 0;
 109   _unpack_kind               = 0;
 110   _sender_sp_temp            = 0;
 111 
 112   _total_frame_sizes         = size_of_frames();
 113 }
 114 
 115 
 116 Deoptimization::UnrollBlock::~UnrollBlock() {
 117   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 118   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 119   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 120 }
 121 
 122 
 123 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 124   assert(register_number < RegisterMap::reg_count, "checking register number");
 125   return &_register_block[register_number * 2];
 126 }
 127 
 128 
 129 
 130 int Deoptimization::UnrollBlock::size_of_frames() const {
 131   // Acount first for the adjustment of the initial frame
 132   int result = _caller_adjustment;
 133   for (int index = 0; index < number_of_frames(); index++) {
 134     result += frame_sizes()[index];
 135   }
 136   return result;
 137 }
 138 
 139 
 140 void Deoptimization::UnrollBlock::print() {
 141   ttyLocker ttyl;
 142   tty->print_cr("UnrollBlock");
 143   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 144   tty->print(   "  frame_sizes: ");
 145   for (int index = 0; index < number_of_frames(); index++) {
 146     tty->print("%d ", frame_sizes()[index]);
 147   }
 148   tty->cr();
 149 }
 150 
 151 
 152 // In order to make fetch_unroll_info work properly with escape
 153 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 154 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 155 // of previously eliminated objects occurs in realloc_objects, which is
 156 // called from the method fetch_unroll_info_helper below.
 157 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread))
 158   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 159   // but makes the entry a little slower. There is however a little dance we have to
 160   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 161 
 162   // fetch_unroll_info() is called at the beginning of the deoptimization
 163   // handler. Note this fact before we start generating temporary frames
 164   // that can confuse an asynchronous stack walker. This counter is
 165   // decremented at the end of unpack_frames().
 166   thread->inc_in_deopt_handler();
 167 
 168   return fetch_unroll_info_helper(thread);
 169 JRT_END
 170 
 171 
 172 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 173 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread) {
 174 
 175   // Note: there is a safepoint safety issue here. No matter whether we enter
 176   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 177   // the vframeArray is created.
 178   //
 179 
 180   // Allocate our special deoptimization ResourceMark
 181   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 182   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 183   thread->set_deopt_mark(dmark);
 184 
 185   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 186   RegisterMap map(thread, true);
 187   RegisterMap dummy_map(thread, false);
 188   // Now get the deoptee with a valid map
 189   frame deoptee = stub_frame.sender(&map);
 190   // Set the deoptee nmethod
 191   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 192   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 193 
 194   if (VerifyStack) {
 195     thread->validate_frame_layout();
 196   }
 197 
 198   // Create a growable array of VFrames where each VFrame represents an inlined
 199   // Java frame.  This storage is allocated with the usual system arena.
 200   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 201   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 202   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 203   while (!vf->is_top()) {
 204     assert(vf->is_compiled_frame(), "Wrong frame type");
 205     chunk->push(compiledVFrame::cast(vf));
 206     vf = vf->sender();
 207   }
 208   assert(vf->is_compiled_frame(), "Wrong frame type");
 209   chunk->push(compiledVFrame::cast(vf));
 210 
 211 #ifdef COMPILER2
 212   // Reallocate the non-escaping objects and restore their fields. Then
 213   // relock objects if synchronization on them was eliminated.
 214   if (DoEscapeAnalysis) {
 215     if (EliminateAllocations) {
 216       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 217       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 218 
 219       // The flag return_oop() indicates call sites which return oop
 220       // in compiled code. Such sites include java method calls,
 221       // runtime calls (for example, used to allocate new objects/arrays
 222       // on slow code path) and any other calls generated in compiled code.
 223       // It is not guaranteed that we can get such information here only
 224       // by analyzing bytecode in deoptimized frames. This is why this flag
 225       // is set during method compilation (see Compile::Process_OopMap_Node()).
 226       bool save_oop_result = chunk->at(0)->scope()->return_oop();
 227       Handle return_value;
 228       if (save_oop_result) {
 229         // Reallocation may trigger GC. If deoptimization happened on return from
 230         // call which returns oop we need to save it since it is not in oopmap.
 231         oop result = deoptee.saved_oop_result(&map);
 232         assert(result == NULL || result->is_oop(), "must be oop");
 233         return_value = Handle(thread, result);
 234         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 235         if (TraceDeoptimization) {
 236           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, result, thread);
 237         }
 238       }
 239       bool reallocated = false;
 240       if (objects != NULL) {
 241         JRT_BLOCK
 242           reallocated = realloc_objects(thread, &deoptee, objects, THREAD);
 243         JRT_END
 244       }
 245       if (reallocated) {
 246         reassign_fields(&deoptee, &map, objects);
 247 #ifndef PRODUCT
 248         if (TraceDeoptimization) {
 249           ttyLocker ttyl;
 250           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, thread);
 251           print_objects(objects);
 252         }
 253 #endif
 254       }
 255       if (save_oop_result) {
 256         // Restore result.
 257         deoptee.set_saved_oop_result(&map, return_value());
 258       }
 259     }
 260     if (EliminateLocks) {
 261 #ifndef PRODUCT
 262       bool first = true;
 263 #endif
 264       for (int i = 0; i < chunk->length(); i++) {
 265         compiledVFrame* cvf = chunk->at(i);
 266         assert (cvf->scope() != NULL,"expect only compiled java frames");
 267         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 268         if (monitors->is_nonempty()) {
 269           relock_objects(monitors, thread);
 270 #ifndef PRODUCT
 271           if (TraceDeoptimization) {
 272             ttyLocker ttyl;
 273             for (int j = 0; j < monitors->length(); j++) {
 274               MonitorInfo* mi = monitors->at(j);
 275               if (mi->eliminated()) {
 276                 if (first) {
 277                   first = false;
 278                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, thread);
 279                 }
 280                 tty->print_cr("     object <" INTPTR_FORMAT "> locked", mi->owner());
 281               }
 282             }
 283           }
 284 #endif
 285         }
 286       }
 287     }
 288   }
 289 #endif // COMPILER2
 290   // Ensure that no safepoint is taken after pointers have been stored
 291   // in fields of rematerialized objects.  If a safepoint occurs from here on
 292   // out the java state residing in the vframeArray will be missed.
 293   No_Safepoint_Verifier no_safepoint;
 294 
 295   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk);
 296 
 297   assert(thread->vframe_array_head() == NULL, "Pending deopt!");;
 298   thread->set_vframe_array_head(array);
 299 
 300   // Now that the vframeArray has been created if we have any deferred local writes
 301   // added by jvmti then we can free up that structure as the data is now in the
 302   // vframeArray
 303 
 304   if (thread->deferred_locals() != NULL) {
 305     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 306     int i = 0;
 307     do {
 308       // Because of inlining we could have multiple vframes for a single frame
 309       // and several of the vframes could have deferred writes. Find them all.
 310       if (list->at(i)->id() == array->original().id()) {
 311         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 312         list->remove_at(i);
 313         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 314         delete dlv;
 315       } else {
 316         i++;
 317       }
 318     } while ( i < list->length() );
 319     if (list->length() == 0) {
 320       thread->set_deferred_locals(NULL);
 321       // free the list and elements back to C heap.
 322       delete list;
 323     }
 324 
 325   }
 326 
 327 #ifndef SHARK
 328   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 329   CodeBlob* cb = stub_frame.cb();
 330   // Verify we have the right vframeArray
 331   assert(cb->frame_size() >= 0, "Unexpected frame size");
 332   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 333 
 334   // If the deopt call site is a MethodHandle invoke call site we have
 335   // to adjust the unpack_sp.
 336   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 337   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 338     unpack_sp = deoptee.unextended_sp();
 339 
 340 #ifdef ASSERT
 341   assert(cb->is_deoptimization_stub() || cb->is_uncommon_trap_stub(), "just checking");
 342   Events::log("fetch unroll sp " INTPTR_FORMAT, unpack_sp);
 343 #endif
 344 #else
 345   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 346 #endif // !SHARK
 347 
 348   // This is a guarantee instead of an assert because if vframe doesn't match
 349   // we will unpack the wrong deoptimized frame and wind up in strange places
 350   // where it will be very difficult to figure out what went wrong. Better
 351   // to die an early death here than some very obscure death later when the
 352   // trail is cold.
 353   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 354   // in that it will fail to detect a problem when there is one. This needs
 355   // more work in tiger timeframe.
 356   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 357 
 358   int number_of_frames = array->frames();
 359 
 360   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 361   // virtual activation, which is the reverse of the elements in the vframes array.
 362   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames);
 363   // +1 because we always have an interpreter return address for the final slot.
 364   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1);
 365   int callee_parameters = 0;
 366   int callee_locals = 0;
 367   int popframe_extra_args = 0;
 368   // Create an interpreter return address for the stub to use as its return
 369   // address so the skeletal frames are perfectly walkable
 370   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 371 
 372   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 373   // activation be put back on the expression stack of the caller for reexecution
 374   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 375     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 376   }
 377 
 378   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 379   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 380   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 381   //
 382   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 383   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 384 
 385   // It's possible that the number of paramters at the call site is
 386   // different than number of arguments in the callee when method
 387   // handles are used.  If the caller is interpreted get the real
 388   // value so that the proper amount of space can be added to it's
 389   // frame.
 390   int caller_actual_parameters = callee_parameters;
 391   if (deopt_sender.is_interpreted_frame()) {
 392     methodHandle method = deopt_sender.interpreter_frame_method();
 393     Bytecode_invoke cur = Bytecode_invoke_check(method,
 394                                                 deopt_sender.interpreter_frame_bci());
 395     Symbol* signature = method->constants()->signature_ref_at(cur.index());
 396     ArgumentSizeComputer asc(signature);
 397     caller_actual_parameters = asc.size() + (cur.has_receiver() ? 1 : 0);
 398   }
 399 
 400   //
 401   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 402   // frame_sizes/frame_pcs[1] next oldest frame (int)
 403   // frame_sizes/frame_pcs[n] youngest frame (int)
 404   //
 405   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 406   // owns the space for the return address to it's caller).  Confusing ain't it.
 407   //
 408   // The vframe array can address vframes with indices running from
 409   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 410   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 411   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 412   // so things look a little strange in this loop.
 413   //
 414   for (int index = 0; index < array->frames(); index++ ) {
 415     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 416     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 417     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 418     int caller_parms = callee_parameters;
 419     if (index == array->frames() - 1) {
 420       // Use the value from the interpreted caller
 421       caller_parms = caller_actual_parameters;
 422     }
 423     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(caller_parms,
 424                                                                                                     callee_parameters,
 425                                                                                                     callee_locals,
 426                                                                                                     index == 0,
 427                                                                                                     popframe_extra_args);
 428     // This pc doesn't have to be perfect just good enough to identify the frame
 429     // as interpreted so the skeleton frame will be walkable
 430     // The correct pc will be set when the skeleton frame is completely filled out
 431     // The final pc we store in the loop is wrong and will be overwritten below
 432     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 433 
 434     callee_parameters = array->element(index)->method()->size_of_parameters();
 435     callee_locals = array->element(index)->method()->max_locals();
 436     popframe_extra_args = 0;
 437   }
 438 
 439   // Compute whether the root vframe returns a float or double value.
 440   BasicType return_type;
 441   {
 442     HandleMark hm;
 443     methodHandle method(thread, array->element(0)->method());
 444     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 445     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 446   }
 447 
 448   // Compute information for handling adapters and adjusting the frame size of the caller.
 449   int caller_adjustment = 0;
 450 
 451   // Compute the amount the oldest interpreter frame will have to adjust
 452   // its caller's stack by. If the caller is a compiled frame then
 453   // we pretend that the callee has no parameters so that the
 454   // extension counts for the full amount of locals and not just
 455   // locals-parms. This is because without a c2i adapter the parm
 456   // area as created by the compiled frame will not be usable by
 457   // the interpreter. (Depending on the calling convention there
 458   // may not even be enough space).
 459 
 460   // QQQ I'd rather see this pushed down into last_frame_adjust
 461   // and have it take the sender (aka caller).
 462 
 463   if (deopt_sender.is_compiled_frame()) {
 464     caller_adjustment = last_frame_adjust(0, callee_locals);
 465   } else if (callee_locals > caller_actual_parameters) {
 466     // The caller frame may need extending to accommodate
 467     // non-parameter locals of the first unpacked interpreted frame.
 468     // Compute that adjustment.
 469     caller_adjustment = last_frame_adjust(caller_actual_parameters, callee_locals);
 470   }
 471 
 472   // If the sender is deoptimized the we must retrieve the address of the handler
 473   // since the frame will "magically" show the original pc before the deopt
 474   // and we'd undo the deopt.
 475 
 476   frame_pcs[0] = deopt_sender.raw_pc();
 477 
 478 #ifndef SHARK
 479   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 480 #endif // SHARK
 481 
 482   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 483                                       caller_adjustment * BytesPerWord,
 484                                       caller_actual_parameters,
 485                                       number_of_frames,
 486                                       frame_sizes,
 487                                       frame_pcs,
 488                                       return_type);
 489   // On some platforms, we need a way to pass fp to the unpacking code
 490   // so the skeletal frames come out correct.
 491   info->set_initial_fp((intptr_t) array->sender().fp());
 492 
 493   if (array->frames() > 1) {
 494     if (VerifyStack && TraceDeoptimization) {
 495       tty->print_cr("Deoptimizing method containing inlining");
 496     }
 497   }
 498 
 499   array->set_unroll_block(info);
 500   return info;
 501 }
 502 
 503 // Called to cleanup deoptimization data structures in normal case
 504 // after unpacking to stack and when stack overflow error occurs
 505 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 506                                         vframeArray *array) {
 507 
 508   // Get array if coming from exception
 509   if (array == NULL) {
 510     array = thread->vframe_array_head();
 511   }
 512   thread->set_vframe_array_head(NULL);
 513 
 514   // Free the previous UnrollBlock
 515   vframeArray* old_array = thread->vframe_array_last();
 516   thread->set_vframe_array_last(array);
 517 
 518   if (old_array != NULL) {
 519     UnrollBlock* old_info = old_array->unroll_block();
 520     old_array->set_unroll_block(NULL);
 521     delete old_info;
 522     delete old_array;
 523   }
 524 
 525   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 526   // inside the vframeArray (StackValueCollections)
 527 
 528   delete thread->deopt_mark();
 529   thread->set_deopt_mark(NULL);
 530   thread->set_deopt_nmethod(NULL);
 531 
 532 
 533   if (JvmtiExport::can_pop_frame()) {
 534 #ifndef CC_INTERP
 535     // Regardless of whether we entered this routine with the pending
 536     // popframe condition bit set, we should always clear it now
 537     thread->clear_popframe_condition();
 538 #else
 539     // C++ interpeter will clear has_pending_popframe when it enters
 540     // with method_resume. For deopt_resume2 we clear it now.
 541     if (thread->popframe_forcing_deopt_reexecution())
 542         thread->clear_popframe_condition();
 543 #endif /* CC_INTERP */
 544   }
 545 
 546   // unpack_frames() is called at the end of the deoptimization handler
 547   // and (in C2) at the end of the uncommon trap handler. Note this fact
 548   // so that an asynchronous stack walker can work again. This counter is
 549   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 550   // the beginning of uncommon_trap().
 551   thread->dec_in_deopt_handler();
 552 }
 553 
 554 
 555 // Return BasicType of value being returned
 556 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 557 
 558   // We are already active int he special DeoptResourceMark any ResourceObj's we
 559   // allocate will be freed at the end of the routine.
 560 
 561   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 562   // but makes the entry a little slower. There is however a little dance we have to
 563   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 564   ResetNoHandleMark rnhm; // No-op in release/product versions
 565   HandleMark hm;
 566 
 567   frame stub_frame = thread->last_frame();
 568 
 569   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 570   // must point to the vframeArray for the unpack frame.
 571   vframeArray* array = thread->vframe_array_head();
 572 
 573 #ifndef PRODUCT
 574   if (TraceDeoptimization) {
 575     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", thread, array, exec_mode);
 576   }
 577 #endif
 578 
 579   UnrollBlock* info = array->unroll_block();
 580 
 581   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 582   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 583 
 584   BasicType bt = info->return_type();
 585 
 586   // If we have an exception pending, claim that the return type is an oop
 587   // so the deopt_blob does not overwrite the exception_oop.
 588 
 589   if (exec_mode == Unpack_exception)
 590     bt = T_OBJECT;
 591 
 592   // Cleanup thread deopt data
 593   cleanup_deopt_info(thread, array);
 594 
 595 #ifndef PRODUCT
 596   if (VerifyStack) {
 597     ResourceMark res_mark;
 598 
 599     thread->validate_frame_layout();
 600 
 601     // Verify that the just-unpacked frames match the interpreter's
 602     // notions of expression stack and locals
 603     vframeArray* cur_array = thread->vframe_array_last();
 604     RegisterMap rm(thread, false);
 605     rm.set_include_argument_oops(false);
 606     bool is_top_frame = true;
 607     int callee_size_of_parameters = 0;
 608     int callee_max_locals = 0;
 609     for (int i = 0; i < cur_array->frames(); i++) {
 610       vframeArrayElement* el = cur_array->element(i);
 611       frame* iframe = el->iframe();
 612       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 613 
 614       // Get the oop map for this bci
 615       InterpreterOopMap mask;
 616       int cur_invoke_parameter_size = 0;
 617       bool try_next_mask = false;
 618       int next_mask_expression_stack_size = -1;
 619       int top_frame_expression_stack_adjustment = 0;
 620       methodHandle mh(thread, iframe->interpreter_frame_method());
 621       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 622       BytecodeStream str(mh);
 623       str.set_start(iframe->interpreter_frame_bci());
 624       int max_bci = mh->code_size();
 625       // Get to the next bytecode if possible
 626       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 627       // Check to see if we can grab the number of outgoing arguments
 628       // at an uncommon trap for an invoke (where the compiler
 629       // generates debug info before the invoke has executed)
 630       Bytecodes::Code cur_code = str.next();
 631       if (cur_code == Bytecodes::_invokevirtual ||
 632           cur_code == Bytecodes::_invokespecial ||
 633           cur_code == Bytecodes::_invokestatic  ||
 634           cur_code == Bytecodes::_invokeinterface) {
 635         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 636         Symbol* signature = invoke.signature();
 637         ArgumentSizeComputer asc(signature);
 638         cur_invoke_parameter_size = asc.size();
 639         if (cur_code != Bytecodes::_invokestatic) {
 640           // Add in receiver
 641           ++cur_invoke_parameter_size;
 642         }
 643       }
 644       if (str.bci() < max_bci) {
 645         Bytecodes::Code bc = str.next();
 646         if (bc >= 0) {
 647           // The interpreter oop map generator reports results before
 648           // the current bytecode has executed except in the case of
 649           // calls. It seems to be hard to tell whether the compiler
 650           // has emitted debug information matching the "state before"
 651           // a given bytecode or the state after, so we try both
 652           switch (cur_code) {
 653             case Bytecodes::_invokevirtual:
 654             case Bytecodes::_invokespecial:
 655             case Bytecodes::_invokestatic:
 656             case Bytecodes::_invokeinterface:
 657             case Bytecodes::_athrow:
 658               break;
 659             default: {
 660               InterpreterOopMap next_mask;
 661               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 662               next_mask_expression_stack_size = next_mask.expression_stack_size();
 663               // Need to subtract off the size of the result type of
 664               // the bytecode because this is not described in the
 665               // debug info but returned to the interpreter in the TOS
 666               // caching register
 667               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 668               if (bytecode_result_type != T_ILLEGAL) {
 669                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 670               }
 671               assert(top_frame_expression_stack_adjustment >= 0, "");
 672               try_next_mask = true;
 673               break;
 674             }
 675           }
 676         }
 677       }
 678 
 679       // Verify stack depth and oops in frame
 680       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 681       if (!(
 682             /* SPARC */
 683             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 684             /* x86 */
 685             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 686             (try_next_mask &&
 687              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 688                                                                     top_frame_expression_stack_adjustment))) ||
 689             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 690             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute) &&
 691              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 692             )) {
 693         ttyLocker ttyl;
 694 
 695         // Print out some information that will help us debug the problem
 696         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 697         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 698         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 699                       iframe->interpreter_frame_expression_stack_size());
 700         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 701         tty->print_cr("  try_next_mask = %d", try_next_mask);
 702         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 703         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 704         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 705         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 706         tty->print_cr("  exec_mode = %d", exec_mode);
 707         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 708         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = " UINTX_FORMAT, thread, thread->osthread()->thread_id());
 709         tty->print_cr("  Interpreted frames:");
 710         for (int k = 0; k < cur_array->frames(); k++) {
 711           vframeArrayElement* el = cur_array->element(k);
 712           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 713         }
 714         cur_array->print_on_2(tty);
 715         guarantee(false, "wrong number of expression stack elements during deopt");
 716       }
 717       VerifyOopClosure verify;
 718       iframe->oops_interpreted_do(&verify, &rm, false);
 719       callee_size_of_parameters = mh->size_of_parameters();
 720       callee_max_locals = mh->max_locals();
 721       is_top_frame = false;
 722     }
 723   }
 724 #endif /* !PRODUCT */
 725 
 726 
 727   return bt;
 728 JRT_END
 729 
 730 
 731 int Deoptimization::deoptimize_dependents() {
 732   Threads::deoptimized_wrt_marked_nmethods();
 733   return 0;
 734 }
 735 
 736 
 737 #ifdef COMPILER2
 738 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 739   Handle pending_exception(thread->pending_exception());
 740   const char* exception_file = thread->exception_file();
 741   int exception_line = thread->exception_line();
 742   thread->clear_pending_exception();
 743 
 744   for (int i = 0; i < objects->length(); i++) {
 745     assert(objects->at(i)->is_object(), "invalid debug information");
 746     ObjectValue* sv = (ObjectValue*) objects->at(i);
 747 
 748     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 749     oop obj = NULL;
 750 
 751     if (k->oop_is_instance()) {
 752       instanceKlass* ik = instanceKlass::cast(k());
 753       obj = ik->allocate_instance(CHECK_(false));
 754     } else if (k->oop_is_typeArray()) {
 755       typeArrayKlass* ak = typeArrayKlass::cast(k());
 756       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 757       int len = sv->field_size() / type2size[ak->element_type()];
 758       obj = ak->allocate(len, CHECK_(false));
 759     } else if (k->oop_is_objArray()) {
 760       objArrayKlass* ak = objArrayKlass::cast(k());
 761       obj = ak->allocate(sv->field_size(), CHECK_(false));
 762     }
 763 
 764     assert(obj != NULL, "allocation failed");
 765     assert(sv->value().is_null(), "redundant reallocation");
 766     sv->set_value(obj);
 767   }
 768 
 769   if (pending_exception.not_null()) {
 770     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 771   }
 772 
 773   return true;
 774 }
 775 
 776 // This assumes that the fields are stored in ObjectValue in the same order
 777 // they are yielded by do_nonstatic_fields.
 778 class FieldReassigner: public FieldClosure {
 779   frame* _fr;
 780   RegisterMap* _reg_map;
 781   ObjectValue* _sv;
 782   instanceKlass* _ik;
 783   oop _obj;
 784 
 785   int _i;
 786 public:
 787   FieldReassigner(frame* fr, RegisterMap* reg_map, ObjectValue* sv, oop obj) :
 788     _fr(fr), _reg_map(reg_map), _sv(sv), _obj(obj), _i(0) {}
 789 
 790   int i() const { return _i; }
 791 
 792 
 793   void do_field(fieldDescriptor* fd) {
 794     intptr_t val;
 795     StackValue* value =
 796       StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(i()));
 797     int offset = fd->offset();
 798     switch (fd->field_type()) {
 799     case T_OBJECT: case T_ARRAY:
 800       assert(value->type() == T_OBJECT, "Agreement.");
 801       _obj->obj_field_put(offset, value->get_obj()());
 802       break;
 803 
 804     case T_LONG: case T_DOUBLE: {
 805       assert(value->type() == T_INT, "Agreement.");
 806       StackValue* low =
 807         StackValue::create_stack_value(_fr, _reg_map, _sv->field_at(++_i));
 808 #ifdef _LP64
 809       jlong res = (jlong)low->get_int();
 810 #else
 811 #ifdef SPARC
 812       // For SPARC we have to swap high and low words.
 813       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 814 #else
 815       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 816 #endif //SPARC
 817 #endif
 818       _obj->long_field_put(offset, res);
 819       break;
 820     }
 821     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 822     case T_INT: case T_FLOAT: // 4 bytes.
 823       assert(value->type() == T_INT, "Agreement.");
 824       val = value->get_int();
 825       _obj->int_field_put(offset, (jint)*((jint*)&val));
 826       break;
 827 
 828     case T_SHORT: case T_CHAR: // 2 bytes
 829       assert(value->type() == T_INT, "Agreement.");
 830       val = value->get_int();
 831       _obj->short_field_put(offset, (jshort)*((jint*)&val));
 832       break;
 833 
 834     case T_BOOLEAN: case T_BYTE: // 1 byte
 835       assert(value->type() == T_INT, "Agreement.");
 836       val = value->get_int();
 837       _obj->bool_field_put(offset, (jboolean)*((jint*)&val));
 838       break;
 839 
 840     default:
 841       ShouldNotReachHere();
 842     }
 843     _i++;
 844   }
 845 };
 846 
 847 // restore elements of an eliminated type array
 848 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 849   int index = 0;
 850   intptr_t val;
 851 
 852   for (int i = 0; i < sv->field_size(); i++) {
 853     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 854     switch(type) {
 855     case T_LONG: case T_DOUBLE: {
 856       assert(value->type() == T_INT, "Agreement.");
 857       StackValue* low =
 858         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 859 #ifdef _LP64
 860       jlong res = (jlong)low->get_int();
 861 #else
 862 #ifdef SPARC
 863       // For SPARC we have to swap high and low words.
 864       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 865 #else
 866       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 867 #endif //SPARC
 868 #endif
 869       obj->long_at_put(index, res);
 870       break;
 871     }
 872 
 873     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 874     case T_INT: case T_FLOAT: // 4 bytes.
 875       assert(value->type() == T_INT, "Agreement.");
 876       val = value->get_int();
 877       obj->int_at_put(index, (jint)*((jint*)&val));
 878       break;
 879 
 880     case T_SHORT: case T_CHAR: // 2 bytes
 881       assert(value->type() == T_INT, "Agreement.");
 882       val = value->get_int();
 883       obj->short_at_put(index, (jshort)*((jint*)&val));
 884       break;
 885 
 886     case T_BOOLEAN: case T_BYTE: // 1 byte
 887       assert(value->type() == T_INT, "Agreement.");
 888       val = value->get_int();
 889       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 890       break;
 891 
 892       default:
 893         ShouldNotReachHere();
 894     }
 895     index++;
 896   }
 897 }
 898 
 899 
 900 // restore fields of an eliminated object array
 901 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 902   for (int i = 0; i < sv->field_size(); i++) {
 903     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 904     assert(value->type() == T_OBJECT, "object element expected");
 905     obj->obj_at_put(i, value->get_obj()());
 906   }
 907 }
 908 
 909 
 910 // restore fields of all eliminated objects and arrays
 911 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects) {
 912   for (int i = 0; i < objects->length(); i++) {
 913     ObjectValue* sv = (ObjectValue*) objects->at(i);
 914     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 915     Handle obj = sv->value();
 916     assert(obj.not_null(), "reallocation was missed");
 917 
 918     if (k->oop_is_instance()) {
 919       instanceKlass* ik = instanceKlass::cast(k());
 920       FieldReassigner reassign(fr, reg_map, sv, obj());
 921       ik->do_nonstatic_fields(&reassign);
 922     } else if (k->oop_is_typeArray()) {
 923       typeArrayKlass* ak = typeArrayKlass::cast(k());
 924       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
 925     } else if (k->oop_is_objArray()) {
 926       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
 927     }
 928   }
 929 }
 930 
 931 
 932 // relock objects for which synchronization was eliminated
 933 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread) {
 934   for (int i = 0; i < monitors->length(); i++) {
 935     MonitorInfo* mon_info = monitors->at(i);
 936     if (mon_info->eliminated()) {
 937       assert(mon_info->owner() != NULL, "reallocation was missed");
 938       Handle obj = Handle(mon_info->owner());
 939       markOop mark = obj->mark();
 940       if (UseBiasedLocking && mark->has_bias_pattern()) {
 941         // New allocated objects may have the mark set to anonymously biased.
 942         // Also the deoptimized method may called methods with synchronization
 943         // where the thread-local object is bias locked to the current thread.
 944         assert(mark->is_biased_anonymously() ||
 945                mark->biased_locker() == thread, "should be locked to current thread");
 946         // Reset mark word to unbiased prototype.
 947         markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
 948         obj->set_mark(unbiased_prototype);
 949       }
 950       BasicLock* lock = mon_info->lock();
 951       ObjectSynchronizer::slow_enter(obj, lock, thread);
 952     }
 953     assert(mon_info->owner()->is_locked(), "object must be locked now");
 954   }
 955 }
 956 
 957 
 958 #ifndef PRODUCT
 959 // print information about reallocated objects
 960 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects) {
 961   fieldDescriptor fd;
 962 
 963   for (int i = 0; i < objects->length(); i++) {
 964     ObjectValue* sv = (ObjectValue*) objects->at(i);
 965     KlassHandle k(((ConstantOopReadValue*) sv->klass())->value()());
 966     Handle obj = sv->value();
 967 
 968     tty->print("     object <" INTPTR_FORMAT "> of type ", sv->value()());
 969     k->as_klassOop()->print_value();
 970     tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
 971     tty->cr();
 972 
 973     if (Verbose) {
 974       k->oop_print_on(obj(), tty);
 975     }
 976   }
 977 }
 978 #endif
 979 #endif // COMPILER2
 980 
 981 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk) {
 982 
 983 #ifndef PRODUCT
 984   if (TraceDeoptimization) {
 985     ttyLocker ttyl;
 986     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", thread);
 987     fr.print_on(tty);
 988     tty->print_cr("     Virtual frames (innermost first):");
 989     for (int index = 0; index < chunk->length(); index++) {
 990       compiledVFrame* vf = chunk->at(index);
 991       tty->print("       %2d - ", index);
 992       vf->print_value();
 993       int bci = chunk->at(index)->raw_bci();
 994       const char* code_name;
 995       if (bci == SynchronizationEntryBCI) {
 996         code_name = "sync entry";
 997       } else {
 998         Bytecodes::Code code = vf->method()->code_at(bci);
 999         code_name = Bytecodes::name(code);
1000       }
1001       tty->print(" - %s", code_name);
1002       tty->print_cr(" @ bci %d ", bci);
1003       if (Verbose) {
1004         vf->print();
1005         tty->cr();
1006       }
1007     }
1008   }
1009 #endif
1010 
1011   // Register map for next frame (used for stack crawl).  We capture
1012   // the state of the deopt'ing frame's caller.  Thus if we need to
1013   // stuff a C2I adapter we can properly fill in the callee-save
1014   // register locations.
1015   frame caller = fr.sender(reg_map);
1016   int frame_size = caller.sp() - fr.sp();
1017 
1018   frame sender = caller;
1019 
1020   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1021   // the vframeArray containing the unpacking information is allocated in the C heap.
1022   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1023   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr);
1024 
1025   // Compare the vframeArray to the collected vframes
1026   assert(array->structural_compare(thread, chunk), "just checking");
1027   Events::log("# vframes = %d", (intptr_t)chunk->length());
1028 
1029 #ifndef PRODUCT
1030   if (TraceDeoptimization) {
1031     ttyLocker ttyl;
1032     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, array);
1033   }
1034 #endif // PRODUCT
1035 
1036   return array;
1037 }
1038 
1039 
1040 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1041   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1042   for (int i = 0; i < monitors->length(); i++) {
1043     MonitorInfo* mon_info = monitors->at(i);
1044     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1045       objects_to_revoke->append(Handle(mon_info->owner()));
1046     }
1047   }
1048 }
1049 
1050 
1051 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1052   if (!UseBiasedLocking) {
1053     return;
1054   }
1055 
1056   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1057 
1058   // Unfortunately we don't have a RegisterMap available in most of
1059   // the places we want to call this routine so we need to walk the
1060   // stack again to update the register map.
1061   if (map == NULL || !map->update_map()) {
1062     StackFrameStream sfs(thread, true);
1063     bool found = false;
1064     while (!found && !sfs.is_done()) {
1065       frame* cur = sfs.current();
1066       sfs.next();
1067       found = cur->id() == fr.id();
1068     }
1069     assert(found, "frame to be deoptimized not found on target thread's stack");
1070     map = sfs.register_map();
1071   }
1072 
1073   vframe* vf = vframe::new_vframe(&fr, map, thread);
1074   compiledVFrame* cvf = compiledVFrame::cast(vf);
1075   // Revoke monitors' biases in all scopes
1076   while (!cvf->is_top()) {
1077     collect_monitors(cvf, objects_to_revoke);
1078     cvf = compiledVFrame::cast(cvf->sender());
1079   }
1080   collect_monitors(cvf, objects_to_revoke);
1081 
1082   if (SafepointSynchronize::is_at_safepoint()) {
1083     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1084   } else {
1085     BiasedLocking::revoke(objects_to_revoke);
1086   }
1087 }
1088 
1089 
1090 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1091   if (!UseBiasedLocking) {
1092     return;
1093   }
1094 
1095   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1096   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1097   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1098     if (jt->has_last_Java_frame()) {
1099       StackFrameStream sfs(jt, true);
1100       while (!sfs.is_done()) {
1101         frame* cur = sfs.current();
1102         if (cb->contains(cur->pc())) {
1103           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1104           compiledVFrame* cvf = compiledVFrame::cast(vf);
1105           // Revoke monitors' biases in all scopes
1106           while (!cvf->is_top()) {
1107             collect_monitors(cvf, objects_to_revoke);
1108             cvf = compiledVFrame::cast(cvf->sender());
1109           }
1110           collect_monitors(cvf, objects_to_revoke);
1111         }
1112         sfs.next();
1113       }
1114     }
1115   }
1116   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1117 }
1118 
1119 
1120 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr) {
1121   assert(fr.can_be_deoptimized(), "checking frame type");
1122 
1123   gather_statistics(Reason_constraint, Action_none, Bytecodes::_illegal);
1124 
1125   EventMark m("Deoptimization (pc=" INTPTR_FORMAT ", sp=" INTPTR_FORMAT ")", fr.pc(), fr.id());
1126 
1127   // Patch the nmethod so that when execution returns to it we will
1128   // deopt the execution state and return to the interpreter.
1129   fr.deoptimize(thread);
1130 }
1131 
1132 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1133   // Deoptimize only if the frame comes from compile code.
1134   // Do not deoptimize the frame which is already patched
1135   // during the execution of the loops below.
1136   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1137     return;
1138   }
1139   ResourceMark rm;
1140   DeoptimizationMarker dm;
1141   if (UseBiasedLocking) {
1142     revoke_biases_of_monitors(thread, fr, map);
1143   }
1144   deoptimize_single_frame(thread, fr);
1145 
1146 }
1147 
1148 
1149 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id) {
1150   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1151          "can only deoptimize other thread at a safepoint");
1152   // Compute frame and register map based on thread and sp.
1153   RegisterMap reg_map(thread, UseBiasedLocking);
1154   frame fr = thread->last_frame();
1155   while (fr.id() != id) {
1156     fr = fr.sender(&reg_map);
1157   }
1158   deoptimize(thread, fr, &reg_map);
1159 }
1160 
1161 
1162 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1163   if (thread == Thread::current()) {
1164     Deoptimization::deoptimize_frame_internal(thread, id);
1165   } else {
1166     VM_DeoptimizeFrame deopt(thread, id);
1167     VMThread::execute(&deopt);
1168   }
1169 }
1170 
1171 
1172 // JVMTI PopFrame support
1173 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1174 {
1175   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1176 }
1177 JRT_END
1178 
1179 
1180 #if defined(COMPILER2) || defined(SHARK)
1181 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index, TRAPS) {
1182   // in case of an unresolved klass entry, load the class.
1183   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1184     klassOop tk = constant_pool->klass_at(index, CHECK);
1185     return;
1186   }
1187 
1188   if (!constant_pool->tag_at(index).is_symbol()) return;
1189 
1190   Handle class_loader (THREAD, instanceKlass::cast(constant_pool->pool_holder())->class_loader());
1191   Symbol*  symbol  = constant_pool->symbol_at(index);
1192 
1193   // class name?
1194   if (symbol->byte_at(0) != '(') {
1195     Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1196     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1197     return;
1198   }
1199 
1200   // then it must be a signature!
1201   ResourceMark rm(THREAD);
1202   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1203     if (ss.is_object()) {
1204       Symbol* class_name = ss.as_symbol(CHECK);
1205       Handle protection_domain (THREAD, Klass::cast(constant_pool->pool_holder())->protection_domain());
1206       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1207     }
1208   }
1209 }
1210 
1211 
1212 void Deoptimization::load_class_by_index(constantPoolHandle constant_pool, int index) {
1213   EXCEPTION_MARK;
1214   load_class_by_index(constant_pool, index, THREAD);
1215   if (HAS_PENDING_EXCEPTION) {
1216     // Exception happened during classloading. We ignore the exception here, since it
1217     // is going to be rethrown since the current activation is going to be deoptimzied and
1218     // the interpreter will re-execute the bytecode.
1219     CLEAR_PENDING_EXCEPTION;
1220   }
1221 }
1222 
1223 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1224   HandleMark hm;
1225 
1226   // uncommon_trap() is called at the beginning of the uncommon trap
1227   // handler. Note this fact before we start generating temporary frames
1228   // that can confuse an asynchronous stack walker. This counter is
1229   // decremented at the end of unpack_frames().
1230   thread->inc_in_deopt_handler();
1231 
1232   // We need to update the map if we have biased locking.
1233   RegisterMap reg_map(thread, UseBiasedLocking);
1234   frame stub_frame = thread->last_frame();
1235   frame fr = stub_frame.sender(&reg_map);
1236   // Make sure the calling nmethod is not getting deoptimized and removed
1237   // before we are done with it.
1238   nmethodLocker nl(fr.pc());
1239 
1240   {
1241     ResourceMark rm;
1242 
1243     // Revoke biases of any monitors in the frame to ensure we can migrate them
1244     revoke_biases_of_monitors(thread, fr, &reg_map);
1245 
1246     DeoptReason reason = trap_request_reason(trap_request);
1247     DeoptAction action = trap_request_action(trap_request);
1248     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1249 
1250     Events::log("Uncommon trap occurred @" INTPTR_FORMAT " unloaded_class_index = %d", fr.pc(), (int) trap_request);
1251     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1252     compiledVFrame* cvf = compiledVFrame::cast(vf);
1253 
1254     nmethod* nm = cvf->code();
1255 
1256     ScopeDesc*      trap_scope  = cvf->scope();
1257     methodHandle    trap_method = trap_scope->method();
1258     int             trap_bci    = trap_scope->bci();
1259     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1260 
1261     // Record this event in the histogram.
1262     gather_statistics(reason, action, trap_bc);
1263 
1264     // Ensure that we can record deopt. history:
1265     bool create_if_missing = ProfileTraps;
1266 
1267     methodDataHandle trap_mdo
1268       (THREAD, get_method_data(thread, trap_method, create_if_missing));
1269 
1270     // Print a bunch of diagnostics, if requested.
1271     if (TraceDeoptimization || LogCompilation) {
1272       ResourceMark rm;
1273       ttyLocker ttyl;
1274       char buf[100];
1275       if (xtty != NULL) {
1276         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT"' %s",
1277                          os::current_thread_id(),
1278                          format_trap_request(buf, sizeof(buf), trap_request));
1279         nm->log_identity(xtty);
1280       }
1281       Symbol* class_name = NULL;
1282       bool unresolved = false;
1283       if (unloaded_class_index >= 0) {
1284         constantPoolHandle constants (THREAD, trap_method->constants());
1285         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1286           class_name = constants->klass_name_at(unloaded_class_index);
1287           unresolved = true;
1288           if (xtty != NULL)
1289             xtty->print(" unresolved='1'");
1290         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1291           class_name = constants->symbol_at(unloaded_class_index);
1292         }
1293         if (xtty != NULL)
1294           xtty->name(class_name);
1295       }
1296       if (xtty != NULL && trap_mdo.not_null()) {
1297         // Dump the relevant MDO state.
1298         // This is the deopt count for the current reason, any previous
1299         // reasons or recompiles seen at this point.
1300         int dcnt = trap_mdo->trap_count(reason);
1301         if (dcnt != 0)
1302           xtty->print(" count='%d'", dcnt);
1303         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1304         int dos = (pdata == NULL)? 0: pdata->trap_state();
1305         if (dos != 0) {
1306           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1307           if (trap_state_is_recompiled(dos)) {
1308             int recnt2 = trap_mdo->overflow_recompile_count();
1309             if (recnt2 != 0)
1310               xtty->print(" recompiles2='%d'", recnt2);
1311           }
1312         }
1313       }
1314       if (xtty != NULL) {
1315         xtty->stamp();
1316         xtty->end_head();
1317       }
1318       if (TraceDeoptimization) {  // make noise on the tty
1319         tty->print("Uncommon trap occurred in");
1320         nm->method()->print_short_name(tty);
1321         tty->print(" (@" INTPTR_FORMAT ") thread=%d reason=%s action=%s unloaded_class_index=%d",
1322                    fr.pc(),
1323                    (int) os::current_thread_id(),
1324                    trap_reason_name(reason),
1325                    trap_action_name(action),
1326                    unloaded_class_index);
1327         if (class_name != NULL) {
1328           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1329           class_name->print_symbol_on(tty);
1330         }
1331         tty->cr();
1332       }
1333       if (xtty != NULL) {
1334         // Log the precise location of the trap.
1335         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1336           xtty->begin_elem("jvms bci='%d'", sd->bci());
1337           xtty->method(sd->method());
1338           xtty->end_elem();
1339           if (sd->is_top())  break;
1340         }
1341         xtty->tail("uncommon_trap");
1342       }
1343     }
1344     // (End diagnostic printout.)
1345 
1346     // Load class if necessary
1347     if (unloaded_class_index >= 0) {
1348       constantPoolHandle constants(THREAD, trap_method->constants());
1349       load_class_by_index(constants, unloaded_class_index);
1350     }
1351 
1352     // Flush the nmethod if necessary and desirable.
1353     //
1354     // We need to avoid situations where we are re-flushing the nmethod
1355     // because of a hot deoptimization site.  Repeated flushes at the same
1356     // point need to be detected by the compiler and avoided.  If the compiler
1357     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1358     // module must take measures to avoid an infinite cycle of recompilation
1359     // and deoptimization.  There are several such measures:
1360     //
1361     //   1. If a recompilation is ordered a second time at some site X
1362     //   and for the same reason R, the action is adjusted to 'reinterpret',
1363     //   to give the interpreter time to exercise the method more thoroughly.
1364     //   If this happens, the method's overflow_recompile_count is incremented.
1365     //
1366     //   2. If the compiler fails to reduce the deoptimization rate, then
1367     //   the method's overflow_recompile_count will begin to exceed the set
1368     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1369     //   is adjusted to 'make_not_compilable', and the method is abandoned
1370     //   to the interpreter.  This is a performance hit for hot methods,
1371     //   but is better than a disastrous infinite cycle of recompilations.
1372     //   (Actually, only the method containing the site X is abandoned.)
1373     //
1374     //   3. In parallel with the previous measures, if the total number of
1375     //   recompilations of a method exceeds the much larger set limit
1376     //   PerMethodRecompilationCutoff, the method is abandoned.
1377     //   This should only happen if the method is very large and has
1378     //   many "lukewarm" deoptimizations.  The code which enforces this
1379     //   limit is elsewhere (class nmethod, class methodOopDesc).
1380     //
1381     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1382     // to recompile at each bytecode independently of the per-BCI cutoff.
1383     //
1384     // The decision to update code is up to the compiler, and is encoded
1385     // in the Action_xxx code.  If the compiler requests Action_none
1386     // no trap state is changed, no compiled code is changed, and the
1387     // computation suffers along in the interpreter.
1388     //
1389     // The other action codes specify various tactics for decompilation
1390     // and recompilation.  Action_maybe_recompile is the loosest, and
1391     // allows the compiled code to stay around until enough traps are seen,
1392     // and until the compiler gets around to recompiling the trapping method.
1393     //
1394     // The other actions cause immediate removal of the present code.
1395 
1396     bool update_trap_state = true;
1397     bool make_not_entrant = false;
1398     bool make_not_compilable = false;
1399     bool reprofile = false;
1400     switch (action) {
1401     case Action_none:
1402       // Keep the old code.
1403       update_trap_state = false;
1404       break;
1405     case Action_maybe_recompile:
1406       // Do not need to invalidate the present code, but we can
1407       // initiate another
1408       // Start compiler without (necessarily) invalidating the nmethod.
1409       // The system will tolerate the old code, but new code should be
1410       // generated when possible.
1411       break;
1412     case Action_reinterpret:
1413       // Go back into the interpreter for a while, and then consider
1414       // recompiling form scratch.
1415       make_not_entrant = true;
1416       // Reset invocation counter for outer most method.
1417       // This will allow the interpreter to exercise the bytecodes
1418       // for a while before recompiling.
1419       // By contrast, Action_make_not_entrant is immediate.
1420       //
1421       // Note that the compiler will track null_check, null_assert,
1422       // range_check, and class_check events and log them as if they
1423       // had been traps taken from compiled code.  This will update
1424       // the MDO trap history so that the next compilation will
1425       // properly detect hot trap sites.
1426       reprofile = true;
1427       break;
1428     case Action_make_not_entrant:
1429       // Request immediate recompilation, and get rid of the old code.
1430       // Make them not entrant, so next time they are called they get
1431       // recompiled.  Unloaded classes are loaded now so recompile before next
1432       // time they are called.  Same for uninitialized.  The interpreter will
1433       // link the missing class, if any.
1434       make_not_entrant = true;
1435       break;
1436     case Action_make_not_compilable:
1437       // Give up on compiling this method at all.
1438       make_not_entrant = true;
1439       make_not_compilable = true;
1440       break;
1441     default:
1442       ShouldNotReachHere();
1443     }
1444 
1445     // Setting +ProfileTraps fixes the following, on all platforms:
1446     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1447     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1448     // recompile relies on a methodDataOop to record heroic opt failures.
1449 
1450     // Whether the interpreter is producing MDO data or not, we also need
1451     // to use the MDO to detect hot deoptimization points and control
1452     // aggressive optimization.
1453     bool inc_recompile_count = false;
1454     ProfileData* pdata = NULL;
1455     if (ProfileTraps && update_trap_state && trap_mdo.not_null()) {
1456       assert(trap_mdo() == get_method_data(thread, trap_method, false), "sanity");
1457       uint this_trap_count = 0;
1458       bool maybe_prior_trap = false;
1459       bool maybe_prior_recompile = false;
1460       pdata = query_update_method_data(trap_mdo, trap_bci, reason,
1461                                    //outputs:
1462                                    this_trap_count,
1463                                    maybe_prior_trap,
1464                                    maybe_prior_recompile);
1465       // Because the interpreter also counts null, div0, range, and class
1466       // checks, these traps from compiled code are double-counted.
1467       // This is harmless; it just means that the PerXTrapLimit values
1468       // are in effect a little smaller than they look.
1469 
1470       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1471       if (per_bc_reason != Reason_none) {
1472         // Now take action based on the partially known per-BCI history.
1473         if (maybe_prior_trap
1474             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1475           // If there are too many traps at this BCI, force a recompile.
1476           // This will allow the compiler to see the limit overflow, and
1477           // take corrective action, if possible.  The compiler generally
1478           // does not use the exact PerBytecodeTrapLimit value, but instead
1479           // changes its tactics if it sees any traps at all.  This provides
1480           // a little hysteresis, delaying a recompile until a trap happens
1481           // several times.
1482           //
1483           // Actually, since there is only one bit of counter per BCI,
1484           // the possible per-BCI counts are {0,1,(per-method count)}.
1485           // This produces accurate results if in fact there is only
1486           // one hot trap site, but begins to get fuzzy if there are
1487           // many sites.  For example, if there are ten sites each
1488           // trapping two or more times, they each get the blame for
1489           // all of their traps.
1490           make_not_entrant = true;
1491         }
1492 
1493         // Detect repeated recompilation at the same BCI, and enforce a limit.
1494         if (make_not_entrant && maybe_prior_recompile) {
1495           // More than one recompile at this point.
1496           inc_recompile_count = maybe_prior_trap;
1497         }
1498       } else {
1499         // For reasons which are not recorded per-bytecode, we simply
1500         // force recompiles unconditionally.
1501         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1502         make_not_entrant = true;
1503       }
1504 
1505       // Go back to the compiler if there are too many traps in this method.
1506       if (this_trap_count >= (uint)PerMethodTrapLimit) {
1507         // If there are too many traps in this method, force a recompile.
1508         // This will allow the compiler to see the limit overflow, and
1509         // take corrective action, if possible.
1510         // (This condition is an unlikely backstop only, because the
1511         // PerBytecodeTrapLimit is more likely to take effect first,
1512         // if it is applicable.)
1513         make_not_entrant = true;
1514       }
1515 
1516       // Here's more hysteresis:  If there has been a recompile at
1517       // this trap point already, run the method in the interpreter
1518       // for a while to exercise it more thoroughly.
1519       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1520         reprofile = true;
1521       }
1522 
1523     }
1524 
1525     // Take requested actions on the method:
1526 
1527     // Recompile
1528     if (make_not_entrant) {
1529       if (!nm->make_not_entrant()) {
1530         return; // the call did not change nmethod's state
1531       }
1532 
1533       if (pdata != NULL) {
1534         // Record the recompilation event, if any.
1535         int tstate0 = pdata->trap_state();
1536         int tstate1 = trap_state_set_recompiled(tstate0, true);
1537         if (tstate1 != tstate0)
1538           pdata->set_trap_state(tstate1);
1539       }
1540     }
1541 
1542     if (inc_recompile_count) {
1543       trap_mdo->inc_overflow_recompile_count();
1544       if ((uint)trap_mdo->overflow_recompile_count() >
1545           (uint)PerBytecodeRecompilationCutoff) {
1546         // Give up on the method containing the bad BCI.
1547         if (trap_method() == nm->method()) {
1548           make_not_compilable = true;
1549         } else {
1550           trap_method->set_not_compilable(CompLevel_full_optimization);
1551           // But give grace to the enclosing nm->method().
1552         }
1553       }
1554     }
1555 
1556     // Reprofile
1557     if (reprofile) {
1558       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1559     }
1560 
1561     // Give up compiling
1562     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1563       assert(make_not_entrant, "consistent");
1564       nm->method()->set_not_compilable(CompLevel_full_optimization);
1565     }
1566 
1567   } // Free marked resources
1568 
1569 }
1570 JRT_END
1571 
1572 methodDataOop
1573 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1574                                 bool create_if_missing) {
1575   Thread* THREAD = thread;
1576   methodDataOop mdo = m()->method_data();
1577   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1578     // Build an MDO.  Ignore errors like OutOfMemory;
1579     // that simply means we won't have an MDO to update.
1580     methodOopDesc::build_interpreter_method_data(m, THREAD);
1581     if (HAS_PENDING_EXCEPTION) {
1582       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1583       CLEAR_PENDING_EXCEPTION;
1584     }
1585     mdo = m()->method_data();
1586   }
1587   return mdo;
1588 }
1589 
1590 ProfileData*
1591 Deoptimization::query_update_method_data(methodDataHandle trap_mdo,
1592                                          int trap_bci,
1593                                          Deoptimization::DeoptReason reason,
1594                                          //outputs:
1595                                          uint& ret_this_trap_count,
1596                                          bool& ret_maybe_prior_trap,
1597                                          bool& ret_maybe_prior_recompile) {
1598   uint prior_trap_count = trap_mdo->trap_count(reason);
1599   uint this_trap_count  = trap_mdo->inc_trap_count(reason);
1600 
1601   // If the runtime cannot find a place to store trap history,
1602   // it is estimated based on the general condition of the method.
1603   // If the method has ever been recompiled, or has ever incurred
1604   // a trap with the present reason , then this BCI is assumed
1605   // (pessimistically) to be the culprit.
1606   bool maybe_prior_trap      = (prior_trap_count != 0);
1607   bool maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1608   ProfileData* pdata = NULL;
1609 
1610 
1611   // For reasons which are recorded per bytecode, we check per-BCI data.
1612   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1613   if (per_bc_reason != Reason_none) {
1614     // Find the profile data for this BCI.  If there isn't one,
1615     // try to allocate one from the MDO's set of spares.
1616     // This will let us detect a repeated trap at this point.
1617     pdata = trap_mdo->allocate_bci_to_data(trap_bci);
1618 
1619     if (pdata != NULL) {
1620       // Query the trap state of this profile datum.
1621       int tstate0 = pdata->trap_state();
1622       if (!trap_state_has_reason(tstate0, per_bc_reason))
1623         maybe_prior_trap = false;
1624       if (!trap_state_is_recompiled(tstate0))
1625         maybe_prior_recompile = false;
1626 
1627       // Update the trap state of this profile datum.
1628       int tstate1 = tstate0;
1629       // Record the reason.
1630       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1631       // Store the updated state on the MDO, for next time.
1632       if (tstate1 != tstate0)
1633         pdata->set_trap_state(tstate1);
1634     } else {
1635       if (LogCompilation && xtty != NULL) {
1636         ttyLocker ttyl;
1637         // Missing MDP?  Leave a small complaint in the log.
1638         xtty->elem("missing_mdp bci='%d'", trap_bci);
1639       }
1640     }
1641   }
1642 
1643   // Return results:
1644   ret_this_trap_count = this_trap_count;
1645   ret_maybe_prior_trap = maybe_prior_trap;
1646   ret_maybe_prior_recompile = maybe_prior_recompile;
1647   return pdata;
1648 }
1649 
1650 void
1651 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1652   ResourceMark rm;
1653   // Ignored outputs:
1654   uint ignore_this_trap_count;
1655   bool ignore_maybe_prior_trap;
1656   bool ignore_maybe_prior_recompile;
1657   query_update_method_data(trap_mdo, trap_bci,
1658                            (DeoptReason)reason,
1659                            ignore_this_trap_count,
1660                            ignore_maybe_prior_trap,
1661                            ignore_maybe_prior_recompile);
1662 }
1663 
1664 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request) {
1665 
1666   // Still in Java no safepoints
1667   {
1668     // This enters VM and may safepoint
1669     uncommon_trap_inner(thread, trap_request);
1670   }
1671   return fetch_unroll_info_helper(thread);
1672 }
1673 
1674 // Local derived constants.
1675 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
1676 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
1677 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
1678 
1679 //---------------------------trap_state_reason---------------------------------
1680 Deoptimization::DeoptReason
1681 Deoptimization::trap_state_reason(int trap_state) {
1682   // This assert provides the link between the width of DataLayout::trap_bits
1683   // and the encoding of "recorded" reasons.  It ensures there are enough
1684   // bits to store all needed reasons in the per-BCI MDO profile.
1685   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1686   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1687   trap_state -= recompile_bit;
1688   if (trap_state == DS_REASON_MASK) {
1689     return Reason_many;
1690   } else {
1691     assert((int)Reason_none == 0, "state=0 => Reason_none");
1692     return (DeoptReason)trap_state;
1693   }
1694 }
1695 //-------------------------trap_state_has_reason-------------------------------
1696 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1697   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
1698   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
1699   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1700   trap_state -= recompile_bit;
1701   if (trap_state == DS_REASON_MASK) {
1702     return -1;  // true, unspecifically (bottom of state lattice)
1703   } else if (trap_state == reason) {
1704     return 1;   // true, definitely
1705   } else if (trap_state == 0) {
1706     return 0;   // false, definitely (top of state lattice)
1707   } else {
1708     return 0;   // false, definitely
1709   }
1710 }
1711 //-------------------------trap_state_add_reason-------------------------------
1712 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
1713   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
1714   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
1715   trap_state -= recompile_bit;
1716   if (trap_state == DS_REASON_MASK) {
1717     return trap_state + recompile_bit;     // already at state lattice bottom
1718   } else if (trap_state == reason) {
1719     return trap_state + recompile_bit;     // the condition is already true
1720   } else if (trap_state == 0) {
1721     return reason + recompile_bit;          // no condition has yet been true
1722   } else {
1723     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
1724   }
1725 }
1726 //-----------------------trap_state_is_recompiled------------------------------
1727 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1728   return (trap_state & DS_RECOMPILE_BIT) != 0;
1729 }
1730 //-----------------------trap_state_set_recompiled-----------------------------
1731 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
1732   if (z)  return trap_state |  DS_RECOMPILE_BIT;
1733   else    return trap_state & ~DS_RECOMPILE_BIT;
1734 }
1735 //---------------------------format_trap_state---------------------------------
1736 // This is used for debugging and diagnostics, including hotspot.log output.
1737 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1738                                               int trap_state) {
1739   DeoptReason reason      = trap_state_reason(trap_state);
1740   bool        recomp_flag = trap_state_is_recompiled(trap_state);
1741   // Re-encode the state from its decoded components.
1742   int decoded_state = 0;
1743   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
1744     decoded_state = trap_state_add_reason(decoded_state, reason);
1745   if (recomp_flag)
1746     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
1747   // If the state re-encodes properly, format it symbolically.
1748   // Because this routine is used for debugging and diagnostics,
1749   // be robust even if the state is a strange value.
1750   size_t len;
1751   if (decoded_state != trap_state) {
1752     // Random buggy state that doesn't decode??
1753     len = jio_snprintf(buf, buflen, "#%d", trap_state);
1754   } else {
1755     len = jio_snprintf(buf, buflen, "%s%s",
1756                        trap_reason_name(reason),
1757                        recomp_flag ? " recompiled" : "");
1758   }
1759   if (len >= buflen)
1760     buf[buflen-1] = '\0';
1761   return buf;
1762 }
1763 
1764 
1765 //--------------------------------statics--------------------------------------
1766 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1767   = Deoptimization::Action_reinterpret;
1768 const char* Deoptimization::_trap_reason_name[Reason_LIMIT] = {
1769   // Note:  Keep this in sync. with enum DeoptReason.
1770   "none",
1771   "null_check",
1772   "null_assert",
1773   "range_check",
1774   "class_check",
1775   "array_check",
1776   "intrinsic",
1777   "bimorphic",
1778   "unloaded",
1779   "uninitialized",
1780   "unreached",
1781   "unhandled",
1782   "constraint",
1783   "div0_check",
1784   "age",
1785   "predicate",
1786   "loop_limit_check"
1787 };
1788 const char* Deoptimization::_trap_action_name[Action_LIMIT] = {
1789   // Note:  Keep this in sync. with enum DeoptAction.
1790   "none",
1791   "maybe_recompile",
1792   "reinterpret",
1793   "make_not_entrant",
1794   "make_not_compilable"
1795 };
1796 
1797 const char* Deoptimization::trap_reason_name(int reason) {
1798   if (reason == Reason_many)  return "many";
1799   if ((uint)reason < Reason_LIMIT)
1800     return _trap_reason_name[reason];
1801   static char buf[20];
1802   sprintf(buf, "reason%d", reason);
1803   return buf;
1804 }
1805 const char* Deoptimization::trap_action_name(int action) {
1806   if ((uint)action < Action_LIMIT)
1807     return _trap_action_name[action];
1808   static char buf[20];
1809   sprintf(buf, "action%d", action);
1810   return buf;
1811 }
1812 
1813 // This is used for debugging and diagnostics, including hotspot.log output.
1814 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
1815                                                 int trap_request) {
1816   jint unloaded_class_index = trap_request_index(trap_request);
1817   const char* reason = trap_reason_name(trap_request_reason(trap_request));
1818   const char* action = trap_action_name(trap_request_action(trap_request));
1819   size_t len;
1820   if (unloaded_class_index < 0) {
1821     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'",
1822                        reason, action);
1823   } else {
1824     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'",
1825                        reason, action, unloaded_class_index);
1826   }
1827   if (len >= buflen)
1828     buf[buflen-1] = '\0';
1829   return buf;
1830 }
1831 
1832 juint Deoptimization::_deoptimization_hist
1833         [Deoptimization::Reason_LIMIT]
1834     [1 + Deoptimization::Action_LIMIT]
1835         [Deoptimization::BC_CASE_LIMIT]
1836   = {0};
1837 
1838 enum {
1839   LSB_BITS = 8,
1840   LSB_MASK = right_n_bits(LSB_BITS)
1841 };
1842 
1843 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1844                                        Bytecodes::Code bc) {
1845   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1846   assert(action >= 0 && action < Action_LIMIT, "oob");
1847   _deoptimization_hist[Reason_none][0][0] += 1;  // total
1848   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
1849   juint* cases = _deoptimization_hist[reason][1+action];
1850   juint* bc_counter_addr = NULL;
1851   juint  bc_counter      = 0;
1852   // Look for an unused counter, or an exact match to this BC.
1853   if (bc != Bytecodes::_illegal) {
1854     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1855       juint* counter_addr = &cases[bc_case];
1856       juint  counter = *counter_addr;
1857       if ((counter == 0 && bc_counter_addr == NULL)
1858           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
1859         // this counter is either free or is already devoted to this BC
1860         bc_counter_addr = counter_addr;
1861         bc_counter = counter | bc;
1862       }
1863     }
1864   }
1865   if (bc_counter_addr == NULL) {
1866     // Overflow, or no given bytecode.
1867     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
1868     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
1869   }
1870   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
1871 }
1872 
1873 jint Deoptimization::total_deoptimization_count() {
1874   return _deoptimization_hist[Reason_none][0][0];
1875 }
1876 
1877 jint Deoptimization::deoptimization_count(DeoptReason reason) {
1878   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
1879   return _deoptimization_hist[reason][0][0];
1880 }
1881 
1882 void Deoptimization::print_statistics() {
1883   juint total = total_deoptimization_count();
1884   juint account = total;
1885   if (total != 0) {
1886     ttyLocker ttyl;
1887     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
1888     tty->print_cr("Deoptimization traps recorded:");
1889     #define PRINT_STAT_LINE(name, r) \
1890       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
1891     PRINT_STAT_LINE("total", total);
1892     // For each non-zero entry in the histogram, print the reason,
1893     // the action, and (if specifically known) the type of bytecode.
1894     for (int reason = 0; reason < Reason_LIMIT; reason++) {
1895       for (int action = 0; action < Action_LIMIT; action++) {
1896         juint* cases = _deoptimization_hist[reason][1+action];
1897         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
1898           juint counter = cases[bc_case];
1899           if (counter != 0) {
1900             char name[1*K];
1901             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
1902             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
1903               bc = Bytecodes::_illegal;
1904             sprintf(name, "%s/%s/%s",
1905                     trap_reason_name(reason),
1906                     trap_action_name(action),
1907                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
1908             juint r = counter >> LSB_BITS;
1909             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
1910             account -= r;
1911           }
1912         }
1913       }
1914     }
1915     if (account != 0) {
1916       PRINT_STAT_LINE("unaccounted", account);
1917     }
1918     #undef PRINT_STAT_LINE
1919     if (xtty != NULL)  xtty->tail("statistics");
1920   }
1921 }
1922 #else // COMPILER2 || SHARK
1923 
1924 
1925 // Stubs for C1 only system.
1926 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
1927   return false;
1928 }
1929 
1930 const char* Deoptimization::trap_reason_name(int reason) {
1931   return "unknown";
1932 }
1933 
1934 void Deoptimization::print_statistics() {
1935   // no output
1936 }
1937 
1938 void
1939 Deoptimization::update_method_data_from_interpreter(methodDataHandle trap_mdo, int trap_bci, int reason) {
1940   // no udpate
1941 }
1942 
1943 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
1944   return 0;
1945 }
1946 
1947 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
1948                                        Bytecodes::Code bc) {
1949   // no update
1950 }
1951 
1952 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
1953                                               int trap_state) {
1954   jio_snprintf(buf, buflen, "#%d", trap_state);
1955   return buf;
1956 }
1957 
1958 #endif // COMPILER2 || SHARK